
Chapter 7
Rayleigh–Bénard Convection

7.1 Heating a Fluid Layer from Below

The investigation of the fluid dynamics thermally induced by a vertical temperature
gradient imposed on a fluid layer initiatedwith the experiments carried out by Bénard
[1] at the beginning of the twentieth century. Such investigation was the subject of
Henri Claude Bénard’s doctoral thesis defended at Sorbonne University, in Paris.
These experiments documented the formation of flow cells in a shallow fluid layer
where the temperature on the lower wall is higher than on the upper free surface,
provided that the prescribed temperature difference is higher than a threshold value.
Bénard’s experiments were carried out with the prescribed higher temperature within
a range between 50 ◦C and 100 ◦C, by employing liquids such as wax and whale oil
(spermaceti), which melt in this temperature range and do not display significant
surface evaporation. For the readers interested in the scientific biography of Bénard,
we recommend the review written by Wesfreid and published in Chapter 1 of the
book edited by Mutabazi et al. [8].

Pearson [11] gave theoretical support to the idea that the thermal buoyancy force
was not responsible of the phenomenon observed in Bénard’s experiments. In Pear-
son’s paper, his conclusion is: “we see that the buoyancy mechanism has no chance
of causing convection cells, while the surface tension mechanism is almost certain to
do so, and that observations support this”. On the other hand, the theoretical scheme
adopted for many years to explain Bénard’s observations is that the thermal expan-
sion of fluid elements close to the lower hot wall determines a vertical buoyancy
force compensated by the viscous resistance. When these competing forces reach an
equilibrium and, eventually, the buoyancy force prevails over the viscous resistance,
the convection cellular flow is established [10]. The dimensionless parameter com-
paring the extent of the buoyancy force to that of the viscous resistance is nowadays
well known as the Rayleigh number,

Ra = g β (T1 − T2) L3

ν α
. (7.1)
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Fig. 7.1 A train of counter-rotating cells in a fluid layer bounded by two isothermal planes

As shown in Fig. 7.1, T1 > T2 is the temperature of the lower heated wall, while T2
is the temperature of the upper free boundary, g is the modulus of the gravitational
acceleration g, and L is the thickness of the fluid layer. Actually, it is the Rayleigh
number that displays a threshold, called the critical value, Rac, which defines the
condition for the onset of the buoyancy-induced cells, namely Ra > Rac. Despite
the correctness of Pearson’s conclusions [11] about Bénard’s experiments, there are
several other experimental circumstances where the onset of the flow cells is in
fact caused by the thermal buoyancy force and, hence, by the condition Ra > Rac.
This happens, for instance, in the classical experiment reported by Schmidt and
Milverton [15], as well as in many natural situations quite common in oceanography,
meteorology, or geophysics [10]. Figure7.1 shows that the flow pattern is a train of
counter-rotating cells.

In the following, we will not investigate the role played by the surface tension,
highlighted by Pearson [11], and focus our attention on the thermal buoyancy force as
the cause of cells. This approach stems from the pioneering paper by Lord Rayleigh
[13], and it has been developed by several authors, over an entire century, in a really
huge literature. Extensive surveys on this topic can be found in many books. Just a
few examples are Chandrasekhar [2], Koschmieder [6], Getling [4], Drazin and Reid
[3].

7.2 The Rayleigh–Bénard Problem

The onset of buoyancy-induced cells is a classical problem of free convection in
a horizontal fluid layer heated from below, viz. the well-known Rayleigh–Bénard
problem. More precisely, in its simplified formulation, one assumes an infinitely
wide horizontal fluid layer bounded by two isothermal planes. The lower boundary
plane is kept isothermal at temperature T1, while the upper boundary plane is kept
isothermal at temperature T2 < T1. As is well known, buoyancy-induced cells appear
when the Rayleigh number exceeds the critical value Rac. The critical value depends
on the boundary conditions assumed at the isothermal boundaries. There are three
main cases, classically devised in the literature:
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Fig. 7.2 Simple planforms of the convection cells: a straight rolls; b toroidal rolls

• Both boundaries are rigid and impermeable walls, so that impermeability and no-
slip boundary conditions are prescribed on the velocity field. In this case, Rac ≈
1707.76.

• The lower boundary is a rigid and impermeable wall, while the upper boundary is a
stress-free surface.With stress-free surface, we mean that the boundary conditions
for the velocity are impermeability and vanishing tangential components of the
viscous stress tensor, τi j . In this case, Rac ≈ 1100.65.

• Both boundaries are stress-free surfaces. In this case, Rac = 27π4/4 ≈ 657.511.

The third case is the only one admitting a fully analytical solution, and it was orig-
inally regarded in the paper by Lord Rayleigh [13]. We mention that the stress-free
boundary conditions embody a simplified physical model of the interface between a
viscous liquid and a low-viscosity gas.

We have established that the boundary conditions prescribed at the horizontal
boundary planes of the fluid layer influence the critical value of the Rayleigh number
for the onset of the instability. The vertical sidewalls bounding laterally the shal-
low layer play an important role in shaping the planform of the buoyancy-induced
cells. The planform is in fact the shape of the cells as detected on a plane cutting
horizontally the fluid layer. The planform of the buoyancy-induced cells depends
on several features of the system including the shape of the lateral confining walls,
even when the fluid layer is extremely shallow. Two sample cases are illustrated in
Fig. 7.2, namely that of the straight rolls, and that of the toroidal rolls. The latter
planform is favoured when the sidewall is a vertical cylindrical surface with circular
cross section.

The onset of buoyancy-induced cells in a fluid initially at rest may be viewed as a
manifestation of the convective instability of the rest state, where the fluid velocity u
is zero everywhere. In this sense, in the study of the Rayleigh–Bénard problem, we
employ a linear stability analysis, so that the critical condition Ra = Rac represents
the threshold for the rest state to become convectively unstable.
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At this stage, the reader may have noticed the twofold meaning of the terms “con-
vection”, “convective” and “convectively” in the present discussion. These terms
naturally address a special type of heat transfer occurring in the fluid, i.e. the con-
vection, and the specific type of instability arising in the fluid, i.e. the convective
instability. As it should be clear from our definition given in Chap.4, the convective
instability may well emerge in flow systems where no convection heat transfer is
present or may take place. There is no reasonable way to overcome this termino-
logical conflict without introducing artificial terms different from those commonly
employed in the literature. The author is confident that the context where the term is
used makes its meaning unambiguous in every case.

If we consider a fluid layer, initially at rest, subject to an externally imposed
temperature difference (heating from below), the rest state becomes unstable giving
rise to buoyancy-induced cells when the Rayleigh number becomes sufficiently high.

In order to regard the Rayleigh–Bénard problem as a stability analysis, we need
to develop the governing equations for the perturbations superposed onto a basic
stationary state of the fluid.

7.3 Stability and Instability of Fluid Systems

As extensively discussed in Chap.4, the basic idea behind Lyapunov’s concept of
instability is that we must consider an initial state of a system and a trajectory
originating from this initial state. Then, we slightly perturb the initial state and
examine the perturbed trajectory. If the small perturbation results, for a sufficiently
large time, in a definitely different trajectory, then we have an unstable behaviour.
Otherwise, we have stability. Instability is a consequence of an extremely strong
dependence of the time evolution on the initial conditions.

If we apply Lyapunov’s idea to the governing equations of a fluid, we must think
of a trajectory as the time evolution of a given flow and we must think of an equi-
librium state as a stationary flow. On checking the stability of a stationary flow, we
must slightly perturb the velocity, pressure and temperature fields and see if the per-
turbation drives the system far away from its original stationary flow. If this happens,
then we have an unstable flow. Otherwise, we have a stable flow.

A fluid flow can be unstable even in the absence of a thermal coupling, i.e. if the
flow is isothermal or if the buoyancy force is negligible. In this case, the origin of
the instability is in the governing mass and momentum balance equations and, in
particular, in the nonlinear inertial term,

u j
∂ui
∂x j

,

of the local momentum balance equation (5.84),
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∂ui
∂t

+ u j
∂ui
∂x j

= − 1

ρ0

∂P

∂xi
+ ν ∇2ui .

In the absence of this nonlinear term, every stationary flowwithout a thermal coupling
would be stable. The instability of an isothermal, or forced convection, flow is called
hydrodynamic instability. Since, in this case, the temperature field does not appear
either in the local mass balance equation or in the local momentum balance equation,
the analysis of the hydrodynamic instability does not involve the solution of the local
energy balance equation.

Another kind of instability is that driven by the thermal coupling of the velocity
field through the buoyancy force. This kind of instability is called thermal instability.
The thermal instability depends not only on the nonlinearity of the local momentum
balance, but it is also driven by the nonlinear convective term,

u j
∂T

∂x j
,

as well as by the nonlinear viscous dissipation term, 2 ν Di j Di j/c, of the local energy
balance equation (5.85),

∂T

∂t
+ u j

∂T

∂x j
= α ∇2T + qg

ρ0 c
+ 2 ν

c
Di j Di j .

In order to illustrate the method for testing the stability or instability of a basic fluid
flow, we refer to a Newtonian fluid and we consider the governing local balance
equations (5.83)–(5.85), within the Oberbeck–Boussinesq approximation,

∂u j

∂x j
= 0 , (7.2)

∂ui
∂t

+ u j
∂ui
∂x j

= −β (T − T0) gi − 1

ρ0

∂P

∂xi
+ ν ∇2ui , (7.3)

∂T

∂t
+ u j

∂T

∂x j
= α ∇2T + qg

ρ0 c
+ 2 ν

c
Di j Di j , (7.4)

where the thermal power generated per unit volume,qg(x, t), is considered as a known
function, independent of the fields (u, P, T ). If we want to test the stability of a basic
solution, (ub, Pb, Tb), of Eqs. (7.2)–(7.4), we proceed as follows.Weperturb the basic
solution, i.e., we express the fields (u, P, T ) as

ui = ubi + εUi , P = Pb + ε Π , T = Tb + ε Θ , (7.5)

where ε is the perturbation parameter. The terms εUi , ε Π and ε Θ express the pertur-
bation of the basic solution.We remember that the basic solution (ub, Pb, Tb) satisfies
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Eqs. (7.2)–(7.4), and, on substituting Eq. (7.5) into Eqs. (7.2)–(7.4), we obtain

ε
∂Uj

∂x j
= 0 , (7.6)

ε
∂Ui

∂t
+ εUj

∂ubi
∂x j

+ ε ub j
∂Ui

∂x j
+ ε2Uj

∂Ui

∂x j

= −ε β Θ gi − ε

ρ0

∂Π

∂xi
+ ε ν ∇2Ui , (7.7)

ε
∂Θ

∂t
+ ε ub j

∂Θ

∂x j
+ εUj

∂Tb
∂x j

+ ε2Uj
∂Θ

∂x j

= ε α ∇2Θ + 4 ε ν

c
Dbi j Di j + 2 ε2ν

c
Di j Di j , (7.8)

where

Dbi j = 1

2

(
∂ubi
∂x j

+ ∂ub j
∂xi

)
, Di j = 1

2

(
∂Ui

∂x j
+ ∂Uj

∂xi

)
. (7.9)

We mention that the non-homogeneous term, qg, in Eqs. (7.2)–(7.4) does not appear
any more in the perturbation Eqs. (7.6)–(7.8), since (ubi , Pb, Tb) is a solution of
Eqs. (7.2)–(7.4).

Equations (7.6)–(7.8) express the governing equations for the perturbation fields
(Ui ,Π,Θ). We note that these equations contain a coupling to the basic solution
(ubi , Pb, Tb) only as a consequence of the nonlinear terms

u j
∂ui
∂x j

, u j
∂T

∂x j
,

2 ν

c
Di j Di j ,

that appear in Eqs. (7.3) and (7.4). Without these nonlinear terms, the perturbations
would be uncoupled to the basic solution, so that the perturbation of the basic solution
would be independent of the basic solution. This circumstance would result in a
stability of the basic solution whatever it may be. Thus, we have established a link
between the instability and the nonlinearity of the governing equations.

At this point, we have two alternatives: we may assume that the perturbations
are small, or we may investigate perturbations of arbitrarily large amplitude. In the
first case, we perform a linear stability analysis. In the second case, we investigate
the nonlinear stability of the flow. The first option is the simplest one, and we will
restrict all the forthcoming discussion to this case. Assuming small perturbations
means assuming ε � 1, so that we can neglect the terms O

(
ε2
)
with respect to the

terms O(ε) in Eqs. (7.6)–(7.8). Therefore, we can simplify ε from Eqs. (7.6)–(7.8)
and rewrite them as
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∂Uj

∂x j
= 0 , (7.10)

∂Ui

∂t
+Uj

∂ubi
∂x j

+ ub j
∂Ui

∂x j
= −β Θ gi − 1

ρ0

∂Π

∂xi
+ ν ∇2Ui , (7.11)

∂Θ

∂t
+ ub j

∂Θ

∂x j
+Uj

∂Tb
∂x j

= α ∇2Θ + 4 ν

c
Dbi j Di j . (7.12)

One may solve Eqs. (7.10)–(7.12) and check what the time evolution of the pertur-
bation is like: if it leads to an increasingly large departure from the basic solution,
or if it leads to an asymptotic recovery of the basic solution. In the first case, we
have a response of instability for the basic flow, while in the second case, we have
an outcome of stability.

7.4 Formulation of the Rayleigh–Bénard Problem

In Sect. 7.2, we have seen that a crucial point in modelling the Rayleigh–Bénard
system is the definition of the velocity boundary conditions. As illustrated in Fig. 7.3,
the z-axis is taken as vertical, while the x and y axes are horizontal. For the sake of
mathematical simplicity, we will initially model the boundaries z = 0 and z = L as
impermeable and stress-free. In doing this, we follow the approach chosen by Lord
Rayleigh [13] in his pioneering paper. The determination of the onset conditions for
the development of convection cells can be approached by a linear stability analysis,
based on Eqs. (7.10)–(7.12).

7.4.1 Governing Equations

The critical condition for the onset of convection cells in the fluid layer is obtained
starting from the basic state where the fluid is at rest,

z

0

L

T1 > T2

T2

g z

y

x

Fig. 7.3 Rayleigh–Bénard system: choice of the coordinate axes
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ubi = 0 , Tb = T1 − (T1 − T2)
z

L
. (7.13)

In fact, onemay easily verify that Eq. (7.13) is a solution of the localmass,momentum
and energy balance equations (7.2)–(7.4) under the assumption that no volumetric
heat source is present in the fluid, namely qg = 0. We also mention that Eq. (7.13)
is compatible with the conditions of stress-free and impermeable boundaries, as
the velocity is zero everywhere. Also the thermal boundary conditions of isother-
mal surfaces at z = 0 and z = L , with temperatures T1 and T2, are satisfied. Thus,
Eqs. (7.10)–(7.12) yield

∂Uj

∂x j
= 0 ,

∂Ui

∂t
= −β Θ gi − 1

ρ0

∂Π

∂xi
+ ν ∇2Ui ,

∂Θ

∂t
− W

T1 − T2
L

= α ∇2Θ , (7.14)

where we denoted as (U, V,W ) the (x, y, z) components of the velocity perturba-
tion Ui . The boundary conditions for the velocity and temperature fields model the
constraints of uniform temperature, impermeability and vanishing tangential viscous
stresses at z = 0, L . Here, we define the viscous stress tensor associated with the
velocity perturbation,

Ti j = μ

(
∂Ui

∂x j
+ ∂Uj

∂xi

)
. (7.15)

Thus, the boundary conditions can be written either as

z = 0, L : W = 0 = Θ , Tzx = 0 = Tzy , (7.16)

or, equivalently, as

z = 0, L : W = 0 = Θ ,
∂W

∂x
+ ∂U

∂z
= 0 = ∂W

∂y
+ ∂V

∂z
. (7.17)

Since W = 0 at z = 0, L , we can rewrite Eq. (7.17) as

z = 0, L : W = 0 = Θ ,
∂U

∂z
= 0 = ∂V

∂z
. (7.18)

The perturbation equations can be further simplified by allowing an appropriate scal-
ing of the quantities, so that the study is carried out with a dimensionless formulation,

Ui

α/L
→ Ui ,

Θ

T1 − T2
→ Θ ,

Π

ρ0να/L2
→ Π ,



7.4 Formulation of the Rayleigh–Bénard Problem 143

xi
L

→ xi ,
t

L2/α
→ t . (7.19)

Thus, Eqs. (7.14) and (7.18) can be rewritten in a dimensionless form as

∂Uj

∂x j
= 0 , (7.20)

1

Pr

∂Ui

∂t
= Ra Θ δi3 − ∂Π

∂xi
+ ∇2Ui , (7.21)

∂Θ

∂t
− W = ∇2Θ , (7.22)

z = 0, 1 : W = 0 = Θ ,
∂U

∂z
= 0 = ∂V

∂z
, (7.23)

where δi3 is the (i, 3) component of Kronecker’s delta, namely the i th component
of the unit vector ez = (0, 0, 1), while the dimensionless parameters Pr and Ra are
the Prandtl number and the Rayleigh number defined as

Pr = ν

α
, Ra = gβ(T1 − T2)L3

να
. (7.24)

The term− ∂Π/∂xi can be encompassed by taking the curl of themomentumbalance
equation so that one obtains:

(
1

Pr

∂

∂t
− ∇2

)(
∂W

∂x
− ∂U

∂z

)
= Ra

∂Θ

∂x
, (7.25)

(
1

Pr

∂

∂t
− ∇2

)(
∂W

∂y
− ∂V

∂z

)
= Ra

∂Θ

∂y
. (7.26)

We derive Eq. (7.25) with respect to x , and Eq. (7.26) with respect to y. Then, we
sum the two resulting equations, so that we obtain

(
1

Pr

∂

∂t
− ∇2

)[
∇2W − ∂

∂z

(
∂Uj

∂x j

)]
= Ra ∇2

2Θ , (7.27)

where ∇2
2 is the two-dimensional Laplace operator, defined as

∇2
2Θ = ∂2Θ

∂x2
+ ∂2Θ

∂y2
. (7.28)
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By taking into account the localmass balance equation, ∂Uj/∂x j = 0 ,we can extract
a set of two partial differential equations in the unknowns (W,Θ), which describe
the linear stability problem,

(
1

Pr

∂

∂t
− ∇2

)
∇2W = Ra ∇2

2Θ ,

∂Θ

∂t
− W = ∇2Θ ,

z = 0, 1 : W = 0 = Θ ,
∂2W

∂z2
= 0 , (7.29)

The boundary conditions ∂2W/∂z2 = 0, at z = 0, 1, are retrieved by deriving the
stress-free conditions at z = 0, 1, given by Eq. (7.23),

∂U

∂z
= 0 ,

∂V

∂z
= 0 ,

with respect to x and y, respectively, by summing them so that one obtains

∂

∂z

(
∂Uj

∂x j

)
− ∂2W

∂z2
= 0 ,

and finally by employing the local mass balance equation, ∂Uj/∂x j = 0 .

7.4.2 Normal Mode Analysis

Equations (7.29) can be solved by employing the Fourier transform method. We will
follow a procedure similar to that described, for instance, in Sect. 4.2. The significant
difference is that we now employ two-dimensional Fourier transforms, defined by
Eqs. (2.91) and (2.92)

W̃ (kx , ky, z, t) = 1

2π

∞∫
−∞

∞∫
−∞

W (x, y, z, t) e−i(kx x+ky y) d x d y ,

W (x, y, z, t) = 1

2π

∞∫
−∞

∞∫
−∞

W̃ (kx , ky, z, t) e
i(kx x+ky y) d kx d ky ,
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Θ̃(kx , ky, z, t) = 1

2π

∞∫
−∞

∞∫
−∞

Θ(x, y, z, t) e−i(kx x+ky y) d x d y ,

Θ(x, y, z, t) = 1

2π

∞∫
−∞

∞∫
−∞

Θ̃(kx , ky, z, t) e
i(kx x+ky y) d kx d ky . (7.30)

In other words, we are seeking solutions expressed through a superposition of Fourier
modes, or normal modes, propagating in the (x, y) plane along the direction of the
wavevector (kx , ky).Weare dealingwith two-dimensional and, hence, doubleFourier
transforms. Thismeans that the property of partial derivatives expressed byEq. (2.18)
applies to the derivatives both with respect to x and those with respect to y. This
means that the Fourier transforms of ∇2W , ∇2Θ and ∇2

2Θ are given, respectively,
by (

∂2

∂z2
− k2
)
W̃ ,

(
∂2

∂z2
− k2
)

Θ̃ , −k2 Θ̃ ,

where k = (k2x + k2y)
1/2 is the wave number.

The use of the Fourier transform method, for the solution of Eq. (7.29), implies
that W̃ and Θ̃ are the new unknowns to be determined. This task can be accomplished
by using the separation of variables, described in AppendixA, namely by separating
the dependence on z and on t . Thus, we can express W̃ and Θ̃ as linear combinations
of separated solutions written as

W̃ = f (z) eλ t , Θ̃ = h(z) eλ t , (7.31)

where λ = η − iω ∈ C is a complex parameter, ω ∈ R is the angular frequency, and
η ∈ R is the growth rate. As usual, for a given k, η > 0 means convective instability,
η < 0 means stability, while η = 0 indicates the threshold condition of neutral, or
marginal, stability.

By evaluating the two-dimensional Fourier transform of Eq. (7.29), and by
employing Eq. (7.31), the stability problem is formulated as

(
1

Pr
λ − d2

d z2
+ k2
)(

d2

d z2
− k2
)

f + Ra k2 h = 0 , (7.32)

(
λ − d2

d z2
+ k2
)
h − f = 0 , (7.33)

z = 0, 1 : f = 0 ,
d2 f

d z2
= 0 , h = 0 . (7.34)
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We can combine the two Eqs. (7.32) and (7.33) into a single (sixth-order) ordinary
differential equation in the sole unknown function h,

(
1

Pr
λ − d2

d z2
+ k2
)(

d2

d z2
− k2
)(

λ − d2

d z2
+ k2
)
h + Ra k2 h = 0 , (7.35)

with the boundary conditions

z = 0, 1 : h = 0 ,
d2h

d z2
= 0 ,

d4h

d z4
= 0 . (7.36)

We mention that the boundary conditions d2h/dz2 = 0 are obtained from Eq. (7.33)
by taking the limits z → 0 and z → 1 and by usingEq. (7.34). Likewise, the boundary
conditions d4h/dz4 = 0 are obtained from Eq. (7.33) derived twice with respect to
z.

A solution of the differential problem, expressed by Eqs. (7.35) and (7.36), is
easily found, namely

h(z) = sin(n π z) , n = 1, 2, 3, . . . , (7.37)

provided that

(
1

Pr
λ + n2 π2 + k2

) (
n2 π2 + k2

) (
λ + n2 π2 + k2

)− Ra k2 = 0 , (7.38)

The additional algebraic equation (7.38) is the so-called dispersion relation of sta-
bility. Since λ = η − iω, the imaginary part of the dispersion relation vanishes if
and only if

ω
(
n2π2 + k2

) [
2 η + (Pr + 1)

(
n2π2 + k2

)] = 0 . (7.39)

For convectively unstable or neutrally stable modes, i.e. for η ≥ 0, this equation
can be satisfied only if ω = 0, meaning that only zero-frequency normal modes are
allowed. This result is well known in the literature as the principle of exchange of
stabilities [12]. As it has been pointed out by Pellew and Southwell [12], the physical
meaning of this principle is that “while oscillatory motions are not excluded by this
investigation, they are permitted only in circumstances making for stability, i.e. in
which they decay”. In fact, also stable modes cannot be oscillatory as it will be shown
in Sect. 7.5.1.

7.4.3 Neutral Stability

Since ω = 0 when η ≥ 0, for convectively unstable or neutrally stable states, the real
part of the dispersion relation (7.38) vanishes if
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Ra =
(
n2π2 + k2

) (
η + n2π2 + k2

) (
Pr−1η + n2π2 + k2

)
k2

. (7.40)

Convective instability means that there exists a positive integer, n = 1, 2, 3, . . .),
such that the growth rate is positive, namely η > 0. On gradually increasing Ra
starting from zero, one encounters instability first with n = 1, so that one has

Ra =
(
π2 + k2

)3
k2

, (neutral stability),

Ra >

(
π2 + k2

)3
k2

, (convective instability),

and thus, necessarily,

Ra <

(
π2 + k2

)3
k2

,

implies stability. Figure7.4 displays the neutral stability curve, namely the plot of
function

Ra(k) =
(
π2 + k2

)3
k2

. (7.41)

Its minimum defines the onset of convection cells,

kc = π√
2

≈ 2.22144 , Rac = 27π4

4
≈ 657.511 . (7.42)

Fig. 7.4 Neutral stability
curve for the
Rayleigh–Bénard problem
with stress-free and
impermeable boundary
conditions at z = 0, 1
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7.5 Rayleigh–Bénard Problem with Other Types
of Boundary Conditions

In cases where the boundary surfaces z = 0, 1 are not both stress-free, the convective
stability analysis partly changes. For instance, when both surfaces z = 0, 1 are rigid
impermeable walls, no-slip boundary conditions for the velocity have to be imposed
at z = 0, 1. Thus, Eq. (7.29) changes to the form

(
1

Pr

∂

∂t
− ∇2

)
∇2W = Ra ∇2

2Θ ,

∂Θ

∂t
− W = ∇2Θ ,

z = 0, 1 : W = 0 = Θ ,
∂W

∂z
= 0 . (7.43)

In the intermediate case, where z = 0 is subject to no-slip conditions and z = 1 is
stress-free, we have (

1

Pr

∂

∂t
− ∇2

)
∇2W = Ra ∇2

2Θ ,

∂Θ

∂t
− W = ∇2Θ ,

z = 0 : W = 0 = Θ ,
∂W

∂z
= 0 ,

z = 1 : W = 0 = Θ ,
∂2W

∂z2
= 0 . (7.44)

In other terms, the partial differential equations for the perturbations are unaffected
by changed boundary conditions, the only change being the boundary conditions
for W and Θ . The reason is simple. The governing partial differential equations
for the perturbations just depend on the basic solution that satisfies both stress-free
boundary conditions and no-slip boundary conditions at z = 0, 1. In all these cases,
the basic solution is given by Eq. (7.13). Equations (7.43) and (7.44) show that, when
a boundary surface turns from stress-free to no-slip, one of the boundary conditions
turns from ∂2W/∂z2 = 0 to ∂W/∂z = 0. The reason is that the condition of vanishing
second derivative ∂2W/∂z2 is a consequence of the vanishing tangential components
of the viscous stress tensor. If a boundary, say z = 1, has impermeability and no-slip
conditions, then one may write

z = 1 : U = 0 , V = 0 , W = 0 .
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By employing such conditions, as well as the local mass balance equation (7.20) in
the limit z → 1, one readily reaches the conclusion

z = 1 : W = 0 ,
∂W

∂z
= 0 .

The method described in Sect. 7.4.2 can still be applied, together with the separation
of variables expressed by Eq. (7.31). Hence, if no-slip boundary conditions for the
velocity are imposed at both z = 0 and z = 1, Eqs. (7.32)–(7.34) are replaced by

(
1

Pr
λ − d2

d z2
+ k2
)(

d2

d z2
− k2
)

f + Ra k2 h = 0 , (7.45)

(
λ − d2

d z2
+ k2
)
h − f = 0 , (7.46)

z = 0, 1 : f = 0 ,
d f

d z
= 0 , h = 0 . (7.47)

In the case of mixed no-slip and stress-free boundary conditions at z = 0 and z = 1,
respectively, one has

z = 0 : f = 0 ,
d f

d z
= 0 , h = 0 ,

z = 1 : f = 0 ,
d2 f

d z2
= 0 , h = 0 , (7.48)

instead of Eq. (7.47).
One may well say that, although possible, an analytical solution for either the dif-

ferential problems, given by Eqs. (7.45)–(7.47) and by Eqs. (7.45), (7.46) and (7.48),
is not the most convenient approach. An easier, reliable and accurate procedure to
get the solution of either these differential problems is the use of a numerical solver
for differential eigenvalue problems. We refer the reader to Chap.10 for a discussion
of the numerical method, and for the implementation of the code needed to develop
this numerical solver. Figures7.5 and 7.6 display, respectively, the neutral stability
curves for the Rayleigh–Bénard problem with rigid and impermeable boundaries,
i.e. for the conditions given by Eq. (7.47), and for the mixed case where the lower
boundary is rigid while the upper boundary is stress-free, i.e. for the conditions given
by Eq. (7.48). The shape of these neutral stability curves is not much different from
that of the curve displayed in Fig. 7.4.We will see that this shape is surprisingly com-
mon for the diverse variants of the Rayleigh–Bénard problem. The most important
difference between Figs. 7.4, 7.5 and 7.6 is in the position of the minimum, namely
in the values of kc and Rac. With the boundary conditions expressed by Eq. (7.47),
we obtain
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Fig. 7.5 Neutral stability
curve for the
Rayleigh–Bénard problem
with rigid and impermeable
boundary conditions at
z = 0, 1
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kc = 3.11632 , Rac = 1707.76 , (7.49)

while in the mixed case given by Eq. (7.48), we obtain

kc = 2.68232 , Rac = 1100.65 . (7.50)

These results allow one to conclude that the presence of stress-free boundaries tends
to favour the onset of convective instability. In fact, the case where both the imper-
meable boundaries are rigid is the one where the instability requires the highest
Rayleigh number. The mixed case is intermediate, while the case with two stress-
free boundaries is that where the instability emerges at the lowest Rayleigh number.
One can rephrase this conclusion by saying that the no-slip condition is a stabilising
mechanism for the thermal instability.

7.5.1 The Principle of Exchange of Stabilities

By employing integration by parts over z ∈ [0, 1], we can write

1∫
0

f̄
d4 f

d z4
dz = −

1∫
0

d f̄

d z

d3 f

d z3
dz =

1∫
0

∣∣∣∣d
2 f

d z2

∣∣∣∣
2

dz , (7.51)
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Fig. 7.6 Neutral stability
curve for the
Rayleigh–Bénard problem
with rigid and impermeable
boundary conditions at
z = 0, and with stress-free
and impermeable boundary
conditions at z = 1
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1∫
0

f̄
d2 f

d z2
dz = −

1∫
0

∣∣∣∣d f

d z

∣∣∣∣
2

dz , (7.52)

1∫
0

h
d2h̄

d z2
dz = −

1∫
0

∣∣∣∣d hd z
∣∣∣∣
2

dz , (7.53)

where the primes denote derivatives with respect to z, the overline denotes com-
plex conjugation, and either the boundary conditions given by Eq. (7.47) or those
expressed by Eq. (7.48) are employed.

We stress that the chain of integrations by parts in Eqs. (7.51)–(7.53) holds both
with the set of boundary conditions (7.47) and with the set of boundary conditions
(7.48). We finally mention that Eqs. (7.51)–(7.53) are valid also in the case where
both boundaries are rigid and stress-free, described by Eq. (7.34).

Let us consider Eqs. (7.45) and (7.46). We multiply Eq. (7.45) by f̄ and integrate
over z ∈ [0, 1]. Then, by employing Eqs. (7.52) and (7.53), we obtain

1∫
0

∣∣∣∣d
2 f

d z2

∣∣∣∣
2

dz +
(
2 k2 + λ

Pr

) 1∫
0

∣∣∣∣d f

d z

∣∣∣∣
2

dz +
(
k2 + λ

Pr

)
k2

1∫
0

| f |2 dz

− Ra k2
1∫

0

f̄ h dz = 0 . (7.54)
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Let us write the complex conjugate of Eq. (7.46),

(
λ̄ − d2

d z2
+ k2
)
h̄ − f̄ = 0 . (7.55)

We multiply Eq. (7.55) by h and integrate over z ∈ [0, 1]. By using Eqs. (7.52) and
(7.53), we obtain

1∫
0

∣∣∣∣d hd z
∣∣∣∣
2

dz + (λ̄ + k2
) 1∫
0

|h|2 dz −
1∫

0

f̄ h dz = 0 . (7.56)

We can combine Eqs. (7.54) and (7.56) to obtain

1∫
0

∣∣∣∣d
2 f

d z2

∣∣∣∣
2

dz +
(
2 k2 + λ

Pr

) 1∫
0

∣∣∣∣d f

d z

∣∣∣∣
2

dz +
(
k2 + λ

Pr

)
k2

1∫
0

| f |2 dz

− Ra k2

⎡
⎣

1∫
0

∣∣∣∣d hd z
∣∣∣∣
2

dz + (λ̄ + k2
) 1∫
0

|h|2 dz
⎤
⎦ = 0 . (7.57)

We recall that λ = η − iω. Thus, the imaginary part of Eq. (7.57) is given by

ω

⎛
⎝ 1

Pr

1∫
0

∣∣∣∣d f

d z

∣∣∣∣
2

dz + k2

Pr

1∫
0

| f |2 dz + Ra k2
1∫

0

|h|2 dz
⎞
⎠ = 0 . (7.58)

The expression in round brackets on the left-hand side of Eq. (7.58) is positive, unless
the perturbation is identically zero, i.e. f = 0 = h. Therefore, we can conclude that

ω = 0 . (7.59)

so that the principle of exchange of stabilities holds. If we consider the real part of
Eq. (7.57), we obtain

1∫
0

∣∣∣∣d
2 f

d z2

∣∣∣∣
2

dz + 2 k2
1∫

0

∣∣∣∣d f

d z

∣∣∣∣
2

dz + k4
1∫

0

| f |2 dz

− Ra k2

⎡
⎣

1∫
0

∣∣∣∣d hd z
∣∣∣∣
2

dz + k2
1∫

0

|h|2 dz
⎤
⎦
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+ η

⎛
⎝ 1

Pr

1∫
0

∣∣∣∣d f

d z

∣∣∣∣
2

dz + k2

Pr

1∫
0

| f |2 dz − Ra k2
1∫

0

|h|2 dz
⎞
⎠ = 0 . (7.60)

Equation (7.60) leads to some interesting conclusions. At neutral stability, η = 0, we
infer that Ra is positive for every k and Pr . Moreover, either the neutral stability
curve Ra(k) displays a singularity when k → 0 or d2 f/dz2 is identically vanishing
in this limit. Indeed, a singular behaviour of the neutral stability curve is implied by
Eq. (7.41), for the case where both boundaries are rigid and stress-free.

Another feature which can be inferred fromEq. (7.60) is that, in the limit Ra → 0,
the growth rate η cannot be positive. An obvious feature on physical grounds as
Ra → 0 is achieved when the temperature difference between the bounding surfaces
tends to zero. Under such conditions, the buoyancy force cannot activate and sustain
any natural convection flow.

An important aspect of the principle of exchange of stability formulated by the
integral method just described is that Eq. (7.59) holds independently of η being
negative, zero or positive. This is a slight, but interesting, feature with respect to
what we were able to infer from Eq. (7.39) for the case where both boundaries are
rigid and stress-free.

7.6 The Horton–Rogers–Lapwood Problem

A stability analysis of the rest state not referring to a clear fluid layer, but to a
fluid-saturated porous medium was performed by Horton and Rogers Jr [5], and by
Lapwood [7]. The Horton–Rogers–Lapwood (HRL) problem is the porous medium
analogue of the Rayleigh–Bénard problem for a clear fluid. The analysis of the HRL
problem was originally performed by assuming the validity of Darcy’s law and by
employing linearised governing equations. During the years, several extensions of
the HRL problem have been studied including treatment of Darcy–Forchheimer’s
model, of Brinkman’s model and adopting a weakly nonlinear stability analysis. For
a review of these results, one can refer to Rees [14] and Tyvand [16].

7.6.1 Formulation of the Problem

By analogy with the Rayleigh–Bénard problem, let us consider a horizontal fluid-
saturated porous layer having thickness L , bounded by two impermeable planes. The
lower boundary plane is maintained at temperature T1, while the upper boundary
plane has a uniform temperature T2 < T1.

For the mathematical formulation of the problem, we rely on the framework
discussed in Sect. 6.4. By assuming the validity of Darcy’s law, of the Oberbeck–
Boussinesq approximation, the governing equations of the saturated porous medium,
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without any volumetric heat source, qg = 0, can be written as

∂u j

∂x j
= 0 ,

ν

K
ui = −β (T − T0) gi − 1

ρ0

∂P

∂xi
,

σ
∂T

∂t
+ u j

∂T

∂x j
= α ∇2T + ν

K c
u ju j , (7.61)

where α = κeff/(ρ0 c) and ν = μ/ρ0. If we want to test the stability of a basic
solution, (ubi , Pb, Tb), we proceed as follows. We perturb the basic solution, i.e., we
express the fields (ui , P, T ) as

ui = ubi + εUi , P = Pb + ε Π, T = Tb + ε Θ,

where ε is a positive dimensionless quantity, the perturbation parameter. The terms
εUi , ε Π and ε Θ express the perturbation of the basic solution.

Thus, we obtain the perturbation equations,

ε
∂Uj

∂x j
= 0 ,

ε ν

K
Ui = −ε β Θ gi − ε

ρ0

∂Π

∂xi
,

ε σ
∂Θ

∂t
+ ε ub j

∂Θ

∂x j
+ εUj

∂Tb
∂x j

+ ε2Uj
∂Θ

∂x j
= ε α ∇2Θ

+ 2 ε ν

K c
ub j U j + ε2ν

K c
Uj U j . (7.62)

The perturbation equations (7.62) express the dynamics of the perturbation fields
(Ui ,Π,Θ). We note that these equations contain a coupling with the basic solution
(ubi , Pb, Tb) only as an effect of the nonlinear terms

u j
∂T

∂x j
,

ν

K c
u ju j .

As in the case of a clear fluid, we have two alternatives: we may assume that the
perturbations are small, orwemay investigate perturbations of arbitrarily large ampli-
tude. In the first case, we perform a linear stability analysis. In the second case, we
carry out a nonlinear stability analysis.
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The first option is the simplest one, and we will restrict all the forthcoming dis-
cussion to this case. Assuming small perturbations means requiring ε � 1, so that
we can neglect the terms O

(
ε2
)
with respect to the terms O(ε) in the perturbation

equations.
Therefore, we can simplify ε from the perturbation equations (7.62) and rewrite

them as
∂Uj

∂x j
= 0 ,

ν

K
Ui = −β Θ gi − 1

ρ0

∂Π

∂xi
,

σ
∂Θ

∂t
+ ub j

∂Θ

∂x j
+Uj

∂Tb
∂x j

= α ∇2Θ + 2 ν

K c
ub j U j . (7.63)

One may solve these equations and check what the time evolution of the perturbation
is like: if it leads to an increasingly large departure from the basic solution, or if it
leads to an asymptotic recovery of the basic solution. In the first case, we have
a response of instability for the basic flow, while in the second case, we have an
outcome of stability. The critical condition for the onset of convection in the layer is
obtained by a linear stability analysis carried out starting from the basic state,

ubi = 0 , Tb = T1 − (T1 − T2)
z

L
. (7.64)

The nature of the basic state leads to a dramatic simplification of the linearised
perturbation equations. In fact, Eq. (7.63) simplify to

∂Uj

∂x j
= 0 ,

ν

K
Ui = −β Θ gi − 1

ρ0

∂Π

∂xi
,

σ
∂Θ

∂t
− W

T1 − T2
L

= α ∇2Θ . (7.65)

The perturbation equations can be further simplified by allowing an appropriate scal-
ing of the physical quantities, in order to carry out the study through a dimensionless
formulation. Hence, we define the dimensionless quantities bymeans of the scalings,

Ui

α/L
→ Ui ,

Θ

T1 − T2
→ Θ ,

Π

ρ0να/K
→ Π ,

xi
L

→ xi ,
t

σ L2/α
→ t , (7.66)
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so that the dimensionless perturbation equations can be written as

∂Uj

∂x j
= 0 ,

Ui = R Θ δi3 − ∂Π

∂xi
,

∂Θ

∂t
− W = ∇2Θ , (7.67)

with the boundary conditions,

z = 0, 1 : W = 0 = Θ . (7.68)

In particular, the conditions W = 0 express the impermeability of the boundaries.
The parameter R defines the Darcy–Rayleigh number,

R = gβ(T1 − T2)K L

να
. (7.69)

A comparison with Eq. (7.24) reveals that the Darcy–Rayleigh number differs from
the Rayleigh number of a clear fluid mainly due to the factor K L instead of L3.

The term − ∂Π/∂xi can be encompassed by taking the curl of the momentum
balance equation, which yields

∂W

∂x
− ∂U

∂z
= R

∂Θ

∂x
, (7.70)

∂W

∂y
− ∂V

∂z
= R

∂Θ

∂y
. (7.71)

We derive Eq. (7.70) with respect to x and Eq. (7.71) with respect to y. Then, we sum
the two resulting equations, so that we obtain

∇2W = R ∇2
2Θ + ∂

∂z

(
∂Uj

∂x j

)
. (7.72)

By taking into account the local mass balance equation, ∂Uj/∂x j = 0, we can extract
a set of two partial differential equations in the unknowns (W,Θ), describing the
stability problem,

∇2W = R ∇2
2Θ ,

∂Θ

∂t
− W = ∇2Θ , (7.73)
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with the boundary conditions

z = 0, 1 : W = 0 = Θ . (7.74)

7.6.2 Normal Modes

As in the Rayleigh–Bénard problem, the governing equations for the perturbations
can be solved by employing the Fourier transform method. With the definitions
formulated in Eqs. (7.30) and (7.31), we can express the Fourier transformed stability
problem in the form (

d2

d z2
− k2
)

f + R k2 h = 0 ,

(
λ − d2

d z2
+ k2
)
h − f = 0 , (7.75)

with the boundary conditions

z = 0, 1 : f = 0 = h . (7.76)

We can combine the two equations into a single (fourth-order) ordinary differential
equation, (

d2

d z2
− k2
)(

λ − d2

d z2
+ k2
)
h + R k2 h = 0 ,

z = 0, 1 : h = 0 ,
d2h

d z2
= 0 . (7.77)

A solution of this differential problem is easily found, namely

h(z) = sin(n π z), n = 1, 2, 3, . . . , (7.78)

provided that
(n2π2 + k2)

(
λ + n2π2 + k2

)− R k2 = 0 . (7.79)

This additional algebraic equation is the dispersion relation of stability. We recall
that the complex parameter λ can be expressed in terms of its real part η and its
imaginary part −ω, that is λ = η − iω. Thus, the imaginary part of the right-hand
side of Eq. (7.79) vanishes if and only if

ω
(
n2π2 + k2

) = 0 . (7.80)
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This equation can be satisfied if and only if ω = 0, meaning that only normal modes
with zero frequency are allowed (principle of exchange of stabilities).

7.6.3 Neutral Stability

Since ω = 0, the real part of the dispersion relation given by Eq. (7.79) yields

R = (n2π2 + k2)
(
η + n2π2 + k2

)
k2

. (7.81)

Stability means that, for all n = 1, 2, 3, . . .), one has a negative growth rate, η < 0.
In other words, one may conclude that

R <

(
π2 + k2

)2
k2

,

implies stability, while

R =
(
π2 + k2

)2
k2

,

yields neutral stability, and

R >

(
π2 + k2

)2
k2

,

defines convective instability. The neutral stability curve, namely the plot of function

R(k) =
(
π2 + k2

)2
k2

(7.82)

is displayed in Fig. 7.7. Theminimum of this curve yields the conditions for the onset
of convection cells in the porous layer,

kc = π ≈ 3.14159 , Rc = 4π2 ≈ 39.4784 . (7.83)

It has been shown that the critical value of the Rayleigh number for the onset of
convective cells in Rayleigh–Bénard convection is given by either Eq. (7.42), or
Eq. (7.49), or Eq. (7.50), depending on the prescribed velocity boundary conditions.
If one compares these results with Eq. (7.83), the first-glance conclusion is that it
is easier to have convective instabilities in a Darcy porous medium than in a clear
fluid. However, this is false as the Rayleigh number Ra is proportional to L3, while
the Darcy–Rayleigh number R is proportional to K L . Since the permeability K
is usually very small [9], it is much more common having a clear fluid layer with
Ra ∼ 103 than a fluid-saturated porous layer with R ∼ 10.
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Fig. 7.7 Neutral stability
curve for the
Horton–Rogers–Lapwood
problem with impermeable
and isothermal boundary
conditions at z = 0, 1

0 2 4 6 8 10 12
0

20

40

60

80

100

120

140

kc =

Rc = 4 2

convective instability

k

R

7.6.4 Form-Drag Effect

If one assumes Darcy–Forchheimer’s model for local momentum balance, instead
of Darcy’s model, the set of governing equations is changed to

∂u j

∂x j
= 0 ,

ν

K

(
1 + F

√
K

ν

√
u�u�

)
ui = −β (T − T0) gi − 1

ρ0

∂P

∂xi
,

σ
∂T

∂t
+ u j

∂T

∂x j
= α ∇2T + ν

K c

(
1 + F

√
K

ν

√
u�u�

)
u ju j . (7.84)

The terms proportional to the form-drag coefficient F do not affect the linearised
perturbation equations when the basic state is a rest state, namely when ubi = 0. In
fact, the terms proportional to F yield contributions of order ε2 or ε3 when the rest
state is perturbed. In this case, both the basic solution

ubi = 0 , Tb = T1 − (T1 − T2)
z

L
. (7.85)

and the linearised perturbation equations
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∂Uj

∂x j
= 0 ,

ν

K
Ui = −β Θ gi − 1

ρ0

∂Π

∂xi
,

σ
∂Θ

∂t
− W

T1 − T2
L

= α ∇2Θ . (7.86)

are exactly the same as those obtained by employingDarcy’s law. Thus, the condition
for the onset of convection cells is not affected by the form-drag effect.

7.6.5 Brinkman’s Model

Changing the local momentum balance equation from Darcy’s model to Brinkman’s
model and, thus, allowing for a Laplacian term contribution, as well as for no-slip
conditions at the boundaries, sensibly affects the linear stability analysis.

A new parameter appears in the dimensionless perturbation equations, the Darcy
number, namely

Da = μeff K

μ L2
, (7.87)

whereμeff is the effective viscosity. When Da → 0, the results obtained by employ-
ing Darcy’s law are recovered. On the other hand, we recover the results obtained for
a Navier–Stokes fluid when Da → ∞. Darcy’s limit is Da → 0 since the Darcy’s
law behaviour happens when the permeability is much smaller than the macroscopic
scale of the porous medium, namely K � L2. By the same reasoning, we can state
that the clear fluid limit is approached when the porous medium has an extremely
large permeability, so that K � L2. In describing the transition from Darcy’s flow
to clear fluid flow, the Darcy number Da plays a key role. In general, the critical
values (kc, Rc) depend on Da.

In the case of Brinkman’s model, the local mass, momentum and energy balance
equations admit the same basic solution as with the other models, namely

ubi = 0 , Tb = T1 − (T1 − T2)
z

L
. (7.88)

Therefore, the linearised local balance equations for the perturbation fields can be
written as

∂Uj

∂x j
= 0 ,

ν

K
Ui − νeff ∇2Ui = −β Θ gi − 1

ρ0

∂Π

∂xi
,
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σ
∂Θ

∂t
− W

T1 − T2
L

= α ∇2Θ , (7.89)

where νeff = μeff/ρ0. It is worth noting that the local energy balance equation for
the perturbations given by the third Eq. (7.89), as expected, does not contain any
contribution from the viscous dissipation effect, as such term is of higher order in the
perturbation parameter ε and, hence, it is neglected in the linear approximation. This
feature arises despite the uncertain form of the viscous dissipation function, either if
it is given by Eq. (6.29) or by Eq. (6.30).

We introduce the same scaling defined by Eq. (7.66) in order to rewrite Eqs. (7.89)
in a dimensionless form,

∂Uj

∂x j
= 0 ,

Ui − Da ∇2Ui = R Θ δi3 − ∂Π

∂xi
,

∂Θ

∂t
− W = ∇2Θ . (7.90)

By evaluating the curl of the momentum balance equation, we obtain

(
1 − Da ∇2

) (∂W

∂x
− ∂U

∂z

)
= R

∂Θ

∂x
, (7.91)

(
1 − Da ∇2) (∂W

∂y
− ∂V

∂z

)
= R

∂Θ

∂y
. (7.92)

We now derive Eq. (7.91) with respect to x , and Eq. (7.92) with respect to y. Then,
we sum the two resulting equations, so that we obtain

(
1 − Da ∇2

) [∇2W − ∂

∂z

(
∂Uj

∂x j

)]
= R ∇2

2Θ , (7.93)

and, by employing the local mass balance equation, ∂Uj/∂x j = 0, we can write

(
1 − Da ∇2

)∇2W = R ∇2
2Θ . (7.94)

As for the Rayleigh–Bénard problem, the boundary conditions can be expressed so
that both boundary walls are isothermal, impermeable and stress-free, namely

z = 0, 1 : W = 0 = Θ ,
∂2W

∂z2
= 0 . (7.95)

Thus, the stability problem is formulated in terms of the scalar fields W and Θ .
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(
1 − Da ∇2

)∇2W = R ∇2
2Θ ,

∂Θ

∂t
− W = ∇2Θ ,

z = 0, 1 : W = 0 = Θ ,
∂2W

∂z2
= 0 . (7.96)

The Fourier transform is employed to determine the solution of Eqs. (7.96). Accord-
ingly, we use the definitions given by Eqs. (7.30) and (7.31), so that Eqs. (7.96) yield

(
1 − Da

d2

d z2
+ Da k2

)(
d2

d z2
− k2
)

f + R k2 h = 0 ,

(
λ − d2

d z2
+ k2
)
h − f = 0 ,

z = 0, 1 : f = 0 ,
d2 f

d z2
= 0 , h = 0 . (7.97)

The solution of Eqs. (7.97) can be sought in the form

h(z) = sin(n π z) , n = 1, 2, 3, . . . , (7.98)

provided that the dispersion relation,

(
1 + Da n2 π2 + Da k2

) (
n2 π2 + k2

) (
λ + n2 π2 + k2

)− R k2 = 0 , (7.99)

holds. Since λ = η − iω, the imaginary part of Eq. (7.99) yields

ω
(
1 + Da n2 π2 + Da k2

) (
n2 π2 + k2

) = 0 . (7.100)

This means that the principle of exchange of stabilities is valid or, equivalently, that
only non-travelling normal modes are allowed, i.e. those with ω = 0. The real part
of Eq. (7.99) yields

R =
(
1 + Da n2 π2 + Da k2

) (
n2 π2 + k2

) (
η + n2 π2 + k2

)
k2

. (7.101)

Instability is activated first by the n = 1 normal modes. Then, neutral stability hap-
pens with

R =
(
1 + Da π2 + Da k2

) (
π2 + k2

)2
k2

, (7.102)

convective instability (η > 0) occurs with
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R >

(
1 + Da π2 + Da k2

) (
π2 + k2

)2
k2

, (7.103)

and stability is confined in the parametric region where

R <

(
1 + Da π2 + Da k2

) (
π2 + k2

)2
k2

. (7.104)

The neutral stability condition, Eq. (7.102), suggests that the neutrally stable value
of R for a given k increases with Da. The limit Da → 0 yields a perfect agree-
ment between Eqs. (7.102) and (7.82). In fact, in the limit Da → 0, Brinkman’s law
reduces to Darcy’s law. In order to recover the case of a clear fluid, whose neutral
stability condition is expressed through Eq. (7.41), we must take the limit Da → ∞.
This limit can be taken consistently by employing the Rayleigh number,

Ra = R

Da
= gβ(T1 − T2)L3

νeff α
, (7.105)

instead of the Darcy–Rayleigh number. Here, Eqs. (7.69) and (7.87) have been
employed. We note that there is a slight difference between the definitions of Ra
given by Eqs. (7.1) and (7.105). The difference is in the denominator of Eq. (7.105)
where νeff appears instead of the fluid kinematic viscosity ν. Such a discrepancy
has no effect when the limit of a clear fluid is approached, i.e. the limit where the
porosity tends to one, ϕ → 1. In this limit, νeff and ν tend to coincide. This cir-
cumstance is evident by employing the definition νeff = μeff/ρ0 and Eq. (6.10). The
neutral stability condition given by Eq. (7.102) can be reformulated in terms of Ra
as

Ra =
(

1

Da
+ π2 + k2

) (
π2 + k2

)2
k2

. (7.106)

Evidently, Eq. (7.106) agrees with Eq. (7.41) when Da → ∞. Plots of the neutral
stability curves are displayed in Figs. 7.8 and 7.9, in the (k, R) plane or in the (k, Ra)

plane, for different values of Da.
We have already mentioned that the critical values of k, R and Ra depend on

the Darcy number. The evaluation of the minimum for the neutral stability functions
R(k) and Ra(k) yields

kc = 1

2

√√√√
√(

Da π2 + 1
) (
9 Da π2 + 1

)− Da π2 − 1

Da
,

Rc = 27 Da2 π4 + 18 Da π2 − 1

8 Da
+
(
9 Da π2 + 1

)3/2
8 Da

√
Da π2 + 1 ,
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Fig. 7.8 Neutral stability
curves R(k) for the
Rayleigh–Bénard problem in
a porous layer, according to
Brinkman’s model, with
impermeable and stress-free
boundary conditions at
z = 0, 1
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Fig. 7.9 Neutral stability
curves Ra(k) for the
Rayleigh–Bénard problem in
a porous layer, according to
Brinkman’s model, with
impermeable and stress-free
boundary conditions at
z = 0, 1

0 1 2 3 4 5 6
0

500

1,000

1,500

2,000

Da → ∞

Da= 0.25

Da= 0.1

Da= 0.06

Da= 0.04

k

Ra

Rac = Rc

Da
. (7.107)

By taking the limit Da → 0 of kc and Rc, one obtains the results given by Eq. (7.83).
On the other hand, the limit Da → ∞ of kc and Rac yields the results given by
Eq. (7.42). The plots reported in Figs. 7.8 and 7.9 suggest that the use of R is suitable
to describe cases close to Darcy’s regime, where Da is very small. The Rayleigh
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Fig. 7.10 Plots of kc, Rc and
Rac for the Rayleigh–Bénard
problem in a porous layer,
according to Brinkman’s
model, with impermeable
and stress-free boundary
conditions at z = 0, 1
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number, Ra, is the suitable parameterwhen the flow takes place in a highly permeable
medium, that is in a regime of large Darcy number, under conditions fairly close to
those of a clear fluid. The behaviour of the critical values kc, Rc and Rac versus Da
is displayed in Fig. 7.10. These plots suggest that the critical values of k and Ra for
a clear fluid are in fact almost attained when Da ∼ 1. The Darcy’s law regime, on
the other hand, requires values of Da smaller than 10−3.

7.7 A Porous Layer with Uniform Heat Flux Boundaries

Interesting variants of the Horton–Rogers–Lapwood problem come out when the
thermal boundary conditions switch from isothermal to uniform heat flux. Themech-
anism of heating from below can be thermal contact, at the lower boundary, with an
external thermal reservoir at a given temperature higher than that prescribed at the
upper boundary. Alternatively, one can think to a given heat supply at the lower
boundary provided through, say, an electric resistance. In this case, the boundary
condition becomes one of uniform heat flux. Hence, we can devise a situation where,
at z = 0, we have a uniform incoming heat flux q0 and, at z = L , we have a uniform
temperature T0. In this case, we prescribe
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z = 0 : −κeff
∂T

∂z
= q0 ,

z = L : T = T2 . (7.108)

For the sake of simplicity, we rely on Darcy’s law. The basic state of the Horton–
Rogers–Lapwood problem is slightly modified,

ubi = 0 , Tb = T2 + q0 (L − z)

κeff
. (7.109)

The differential equations for the perturbations of the basic state are still given by
Eq. (7.65), provided that one defines

T1 = T2 + q0 L

κeff
. (7.110)

The dimensionless scaling of the governing equations can be carried out by employ-
ing Eq. (7.66), then Eqs. (7.67) are still valid, while Eq. (7.68) is replaced by

z = 0 : W = 0 = ∂Θ

∂z
,

z = 1 : W = 0 = Θ . (7.111)

We employ the Fourier transform method for the solution of Eqs. (7.67) and (7.111).
Hence, we use Eqs. (7.30) and (7.31) to obtain

(
d2

d z2
− k2
)

f + R k2 h = 0 ,

(
λ − d2

d z2
+ k2
)
h − f = 0 ,

z = 0 : f = 0 = d h

d z
,

z = 1 : f = 0 = h . (7.112)

The difference with respect to the corresponding formulation of the Horton–Rogers–
Lapwood problem, Eqs. (7.75) and (7.76), is just in the boundary condition at z = 0.
This change makes a significant difference with respect to the complexity of the
mathematical solution.
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7.7.1 The Principle of Exchange of Stabilities

The boundary conditions in Eq. (7.112) allow one to write the following formulas of
integration by parts:

1∫
0

f̄
d2 f

d z2
dz = −

1∫
0

∣∣∣∣d f

d z

∣∣∣∣
2

dz ,

1∫
0

d2h̄

d z2
h dz = −

1∫
0

∣∣∣∣d hd z
∣∣∣∣
2

dz . (7.113)

Onmultiplying by f̄ the first Eq. (7.112), andmultiplying by h the complex conjugate
of the second Eq. (7.112), we obtain

1∫
0

∣∣∣∣d f

d z

∣∣∣∣
2

dz + k2
1∫

0

| f |2 dz

− R k2

⎡
⎣

1∫
0

∣∣∣∣d hd z
∣∣∣∣
2

dz + (λ̄ + k2
) 1∫
0

|h|2 dz
⎤
⎦ = 0 . (7.114)

We recall that λ = η − iω, so that the imaginary part of Eq. (7.114) reads

ω R k2
1∫

0

|h|2 dz = 0 . (7.115)

The integral on the left-hand side of Eq. (7.115) is positive, unless the perturbation
is identically zero, i.e. h = 0. If h is identically zero, then Eq. (7.114) implies that
also f is identically zero. Hence, we conclude that Eq. (7.115) can be satisfied by
perturbations not identically zero, ifω = 0. Thismeans that the principle of exchange
of stabilities holds, i.e., only Fourier modes with a zero phase velocity, ω/k = 0, are
allowed.

7.7.2 Solution of the Instability Eigenvalue Problem

The first and the second Eq. (7.112) can be rewritten as a single fourth-order equation
in h. In the following, we will find the solution relative to the condition of neutral
stability, so that we set λ = η = 0. Then, we can formulate a differential problem
equivalent to Eq. (7.112), namely

(
d2

d z2
− k2
)2

h − R k2 h = 0 ,
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z = 0 : d h

d z
= 0 ,

d2h

d z2
= k2 h ,

z = 1 : h = 0 ,
d2h

d z2
= 0 . (7.116)

The characteristic equation associated with the differential equation (7.116) is given
by (

s2 − k2
)2 − R k2 = 0 . (7.117)

Its solutions are s = ±χ1 and s = ± iχ2 where

χ1 =
√
k
(√

R + k
)

, χ2 =
√
k
(√

R − k
)

. (7.118)

Hence, h(z) can be written as

h(z) = C1 e
χ1 z + C2 e

−χ1 z + C3 e
iχ2 z + C2 e

−iχ2 z . (7.119)

The coefficients C1, C2, C3 and C4 have to be chosen so that the four boundary con-
ditions given by Eq. (7.116) are satisfied. This means that we can write the algebraic
equation

⎛
⎜⎜⎝

χ1 −χ1 iχ2 −iχ2

1 1 −1 −1
e χ1 e−χ1 eiχ2 e−iχ2

χ2
1 e

χ1 χ2
1 e

−χ1 −χ2
2 e

iχ2 −χ2
2 e

−iχ2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

C1

C2

C3

C4

⎞
⎟⎟⎠ = 0 . (7.120)

Equation (7.120) admits only the trivial solution, where all coefficients C1, C2, C3

and C4 are zero, unless the determinant of the 4 × 4 matrix is zero. The coefficients
cannot be identically zero, because this would imply a vanishing perturbation of the
basic state. Then, the condition of zero determinant must hold, namely

χ2 sinh χ1 cosχ2 + χ1 cosh χ1 sin χ2 = 0 . (7.121)

Equation (7.121), together with Eq. (7.118), yields the dispersion relation at neutral
stability in an implicit form where R cannot be explicitly expressed as a function of
k. Although analytical, the expression of the dispersion relation given by Eq. (7.121)
must be handled with care. In fact, Eq. (7.121) is just a condition of zero determi-
nant and, as such, it may contain spurious solutions. An evident one is χ2 = 0 or,
equivalently, k = √

R. This solution must be excluded as writing Eq. (7.119) implies
that the four solutions e±χ1 z, e±iχ2 z are assumed to be independent. This is untrue
if χ2 = 0. In fact, one may easily check that Eq. (7.116) does not admit any nonzero
solution h whenever k = √

R.
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Fig. 7.11 Neutral stability
curve for the
Horton–Rogers–Lapwood
problem with impermeable
boundaries, uniform heat
flux at z = 0 and uniform
temperature at z = 1
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An alternative to using the implicit dispersion relation (7.121) is adopting the
numerical method described in Chap.10 for the solution of Eq. (7.112) with λ = 0.
Either way, one can gather the numerical data needed to draw the neutral stability
curve in the (k, R) plane. A plot of the neutral stability curve and of the convec-
tive instability region is displayed in Fig. 7.11. This figure shows that the point of
minimum R along the curve, namely the critical condition, is identified by

kc = 2.32621 , Rc = 27.0976 . (7.122)

This result was first pointed out in the paper by Lapwood [7].

7.7.3 Porous Layer with Uniform Heat Flux at Both
Boundaries

The boundary condition of uniform heat flux can be prescribed both at the lower
boundary and at the upper boundary. A situation can be imagined where all the heat
supplied to the lower boundary is removed from the upper boundary, so that a steady
condition can be allowed. Under such conditions, Eq. (7.108) is replaced by

z = 0, L : −κeff
∂T

∂z
= q0 . (7.123)
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The basic state considered in Eq. (7.109) satisfies Eq. (7.123). The only important
remark is that the constant temperature T2 is now undefined or, stated differently,
its value can be fixed arbitrarily. The reason is that, in a rest state, the temperature
field is determined as a solution of the local energy balance equation which contains
only derivatives of T . If the temperature boundary conditions are those given by
Eq. (7.123), then one can conclude that T can be determined only up to an arbitrary
additive constant.

The change needed in the eigenvalue problem expressed by Eq. (7.112) is just in
the boundary conditions. Hence, we can write

(
d2

d z2
− k2
)

f + R k2 h = 0 ,

(
λ − d2

d z2
+ k2
)
h − f = 0 ,

z = 0, 1 : f = 0 = d h

d z
. (7.124)

One can easily check that the principle of exchange of stabilities holds. In fact, the
integration by parts formulas reported in Eq. (7.113) are still valid, as a consequence
of the boundary conditions specified in Eq. (7.124). Then, the same discussion and
conclusions reached in Sect. 7.7.1 can be drawn.

The solutionofEq. (7.124) for the neutrally stablemodes,withλ = 0, canbe found
analytically through the same procedure described in Sect. 7.7.2. Equation (7.116)
now reads (

d2

d z2
− k2
)2

h − R k2 h = 0 ,

z = 0, 1 : d h

d z
= 0 ,

d2h

d z2
= k2 h . (7.125)

No change is needed in Eqs. (7.118) and (7.119), as they rely only on the ordinary
differential equation. On the other hand, Eq. (7.120) is replaced by

⎛
⎜⎜⎝

χ1 −χ1 iχ2 −iχ2

1 1 −1 −1
χ1 e χ1 −χ1 e−χ1 iχ2 eiχ2 −iχ2 e−iχ2

e χ1 e−χ1 −eiχ2 −e−iχ2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

C1

C2

C3

C4

⎞
⎟⎟⎠ = 0 . (7.126)

The condition of zero determinant for the 4 × 4 matrix yields the dispersion relation,

k2 sinh χ1 sin χ2 + χ1 χ2 (cosh χ1 cosχ2 − 1) = 0 . (7.127)
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Through a numerical algorithm for root finding, Eqs. (7.118) and (7.127) can be
employed to gather the numerical data needed to draw the neutral stability curve,
viz. the lower bound to the convective instability region in the (k, R) plane. Again,
the alternative is carrying out a fully numerical solution of the system of ordinary
differential stability problem through the shooting method, along the lines discussed
in Chap.10.

The shape of the neutral stability curve is quite dissimilar to that illustrated in
Fig. 7.11, relative to the hybrid case where the lower boundary is subject to a uniform
heat flux and the upper boundary is kept isothermal. The dissimilarity can be easily
revealed by looking for an asymptotic solution in the limit k → 0. By relying on
the inverse proportionality between wave number and wavelength, we can define
this limit as one of large wavelengths. We express h(z) and R as power series with
respect to the small parameter k2,

h(z) =
∞∑
n=0

hn(z) k
2n , R =

∞∑
n=0

Rn k
2n . (7.128)

This is perfectly legitimate as the wave number appears in Eq. (7.125) only through
its square, k2. By substituting Eq. (7.128) into (7.125) and collecting like powers of
k2, we obtain the zeroth-order boundary value problem, namely

d4h0
d z4

= 0 ,

z = 0, 1 : d h0
d z

= 0 ,
d2h0
d z2

= 0 . (7.129)

The solution of Eq. (7.129) is
h0(z) = A , (7.130)

where A is an arbitrary constant. To first order in k2, we obtain the boundary value
problem

d4h1
d z4

− R0 A = 0 ,

z = 0, 1 : d h1
d z

= 0 ,
d2h1
d z2

= A . (7.131)

Provided that
A (R0 − 12) = 0 , (7.132)

Equation (7.131) yields the solution

h1(z) = B + A

2
z2 − A z3 + A

2
z4 , (7.133)
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Fig. 7.12 Neutral stability
curve for the
Horton–Rogers–Lapwood
problem with impermeable
boundaries having uniform
heat flux at z = 0, 1
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where B is another arbitrary constant. If we assume A = 0, whatever is its value, we
obtain

R0 = 12 . (7.134)

Equation (7.134), together with Eq. (7.128), leads to the conclusion that the neutral
stability function R(k) is not singular when k → 0, as it happens in the cases illus-
trated in Figs. 7.7 and 7.11. On the other hand, it approaches the constant value 12
when k → 0. Starting from this limiting value, the neutral stability function R(k) is
monotonic increasing, as shown in Fig. 7.12. This means that the critical values of k
and R for the onset of convective instability are

kc = 0 , Rc = 12 . (7.135)

We have found that, on replacing the isothermal condition at the lower boundary with
a uniform heat flux condition, the critical value of R decreases from 4π2 ≈ 39.4784
to 27.0976. If also the upper boundary is subject to a uniform heat flux, then Rc

further decreases to 12. Hence, we conclude that boundaries at uniform heat flux
yield a destabilisation of the basic state with respect to isothermal boundaries.

7.8 A Note on the Shape of Convection Cells

A visualisation of the convection cells can be easily obtained when a single normal
mode with a given wave vector (kx , ky) is considered,
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W = 1

2π
W̃ ei(kx x+ky y) , Θ = 1

2π
Θ̃ ei(kx x+ky y) , (7.136)

where Eq. (7.30) is taken into account. We have already pointed out, in Sect. 7.2, that
manifold shapes of convection cells may arise at the onset of convective instability.
The simplest geometry of the convection cells is straight rolls, whose planforms
are illustrated in frame (a) of Fig. 7.2. Without any loss of generality, we can choose
such straight rolls as having axes perpendicular to the (x, z) plane. The mathematical
representation of this case is a wave vector directed along the x-axis, i.e. a situation
where kx = k and ky = 0. In this case, we have no dependence on y, so that the local
mass balance equation, that is the condition of zero divergence for the velocity field
Ui , can be written as

∂U

∂x
+ ∂W

∂z
= 0 . (7.137)

This equation is identically satisfied by defining a streamfunction, Ψ (x, z, t), such
that

U = ∂Ψ

∂z
, W = −∂Ψ

∂x
. (7.138)

Obviously, Ψ is defined only up to an arbitrary additive function of t . This function
of time can be fixed in a convenient way. For instance, on the basis of Eq. (7.136)
and of the assumptions kx = k and ky = 0, one can define it so that

Ψ = 1

2π
Ψ̃ ei k x . (7.139)

The isolines of Ψ are called the streamlines. The streamlines provide a natural
description of the two-dimensional velocity field (U, 0,W ), as the tangent to the
streamlines is the field (U, 0,W ) itself. This result is an immediate consequence of
the definition given by Eq. (7.138). On account of Eqs. (7.136) and (7.139), we can
find a simple equation linking the fields W and Ψ , or W̃ and Ψ̃ , namely

W = −i k Ψ , W̃ = −i k Ψ̃ . (7.140)

As a consequence of Eq. (7.140), we infer that the streamlines are, in fact, coincident
with the isolines of W . In order to get a graphical representation of the streamlines,
we must remember that the physically significant field is not W , which is complex-
valued, but its real part.

In the Rayleigh–Bénard problem, and in all its variants considered in this chapter
included the Horton–Rogers–Lapwood problem with either isothermal or isoflux
boundary conditions, the principle of exchange of stabilities holds. In particular, this
means that the fields W̃ and Θ̃ are real-valued. Then, we can write

�(W ) = 1

2π
W̃ cos(k x) , �(Ψ ) = − 1

2π k
W̃ sin(k x) . (7.141)



174 7 Rayleigh–Bénard Convection

z= 0

z= 1

(a)

z= 0

z= 1

(b)

Fig. 7.13 Streamlines of the normal mode perturbation at the onset of convective instability for: a
the Rayleigh–Bénard problem with stress-free and isothermal boundaries; b the Horton–Rogers–
Lapwood problem with impermeable and isothermal boundaries

If we consider the Rayleigh–Bénard problem for a fluid layer bounded by stress-
free and isothermal planes, or the Horton–Rogers–Lapwood problem for a saturated
porous medium bounded by impermeable and isothermal planes, the expression of
W̃ is such that

W̃ = C sin(n π z) eηt , (7.142)

where C is a constant. Equation (7.142) can be deduced from Eqs. (7.31), (7.33) and
(7.37).

A sensible case where one may wish to draw the streamlines of the perturbation
normal mode is at the critical conditions for the onset of instability, namely η = 0,
n = 1 and k = kc. With these conditions, Eqs. (7.141) and (7.142) yield

�(Ψ ) = − C

2π kc
sin(π z) sin(kc x) . (7.143)

We found that kc = π/
√
2 for the Rayleigh–Bénard problem and kc = π for the

Horton–Rogers–Lapwood problem, as reported in Eqs. (7.42) and (7.83), respec-
tively. Thus, the streamlines can be easily represented in the (x, z) plane by employ-
ing equation (7.143) as the isolines �(Ψ ) = constant .

Figure7.13 shows the streamlines at the onset of convective instability, relative to
a perturbation normal mode, with k = kc for either the Rayleigh–Bénard problem or
theHorton–Rogers–Lapwood problem.On comparing frames (a) and (b) of Fig. 7.13,
one may note the more stretched horizontal width of the Rayleigh–Bénard cells. The
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Horton–Rogers–Lapwood cells have a characteristic square shape, due to the critical
value kc = π implying the same periodicity of �(Ψ ) along the x and z directions.

If we move from those cases amenable to a fully analytical solution, then the
function f (z) adopted to express W̃ is not given by a simple sine function, but it
is determined numerically. This does not change much in what we have said about
plotting the streamlines of the normalmode perturbation at critical conditions, except
that Eq. (7.143) is in fact replaced by

�(Ψ ) = − 1

2π kc
f (z) sin(kc x) . (7.144)

Ultimately, the aspect ratio of the cells is determined uniquely by the value of kc in
each single case.
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