
Chapter 9
Transition to Absolute Instability
in Porous Media: Numerical Solutions

9.1 A Variant Prats Problem with Uniform Heat Flux

Let us consider a horizontal porous channel having a rectangular cross section with
height L. We adopt a two-dimensional description where the coordinates are chosen
so that x is the longitudinal horizontal axis and z is the transverse vertical axis. We
are assuming heating from below with a uniform heat flux, q0, at z = 0, while the
upper boundary, z = L, is kept isothermal with temperature T2. We point out that
this setup is just the same considered in Sect. 7.7 as a possible variant of the Horton–
Rogers–Lapwood problem. By analogy with the Prats problem [4], the presence of
a horizontal flow along the x-direction is taken into account.

9.1.1 Dimensionless Formulation

The velocity field, u = (u,w), and the temperature field, T , as well as the coordi-
nates, (x, z), and time, t, can be written in a dimensionless form by adopting the
transformation

(u,w)
L

α
→ (u,w) , (T − T2)

κeff

q0 L
→ T ,

(x, z)
1

L
→ (x, z) ,

t

L2/α
→ t , (9.1)

whereα is the average thermal diffusivity andκeff is the average thermal conductivity
of the porous medium. Through this scaling, the Oberbeck–Boussinesq approxima-
tion of the governing local balance equations is still given by Eq. (8.2), where the
Darcy–Rayleigh number is now defined as
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R = g β q0 K L2

ν α κeff
, (9.2)

while the boundary conditions are expressed as

z = 0 : w = 0 ,
∂T

∂z
= −1 ,

z = 1 : w = 0 , T = 0 . (9.3)

By analogy with what we did for the analysis of the Prats problem carried out in
Chap.8, we introduce a streamfunction ψ , defined as

u = ∂ψ

∂z
, w = − ∂ψ

∂x
, (9.4)

so that the governing local balance equations are now formulated as

∂2ψ

∂x2
+ ∂2ψ

∂z2
+ R

∂T

∂x
= 0 ,

σ
∂T

∂t
+ ∂ψ

∂z

∂T

∂x
− ∂ψ

∂x

∂T

∂z
= ∂2T

∂x2
+ ∂2T

∂z2
. (9.5)

With this formulation, we can express the boundary conditions (9.3) as

z = 0 : ∂ψ

∂x
= 0 ,

∂T

∂z
= −1 ,

z = 1 : ∂ψ

∂x
= 0 , T = 0 . (9.6)

The stationary solution, (ψb,Tb), of the governing equations (9.5) and boundary
conditions (9.6) is still expressed by Eq. (8.8). It describes a uniform velocity in the
x-direction, with a vertical temperature gradient,

ψb = Pe z , Tb = 1 − z . (9.7)

Here, Pe is the Péclet number relative to the basic horizontal and uniform flow in
the porous channel, defined by Eq. (8.9).

The next step is, as usual, assuming small amplitude perturbations of the basic
stationary flow,

ψ = ψb + ε Ψ , T = Tb + ε Θ , (9.8)

such that |ε| � 1. The linearised equations for the perturbation fields (Ψ,Θ) are
solutions of the partial differential equations
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∂2Ψ

∂x2
+ ∂2Ψ

∂z2
+ R

∂Θ

∂x
= 0 ,

σ
∂Θ

∂t
+ Pe

∂Θ

∂x
+ ∂Ψ

∂x
= ∂2Θ

∂x2
+ ∂2Θ

∂z2
, (9.9)

with the boundary conditions

z = 0 : ∂Ψ

∂x
= 0 ,

∂Θ

∂z
= 0 ,

z = 1 : ∂Ψ

∂x
= 0 , Θ = 0 . (9.10)

We express the perturbations, (Ψ,Θ), through their Fourier transforms, (Ψ̃ , Θ̃), as
exploited in Eq. (8.13), and we write

Ψ̃ = f (z) eλ(k) t , Θ̃ = − i k h(z) eλ(k) t . (9.11)

Thus, the differential eigenvalue problem for the stability analysis is obtained from
Eqs. (9.9) and (9.10) and reads

(
d2

d z2
− k2

)
f + R k2 h = 0 ,

[
d2

d z2
− k2 − γ (k)

]
h + f = 0 ,

z = 0 : f = 0 ,
d h

d z
= 0 ,

z = 1 : f = 0 , h = 0 , (9.12)

where
γ (k) = σ λ(k) + i k Pe . (9.13)

Due to the boundary conditions prescribed for the eigenfunctions (f , h), it is impos-
sible to express the solution of Eq. (9.12) in terms of a simple sine function, as in the
classical formulation of Prats problem with impermeable isothermal boundaries. In
fact, a sine function, sin(nπ z), fulfils the boundary conditions for f , but not those
for h. Obviously, Eq. (9.12) can be solved analytically by employing the character-
istic equation method, but this approach leads to an implicit dispersion relation, as
described in Sect. 7.7.2. Then, there is no great advantage in tackling the stability
analysis with this technique. A numerical solution is preferable.

Our focus is not a dispersion relation in the classical sense, but its differential
counterpart, namely the eigenvalue problem (9.12).
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9.1.2 Convective Instability

The convective instability analysis starts from the principle of exchange of stabilities.
One can employ just the same reasoning provided in Sect. 7.7.1, the only difference
is that γ appears in Eq. (9.12) instead of λ. Thus, we can prove that

�(γ ) R k2
1∫

0

|h|2 dz = 0 , (9.14)

by the same arguments employed for the proof of Eq. (7.115). Our conclusion is that
�(γ ) = 0. Since λ = η − iω, on account of Eq. (9.13), we can write

ω = k Pe

σ
. (9.15)

This is just the same conclusion drawn in Eq. (8.20) relative to the Prats problemwith
isothermal conditions at both boundaries z = 0, 1. It can be rephrased as γ = σ η.
Then, the neutral stability condition (η = 0) is determined by the numerical solution
of Eq. (9.12) with γ = 0,

(
d2

d z2
− k2

)
f + R k2 h = 0 ,

(
d2

d z2
− k2

)
h + f = 0 ,

z = 0 : f = 0 ,
d h

d z
= 0 ,

z = 1 : f = 0 , h = 0 . (9.16)

This finding allows one to establish an important fact. The neutral stability condition,
determined by the solution of Eq. (9.16), is independent of the Péclet number, Pe.
Thus, one can determine such condition for the case Pe = 0. This special case is
that examined in Sect. 7.7.2. In other words, the neutral stability curve, evaluated
numerically, is that drawn in Fig. 7.11. The solution of Eq. (9.16) is employed to
determine the numerical function R(k), i.e. the neutral stability function. In other
words, R is computed as the eigenvalue of Eq. (9.16), for every prescribed value of
k ∈ R. The result of this computation is provided in Fig. 7.11. This figure shows
the point of minimum R along the neutral stability curve, i.e. the critical point for
convective instability. The critical values of the wave number and of the Darcy–
Rayleigh number are, in fact,
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kc = 2.32621 , Rc = 27.0976 . (9.17)

Such behaviour is qualitatively the same found for the Prats problemwith isothermal
boundaries, studied in Sect. 8.2.3. The neutral stability condition is not affected by
the basic horizontal flow, and the neutral stability curve is thus the same as for the
case Pe = 0, namely for the limiting case where the Prats problem coincides with
the Horton–Rogers–Lapwood problem.

9.1.3 Absolute Instability

The study of absolute instability relies on the steepest-descent approximation of the
perturbation wave packets,

Ψ (x, z, t) = 1√
2π

∞∫
−∞

eλ(k) t+i k x f (z) d k ,

Θ(x, z, t) = − i√
2π

∞∫
−∞

k eλ(k) t+i k x h(z) d k . (9.18)

Hence, the first step is the determination of the saddle points in the complex plane,
k = k0 ∈ C, such that λ′(k) = 0. The threshold of absolute instability occurs when
the prescribed value ofR detects the condition of zero asymptotic growth,	(λ(k0)) =
0. This threshold condition defines Ra.

The basis for the evaluation of Ra is still the eigenvalue problem (9.12), together
with Eq. (9.13). However, the numerical solution of Eq. (9.12) must be approached
with the specification that k = kr + i ki is a complex variable with real part kr and
imaginary part ki. We assume Pe and R to be prescribed quantities. The fulfilment
of the saddle-point condition can be automatically implemented by forcing the con-
straint λ′(k) = 0. One can implement this constraint by doubling the order of the
differential problem (9.12). To this end, we define

f̂ = ∂f

∂k
, ĥ = ∂h

∂k
. (9.19)

Then, we obtain the extended eigenvalue problem

d2f

d z2
− k2 f + R k2 h = 0 ,

d2h

d z2
− [

k2 + σ λ(k) + i k Pe
]
h + f = 0 ,
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d2 f̂

d z2
− k2 f̂ + R k2 ĥ − 2 k f + 2R k h = 0 ,

d2ĥ

d z2
− [

k2 + σ λ(k) + i k Pe
]
ĥ + f̂ − (2 k + iPe) h = 0 ,

z = 0 : f = 0 ,
d h

d z
= 0 , f̂ = 0 ,

d ĥ

d z
= 0 ,

z = 1 : f = 0 , h = 0 , f̂ = 0 , ĥ = 0 , (9.20)

where we took into account that γ (k) = σ λ(k) + i k Pe and that λ′(k) = 0. The
notation seems a bit equivocal as, on writing Eq. (9.19), we intend (f , h) as functions
of k and z, while the extended eigenvalue problem iswritten by employing the symbol
of ordinary derivatives with respect z, that is d/dz. This choice is made for internal
consistency with the convention applied so far in this book, and because there are
not reasonable possibilities to mistake the meaning of this notation. We finally note
that there is no ambiguity as Eq. (9.20) involves only ordinary differential equations,
as the only derivatives employed there are derivatives with respect to z.

The solution of Eq. (9.20) can be worked out by assuming an eigenvalue problem
structure. In this sense, there is no formal difference with respect to the solution of
Eq. (9.16). In the case of problem (9.20), the procedure is more complicated because
the eigenfunctions are four, (f , h, f̂ , ĥ), instead of two, as in Eq. (9.16). Moreover,
(f , h, f̂ , ĥ) are complex-valued, while the eigenfunctions (f , h) of problem (9.16) are
real-valued. These facts do not alter the intrinsic nature of Eq. (9.20), which is the
same as that of Eq. (9.16). They are both ordinary differential eigenvalue problems.
This means that the numerical technique for their solution is, in principle, just the
same. For details, we refer the reader to Chap.10, while for alternatives such as the
compound matrix method or the Chebyshev tau method we mention the papers by
Straughan and Walker [5] and by Dongarra et al. [2].

The strategy in the solution of Eq. (9.20) is based on the general characteristics of
the saddle points k0 ∈ C pertinent for the determination of the threshold valueR = Ra

for the transition from convective to absolute instability. These characteristics are the
fulfilment of

λ′(k) = 0 , (9.21)

which is a built-in feature of the eigenvalue problem (9.20), and the requirement

	(λ(k)) = 0 . (9.22)

This requirement must be considered as an input datum, inasmuch as the value of
Pe. The output constants to be determined, namely the eigenvalues, are

	(k) , �(k) , �(σ λ(k)) , R . (9.23)
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In order to check if this solution strategy is consistent, we reformulate Eq. (9.20)
as an initial value problem, by introducing suitably defined unknown constants. We
expand the conditions at the lower boundary so that now we have

z = 0 : f = 0 ,
d f

d z
= 1 , h = a1 ,

d h

d z
= 0 ,

f̂ = 0 ,
d f̂

d z
= 0 , ĥ = a2 ,

d ĥ

d z
= 0 . (9.24)

Setting df /dz = 1 serves only to fix the, otherwise arbitrary, scale of the eigen-
functions (f , h, f̂ , ĥ). The condition df̂ /dz = 0 is a consequence of this scale-fixing
constraint. It is obtained from df /dz = 1 by taking its derivative with respect to k
and by employing Eq. (9.19). The complex constants a1 and a2 must be determined,
together with the real variables listed in Eq. (9.23), by imposing the end conditions
at the upper boundary,

z = 1 : f = 0 , h = 0 , f̂ = 0 , ĥ = 0 . (9.25)

The end conditions are relative to complex eigenfunctions. Thus, they effectively
correspond to eight real equations. They are enough to determine the four real vari-
ables given by Eq. (9.23) and the four real variables given by the real and imaginary
parts of a1 and a2. We point out that the complex constants a1 and a2 are internal
variables with no direct physical meaning. In fact, their values are a consequence
of the condition df /dz = 1 imposed to fix, in an arbitrary manner, the scale of the
eigenfunctions. A change in this scale-fixing condition alters the values of a1 and a2,
while it does not modify the values of the four real variables listed in Eq. (9.23).

We refer the reader to Chap.10 for a more detailed description of the numerical
algorithms employed and of their implementation. The framework for the evaluation
of the variables given by Eq. (9.23) is, in fact, the shooting method. Its use is based
on a root-finding technique in order to impose the end conditions (9.25). Finding
numerically the roots of Eq. (9.25) is possible if one suitably initialises the procedure
by prescribing guess values of the unknown variables to be determined. The efficient
way to achieve this task is starting from a parametric condition where the solution is
known, and then incrementing step by step the input value of Pe by small amounts,
in order to track the change of the solution with the Péclet number. The guess values
at a given step are the computed eigenvalues at the previous step. The smaller is the
step, i.e. the smaller is the amount of the Pe increment, the better is the choice of the
guess values.

In fact, a case where the value ofRa for a givenPe can be easily guessed isPe = 0.
In this case, one expects Ra = Rc = 27.0976. Consistently, in this case, one expects
also

	(k0) = ± kc = ± 2.32621 , �(k0) = 0 , �(σ λ(k0)) = 0 . (9.26)
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These predictions are grounded on the idea that the rest state (Pe = 0) is one where
there is no parametric gap between convective and absolute instabilities, namely
Ra = Rc. In fact, when there is no basic flow driving the perturbation downstream,
the Fourier normal modes are non-travelling, so that they amplify or damp in place.
This is a consequence of the principle of exchange of stabilities. In such situations,
even a single Fourier mode which undergoes an exponential amplification is suffi-
cient to induce an unbounded amplification, for large times, of thewhole perturbation
wave packet. Beyond this heuristic argument, the principle of exchange of stabilities
ensures that, with Pe = 0, the critical values k = ± kc and R = Rc are the saddle
points and their relative Darcy–Rayleigh number, R, yielding the threshold to abso-
lute instability. In fact, the principle of exchange of stabilities proved in Sect. 7.7.1,
namely for the case Pe = 0, ensures that �(λ(k)) = 0, while the condition of neutral
stability provides the constraint 	(λ(k)) = 0. Therefore, the neutral stability condi-
tion implies λ(k) = 0 and, hence, also λ′(k) = 0, which is the saddle point condition.
Among the neutrally stable k modes, the critical values are selected because they
correspond to the minimum condition ∂R/∂k = 0. The latter condition is implicitly
assumed on writing the absolute instability eigenvalue problem (9.20). We finally
point out that the critical wave numbers are always two, having the same absolute
value, while we generally identify kc with the positive one. The reason is easily gath-
ered from inspection of the convective instability eigenvalue problem (9.16) where
k appears only through its square, k2.

One can keep track of the gradual displacement of the saddle point starting from
the real axis k0 = ± 2.32621, when Pe = 0, to the complex k plane when Pe > 0.
Figure9.1 displays the migration of the saddle points in the k plane as Pe increases
above 0. This figure reveals that the imaginary part of k continuously decreases

Fig. 9.1 Prats problem with
isoflux lower boundary:
migration of the pertinent
saddle points, with
increasing values of Pe, for
the threshold to absolute
instability
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Fig. 9.2 Prats problem with
isoflux lower boundary: plot
of �(σ λ(k0)) versus Pe for
the saddle points k0, at the
threshold to absolute
instability, with positive or
negative 	(k0)

below 0, while the real part undergoes a non-monotonic trend. Figure9.1 can be
directly compared with Fig. 8.2, relative to the Prats problem with isothermal lower
boundary. Figures8.2 and 9.1 are indeed very similar, especially for large values
of Pe. An interesting fact regards the behaviour for the limiting case Pe → ∞. If
one considers Eq. (9.20), the asymptotic behaviour for large Péclet numbers can be
identified by writing

R = ξ Pe , σ λ = �Pe , f = fm Pe . (9.27)

By substituting Eq. (9.27) into Eq. (9.12), by employing Eq. (9.13) and by keeping
the leading terms for large Pe, one obtains

h = fm
� + i k

, (9.28)

where the modified eigenfunction fm must satisfy the differential equation

(
d2

d z2
− k2 + ξ k2

� + i k

)
fm = 0 , (9.29)

with the boundary conditions

fm(0) = 0 = fm(1) . (9.30)

Equations (9.29) and (9.30) are solved by writing
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Fig. 9.3 Prats problem with
isoflux lower boundary: plot
of �(σ λ(k0)/Pe) versus Pe
for the saddle points k0, at
the threshold to absolute
instability, with positive or
negative 	(k0). The dotted
lines display the asymptotic
behaviour given by
Eqs. (9.27) and (9.33)

fm(z) = sin(nπ z) , n = 1, 2, 3, . . . , (9.31)

provided that the dispersion relation

� = ξ k2

n2π2 + k2
− i k , n = 1, 2, 3, . . . (9.32)

is satisfied.
Equation (9.32) coincides with Eq. (8.40). This means that the determination of

the saddle points and the threshold value of ξ are exactly the same as for the Prats
problem with isothermal lower boundary. Hence, the limiting regime Pe → ∞ does
not make any difference between the isoflux and isothermal conditions at the lower
boundary. One may note that Eq. (9.28) marks an evident incompatibility between
the eigenfunction h and the condition of a vanishing derivative dh/dz at z = 0. This
is a consequence of the stretching experienced by the eigenfunctions (f , h) when
Pe unboundedly increases. This behaviour results in a singularity as evidenced by
Eqs. (9.27) and (9.28). In fact, one can reckon that h becomes negligible with respect
to f as Pe → ∞, meaning that either f tends to infinity and h remains finite or f
remains finite and h tends to zero. The sensible result is that the saddle points k0 and
the ratio Ra/Pe can still be approximated through Eqs. (8.42) and (8.43), if Pe 
 1.
In fact, Fig. 9.1 displays also the saddle points k0 for the limiting case Pe → ∞. As
for the parameter � introduced in Eq. (9.27), its numerical estimate for Pe 
 1 can
be obtained directly from Eq. (9.32), namely

k0 ≈ ± 2.61941 − i 3.27327 , � ≈ ∓ i 4.66458 . (9.33)
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Fig. 9.4 Prats problem with
isoflux lower boundary: plot
of Ra (solid line) versus Pe,
as compared with Rc (dashed
line) which is independent of
Pe
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150

200
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Rc = 27.0976•
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R

Equation (9.33) is obtained by substitution of k0, evaluated for n = 1 through
Eq. (8.42), as well as of ξ = Ra/Pe given by Eq. (8.43), into Eq. (8.40).

Figure9.2 shows that the imaginary part of σ λ(k0) continuously decreases from
0 as Pe increases, for the saddle points with 	(k0) > 0. The reverse occurs for the
twin saddle points having 	(k0) < 0. The same numerical data over a larger range
of Péclet numbers are reported in Fig. 9.3 as plots of �(σ λ(k0)/Pe) versus Pe, in
order to illustrate the asymptotic behaviour described by Eqs. (9.27) and (9.33). We
note that both �(σ λ(k0)) and Pe tend to zero when Pe → 0, while their ratio tends
to a finite limit. This finite limiting value can be easily determined on the basis of
Eq. (9.15) and on the equalities k0 = ± kc, Ra = Rc, for Pe → 0. In fact, we reckon
that �(σ λ(k0)/Pe) = �(σ λ(± kc)/Pe) tends to ∓ kc = ∓ 2.32621.

The trend of the threshold valueRa for the onset of absolute instability is displayed
in Fig. 9.4 as a function of Pe. The critical value Rc is shown for comparison as a
dashed line. This figure clearly displays the asymptotic linear trend of Ra versus
Pe when Pe 
 1. A neat view of the asymptotic behaviour of Ra/Pe expressed by
Eq. (8.43) is shown in Fig. 9.5, where the asymptote, ξ = Ra/Pe ≈ 3.99084, is drawn
as a dotted line. A comparison between Figs. 8.5 and 9.5 is useful. The differences are
hardly discernible when Pe > 10. This observation is congruent with our previous
findings regarding the poor influence on the transition to absolute instability of the
thermal boundary condition at the lower boundary, when the horizontal through flow
becomes more and more intense.

Figure9.6 shows the isolines of 	(σ λ) in the complex k plane for the test case
with Pe = 20 and R = Ra = 88.5310. This map of the lines 	(λ) = λr = constant
serves as a check of the holomorphy requirement. The paths of steepest descent
crossing the saddle points,
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Fig. 9.5 Prats problem with
isoflux lower boundary: plot
of Ra/Pe (solid line) versus
Pe, as compared with its
asymptotic value
ξ = Ra/Pe ≈ 3.99084
(dotted line)
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Fig. 9.6 Prats problem with
isoflux lower boundary: map
of the isolines of 	(λ) = λr
(black solid lines) for
Pe = 20 and
R = Ra = 88.5310. The
dashed black lines are for
λr = 0. The grey dots are the
saddle points, while the grey
lines are the lines of steepest
descent. The black asterisk
denotes the singularity
k = −iπ

k0 = ± 3.16611 − i 2.71779 , (9.34)

are drawn in this figure as grey lines. The lines of steepest descent are isolines of
�(λ). In this sample case, they correspond to�(σ λ) = ∓ 78.8420. Themap reported
in Fig. 9.6 shows that, in fact, there exists a path, locally of steepest descent across
the twin saddle points given by Eq. (9.34), that does not trap any singularity of 	(λ)
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in the region between such path and the real line �(k) = 0. A singularity is displayed
at k = −iπ , thus marking a close analogy to the otherwise only qualitatively similar
map reported in Fig. 8.3. The occurrence of such singularity was proved analytically
for the Prats problem with isothermal lower boundary, as shown in Sect. 8.2.4. In the
case examined in Fig. 9.6, the singularity at k = −iπ emerges as an upshot of the
numerical solution.

9.2 Thermal Instability in a Vertical Porous Channel

Up to this point, we have always investigated cases where the instability was driven
by a mechanism of heating from below. However, there are situations such that the
instability may occur even in a vertical porous layer, where the basic temperature
gradient is the result of side heating.

A fairly simple example was proposed and analysed by Barletta [1]. In this paper,
the study is focussed on the convective instability. In Barletta [1], the aim is to show
that the classical proof presented by Gill [3] cannot be extended to the case where
the porous layer is bounded by permeable planes instead of impermeable walls.
The forthcoming analysis involves a situation where, unlike the cases examined by
Gill [3] and Barletta [1], a vertical forced flow is present. This variant discloses the
possibility of a transition from convective to absolute instability.

9.2.1 Problem Formulation

Let us consider a vertical porous slab bounded by two vertical and permeable planes
at x = ±L/2, kept at uniform temperatures T1 and T2 < T1, respectively. We note
that the generality of our analysis is not influenced in any way by the choice T2 < T1,
as there is no physical difference between the left and right boundaries. On the other
hand, when dealing with horizontal layers, it is quite evident that the direction of
gravity makes a big physical difference between the lower boundary and the upper
boundary.

A sketch of the vertical porous layer, of the coordinate frame and of the boundary
conditions is given in Fig. 9.7. The permeable boundaries allow a perfect mechanical
and thermal contact with external fluid reservoirs at temperatures T1 and T2. There-
fore, the boundary pressure at x = ±L/2 is imposed externally. More precisely, we
assume that the boundary conditions allow an externally forced pressure gradient,
∂P/∂z, along the vertical z-axis. Such gradient is considered as constant. We recall
that P denotes the local difference between the fluid pressure and hydrostatic pres-
sure.

According to all the previous examples, the x and y axes are horizontal with the
x-axis perpendicular to the bounding planes, while the z-axis is vertical and upward
oriented. We adopt a two-dimensional formulation with all the fields being invariant
along the y-direction.
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Fig. 9.7 A sketch of the
vertical porous layer with
permeable boundaries, of the
(x, y, z) coordinate frame
and of the boundary
conditions
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We adopt the Oberbeck–Boussinesq approximation and Darcy’s law, together
with the assumption of a negligible viscous dissipation. Thus, we arrange the dimen-
sionless local balance of mass, momentum and energy in the pressure/temperature
formulation according to the two-dimensional version of Eq. (8.79), namely

∂2P

∂x2
+ ∂2P

∂z2
− R

∂T

∂z
= 0 ,

σ
∂T

∂t
− ∂P

∂x

∂T

∂x
−

[
∂P

∂z
− R (T − r)

]
∂T

∂z
= ∂2T

∂x2
+ ∂2T

∂z2
, (9.35)

where r = (T0 − T2)/(T1 − T2) is the temperature ratio depending on the choice of
the reference temperature,T0, already introduced inSect. 8.4,while the dimensionless
quantities are scaled as defined byEqs. (8.1) and (8.80). TheDarcy–Rayleigh number,
R, is given by Eq. (8.3).

We note that the dimensionless velocity components along the x and z directions
are expressed through Darcy’s law as

u = −∂P

∂x
, w = −∂P

∂z
+ R (T − r) . (9.36)

The boundary conditions are expressed in a dimensionless form as

x = −1

2
: ∂P

∂z
= −Pe , T = 1 ,
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x = 1

2
: ∂P

∂z
= −Pe , T = 0 , (9.37)

wherePe is the Péclet number associated with the externally forced pressure gradient
along the z direction.

9.2.2 The Basic Solution

A stationary solution of Eqs. (9.35) and (9.37) is given by

∂Pb

∂x
= 0 ,

∂Pb

∂z
= −Pe , Tb = 1

2
− x , (9.38)

thus describing a vertical flow,

ub = 0 , wb = Pe + R

(
1

2
− r − x

)
, (9.39)

where Eqs. (9.36) and (9.38) have been taken into account. The resulting vertical
flow is the superposition of an externally forced uniform flow parametrised by the
Péclet number, Pe, and a buoyancy-induced flow given by an x dependent linear
velocity profile. The latter term depends on both R and r. We note that the net flow
rate associated with the basic flow velocity, wb, is given by

1/2∫
−1/2

wb dx = Pe + R

(
1

2
− r

)
. (9.40)

Hence, there is a special value of r such that the buoyant flow term, proportional
to R, yields a vanishing contribution to the net flow rate. This special value is r =
(T0 − T2)/(T1 − T2) = 1/2 which, in dimensional terms, means a special choice of
the reference temperature, i.e. T0 = (T1 + T2)/2, the arithmetic mean of the two
boundary temperatures, T1 and T2.

9.2.3 Stability Analysis

Small perturbations of the basic state (9.39) are defined as

P = Pb + ε Π , T = Tb + ε Θ . (9.41)
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We substitute Eq. (9.41) into Eqs. (9.35) and (9.37) and neglect termsO(ε2). We thus
obtain the governing equations for the perturbations,

∂2Π

∂x2
+ ∂2Π

∂z2
− R

∂Θ

∂z
= 0 ,

σ
∂Θ

∂t
+ ∂Π

∂x
+

[
Pe + R

(
1

2
− r − x

)]
∂Θ

∂z
= ∂2Θ

∂x2
+ ∂2Θ

∂z2
, (9.42)

with the boundary conditions

x = ±1

2
: ∂Π

∂z
= 0 , Θ = 0 . (9.43)

Equations (9.42) and (9.43) imply that the evolution of perturbations is influenced
by the parameter r. This fact marks a deep difference with respect to what happens
for the case of a horizontal channel, as pointed out in Sect. 8.4. In other words, for a
vertical channel, the choice of the reference temperature T0 in the formulation of the
Oberbeck–Boussinesq approximation matters. One can adopt a twofold approach to
this issue:

• Make amindful choice of T0 so that the first-order Taylor series expansion of ρ(T ),
given by Eq. (5.57), is best satisfied. This choice is one where ρ(T0) is the average
density of the fluid or, equivalently, T0 is the average temperature. Thus, having
in mind the base solution (9.38), T0 is to be chosen as the arithmetic mean of the
two boundary temperatures, T1 and T2, namely T0 = (T1 + T2)/2. This implies
that the parameter r = (T0 − T2)/(T1 − T2) be equal to 1/2.

• Rescale the Péclet number as

Pe∗ = Pe + R

(
1

2
− r

)
. (9.44)

By employing the scaled Péclet number, Pe∗, instead of Pe in Eqs. (9.42) and
(9.43), the stability analysis becomes formally independent of r. This option does
not imply any specific choice of T0. On the other hand, this means a redefinition
of the Péclet number so that it express the net flow rate along the channel, Pe∗,
and not the strength of the vertical pressure gradient, Pe.

Whatever option is chosen, the stability analysis is just the same, being based on the
differential problem

∂2Π

∂x2
+ ∂2Π

∂z2
− R

∂Θ

∂z
= 0 ,

σ
∂Θ

∂t
+ ∂Π

∂x
+ (Pe − R x)

∂Θ

∂z
= ∂2Θ

∂x2
+ ∂2Θ

∂z2
,
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x = ±1

2
: ∂Π

∂z
= 0 , Θ = 0 . (9.45)

Here, Pe denotes either the Péclet number with r = 1/2, or the scaled Péclet number
(the asterisk is omitted for simplicity of notation), defined by Eq. (9.44), if we adopt
the strategy of not fixing the value of r.

On seeking a solution for Eqs. (9.43) and (9.45) in terms of Fourier transforms,
we take into account that the flow direction is the z-axis, so that we define

Π̃(k, x, t) = 1√
2π

∞∫
−∞

e−i k z Π(x, z, t) d z ,

Π(x, z, t) = 1√
2π

∞∫
−∞

ei k z Π̃(k, x, t) d k ,

Θ̃(k, x, t) = 1√
2π

∞∫
−∞

e−i k z Θ(x, z, t) d z ,

Θ(x, z, t) = 1√
2π

∞∫
−∞

ei k z Θ̃(k, z, t) d k , (9.46)

where the dependence on t of Π̃ and Θ̃ is factored out through exponential terms,
namely

Π̃ = f (x) eλ(k) t , Θ̃ = h(x) eλ(k) t . (9.47)

By employing Eqs. (9.46) and (9.47), the Fourier transformed Eqs. (9.43) and (9.45)
yield (

d2

d x2
− k2

)
f − i k R h = 0 ,

[
d2

d x2
− k2 − σ λ(k) − i k (Pe − R x)

]
h − d f

d x
= 0 ,

x = ±1

2
: f = 0 , h = 0 . (9.48)

According to the usual procedure, we define the parameter

γ (k) = σ λ(k) + i k Pe , (9.49)

so that Eq. (9.48) is rewritten as
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(
d2

d x2
− k2

)
f − i k R h = 0 ,

[
d2

d x2
− k2 − γ (k) + i k R x

]
h − d f

d x
= 0 ,

x = ±1

2
: f = 0 , h = 0 . (9.50)

9.2.4 Convective Instability

The study of convective instability is based on the eigenvalue problem (9.50). Where
we have to set 	(λ) = 0 in order to detect the zero growth rate modes, that is the
neutrally stable Fourier modes. On account of Eq. (9.49), we have 	(γ ) = 0. Fur-
thermore, since λ = η − iω, we can write �(γ ) = −σ ω + k Pe = −σ ωm, where
ωm happens to be a modified angular frequency. Hence, Eq. (9.50) reads

(
d2

d x2
− k2

)
f − i k R h = 0 ,

(
d2

d x2
− k2 + i σ ωm + i k R x

)
h − d f

d x
= 0 ,

x = ±1

2
: f = 0 , h = 0 . (9.51)

Evidently, ωm = ω when the forced flow is switched off, i.e. when Pe = 0. When
Pe �= 0, the forced flow has no explicit influence on the mathematical solution of
the eigenvalue problem (9.51) consistently with the (k,R, ωm) parametrisation. This
means that, if we solve Eq. (9.51) by setting k as input parameter, we can determine
numerically the eigenvalue pair (R, ωm), independently of the Péclet number. This
is the reason why the convective instability analysis is influenced by the value of Pe
only when it comes to the determination ofω fromωm. On the other hand, the neutral
stability curve in the (k,R) plane is just the same as that drawn for the special case
Pe = 0, discussed by Barletta [1].

The numerical method described in Chap.10 is employed to solve the eigenvalue
problem (9.51) and thus to obtain the neutral stability function R(k). The additional
difficulty with respect to the case discussed in Sect. 9.1 is that, in this case, we do not
have a formal proof regarding the principle of exchange of stabilities. In other words,
we cannot prove rigorously that �(γ ) = −σ ωm = 0. In fact, this result comes out
only through the output data of the numerical solution. The neutrally stable modes
for any given k happen to display a zero modified angular frequency. This inductive
origin of the result �(γ ) = −σ ωm = 0 implies a complication in the numerical
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Fig. 9.8 Neutral stability
curve for the vertical porous
channel with isothermal and
permeable boundaries
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solution as we have to manage complex-valued eigenfunctions (f , h) and, hence, an
effective doubled order for the differential eigenvalue problem to tackle. We have
indeed to dealwith a fourfold eigenfunction structure, (	(f ),�(f ),	(h),�(h)). This
means a computationally heavier object to be treated numerically, but no effective
difference in the algorithmic framework of the method.

Figure9.8 displays the neutral stability curve and the convective instability region
in the (k,R) plane. The shape of the curve is quite dissimilar from all that we encoun-
tered so far in the analysis of instability induced by heating from below. The neutral
stability curve is not the plot of a single-valued function R(k), as it happens for the
Rayleigh–Bénard problem or the Horton–Rogers–Lapwood problem in their mani-
fold variants. The neutral stability curve for the flow in a vertical porous channel has
a droplike shape confining an internal region of convective instability. The point of
minimum R along this curve defines the critical values kc and Rc,

kc = 1.05950 , Rc = 197.081 . (9.52)

Another peculiar point along the neutral stability curve is that of maximum k, where

kmax = 1.27291 , Rmax = 253.340 . (9.53)

There was no such maximum wavelength in all our previous examples of convective
instability. Its physical meaning is that Fourier modes with a wave number exceed-
ing the maximum do not contribute to the onset of convective instability. In other
terms, such large wavelength modes are ineffective in exciting an unstable response
from the flow system. We mention that the numerical data used to draw the neutral
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stability curve in Fig. 9.8 displayed values ofσ |ωm| smaller than 10−10. This provides
inductive evidence that ωm is effectively zero or, equivalently, that the relation

ω = k Pe

σ
(9.54)

holds true for neutrally stable modes.

9.2.5 Absolute Instability

We now focus our analysis on the collective evolution at large times of perturba-
tion wave packets, so that we aim to detect a possible transition from convective to
absolute instability in the supercritical domain R � Rc. As usual, the tool adopted
to accomplish this task is the steepest-descent approximation of wave packet distur-
bances. This means starting from Eq. (9.48) in order to implement the saddle point
condition λ′(k) = 0, with k ∈ C. As in Sect. 9.1.3, we define

f̂ = ∂f

∂k
, ĥ = ∂h

∂k
, (9.55)

so that the eigenvalue problem (9.48) doubles its differential order through a deriva-
tion of the differential equations and boundary conditions with respect to k, namely

(
d2

d x2
− k2

)
f − i k R h = 0 ,

[
d2

d x2
− k2 − σ λ(k) − i k (Pe − R x)

]
h − d f

d x
= 0 ,

(
d2

d x2
− k2

)
f̂ − i k R ĥ − 2 k f − iRh = 0 ,

[
d2

d x2
− k2 − σ λ(k) − i k (Pe − R x)

]
ĥ − d f̂

d x
− [2 k + i (Pe − R x)] h = 0 ,

x = ±1

2
: f = 0 , h = 0 , f̂ = 0 , ĥ = 0 , (9.56)

where the condition λ′(k) = 0 has been taken into account.
The solution of the eigenvalue problem (9.56) is tackled by fixing as input data

the values of Pe and	(σ λ). In particular, in order to detect the threshold to absolute
instability, we set 	(σ λ) = 0. The output eigenvalues sought with the numerical
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solution are (k,R,�(σ λ)). To this end, we employ the shooting method along the
same lines discussed in Sect. 9.1.3.

There is a symmetry of the stability eigenvalue problem (9.48) which governs
both the onset of convective instability and the transition to absolute instability. In
fact, Eq. (9.48) is invariant under the transformation

x → −x , k → −k , R → R , Pe → −Pe ,

λ → λ , f → −f , h → h . (9.57)

The symmetry expressed by Eq. (9.57) ensures that the analysis of instability with
a negative Péclet effectively means a reversed sign of k, but it does not imply any
modification of the threshold values of R either for convective or absolute instability.
This is physically not as obvious as for the instability in a horizontal layer. In fact, in
the case of a vertical layer, the direction of the propagating disturbances is the vertical
z-direction, where the positive or negative z-directions mean parallel or antiparallel
directions with respect to gravity.

Further insights into the structure of the eigenvalue problem can be gathered by
writing the complex conjugate of Eq. (9.48), namely

(
d2

d x2
− k̄2

)
f̄ + i k̄ R h̄ = 0 ,

[
d2

d x2
− k̄2 − σ λ̄ + i k̄ (Pe − R x)

]
h̄ − d f̄

d x
= 0 ,

x = ±1

2
: f̄ = 0 , h̄ = 0 , (9.58)

where, having in mind the transition to absolute instability, we allowed k ∈ C. Both
Eqs. (9.48) and (9.58) can be equivalently employed for detecting the relevant saddle
points. The two eigenvalue problems coincide when we apply the transformation

k → −k̄ , λ → λ̄ . (9.59)

As a consequence, for every prescribed Pe and R, there is a pair of twin saddle points
with opposite real parts and equal imaginary parts. Therefore, the values of λ for these
twin saddle points have equal real parts and opposite imaginary parts. We reckon
that just the same property of the pertinent saddle points for the threshold to absolute
instability is implicitly reported in Figs. 9.1 and 9.2, relative to a different example.
The existence of twin saddle points with opposite real parts is also displayed in
Figs. 8.2 and 8.9. This situation suggests a general feature of the absolute instability
analyses, even if a formal proof would require a characterisation of what a stability
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Fig. 9.9 Vertical porous
channel with isothermal and
permeable boundaries:
migration of the pertinent
saddle points, with
increasing values of Pe, for
the threshold to absolute
instability

eigenvalue problem is meant to be. We do not aim to solve this formal conundrum
here, and we focus again on our specific analysis.

On account of the above-mentionedmathematical properties of the stability eigen-
value problem, with no loss of generality, we will refer our forthcoming analysis to
the case Pe � 0. The idea behind the search of the relevant saddle points for the tran-
sition to absolute instability is starting from Pe = 0 and then gradually increasing
Pe. In fact, the case of no net average flow across the channel is one where we already
ascertained, although inductively, that the principle of exchange of stabilities holds
at neutral stability. Then, the condition of neutral stability is one where λ(k) = 0, so
that we expect Ra = Rc = 197.081 and

	(k0) = ± kc = ± 1.05950 , �(k0) = 0 , �(σ λ(k0)) = 0 . (9.60)

Starting from these data relative toPe = 0, one can track the solution of Eq. (9.56) by
gradually increasing Pe above 0. Figure9.9 shows the migration of the twin saddle
points with Pe > 0 originated from those given by Eq. (9.60). Figure9.10 displays
the threshold Darcy–Rayleigh number for the transition to absolute instability, Ra,
plotted versusPe and compared with the critical valueRc = 197.081. Oncemore, we
see an ever- increasing gap Ra − Rc as Pe increases. Furthermore, Fig. 9.11 displays
the trend of �(σ λ(k0)) versus Pe. Both Figs. 9.10 and 9.11 reveal some significant
similarities with Figs. 9.4 and 9.2, respectively. However, there is an evident differ-
ence. The asymptotic regime for Pe 
 1 where both Ra and �(σ λ(k0)) are linear
functions of Pe, widely discussed in Sect. 9.1.3, turns out to be unsuited to the plots
reported in Figs. 9.10 and 9.11.

Another element of discrepancy emerges from Fig. 9.9. This figure appears to
be dissimilar from Fig. 9.1 because there is no clue of k0 attaining an asymptotic
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Fig. 9.10 Vertical porous
channel with isothermal and
permeable boundaries: plot
of Ra (solid line) versus Pe,
as compared with Rc (dashed
line) which is independent of
Pe
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Fig. 9.11 Vertical porous
channel with isothermal and
permeable boundaries: plot
of �(σ λ(k0)) versus Pe for
the saddle points k0, at the
threshold to absolute
instability, with positive or
negative 	(k0)

value for Pe → ∞, despite the very wide range of values of Pe. In fact, we note
that Pe = 100 is a very large value given that we are dealing with seepage flows in
porous media.

An example where the fulfilment of the holomorphy requirement is satisfied is
displayed in Fig. 9.12. In this figure, the test case where Pe = 20 and R = Ra =
258.755. This case corresponds to the threshold to absolute instability. The steepest-
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Fig. 9.12 Vertical porous
channel with isothermal and
permeable boundaries: map
of the isolines of 	(λ) = λr
(black solid lines) for
Pe = 20 and
R = Ra = 258.755. The
dashed black lines are for
λr = 0. The grey dots are the
saddle points, while the grey
lines are the lines of steepest
descent

descent paths crossing the twin saddle points,

	(k0) = ± 1.04255 , �(k0) = −0.311223 ,

�(σ λ(k0)) = ∓ 19.9514 , (9.61)

are drawn as grey lines. It is evident from Fig. 9.12 that no singularities appear within
the region of the k plane around the saddle points. Thus, one can devise a continuous
deformation of the real axis, �(k) = 0, matching locally the steepest-descent paths.
In other words, the holomorphy requirement can be considered as satisfied. Just the
same conclusions can be drawn by considering Fig. 9.13 relative to the case where
Pe = 50 and R = Ra = 437.549. Again, we are considering a threshold value of R
for the onset of absolute instability, with the pertinent saddle points being, in this
case,

	(k0) = ± 0.902055 , �(k0) = −0.363949 ,

�(σ λ(k0)) = ∓ 40.9155 . (9.62)

Such saddle points are denoted as grey dots in Fig. 9.13.We conclude that, in both the
test cases examined in Figs. 9.12 and 9.13, the holomorphy requirement is satisfied.

We recall from Definition 4.2 and Eq. (4.50) that the transition to absolute insta-
bility is mathematically associated with a transition from a negative to a positive
	(λ(k0)). In fact, the numerical solution of Eq. (9.56) can be carried out, not only
by setting 	(λ) = 0, but also by prescribing any negative or positive value of 	(λ).
This alternative serves to evaluate R versus Pe corresponding to negative or positive
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Fig. 9.13 Vertical porous
channel with isothermal and
permeable boundaries: map
of the isolines of 	(λ) = λr
(black solid lines) for
Pe = 50 and
R = Ra = 437.549. The
dashed black lines are for
λr = 0. The grey dots are the
saddle points, while the grey
lines are the lines of steepest
descent

Fig. 9.14 Vertical porous
channel with isothermal and
permeable boundaries: plot
of Ra (solid line) versus Pe,
as compared with R versus
Pe evaluated for negative and
positive growth rates 	(λ)

(dotted and dashed lines)

growth rates of thewave packet disturbances. The result is reported in Fig. 9.14where
the solid line showing the trend of Ra versus Pe is displayed together with the dotted
line relative to an absolutely stable condition, 	(σ λ) = −1, and the dashed line rel-
ative to an absolutely unstable condition, 	(σ λ) = 1. As expected, these plots show
that the absolutely unstable case, 	(σ λ) = 1, corresponds to values of R larger than
Ra, while the opposite occurs for the absolutely stable case, 	(σ λ) = −1.
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9.3 Concluding Remarks Regarding Numerical Solutions

We have seen the numerical method applied to the solution of absolute stability
problems. One would have expected some intrinsic extra difficulty emerging when
an analytical dispersion relation is not available or when it is too complicated to
be practically preferable with respect to a numerical solution. In fact, the treatment
of a numerical instance of absolute instability involves the solution of an ordinary
differential eigenvalue problem. The order of such eigenvalue problem is doubled
if compared with that involved in establishing the convective instability thresh-
old. Moreover, the absolute instability eigenvalue problem involves complex eigen-
functions even if the neutral stability condition requires only real eigenfunctions.
However, the algorithm for the numerical solution is not different from that employed
for the convective instability analysis. Another important element is that, even when
an analytical dispersion relation is available and it is expressed with simple rational
functions, as it happens for the Prats problem discussed in Sect. 8.2, the evaluation of
the saddle points needs the use of a numerical root-finding procedure. At least, this
is what happens in general except for some very special cases. These considerations
suggest that some numerical computation within the absolute instability analysis
emerges in every case, even when the stability dispersion relation is expressed ana-
lytically. Our conclusion is that there is no true additional encumbrance, or limitation
in the amount of results that can be gathered, when the stability analysis is to be car-
ried out in a fully numerical framework.
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