
Chapter 3
Introducing Clustering with a Focus
in Marketing and Consumer Analysis
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Abstract Clustering has become an extremely popular methodology for consumer
analysis with many business applications. Mainly, when a consumer market needs
to be segmented, clustering methodologies are some of the most common ways
of doing so nowadays. Clustering, however, is a hugely heterogeneous field in
itself with advances and explanations coming from many different disciplines.
Clustering has been discussed in debates almost as heated as those about politics
or religions, yet still, researchers and professionals agree on the methodology’s
usefulness in data analytics. This chapter provides the novice data scientist with
a brief introduction and review of the field with links to previous large surveys
and reviews for recommended further reading. The clustering contributions in this
book focus largely on partitional clustering; hence, this is the type of clustering
that will feature more prominently in this chapter. Besides sparking the interest
of business and marketing researchers and professionals into this ever evolving
methodological field, we aim at inspiring dedicated computer scientists and data
analysts to continue to explore the wide application domains coming from business
and consumer analytics in which clustering and grouping are making great strides.
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3.1 Introduction

A good colleague of us once opened a seminar to computer scientists with a quote
that reverberates in our heads: “Clustering is a Religion, so I prefer not to talk
about it”. However, his talk was about a method to group data according to some
similarities. His approach was different to others in that he used methods based
on graph theory and combinatorial optimization. The message, nevertheless, was
clear. There are many different techniques to group data and researchers seem to
be particularly drawn to some mathematical models and they possess deep beliefs
about them. We thus keep that in mind, we try to convey a message to newcomers
in the field. There are many different ways to order and group data and practitioners
need to be aware of the large variety of techniques that exist before passionately
embracing only a small subset of them.

Clustering is a large methodological field, with many different approaches,
algorithms and applications. Many good reviews exist and it is very difficult to select
“the best one” as the criteria would depend on the reader and the application. There
is indeed an extremely large body of literature in clustering, including many reviews
of the area. For instance, the review by Jain et al. [57] titled “Data Clustering: A
Review” is one of the most cited and comprehensive introductory reviews to the
area of clustering. Jain added to this extensive review in 2010 with a more recent
review of clustering in “Data clustering: 50 years beyond k-means” [56]. Some
more reviews and introductions to data clustering have been done by Kaufman and
Rousseeuw [61], Xu and Wunsch II [116] and Gan et al. [42] among many others.
A recent survey on clustering methods based on combinatorial perspective was
published by Levin [70] (and just this subset of the literature exceeds 200 selected
references). Here we will add to this rich body of research with an emphasis on
clustering in more recent business and marketing applications.

Even though clustering is such a popular area and methodology, and it is the
source of many hard computational problems (i.e. those that we discussed in the first
chapter as being NP-complete) which is why it continues to be further investigated
today and why it is a prominent topic in this volume. We mentioned before that when
a problem is NP-complete it is unlikely that efficient algorithms can be found for
them. However, the mathematical model may be very useful for a practitioner (see,
for instance [78, 94]). As a consequence, heuristics and metaheuristics are applied
to find feasible solutions for these problems when we face large datasets.

This chapter will provide the reader with a useful introduction to the area of
clustering, an idea of how and why clustering is an important (almost crucial)
area to business and consumer analytics and provide specific examples of existing
clustering methodologies used in these areas. A solid understanding of clustering
methodologies, their inputs and their outputs, will go a long way to providing the
data analytics novice with a solid base for further data-science exploration. For data
science experts, it is useful to reflect on those methods most commonly used in
marketing and in business and consumer analytics applications. First, we provide
the novice data scientist with an introduction into clustering, how it works, why we
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do it, the most common and popular methods, their pros and cons and a final focus
on those methodologies particularly developed by business and consumer analytics
researchers.

3.2 The Methodology of Clustering

In Clustering the objective is to assign labels to objects (or observations, or data
points). A set of objects that have the same label (or labels) is said to be a “group”
or a “cluster”. The aim of clustering algorithms and heuristics is to achieve the
best possible grouping. The outcome of the algorithm applied will thus depend
on the choice of the similarity between the objects. It will also depend on the
nature of the dataset. In this way, we can define a cluster as a collection of data
instances (or objects) which are “similar” to each other and “dissimilar” to instances
in other clusters [72]. To give a proper introduction to clustering we cover the
questions of “What is clustering?” and “Why do we cluster?” We also provide
a brief introduction to the main different types of clustering approaches including
those most frequently used by business and marketing researchers and practitioners.
Furthermore, as with any data analysis method, it is important to be able to evaluate
or compare our results and we include a brief explanation of some approaches to do
this.

3.2.1 What Is Clustering and Why Do We Do It?

There are many definitions for clustering, but in essence, it is a methodology with
the purpose of organizing objects into groups (clusters) that are similar to each other
(and dissimilar to other groups) based on a set of measurements/characteristics that
are known about those objects. These objects could be consumers, patients, com-
panies, products, images, genes and proteins in a biological network or any other
dataset that could contain multi-attributed objects. Examples of the measurements
or characteristics could be online consumer behaviour patterns, a set of answers
to survey questions by clients, customer shopping patterns, financial investment
patterns, gene expression patterns and so forth. Ideally, the objective is to group
them, based only on the information provided in the dataset, without biasing the
clustering method/algorithm how to group them, how many objects to group in each
cluster, and ideally, without predicting the number of resulting groups and with the
least amount of a priori parameters (more on this later in this chapter).

A “natural” clustering method would generally convey the meaning that the basic
method is an unsupervised learning approach. Unsupervised learning, unlike with
supervised learning techniques, has no a priori classes and no identification labels or
partitions are given [72]. The objective of these techniques is to uncover the natural
groupings of objects in a dataset.
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It is thus very important to distinguish between supervised and unsupervised
learning. Supervised clustering would not be clustering, it would in fact be
classification [57]. Classification can be called supervised learning because, in a
way, the method operates under supervision by being provided with the actual
outcome of each of the training examples (it’s class) [113] by the person operating
it. Classification is used when there are existing classes to which the data objects
belong to, such as classifying patients into disease subtypes in the area of bioin-
formatics or classifying products into their correct categories for an online retail
webpage.

In many clustering applications in a business and marketing context, classes are
usually not known a priori and analysts often aim to find and explore “the unknown”
in their dataset without previous assumptions. Three main purposes of clustering in
general are presented in Jain [56] (we quote):

• Underlying structure: to gain insight into data, generate hypotheses, detect anomalies,
and identify salient features.

• Natural classification: to identify the degree of similarity among forms or organisms
(phylogenetic relationship)

• Compression: as a method for organizing the data and summarizing it through cluster
prototypes.

These purposes convey the drive to find out the “unknown” about a group of people,
a set of topics or documents or any other dataset with underlying natural groupings.

Clustering has not been “championed” by one dominant discipline in particular,
but rather it has received many contributions from many disciplines [92]. As
a consequence, there are many different approaches, varying vocabularies and
sometimes even multiple names for the same approach.

To make this area even more complex, there are endless amounts of applications
for the ever-increasing number of clustering methodologies. A popular field in
which clustering has been used extensively is in the medical, health and biological
research domains. Considering clustering is an unsupervised learning technique, it
is a useful tool for exploratory analysis of large datasets that we do not know a lot
about. This is why it has been very useful for medical and health researchers in
recent decades who may deal with millions of data points when analysing datasets
of thousands of people with thousands of samples and variables. Business, finance,
marketing, psychology and many other areas have rapidly caught up with the size
of datasets that they produce. Consumer analytics is now a big contender for large
data instances that can be generated in a very short period of time. This means that
highly scalable and high performance clustering algorithms are now necessary for
successful business and consumer analytics.

As Chap. 2 has already explained, in marketing, a common objective is to
segment the market into similar segments of consumers. Market segmentation
has therefore been the most common application for clustering methodologies
in marketing and consumer analytics to date. However, with the ever-increasing
size of data instances, data types, sources and applications, clustering exercises
now have many more uses in business and consumer analytics. Other applications
include exploratory research of a large dataset, inputs for other methods such
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as recommender systems, visualization of a set of information, product analysis,
logistics research and operational applications, financial analysis and prediction
among many others.

In this volume some of these applications will be presented. In this chapter,
however, we will focus on those methods of which the purpose is to uncover a
natural grouping. That is, clustering (or partitioning) is the main purpose of the
experiment. We need to look at the different clustering methodologies that already
exist, particularly the most standard and well-known clustering algorithms and
look at those methods most commonly used by consumer behaviour and business
analytics researchers.

3.2.2 Different Types of Clustering

There are many different types of clustering approaches and many different names
for highly similar clustering methodologies. The most well-known types of cluster-
ing include: partitional, density-based and hierarchical methodologies [100]. Most
clustering approaches can be said to fall in one of these three categories, especially
any method you will come across in this book. Some approaches such as k-
means or nearest-neighbour clustering are described in further detail in Sects. 3.5.1
and 3.5.2, respectively. However, other clustering approaches besides the three
“main” categories do exist. For instance, distribution-based clustering, which is
somewhat similar to density-based clustering but rather than separating clusters by
“low density” areas, it investigates the distribution, or spread, of the data points
around the initial centre of the clusters. In this section we will discuss partitional,
density-based and hierarchical clustering approaches as well as briefly introduce
various other methodologies.

3.2.2.1 Partitional Clustering

The most commonly used clustering methods (at least in analysing consumer
behaviour and for market segmentation) are partitional clustering methods. Parti-
tional clustering separates a dataset into a set of disjoint clusters. With partitioning
clustering, the objective is to maximize some function that measures the similarity
of objects within the clusters, while at the same time, minimizing the similarities
between objects assigned to different clusters. Partitional clustering procedures
generate a single partition (as opposed to a nested sequence) of the data in an
attempt to recover the natural grouping present in the data. There are many different
partitional clustering methods and approaches, and in this chapter we will cover
the most common ones and those commonly used by business and marketing
researchers.

Partitional clustering can again be split into two sub-categories: hard and fuzzy
clustering. With hard clustering, each data point is assigned to one and only one of
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the clusters which means that there are well-defined separations between clusters.
However, with real-world data, there are often no real and well-defined boundaries
between groups of objects that are being investigated. Particularly when it comes
to analysing humans (rather than physical properties) whose behaviours could not
lead to characteristics which can be discretized. For this reason, fuzzy clustering has
increased in use and popularity. With fuzzy clustering, each node (or object) has a
variable degree of membership in each of the output clusters [57]. More details on
fuzzy clustering approaches are provided in Sect. 3.6 of this chapter.

3.2.2.2 Hierarchical Clustering

Hierarchical clustering produces a dendrogram, a structure that is a nested sequence
of clusters which look like a tree as depicted in Fig. 3.1. The y-coordinate of the
horizontal line is the similarity of the two clusters that were merged, where the
objects being clustered are viewed as singleton clusters. Similarity will be further
discussed in Sect. 3.2.3. Hierarchical clustering uses either a top-down or a bottom-
up algorithm which has implications on the way in which the data is separated
by the algorithm [20]. They can also be referred to as either divisive (top-down)
or agglomerative (bottom-up). Depending on the approach selected, a different
outcome can be obtained because at the top of the dendrogram, there is one root
cluster which covers all data points, whereas at the bottom of the hierarchy, there
are singleton clusters (representing individual data points) [72].

With divisive hierarchical clustering, all the observations are assigned to a single
cluster and the first step splits them up into two least similar clusters. These are then
each split up again and so forth. This process is continued iteratively until there is
one cluster for each of the observations at the bottom of the hierarchy. Oppositely,
with agglomerative clustering, each observation is assigned its own cluster and then,
based on similarity, they are combined into clusters. This is repeated until there
is only one cluster left at the top. Agglomerative (bottom-up) clustering is more
frequently used than top-down clustering.

A well-known and popular consumer-related example of hierarchical clustering
that can be used to easily explain this method is that of an online retail store. Or
even better, an online retail aggregation website which combines the products on
offer from several other sites into one place. The problem at hand is to organize
each product (for example, items of clothing), into subcategories according to
a clothing category hierarchy. Each online retail store could have thousands of
products in different colours and styles which could lead to tens of thousands of
products combinations (data points) to be analysed for a web retailer aggregation
website. The question is how should these products be organized into categories?
One way is for a human team to manually organize each product into their correct
category at the correct level in the hierarchy. However, the manual organization is
extremely time-consuming and therefore very costly. A better way to do this would
be through a hierarchical clustering algorithm that sorts through the products based
on their features and meta-information. Or even visually analyses the image and uses
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Fig. 3.1 A basic representation of a dendrogram showing hierarchical clustering. Each merge is
represented by a horizontal line. The y-coordinate of the horizontal line is the similarity of the two
clusters that were merged, where the objects being clustered are viewed as singleton clusters. The
dashed line shows a section of the hierarchy that can be selected by the user for inspection. At this
point we have three clusters: one cluster containing points a, b and c; one cluster containing only
point d and one cluster containing points e and f

machine learning techniques to categorize the image (and give some extra help, for
instance, by suggesting proper sets of tags according to the hierarchy level, etc.).
This is one of the many examples of the use of hierarchical clustering. In essence,
hierarchical clustering can be used for any set of information where there is some
form of ranked order to be uncovered.

3.2.2.3 Density-Based Clustering

Density-based clustering uses a model to group objects according to specific density
objective functions. Density is generally defined as the number of objects in a
particular neighbourhood of a data objects. It is for this reason that density-based
clustering is common in spatial applications of clustering. Density-based clusters
are separated from each other by continuous regions of low density of objects.
The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is
an algorithm introduced by Ester et al. in 1998 which provides a density-based
clustering suitable for managing spatial data [97]. This algorithm is probably the
main density-based approach known to researchers. Figure 3.2 shows how density
based clustering works. The two dense regions are clearly separated by less dense
regions which is why they are in two separate clusters.
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In the image, we can see data point alpha. With certain methods, such as k-means
clustering (which we will explain in Sect. 3.5.1), the partitional clustering process
starts by selecting centroids in the graph which will see its neighbouring nodes
becoming part of its cluster. Therefore, if point alpha would be selected as an initial
centroid, and the next nearest randomly selected centroid is point beta, then the node
connected to alpha with a dashed line would likely be attributed to the smaller blue
(lighter colour) cluster on the left rather than the red bigger cluster on the right. In
instances like these, it is clear to see why and when density-based clustering would
be the more appropriate method as in this case the density-based approach is more
successful at uncovering the natural grouping (even through the peculiar shapes of
the clusters). One limitation of density-based clustering methods is that they have
trouble handling high-dimensional data [56]. This same aspect is the reason why
other methods, such as k-means, have been more frequently and are so popular as
they handle large datasets better.

Fig. 3.2 This figure shows two clusters that are rather different in size and shape and are separated
by an area of lower density. These two clusters would be identified much better using a density-
based clustering technique than with, for instance, a k-means approach. If point alpha is selected
as one of k-means initial centroids, it would likely attract the point connected via a dashed line to
its cluster. This would in turn mean that the separation created by the lower density area would not
be recognized by the method

3.2.2.4 Model-Based Clustering

Model-Based (MB) approaches can provide alternatives for heuristic approaches
and have become more prevalent in the marketing literature since the early
2000s [105]. MB clustering approaches have the goal to optimize the fit between
the given data and some mathematical model [48].



3 Introducing Clustering with a Focus in Marketing and Consumer Analysis 173

A mixture model corresponds to the mixture distribution that represents the
probability distribution of observations in an overall population (dataset). Gaussian
mixture models are some of the most commonly used model-based approaches.
They investigate the number of Gaussian distributions evident in the data. A
Gaussian distribution is simply a name for a “normal distribution” (or the “bell-
shaped” distribution). The Gaussian distribution is a continuous function which
approximates the exact binomial distribution of events. The Gaussian distribution
is normalized so that the sum over all values of x gives a probability of 1. A
Gaussian mixture model is a probabilistic model that assumes all the data points are
generated from a mixture of a finite number of Gaussian distributions with unknown
parameters. Variations of Gaussian mixture models can also be used for hierarchical
clustering applications [88].

Finite Mixture Models (FFMs) are a type of MB approach and FMMs have
become more prominently used in marketing literature as they are able to simul-
taneously derive segments and segment-specific weights that relate to dependent
variables (e.g. ratings) to a set of independent variables (e.g. product quality) as
well as derive a unique regression model for each segment [105]. Those who are
great advocates of FMM say that it is/should be a preferred approach because it is a
formal statistical model (i.e. does not have a priori parameters such as k-means). A
methodologically detailed review of Finite Mixture Modelling for the keen readers
can be found in Melnykov and Maitra [81].

3.2.2.5 Hybrid Approaches

Of course, there are several other methods that combine some of the approaches
above. One example is the hierarchical clustering approach based on “Arithmetic-
Harmonic Cuts” of Rizzi et al. [94]. In this approach the method works by finding
a partition of a set of objects that are linked by weighted edges of a graph. At each
stage, an NP-hard optimization problem needs to be solved. The solution of this
problem is a partition of the graph vertices in a way that minimizes an objective
function (the weight of the arithmetic-harmonic cut). Then the two sets of vertices
of the partition are recursively partitioned. The input is now the set of edges that is
not part of the previous cut, thus again giving rise to another NP-hard optimization
problem of the same type. This methodology combines partitioning within a “top-
down” hierarchical clustering approach and it has been tested in different scenarios
in [78, 94].

Another hybrid approach, again using hierarchical approaches is that of Fer-
nández and Gomez where they include multidendrograms into an agglomerative
hierarchical clustering approach [35]. They propose a variable-group algorithm
groups more than two clusters at the same time when ties occur to deal with the
problem of non-uniqueness when two or more distances between different clusters
coincide during the amalgamation process.

The types of clustering and grouping approaches presented in this section are not
an exhaustive list of ways to segment consumers. Many more grouping, regression,
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clustering and statistical approaches exist and are being invented as this area of
research continues to grow (including more combinations of hybrid approaches).
However, the ones presented in this section provide a good basic understanding of
the most commonly used clustering, segmentation and grouping methodologies.

3.2.3 Distances and Similarities in the Context of Clustering

When reading about clustering, grouping and classifying, you will hear and see the
words “similarity” and “distance” come by many times. In many cases, the input
for a clustering algorithm is not a similarity matrix. Instead, each object will have a
set of features (also known as variables, attributes or characteristics) which may
be extremely unique to that object, or very similar to other objects of interest.
It is this information that is needed for many clustering algorithms. In the case
of segmenting consumers, customers, users or followers, products, these are your
objects and the variables relating to them (e.g. purchase patterns) are the features.
In some cases, distance and similarity metrics will usually be (or will be normalized
to) a value between [0,1]. With similarity metrics, a value closer to 1 means more
similar and with distance metrics a value closer to 1 means more distant from each
other.

The selection of a proper distance or similarity metric between objects then
becomes an interesting issue in itself. There are many different metrics available for
use and which one you choose, depends on your dataset, the context and the nature
of your data among other aspects. In fact, a whole “Encyclopedia of Distances” has
been published [28] and in no effect could we match this here. Instead, we provide a
brief overview and introduction to the most commonly used distances and similarity
metrics used for clustering. Further, we introduce some of the metrics that are used
by subsequent chapters in this volume.

Distance matrices can be used to generate other graphs such as proximity graphs,
relative neighbourhood graphs (RNGs) or any other distance-based graph such as
those introduced in Chap. 4.

3.2.3.1 Distance and Similarity Metrics

Given a set of objects, a metric (or distance function) is a non-negative function that
defines how far apart each pair of objects of a set are. Formally metric d(a, b) is a
function that for objects a and b:

1. returns 0 as the distance from point to itself, i.e. d(a, b) = 0 ⇔ a = b (identity
of indiscernibles),
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2. distance between any two points is the same, regardless from which point we
start to measure, i.e. d(a, b) = d(b, a) (symmetry),

3. distance between any two points is lower or equal to the distance between the
same points, but measuring through any third point c, i.e. d(a, b) ≤ d(a, c) +
d(c, b) (triangle inequality).

For objects in an Euclidean space, a common and old metric to use is the Euclidean
distance. The Euclidean distance is described as the “ordinary” (or straight-line,
“like the crow flies”) distance between two points in an Euclidean space [28]

deuc(a, b) =
√
√
√
√

n
∑

i=1

(ai − bi)2, (3.1)

where deuc(a, b) is the Euclidean distance, a = [a1, a2, . . . an] and b =
[b1, b2, . . . bn] are the n-dimensional objects between which we want to calculate
distance and n is the number of features that correspond to the points. How
“good” the Euclidean distance is at finding the most appropriate partitions of a
dataset depends on the circumstances. As our example already showed in Fig. 3.2
however, sometimes a straight-line distance may not always be the best approach
for finding the most natural underlying groupings in a dataset. Therefore, many
other metrics have been suggested since to deal with other datasets and instanced
for which the Euclidean distance may not be the most appropriate. A variation is the
“squared Euclidean” which is commonly used for k-means clustering. K-means is
implicitly based on pairwise Euclidean distances between points, because the sum
of squared deviations from each centroid is equal to the sum of pairwise squared
Euclidean distances divided by the number of points. Hence, the k-means approach
needs to use the squared Euclidean distance rather than the standard Euclidean
distance.

Another distance is called the Manhattan distance dcbox :

dcbox(a, b) =
n

∑

i=1

|ai − bi |. (3.2)

Figure 3.3 shows how the Euclidean distance and the Manhattan distance work
and how they differ from each other. The Manhattan distance gets its name
from “going around the city block”; something that city-dwellers in Manhattan
probably know all too well and accordingly also gets referred to as “city-block”.
The Manhattan distance function finds the distance that would be travelled to get
from one data point to the other if a grid-like path is followed (i.e. on a vector
space it is the sum of the absolute value of the differences on each coordinate
dimension).
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Both Euclidean (Eq. (3.1)) and Manhattan (Eq. (3.2)) can be generalized by the
Minkowski distance dmin

dmin(a, b) =
(

n
∑

i=1

|ai − bi |p
) 1

p

, (3.3)

which is also called as Lp. In case p = 1 (L1) it is a Manhattan distance, when
p = 2 (L2) it gives Euclidean.

Another distance is the Chebyshev distance (or Tchebychev distance). This is
a metric defined on a vector space where the distance between two vectors is the
greatest of their differences along any coordinate dimension. It is also called as a
Chessboard Distance, because it shows the minimum number of king figure from
one square to another. This distance is equivalent to Minkowski distance (L∞) with
p → ∞ (Eq. (3.3)).

A Similarity Measure is a function assessing resemblance between objects.
Contrary to a distance function, a similarity measure is a real-valued function
that can give negative values and it is commonly assumed that similarity is an
inverse of distance. More similar objects (high value of similarity) would have
lower distance between them, and distant objects (higher metric value) have lower
similarity. Even though similarity measure is symmetric it does not necessarily meet
other distance properties (provided at the beginning of Sect. 3.2.3.1). Furthermore,
in most of the cases, a similarity function is not additive. In such a case, adding or
subtracting similarity values or computing an average is invalid, but similarities can
be multiplied (scaled) for better comparison purposes, for instance.

Fig. 3.3 A figure
representation of the
Euclidean and Manhattan
distances which shows how
the Euclidean distance is
“how the crow flies” and the
Manhattan distance “going
around the city block”
following a grid-like path
between two data points

An example of a similarity measure is Cosine Similarity (scos) that uses vectors
created from data points (a and b) in such a way that a vector begins in an arbitrary
point (usually z = (0, 0)) and ends in point indicated by a or b. It is formulated as
follows:

scos(a, b) = cos(Θ) = a · b

||a|| ||b|| , (3.4)
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where Θ is the angle between vectors created by a and b, ||a|| and ||b|| are the
lengths of vectors deuc(a, b) and deuc(a, b), respectively, a · b is a dot product

a · b =
n

∑

i=1

aibi . (3.5)

Notably, the cosine measure considers similarity as an angle (Θ) between the
vectors. The magnitude of the vectors is not considered. Vectors with the same
orientation are regarded as similar giving a maximum value scos(a, b) = 1, whereas
perpendicular vectors have 0 similarity. On the other hand opposite vectors will
result in lowest similarity scos(a, b) = −1.

Cosine similarity is often used in information retrieval and text mining [62, 63].
From business analytic perspective this could be valuable in product review analy-
sis [11] or automatic product recommendation. Assuming that two text documents
are described by vectors of word occurrences, this measure will give the similarity
between those documents, regardless of their sizes. In other words, cosine similarity
indicates how similar the subject is of the two given texts. Furthermore, this measure
is efficient to calculate on sparse vectors (vectors having many zeros) since only
non-zero values are important.

Since similarity and distance are opposite to each other, distance can be
transformed into similarity, but it is important to note that a reverse operation is
not always possible. As a consequence, Euclidean distance can be used to describe
objects’ similarity, but cosine similarity cannot be used as a distance function.
Assuming that distance takes values in the closed interval [0, 1], a common way
to transform distance function value (d) into similarity (s) is

d = 1 − s. (3.6)

Another way to compute similarities is to use correlation metrics. These will in
fact produce a number that relates to similarity (correlation) between points. Two
of the most common correlation metrics are Spearman and Pearson correlation.
The Pearson correlation coefficient should be used to cluster objects with similar
behaviour patterns as those with opposite behaviours are assigned to different
clusters. A variation of the Pearson correlation is the Absolute Pearson correlation
where the absolute value of the Pearson correlation coefficient is used; hence,
the corresponding distance lies between 0 and 1. Spearman correlation clusters
together those objects who’s profiles have similar shapes, that is, their trends are
similar but the actual values may be quite different. The authors have previously
used various distance metrics and correlation metrics in a clustering study and
compared the effects on the outcome of using various similarity and distance
metrics [75].



178 N. J. de Vries et al.

3.3 Measuring Clustering Quality

Some clustering methods are designed to take advantage of extra sources of
information. For instance, if the number of clusters a user expects to find in the
data is known (if that number is known a priori or can reasonably be guessed or
predicted within reasonable bounds). In other cases, the number of clusters could
be a user-defined request (due to reasons which do not belong to the data study in
question). This information can be provided either explicitly, by the value of the
k parameter as it is in the k-means algorithm (described in Sect. 3.5.1) or more
implicitly, by providing a density of clusters that the method will be looking for
(e.g. [34]). Moreover, considering Fig. 3.8 (in a section further in this chapter) it is
visible that the k parameter has a huge influence on the method’s result. After all, the
vast majority of clustering algorithms have some parameters that should be (more or
less) carefully tuned. This situation raises a question, how to choose the appropriate
k (and possibly other parameter’s) value?

One obvious technique is to execute the method with different parameter values
and then compare their results in order to finally choose “the best one” (as the
authors were able to do in [75], thanks to class labels that could be used for post hoc
statistical analysis), but the process of a comparison might not be so straightforward.
There could be a temptation to simply look at the results and subjectively decide
which clustering result is better, but considering a real-life situation where the
number of features is more than three, and the number of points is 10,000 or more,
attempting to do this via a visualization approach becomes difficult. Furthermore,
what happens when there are 1000 clustering results? One possible solution is to
visualize the clustering in a grid of pairwise two-dimensional plots. In such a grid,
every feature is plotted against each other giving a set of plots that are easier to
analyse. The plot’s size grows quadratically with the number of dimensions. For
instance, having five-dimensional data, the grid would contain 52 = 25 plots. How
hard and time-consuming would it be to analyse such plots? Even though it is
possible to reduce the dimensionality of the input data by aggregation or to use
a dedicated method, such as Principal Component Analysis (PCA) [12], there is a
risk of losing valuable information.

Considering all mentioned problems, it becomes clear that there is a general need
for a tool that assesses which clustering is better than others, and it is desirable for
the tool to be fully automated. Due to this, researchers devised the idea of Quality
Measures. These are mathematical formulations aiming at expressing the quality of
a clustering result as a number in a predefined interval. Quality measures will be
discussed more in Sect. 3.3.1. Having two clustering results, we can compute their
quality using a particular measure, and by comparing these measures, we can decide
which one is of higher quality. This process is going to be discussed in Sect. 3.3.2.
However, what does it mean to have better quality? One could define quality in
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a variety of ways, and because of this, there are many measures and measure
paradigms aiming at assessing clustering. To choose the most suited measure, in
Sect. 3.4 we elaborate on types of clustering measures and introduce the most
common measures in a systematic way.

As will be further elaborated on in Sect. 3.6, apart from hard (crisp) clustering,
there is a fuzzy approach, however in this section, we are going to focus only on the
assessment of non-fuzzy non-hierarchical clustering results. Nevertheless, most of
the presented measures can be easily applied to other types of clustering as well.

3.3.1 What Is a Quality Measure?

As was stated, a quality measure is a function that gives a quantitative rating to
the outcome of a clustering algorithm. A clustering C is a set of clusters (i.e. C =
{C1, . . . , Cp}), where Ci is the ith cluster of the clustering. An example of such a
measure could be the average size of clusters:

QavgSize(C) = 1

|C|
∑

∀Ci∈C
|Ci |, (3.7)

where QavgSize is a measure, C is a clusterization result, |C| is the number of clusters
in the particular clustering under study and |Ci | is the number of objects that belong
to cluster Ci .

Assume that we have two different clustering outcomes C1 and C2 that are rated
by QavgSize in the following way:

QavgSize(C1) = 5, QavgSize(C2) = 17.5.

If we would be interested in configuring algorithm parameters in such a way to
get (on average) smaller groups, then we would prefer clusterings to have lower
QavgSize values so that we would pick C1 as a final result. That interest could be
present when creating personalized music recommendations for customers based on
a music database. That if someone has listened to one of the songs, the remaining
songs in the cluster will more likely suit their taste. As such, smaller clusters
will reduce the chance of suggesting unrelated songs. Contrary, if someone else
would prefer bigger groups, e.g. when trying to find main general music taste
among all customers, then it would be better to pick C2. As a third option, if
someone is not interested in the group sizes, but in a different aspect of clustering,
they should rather look for another measure that would reflect his demand on the
clustering.
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This example shows that better quality can be treated differently by people and
sometimes the clustering that is right for one application does not fit the needs of
another. Due of this, there are many different quality measures, promoting various
aspects of clustering and the meaning of the best clustering should be indicated by
the task’s specific requirements on a case-by-case basis (its application). Therefore,
in Sect. 3.4, we present several measures and will explain the intuition behind
them.

The usage of a quality measure should be application driven. Due to this, it is
critical to understand both the clustering problem and the possible quality measures
that could be used. It is vital to do this before starting to implement a solution. In
order to do this, there are several important questions to answer before using any
particular quality measure:

1. What clustering aspects are promoted by that measure and what aspects are
ignored?

2. What are the possible values of that measure (i.e. what are the measure’s
boundaries)?

3. What values we are looking for and what we would like to avoid? (In other words,
what values indicate better and worse clustering?)

The first question forces us to understand the measure. After doing this, it is
much easier to address the remaining questions. As we have already noticed, the
QavgSize (Eq. (3.7)) measure is focused only on the average group sizes. So this
measure will not tell us anything about the number of clusters or their distribution.
At this point, we can decide whether this quality measure suits our needs or we
should rather search for another one.

The second question can tell us what values we can expect to obtain. Sometimes
the values vary between 0 and infinity (∞), in other words, the boundaries are,
theoretically, (0,∞) (e.g. any positive real number). If it can’t reach 0 or [0;∞)

if it can. However, in the general case, the boundaries may be different, e.g.
(−∞;∞), (−∞; 0), [1;∞) or even between some arbitrary values (e.g. [3; 50.5]).
By looking at our measure in Eq. (3.7), we can derive that it is impossible
for the measure to be negative since clusters sizes cannot be below 0. This
measure can give 0 only in a situation when all the clusters will be empty, so
no points were grouped. For the sake of simplicity, we can assume that it is
not a valid clusterization, and by this, the lowest possible value for our measure
is not going to be equal or below 0. What about the highest value? It could
be any positive number. One can imagine that if we have only one massive
cluster, e.g. 1025 points, then the QavgSize value would be very high (exactly
1025). So the upper-bound is ∞ which gives the final boundaries of this measure
as: (0;∞).

By now, we know what values to expect, but what numbers indicate a prefer-
able result? This leads to the last question. As it was stated earlier in this
section, sometimes we would like to minimize that quality measure value and
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sometimes maximize it with respect to the provided boundaries. In most of the
cases, we are trying to reach the boundary value (either upper or lower one).
However, with some other quality measures, we should reach a specific value
within the boundaries, e.g. 0 or 4. Coming back to the QavgSize, being inter-
ested in smaller clusters, what we would be doing is to minimize the value of
QavgSize.

3.3.2 How to Use a Quality Measure?

Now it is the time to use a quality measure in practice. Assume that we have the well-
known Iris dataset [37] and we would like to tune k-means algorithm on this data.
As it was stated in Sect. 3.5.1, the most important k-means parameter is actually the
value of an integer k > 0.

The dataset that we are going to use contains measurements of three species of
Iris Flowers: Iris Setosa, Iris Virginica and Iris Versicolor. For each class (species)
we have 50 samples (varieties), and for every example we have four features
measured, i.e. Sepal Length, Sepal Width, Petal Length and Petal Width (or five,
if we consider the class being the target feature as discussed in the first chapter).
For the sake of simplicity, we are going to use only two dimensions: Sepal Length
and Petal Length. The dataset is visualized in Fig. 3.4. From the figure, one can see
that Iris setosa (green triangles) samples are easily distinguishable from the rest,
whereas when it comes to the Iris Versicolor (red circles) and Iris Virginica (blue
squares), it is not that easy. In mathematical terms we could say that Iris Setosa is
linearly separable from both the Iris Versicolor and Iris Virginica samples, which
means (without going deeply into the details) that one could easily draw a straight
line on Fig. 3.4 to have all the Iris Setosa samples on the one side of the line and all
the others on the other side. On the other hand the Iris Versicolor and Iris Virginica
species are not linearly separable because it is impossible to draw a straight
line to separate those two classes using only these two features (see Sect. 1.6.3
if you are interested to know what to do in case that linear separability is not
possible).

Our possible goal is uncover from the data the number of natural clusters present,
which in turn in order to create a clustering outcome that would be the most
informative. Such a clustering can then help us to classify unknown data samples
as belonging to one of these classes. Since we know the target feature (what is their
species), we expect to have some correlation between the result of our clustering
and the target feature values. If there is total agreement, perhaps we would be to
have only three clusters with 50 samples in each one.



182 N. J. de Vries et al.

Fig. 3.4 Visualization of the
Iris dataset. Each shape
represents different species.
Green triangle—Iris Setosa,
red circle—Iris Versicolor,
blue square—Iris Virginica

The quality measure we can use is Within Cluster Sum of Squares (WCSS) that is
defined as

WCSS =
∑

C∈C

∑

x∈C

d (x, x (C))2 , (3.8)

where C is a particular cluster, C is a set of all clusters, x is a particular element
attributed to cluster C, x(C) is a centroid (central point) of cluster C and d(x, x(C))

is the distance measured between point x and x(C). As a distance measure, for
this problem we use the Euclidean Distance (Eq. (3.1)), but depending on the
application others could be used, e.g. Manhattan Distance or Cosine Similarity
Measure. Having defined the quality measure, the answers to three questions stated
in Sect. 3.3.1 are straightforward.

1. This measure promotes clustering, where points in every cluster are close to
the cluster centre (dense clusters) so, as a consequence, the clustering result
with only one-object clusters is the most desired solution from the measure
perspective. However, from the user perspective, in most of the cases, it is not
desired because this does not give any knowledge about the data. Furthermore,
this measure ignores the separation between clusters or how the clusters are
distributed in the feature space. Using this measure, we do not care about the
spatial relation between clusters which might sometimes be important (as stated
in Sect. 3.4.1). Also, the number of clusters is not taken into consideration
by this measure, so more clusters will, in general, give a better score since
it gives a better fit into data, lowering the average distance of points to their
centres.
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2. The boundaries are [0;∞), where WCSS = 0 can be reached in a situation,
where there are no clusters or every point is in its own cluster. Any other situation
should end up with a positive value.

3. In general, we would like to minimize the value of the measure, because the
lower the value is, the denser and more consistent the clusters are. However, on
the other hand, we would like to avoid the situation when WCSS = 0.

After giving these answers, we can conduct a series of experiments (using k-
means, for instance) with different parameter values (for k) that can vary from one
up to four. The results, together with the measure value, are presented in Fig. 3.5.
From this figure, we can see that for k = 1 there is only one cluster containing all
the samples. Because of this, there are many objects that are far from the cluster
centre, and because of that, the WCSS value is the highest. On the other hand,
when k = 2, the result correlates with our understanding that there is one group
of samples that is highly different than the other. We point out, however, that one
sample near the centroid of the blue group has been attributed to the other group.
This shows a divergence between the result of k-means and our intuition, since we
perceive that many “blue elements” are actually closer to that sample attributed to
the other cluster.

Focusing only on the value of WCSS, the solution with k = 2 is preferable
over the one with k = 1. Despite the fact that the result for k = 2 complies with
human intuition, we know that experts agree in identifying at least three different iris
species, not two. Following that fact, when k = 3 the result is similar to the ground
truth (the expert opinion) shown in Fig. 3.4 except several samples. This is because
k-means in its basic form is not capable of separating linearly non-separable groups
(as Fig. 3.2 also shows).

Perhaps the most important observation is that, even though the number of
created groups and the result of the k-means method is similar to Fig. 3.4, the quality
measure WCSS = 35.39 is not the lowest of the four. The measure gives the min-
imum value when k = 4 and it is WCSS = 19.55, this is obvious when one looks
at Eq. (3.8) and our answer to the first question given above. The more the clusters
in a clustering result, the shorter the distances of points to their centres become.
Since we should minimize the WCSS value, if we follow this criteria we should
choose the clustering with k = 4. Is it a solution that we are looking for? From
Fig. 3.5, we can see that four-cluster solutions just fit additional cluster in the right-
upper part of the plot. These three groups together do not look like well-separated
groups.

From the above paragraph we can see that the procedure of choosing the best
clustering is far from being trivial. The used measure, even though it focuses on the
coherence of the clusters, ignores the separation between groups, thus simply pro-
moting results with more clusters. Some researchers [45] say that, when operating
with a quality measure with such a tendency, one should plot the obtained quality
measures against the value of the parameter that we are tuning. Then one should look
for a point giving the biggest change (increase or decrease) on the plot. This point is
sometimes referred as a knee or elbow point, and the corresponding parameter value
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Fig. 3.5 Visualization of k-means results on the Iris dataset, where k = 1, 2, 3, 4. Different
markers represent different clusters, and yellow star indicates cluster centres. The WCSS values
are as follows: (a) for k = 1 the WCSS = 550.64, (b) for k = 2 the WCSS = 86.40, (c) for k = 3
the WCSS = 35.39 and (d) for k = 4 the WCSS = 19.55

for that point should be chosen. From the plot for our example, shown in Fig. 3.6,
one can see the knee point exists at k = 2. So, using this technique, this value
should be our choice. However, what if there is no significant change in the plot?
This could be an indication that there is no clear clustering structure in the data.
Due to these problems, in a practical application, it is recommended to consider
either using several quality measures that focus on different aspects of clustering
or find a measure that combines several aspects in one equation [83]. This gives a
more comprehensive view on the obtained results. Luckily there are many different
quality measures from various groups that try to describe clustering from different
perspectives.
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Fig. 3.6 Within cluster sum
of squares (WCSS) of
clusterization results for
different values of k. The
knee point is visible for k = 2

Moreover, based on the visual assessment of obtained results, and from the
existence of the knee point, one would select a result with k = 2 which is not
consistent with the real number of three groups. The answer to this problem is more
complex. This situation could be caused by several factors:

• a weakness of the clustering method in discovering the proper shape of the
groups,

• a weakness of the quality measure in selecting the clustering that is compliant
with true classes assignment,

• the features used to describe samples make it impossible to distinguish between
objects from different groups (i.e. the available features and data do not tell the
whole story).

In most cases, the problem is a combination of all the three factors. That is why,
when it is possible, one should choose the final clustering relying not only on the
solution indicated by the used quality measure. An inspection of several (e.g. top
five) clustering results is highly beneficial. Furthermore, sometimes it could happen
that even if we manage to obtain a clustering with a “proper” number of clusters, the
clustering does not perfectly match the ground truth. This situation is often caused
by the clustering method, and a simple solution is to use several methods, produce
a few results and then conduct a detailed analysis of what they would bring in terms
of adding knowledge to the user. On top of that, the measures and dataset can simply
make it impossible to obtain a clustering that fully complies with our expectations.

To sum up, the problem of choosing the best clustering result is complex. The
best result indicated by the quality measure may not necessarily be the best for
other people, and it may not even appear to be the best among all obtained results.
This stems from the fact that clustering is unsupervised, and the assessment process
is both subjective, and application dependent. The best clustering result for one
application could be the worst for another.
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3.4 Classification of Quality Measures

The central point in the assessment of clustering is the quality measure. Due to
this, there are different measures and measure paradigms [45]. Since the number of
measures is high, there are several ways to organize them into groups. The main
division considers Internal and External measures. It was made based on whether
we have any additional (external) knowledge about the data or we base only on
the (internal) structure of clusters. In most of the cases, the external knowledge
is the ground truth assignment with which the measures will try to compare the
clustering assignment. Several external measures are provided in Sect. 3.4.2. On
the other hand, internal measures are focused on the way that the points are
clustered. Since we want to have clusters that are both compact and separated
from each other, the internal measures often balance these two requirements.
Example internal measures are provided in Sect. 3.4.1. The presented measures are
a subjectively chosen representation, based on how frequently they appear in the
literature.

It is also worth noting that there are other different ways to divide measures
into groups. In addition to internal and external measures, one can also distinguish
measures for crisp or fuzzy clustering or hierarchical clustering measures.

In the following sections, we will present the most commonly used quality
measures in the field of cluster analysis. In order to make them easily readable all
presented equations will obey the following variable definitions:

X the set of all data points,
C the set of all clusters in a particular clustering,
C a particular cluster in C, it can have an additional lower index

indicating which cluster it is, e.g. Cj is the j th cluster,
XC the set of objects in cluster C,
x a particular object from a cluster, it can have an additional lower

index indicating which point it is, e.g. xj is the j th observation,
d(a, b) distance between objects (or centroids) a and b,
K set of all classes (i.e. from a ground truth assignment),
k a specific element from K (a class label),
Xk set of all objects of class k,
XC the centroid of a cluster C,
|S| the number of objects in a set S.

3.4.1 Internal Measures

One of the simplest internal measures is Within Cluster Sum of Squares (WCSS).
It was used in Sect. 3.3.2, and its formula is in Eq. (3.8). However, as shown in the
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mentioned section, its main drawback is that it focuses only on the compactness
of clusters, ignoring the separation that exists between pairs of clusters. Another
simple measure is Within-Between Index (WBI). It is formulated as follows:

WBI =
max
C∈C

{ max
xi ,xj ∈XC

{d(xi, xj )}}
min

Ca,Cb∈C,a �=b
{d(XCa ,XCb

)} . (3.9)

It expresses the ratio between compactness (in the numerator) and separation (in
the denominator). The compactness of the clustering is measured by the distance
between the farthest pair of points belonging to one cluster. On the other hand,
the separation part is the minimum distance from cluster centroids among all the
possible pairs of clusters. Therefore, this measure should be minimized, and its
values fall into [0;∞).

Another quality measure that utilizes the compactness–separation ratio is Dunn
Index (DI) [32]. It has several different forms in the literature [6] providing different
characteristics, e.g. robustness to noise. One exemplar form is:

DI =
min

Ca,Cb∈C,a �=b
{ min

xa∈XCa ,xb∈XCb

{d(xa, xb)}}

max
C∈C

{ 1
|XC |(|XC |−1)

∑

xi ,xj ∈XC,i �=j

d(xi, xj )}
, (3.10)

that expresses the ratio between the closest clusters, expressed as the shortest
distance between points from different clusters, in the numerator (separation) and
the biggest pairwise distance in between points in a cluster in the denominator
(compactness). Moreover, the value in the denominator is averaged guaranteeing
that the size of the cluster is not taken into account. The value of DI varies from 0
to ∞, and the index should be as high as possible.

Both of the measures WBI and DI promote solutions with dense, well-
separated clusters. It is also worth noting that they concentrate on the worst
aspects of a clustering. They utilize the least separated clusters and the least
compact one. It follows the rule: a clustering is as good as its weakest part.
However, sometimes this may not be the case. In such situations, one could
use Davies–Bouldin Index (DBI) [23, 27] or Calinski–Harabasz Index (CHI) [14,
27]. They take into account the sum or average of all the clusters but then
it suffers from the fact that their result is biased when assessing clusterings
with varying diameters. Other internal measures that are worth considering are
Silhouette Index (SI) [95], or more recently SD Index [44], S_Dbw [46] or
Clustering Validation Index Based on Nearest Neighbours (CVNN) [73]. Addi-
tionally, some internal measures have been updated in order to perform better,
e.g. DBI [64].
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3.4.2 External Measures

External measures commonly use a ground truth cluster assignment. In the previous
example, the three species of Irises is a user-defined characteristic (target feature).
External measures would then use this labelling to evaluate the quality of a
clustering method.

3.4.2.1 Confusion Matrix

The external measures can be divided into several types. One group relies on the
computation of a confusion matrix (error matrix) that serves as a data structure to
quantify the performance of a classification method. This group is sometimes known
as pair counting methods [93]. The confusion matrix consists of four numbers
called the true positive, true negative, false positive and false negative rates. They
can be calculated by considering all possible pairs of objects in the sets and their
assignments in the clustering result. We will also use the ground truth information
about those objects [27]. In order to calculate the rates above, one has to consider all
n(n−1)

2 possible pairs, where n is the number of objects. Assuming that the clustering
result we want to assess is Ca and the ground truth grouping is Cgt one could
compute

• True positive (TP) as a number of pairs that belong to the same cluster in both Ca

and Cgt ,
• True negative (TN) as a number of pairs that do not belong to the same cluster in

both Ca and Cgt ,
• False positive (FP) as a number of pairs that belong to the same cluster in Ca but

do not belong to the same cluster in Cgt ,
• False negative (FN) as a number of pairs that do not belong to the same cluster

in Ca but belong to the same cluster in Cgt .

The TP and TN are expressing the ability of our clustering method to properly group
objects that should possibly be together and separate objects that are assumed to
belong to different groups. We can call them good decisions. On the other hand, FP
and FN are showing how many “mistakes” were made by our model. In Statistics,
FP is often referred to as the number of type I errors, and FN as the number of type
II errors.

Having computed all the values of the confusion matrix, one can calculate dif-
ferent external measures, e.g. Specificity (True Negative Rate), Accuracy, Precision,
Recall, F-Score [107], Jaccard Index, Rand Index, Fowlkes–Mallows Index [40]. All
of these indices can be found in [27]. Another external measure worth to be noted
is Matthews Correlation Coefficient (MCC) [79] with its later generalization into
multi-class version in [43, 58]. The advantage of using this index is its invariance
to different class sizes. An example of using this measure in the marketing domain
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is presented in Chap. 20 of this volume. The most commonly used quality measure
is the F-Score [101], also known as F-Measure. It is the harmonic mean of the
Precision (Prec.) and Recall (Rec.) (also known as Sensitivity or True Positive
Rate) and it is computed as follows:

Prec. = T P

T P + FP
(3.11)

Rec. = T P

T P + FN
(3.12)

F-Score = 2 ∗ P ∗ R

P + R
= 2 ∗ T P

2 ∗ T P + FP + FN
. (3.13)

The bounds of the F-Score is the closed interval [0, 1] and the larger the F-
Score gets, the more similar the model is to the ground truth. The intuition behind
formula (3.13) is that when clustering, we would like to get high precision and
recall, but since these two measures are in contradiction to each other, we will take
a harmonic mean of them.

One notable fact about the F-Score is that it does not explicitly depend on TN.
The consequence of this is that the assessment is positively influenced only by
TP, so bigger clusters impact the measure more. Measures that have an explicit
dependence on TN include the Rand Index [40] (a variant which is called the
Adjusted Rand Index was employed in the network alignment study of Chap. 12 and
in [83]).

3.4.2.2 Inter-Rater Reliability

Another group of external measures is connected with the statistical concept of
Inter-rater Reliability (Inter-rater Agreement) [47]. The intuition behind that is
connected with a situation when several raters (e.g. psychiatrists) assessed subjects
(e.g. patients) into predefined categories (e.g. diseases). In such scenario a relevant
question is about the agreement among raters. In other words how consistent the
psychologists are in their diagnosis. Based on their assessments it is possible to
build a Contingency Table [67] which is a generalization over a confusion matrix
used in the previous subsection. In such a table the rows relate to cases (subjects),
the columns to mental disorders (categories) and the elements are the number of
raters that classify corresponding subject to the corresponding category. Based on
such a structure one can compute the number of statistics measuring agreement
among raters counting factors like agreement occurring by fortune. If there are only
two raters, the Scott’s Pi [98] or the Cohen’s Kappa [21] could be computed. In a
case of more than two raters the Fleiss’ Kappa [38], which is based on Scott’s Pi, is
recommended.
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Analogously, in clustering, given a clustering result and the ground truth the
contingency table can be built in a way that the columns represent clusters from
ground truth and the rows represent obtained clustering result groups. The elements
of the matrix are the number of objects that are the same among particular groups. In
such a situation the statistics from the previous paragraph can indicate how similar
the obtained clustering is to ground truth. An example of how to use Inter-rater
reliability indices is shown in [25].

3.4.2.3 Purity

The other group of external measures worth noting is based on the concept of cluster
purity, that is, they focus in how homogeneous the created clusters are. A pure
cluster is one that contains only points belonging to one class in the ground truth
model. Cluster purity can be calculated as shown below

CP =
∑

C∈C

(

max
k∈K

{|Xk ∩ XC |}
)

|X| . (3.14)

For every cluster from our result, this measure tries to find a class from the ground
truth model which shares the largest number of points with that cluster. This number
is then normalized by the size of input data to give the value of CP . The boundaries
of this measure are [0; 1], and results closer to 1 are preferred. Its main drawback
is that this measure is blind to the situation in which the clustering result has more
clusters than the ground truth. It does not penalize cases when a class from the
ground truth is fragmented into smaller groups in the clustering. This is because
it does not take into account what fraction of particular class’ points are within
the considered cluster. Moreover, cluster purity concentrates only on the points that
comply with the ground truth, omitting the points that do not, so one big cluster
containing all the data would maximize the CP value.

The main advantage of this type of measure is that we can compare an obtained
clustering result with the one that we have as a reference. If, for instance, we need
a classification algorithm that relies on the results of a clustering method acting as
a subroutine, it is important that the ground truth information guides the clustering
algorithm, as in turn may indicate which are the best features to be used for the
classification final objective. In those circumstances, external measures become
really important.

There are circumstances, however, in which obtaining the ground truth is hard,
expensive, or not possible for a percentage or even all the samples, e.g. when we
know nothing about the ground truth clustering, and the task is to actually discover
these groups (like in the marketing segmentation study of [26]). Additionally, there
are also circumstances in which we should take extreme care when creating a ground
truth model, since its form will influence the rest of the research.
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3.4.3 Other Measures

There are other groups of external measures. One example are measures that
originate from the Theory of Information [99] and are based on the concept of
Entropy. Examples of such measures are Normalized Mutual Information (NMI)
(used in the study of Chap. 9), Information Gain (IG), or more recently Variation of
Information (VI) [80] and Confusion Entropy Confusion Entropy [58].

Another group is the Set Matching indexes, where the purpose is to match groups
from ground truth to the created groups in our model [93]. Example measures within
this group are Normalized Van Dongen (NVD) [108] or Pair Sets Index (PSI) [93].
Additionally, the Purity and F-Score measures can also be viewed as Set Matching
measures [88].

3.5 Some Partitional Clustering Methodologies in More
Detail

Now that we have provided a general introduction to clustering, its key aspects and
how to check quality measures we take a deeper look at some specific clustering
methodologies. Specifically, most commonly known k-means algorithm is presented
followed by k-Nearest Neighbour (k-NN) approaches and a variant of the k-
NN. Throughout, we have also focussed on finding those business and marketing
applications and domains in which these methods are heavily used and championed.

3.5.1 The k-Means Approach

It is safe to say that the k-means algorithm (first proposed in the 1960s [39, 76])
is one of the best known (and most used) partitioning clustering algorithms. The
k-means method is still very much used today and one main reason for this is that it
is also one of the simplest partitioning techniques available [56]. The algorithm
finds a partition such that the squared error between the empirical mean of a
cluster and the points in the cluster is minimized. With a k-means algorithm the
user has to set a value for k a priori which will be the number of clusters the
algorithm will divide the dataset in. K-means then selects k random points which
are called cluster centroids (or seeds). Therefore, if k is set to 4 (as in the Iris
dataset experiment described before), the number of centroids will be four. Then,
the algorithm goes through each of the data points and it assigns each data point to
the centroid that it is “closer” to (either in a graph or based on the distance matrix).
Next, the algorithm calculates the cluster average for each cluster and moves the
cluster centroids to the cluster average location. This action is repeated (iterated)
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until there are no further changes made to the clustering (or until an alternative
stopping condition is met). Figure 3.7 shows the k-means algorithm graphically in a
very simple example. Here we can easily visually see that the data has four natural
groupings in Fig. 3.7a and how the centroids are moved closer to the cluster average
in Fig. 3.7b.

The basic k-means algorithm has a few simple steps. They are shown in the
algorithm below.

Algorithm 1: The basic k-means algorithm
Input : A set of points equipped with a distance metric.
Output: A set of k clusters.

1 Select k points as the initial centroids.
2 repeat
3 Calculate the distance between each data point and cluster centroids.
4 Form k clusters by assigning all points to the cluster that corresponds to their closest

centroid.
5 Recompute the centroids for each cluster.
6 until The generated clusters stop changing.

Fig. 3.7 Here we can see the k-means algorithm simplified to one simple step. In (a) the initial
centroids/seeds (shown by stars) are randomly selected by the k-means algorithm and in (b) they
are moved closer to the cluster average location. This step is repeated iteratively until all the
squared errors between the empirical mean of a cluster and the data points in that cluster are
minimized. Usually this process will be continued until no more changes are made or alternatively
another stopping criteria such as the running time of the algorithm
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Although k-means is a quick, efficient and simple clustering algorithm, this
method is stochastic in nature and has known several disadvantages. Firstly, the
a priori selection of k by the user constricts the quality of the algorithm’s outcome
to this user-determined parameter [56]. Further, k-means tends to have problems
when the underlying clusters are of different sizes, densities or when they are non-
globular shapes. The example in Fig. 3.2 already showed an instance in which
k-means clustering would not be able to find the naturally occurring clusters in
the two-dimensional graph space due to their non-globular shapes, density based
separation and different sizes. Furthermore, k-means has problems when the data
contains large outliers due to the fact that it is based on the arithmetic mean of data
points [56]. Several large outliers could significantly skew the clustering outcome as
they will alter the cluster average and this would have an adverse effect on the rest
of the clustering outcome as k-means aims to minimize the squared error between
the mean of a cluster and the points in that cluster. One more disadvantage of the
k-means algorithm is that it can only be used for numerical datasets (i.e. not for
categorical information).

Having recognized its disadvantages, it is still reasonable to consider k-means
as one of the easiest to use clustering algorithms and the base for many other
approaches of clustering. A variant of the k-means algorithm that was devel-
oped in order to deal with the disadvantage of being limited to numerical data
is the “k-modes” approach [18]. As the name suggests, this algorithm takes
the modes instead of averages. This means that it can be used for categorical
data, or data of mixed types, and it is also a lot faster. With the increase of
data mining throughout the years and the increased adoption of data analytics
methods by the social sciences, categorical datasets and datasets of mixed types
have become a lot more common. Variations to the k-modes have already pre-
viously been published such as Hartigan’s method for k-modes [115]. Besides,
k-modes, there are many other variations of the k-means algorithm including k-
medoids (PAM) [91], CLARA [60, 61], CLARANS [86] among many others. It
is likely to see many more variants to the k-means method to be developed and
brought forward as research and data analysis capabilities continue to grow and
expand.

3.5.1.1 k-Means in Marketing and Business Analytics

As stated, the k-means algorithm is by far one of the most widely used clustering
algorithms and it is implemented in many different analysis software. Researchers
from many different domains use k-means either as a sole clustering analysis,
or as a comparison method to their own new algorithms. This also counts for
the field of marketing and business analytics where many applications can be
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found using k-means. Most commonly, marketing researchers likely use the k-
means algorithm to cluster customers, whether it is in tourism applications [4,
30, 59], banking applications [77, 84, 106, 109, 114], telecommunications [71]
or customer behaviours relating to their weightloss and beauty preferences [55],
the focus is to cluster consumers and more accurately target market for each of
them.

The paper by Kau and Lim [59] provides an interesting example of k-means
clustering used in a tourism application. They investigated the motivations of
Chinese tourists who travel to and visit Singapore. Their study shows that a
technique as common and as simple as the k-means algorithm can provide great
insights into an industry application such as investigating tourism motivation for
Singapore’s third largest tourist generating country. Another marketing paper
using the k-means method is that of Kleijnen et al. [66] who investigated
consumers’ adoption of wireless technologies in the earlier 2000s. In their
study they found three different segments of consumers when it comes to the
adoption of new wireless services and products showing that manufacturers
and brand managers of these products can (and should) target these consumers
differently.

Besides clustering and segmenting consumers, the k-means algorithm is also
used in other business applications. For instance, Nanda et al. [85] conducted a
clustering analysis comparing k-means with fuzzy c-means and other methods
analysing Indian stock market data with the purpose of improving portfolio man-
agement. The idea of their study was to select the optimal combination of stocks to
create a portfolio where portfolio risk is minimized and compared to the benchmark
index. Their study is a good example of the k-means algorithm being used in a
financial application domain and providing insights for stock market traders and
investors.

3.5.1.2 Variations of k-Means Algorithm

New advances to the k-means algorithm are made using marketing and business
applications. For instance, Kim and Anh introduce a Genetic Algorithm (GA)
optimized approach for k-means clustering [55] when investigating demographic
and behavioural information of Korean consumers related to health, beauty and
weight characteristics about themselves. Other publications also saw researchers
including and integrating Self-Organizing Feature Maps (SOMS/SOFMS) together
with k-means clustering to improve market segmentation [68, 69]. SOMS are a type
of artificial neural network that provide a discretized representation of the input
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space (which is called a map). Battiti and Brunato [5] provide a good introduction on
SOMS in Chap. 14 of their book The Lion Way: Machine Learning Plus Intelligent
Optimization1 for those readers wishing to learn further about SOMS.

Other ways in which researchers have attempted to improve the k-means
clustering method are by combining approaches, through, for instance, generating
a hybrid approach. Wang et al. [110] propose the “K-means SVM (KMSVM)
algorithm” in which Support Vector Machines (SVM) and the k-means algorithm
are combined to generate better results for real-time business intelligence systems.
Niknam and Amiri propose a hybrid approach combining k-means with FAPSO
(fuzzy adaptive particle swarm optimization), ACO (ant colony optimization) called
FAPSO-ACO-K [87].

Another example of making improvements to the clustering outcome of k-means
comes from researchers combining variable selection (or weighting) techniques
with the k-means algorithm. For instance, Carmone et al. also looked at the issues
surrounding how to weight the variables or pre-select them for clustering [15].
They propose a new algorithm termed HINoV (the Heuristic Identification of
Noisy Variables) to solve these issues and find that clustering when implementing
HINoV improves the clustering outcome in terms of stability and robustness.
More recently, Brusco and Cradit [13] also proposed a variable-selection heuris-
tic for nonhierarchical (k-means) cluster analysis with the objective to include
variables that truly define cluster structure and eliminate those that do not or
even mask the structure. They applied their method on financial data and found
that the method including a variable selection step to uncover variables that
mask the structure provided an outcome with greater cluster stability than a
simple clustering approach without variable selection. Steinley and Brusco [103]
later built on this method proposing a variance-to-range ratio variable weighting
procedure.

As this book highlights, marketing and business researchers and practitioners
are increasingly adopting newer, better and more computationally complex
approaches. Another example is the work by Liu et al. [74] who incorporate a
multi-objective algorithm in their clustering approach combined with k-means.
They propose MMSEA (a Multi-criterion Market Segmentation algorithm)
and apply it on a cellphone network provider dataset (similar to the one
analysed in Chap. 20 of this book) and a retail customer dataset. One of the
main benefits of their method is that no multicriterion aggregation or trade-
offs (of objectives) are required before the users see the full spectrum of the
solution space allowing for greater flexibility and improved business decision
making.

As can be seen, applications and research from the marketing and business
fields have brought forward many k-means contributions. Here we have only
“scratched the surface” of presenting studies that may use (some form of) the
k-means algorithm; however, we have provided some ranging examples and a basic

1http://intelligent-optimization.org/LIONbook/.

http://intelligent-optimization.org/LIONbook/
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understanding of this hugely popular approach. Further, Table 3.1 later in this
chapter shows a small survey of clustering methodologies in consumer analytics
and business applications for further reading. We focus on studies that are published
between 2000 and 2017 in order to provide an up-to-date view of the field and so to
avoid too much repetition with the survey and review works of Jain [56], Punj and
Stewart [92], Steinley [102] and others.

3.5.2 Who Is Your k-Nearest Neighbour?

We have already highlighted the difference between supervised classification meth-
ods and unsupervised clustering methods. k-Nearest Neighbour (kNN) approaches
can be said to be a “bridge” between these two methods. They combine parametric
approaches that need a priori knowledge of the distributions underlying the data,
and non-parametric approaches that assume the functional form of the discriminant
surfaces partitioning the different pattern classes [22]. The kNN approach has
the basic principle that an unknown entity (object in the data) is best to be
assigned to the category (or cluster) to which it is closest to in a suitably defined
information space (dataset) through an appropriate metric (i.e. using a distance
matrix).

When k is not explicitly defined, k-NN techniques assume that k = 1 for the
approach. That is, node a is connected to node b if b is one of node a’s nearest
neighbours (in the general case there may be more than one), or if node a is one of
the nearest nodes of b. However, often, researchers use a k-NN approach in which
the value of k will be set to suit the specific requirements. Consequently, the value of
k has a significant effect on the density of the clustering result. Where a lower value
of k is selected, nodes will only be connected to one or two other nodes. However,
if the value of k is fixed, e.g. k = 4, then each data point will be connected to its
k = 4 nearest neighbours. This is illustrated in Fig. 3.8, where on a small simulated
dataset k = 1, k = 3 and k = 6 nearest neighbour graphs are computed and shown
in the subfigures Fig. 3.8a–c, respectively.

Due to the significant effect of the value of k on the clustering outcome, there is
a lot of debate about finding an “automatic” selection of k or finding the “optimum”
number for the particular instance at hand. As we stated at the start of this chapter,
the number of a priori parameters set by the user should ideally be kept to a
minimum with unsupervised learning as this allows results to be completely data-
driven.



3 Introducing Clustering with a Focus in Marketing and Consumer Analysis 197

Fig. 3.8 In this figure, the
effect of selecting a different
value for k on the resulting
nearest-neighbour graph is
shown. The graph becomes a
lot less or a lot more dense
depending on whether nodes
are connected only to their
1-nearest neighbour, their
3-nearest neighbours or to
their 6-nearest neighbours.
(a) Shows the results of
running a 1-NN algorithm on
a random simulated graph, in
(b) the value of k is set to 3
and in (c) k is equal to 6. As
can be seen in this image, the
value of k has a large impact
on the outcome of the kNN
algorithm and thus the
resulting clusters. In (a) we
still have many partitioned
small clusters, whereas when
k is increased to 3, the graph
is already one completely
connected network and when
k = 6, it becomes quite a
densely interconnected graph

(a)

(b)

(c)

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.5
x

y

1.0

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.5
x

y

1.0

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.5
x

y

1.0

One common approach is through the use of a type of validation process (for
example, cross-validation or leave-one-out). Generally, as the value of k increases,
error would decrease until it stabilizes and then starts raising again as k is further
increased. The rule-of-thumb is then to set k at the start of the “stable” zone in the
error curve. Another rule-of-thumb approach to selecting a value for k, sometimes
used in some machine learning scenarios, is to take the square root of the number of
training patterns/samples (n) as this would lead to better results [31].
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It is difficult to give a generic mathematically well-principled answer to which
would be the best approach to select the value of k. It may be an ill-posed task
because it depends not only on the problem, but also on the problem instance/input
we are working with, the metric being used and other considerations. For instance,
in [83] the authors calculate graphs with k ranging from 1 to 10 and then they
apply their new methodology that makes use of the Normalized Mutual Information
(NMI) and Adjusted Rand Index (ARI). They report results with all these graphs
and then particularize the discussion on the one that according to their proposal
maximizes the product of both indexes (which turned to be k = 5 in their
study).

3.5.2.1 Introduction to the MST-kNN

Recently, one of the editors of this book and his colleagues presented a new
clustering methodology that uses the generation of a k-NN graph combined with
a sparsification of the Minimum Spanning Tree (MST). They named this approach
the MST-kNN [53] method. Since we will be using this approach in subsequent
chapters, we introduce it here. For further details of proximity graphs that are
supersets of the nearest neighbourhood graph, we refer to Chap. 4. The MST-kNN
method has been tested on comprehensive studies on large-scale biological weighted
networks and it has been successfully applied in various areas, see, for instance,
Arefin et al. [3].

The MST-kNN algorithm has led to results that seem to be superior to known
classical clustering algorithms (e.g. k-means and SOMs) in terms of homogeneity
and separation [53, 54] in spite of not using an explicitly defined objective function.
Due to its characteristics, it performs well even if the dataset has clusters of different
mixed types (i.e. MST-kNN is not biased to “prefer” convex clusters or when the
data has clusters that are embedded in subspaces of different dimensionalities).
Most importantly, the MST-kNN algorithm scales very well, allowing the possibility
that the methods that are based on it can be extended to the analysis of very large
datasets. This opens a door for new methods in marketing that involve the analysis
of datasets with millions of samples, e.g. as those arising from online behaviours,
products, web pages, etc. A Graphics Processing Unit-based implementation has
been made available [2].

The MST-kNN approach is basically a constructive heuristic that is not biased
for the choice of a particular objective function, yet it provides a strong guarantee
of optimality of a property of the final solution [53]. We explain this property
after we explain the algorithm. First, the algorithm’s input can be either a distance
matrix between all pairs of nodes or a weighted graph. As an example, we take a
dissimilarity matrix that is computed from the Spearman rank correlation matrix
as the input for the algorithm (as is done in Chap. 5). Formally, if r(a, b) is
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the Spearman rank correlation between two objects (nodes) a and b over a set
of features, then the corresponding distance matrix D = [d(a, b)] with each
coefficient is calculated as d(a, b) = 1 − r(a, b). Given this input matrix D,
the output of the MST-kNN algorithm is a forest. This means that the MST-kNN
generates a partition of a set of nodes given as an input using the information of
similarities/dissimilarities between each pair.

We mentioned that the algorithm returns a forest that satisfies a property. The set
of nodes are the ones that are part of the input. In the forest given as output, any edge
of the forest that connects two nodes does so if the edge is one of the edges of the
minimum spanning tree (MST (G)) and, at the same time, it is also an edge present
in the set of edges of the k-nearest neighbour graph (kNN(G)). The k-NN graph
is the graph that has one node per object and that has an edge between each pair of
nodes, for example, a and b, if either a is one of the k nearest neighbours of b or if b

is one of the k nearest neighbours of a, or both. We note that edges of the minimum
spanning tree are not bound to have this property regarding “k-neighbourness”.
The addition of this extra constraint has the effect of disconnecting the MST, thus
creating a multi-tree forest and consequently leading to a natural partitioning of the
set of nodes.

There are several variations of this scheme. In one of them, the value of k is set
up to a relatively large value which is linked to the total number of nodes, and then,
when the MST is fragmented in different components, a different value is selected
for the different connected components using the same formula but now having for
each of the connected components the number of nodes in each of them as input,
thus leading to different values of k for each component. Another approach is when
a value of k is fixed or when multiple values for k are trialled as done in de Vries et
al. [24]. The MST-kNN will reappear in subsequent chapters in this section where
outcomes of the method can be found and interpretations are explained.

An example of the MST-kNN method has been shown in Fig. 3.9. In this figure,
the Wine Qualities dataset (also discussed and presented in Chaps. 16 and 26) has
been clustered using the MST-kNN approach and visualized using red colours
for “bad” quality wines and green colours for “good” quality wines. The quality
measure is a rating given by a wine connoisseur and the features are physico-
chemical properties of the wines (for instance, sugar level, acidity level, alcohol
level, etc.). The figure shows the properties that we have explained of how a
Minimum Spanning Tree is further subdivided leaving separate trees only connected
if they are nearest neighbours. This figure shows that “bad” and “good” quality
wines cannot easily be separated and wines may be similar or dissimilar based on
other values. It shows that wine quality is rather heterogeneous in nature and perhaps
also indicated the human subjectiveness in wine quality compared to physical
properties of wine.
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3.6 All Things Fuzzy

Fuzzy clustering is also referred to as “soft clustering” as each object has a
level, or percentage, membership to more than one cluster rather than a “hard
division” between clusters. Soft clustering produces a membership clustering
outcome [65], is commonly known as fuzzy clustering and is based on fuzzy
logic [104]. With roots in control theory and artificial intelligence, fuzzy clustering
is a relatively new approach in the marketing literature. Clustering methodologies
used by marketers and consumer behaviour researchers encompass more “typical”
clustering approaches such as k-means clustering. New studies, however, are seeing
an improvement in market segmentation using “fuzzification” methods [16]. In this
volume Chap. 22 provides an example of the use of a fuzzy clustering approach in
a tourism application. In addition, another contribution presented in Chap. 24 uses
fuzzy logic to analyse data from a tourism sustainability application.

Fuzzy logic and fuzzy sets, including fuzzy clustering, is a relatively well-
known field among applied mathematicians and computer scientists with a journal
dedicated to the topic since 1978 (i.e. Fuzzy Sets and Systems). It has been
recognized in Marketing as a tool for market segmentation since the 1980s as
well (see, for instance [1, 49] or [111]), but with the catalytic growth in online
applications, advanced analytical approaches such as fuzzy clustering are able
to make significant multi-disciplinary contributions in areas like business and
marketing.

3.6.1 Fuzzy Clustering Fundamentals

Fuzzy clustering was first introduced by Bezdek in 1973 [7] and the first work
leading to the “Fuzzy C-Means” (FCM) algorithm was developed and brought
forward by Bezdek et al. in 1981 in a two-part publication; [8] and [9]. Bezdek
used membership function matrices associated with fuzzy c-partitions of X (a set of
objects). An Euclidean norm is used and fuzzy clusters are obtained. The actual
FCM algorithm (and its FORTRAN coding) was published by Bezdek et al. in
1984 [10]. The FCM algorithm was based on the already popular k-means clustering
methodology. In this paper, Bezdek and colleagues use a geological application to
illustrate their method. Some other early seminal papers on fuzzy clustering for the
interested reader can be found in [32, 96] and [112].

With the fuzzy clustering paradigm, we assume that each object/data point
belongs to a cluster with a certain “degree of membership” which is represented as
a number in the closed interval [0,1]. Intuitively, data points on the edge of a cluster
may have a lower degree of membership than other points of the cluster. A simple
example, just for illustration only, of the difference between “hard” clusters and
“soft” (fuzzy) clusters is shown in Fig. 3.10. In Fig. 3.10a the clusters are completely
partitioned with no overlapping data points being part of more than one cluster. In
Fig. 3.10b however, we can see that some nodes (vertices) are part of two clusters.
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a) b)

Fig. 3.10 This figure shows the difference between a hard clustering partition and a soft (fuzzy)
clustering partition. On the left in figure (a) the clusters are clearly separated and defined by their
own boundaries. On the right in figure (b) however, some nodes belong to two clusters at the same
time. They may be 50/50 per cent split between the two clusters, or any other degree between [0,1]
with a sum of 1. In this example the nodes that are part of the “fuzzy” outcome only belong to
a total of two clusters; however in reality, some nodes may belong, to some degree, to as many
clusters there are in the data

In this particular example there are nodes that only have a shared non-zero mem-
bership between a pair of clusters. In general, it is possible for some nodes to have
a certain non-zero membership in all or in most of the clusters. Consequently, fuzzy
methodologies are slightly more complex and often take longer to compute [41].

3.6.1.1 Fuzzy Clustering in Marketing and Business Analytics

As fuzzy clustering attracted more attention, it became apparent that it has many
useful applications in different domains. Fuzzy clustering has successfully been
used in marketing simply for market definition and segmentation. For instance,
Hruschka et al. [49] found that fuzzy methods performed better in segmenting the
market than “hard” clustering methodologies in terms of internal validity. They go
on to state that in fact, fuzzy partitions provided more insights on segments and
markets than their “hard” counterparts and the ease of interpreting outcomes from
fuzzy or overlapping results was “satisfactory”.

Fuzzy clusterwise regression (FCR) has been used as a benefit segmentation
strategy in marketing [111]. As explained in Chap. 1, benefit segmentation separates
consumers into groups who are similar to each other in terms of the benefits derived
from, and the reasons for using a particular product or service. In this work, Wedel
et al. [111] develop a method that estimates the models relating preference to
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product dimensions within each cluster while estimating the parameters indicating
the degree of membership of individuals in these clusters at the same time.
Wedel et al. found their fuzzy approach to be a powerful method that uncovers
a large amount of useful information. As they state, non-overlapping or “hard”
partitioning clustering methodologies ignore the presence of heterogeneity that may
be present in a segment and among consumers. This is one of the reasons why
fuzzy or overlapping clustering methodologies is increasingly proving to be useful
in marketing and consumer analytics domains. A useful review and introduction to
various extensions of the fuzzy k-means algorithm are introduced and explained in
Ferraro and Giordani [36].

3.6.1.2 Variations of Fuzzy Clustering

One example of a variation to the method that has been introduced is termed the
“fuzzy k-modes method”. As with its non-fuzzy variant, this method actually tackles
some of the problems faced when working with categorical data or mixed data
types. Introduced by Huang [51] and Huang and Ng [52] in 1998, it provides us
with an alternative of the “standard” fuzzy C-means [33] that can cluster datasets
with categorical values as well as those of mixed numerical/categorical natures. As
explained by Huang, the k-modes algorithm replaces the means of clusters with
modes and uses a frequency-based method to update modes in the clustering process
to minimize the clustering cost function. One other advantage outlined by Huang
and Ng [52] is that (in their experiments) the fuzzy k-modes algorithm performed
much quicker, with less CPU time than the fuzzy k-means algorithm. Similar to the
non-fuzzy k-means algorithm, we will likely see many more variants (or completely
new methods) of fuzzy approaches to grouping and clustering as the business and
marketing fields become increasingly intertwined with computer science and data
science approaches.

3.7 Examples of Clustering Techniques in Marketing
and Consumer and Business Analytics

As we have already stated, many reviews, surveys and introductions already exist to
the field of clustering, segmentation and grouping. However, considering this field is
such a fragmented and complex mine field, we have provided the reader with a brief
survey of clustering methodologies with applications related to business, marketing
and consumer analytics, focussing on those published between 2000 and 2017 for a
current view of the field. This small collection of articles is shown in Table 3.1 and
provides further reading material for the interested reader.



Table 3.1 A selected sample of some clustering methodologies and applications in marketing
from 2000 to 2014 (ordered by year) that use some of the techniques described in this chapter

Clustering
Application area & year technique Key characteristics

Tourism segmentation of
customers to a B&B [4]
(2001)

k-Means clustering The popular k-means algorithm is used to
cluster visitors to a Bed and Breakfast
using multistate categorical survey data

Segmentation of
customers of online
music services [90]
(2001)

Fuzzy c-means
clustering algorithm

Users of online music services are
clustered according to the fuzzy c-means
and the study provided interpretable
results for practitioners

Tourism segmentation
using the Austrian
National Guest
Survey [30] (2004)

Bagged clustering Bagged clustering is introduced as a new
clustering approach for post hoc
marketing segmentation drawing benefits
from both partitional and hierarchical
clustering methods

Segmentation of
consumers regarding their
adoption of wireless
technologies/services [66]
(2004)

k-Means clustering Three different segments of consumers
when it comes to the adoption of new
wireless technologies were found using
k-means providing business insights to
better target market to these consumers

Clustering of Chinese
tourists based on their
motivations for travel in
Singapore [59] (2005)

k-Means clustering The popular k-means clustering algorithm
is used on survey data of tourists using
many variables related to motivation

Clustering and
model-building of
customers using credit
card consumption
data [114] (2005)

Combination of
marketing RFM
analysis and
k-means clustering

Different values of k are trialled for
k-means clustering and k = 6 is selected
as providing the clustering results with the
highest level of difference between
clusters. Different consumption patterns
are found between clusters of consumers

e-Banking customers in
Thailand and their
usage/motivations
patterns [109] (2006)

k-Means clustering,
SOMS and
marketing RFM
analysis (recency,
frequency,
monetary)

The resistance of Thai customers to adopt
internet and e-Banking is investigated
using a variety of clustering and grouping
methodologies

Clustering customers of a
drink company [50]
(2007)

Support vector
clustering (SVC)

An SVC approach is shown to outperform
k-means and self-organizing feature map
(SOFM) methods in providing a solid
customer segmentation approach

Clustering customers to
improve a recommender
system based on
demographic and
personal information,
related to weightloss and
beauty needs and their
related behaviours [55]
(2008)

Genetic Algorithm
(GA) optimized
k-means clustering
approach

The input for the k-means algorithm is
optimized using GA approaches and
compared with simple k-means and
SOMS. The findings show that the GA
k-means improves the segmentation of
customers

Mobile phone provider
customer usage behaviour
clustering for targeted
marketing purposes [71]
(2009)

k-Means clustering 600,000 mobile customers are analysed
and a real company in China implemented
the results and saw their customer base
increase by 64% from 2006 to 2007

(continued)
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Table 3.1 (continued)

Clustering
Application area & year technique Key characteristics

Analysing
“anti-consumption” (why
consumers do not buy
something) in the case of
toy libraries [89] (2010)

Hierarchical
clustering followed
by k-means

Four groups of consumers were found in
terms of their “anti-consumption”
behaviour regarding toys and they
displayed different motivations and
behaviours regarding their use of toy
sharing libraries

Clustering using
customer relationship
information from an
Iranian bank [84] (2010)

Combination of
marketing RFM
analysis and
k-means clustering

A new framework for segmenting banking
customers is proposed using two stages of
analysis: clustering using k-means and use
of demographic values followed by the
creation of a customer profile for target
marketing purposes

Customer relationship
systems of airlines for
Taiwanese travellers [19]
(2011)

Fuzzy k-means
algorithm

A fuzzy decision rules approach using
fuzzy k-means in its approach is applied in
a tourism application. The fuzzy k-means
algorithm is used as a step in creating
fuzzy decision rules

Clustering customers’
requirements for product
design [17] (2012)

Genetic algorithm
(GA) for fuzzy
clustering

The method integrates a fuzzy
compression technique for
multi-dimension reduction and a fuzzy
clustering technique. Subsequently the
centre points of market segments are used
as “ideal points” for new product
development

Analysis of Russian
credit institutions
(banks) [106] (2014)

k-means clustering
and Kohonen’s
network

Through the clustering analysis the study
confirms their expected hypothesis of an
institutional misalignment existing in the
Russian banking system and possible
development ways of the interconnection
and interaction between banks and the
other economic sectors are suggested,
thanks to the clustering outcomes

Wine consumption trends
of Italian consumers
analysis [29] (2014)

Hierarchical
clustering followed
by k-means

Three different clusters of consumers were
so identified in terms of their wine
consumption behaviours and attitudes
(occasional and choosy consumers, basic
consumers and high quality demanding
purchasers)

Analysis of a large study
on attitudes towards and
habits of food
consumption in
Germany [82] (2014)

Hierarchical
clustering followed
by k-means

Their study investigating market segment
stability in the German market of food
consumption (over the period of
2005–2008) using clustering showed that
neither the internal nor the dynamic
stability of market segments should be
taken for granted. This means that
marketers face the challenge of designing
segment-specific marketing strategies that
allow changes to be made to them to
remain flexible and keep up with changing
consumer trends and segments
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3.8 About Other Chapters That Relate to Clustering
and Some Final Conclusions

It is hard to find a chapter in this book that does not have some sort of connection
with clustering, either as a pre-processing or a post-processing technique to reveal
structure in data. For instance, in the introductory first chapter, when we discussed
the case of the US Presidential elections, feature selection techniques allow to
“cluster” samples in particular groups (see Table 1.4 in Chap. 1). Analogously,
techniques like those for Frequent Itemset Mining, described by Cafaro and
Pulimento in Chap. 6, allow to “compress” information by identifying samples that
share common characteristics, enabling the post-processing of large databases and
the identification of interesting clusters in the outputs of itemset mining algorithms.
The chapter includes techniques for parallel processing allowing the possibility of
using large computing cloud systems and high-performance supercomputers.

Mathieson and Moscato, in Chap. 4, generalize the discussion on k-nearest
neighbour graphs, and the MST-kNN algorithm, by considering several other
“proximity graphs”, which in turn can help to reveal clusters in the data. In
“Clustering Consumers and Cluster-Specific Behavioural Models” (Chap. 5), the
authors use the MST-kNN algorithm to cluster social media users. Based on the
clusters found, consumer behaviours relating to the user engagement with the
pages are investigated using symbolic regression analysis powered by the genetic
programming techniques introduced in Chap. 1. The authors conclude that these
models obtained better “inform possible personalised marketing strategies after
proper segmentation of the customers based on their online consumer behaviour,
rather than simple demographic characteristics”.

Clustering methods in which membership is shared by several sets also are
gaining popularity in business and customer analytics. Chapter 22 presents an
application of fuzzy clustering in tourism analytics, presenting two different types
of algorithms for fuzzy data and two empirical case studies. Chapter 21 presents
a result on a hierarchical clustering algorithm, powered by metaheuristic-based
optimization, on a dataset of hotel ratings. Also on the theme of tourism analytics,
Chap. 23 presents a study on the bundle design problem which occurs when a
company wants to set up offers based on sets of services and they do so based on
evidence collected from consumer redemption data. More specifically, they address
a problem in which a company manages multiple service providers, each responsible
for an attraction, in a leisure park in Asia.

Finally, we have seen with the example presented in Fig. 3.9 that the visual
presentation of the result of clustering brings some interesting challenges to com-
puter scientists. Usually displayed in two dimensions, the output of some software
currently available does not take into consideration the inter-cluster similarity. In
Chap. 16, this issue is addressed presenting different alternatives for the same
dataset on wine quality of Fig. 3.9 (see Fig. 16.2). The authors also include a
clustering of the set of characters in the Marvel Universe (Fig. 16.1) and of an
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interesting dataset on customer churn behaviour in telecoms, again showing, like
in Chap. 5, the need of establishing cluster-specific models of customer behaviour
for service personalization and market segmentation.

In conclusion, clustering “is more than a religion”, it is actually a very necessary
step for the analysis of data in business and customer analytics. Although our brief
chapter cannot cover all possible techniques that exist, we hope it can motivate the
reader to further study the methods presented here (as well as in other chapters).
We also hope the readers will explore other methods and techniques. The diversity
of points of view on “how to group things” is essential in the exploration of the
structure present in large datasets.
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