
Chapter 4
Instability of a Flow System

4.1 Stability and Instability of a Mechanical System

The concepts presented in this section are a simplified version of what is available
in many textbooks on dynamical systems and classical mechanics. For a deeper
discussion of the topics proposed here, we refer the reader to Hirsch et al. [8] and
Arnold [1].

The state of a mechanical system is uniquely determined by a number N of
spatial coordinates, q1, q2, . . . , qN , and a number N of velocities associated with
these coordinates, v1, v2, . . . , vN . The state of the system is thus a point of a 2N -
dimensional space called phase space. The number N is the number of degrees of
freedom of the system.

For simplicity of notation, the N coordinateswill be denotedby the N -dimensional
vector q, while the N velocities will be denoted by the N -dimensional vector v. The
motion of the mechanical system is described by the system of first-order differential
equations, ⎧

⎪⎪⎨

⎪⎪⎩

d q
d t

= v ,

d v
d t

= F(q, v) ,

(4.1)

where the N -dimensional vector F is built with the components of the force per unit
mass acting on the system. For instance, let the studied system consist of Np pointlike
masses, then N = 3 Np. In this case, if qi is the j th coordinate (where j varies from
1 to 3) of the �th pointlike mass (where � varies from 1 to Np) with mass m�, then
the component Fi (q, v) is the j th component of the force acting on the �th pointlike
mass of the system divided by the mass m�.
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66 4 Instability of a Flow System

The solution of Eq. (4.1) requires the specification of the initial state, or the state
{q(0), v(0)} owned by the system at the initial instant of time, t = 0. Geometrically,
this solution yields a trajectory in the phase space.

The concept of stability of a solution of Eq. (4.1) is formulated according to
Lyapunov’s definition.1 Amotion of themechanical system, i.e. a solution {q(t), v(t)}
of the system of Eqs. (4.1), is called stable if for any positive real number ε, there is
a corresponding positive real number δε such that if the distance between two initial
conditions, {q(0), v(0)} and {q�(0), v�(0)}, is less than δε, then the two trajectories
in the phase space, {q(t), v(t)} and {q�(t), v�(t)}, have a distance less than ε for
every instant of time t > 0. In mathematical form, this definition can be expressed
as follows,

∀ ε > 0 , ∃ δε > 0 : ∥
∥{q(0), v(0)} − {q�(0), v�(0)}∥∥ < δε (4.2)

implies that ∥
∥{q(t), v(t)} − {q�(t) , v�(t)}∥∥ < ε , ∀ t > 0 . (4.3)

The distance ‖ · ‖ between any two points in the phase space is the Euclidean distance

∥
∥{q, v} − {q�, v�}∥∥ =

[
1

A

N∑

i=1

(qi − q�
i )

2 + 1

V 2

N∑

i=1

(vi − v�
i )

2

]1/2

, (4.4)

where we introduced two constants, A and V , with the dimensions of a length
and a velocity, respectively. These constants, whose value is set conventionally, are
introduced for the sole purpose of defining the distance between any two points of
the phase space in a dimensionless way.

In order to give a visual representation of the concept of stability of motion as
stated above, we can imagine that around a stable trajectory in phase space, there
is a cylinder of radius ε within which all the trajectories that differ from the stable
trajectory for a small perturbation of the initial conditions are contained. A graphical
representation of this notion is given in Fig. 4.1.

The concept of stability of motion for a mechanical system also applies to those
particular motions of the system that correspond to equilibrium states. A solution of
the equations of motion (4.1) is called an equilibrium state if it takes the form

{q(t), v(t)} = {q0, 0} , ∀ t ≥ 0 , (4.5)

where q0 is an N -dimensional constant vector, and 0 is the N -dimensional vector
with zero components. Thus, an equilibrium state corresponds to a trivial trajectory
that degenerates into a point. The equilibrium states admitted by a system of forces
F(q, v) are of course obtained as solutions of the vector equation

1Aleksandr Mikhailovich Lyapunov (1857–1918) was a Russian mathematician. He defended his
doctoral thesis, entitled “The general problem of the stability of motion”, at the University of
Moscow in 1892.
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Fig. 4.1 Qualitative sketch of stable and unstable trajectories in phase space according to
Lyapunov’s definition

F(q, 0) = 0 . (4.6)

According to the most general definition expressed by Eqs. (4.2) and (4.3), an equi-
librium state is deemed stable if

∀ ε > 0 , ∃ δε > 0 : ∥
∥{q0, 0} − {q�(0), v�(0)}∥∥ < δε (4.7)

implies that ∥
∥{q0, 0} − {q�(t) , v�(t)}∥∥ < ε , ∀ t > 0 . (4.8)

This notion of stability of an equilibrium state is often referred to as stability accord-
ing to Lyapunov.
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A stable equilibrium state, {q0, 0}, of amechanical system is called asymptotically
stable if there exists a positive real number R such that

∥
∥{q0, 0} − {q�(0), v�(0)}∥∥ < R (4.9)

implies that
lim

t→∞
∥
∥{q0, 0} − {q�(t), v�(t)}∥∥ = 0 . (4.10)

For an asymptotically stable equilibrium state, any trajectory in phase space that
originates from an initial state {q�(0), v�(0)}, lying in a small neighbourhood of the
equilibrium state {q0, 0}, tends to collapse to this state when time tends to infinity.

We note that asymptotic stability is a condition stronger than stability, so that
asymptotic stability of an equilibrium state implies stability, but not vice versa.

It should also be noted that the concepts of stability and of asymptotic stability
for an equilibrium state have, in general, a local meaning. In other words, these
concepts are the result of a criterion, Lyapunov’s criterion, which refers only to those
motions that originate from the neighbourhood of an equilibrium state, i.e. for initial
conditions that lie in a neighbourhood of this state. Lyapunov’s criterion does not
provide information on those trajectories whose initial condition is very far from
the equilibrium state. The local or global nature of the stability of an equilibrium
state of a mechanical system relies, ultimately, on the linearity or nonlinearity of
the system. A mechanical system is said to be linear if the vector function F(q, v)
is linear, otherwise it is deemed nonlinear. Generally speaking, the stability has
a local character for nonlinear mechanical systems and has a global character for
linear systems. For nonlinear mechanical systems, around an asymptotically stable
equilibrium state, there is a region of phase space called basin of attraction, such
that any state within the basin of attraction evolves along a trajectory that for t → ∞
collapses onto the equilibrium state. On the contrary, any state outside the basin of
attraction evolves along a trajectory that cannot enter the basin of attraction, for every
instant of time t > 0.

4.1.1 A Simple Mechanical System

As an example, consider the simplest case of a mechanical system, namely a system
with only one degree of freedom, N = 1. For this system, the phase space is two-
dimensional, the state is described by the pair {q, v}, and the equations of motion
take the form ⎧

⎪⎪⎨

⎪⎪⎩

d q

d t
= v ,

d v

d t
= F(q, v) .

(4.11)

In other terms, we consider a pointlike mass m subject to an external force. We
assume that the function F(q, v) is given by
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Fig. 4.2 Plot of the potential
energy ϕ(q)

F(q, v) = 1

m

(−k q + h q3 − β v
)

, (4.12)

where the constants k, h and β are non-negative. The system is therefore subject
to an attractive elastic force, −k q, a repulsive force, h q3, and a dissipative friction
force, −β v.

If k �= 0 and h �= 0, we may infer that there are three equilibrium states of the
system corresponding to the positions,

F(q, 0) = 0 ⇒ q = 0 , q = ±
√

k

h
. (4.13)

Conversely, if either k = 0 or h = 0, there is only one equilibrium state in the position
q = 0.

We can associate a potential energy to the attractive and repulsive forces, given
by

ϕ(q) = k
q2

2
− h

q4

4
. (4.14)

The trend of the potential energy ϕ(q) is shown in Fig. 4.2. Therefore, Eq. (4.12) can
be rewritten as

F(q, v) = − 1

m

[
d ϕ(q)

d q
+ β v

]

. (4.15)

We can also define a total energy defined as the sum of the kinetic energy and the
potential energy,

E(q, v) = m
v2

2
+ ϕ(q) . (4.16)

The derivative of E with respect to time reads

d E

d t
= m v

d v

d t
+ d ϕ

d q

d q

d t
= −v

(
d ϕ

d q
+ β v

)

+ d ϕ

d q
v = −β v2 , (4.17)
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Fig. 4.3 Constant energy
curves in the phase space.
The thicker line corresponds
to E = ϕmax

where Eqs. (4.11) and (4.15) have been employed. In the non-dissipative case, where
β = 0, Eq. (4.17) leads to the conclusion that the total energy remains invariant during
the system evolution. In this case, the force per unit mass F acting on the system is
associated with the potential energy,

F = − 1

m

dϕ

dq
. (4.18)

Since the force can be expressed in terms of the gradient of the potential energy, then
the system is conservative. On the other hand, the energy E is not invariant in the
dissipative case, β �= 0. The effect of the dissipative force is a decrease in time of
the total energy, E , as demonstrated by Eq. (4.17).

Thus, if β = 0, every trajectory of the system corresponds to a given energy E .
Stated differently, in the non-dissipative case, the trajectories in phase phase coincide
with the curves at constant energy.

Figure4.3 displays curves at constant energy. Among them, a special one is the
curve corresponding to E = ϕmax, where ϕmax is the maximum value of the potential
energy, Eq. (4.14), given by

ϕmax = k2

4 h
. (4.19)

The shape of the trajectories for β = 0 suggests that, among the three equilibrium
states defined by Eq. (4.13), only one is stable: that corresponding to the position
q = 0.Within this domain, all constant energy curves are closed orbits of smaller and
smaller size as E decreases. Lyapunov’s criterion is then satisfied by the equilibrium
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Fig. 4.4 Trajectories in
phase space for β > 0. The
thicker line is the constant
energy curve for E = ϕmax

state with q = 0. On the contrary, all trajectories around the equilibrium states with
q = ±√

k/h cannot be confined within a small neighbourhood of these points. This
behaviour is the effect of instability.

If β > 0, nothing changes both with respect to the stability of the state {0, 0}
and the instability of the states {−√

k/h, 0} and {√k/h, 0} (Fig. 4.4). Nevertheless,
there is an important difference: the energy defined by Eq. (4.16) is not conserved
along the trajectories in phase space. In other words, the trajectories do not coincide
with the closed curves of constant energy. The stable equilibrium state {0, 0} is
now asymptotically stable. The basin of attraction of such a state of equilibrium is
extended to that limited domain around the origin enclosed by the curve E = ϕmax.
Within the basin of attraction, the trajectories are not closed orbits, as in the non-
dissipative case, β = 0. On the contrary, they appear as spirals converging to the
stable equilibrium state {0, 0}. This behaviour is typical of asymptotic stability as
described by Eq. (4.10).

4.1.2 The Method of Small Perturbations

An alternative analysis of the stability or instability of the equilibrium states of a
mechanical system is based on the method of small perturbations. We consider again
the simple mechanical system described in Sect. 4.1.1. Its equations of motion are
given by Eqs. (4.11) and (4.12), namely
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⎧
⎪⎪⎨

⎪⎪⎩

d q

d t
= v ,

d v

d t
= 1

m

(−k q + h q3 − β v
)

.

(4.20)

If {q0, 0} is any equilibrium state, then it is a solution of Eq. (4.20). Let us perturb
this equilibrium state by superposing a very small disturbance. Mathematically, this
means writing

q = q0 + ε q̂ , v = 0 + ε v̂ = ε v̂ , (4.21)

where ε is a positive and very small number, called perturbation parameter. By
substituting Eq. (4.21) into the equations of motion, (4.20), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

ε
d q̂

d t
= ε v̂ ,

ε
d v̂

d t
= 1

m

[
−k q0 − k ε q̂ + h

(
q0 + ε q̂

)3 − β ε v̂
]

.

(4.22)

Since {q0, 0} is a solution of the equations of motion, we can simplify Eq. (4.22),

⎧
⎪⎪⎨

⎪⎪⎩

ε
d q̂

d t
= ε v̂ ,

ε
d v̂

d t
= 1

m

[−k ε q̂ + h
(
ε3 q̂3 + 3 ε2 q̂2 q0 + 3 ε q̂ q2

0

) − β ε v̂
]

.

(4.23)

The perturbation parameter is small, namely ε � 1, so that we can safely neglect
terms O(ε2) or higher with respect to terms O(ε). Thus, Eq. (4.23) yields

⎧
⎪⎪⎨

⎪⎪⎩

ε
d q̂

d t
= ε v̂ ,

ε
d v̂

d t
= 1

m

(−k ε q̂ + 3 ε h q̂ q2
0 − β ε v̂

)
.

(4.24)

Division by ε now leads to the equations of motion for small perturbations.

⎧
⎪⎪⎨

⎪⎪⎩

d q̂

d t
= v̂ ,

d v̂

d t
= 1

m

(−k q̂ + 3 h q̂ q2
0 − β v̂

)
.

(4.25)

Equations (4.25) are linear. This is a consequence of having neglected terms of order
higher than ε. For this reason, the assumption of small perturbations leads to lin-
earised equations of motion.
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Equation (4.25) can be collapsed into a single differential equation, namely

d2q̂

d t2
= 1

m

(

−k q̂ + 3 h q̂ q2
0 − β

d q̂

d t

)

. (4.26)

For the three equilibrium states q0 = 0 and q0 = ±√
k/h, we get analytical solutions.

In particular, for q0 = 0, we obtain

q̂(t) = e−βt/(2m)

[

q̂(0) cosh

(√
β2 − 4 k m

2m
t

)

+2m v̂(0) + β q̂(0)
√

β2 − 4 k m
sinh

(√
β2 − 4 k m

2m
t

)]

. (4.27)

Equation (4.27) shows that the perturbation q̂(t) always decreases in time if β > 0.
If β2 � 4 k m, the perturbation undergoes an exponential decay, where the leading
exponential is

exp

[

−
(

β

2m
−

√
β2 − 4 k m

2m

)

t

]

. (4.28)

One can easily check that the coefficient of this exponential is always negative, if k >

0, or zero, if k = 0. In both cases, the perturbation remains O(ε) for every t > 0, thus
ensuring stability according toLyapunov’s criterion. If 0 < β2 < 4 k m, the argument
of the hyperbolic cosine and sine becomes imaginary, so that these contributions can
be rewritten in terms of trigonometric cosine and sine. As a consequence, in this case,
Eq. (4.27) describes a decaying exponential multiplied by a periodic function of time.
Again, we have a response of stability for the equilibrium state q0 = 0. Finally, if we
consider the non-dissipative case, β = 0, Eq. (4.27) shows that the solution is purely
oscillatory, so that the perturbation remains O(ε) at any time.

For q0 = ±√
k/h, the analytical solution of Eq. (4.26) is

q̂(t) = e−βt/(2m)

[

q̂(0) cosh

(√
β2 + 8 k m

2m
t

)

+2m v̂(0) + β q̂(0)
√

β2 + 8 k m
sinh

(√
β2 + 8 k m

2m
t

)]

. (4.29)

The solution has an exponential behaviour in time, where the leading exponential is

exp

[(√
β2 + 8 k m

2m
− β

2m

)

t

]

. (4.30)

This exponential grows in time for every k > 0. This means that the perturbation will
not remain confined in a small neighbourhood of the equilibrium state and, hence,
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we have instability in the sense of Lyapunov. Considering k = 0 is not significant as
q0 = ±√

k/h would coincide with q0 = 0.
We can conclude that the method of small perturbations entirely confirms the

results of the stability analysis obtained by a direct evaluation of the trajectories in
phase space undergone by the mechanical system. A limitation in the use of this
method arises due to the local character of the information. We can only consider
small distances of the initial conditions from the equilibrium state. Moreover, in the
case of instability,we can only predict the time evolution of perturbations at the earlier
instants of time.When the growth in time makes the perturbation of order larger than
ε, then the linearised Eq. (4.26) becomes unreliable. In other words, nonlinearity
becomes dominant in governing the time evolution of the system.

4.2 Flow Stability with Burgers Equation

Let us consider the one-dimensional Burgers equation with a linear forcing term,

∂W

∂t
+ W

∂W

∂x
= ∂2W

∂x2
+ R (W − W0) , (4.31)

where R ∈ R and W0 ∈ R. We mention that Burgers equation is a toy model for
the one-dimensional flow of a fluid. In a paper by J. M. Burgers of 1939, entitled
“Mathematical examples illustrating relations occurring in the theory of turbulent
fluid motion”, a slightly different form of Eq. (4.31) was presented as a simplified
governing equation of a system developing turbulence [13].

Evidently, W = W0 is a solution of Eq. (4.31). This solution is stationary and,
as a consequence, it can be defined as an equilibrium state for Eq. (4.31). We can
investigate the stability of this equilibrium state, according to Lyapunov’s theory, by
perturbing it and checking the evolution in time of the perturbation. This procedure
is an extension of what has been found for a discrete mechanical system in Sect. 4.1.
Here, we have a continuous flow system, meaning that we have a partial differential
governing equation, Eq. (4.31), where the variable evolving in time is distributed
in space. In this simple model, space is one-dimensional and, hence, flow is one-
dimensional as well occurring along the real x-axis.

Hereafter, W = W0 will be called the basic solution of Eq. (4.31). To test its
stability, we will carry out an analysis of small perturbations according to the lines
discussed in Sect. 4.1.2.

4.2.1 Linear Stability Analysis

Alinear stability analysis of the basic solution,W = W0, is performedby superposing
a small perturbation to the basic solution, namely
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W = W0 + ε w , ε > 0 , (4.32)

where ε is a perturbation parameter such that ε � 1. We now substitute Eq. (4.32)
into (4.31),

ε
∂w

∂t
+ ε W0

∂w

∂x
+ ε2 w

∂w

∂x
= ε

∂2w

∂x2
+ ε R w . (4.33)

Then, neglecting terms O(ε2) and dividing by ε, we obtain

∂w

∂t
+ W0

∂w

∂x
= ∂2w

∂x2
+ R w . (4.34)

We employ the Fourier transform to solve Eq. (4.34), namely

w̃(k, t) = 1√
2π

∞∫

−∞
w(x, t) e−i kx d x ,

w(x, t) = 1√
2π

∞∫

−∞
w̃(k, t) ei kx d k . (4.35)

Here, k is the wave number.We can transform Eq. (4.34) by employing the properties
of the Fourier transform of partial derivatives, given by Eqs. (2.17) and (2.18). Thus,
we obtain

∂w̃

∂t
= λ(k) w̃ , (4.36)

where
λ(k) = R − k2 − i k W0 . (4.37)

The solution of Eq. (4.36) is

w̃(k, t) = w̃(k, 0) eλ(k) t . (4.38)

If we substitute Eq. (4.38) into the expression of w(x, t) given by Eq. (4.35), we can
write the perturbation as

w(x, t) = 1√
2π

∞∫

−∞
w̃(k, 0) ei kx eλ(k) t d k . (4.39)

The solutionw(x, t) expressed byEq. (4.39) depends on the initial condition,w(x, 0),
through its Fourier transform w̃(k, 0). Moreover, w(x, t) is represented as a wave
packet where

ω(k) = −(λ(k)) = k W0 (4.40)
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is the angular frequency, and

b(k, t) = 1√
2π

w̃(k, 0) e�(λ(k)) t (4.41)

is the time-dependent amplitude of the normal mode. The single normal mode, with
a given wave number ka , represents the evolution of an initial perturbation having
the shape of a plane wave, namely

w(x, 0) = 1√
2π

ei ka x . (4.42)

In fact, on account of Eqs. (2.9) and (2.10), from Eq. (4.42) one obtains a Dirac’s
delta distribution for w̃(k, 0),

w̃(k, 0) = δ(k − ka) . (4.43)

Then, Eq. (4.39) yields

w(x, t) = e�(λ(ka)) t

√
2π

ei[ka x−ω(ka)t] , (4.44)

where the angular frequency ω(k) is given by Eq. (4.40). Equation (4.44) defines
a plane wave perturbation propagating with a phase velocity ω(ka)/ka , whose
amplitude grows unboundedly in time if �(λ(ka)) > 0, or it is damped in time if
�(λ(ka)) < 0. The former alternative defines an unstable behaviour, while the latter
yields a stable character of the perturbation. We can now formally define the concept
of convective instability.

Definition 4.1 (Convective Instability) A single normal mode perturbation with a
given wave number k is deemed to be convectively stable if �(λ(k)) < 0. It is said
convectively unstable if�(λ(k)) > 0. The marginal condition where�(λ(k)) = 0 is
called neutral stability.

On account of Eq. (4.37), the condition of convective instability reads

R > k2 , (4.45)

with the curve given by R = k2 defining neutral stability.
A simple sketch resuming the concept of convective instability and the marginal

condition of neutral stability is displayed in Fig. 4.5. In this figure, only the domain
of positive wave numbers is represented, as the condition of convective instability
just involves k2 and is thus independent of the sign of k.

We note that convective instability, to some wave number k, is possible only
when R exceeds a critical value, denoted as Rc, which corresponds to the absolute
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Fig. 4.5 Qualitative sketch
of the definition of
convective instability as
implied by Eq. (4.45)

minimum of R along the neutral stability curve. The corresponding value of k is the
critical wave number, kc. Thus, we have

kc = 0 , Rc = 0 . (4.46)

Hereafter, a situation where R < Rc = 0 will be termed subcritical, while the con-
dition R > Rc = 0 will be termed supercritical.

The convective instability regards the behaviour of quite special initial pertur-
bations of the basic solution, having the form of plane waves with a given wave
number. These perturbations have an intrinsic non-local character as their support
is widespread all over the real x-axis. A more general perturbation comes from a
superposition of infinite plane waves with all possible wave numbers, as represented
by the Fourier integral, Eq. (4.39). These wave packets may describe perturbations
with a local support as it could be, for instance, when the initial condition w(x, 0) is a
Gaussian signal. In general, as pointed out in Sect. 2.2.1, the initial condition w(x, 0)
must be absolutely integrable over the real x-axis. Otherwise, the Fourier integral
can only make sense in a space of generalised functions, or distributions. This is the
reason why the normal mode initial condition, given by Eq. (4.42), leads to a Fourier
transform given by a Dirac’s delta. A normal mode is not absolutely integrable and
Dirac’s delta is not a function in the traditional sense, but a distribution.

Definition 4.2 (Absolute Instability) A perturbation w(x, t) is deemed to be abso-
lutely unstable if it is absolutely integrable over the real x-axis and if

lim
t→+∞ |w(x, t)| = +∞ , (4.47)

for every x ∈ R .
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Deciding whether a perturbation w(x, t) expressed through Eq. (4.39) is absolutely
unstablemeans checking the large-time behaviour of the Fourier integral on the right-
hand side of Eq. (4.39). This task can be accomplished by employing the steepest-
descent approximation described in Sect. 3.5.3. The first step is to determine the
saddle points of λ(k). In fact, Eq. (4.37) yields

λ′(k) = −2 k − i W0 . (4.48)

Equation (4.48) shows that there is just one, purely imaginary, saddle point,

k0 = − i W0

2
. (4.49)

Wemust now check that the holomorphy requirement is satisfied by w̃(k, t) expressed
by Eq. (4.38). We know that λ(k) is holomorphic for every k ∈ C. On the other hand,
w̃(k, 0) is arbitrary. However, in order to employ the steepest-descent approximation
as specified in Sect. 3.5.3, we need the assumption that no singularity of w̃(k, 0)
exists in the region of the complex plane bounded by the real k-axis, (k) = 0, and
the deformed curve γ ∗ locally crossing k0 through a path of steepest descent. If this
hypothesis regarding the initial state w(x, 0) holds, we can approximately evaluate
|w(x, t)| for large times, by employing Eq. (3.163), as

|w(x, t)| ≈ |w̃(k0, 0)|√
2 t

e�(λ(k0)) t . (4.50)

As a consequence of Eqs. (4.47) and (4.50), one can conclude that absolute instability
is attained when �(λ(k0)) > 0. On account of Eqs. (4.37) and (4.49), this means

R > Ra = W 2
0

4
, (4.51)

where Ra denotes the threshold for the onset of absolute instability. It is important
to emphasize that the condition of absolute instability is independent of the details
of the initial perturbation, w(x, 0), inasmuch as it is absolutely integrable over the
real x-axis and its Fourier transform, w̃(k, 0), allows one to satisfy the holomorphy
requirement relative to the steepest-descent method applied to the integral on the
right-hand side of Eq. (4.39).

A qualitative sketch of the concepts of convective instability and absolute insta-
bility is displayed in Fig. 4.6. This figure highlights that absolute instability is not
a modal condition, meaning that its validity does not depend on the behaviour of
individual normal modes, but on the asymptotic behaviour of a general class of per-
turbations. Interestingly enough, the condition of absolute instability turns out to
be a parametric condition, given by Eq. (4.51), mostly independent on the detailed
characteristics of the initial perturbations superposed to the basic stationary solution
through Eq. (4.32).
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Fig. 4.6 Qualitative sketch
of the definitions of
convective instability and
absolute instability as
implied by Eqs. (4.45) and
(4.51)

There is a physical picture of how the mathematical condition of absolute insta-
bility can be viewed. One can imagine the basic flow W0 as observed by a laboratory
reference frame and by a co-moving reference frame. An observer in the latter frame
travels downstream with speed W0 and detects normal modes of perturbation grow-
ing in time or damped in time. On the other hand, the view of an observer in the
laboratory reference frame is different. Such an observer sees the flowing fluid with
uniform velocity W0, detects the perturbations, but will also experience some dif-
ficulty in checking the ultimate behaviour of perturbations at large times. In fact,
normal modes of perturbation initially growing in time are convected downstream
by the basic flow, so that a growing normal mode can be driven away so fast that its
time growth is not actually perceivedwith the instruments employed by this observer.
If the basic flowvelocityW0 is sufficiently low (remember that the absolute instability
condition can be reformulated as W 2

0 < 4 R), then any actually unbounded growth
of each growing normal mode is correctly detected in the laboratory reference frame.

4.2.2 Time Evolution of a Special Perturbation Wave Packet

We can check the results of the steepest-descent approximation by a direct evaluation
of w(x, t) for a very special initial wave packet given by a Gaussian distribution,

w(x, 0) = e−x2
. (4.52)

Its Fourier transform is readily determined, namely



80 4 Instability of a Flow System

w̃(k, 0) = 1√
2
e− k2

4 . (4.53)

Then, from Eqs. (4.37) and (4.38), we obtain

w̃(k, t) = 1√
2
exp

[

−k2

4
+ (R − k2 − i k W0) t

]

. (4.54)

The inverse Fourier transformof w̃(k, t), given byEq. (4.54), is evaluated analytically
as

w(x, t) = 1√
4 t + 1

exp

[

R t − (x − W0 t)2

4t + 1

]

. (4.55)

Plots showing the time evolution of w(x, t), given by Eq. (4.55), are presented in
Fig. 4.7 for the choice W0 = 1. Different positions, x , are considered. Each frame

Fig. 4.7 Plots of the time evolution of the Gaussian perturbation for W0 = 1, at different positions,
x , and with different values of R such that R < Rc, R = Rc, Rc < R < Ra and R > Ra
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Fig. 4.8 Plots of the spatial distribution of the Gaussian perturbation for W0 = 1, at different times,
t , and with different values of R such that R < Rc, R = Rc, Rc < R < Ra and R > Ra

corresponds to a value of R that is either subcritical, critical or supercritical. Among
the supercritical cases, R = 0.2 or R = 0.3, it is clearly displayed the expected
difference between the behaviour when R < Ra and that when R > Ra. The frame
with R = 0.3 clearly shows the large-time growing trend of the plots of |w(x, t)|
versus t for different positions, x . This behaviour is precisely what one expects on
the basis of the asymptotic expression of |w(x, t)| given by Eq. (4.50), and based on
the steepest-descent approximation.

The spatial distribution of theGaussian perturbation at different times is illustrated
in Fig. 4.8. The same cases considered in Fig. 4.7 are reported. We see that, when R
is subcritical or critical, there is a net decrease in height of the Gaussian maximum,
accompanied by a rightward displacement and a spreading, as time increases. This
is not the case when R is supercritical, as the maximum decreases at first, reaches
a minimum, but eventually it increases unboundedly in time. This behaviour is eas-
ily gathered from Eq. (4.55), as the position of the maximum is x = W0 t , and its
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height is

max
x∈R

|w(x, t)| = 1√
4 t + 1

eR t . (4.56)

The height decreases monotonically when R � 0, but it behaves non-monotonically
when 0 < R < 2. In fact, it decreases at first, reaches a minimum when

t = 2 − R

4 R
, (4.57)

and then it increases unboundedly. This explains the behaviour of the frames in
Fig. 4.8 corresponding to R = 0.2 and R = 0.3. What makes the difference between
the supercritical behaviour for R < Ra and R > Ra, so well evident in Fig. 4.7, is
the competition between the speed of the rightward displacement and the gradual
increase of themaximumheight at sufficiently large times. This competition results in
a signal at a given x gradually decreasing in time, if R < Ra, and gradually increasing
in time, if R > Ra. This is the essence of the transition from convective to absolute
instability.

4.3 Stability of Channelised Burgers Flow

The analysis of the instability occurring in Burgers flow can be modelled as three-
dimensional if we imagine that the flow along the x direction is directed, in fact,
through a channel with a rectangular cross section. In a rectangular channel, where
x ∈ R , y ∈ [0, L1] and z ∈ [0, L2], the three-dimensional version of Burgers equa-
tion (4.31) is given by

∂W
∂t

+ (W · ∇)W = ∇2W + R (W − W0) , (4.58)

whereW0 is the constant vector (W0, 0, 0), and W0 ∈ R is the same constant consid-
ered in the one-dimensional case envisaged in Sect. 4.2. Evidently, a basic stationary
solution of Eq. (4.58) is

W = W0 . (4.59)

We imagine the confining walls of the channel positioned at y = 0, y = L1, z = 0,
z = L2 as impermeable surfaces moving along the flow direction with velocityW0.
This assumption is compatible with a uniform velocity in the channel, as implied by
Eq. (4.59). Thus, we assume the system of boundary conditions,

t > 0 ; x ∈ R ; y = 0, L1 ; z ∈ [0, L2] : W = W0 ,

t > 0 ; x ∈ R ; y ∈ [0, L1] ; z = 0, L2 : W = W0 . (4.60)
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4.3.1 Linear Stability Analysis

The linear stability analysis of the solution,W = W0, can be carried out by writing

W = W0 + εw , ε > 0 , (4.61)

where ε is a small perturbation parameter, ε � 1. By substituting Eq. (4.61) into
Eq. (4.58),

ε
∂w
∂t

+ ε W0
∂w
∂x

+ ε2 (w · ∇)w = ε ∇2w + R εw . (4.62)

We neglect terms O(ε2) and divide by ε, so that we obtain

∂w
∂t

+ W0
∂w
∂x

= ∇2w + R w . (4.63)

Equation (4.63) governs the evolution of the linear perturbations w and, as a conse-
quence of Eqs. (4.60) and (4.61), its boundary conditions are

t > 0 ; x ∈ R ; y = 0, L1 ; z ∈ [0, L2] : w = 0 ,

t > 0 ; x ∈ R ; y ∈ [0, L1] ; z = 0, L2 : w = 0 . (4.64)

Due to the linearity of Eqs. (4.63) and (4.64), solutions can be sought as a series.
The method to be employed is the separation of variables, described in Appendix A.
Thus, we can write

w =
∞∑

n=1

∞∑

m=1

wnm(x, t) sin(αn y) sin(βm z) , (4.65)

where
αn = π n

L1
, βm = π m

L2
. (4.66)

Series solutions described by Eq. (4.66) identically satisfy the boundary conditions,
Eq. (4.65), provided that wnm(x, t) is a solution of

∂wnm

∂t
+ W0

∂wnm

∂x
= ∂2wnm

∂x2
+ (

R − α2
n − β2

m

)
wnm . (4.67)

We note that Eq. (4.34) is entirely equivalent to Eq. (4.67), provided that we replace
R with

Rnm = R − α2
n − β2

m , (4.68)

and w(x, t) with the vector function wnm(x, t). Thus, wnm(x, t) can be expressed
through the Fourier integral
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wnm(x, t) = 1√
2π

∞∫

−∞
w̃nm(k, 0) ei kx eλ(k) t d k , (4.69)

where λ(k) is now given by

λ(k) = Rnm − k2 − i k W0 , (4.70)

and w̃nm(k, 0) is the Fourier transform of the initial perturbation wnm(x, 0).
We can follow step by step the analysis described in Sect. 4.2.1 to conclude that,

on account of Eq. (4.45), convective instability occurs when

Rnm > k2 . (4.71)

This means
R > α2

n + β2
m + k2 . (4.72)

This condition is satisfiedwith theminimumvalue of R occurringwhenn = 1,m = 1
and k = 0. In other words, the critical values (kc, Rc) for the onset of convective
instability are

kc = 0 , Rc = π2

L2
1

+ π2

L2
2

. (4.73)

On the other hand, on account of Eq. (4.51), absolute instability is detected when

Rnm >
W 2

0

4
. (4.74)

As for the convective instability, the modes that allow the inequality (4.74) to be
satisfied with the least value of R are those with n = 1 and m = 1. Thus, the widest
region of absolute instability is defined by

R > Ra = W 2
0

4
+ π2

L2
1

+ π2

L2
2

. (4.75)

The channelisation of Burgers flow thus yields a stabilisation of the basic solution,
Eq. (4.59), by raising the thresholds to convective instability, Rc, and to absolute
instability, Ra. The stabilisation is due to the restriction imposed with respect to the
allowed modes of perturbation implied by the boundary conditions, Eq. (4.60). In
fact, the results described in Sect. 4.2.1 for the one-dimensional study are readily
recovered on taking the limit of an infinite channel cross section, namely L1 → ∞
and L2 → ∞ .
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4.4 Stability of a Convective Cahn–Hilliard Process

The convective Cahn–Hilliard equation is a partial differential equation formulated
as a model of the phase separation due to spinodal decomposition [6, 7]. In one-
dimensional form, it can be written as,

∂Ψ

∂t
= α Ψ

∂Ψ

∂x
− ∂2

∂x2

(

Ψ − Ψ 3 + ∂2Ψ

∂x2

)

, (4.76)

where α is a real positive constant which represents the driving force parameter.
Equation (4.76) can be equivalently expressed as

∂Ψ

∂t
= α Ψ

∂Ψ

∂x
+ 6Ψ

(
∂Ψ

∂x

)2

+ (
3Ψ 2 − 1

) ∂2Ψ

∂x2
− ∂4Ψ

∂ x4
, (4.77)

A possible basic stationary solution of Eq. (4.77) is given by

Ψ = Ψ0 = constant . (4.78)

4.4.1 Linear Stability Analysis

The linear stability of the basic solution, Ψ = Ψ0, is studied by superposing to Ψ0 a
small perturbation, namely

Ψ = Ψ0 + ε ψ , ε > 0 . (4.79)

As always, we consider ε as a small perturbation parameter, ε � 1. Substitution of
Eq. (4.79) into (4.77) yields

ε
∂ψ

∂t
= ε α Ψ0

∂ψ

∂x
+ ε2 α ψ

∂ψ

∂x
+ 6 ε2 Ψ0

(
∂ψ

∂x

)2

+ 6 ε3 ψ

(
∂ψ

∂x

)2

+ε
(
3Ψ 2

0 − 1
) ∂2ψ

∂x2
+ 6 ε2 Ψ0 ψ

∂2ψ

∂x2
+ 3 ε3 ψ2 ∂2ψ

∂x2
− ε

∂4ψ

∂ x4
. (4.80)

According to the hypothesis of small perturbations, we neglect the terms O(ε2) and
O(ε3). Then, we divide Eq. (4.80) by ε, and we obtain the linearised equation

∂ψ

∂t
= α Ψ0

∂ψ

∂x
+ (

3Ψ 2
0 − 1

) ∂2ψ

∂x2
− ∂4ψ

∂ x4
. (4.81)

Let us apply the Fourier transform to solve Eq. (4.81), namely

ψ̃(k, t) = 1√
2π

∞∫

−∞
ψ(x, t) e−i kx d x ,
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ψ(x, t) = 1√
2π

∞∫

−∞
ψ̃(k, t) ei kx d k . (4.82)

The transform of Eq. (4.81) is obtained by employing the properties of the Fourier
transform of partial derivatives, given by Eqs. (2.17) and (2.18). Then, we write

∂ψ̃

∂t
= λ(k) ψ̃ , (4.83)

where
λ(k) = i α Ψ0 k − (

3Ψ 2
0 − 1

)
k2 − k4 . (4.84)

The solution of Eq. (4.83) is

ψ̃(k, t) = ψ̃(k, 0) eλ(k) t . (4.85)

On substituting Eq. (4.85) into the expression ofψ(x, t) given by Eq. (4.82), wewrite
the perturbation as

ψ(x, t) = 1√
2π

∞∫

−∞
ψ̃(k, 0) ei kx eλ(k) t d k . (4.86)

As implied by Definition4.1, convective instability occurs when �(λ(k)) > 0. On
account of Eq. (4.84), this means

|Ψ0| <

√
1 − k2

3
. (4.87)

We note that the right-hand side of Eq. (4.87) is a function of k with an upper bound,
1/

√
3. Thus, the meaning of Eq. (4.87) is that, whatever is the real value of the con-

stants Ψ0 < 1/
√
3 and α, there always exists a normal mode with a suitable wave

number k that can destabilise the basic solution Ψ = Ψ0. In other words, convec-
tive instability to some normal modes is always possible provided that Ψ0 < 1/

√
3.

Furthermore, the value of the constant α does not influence in any way the onset of
convective instability.

We now investigate the transition from convective to absolute instability by
employing Definition4.2 and the steepest-descent approximation described in
Sect. 3.5.3. We first determine the saddle points of �(λ(k)), namely the solutions
of

λ′(k) = iα Ψ0 − 2
(
3Ψ 2

0 − 1
)

k − 4 k3 = 0 . (4.88)

For every assigned pair (α, Ψ0), there are three saddle points: k01, k02 and k03. In
general, by fixing the value of Ψ0, we can trace graphically the value of �(λ(k0i )),
with i = 1, 2, 3, as a function of α.
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A notable case is the limit where the driving force becomes vanishingly small,
α → 0. In this limit, the three saddle points are

k01 = 0 , k02 =
√

1 − 3Ψ 2
0

2
, k03 = −

√

1 − 3Ψ 2
0

2
. (4.89)

The saddle points k02 and k03 can be either purely imaginary or real depending on
whether |Ψ0| is larger or smaller than 1/

√
3. In every case, we obtain from Eq. (4.84)

λ(k01) = 0 , λ(k02) = λ(k03) = 1

4

(
3Ψ 2

0 − 1
)2

. (4.90)

The conclusion drawn from Eq. (4.90) is that the large-time approximation of the
wave packet growth rate can never be negative. Thus, according to the steepest-
descent approximation of Eq. (4.86), the dominant saddle points for the assessment
of the large-time behaviour of |ψ(x, t)| are k02 and k03, which are endowed with the
largest value of �(λ). This means that, for every choice of Ψ0, there is a transition
from stability to absolute instability in the limiting case α → 0 when Ψ0 = 1/

√
3.

Stated differently, in the limit α → 0, every constant solution Ψ = Ψ0 < 1/
√
3 can

be destabilised by normal modes with suitable values of k. Moreover, the amplitude
of a wave packet perturbation of Ψ = Ψ0 < 1/

√
3 ultimately grows in time, when t

is sufficiently large.
Let us now consider a nonzero driving force parameter, α. A quite simple case is

Ψ0 = 1/
√
3, where we obtain

k01 =
(

α

4
√
3

)1/3 √
3 + i

2
, k02 = −

(
α

4
√
3

)1/3 √
3 − i

2
,

k03 = −i

(
α

4
√
3

)1/3

. (4.91)

On account of Eqs. (4.84) and (4.91), we can write

�(λ(k01)) = �(λ(k02)) = −1

8

(
3

4

)1/3

α4/3 ,

λ(k03) = 1

4

(
3

4

)1/3

α4/3 . (4.92)

What can be concluded fromEq. (4.92), and from the steepest-descent approximation
of the right-hand side of Eq. (4.86), is that the saddle points that are pertinent to
establish the large-time behaviour of |ψ(x, t)| are k01 and k02. They are equipollent
in the sense that they yield the same negative growth rate,�(λ(k01)) = �(λ(k02)), as
shown by Eq. (4.92). On the other hand, the saddle point k03 is to be excluded as the
steepest-descent paths departing from this point run along the imaginary k-axis and
cannot be employed for the steepest-descent approximation of the perturbation wave



88 4 Instability of a Flow System

Fig. 4.9 Regions of convective and absolute instabilities for a convective Cahn–Hilliard process

packet. We can state that the solution Ψ = Ψ0 = 1/
√
3 is linearly stable for every

positive value of α. The same conclusion is achieved for every choice of Ψ0 with
Ψ0 > 1/

√
3. On the other hand, when 0 < Ψ0 < 1/

√
3, the transition to absolute

instability takes place only for a sufficiently small α, as illustrated in Fig. 4.9.
We point out that the holomorphy requirement is automatically satisfied, as λ(k)

is holomorphic throughout the complex k-plane, as it is shown by Eq. (4.84). Obvi-
ously, since we are applying the steepest-descent approximation to the wave packet
ψ(x, t) expressed by Eq. (4.86), the initial condition must be such that ψ̃(k, 0) is a
holomorphic function of k. In fact, as discussed in Sect. 3.5.3, we have to assume the
absence of any singularity of ψ̃(k, 0) in the region of the complex plane bounded by
the real k-axis, (k) = 0, and the deformed curve γ ∗ locally crossing the pertinent
saddle points through a path of steepest descent.

4.5 Some Considerations on Convective and Absolute
Instabilities

There is a wide literature regarding the concepts of convective and absolute insta-
bilities. Most of the references regard fluid dynamics and, among them, we mention
the books by Charru [15], Manneville [12], Schmid and Henningson [4]. A quite



4.5 Some Considerations on Convective and Absolute Instabilities 89

detailed analysis of absolute instability in flow system can be found in the review
papers by Huerre [9] and Huerre and Monkewitz [10].

The origin of the concept of absolute instability is usually dated back to studies
in the field of plasma physics as reported by Dysthe [5]. A discussion of the concept
of absolute instability compared to convective instability is available in the second
edition of the book on fluid mechanics by Landau and Lifshitz [11].2 It is also worth
being mentioned that a slightly different version of the example of one-dimensional
Burgers flow, employed in Sect. 4.2 as a test case to introduce convective and absolute
instabilities, was previously discussed by Brevdo and Bridges [3], as well as by
Barletta and Alves [2].

Several studies available in the literature, and the paper by Brevdo and Bridges [3]
is an example, approach the discussion of the transition from convective to absolute
instability by employing a representation of the perturbationwave packet in terms of a
double Fourier–Laplace transform. This choice yields a mildly complicated version
of the mathematical analysis employed for the study of instability, and generally
speaking, it is not strictly necessary to achieve a rigorous definition of the concept
of absolute instability.

Another aspect of the literature that somehow tends to complicate life for the
newcomers of absolute instability is the tendency to mix this topic with that of
spatial normal modes. Spatial stability analysis aims to establish the growth or decay
of a localized perturbation, periodic in time downstream of the basic flow. Hence,
things are adjusted as to control the growth in space of a perturbation instead of
assessing its growth in time at a given position, as happens with the convective
stability analysis. In practice, spatial normal modes differ from the temporal normal
modes, that is the usual Fourier modes employed throughout this book, as the former
type of modes features a complex wave number, k, and a purely imaginary time
growth, �(λ(k)) = 0, which is often described as a purely real angular frequency.
For instance, the book by Schmid and Henningson [15] presents spatial normal
modes as some sort of prerequisite for the rigorous definition of absolute instability.
This choice is perfectly correct although the purely mathematical process of saddle-
point detection in the complex k-plane is endowed with a physical meaning, i.e. the
dynamics of spatial normal modes, that may sound a bit cryptical for a first approach
to absolute instability. In fact, the analysis in the complex k-plane is needed as an
implementation of the steepest-descent approximation of awave packet perturbation.
As such, no physical meaning for the complex values of k is strictly necessary as a
justification of themethod. Following the presentation of absolute instability in terms
of spatial normalmodes,what is purelymathematical, as the holomorphy requirement
discussed in Sect. 3.5.3, becomes a physical process of collision between different
branches of spatial normal modes, described through the so-called Briggs’ method
[14, 15]. Such a scheme, only apparently different from that presented here, can
be extremely suggestive when the concept of absolute instability is familiar to the
reader. On the other hand, it may appear to be a little convoluted as a first approach
to this matter.

2In this book, the terminology convected instability is used instead of convective instability.
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