
Chapter 5
The Equations of Fluid Flow

5.1 The Description of Fluid Flow

The basic idea behind the classical description of the fluid flow is that a fluid is a
continuous medium. This means that, although a fluid (liquid or gas) has elemen-
tary constituents (atoms, ions and molecules), these constituents are so small that
the length scale of every phenomenon involved in the macroscopic fluid flow will
be much larger than the molecular scale. Hence, it is perfectly legitimate to con-
sider infinitesimal fluid elements (see Fig. 5.1). In fact, the mathematical concept
of infinitesimal scale is in any case relative to very small spatial domains where the
number of elementary constituents is still extremely large (of the order of Avogadro’s
constant, 6.022 × 1023).

The fluid is then described as partitioned in an infinite number of infinitesimal
fluid elements each one evolving in time along its own trajectory. This description
of the fluid flow presumes that we are able to know which is the spatial position
x = (x, y, z) of every infinitesimal fluid element at every instant of time t . In doing
this, we are implicitly assuming that the same spatial position x = (x, y, z) cannot
be occupied by two different infinitesimal fluid elements at the same instant of time
t (localisation hypothesis).

On tracing the trajectory of an infinitesimal fluid element, we can define its instan-
taneous velocity v at every instant of time t . If x(t) = (x(t), y(t), z(t)) is the instanta-
neous position of an infinitesimal fluid element, its instantaneous velocity is defined
as

v(t) = d x(t)
d t

. (5.1)

Therefore, we can define the velocity field, u(x, y, z, t), as the instantaneous
velocity v(t) of the infinitesimal fluid element occupying the position (x, y, z) =
(x(t), y(t), z(t)) at time t (see Fig. 5.2). The concept of velocity field is well-defined
inasmuch as the localisation hypothesis holds.

We assume that the number of atoms, ions or molecules contained in an infinites-
imal fluid element is large enough to consider it as a closed thermodynamic system.
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Fig. 5.1 A group of
infinitesimal fluid elements
evolving along their own
trajectories

Fig. 5.2 Instantaneous
velocity of an infinitesimal
fluid element occupying the
position
x(t) = (x(t), y(t), z(t)) at
time t

Then, at every time, we can reasonably think of an “internal” thermodynamic state
of the infinitesimal fluid element. The thermodynamic state of the infinitesimal fluid
element can be described in a fairly simpleway provided that it is a stable equilibrium
state. The latter assumption, called local equilibrium hypothesis, is a reasonable one
if the evolution of this very small thermodynamic system is sufficiently slow for hav-
ing an instantaneous thermal equilibration of the fluid element. That an infinitesimal
time is needed for reaching the thermodynamic equilibrium in a system of infinites-
imal size appears as quite conceivable, even if exceptions may arise when the time
evolution is so quick that the molecular processes lose coherence. An important
characteristic property of the fluid, that will be defined in the last section of this
chapter, is the thermal diffusivity α. For a given time scale Δt of the thermodynamic
evolution, one can construct a corresponding length scale with (α Δt)1/2. In a gas,
the breakdown of the local equilibrium hypothesis can be envisaged when this length
scale is of the order of the mean free path of the elementary constituents (atoms, ions
and molecules). The mean free path is the average distance travelled by a particle
between two collisions and is of variable order of magnitude, ranging from 10−7 m
for a gas at ambient pressure to several meters for a rarefied gas. In a liquid, the break-
down of the local equilibrium hypothesis is expected when (α Δt)1/2 is of the order
of the molecular size (10−10 m at its smallest). A consequence of the local equilib-
rium hypothesis is that the “internal” thermodynamic state of the infinitesimal fluid
element is determined by its temperature, T , and density, ρ. All the thermodynamic
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Fig. 5.3 Extremely tangled
trajectories of three
infinitesimal fluid elements
in a turbulent flow

properties of the infinitesimal fluid element, such as the pressure, p, and the internal
energy per unit mass, ϕ, are functions of (ρ, T ).

The local equilibrium hypothesis implies that, at a given instant of time t , the
infinitesimal fluid element is characterised by a temperature T , a density ρ and a
pressure p. Thus, with a procedure perfectly similar to that invoked on defining
the velocity field, one can also define the temperature field, T (x, y, z, t), as the
temperature T of the infinitesimal fluid element occupying the position (x, y, z)
at time t . One can define the density field, ρ(x, y, z, t), as the density ρ of the
infinitesimal fluid element occupying the position (x, y, z) at time t . Finally, one
can define the pressure field, p(x, y, z, t), as the pressure p of the infinitesimal fluid
element occupying the position (x, y, z) at time t . We stress that this procedure
makes sense only if there is one and only one infinitesimal fluid element occupying
the position (x, y, z) at time t . The localisation hypothesis does not hold for every
flow regime, so that there exist fluid flows where the velocity field, the temperature
field, the density field, the pressure field cannot be consistently defined. These flows
generally take place when the flow rates are very high. When this happens, the flow
experiences a transition from laminar to turbulent. For turbulent flows, the localisation
hypothesis does not hold any more.

One can imagine the lack of validity of the localisation hypothesis as being a
consequence of the extremely tangled geometry of the trajectories in a turbulent
flow (see Fig. 5.3). The point is in fact even more complicated. The concept of
infinitesimal fluid element and of trajectory of an infinitesimal fluid element loses
any conceivability when the flow is turbulent. The physical reason is that molecular
diffusion mechanisms arise, leading to an internal mixing at the molecular scale.
Therefore, a given amount of fluid occupying an infinitesimal volume at the initial
instant of time t = 0 may be spread over a finite region, even of very large size, at
later times t > 0 (see Fig. 5.4).

We can conclude that we have a good paradigm for the description of fluid flows
of laminar nature, but we have no consistent paradigm for the description of turbulent
fluid flows. This problem prevents the possibility of a theory of turbulence, that is in
fact still lacking. What physicists and engineers can say about turbulence has been
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Fig. 5.4 Spreading over larger regions of an initially infinitesimal fluid element

conveyed during the last century into phenomenological models of turbulent flows,
that cannot in any case be considered as theories of turbulence.

5.2 Reynolds’ Transport Theorem

In order to describe fluid flow in a given region of space R, it is convenient to
investigate the displacements undergone, in a given time interval, by a fluid body,
i.e. a fluid part bounded by an ideal surface impermeable with respect to mass flux.
Obviously, this definition implies that a fluid body is a closed thermodynamic system.
The concept of fluid body is the basis of the Lagrangian description of fluid flow.1

Let us consider a fluid body having mass M e let us denote byRt ⊂ R the region
of space occupied by the fluid body at time t . Under fluid flow, the region of spaceRt

is continuously displaced driven by themoving fluid. The boundary ofRt is supposed
to be a regular closed surface denoted by ∂Rt . Each point in Rt is identified by the
changing coordinates (x(t), y(t), z(t)). The outward unit normal to ∂Rt is denoted
by n (see Fig. 5.5).

Let us consider any extensive property, Ψ , of the fluid body. In thermodynam-
ics, one calls extensive any property of a system whose instantaneous value can be
evaluated by summing up the values of the property assumed by all the subsystems
of the given system. Mass, volume, energy and entropy are just a few examples of
extensive properties. The mass of a system partitioned into two halves is the sum of
the masses of the two halves.

To every extensive property Ψ of the fluid body, one can always associate a
corresponding specific property, ψ , obtained by locally dividing the value of Ψ of
any subsystem by its mass. If the subsystem employed to defineψ is an infinitesimal
fluid element of mass dM = ρ dV , then one can intend ψ as a local field depending

1As opposed to the Lagrangian description, the Eulerian description is based on a fixed volume
through which the fluid flows. Thus, the Eulerian description is focussed on an open thermodynamic
system.
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Fig. 5.5 Displacement of
the fluid body occupying the
moving region Rt

on the local coordinates, as well as on time. Hence, the extensive character of the
property Ψ allows one to write

Ψ (t) =
∫∫∫

R t

ρ ψ dx dy dz , (5.2)

where the integration measure dx dy dz describes the infinitesimal moving volume
dV . By tracing the trajectory of each infinitesimal fluid element, one has a one–
to–one correspondence between the position at time t , (x(t), y(t), z(t)), and the
corresponding position at initial time, t = 0, namely (x(0), y(0), z(0)) = (X,Y, Z).
Obviously, if (x(t), y(t), z(t)) ∈ Rt , one has (X,Y, Z) ∈ R0. With this in mind, one
can change the measure of integration on the right-hand side of equation (5.2), by
introducing a suitable Jacobian, J . In particular, one obtains

Ψ (t) =
∫∫∫

R 0

ρ ψ J dX dY dZ . (5.3)

The Jacobian J is the determinant of the matrix expressing the change of coordinates
[1], from (x(t), y(t), z(t)) to (X,Y, Z). Hence, we can express J by employing the
Levi-Civita symbol, εi jk , and Einstein’s notation for repeated indices, namely

J = det

⎛
⎜⎜⎜⎜⎜⎝

∂x

∂X

∂x

∂Y

∂x

∂Z
∂y

∂X

∂y

∂Y

∂y

∂Z
∂z

∂X

∂z

∂Y

∂z

∂Z

⎞
⎟⎟⎟⎟⎟⎠

= εi jk
∂x1
∂Xi

∂x2
∂X j

∂x3
∂Xk

. (5.4)
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In Eq. (5.4), symbols (x1, x2, x3) and (X1, X2, X3) have been used instead of (x, y, z)
and (X,Y, Z), respectively, as they are more convenient to implement Einstein’s
notation for sums over repeated indices. For readers unfamiliar with Levi-Civita
symbol, or Kronecker’s delta, or Einstein’s notation for tensor operations, we refer
to Appendix B. In particular, the expression of J in Eq. (5.4) is a consequence of
equation (B.22) of Appendix B. We want to evaluate the time derivative of Ψ (t).
From Eq. (5.3), we obtain

dΨ

d t
=

∫∫∫

R 0

[
∂(ρ ψ)

∂t
J + ∂(ρ ψ)

∂xi

d xi
d t

J + ρ ψ
∂ J

∂t

]
dX dY dZ

=
∫∫∫

R 0

[
∂(ρ ψ)

∂t
J + ∂(ρ ψ)

∂xi
ui J + ρ ψ

∂ J

∂t

]
dX dY dZ , (5.5)

where the definitions of instantaneous velocity over a trajectory, and of velocity field,
u with components ui , have been employed. We now express the derivative ∂ J/∂t ,
by using again the definition of velocity field,

∂ J

∂t
= εi jk

∂u1
∂Xi

∂x2
∂X j

∂x3
∂Xk

+ εi jk
∂x1
∂Xi

∂u2
∂X j

∂x3
∂Xk

+ εi jk
∂x1
∂Xi

∂x2
∂X j

∂u3
∂Xk

= ∂u1
∂x


εi jk
∂x


∂Xi

∂x2
∂X j

∂x3
∂Xk

+ ∂u2
∂xm

εi jk
∂x1
∂Xi

∂xm
∂X j

∂x3
∂Xk

+∂u3
∂xn

εi jk
∂x1
∂Xi

∂x2
∂X j

∂xn
∂Xk

=
(

∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

)
εi jk

∂x1
∂Xi

∂x2
∂X j

∂x3
∂Xk

= (∇ · u) J , (5.6)

where we recognised that 
 can only be equal to 1, m can only be equal to 2, and n
can only be equal to 3. In fact, expressions such as

εi jk
∂x


∂Xi

∂x2
∂X j

∂x3
∂Xk

,

yield the determinant of a matrix with two equal rows, which is zero, unless 
 = 1.
On account of Eq. (5.6), Eq. (5.5) can be rewritten as

dΨ

d t
=

∫∫∫

R 0

[
∂(ρ ψ)

∂t
+ u · ∇(ρ ψ) + ρ ψ ∇ · u

]
J dX dY dZ

=
∫∫∫

R 0

[
∂(ρ ψ)

∂t
+ ∇ · (ρ ψ u)

]
J dX dY dZ , (5.7)

so that one finally has
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dΨ

d t
=

∫∫∫

R t

[
∂(ρ ψ)

∂t
+ ∇ · (ρ ψ u)

]
dx dy dz . (5.8)

Equation (5.8) represents the statement of Reynolds’ transport theorem.

5.3 Local Mass Balance Equation

In this section, the first and simplest application of Reynolds’ transport theorem is
presented: the deduction of the local mass balance equation. Let us assume that the
extensive property Ψ is the mass M of the fluid element. Since the fluid element
is a closed thermodynamic system, M does not change with time. Hence, the left-
hand side of equation (5.8) is zero. The specific property ψ is obtained as the ratio
between Ψ and the mass, so that one has ψ = 1 in this case. As a consequence,
Eq. (5.8) allows one to infer that

∫∫∫

R t

[
∂ρ

∂t
+ ∇ · (ρ u)

]
dx dy dz = 0 . (5.9)

Since Eq. (5.9) must hold for every possible choice of the fluid body and, thus,
for every region of space Rt included in the domain R occupied by the fluid, the
integrand must be identically zero. In other words, one has

∂ρ

∂t
+ ∇ · (ρ u) = 0 . (5.10)

The partial differential equation (5.10) is the local mass balance equation, well
known also as the equation of continuity. One can easily conclude that, if the density
field ρ can be considered as time independent and uniform, i.e. for an incompressible
flow, the equation of continuity is reduced to ∇ · u = 0. Hence, in this case, the
velocity field is solenoidal.2

Equation (5.10) allows one to reformulate Reynolds’ transport theorem through
the following equation:

dΨ

d t
=

∫∫∫

R t

[
ρ

∂ψ

∂t
+ ψ

∂ρ

∂t
+ ρ u · ∇ψ + ψ ∇ · (ρ u)

]
dx dy dz

=
∫∫∫

R t

ρ

(
∂ψ

∂t
+ u · ∇ψ

)
dX dY dZ =

∫∫∫

R t

ρ
Dψ

D t
dx dy dz . (5.11)

2The term solenoidal comes from electromagnetism as the magnetic induction field in a solenoid
is a vector field with zero divergence.
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In obtaining Eq. (5.11), use has been made of the mathematical identity

∇ · (ρ ψ u) = ρ u · ∇ψ + ψ ∇ · (ρ u) , (5.12)

and of the definition of substantial derivative,

Dψ

D t
= ∂ψ

∂t
+ u · ∇ψ . (5.13)

Hereafter, for the sake of brevity, the measure dx dy dz will be simply denoted by
dV so that Eq. (5.11) reads

dΨ

d t
=

∫∫∫

R t

ρ
Dψ

D t
dV . (5.14)

The alternative formulation of equation (5.10), based on Einstein’s notation, is given
by

∂ρ

∂t
+ ∂(ρ u j )

∂x j
= 0 . (5.15)

5.4 Forces Acting on a Fluid Body

The forces acting on the fluid body occupying the moving regionRt can be classified
as body forces acting on the infinitesimal fluid elements in the interior ofRt , and as
surface forces acting on the boundary ∂Rt . When dealing with surface forces, one
defines the traction, meaning the force per unit area acting on the boundary of the
fluid body.

Let bi denote the i th component of the body force, i.e. of the force per unit volume
acting on the fluid element and due to external fields of either gravitational, electric
or magnetic origin. Thus, the i th component of the resultant body force acting on the
fluid element is

F (b)
i =

∫∫∫

R t

bi dV . (5.16)

In the following, it will be tacitly assumed that the body force is of gravitational
origin, so that b = ρ g, where g is the gravitational acceleration. However, there can
be applications where also contributions due to external electric and magnetic fields
are important, as in the study of magnetohydrodynamics (MHD) [5].

In the evaluation of the total force Fi applied to the fluid element, one must
consider, in addition to the gravitational body force contribution, also the resultant
F (s)
i of the traction acting on the boundary surface of the fluid element, namely
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F (s)
i =

∫∫

∂R t

fi dS , (5.17)

where fi is the i th component of the traction, i.e. the force per unit area, acting on
the boundary surface ∂Rt of the fluid element, and dS is the measure of the surface
integral.

The traction fi can be expressed through the mechanical stress tensor σ as

fi = σi j n j , (5.18)

where n j is the j th component of the unit outward normal n to ∂Rt (see Fig. 5.5).
By employing Gauss’ theorem (see Appendix B), Eqs. (5.17) and (5.18) yield an
expression of F (s)

i in terms of a volume integral, namely

F (s)
i =

∫∫∫

R t

∂σi j

∂x j
dV , (5.19)

so that the resultant force acting on the fluid body is given by

Fi = F (b)
i + F (s)

i =
∫∫∫

R t

(
ρ gi + ∂σi j

∂x j

)
dV . (5.20)

5.5 Local Momentum Balance Equation

Let the extensive property Ψ be the i th component of momentum. On account of
the definition of momentum of a point-like object, one can easily conclude that the
corresponding specific property ψ is the i th component of the velocity field, ui .
From elementary mechanics, we know that the time derivative of the i th component
of momentum is equal to the i th component of the resultant force, Fi , acting on the
mechanical system. Then, Reynolds’ transport theorem (5.14) yields

∫∫∫

R t

ρ
D ui
D t

dV = Fi , (5.21)

so that, by employing equation (5.20), one obtains

∫∫∫

R t

(
ρ

D ui
D t

− ρ gi − ∂σi j

∂x j

)
dV = 0 . (5.22)
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We are in a situation identical to Eq. (5.9). The integral on the left-hand side of
equation (5.22) must be zero for every possible choice of the region of spaceRt , so
that the integrand must be identically zero,

ρ
D ui
D t

= ρ gi + ∂σi j

∂x j
. (5.23)

Equation (5.23) is the local momentum balance equation.

5.6 Local Angular Momentum Balance Equation

One of the main properties of the mechanical stress tensor σ is its symmetry, σi j =
σ j i . The symmetry of the mechanical stress tensor is a consequence of the local
balance of the angular momentum.

By remembering that the moment of a force is obtained through the vector prod-
uct between the position vector x and the force, the resultant moment of the forces
acting on the fluid body contained in Rt can be expressed, on account of equa-
tions (5.16) and (5.17), as

K =
∫∫∫

R t

x × (ρ g) dV +
∫∫

∂R t

x × f dS . (5.24)

Once more, we refer the reader to Appendix B for the properties of the Levi-Civita
symbol. By using Eqs. (5.18) and (B.20), we can write the i th component of K as

Ki =
∫∫∫

R t

ρ εi jk x j gk dV +
∫∫

∂R t

εi jk x j fk dS

=
∫∫∫

R t

ρ εi jk x j gk dV +
∫∫

∂R t

εi jk x j σk
 n
 dS . (5.25)

By employing Gauss’ theorem, the surface integral over ∂Rt can be rewritten as a
volume integral, so that Eq. (5.25) reads

Ki =
∫∫∫

R t

εi jk

[
ρ x j gk + ∂(x j σk
)

∂x


]
dV . (5.26)

Let the extensive property Ψ be the i th component of the angular momentum,
Li . Then, from elementary mechanics, the corresponding specific quantity ψ is
εi jk x j uk . As a consequence of Reynolds’ transport theorem, Eq. (5.14), one can
write
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d Li

d t
=

∫∫∫

R t

ρ εi jk
D(x j uk)

D t
dV =

∫∫∫

R t

ρ εi jk

[
x j

∂uk
∂t

+ u


∂(x j uk)

∂x


]
dV

=
∫∫∫

R t

ρ

[
εi jk x j

∂uk
∂t

+ εi jk u
 δ j
 uk + εi jk x j u


∂uk
∂x


]
dV

=
∫∫∫

R t

ρ

[
εi jk x j

∂uk
∂t

+ εi jk u j uk + εi jk x j u


∂uk
∂x


]
dV

=
∫∫∫

R t

ρ εi jk x j
Duk
D t

dV , (5.27)

where we recognised that ∂x j/∂x
 = δ j
, and that εi jk u j uk = 0 as it represents the
i th component of the vector product of u with itself. The mechanical balance of
angular momentum prescribes that

d Li

d t
= Ki . (5.28)

Then, we obtain

∫∫∫

R t

εi jk

[
ρ x j

Duk
D t

− ρ x j gk − ∂(x j σk
)

∂x


]
dV = 0 , (5.29)

which can be rewritten as
∫∫∫

R t

εi jk

[
ρ x j

Duk
D t

− ρ x j gk − x j
∂σk


∂x


− σk j

]
dV = 0 . (5.30)

Byemploying the localmomentumbalance equation (5.23), one can rewriteEq. (5.30)
as ∫∫∫

R t

εi jk σk j dV = 0 . (5.31)

Following the usual argument, since Eq. (5.31) must hold for every possible choice
of the regionRt , the integrand must be zero, so that we can write the local equation

εi jk σk j = 0 . (5.32)

Due to the properties of the Levi-Civita symbol (see Appendix B), Eq. (5.32) with
i = 1, 2, 3 yields the equalities
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σ32 = σ23 , σ31 = σ13 , σ12 = σ21 . (5.33)

This just means that σ is a symmetric tensor, i.e. that σi j = σ j i .

5.7 Local Energy Balance Equation

Let us now assume that the extensive propertyΨ is the energy E of the fluid element.
The energy per unit mass of the fluid, ψ , can be expressed as

ψ = ϕ + u · u
2

, (5.34)

where ϕ is the internal energy per unit mass. In other words, we are assuming that
ψ is the sum of the internal energy per unit mass and of the kinetic energy per unit
mass. On account of equations (5.14) and (5.34), Reynolds’ transport theorem yields

d E

d t
=

∫∫∫

R t

ρ

(
Dϕ

Dt
+ u · Du

Dt

)
dV . (5.35)

The thermodynamic energy balance can be written as

d E

d t
= Q̇ + Ẇ , (5.36)

where Q̇ and Ẇ are, respectively, the thermal power and the mechanical power
received by the fluid body. At time t , the thermal power received by the fluid body
that occupies the region of space Rt is the sum of two terms: the thermal power Q̇s

that crosses the boundary surface ∂Rt of the body; the thermal power Q̇g generated
within the fluid element (due to phenomena such as, for instance, the Joule effect in
the case of a conducting fluid carrying an electric current). The quantity Q̇g can be
expressed by introducing the thermal power generated per unit volume within the
fluid, qg, so that one has

Q̇g =
∫

R t

qg dV . (5.37)

The quantity Q̇s can be determined by means of the heat flux density q,

Q̇s = −
∫∫

∂R t

q · n dS , (5.38)



5.7 Local Energy Balance Equation 105

where n is the outward normal unit vector to ∂Rt . By invoking Gauss’ theorem, one
can write

Q̇s = −
∫∫∫

R t

∇ · q dV . (5.39)

Then, one has

Q̇ = Q̇g + Q̇s =
∫∫∫

R t

(
qg − ∇ · q )

dV . (5.40)

The mechanical power Ẇ received from the fluid body coincides with the work per
unit time produced by the gravitational body force and by the traction acting on
the boundary ∂Rt of the fluid body. Inside Rt , one has a work per unit time due
to the gravitational field and acting on each infinitesimal volume element, given by
ρ g · u dV . Moreover, at every position in ∂Rt , one has an infinitesimal work per
unit time f · u dS, so that

Ẇ =
∫∫∫

R t

ρ g · u dV +
∫∫

∂R t

f · u dS =
∫∫∫

R t

ρ gi ui dV +
∫∫

∂R t

fi ui dS .

(5.41)
On account of equation (5.18), and by employing Gauss’ theorem, Eq. (5.41) can be
rewritten as

Ẇ =
∫∫∫

R t

ρ gi ui dV +
∫∫

∂R t

σi j ui n j dS =
∫∫∫

R t

[
ρ gi ui + ∂(σi j ui )

∂x j

]
dV

=
∫∫∫

R t

[
ρ gi ui + ui

∂σi j

∂x j
+ σi j

∂ui
∂x j

]
dV . (5.42)

On account of equations (5.35), (5.36), (5.40) and (5.42), one obtains

∫∫∫

R t

[
ρ

(
Dϕ

Dt
+ ui

Dui
Dt

)
− qg + ∂q j

∂x j
− ρ gi ui

− ui
∂σi j

∂x j
− σi j

∂ui
∂x j

]
dV = 0 . (5.43)

Equation (5.43) can be rewritten as

∫∫∫

R t

[
ρ

Dϕ

Dt
+

(
ρ

Dui
Dt

− ρ gi − ∂σi j

∂x j

)
ui

− qg + ∂q j

∂x j
− σi j

∂ui
∂x j

]
dV = 0 . (5.44)



106 5 The Equations of Fluid Flow

Thus, by employing equation (5.23), Eq. (5.44) can be simplified to

∫∫∫

R t

[
ρ

Dϕ

Dt
− qg + ∂q j

∂x j
− σi j

∂ui
∂x j

]
dV = 0 . (5.45)

Once again, we have reached a situation where an integral over Rt is zero. Due to
the arbitrary choice of the integration domain, we an conclude that the integrand is
zero. Thus, we obtain the local energy balance equation, namely

ρ
Dϕ

Dt
= −∂q j

∂x j
+ qg + σi j

∂ui
∂x j

. (5.46)

5.8 Viscous Stresses and Heat Flux

With fluids, the mechanical stress tensor is decomposed into an isotropic part and a
traceless part,

σi j = −p δi j + τi j . (5.47)

The term isotropic literally means independent of direction. In mathematics, a
second-rank tensor is termed isotropic when it is the product of a scalar and Kro-
necker’s delta. In fact, Kronecker’s delta has the special feature that its components
are the same in any Cartesian reference frame arbitrarily rotated around its origin.
In Eq. (5.47), p is the pressure field and τ is a second-rank tensor with zero trace,
that is τi i = 0, called viscous stress tensor. It models the viscous behaviour of the
fluid, which strongly depends on the specific fluid examined. There are several types
of fluids that fall into two main categories: Newtonian and non-Newtonian fluids.
Fluids falling in the former category are most of the fluids encountered in Nature,
such as water, oil or gases. For Newtonian fluids, τ is usually represented as

τi j = 2μDi j − 2

3
μ (∇ · u) δi j , (5.48)

where Di j is the strain tensor, defined as

Di j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
, (5.49)

and μ is the dynamic viscosity. The latter quantity is, in general, a thermodynamic
property of the fluid depending on its local temperature and pressure. Onemay easily
check from Eq. (5.49) that the trace of D coincides with ∇ · u, so that Eq. (5.48)
implies that the trace of τ is in fact zero. Equations (5.48) and (5.49) are consistent
with the symmetry property of the mechanical stress tensor σ .
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On account of equations (5.47)–(5.49), the term ∂σi j/∂x j on the right-hand side
of equation (5.23) can be rewritten as

∂σi j

∂x j
= − ∂p

∂xi
+ ∂τi j

∂x j
= − ∂p

∂xi
+ ∂

∂x j

[
μ

(
∂ui
∂x j

+ ∂u j

∂xi

)]

−2

3

∂

∂xi
(μ∇ · u) . (5.50)

A specially interesting case is one whereμ undergoes negligible changes in space
and time, so that it can be considered as a constant,

∂σi j

∂x j
= − ∂p

∂xi
+ μ

(
∂2ui

∂x j ∂x j
+ ∂2u j

∂xi ∂x j

)
− 2

3
μ

∂

∂xi
(∇ · u)

= − ∂p

∂xi
+ μ∇2ui + 1

3
μ

∂

∂xi
(∇ · u) . (5.51)

Another quantity that involves the mechanical stress tensor is the term σi j ∂ui/∂x j

appearing on the right-hand side of equation (5.46). Again, by invoking Eq. (5.47),
one can write

σi j
∂ui
∂x j

= −p ∇ · u + τi j
∂ui
∂x j

= −p ∇ · u + 1

2
τi j

(
∂ui
∂x j

+ ∂u j

∂xi

)
= −p ∇ · u + τi j Di j , (5.52)

where the symmetry of themechanical stress tensor σ , and hence of the viscous stress
tensor τ , has been employed. We mention that each term appearing in Eq. (5.52) has
a specific name and implied physical meaning,

−p ∇ · u =⇒ pressurework,
τi j Di j =⇒ viscous dissipation.

(5.53)

Pressure work expresses, within the local energy balance, the contribution due to
dilationor compressionprocesses experiencedby thefluid.On theother hand, viscous
dissipation accounts for the frictional heat generation caused by the fluid viscosity.
On account of equations (5.48) and (5.49), when the focus is on Newtonian fluids,
the viscous dissipation term can be expressed as

τi j Di j = 2μDi j Di j − 2

3
μ (∇ · u)2 . (5.54)

The double, implicit, sum over i and j means that Di j Di j is expanded into nine
terms. Three of them, namely the diagonal ones, yield (∇ · u)2. The conclusion is
that the right hand side of equation (5.54) cannot in any case be negative. Physically,
this means that viscous dissipation is a heat source term contribution to the energy
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balance of the fluid, whose cause is the flow itself. We mention that the viscous
dissipation term is often written in the form

τi j Di j = μΦ , (5.55)

where Φ is called the dissipation function,

Φ = 2Di j Di j − 2

3
(∇ · u)2 . (5.56)

Equation (5.56) shows that the dissipation function depends only on the velocity
field.

An important term of the local energy balance equation (5.46) is that expressing
heat diffusion, namely −∇ · q. This term can be rewritten on account of Fourier’s
law,

q = −κ ∇T , (5.57)

where κ is the thermal conductivity of the fluid. This quantity is a thermodynamic
property of the fluid and, in general, it depends on both temperature and pressure.

By taking into account Eqs. (5.50), (5.52), (5.54) and (5.57), one obtains an
expression of the local balance equations (5.15), (5.23) and (5.46) for a Newtonian
fluid given by

∂ρ

∂t
+ ∂(ρ u j )

∂x j
= 0 , (5.58)

ρ

(
∂ui
∂t

+ u j
∂ui
∂x j

)
= ρ gi − ∂p

∂xi
+ ∂

∂x j

[
μ

(
∂ui
∂x j

+ ∂u j

∂xi

)]

−2

3

∂

∂xi

(
μ

∂u j

∂x j

)
, (5.59)

ρ

(
∂ϕ

∂t
+ u j

∂ϕ

∂x j

)
= ∂

∂x j

(
κ

∂T

∂x j

)
+ qg − p

∂u j

∂x j
+ 2μDi j Di j

−2

3
μ

(
∂u j

∂x j

)2

. (5.60)

Equation (5.59) is well known as the Navier–Stokes equation.
The information conveyed by Eqs. (5.58)–(5.60) is not enough to determine the-

oretically the fluid flow. More details are needed such as the interplay between
thermodynamic properties, say κ or μ, and the local fluid temperature or pressure.
Convection studies often rely on an approximated scheme called the Oberbeck–
Boussinesq approximation.
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5.9 The Oberbeck–Boussinesq Approximation

When convection in fluids takes place, the mass density ρ can be approximated
as a reference constant density, ρ0, except for the gravitational body force term,
ρ gi in Eq. (5.59), where the variability of ρ is taken into account. Moreover, both
the dynamic viscosity and the thermal conductivity are assumed to be constant.
Therefore, the localmass,momentum and energy balance equations can be simplified
to

∂u j

∂x j
= 0 , (5.61)

ρ0

(
∂ui
∂t

+ u j
∂ui
∂x j

)
= ρ gi − ∂p

∂xi
+ μ∇2ui , (5.62)

ρ0

(
∂ϕ

∂t
+ u j

∂ϕ

∂x j

)
= κ ∇2T + qg + 2μDi j Di j . (5.63)

The density ρ, in the term ρ gi is assumed to be a function of temperature only, ρ(T ),
thus considering the dependence on the pressure as negligible. The linear equation
of state

ρ(T ) = ρ0 [1 − β (T − T0)] , (5.64)

is assumed, where β is the isobaric coefficient of thermal expansion,

β = − 1

ρ

(
∂ρ

∂T

)
p

, (5.65)

at the reference temperature T0. The coefficient β is positive. In Eq. (5.64), the depen-
dence on T is considered sufficiently weak as to be approximated linearly in a neigh-
bourhood of the reference value T0. This means that Eq. (5.64) can be intended as a
Taylor series expansion of ρ around T0,

ρ (T ) = ρ0 + ∂ρ

∂T

∣∣∣∣
T0

(T − T0) + O
(
(T − T0)

2 )
. (5.66)

From Eq. (5.64), the expression

ρ gi − ∂p

∂xi

in the local momentum balance equation (5.62) can be rewritten as

−ρ0 β (T − T0) gi − ∂P

∂xi

where P is called piezometric head, and it is defined as
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P = p − ρ0 gi xi . (5.67)

The quantity P is the difference between the pressure p and the hydrostatic pressure
ρ0 gi xi . As a consequence, Eqs. (5.61)–(5.63) can be rewritten as

∂u j

∂x j
= 0 , (5.68)

ρ0

(
∂ui
∂t

+ u j
∂ui
∂x j

)
= −ρ0 β (T − T0) gi − ∂P

∂xi
+ μ∇2ui , (5.69)

ρ0

(
∂ϕ

∂t
+ u j

∂ϕ

∂x j

)
= κ ∇2T + qg + 2μDi j Di j . (5.70)

The term
−ρ0 β (T − T0) gi

is directed vertically, either in the direction ofg or in the opposite direction, depending
on the sign of T − T0. Due to this term in the momentum balance, fluid elements
with a temperature higher than T0 are pushed upwards, while fluid elements with a
temperature lower than T0 are pushed downwards. This term is usually called the
buoyancy force and represents the common sense effect that the lighter (hotter) fluid
floats on top of the heavier (cooler) one. When the buoyancy force is negligible with
respect to the pressure force,

ρ0 β |T − T0| g � |∇P| ,

where g is the modulus of g, the convection flow process is called forced convec-
tion. In this flow regime, the buoyancy force term can be neglected in Eq. (5.69),
so that both Eqs. (5.68) and (5.69) do not contain any contribution of the tempera-
ture field. Therefore, in a forced convection problem, these equations can be solved
independently of equation (5.70), i.e. the local energy balance equation.

When the buoyancy force cannot be neglected, the convection flow process is
called either free convection, or natural convection, ormixed convection, or combined
forced and free convection, or buoyant flow. In this flow regime, the buoyancy force
term cannot be neglected in Eq. (5.69), so that this equation contains the temperature
field. Therefore, in a buoyant flow problem, Eqs. (5.68)–(5.70) form a system of
partial differential equations, so that they cannot be solved separately. We mention
that the terms free convection or natural convection are used when the flow is driven
only by the buoyancy force.

Thermodynamics ensures that ϕ = ϕ(T, ρ) for every single-phase or two-phase
stable equilibrium states [4, 6]. In the special case of a perfect gas, it is well known
that ϕ = ϕ(T ), so that [6]

dϕ = cv dT , (5.71)
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where cv is the specific heat at constant volume. In the case of either a liquid or
a real gas, one must rely on the Oberbeck–Boussinesq approximation by assuming
that an approximate equation of state ρ = ρ(T ) can be applied. This implies that
the pressure of the fluid does not change appreciably. Since ρ = ρ(T ) and since the
pair (T, ρ) yields a unique stable equilibrium state, then one concludes that all the
thermodynamic properties may be considered as functions of T . This conclusion
holds for the internal energy per unit mass, so that a relationship,

dϕ = c dT , (5.72)

can be established. The thermodynamic coefficient c, in general, does not coincide
either with cv or with the specific heat at constant pressure, cp. In fact, c is the total
derivative of the function ϕ = ϕ(T, ρ(T )) with respect to T , and not the partial
derivative of ϕ = ϕ(T, ρ) with respect to T , when ρ is kept constant. As is well
known, the latter is the correct thermodynamic definition of cv. The equation of
state ρ = ρ(T ) is one regarding a set of stable equilibrium states of the fluid with
approximately the same pressure. Then, one has

c =
(

∂ϕ

∂T

)
p

. (5.73)

Equation (5.73) is not the definition of the specific heat at constant pressure cp. As
is well known, cp is in fact defined as

cp =
(

∂h

∂T

)
p

, (5.74)

where h = ϕ + p/ρ is the enthalpy per unit mass. Then, one can easily write the
following relationship:

c = cp − p β

ρ
. (5.75)

Then, c is smaller than cp and differs from cv, except for the limiting case of a perfect
gas. Indeed, in the latter case, one can easily show that the equation of state of the
perfect gas and Eq. (5.75) ensures that c = cv, so that Eqs. (5.71) and (5.72) are
perfectly consistent.

One can question about the extent to which cp and cv differ from c in the case
of liquids. This topic has been examined by Barletta [3]. For water at atmospheric
pressure, as well as for most liquids, the assumption

c ≈ cp (5.76)

is a definitely reliable one. By using Eq. (5.72), one has
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∂ϕ

∂t
= c

∂T

∂t
,

∂ϕ

∂x j
= c

∂T

∂x j
, (5.77)

so that Eqs. (5.68)–(5.70) can be rewritten as

∂u j

∂x j
= 0 , (5.78)

ρ0

(
∂ui
∂t

+ u j
∂ui
∂x j

)
= −ρ0 β (T − T0) gi − ∂P

∂xi
+ μ∇2ui , (5.79)

ρ0 c

(
∂T

∂t
+ u j

∂T

∂x j

)
= κ ∇2T + qg + 2μDi j Di j . (5.80)

An alternative expression for Eqs. (5.78)–(5.80) is obtained on introducing the kine-
matic viscosity,

ν = μ

ρ0
, (5.81)

and the thermal diffusivity,

α = κ

ρ0 c
. (5.82)

Thus, we can write

∂u j

∂x j
= 0 , (5.83)

∂ui
∂t

+ u j
∂ui
∂x j

= −β (T − T0) gi − 1

ρ0

∂P

∂xi
+ ν ∇2ui , (5.84)

∂T

∂t
+ u j

∂T

∂x j
= α ∇2T + qg

ρ0 c
+ 2

ν

c
Di j Di j . (5.85)

Typical boundary conditions prescribed for the velocity field are impermeability at
the surface of a solid wall, meaning that the normal component of u is zero at this
boundary. Also, the tangential components of velocity must vanish at the surface of
a solid wall, and these conditions are termed no-slip conditions.

5.10 Governing Equations of Mass Diffusion

In general, the local mass balance equation of a fluid is given by Eq. (5.58). This
equation holds either for a fluid with a single chemical constituent or for a multicom-
ponent fluid. However, if one has a multicomponent fluid made up of N different
chemical species, one can imagine the fluid as the superposition of N pure fluids
coexisting in the same region of space. This means that, instead of a single velocity
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field u, one has to define N velocity fields un , where n = 1, 2, . . . , N , one for each
constituent. Moreover, one must define a mass density field, Cn , for the nth con-
stituent as

Cn = Mn

V
, (5.86)

where Mn is the mass of the nth constituent contained in an elementary volume V .
The overall fluid mass density is made up by the densities Cn of the constituents,

ρ =
N∑

n=1

Cn . (5.87)

It is a common practice calling concentrations themass densities of the N pure fluids.
The overall velocity field u of the multicomponent fluid can be defined as a

weighted mean value of the velocity fields un ,

u = 1

ρ

N∑
n=1

Cn un . (5.88)

5.10.1 Transport Theorem for Mass Diffusion

We know that Eq. (5.58) arises from Reynolds’ transport theorem relative to the
multicomponent fluid. With reference to the nth pure fluid, the transport theorem can
be formulated as

dΨn

d t
=

∫∫∫

R t

[
∂(Cn ψn)

∂t
+ ∇ · (Cn ψn un)

]
dV , n = 1, 2, . . . , N , (5.89)

whereΨn is any extensive property of the nth pure fluid,whileψn is the corresponding
specific property, i.e. the property obtained from the division ofΨn by the mass of the
nth constituent. The regionRt is that occupied by a givenmulticomponent fluid body
at time t . Again, the regionRt defines a closed thermodynamic system. If Ψn = Mn

is the mass of the nth chemical species contained in the volume Rt at time t , then
ψn = 1. Unlike the overall fluid mass M contained in Rt at time t , the mass Mn

is not independent of time since chemical reactions may occur in the fluid system.
Then, one may write

d Mn

d t
=

∫∫∫

R t

ṁn dV , (5.90)

where ṁn is the local mass production rate per unit volume of the nth chemical
species. On substituting Ψn = Mn and ψn = 1 in Eq. (5.89), one obtains
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∫∫∫

R t

[
∂Cn

∂t
+ ∇ · (Cn un) − ṁn

]
dV = 0, n = 1, 2, . . . , N . (5.91)

Since the regionRt has been chosen arbitrarily, the integral conditions can be satisfied
only if the integrand vanishes locally at every position in the domain occupied by
the fluid, namely if the local mass balance equations,

∂Cn

∂t
+ ∇ · (Cn un) − ṁn = 0 , n = 1, 2, . . . , N , (5.92)

hold. By summing all the N Eqs. (5.92), one obtains

∂ρ

∂t
+ ∇ · (ρ u) −

N∑
n=1

ṁn = 0 , (5.93)

where Eqs. (5.87) and (5.88) have been invoked. A comparison between Eqs. (5.93)
and (5.58) allows us to infer that

N∑
n=1

ṁn = 0 . (5.94)

Equation (5.94) implies that the chemical reactions possibly occurring in the fluid
system do not yield either a source or a sink for the overall fluid mass, i.e. the overall
fluid mass is locally conserved.

5.10.2 Concentrations and Mass Fluxes

Mass diffusion occurs within the fluid when, locally, the overall fluid velocity u
differs from the velocity un of the nth constituent. Then, if the mass diffusion takes
place, one may define a mass flux for each constituent,

Jn = Cn (un − u) , n = 1, 2, . . . , N . (5.95)

As a consequence, Eq. (5.92) yields

∂Cn

∂t
+ ∇ · (Cn u) + ∇ · Jn − ṁn = 0 , n = 1, 2, . . . , N , (5.96)

that can be rewritten as

∂Cn

∂t
+ u · ∇Cn + Cn ∇ · u + ∇ · Jn − ṁn = 0 , n = 1, 2, . . . , N . (5.97)
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5.10.3 The Oberbeck–Boussinesq Approximation

The Oberbeck–Boussinesq approximation is based on the assumption that the over-
all fluid density ρ may be treated as a constant in the local mass, momentum and
energy balance equations of the fluid, except for the gravitational body force in the
momentum balance. This exception allows one to model the density changes through
the effects of the buoyancy force. When mass diffusion takes place, the overall fluid
density ρ is considered not only as a function of the temperature T , but also of
N − 1 concentrations, C1,C2, . . . ,CN−1, treated as independent variables. The lat-
ter conclusion may be inferred from Eq. (5.87). The fluid density ρ may be either
considered as a function ofC1,C2, . . . ,CN assumed as independent, or as a function
of the independent variables T,C1,C2, . . . ,CN−1. In fact, each concentration Cn is
a function of T .

With small density changes occurring within the fluid, one can express ρ as a
linear function of the independent variables T,C1,C2, . . . ,CN−1,

ρ = ρ0

[
1 − β (T − T0) −

N−1∑
n=1

βC,n
(
Cn − Cn,0

)]
, (5.98)

where T0 is the reference temperature, Cn,0 is the reference concentration of the nth
component, ρ0 is the overall fluid density evaluated in the reference state, while

β = − 1

ρ

∂ρ

∂T
, βC,n = − 1

ρ

∂ρ

∂Cn
, n = 1, 2, . . . , N − 1 , (5.99)

are the isobaric coefficient of thermal expansion and the concentration expansion
coefficients, respectively. While β is positive, the coefficients βC,n can be either
positive or negative. In Eq. (5.99), these coefficients are evaluated at the reference
conditions T = T0 and Cn = Cn,0.

On the basis of equation (5.98), one can express the approximated momentum
balance. Therefore, the set of local balance equations to be solved in the Oberbeck–
Boussinesq approximation are

∇ · u = 0 , (5.100)

∂u
∂t

+ (u · ∇) u = − 1

ρ0
∇P − β (T − T0) g

−
N−1∑
n=1

βC,n
(
Cn − Cn,0

)
g + ν ∇2u , (5.101)

∂T

∂t
+ (u · ∇) T = α ∇2T + qg

ρ0 c
+ ν

c
Φ , (5.102)

∂Cn

∂t
+ (u · ∇)Cn = −∇ · Jn + ṁn, n = 1, 2, . . . , N − 1 . (5.103)
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We note that instead of the N equations (5.103), we have written just N − 1 equa-
tions. The reason is that the overall fluid mass balance equation (5.100) and the
N mass balance equations for the constituents of the multicomponent fluid are not
independent, as a consequence of the constraint equation (5.87).

The local momentum balance equation (5.101) displays two kinds of buoyancy
force: a thermal buoyancy induced by a possibly non-uniform temperature field,

−β (T − T0) g ,

and a mass diffusion buoyancy induced by possibly non-uniform concentrations of
the chemical components,

−
N−1∑
n=1

βC,n
(
Cn − Cn,0

)
g .

5.10.4 A Two-Component Mixture and Fick’s Law

Here, we refer for simplicity to a two-component fluid (N = 2). Since N = 2, we
have two concentrations C1 and C2, but just one of them is an independent variable
as a consequence of equation (5.87). We denote this concentration as C and the
corresponding mass flux as J.

Thus, from Eqs. (5.100)–(5.103), we have four local balance equations that we
can write, for convenience, according to Einstein’s notation

∂u j

∂x j
= 0 , (5.104)

∂ui
∂t

+ u j
∂ui
∂x j

= −β (T − T0) gi

−βC (C − C0) gi − 1

ρ0

∂P

∂xi
+ ν ∇2ui , (5.105)

∂T

∂t
+ u j

∂T

∂x j
= α ∇2T + qg

ρ0 c
+ 2

ν

c
Di j Di j , (5.106)

∂C

∂t
+ u j

∂C

∂x j
= −∂ Jj

∂x j
+ ṁ . (5.107)

We note that the set of four local balance equations (5.104)–(5.107) can be solved
to determine the four unknown fields ui , p, T and C . However, we have a further
unknown: the mass flux Ji . Hence, the differential problem is under-determined
(there are more unknowns than equations).

In 1855, a German physiologist and physicist, Adolf Eugen Fick, obtained a
phenomenological law establishing a relationship between Ji andC . This law is now
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well known as Fick’s law and can be formulated as [2]

Ji = −αm
∂C

∂xi
, (5.108)

where the positive quantity αm is the mass diffusivity. The mass diffusivity is a
thermodynamic property of the two-component mixture and, coherently with the
Oberbeck–Boussinesq approximation, it is considered as a constant. ThenEq. (5.107)
can be rewritten as

∂C

∂t
+ u j

∂C

∂x j
= αm ∇2C + ṁ . (5.109)

In this form, the local mass balance equation for the component with concentration
C exploits the strong mathematical analogy between the heat diffusion, described by
Eq. (5.106), and mass diffusion, described by Eq. (5.109).

Here, we have three fluid properties, α, αm and ν having the same units, and thus
defining two characteristic dimensionless ratios, thePrandtl number and the Schmidt
number,

Pr = ν

α
, Sc = ν

αm
. (5.110)

5.11 Local Entropy Balance Equation

The entropyS of the fluid body contained in the region of spaceRt is an extensive
property. If we denote with s the specific entropy, then Reynolds’ transport theorem,
Eq. (5.14), yields

dS

d t
=

∫∫∫

R t

ρ
Ds

D t
dV . (5.111)

We rely on Gibbs’ equation for an expression of ds [6],

ds = 1

T
dϕ − p

ρ2 T
dρ . (5.112)

From Eq. (5.112), one obtains an expression for the substantial derivative of s,

Ds

D t
= 1

T

Dϕ

D t
− p

ρ2 T

Dρ

D t
= 1

T

Dϕ

D t
+ p

ρ T
∇ · u , (5.113)

where Eqs. (5.10) and (5.13) have been employed. Substitution of Eq. (5.113) into
Eq. (5.111) yields
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dS

d t
=

∫∫∫

R t

(
ρ

T

Dϕ

D t
+ p

T
∇ · u

)
dV . (5.114)

The second law of thermodynamics leads to an entropy balance equation where the
infinitesimal change of entropy in a process is the sum of an entropy flux and an
entropy production due to irreversibility [6]. Thus, we can write

dS

d t
= −

∫∫

∂R t

q · n
T

dS + Ṡirr , (5.115)

where Ṡirr is the entropy production rate. As the entropy is an extensive property,
the entropy production rate can be expressed through a volume integral,

Ṡirr =
∫∫∫

R t

σirr dV . (5.116)

Here, σirr represents the entropy production rate per unit volume. Its local value
cannot be negative, due to the second law of thermodynamics,

σirr � 0 , (5.117)

where the equal sign implies reversibility. We also mention that the minus sign in
front of the surface integral on the right-hand side of equation (5.115) is motivated
by the need to express the incoming entropy flux across the boundary, whereas n is
the outward normal to ∂Rt .

By employing Gauss’ theorem and Eq. (5.116), Eqs. (5.114) and (5.115) yield

∫∫∫

R t

(
ρ

T

Dϕ

D t
+ p

T
∇ · u − 1

T 2
q · ∇T + 1

T
∇ · q − σirr

)
dV = 0 . (5.118)

We now invoke the local energy balance equation (5.46) and Eq. (5.52), so that we
obtain

∫∫∫

R t

(
qg
T

+ 1

T
τi j Di j − 1

T 2
q j

∂T

∂x j
− σirr

)
dV = 0 . (5.119)

As usual, Eq. (5.119) can be satisfied with an arbitrary domain of integration Rt if
the integrand is zero, namely if

σirr = qg
T

+ 1

T
τi j Di j − 1

T 2
q j

∂T

∂x j
. (5.120)
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Equation (5.120) is the local entropy balance equation. Due to Eq. (5.117), the local
entropy balance is effectively an inequality,

qg
T

+ 1

T
τi j Di j − 1

T 2
q j

∂T

∂x j
� 0 . (5.121)

If one dealswith aNewtonian fluid and if Fourier’s law (5.57) is employed, the contri-
butions of viscous dissipation, τi j Di j/T , and of heat diffusion, −(q j ∂T/∂x j )/T 2,
are both non-negative. In this situation, the inequality (5.121) becomes an effective
restriction only if one has to model heat sinks (qg < 0). This situation may occur,
for instance, in the case of endothermic chemical reactions.
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