
Chapter 3
Large-time Behaviour of Wave Packets

3.1 What is a Holomorphic Function?

The main elements of the theory of the functions of a complex variable can be found
in many textbooks. Among these, the treatment presented in this section, as well as
in Sects. 3.2 and 3.3, mainly follows the much more extended presentations of this
topic available in Cartan [6], in Priestley [8], and in chapter 11 of Arfken et al. [4].

Let us recall the definition of set C. The set C coincides with R
2, in the sense

that to every pair (x, y) ∈ R
2 there corresponds one and only one complex number

z ∈ C defined as
z = x + i y . (3.1)

The real number x is called the real part of z, while real number y is called the
imaginary part of z,

x = �(z) , y = �(z) . (3.2)

The set R2 is also called the complex plane.
Unlike R

2, the set C is structured as a field. This means that it has not only an
inner operation of sum between any two elements, already present in R2, but also an
operation of product, not present in R

2. The product is defined as

{
z1 = x1 + i y1 ,

z2 = x2 + i y2 ,
�−→ z1 z2 = x1 x2 − y1 y2 + i (x1 y2 + y1 x2) . (3.3)

A special element of C is i, called the imaginary unit. On account of the definition
of product between any two complex numbers, given by Eq. (3.3), the product of the
imaginary unit and itself, i2, is equal to −1.

To every complex number z, there corresponds one and only one complex number
z, called the complex conjugate of z and defined as

z = x + i y , �−→ z = x − i y . (3.4)

© Springer Nature Switzerland AG 2019
A. Barletta, Routes to Absolute Instability in Porous Media,
https://doi.org/10.1007/978-3-030-06194-4_3

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06194-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-06194-4_3


30 3 Large-time Behaviour of Wave Packets

The product of z and z is a real number called the square modulus of z,

z = x + i y , �−→ z z = x2 + y2 ≡ |z|2 . (3.5)

The exponential of any z ∈ C is defined as the power series

ez =
∞∑

n=0

zn

n! . (3.6)

The main property of the exponential function is

ez ew = ez+w , ∀z, w ∈ C . (3.7)

The imaginary exponential function is an application R → C defined as θ → ei θ .
This function satisfies Euler’s formula,

ei θ = cos θ + i sin θ , ∀θ ∈ R . (3.8)

Since sin2 θ + cos2 θ = 1, Eq. (3.8) allows one to express any complex number with
modulus 1. Then,

∀z ∈ C ,
z

|z| = cos θ + i sin θ = ei θ . (3.9)

Equation (3.9) associates a real number θ to any complex number z. This real number
is called the argument of z, i.e. θ = arg(z). However, since the sine and cosine
functions are periodicwith period 2π , arg(z) is defined only up to integermultiples of
2π . Therefore, Eq. (3.9) gives rise to the so-called polar representation of a complex
number,

∀z ∈ C , z = |z| ei arg(z) = |z|
{
cos[arg(z)] + i sin[arg(z)]

}
. (3.10)

Since arg(z) is defined only up to integer multiples of 2π , it is not strictly speaking
an application C → R, but the so-called multifunction, or multivalued function. In
fact, for a given z ∈ C, arg(z) can be a real number in the interval [−π, π ], and a real
number in the interval [π, 3π ], and a real number in the interval [−3π,−π ], … .
The terms of this infinite sequence of real numbers can be obtained by adding 2πk,
with k ∈ Z , to the first real number (the value in the interval [−π, π ]). The value in
the interval [−π, π ] is called the principal branch of arg(z).

Another important multivalued function is the (natural) logarithm of z, defined as
the inverse function of ez . From Eq. (3.8), the main property of the logarithm is

ln(z w) = ln(z) + ln(w) , ∀z, w ∈ C . (3.11)

From Eqs. (3.10) and (3.11), one obtains
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ln(z) = ln(|z|) + i arg(z) . (3.12)

Equation (2.13) shows that the logarithm of z is a multivalued function C → C. We
have a principal branch of ln(z) defined by considering the principal branch of the
argument of z, i.e. arg(z) ∈ [−π, π ].
Example 3.1 In order to evaluate the logarithm of −1, we have just to recognise,
from Eq. (3.8), that

− 1 = ei (π+2πk) , ∀k ∈ Z . (3.13)

Then, we deduce that

ln(−1) = iπ + 2iπk , ∀k ∈ Z . (3.14)

The principal branch value of ln(−1) is iπ .

3.1.1 Derivative of a Complex-Valued Function

The metric structure in C defined by the distance |z − w| between any two complex
numbers z and w allows us to extend the notions of limit and continuity defined in the
elementary analysis of real functions. These notions are formally identical to those of
the real analysis. The same holds for the notions of derivative and differentiability.
A function f : D → C, where D is an open connected subset of C, is said to be
differentiable at a point z0 ∈ D if

lim
z→z0
z∈D

f (z) − f (z0)

z − z0
= f ′(z0) ∈ C . (3.15)

Thismeans that, on considering f (z) = f (x, y)where x = �(z) and y = �(z), there
exists the double limit

lim
h1→0,h2→0

h1,h2∈R

f (x0 + h1, y0 + h2) − f (x0, y0)

h1 + i h2
= f ′(z0) ∈ C , (3.16)

where x0 = �(z0) and y0 = �(z0). Obviously, the real numbers h1, h2 must be cho-
sen as sufficiently small so that (x0 + h1) + i (y0 + h2) ∈ D . For the limit in the
left-hand side of Eq. (3.16) to exist, its value f ′(z0) must be independent of the spe-
cial way it is evaluated. For instance, one may evaluate the limit by keeping h2 = 0,
so that

f ′(z0) = lim
h1→0
h1∈R

f (x0 + h1, y0) − f (x0, y0)

h1
= ∂ f (x, y)

∂x

∣∣∣∣
(x,y)=(x0,y0)

. (3.17)
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Alternatively, one may evaluate the limit by keeping h1 = 0, so that

f ′(z0) = lim
h2→0
h2∈R

f (x0, y0 + h2) − f (x0, y0)

i h2

= 1

i

∂ f (x, y)

∂y

∣∣∣∣
(x,y)=(x0,y0)

= − i
∂ f (x, y)

∂y

∣∣∣∣
(x,y)=(x0,y0)

.

(3.18)

From Eqs. (3.17) and (3.18), one may easily infer that, if f (z) = f (x, y) is differ-
entiable at z0 = x0 + i y0 ∈ D , then

∂ f (x, y)

∂x

∣∣∣∣
(x,y)=(x0,y0)

+ i
∂ f (x, y)

∂y

∣∣∣∣
(x,y)=(x0,y0)

= 0 . (3.19)

Definition 3.1 If D is an open connected subset of C, a function f : D → C is
holomorphic in D if it is differentiable at every point z0 ∈ D .

We note that a holomorphic function f (z) has a very important feature. Let f (z) =
f (x, y), with z = x + i y, and let f (x, y) = u(x, y) + i v(x, y), where u and v are
real-valued functions. Then, Eq. (3.19) implies that

∂ f (x, y)

∂x
+ i

∂ f (x, y)

∂y
= 0 , (3.20)

namely

∂

∂x
[u(x, y) + i v(x, y)] + i

∂

∂y
[u(x, y) + i v(x, y)] = 0 ,

∂u(x, y)

∂x
− ∂v(x, y)

∂y
+ i

[
∂v(x, y)

∂x
+ ∂u(x, y)

∂y

]
= 0 . (3.21)

From Eq. (3.21), one easily proves the following theorem.

Theorem 3.1 (Cauchy–Riemann equations) Let D be an open connected subset of
C, and f : D → C be holomorphic inD with f (z) = f (x, y) = u(x, y) + i v(x, y),
where u and v are real-valued. Then, the Cauchy–Riemann equations hold,

∂u(x, y)

∂x
= ∂v(x, y)

∂y
,

∂v(x, y)

∂x
= −∂u(x, y)

∂y
. (3.22)

Equation (3.22) reveals that a holomorphic function f (z) is something more than
a mere representation of a differentiable function f (x, y) in an open subset of R2.
On account of the definition of complex conjugation, we have

z = x + i y , z = x − i y ,

x = z + z

2
, y = z − z

2 i
, (3.23)
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so that

∂ f (x, y)

∂z
= ∂x

∂z

∂ f (x, y)

∂x
+ ∂y

∂z

∂ f (x, y)

∂y

= 1

2

∂ f (x, y)

∂x
− 1

2 i

∂ f (x, y)

∂y
= 1

2

[
∂ f (x, y)

∂x
+ i

∂ f (x, y)

∂y

]
.

(3.24)

On account of Eqs. (3.20) and (3.24), we conclude that, when a differentiable function
in an open subset of R2, f (x, y), defines a holomorphic function in an open subset
of C, then f (x, y) depends on z, but it cannot depend on the complex conjugate of
z, namely

∂ f (x, y)

∂z
= 0. (3.25)

In a completely symmetric way, one can prove that if a differentiable function,
f (x, y), in an open subset of R2 defines a holomorphic function in an open sub-
set of C, then f (x, y) can depend on z̄, but it cannot depend on z.

Example 3.2 We can easily prove that f : R2 → R
2 such that f (x, y) = (x2 +

y2, 1 − x2 − y2) does not define a holomorphic function f : C → C. In fact,
f (x, y) = (x2 + y2, 1 − x2 − y2) is differentiable inR2. However, f : C → C such
that f (z) = z z + i (1 − z z) cannot be a holomorphic function. In fact, f depends
on both z and z̄, so that, in particular, Eq. (3.25) is not satisfied.

Let us define a harmonic function as a twice differentiable function f (x, y) with
a vanishing Laplacian, namely

∂2 f (x, y)

∂x2
+ ∂2 f (x, y)

∂y2
= 0 . (3.26)

In other words, a harmonic function is any solution of Laplace’s equation (3.26).
A general theorem can be proved.

Theorem 3.2 A twice differentiable function f (z, z̄) is harmonic if and only if it is
the sum of a holomorphic function of z and a holomorphic function of z̄.

The proof of this theorem is as follows. Let us first assume that

f (z, z̄) = F(z) + G(z̄) , (3.27)

where F(z) and G(z̄) are differentiable. Then, from Eq. (3.23), we have

0 = ∂ F

∂ z̄
= ∂ F

∂x

∂x

∂ z̄
+ ∂ F

∂y

∂y

∂ z̄
= 1

2

∂ F

∂x
− 1

2 i

∂ F

∂y
. (3.28)

Thus, we have
∂ F

∂x
= − i

∂ F

∂y
. (3.29)
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As a consequence,

∂2F

∂x2
+ ∂2F

∂y2
= − i

∂2F

∂x ∂y
+ i

∂2F

∂y ∂x
= 0 . (3.30)

Moreover, we have
∂G

∂z
= 0 , (3.31)

so that we obtain, by employing Eq. (3.23),

0 = ∂G

∂z
= ∂G

∂x

∂x

∂z
+ ∂G

∂y

∂y

∂z
= 1

2

∂G

∂x
+ 1

2 i

∂G

∂y
. (3.32)

Thus, we can write
∂G

∂x
= i

∂G

∂y
. (3.33)

As a consequence,

∂2G

∂x2
+ ∂2G

∂y2
= i

∂2G

∂x ∂y
− i

∂2G

∂y ∂x
= 0 . (3.34)

Therefore, we can conclude that F(z) + G(z̄) is a harmonic function. Conversely,
let us now assume that f (z, z̄) is harmonic. Then, we can express

∂2 f

∂x2
= ∂

∂x

∂ f

∂x
= ∂

∂x

(
∂ f

∂z

∂z

∂x
+ ∂ f

∂ z̄

∂ z̄

∂x

)
= ∂

∂x

(
∂ f

∂z
+ ∂ f

∂ z̄

)

= ∂

∂z

(
∂ f

∂z
+ ∂ f

∂ z̄

)
+ ∂

∂ z̄

(
∂ f

∂z
+ ∂ f

∂ z̄

)

= ∂2 f

∂z2
+ ∂2 f

∂ z̄2
+ 2

∂2 f

∂z ∂ z̄
,

(3.35)

and

∂2 f

∂y2
= ∂

∂y

∂ f

∂y
= ∂

∂y

(
∂ f

∂z

∂z

∂y
+ ∂ f

∂ z̄

∂ z̄

∂y

)
= i

∂

∂y

(
∂ f

∂z
− ∂ f

∂ z̄

)

= − ∂

∂z

(
∂ f

∂z
− ∂ f

∂ z̄

)
+ ∂

∂ z̄

(
∂ f

∂z
− ∂ f

∂ z̄

)

= −∂2 f

∂z2
− ∂2 f

∂ z̄2
+ 2

∂2 f

∂z ∂ z̄
.

(3.36)

Therefore,

0 = ∂2 f

∂x2
+ ∂2 f

∂y2
= 4

∂2 f

∂z ∂ z̄
, (3.37)
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a condition which can be satisfied if and only if f is the sum of a function of z and
a function of z̄, namely

f (z, z̄) = F(z) + G(z̄) . (3.38)

3.1.2 Path Integration in C

A path or a contour in C is nothing but an oriented open or closed curve in the
complex plane. Mathematically, a path inC is defined by a differentiable application
γ : [t1, t2] → C, γ = γ (t), where [t1, t2] ⊆ R is a real interval. Then, γ (t) is the
parametrisation of the path. For simplicity of notation, we will denote the path with
the same symbol γ of its parametrisation. The path integral on γ of a function f (z)
is defined as ∫

γ

f (z) d z =
t2∫

t1

f [γ (t)] γ ′(t) d t . (3.39)

It may be objected that the result of a path integration on a given oriented curve in the
complex planemay be dependent on the chosen parametrisation of that curve. In fact,
it may be proved that, under suitable conditions, two different parametrisations yield
the same contour integral. In the case of closed contours γ , the mentioned suitable
conditions mainly depend on the so-called winding number of the contour.

Example 3.3 To illustrate this point, let us evaluate

∫
γ

d z

z
, (3.40)

where γ is the unit circle centred in z = 0 and oriented counterclockwise. A
parametrisation of γ can be given by

γ (θ) = cos θ + i sin θ , θ ∈ [0, 2π ] . (3.41)

On account of Eq. (3.8), one may equivalently write

γ (θ) = ei θ , θ ∈ [0, 2π ] . (3.42)

Then, on account of Eq. (3.39), one has

∫
γ

d z

z
= i

2π∫
0

1

ei θ
ei θ d θ = i

2π∫
0

d θ = 2π i . (3.43)
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We note that one could have also employed other parametrisations of the unit circle,
such as

γ (θ) = ei θ = cos θ + i sin θ, θ ∈ [0, 4π ] , (3.44)

or
γ (θ) = ei θ = cos θ + i sin θ, θ ∈ [0, 6π ] . (3.45)

The result of the integration would have been 4π i in the first case and 6π i in the
second case. However, the winding number of the parametrisation defined on [0, 4π ]
is 2, and the winding number of the parametrisation defined on [0, 6π ] is 3. This
means that, in the first case, the point z = γ (t) undergoes two complete turns around
z = 0 and, in the second case, three complete counterclockwise turns around z = 0.

Incidentally, on relaxing the assumption of counterclockwise orientation of the
pathγ , one can devise both positive and negativewinding numbers. The latter concept
being relative to clockwise-oriented closed paths.

Here and in the following, if not differently specified, we will always assume that
the winding number of a closed path is 1.

3.1.3 Homotopy

We consider an open connected subset D ⊆ C and two closed paths γ1 and γ2 both
oriented counterclockwise, or both oriented clockwise. If there exists a continuous
map,

Λ : D × [0, 1] → D , (3.46)

such that
γ1(t) = Λ[γ1(t), 0], γ2(t) = Λ[γ1(t), 1] , (3.47)

for every t , then γ1 and γ2 are homotopic. In other words, γ1 and γ2 are said to be
homotopic in D if γ1 can be continuously deformed into γ2.

A special case is that of an oriented closed path γ which is homotopic in D to a
point z0 ∈ D . In this case, γ can be continuously shrunk to a point z0.

Theorem 3.3 Let us consider an open connected subsetD ⊆ Cand two closed paths
γ1 ⊆ D and γ2 ⊆ D both oriented counterclockwise, or both oriented clockwise. If
f : D → C is holomorphic, and if γ1 and γ2 are homotopic, then

∫
γ1

f (z) d z =
∫
γ2

f (z) d z . (3.48)

Corollary 3.1 Let us consider an open connected subset D ⊆ C and a closed path
γ ⊆ D homotopic to a point z0 ∈ D . If f : D → C is holomorphic, then
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∫
γ

f (z) d z = 0 . (3.49)

We note that the thesis of Corollary3.1 is not incompatible with the result obtained
working out the example regarding function f (z) = 1/z. In fact, in that exercise, the
function f (z) = 1/z is holomorphic in the punctured complex plane D = C \ {0},
due to the singularity in z = 0. Then, the unit circle centred in z = 0 is included in
D while the point z = 0 is not. Thus, one cannot even question about the homotopy
in D of the unit circle and the point z = 0.

IfD ⊆ C is open and connected, and if every closed path γ inD is homotopic to
a point in D , then D is called simply connected. Obviously, the punctured complex
plane C \ {0} is not simply connected.

Corollary 3.2 Let us consider a simply connected subset D ⊆ C and a closed path
γ ⊆ D . If f : D → C is holomorphic, then

∫
γ

f (z) d z = 0 . (3.50)

3.2 Laurent Expansions, Singular Points

Let us consider an annulus,

A = {z ∈ C : R1 < |z| < R2} . (3.51)

A function f : A → C has a Laurent expansion inA if there exists a power series,

∞∑
n=−∞

an zn = · · · + a−n

zn
+ · · · + a−2

z2
+ a−1

z
+ a0 + a1 z

+ a2 z2 + · · · + an zn + · · · ,

(3.52)

that converges in A and whose sum coincides with f (z) for every z ∈ A .

Theorem 3.4 Any holomorphic function in an annulus A , defined by Eq. (3.51),
has one and only one Laurent expansion.

An interesting special case is the limit R1 → 0, meaning a punctured disc

A0 = {z ∈ C : 0 < |z| < R} . (3.53)

Let us consider a holomorphic function f (z) in the punctured discA0. If f (z) cannot
be extended to a holomorphic function in the disc
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˜A0 = {z ∈ C : |z| < R} , (3.54)

the origin z = 0 is an isolated singularity of f (z). In other words, z = 0 is an isolated
singularity of f (z) unless the Laurent expansion of f (z) is such that

a−n = 0 , ∀n ∈ N . (3.55)

From the analysis of the Laurent expansion of f (z), there are two possible kinds of
isolated singularities.

• A pole — If only a finite number of coefficients a−n , with n ∈ N , is nonzero, the
isolated singularity is a pole. If N is the largest N ∈ N such that a−N �= 0, we say
that the pole is multiple with order N . If the largest N ∈ N such that a−N �= 0 is
N = 1, we say that the pole is simple.

• An essential singularity — If there is an infinite number of nonzero coefficients
a−n , with n ∈ N , the isolated singularity is an essential singularity.

We note that, if f (z) is a holomorphic function in the punctured discA0, Eq. (3.53),
with amultiple pole of order N , then zN f (z) is holomorphic in the disc ˜A0, Eq. (2.31).

We note that

f (z) = 1

z
(3.56)

has a simple pole at z = 0, while

f (z) = e1/z (3.57)

has an essential singularity at z = 0.
So far, we discussed the singularities of a function f (z). We know that there also

exist multivalued functions, an example being the logarithm ln(z), Eq. (3.12). We
know that there exist infinite branches of ln(z), each one determining a different
value associated with a given z. Other multivalued functions can be defined with the
fractional powers of z. An example is

f (z) = √
z = √|z| ei arg(z)/2 . (3.58)

If we consider the first branch arg(z) ∈ [−π, π ], we obtain values of
√

z with a
positive or zero real part. If we consider another branch, say [π, 3π ], we obtain
values of

√
z with a negative or zero real part. Both in the case of ln(z) and in the

case of
√

z, the multivaluedness can be represented by a branch cut in the complex
plane (see Fig. 3.1). The branch cut is the wavy line on the half-axis Re(z) � 0.
Every time we cross the branch cut and we enter a new branch of the multivalued
function. The origin of the branch cut, z = 0, is to be considered as a singularity of
the multivalued function, even if in a sense different from the isolated singularities
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Fig. 3.1 Branch cut in the
complex plane

of the functions discussed above. In fact, in this case we don’t base our definition on
the features of a Laurent series.

For the sake of simplicity, our definitions of Laurent series, isolated singularity,
pole and essential singularity were relative to the origin. The same definitions may
be relative to any other point z = z0 ∈ C without any substantial difference. Indeed,
we must consider an annulus,

Az0 = {z ∈ C : R1 < |z − z0| < R2} . (3.59)

Then, a Laurent expansion of a function f : Az0 → C exists if the power series,

∞∑
n=−∞

an (z − z0)
n = · · · + a−n

(z − z0)
n + · · · + a−2

(z − z0)
2 + a−1

z − z0
+ a0

+ a1 (z − z0) + a2 (z − z0)
2 + · · · + an (z − z0)

n + · · · ,

(3.60)

converges to f (z) for every z ∈ Az0 .
Let us consider an open connected subset D ⊆ C. If f : D → C is holomorphic

in D except for a set of isolated singularities of f (z) classified as poles, then f (z)
is said to be meromorphic in D .

3.3 Residues

Let f (z) be a holomorphic function in the punctured disc centred in z = z0,
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Az0 = {z ∈ C : 0 < |z − z0| < R} , (3.61)

and let z = z0 be a multiple pole of order N . Then, we may write the Laurent
expansion

f (z) =
∞∑

n=−N

an(z − z0)
n , ∀z ∈ Az0 . (3.62)

The coefficient a−1 is called the residue of f (z) at z = z0,

Res( f (z); z0) = a−1 . (3.63)

We can prove that, if z = z0 is a simple pole of a holomorphic function f (z) in the
punctured disc Az0 , Eq. (3.61), then the residue of f (z) at z = z0 can be evaluated
as

Res( f (z); z0) = lim
z→z0

(z − z0) f (z) . (3.64)

The proof is as follows. We express f (z) through its Laurent expansion

f (z) = a−1

z − z0
+ a0 + a1(z − z0) + a2(z − z0)

2 + · · · . (3.65)

Then,

(z − z0) f (z) = a−1 + a0(z − z0) + a1(z − z0)
2 + a2(z − z0)

3 + · · · . (3.66)

By taking the limit z → z0 at both sides of this equation, we obtain

lim
z→z0

(z − z0) f (z) = a−1 = Res( f (z); z0) . (3.67)

Furthermore, we can prove that, if z = z0 is a multiple pole of order N > 1 of a
holomorphic function f (z) in the punctured discAz0 , Eq. (3.61), then the residue of
f (z) at z = z0 can be evaluated as

Res( f (z); z0) = 1

(N − 1)! lim
z→z0

dN−1

d zN−1

[
(z − z0)

N f (z)
]

. (3.68)

Equation (3.68) can be proved by expressing f (z) through its Laurent expansion, so
that we obtain

(z − z0)N f (z) = a−N + a−(N−1)(z − z0) + · · ·
+ a−1(z − z0)N−1 + a0(z − z0)N + a1(z − z0)N+1 . . . .

(3.69)

One may easily verify that
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dN−1

d zN−1
(z − z0)

n = 0 , 0 � n < N − 1 ,

dN−1

d zN−1
(z − z0)

n = n!
(n − N + 1)! (z − z0)

n−N+1 , n � N − 1 . (3.70)

Thus, by employing Eqs. (3.67)–(3.69), we obtain

lim
z→z0

dN−1

d zN−1

[
(z − z0)

N f (z)
] = a−1 (N − 1)! = (N − 1)! Res( f (z); z0) . (3.71)

Theorem 3.5 (Cauchy’s Residue Theorem) Let us consider an open connected sub-
set D ⊆ C and a closed counterclockwise-oriented path γ ⊆ D . Let f (z) be a mero-
morphic function in D with a finite number of poles z1, z2, . . . , zm inside the region
bounded by γ , and such that γ does not pass through any singularities of f (z). Then,

∫
γ

f (z) d z = 2π i
m∑

k=1

Res( f (z); zk) . (3.72)

Cauchy’s residue theorem is of paramount importance in the complex analysis,
as it provides an extremely effective tool for the evaluation of integrals. For this
purpose, Theorem3.5 is completed by a useful lemma.

Lemma 3.1 Let f (z) be a meromorphic function in an open connected subset D ⊆
C that includes the sector of the complex plane

S = {z ∈ C : θ1 < arg(z) < θ2} . (3.73)

Let γ0(R; θ1, θ2) be the arc of the circle |z| = R included in S and oriented coun-
terclockwise. If

∀z ∈ S , lim|z|→∞ z f (z) = 0, (3.74)

then

lim
R→∞

∫
γ0(R;θ1,θ2)

f (z) d z = 0. (3.75)

3.3.1 Evaluation of Integrals

Let us consider a few examples, in order to see how Cauchy’s residue theorem can
be a very useful method for the evaluation of integrals.

Example 3.4 We want to evaluate the integral
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Fig. 3.2 Closed semicircular
path used in Example3.4

I =
∞∫

−∞

d x

x2 − 4x + 5
. (3.76)

Obviously, I is given by the limit R → ∞ of the integral

IR =
R∫

−R

d x

x2 − 4x + 5
. (3.77)

Function

f (z) = 1

z2 − 4z + 5
= 1

(z − 2 + i)(z − 2 − i)
(3.78)

is meromorphic in C with two simple poles in z = 2 − i and in z = 2 + i.
If we consider the closed semicircular path γ sketched in Fig. 3.2, the pole z =

2 + i is contained in the region bounded by γ , provided that R is sufficiently large.
The following identity holds

∫
γ

d z

z2 − 4z + 5
= IR +

∫
γ0(R;0,π)

d z

z2 − 4z + 5
, (3.79)

where
γ0(R; 0, π) = {z ∈ C : |z| = R, Im(z) > 0} . (3.80)

On account of Lemma3.1, we can write

lim
R→∞

∫
γ0(R;0,π)

d z

z2 − 4z + 5
= 0 . (3.81)
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Therefore, by invoking Cauchy’s residue theorem, we may write

I = lim
R→∞

∫
γ

d z

z2 − 4z + 5

= 2π i Res

(
1

(z − 2 + i)(z − 2 − i)
; 2 + i

)
= 2π i

1

2 i
= π ,

(3.82)

where Eq. (3.64) has been used for the evaluation of the residue.

Example 3.5 Let us consider the integral

I =
2π∫
0

d x

sin x + cos x + 5
. (3.83)

We note that a parametrisation of the unit circle,

C = {z ∈ C : |z| = 1} , (3.84)

oriented counterclockwise, is

z = ei x = cos x + i sin x , x ∈ [0, 2π ] , (3.85)

so that

d z = i ei xd x = i z d x , d x = − i
d z

z
. (3.86)

Then, on the unit circle C , we have

1

z
= e−i x = cos x − i sin x , x ∈ [0, 2π ] . (3.87)

As a consequence, we may write

cos x = 1

2

(
z + 1

z

)
, sin x = 1

2 i

(
z − 1

z

)
,

d x

sin x + cos x + 5
= − 2i d z

(1 − i)z2 + 10z + (1 + i)
. (3.88)

Therefore, we have

I = − 2 i
∫
C

d z

(1 − i)z2 + 10z + (1 + i)
. (3.89)

The function
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Fig. 3.3 Closed semicircular
path used in Example3.6

f (z) = 1

(1 − i)z2 + 10z + (1 + i)
(3.90)

has two simple poles at

z1 = 1 + i

2

(√
23 − 5

)
, z2 = − 1 + i

2

(√
23 + 5

)
. (3.91)

Only the pole z1 is in the region bounded by C , |z1| < 1, while z2 is outside this
region, |z2| > 1. Hence, on employing Cauchy’s residue theorem, we obtain

I = 4π Res( f (z); z1) = 2π√
23

. (3.92)

Example 3.6 We are now interested in evaluating the integrals

I1 =
∞∫

−∞

cos(kx)

x2 + 1
d x , I2 =

∞∫
−∞

sin(kx)

x2 + 1
d x , k > 0 . (3.93)

We note that, on account of Euler’s formula (3.8), we may write

I1 = �(I ) , I2 = −�(I ) , (3.94)

where

I =
∞∫

−∞

e−i kx

x2 + 1
d x . (3.95)

A comparison with the definition given by Eq. (2.2) leads us to the conclusion that
I is the Fourier transform of function F(x) = √

2π/(1 + x2) for the range k > 0.
Then, we can focus on the evaluation of I . We change the integration variable,
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y = kx , x = y

k
, d x = d y

k
, (3.96)

so that

I = k

∞∫
−∞

e−i y

y2 + k2
d y . (3.97)

On considering the closed semicircular path in Fig. 3.3, we write

∫
γ

e−i z

z2 + k2
d z = −

R∫
−R

e−i y

y2 + k2
d y +

∫
γ0(R,π,2π)

e−i z

z2 + k2
d z , (3.98)

where
γ0(R;π, 2π) = {z ∈ C : |z| = R, �(z) < 0} . (3.99)

Since �(z) < 0, we have

lim|z|→∞
z e−i z

z2 + k2
= 0 . (3.100)

Therefore, as consequence of Lemma3.1, we obtain

lim
R→∞

∫
γ0(R,π,2π)

e−i z

z2 + k2
d z = 0 , (3.101)

so that

I = − k lim
R→∞

∫
γ

e−i z

z2 + k2
d z . (3.102)

We employ Cauchy’s residue theorem to evaluate

∫
γ

e−i z

z2 + k2
d z . (3.103)

Function

f (z) = e−i z

z2 + k2
= e−i z

(z − i k)(z + i k)
(3.104)

has two simple poles z1 = i k and z2 = −i k. The closed path γ encircles the pole
z2, but not z1, provided that R is sufficiently large (R > k). Then, we have
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I = − k lim
R→∞

∫
γ

e−i z

z2 + k2
d z = − 2πk i Res( f (z); z2) . (3.105)

The residue is given by

Res( f (z); z2) = − e−k

2i k
. (3.106)

Therefore, we conclude that

I = 2πk i
e−k

2i k
= π e−k . (3.107)

This means that
I1 = π e−k , I2 = 0 . (3.108)

3.4 The Laplace Transform

The Laplace transform of a function f (t) is given by

L{ f (t)}(s) = f̃ (s) =
∞∫
0

f (t) e−st d t . (3.109)

The transform L{ f (t)} is defined in the complex half-plane �(s) > a where a is a
real constant such that the following condition holds:

| f (t)| < C eat , ∀t � 0, (3.110)

with a proper choice of a positive real constant C . A sketch of the domain where
f̃ (s) is defined is given in Fig. 3.4.

3.4.1 Inversion of the Laplace Transform

If the Laplace transform of a function f (t) is known, one may determine f (t). To
achieve this task, there exists a procedure for the inversion of the Laplace transform.
The inversion formula of the Laplace transform is as follows:

f (t) = L−1{ f̃ (s)}(t) = 1

2π i

p+i∞∫
p−i∞

f̃ (s) est d s , (3.111)
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Fig. 3.4 Domain where the
Laplace transform f̃ (s) is
defined

for every real number p > a. The integration must be performed along a line path in
the complex plane. This path is given by a vertical line that intersects the real axis,
�(s) = 0, at s = p (see Fig. 3.5).

Hence, the evaluation of the inverse Laplace transform implies the calculation of
an integral in the complex plane. The theory of the integration in C, and Cauchy’s
residue Theorem3.5, is a strong basis for the inversion of the Laplace transform. In
the simplest cases, one may utilise proper tables where the pairs [ f (t), f̃ (s)] are
reported (see, for instance, Debnath and Bhatta [7]).

3.4.2 Main Properties of the Laplace Transform

Let f (t) and g(t) be any two functions satisfying Eq. (3.110). Among the main
properties of the Laplace transform, we mention the following:

• Linearity
For every pair of real constants (C1, C2), we have

L {C1 f (t) + C2 g(t)} (s) = C1 L{ f (t)}(s) + C2 L{g(t)}(s)
= C1 f̃ (s) + C2 g̃(s) .

(3.112)

• Derivative
On considering the first derivative of f (t) and evaluating its Laplace transform,
we obtain
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Fig. 3.5 Integration path for
the inversion formula,
Eq. (3.111)

L
{

f ′(t)
}
(s) =

∞∫
0

f ′(t) e−st d t = [
f (t) e−st

]∞
0 + s

∞∫
0

f (t) e−st d t

= s L{ f (t)}(s) − f (0) = s f̃ (s) − f (0) .

(3.113)

In a similar way, one may evaluate the Laplace transforms of higher-order deriva-
tives,

L
{

f ′′(t)
}
(s) = s2 f̃ (s) − s f (0) − f ′(0) ,

L
{

f (n)(t)
}
(s) = sn f̃ (s) − sn−1 f (0)
− sn−2 f ′(0) − · · · − f (n−1)(0) ,

(3.114)

where n � 2.

• Translation
The Laplace transform of f (t) ebt , where b ∈ R and b � a so that the condition
expressed by Eq. (3.110) is satisfied by f (t) ebt , is given by

L
{

f (t) ebt
}
(s) =

∞∫
0

f (t) e−(s−b)t d t = f̃ (s − b) . (3.115)

In the special case where f (t) = 1, we get
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L
{
ebt

}
(s) =

∞∫
0

e−(s−b)t d t = 1

s − b
. (3.116)

• Scaling
Let us consider the Laplace transform of f (bt), where b > 0. One has

L { f (bt)} (s) =
∞∫
0

f (bt) e−st d t = 1

b

∞∫
0

f (u) e−su/b d u

= 1

b
f̃
( s

b

)
. (3.117)

• Convolution
The Laplace transform of the convolution between two functions f (t) and g(t),
f (t)�g(t), defined as

f (t)�g(t) =
t∫

0

f (t̂) g(t − t̂) d t̂ , (3.118)

is given by the product of the Laplace transforms of f (t) e g(t),

L{ f (t)�g(t)}(s) = L{ f (t)}(s)L{g(t)}(s) = f̃ (s) g̃(s) . (3.119)

Although the definition of convolution given by Eq. (3.118) differs from the defini-
tion of convolution stated for the Fourier transform, Eq. (2.19), it shares the same
properties,

commutative � f �g = g� f ; (3.120)

associative � f �(g�h) = ( f �g)�h ; (3.121)

distributive � f �(g + h) = f �g + f �h . (3.122)

• Ratio between two polynomials
Let us consider f̃ (s) = G̃(s)/H̃(s), where G̃(s) and H̃(s) are two polynomials
such that the degree of H̃(s) is greater than that of G̃(s), and that H̃(s) has only
zeros with algebraic multiplicity 1. In that case, f̃ (s) can be expressed as the sum
of partial fractions,

f̃ (s) = c1
s − b1

+ c2
s − b2

+ · · · + cn

s − bn
, (3.123)

where b1, b2, . . . , bn are the zeros of H̃(s) and the coefficients ci can be evaluated
as
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ck = lim
s→bk

[(s − bk) f̃ (s)], ∀k = 1, . . . , n . (3.124)

In other words, the coefficients ck are the residues of f̃ (s) at the simple poles
s = bk . On account of the linearity and of the translation properties of the Laplace
transform, we obtain

f (t) = c1 e
b1t + c2 e

b2t + · · · + cn e
bnt =

n∑
k=1

ck e
bk t . (3.125)

3.4.3 Meromorphic Functions

Let us assume that f̃ (s) has no essential singularities and that its poles b1, b2, . . . ,
bn, . . . are in the complex half-plane �(s) < p. The integral expressing the inverse
Laplace transformof f̃ (s), Eq. (3.111), can be evaluated through a limit of the integral
of

f̃ (s) est (3.126)

evaluated on a closed path, γ , in the complex plane called the Bromwich contour,

f (t) = lim
R→∞

⎡
⎣ 1

2π i

∫
γ

f̃ (s) est d s

⎤
⎦ , (3.127)

where R is the radius of the curved part of the Bromwich contour. A sketch of this
contour in the complex plane is given in Fig. 3.6.

In the limit R → ∞, the integral on the semicircular part of the Bromwich contour
tends to zero provided that, on this semicircle, the following condition holds:

| f̃ (s)| <
M

Rκ
, (3.128)

where M and κ are positive constants [8, 9]. Moreover, in the limit R → ∞, the
integral along the vertical line of the Bromwich contour tends to coincide with the
integral that appears in the inversion formula of the Laplace transform, Eq. (3.111).
In the limit R → ∞, the Bromwich contour encloses all the poles of f̃ (s). Hence, the
inverse Laplace transform of f̃ (s) can be evaluated by employing Cauchy’s residue
Theorem3.5,
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f (t) = 1

2π i

p+i∞∫
p−i∞

f̃ (s) est d s = lim
R→∞

⎡
⎣ 1

2π i

∫
γ

f̃ (s) est d s

⎤
⎦

=
∑

n

Res
(

f̃ (s) est ; bn

)
,

(3.129)

where γ is the Bromwich contour.
Equation (3.129) is the basis for the evaluation of the inverse Laplace transform

of f̃ (s) in all cases where f̃ (s) does not have either essential singularities or branch
points.

3.5 Saddle Points

If D is an open connected subset of C and D◦ its correspondent open connected
subset of R2, a holomorphic function f : D → C can be rewritten as a function of
two real variables, f : D◦ → R

2, by expressing z = x + i y and by evaluating the
real and imaginary parts of f (z). We have already pointed out that the resulting
f (x, y) is quite special on discussing the Cauchy–Riemann equations, Theorem3.1.
Other aspects of these special features are discussed in the following.

Let us denote by

u(x, y) = �( f (x + i y)) , v(x, y) = �( f (x + i y)) , (3.130)

Fig. 3.6 Bromwich contour
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the real and imaginary parts of a holomorphic function f (z). Then, we can write

f (z) = u(x, y) + i v(x, y) . (3.131)

3.5.1 Stationary Point

Let us consider a point z0 = x0 + i y0 ∈ D such that f ′(z0) = 0. Since

x = z + z

2
, y = z − z

2i
, (3.132)

we obtain

f ′(z) =
[
∂u(x, y)

∂x

∂x

∂z
+ ∂u(x, y)

∂y

∂y

∂z

]
+ i

[
∂v(x, y)

∂x

∂x

∂z
+ ∂v(x, y)

∂y

∂y

∂z

]

= 1

2

[
∂u(x, y)

∂x
− i

∂u(x, y)

∂y

]
+ i

2

[
∂v(x, y)

∂x
− i

∂v(x, y)

∂y

]

= 1

2

[
∂u(x, y)

∂x
+ ∂v(x, y)

∂y

]
+ i

2

[
∂v(x, y)

∂x
− ∂u(x, y)

∂y

]
.

(3.133)

The condition f ′(z0) = 0 implies that, at (x, y) = (x0, y0), the following equations
hold

∂u

∂x
= − ∂v

∂y
,

∂v

∂x
= ∂u

∂y
. (3.134)

By invoking the Cauchy–Riemann equations (3.22), one may conclude that
Eqs. (3.22) and (3.134) can hold simultaneously at (x, y) = (x0, y0) if and only if

∂u

∂x
= 0 = ∂u

∂y
,

∂v

∂x
= 0 = ∂v

∂y
. (3.135)

Equation (3.135) means that (x, y) = (x0, y0), i.e. z = z0, is a stationary point of
both functions u and v.

The determinant of the Hessian matrix of either u or v may provide a charac-
terisation of the stationary point [3]. We have to evaluate the second derivatives of
f (x, y),

∂ f (x, y)

∂x
= f ′(z)

∂z

∂x
= f ′(z) ,

∂ f (x, y)

∂y
= f ′(z)

∂z

∂y
= i f ′(z) ,

∂2 f (x, y)

∂x2
= f ′′(z),

∂2 f (x, y)

∂y2
= − f ′′(z) ,

(3.136)

so that we may conclude that f (x, y) is a harmonic function, i.e. a solution of
Laplace’s equation,
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∂2 f (x, y)

∂x2
+ ∂2 f (x, y)

∂y2
= 0 . (3.137)

This is also a consequence of Theorem3.2. Since f = u + i v, Eq. (3.137) yields

∂2 f (x, y)

∂x2
+ ∂2 f (x, y)

∂y2
= 0 =⇒

⎧⎪⎪⎨
⎪⎪⎩

∂2u(x, y)

∂x2
+ ∂2u(x, y)

∂y2
= 0 ,

∂2v(x, y)

∂x2
+ ∂2v(x, y)

∂y2
= 0 ,

(3.138)

meaning that both u(x, y) and v(x, y) are harmonic functions. Equation (3.138)
allows one to conclude that the Hessian matrix of u(x, y) has a non-positive deter-
minant at the stationary point (x0, y0), and likewise for v(x, y),

∣∣∣∣∣∣∣∣

∂2u

∂x2

∂2u

∂x ∂y
∂2u

∂y ∂x

∂2u

∂y2

∣∣∣∣∣∣∣∣
= −

(
∂2u

∂x2

)2
−

(
∂2u

∂x ∂y

)2
� 0 . (3.139)

As a consequence of Eq. (3.139), the eigenvalues of theHessianmatrix cannot be both
positive or both negative, so that (x0, y0) can be neither a local maximum nor a local
minimum. On the other hand, (x0, y0) can be a saddle point for u(x, y)whenever the
determinant of the Hessian matrix is strictly negative. With just the same argument,
based on Eq. (3.138), this result can be achieved also for v(x, y), namely

∣∣∣∣∣∣∣∣

∂2v

∂x2

∂2v

∂x ∂y
∂2v

∂y ∂x

∂2v

∂y2

∣∣∣∣∣∣∣∣
= −

(
∂2v

∂x2

)2
−

(
∂2v

∂x ∂y

)2
� 0 . (3.140)

We note that the determinant of the Hessian matrix of either u(x, y) or v(x, y) is
strictly negative at the stationary point (x, y) = (x0, y0) when f ′′(z0) �= 0. In fact,
by employing the Cauchy–Riemann equations (3.22), one obtains

∂2u(x, y)

∂x2
= ∂2v(x, y)

∂x ∂y
,

∂2v(x, y)

∂x2
= − ∂2u(x, y)

∂x ∂y
. (3.141)

Thus, on account of Eqs. (3.136), (3.139), (3.140) and (3.141), one can infer that the
determinant of the Hessian matrix of u(x, y) at (x, y) = (x0, y0) is given by

∣∣∣∣∣∣∣∣

∂2u

∂x2

∂2u

∂x ∂y
∂2u

∂y ∂x

∂2u

∂y2

∣∣∣∣∣∣∣∣
= −

(
∂2u

∂x2

)2
−

(
∂2v

∂x2

)2
= −

∣∣∣∣∂
2 f

∂x2

∣∣∣∣
2

= −| f ′′(z0)|2 � 0 .

(3.142)
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Fig. 3.7 Illustration of Theorem3.6: contour lines of the real part of f (z) around a saddle point
z0 = x0 + i y0 and three-dimensional plot of u(x, y) = �( f (x, y)) at the saddle point

Likewise, for the determinant of the Hessian matrix of v(x, y) at (x, y) = (x0, y0),
one obtains

∣∣∣∣∣∣∣∣

∂2v

∂x2

∂2v

∂x ∂y
∂2v

∂y ∂x

∂2v

∂y2

∣∣∣∣∣∣∣∣
= −

(
∂2u

∂x2

)2
−

(
∂2v

∂x2

)2
= −

∣∣∣∣∂
2 f

∂x2

∣∣∣∣
2

= −| f ′′(z0)|2 � 0 .

(3.143)
The conclusion of this reasoning can be stated in the form of a theorem.

Theorem 3.6 LetD be an open connected subset ofC, and f : D → C be holomor-
phic in D . If there exists z0 = x0 + i y0 ∈ D such that f ′(z0) = 0 and f ′′(z0) �= 0,
then both the real and the imaginary parts of f (x, y) = f (x + i y) have a saddle
point at (x, y) = (x0, y0).

The saddle-point concept as discussed in Theorem3.6 is drawn qualitatively in
Fig. 3.7. In the figure caption, it is mentioned the real part of f (z), but there is no
intrinsic difference in the graphical features if one deals with the imaginary part.

A comment on Theorem3.6 can be useful. One may wonder what happens when
f ′′(z0) = 0. The answer is that, strictly speaking, one cannot employ the criterion
based on the sign of the determinant of theHessianmatrix, as it becomes inconclusive
when the determinant vanishes [3]. In fact, one may distinguish a case where all
derivatives of f (z) vanish at z = z0, namely f (n)(z0) = 0 for all n � 1. In this case,
a Taylor series expansion of f (z) around z = z0 is sufficient to prove that f (z)
is constant over the open connected subset of D . A more interesting alternative is
when there exists n � 3 such that f (n)(z0) �= 0. In this case, strictly speaking, we
do not have a saddle point at z = z0. In fact, we are dealing with a saddle point in a
generalised sense. A sketch of the geometrical features in a sample case with n = 3 is
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Fig. 3.8 Contour lines of the real part of f (z) around a monkey saddle point z0 = x0 + i y0, where
f ′(z0) = f ′′(z0) = 0 with f ′′′(z0) �= 0, and three-dimensional plot of u(x, y) = �( f (x, y)) at the
saddle point

presented in Fig. 3.8. This case is also called monkey saddle, as a saddle for monkeys
should allow a place for the tail and not only for the legs. For the generalised saddle
points, when the lowest n such that f (n)(z0) �= 0 is greater than 2, we call n the order
of the saddle point. A saddle point where f ′′(z0) �= 0 has order 2.

Whatever is the order of the saddle point, there exist ascending and descending
paths that depart from z0. This is clearly seen in the three-dimensional plots, reported
in Figs. 3.7 and 3.8, displaying �( f (z)) versus (x, y). Among these ascending and
descending paths, one may graphically detect those of steepest ascent and steepest
descent. These paths are central in the formulation of the asymptotic approximation
of wave packets at large times.

3.5.2 Paths from a Saddle Point

We consider an open connected subset ofC, namelyD , and an holomorphic function
f : D → C. Let z0 ∈ D be a saddle point of order n.
In a small neighbourhood of z0, one can express z as

z = z0 + r ei ϕ , r � 0 , ϕ ∈ [0, 2π ] . (3.144)

Moreover, one canwrite an approximate expression of f (z) as a Taylor series centred
in z = z0 and truncated to the first two nonzero terms, namely

f (z) ≈ f (z0) + 1

n! f (n)(z0) (z − z0)
n . (3.145)
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Here, we are neglecting terms of order |z − z0|n+1, and we are assuming that all
derivatives of f (z) up to order n − 1 are zero at z = z0. We write f (n)(z0) in its polar
form as

f (n)(z0) = | f (n)(z0)| ei θ , (3.146)

where θ is the argument of f (n)(z0). On substituting Eqs. (3.144) and (3.146) into
(3.145), we obtain

f (z) ≈ f (z0) + 1

n! | f (n)(z0)| rn ei (θ+n ϕ)

= f (z0) + 1

n! | f (n)(z0)| rn
[
cos(θ + n ϕ) + i sin(θ + n ϕ)

]
.

(3.147)

On inspecting Eq. (3.147), one can conclude that the value of θ + n ϕ delineates if
and how the real and imaginary parts of function f (z) increase or decrease when z
departs from the saddle point z0 .

Let us consider �( f (z)). Equation (3.147) implies that �( f (z)) undergoes the
steepest increase when z departs from z0 if one chooses a path given by any line with
cos(θ + n ϕ) = 1. Thus we define, for �( f (z)), the lines of steepest ascent from z0
as those where

θ + n ϕ = 2mπ �−→ ϕ = 2m

n
π − θ

n
,

m = 0, 1, 2, . . . , n − 1 .
(3.148)

Since there exist n different determinations of the angle ϕ, predicted by Eq. (3.148),
there are n different paths of steepest ascent, for �( f (z)), departing from z0. These
paths can be easily detected in Figs. 3.7 and 3.8 and are explicitly displayed as thick
dashed lines in Fig. 3.9 for a saddle point of order 2 and in Fig. 3.10 for a saddle point
of order 3.

In an analogous way, we can easily detect those lines departing from the saddle
point z0 and such that �( f (z)) undergoes the steepest decrease. Those lines are
termed of steepest descent and, on account of Eq. (3.147), they are defined by the
condition cos(θ + n ϕ) = −1. Then, lines of steepest descent are such that

θ + n ϕ = (2m + 1)π �−→ ϕ = 2m + 1

n
π − θ

n
,

m = 0, 1, 2, . . . , n − 1 .
(3.149)

Again, there exist n different possible angles ϕ, predicted by Eq. (3.149) and, hence,
there are n different paths of steepest descent, for �( f (z)), departing from z0. These
paths can be easily detected in Figs. 3.7 and 3.8 and are explicitly displayed as thick
solid lines in Figs. 3.9 and 3.10 for saddle points of order 2 and 3, respectively.

We note that, along the lines of steepest ascent or steepest descent of �( f (z))
departing from a saddle point z0, the imaginary part of f (z) remains constant. In
fact, Eqs. (3.148) and (3.149) imply that, along lines of steepest ascent or steepest
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Fig. 3.9 Contour lines of the
real part of f (z) around a
saddle point z0 of order 2.
The thick solid lines are the
paths of steepest descent,
while the thick dashed lines
are the paths of steepest
ascent

Fig. 3.10 Contour lines of
the real part of f (z) around a
monkey saddle point, i.e. a
saddle point z0 of order 3.
The thick solid lines are
paths of steepest descent,
while the thick dashed lines
are paths of steepest ascent

descent of �( f (z)), θ + n ϕ is an integer multiple of π , so that sin(θ + n ϕ) is zero.
Thus, Eq. (3.147) implies that �( f (z)) = �( f (z0)) along lines of steepest ascent or
steepest descent of �( f (z)). In other words, the lines of steepest ascent or steepest
descent of �( f (z)) are contour lines of �( f (z)).
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3.5.3 Asymptotic Behaviour of Wave Packets at Large Times

Let us consider the three-dimensional wave packet given by Eq. (2.98),

ψ(x, t) =
∞∫

−∞
b(k, y, z, t) ei [kx−ω(k) t] d k . (3.150)

A particularly interesting case is one where the dependence on time of b(k, y, z, t)
is through an exponential function,

b(k, y, z, t) = b̂(k, y, z) eη(k) t . (3.151)

Then, on account of Eqs. (3.150) and (3.151), the expression of ψ(x, t), for a fixed
position x = (x, y, z), is given by the time-dependent integral

I (t) =
∞∫

−∞
φ(k) eλ(k) t d k . (3.152)

Here, the complex function λ(k) is defined as

λ(k) = η(k) − iω(k) , (3.153)

while
φ(k) = b̂(k, y, z) ei kx . (3.154)

The dependence of φ(k) on (x, y, z) is not explicitly declared with this notation as
what really matters, in the forthcoming analysis, is just the dependence on time of
the integral I (t) or, equivalently, we can consider our reasoning as relative to a fixed
position (x, y, z).

We aim to determine an approximate evaluation of I (t) for large times t . This task
can bemanaged by employing Theorem3.3. In fact, integral I (t) given byEq. (3.152)
can be considered as a path integral along a contour line γ coincident with the real
axis in the complex plane and oriented along its positive direction,

I (t) =
∫
γ

φ(k) eλ(k) t d k . (3.155)

Let us first imagine a situation where there exists a unique saddle point of function
λ(k), namely k0 ∈ C, and that φ(k) is not singular in k0. We can imagine to deform
path γ to γ ∗, where γ ∗ crosses the saddle point k0. A sketch of γ and γ ∗ is provided
in Fig. 3.11. The question is whether I (t) coincides with
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Fig. 3.11 Qualitative sketch
of path γ , coincident with
the real axis, and γ ∗ crossing
the saddle point k0 of λ(k)

I ∗(t) =
∫
γ ∗

φ(k) eλ(k) t d k . (3.156)

The answer relies on Theorem3.3. Integrals I (t) and I ∗(t) coincide if path γ can
be continuously deformed into γ ∗ within the domain where the integrand φ(k) eλ(k) t

is holomorphic. In other words, one must check that no singularity of φ(k) eλ(k) t

exists within the region bounded by γ ∪ γ ∗. This feature will be hereafter termed
holomorphy requirement.

An interesting case is when γ ∗ locally coincides with a steepest descent path for
�(λ(k)), crossing k0. If k0 is a second-order saddle point, in a small neighbourhood
of k0, we can approximate the integrand φ(k) eλ(k) t , according to Eq. (3.144), as

φ(k) eλ(k) t ≈ φ(k0) e
λ(k0) t eλ′′(k0)(k−k0)2 t/2 . (3.157)

Thus, following Eqs. (3.147) and (3.149) with n = 2, we get

φ(k) eλ(k) t ≈ φ(k0) e
λ(k0) t e− |λ′′(k0)|r2 t/2 . (3.158)

A change of r in the small interval [0, ε], for a positive ε � 1, provides a local
parametrization of γ ∗ in a small neighbourhood of k0.

A key point in the formulation of the steepest-descent approximation is the
following. The dominant contribution to I ∗(t) comes from a small neighbourhood
of k0, where the exponential |eλ(k) t | = e�(λ(k)) t is at its largest. In other words, an
approximation of I ∗(t) is given by

I ∗(t) =
∫
γ ∗

φ(k) eλ(k) t d k ≈ 2 ei ϕ φ(k0) e
λ(k0) t

ε∫
0

e− |λ′′(k0)|r2 t/2 d r , (3.159)

where the parametrization k = k0 + r ei ϕ , Eq. (3.144), has been used. We note that
factor 2 comes fromdoubling the contribution of the integral over r ∈ [0, ε] to include
a piece of steepest ascent path to reach k0 and one of steepest descent departing from
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k0. When t is very large, the integral of e− |λ′′(k0)|r2 t/2 over r ∈ [0, ε] does not differ
much from the integral over r ∈ [0,∞], as the Gaussian function undergoes a rapid
decay to 0 as r increases. Thus, we can write

I ∗(t) ≈ 2 ei ϕ φ(k0) e
λ(k0) t

∞∫
0

e− |λ′′(k0)|r2 t/2 d r

= ei ϕ φ(k0) e
λ(k0) t

√
2π

|λ′′(k0)| t
. (3.160)

From Eq. (3.149), we infer that ϕ is either π/2 − θ/2 or 3π/2 − θ/2, where θ is the
argument of λ′′(k0). As a consequence, we obtain

I ∗(t) ≈ ± i e−i θ/2 φ(k0) e
λ(k0) t

√
2π

|λ′′(k0)| t
. (3.161)

Let us assume the validity of the holomorphy requirement, then Theorem3.3 ensures
that I (t) = I ∗(t) and we achieve the steepest-descent approximation of I (t) at large
times,

I (t) =
∞∫

−∞
φ(k) eλ(k) t d k ≈ ± i e−i θ/2 φ(k0) e

λ(k0) t

√
2π

|λ′′(k0)| t
. (3.162)

The ambiguity in the sign of the approximated integral is a consequence of the a-
priori twofold choice in the definition of the steepest descent path that drives k away
from k0 along path γ ∗, as suggested by Fig. 3.9. This is not a big problem when one
is interested just in the large-time behaviour of |I (t)|, given by

|I (t)| ≈ |φ(k0)| e�(λ(k0)) t

√
2π

|λ′′(k0)| t
. (3.163)

If we now relax the assumption that k0 is a second-order saddle point of λ(k) and
assume a n > 2 order of the saddle point, Eq. (3.158) is now replaced by

φ(k) eλ(k) t ≈ φ(k0) e
λ(k0) t e− |λ(n)(k0)|rn t/n! . (3.164)

Equation (3.160) is modified into
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I ∗(t) ≈ 2 ei ϕ φ(k0) e
λ(k0) t

∞∫
0

e− |λ(n)(k0)|rn t/n! d r

= 2

n
ei ϕ φ(k0) �

(
1

n

)
eλ(k0) t

(
n!

|λ(n)(k0)| t

)1/n

. (3.165)

Here, �(z) is Euler’s gamma function [2],

�(z) =
∞∫
0

s z−1 e−s d s . (3.166)

Finally, Eqs. (3.162) and (3.163) are generalised to

I (t) =
∞∫

−∞
φ(k) eλ(k) t d k

≈ 2

n
ei (2m+1)π/n e−i θ/n φ(k0) �

(
1

n

)
eλ(k0) t

(
n!

|λ(n)(k0)| t

)1/n

, (3.167)

where m = 0, 1, 2, . . . , n − 1, and

|I (t)| ≈ 2

n
|φ(k0)| �

(
1

n

)
e�(λ(k0)) t

(
n!

|λ(n)(k0)| t

)1/n

. (3.168)

Equation (3.167) shows the effects of the multiplicity of the possible steepest descent
paths that depart from k0, resulting in n possible values of the positive integer m. As
m appears just in a phase factor, this multiplicity is ineffective when one deals with
|I (t)|, as shown by Eq. (3.168).

We assumed the existence of just one saddle point of λ(k). What if there are
more? With several saddle points, the steepest-descent approximation just keeps that
or those leading to the largest �(λ(k0)), so that one filters the leading contribution to
the integral I (t). It is possible that two or more saddle points share the same value
of �(λ(k0)). In that case, their contributions have to be summed up in order to form
the asymptotic approximation of the integral I (t).

For a more detailed and exhaustive discussion of the steepest-descent approx-
imation of time-dependent integrals, we refer the reader to textbooks on applied
mathematics such as Ablowitz and Fokas [1], Bender and Orszag [5], or the more
recent Arfken et al. [4]. All these books include a discussion of several examples
where the steepest-descent approximation is employed.

Example 3.7 Let us consider a case where I (t), given by Eq. (3.152), is defined with
φ(k) = 1 and

λ(k) = −4k2 + 2k + 4 i k , (3.169)
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namely

I (t) =
∞∫

−∞
e(−4k2+2k+4 i k) t d k . (3.170)

The integral on the right-hand side of Eq. (3.170) can be evaluated analytically, so
that we obtain

I (t) = 1

2

√
π

t
e−3 t/4 ei t . (3.171)

There is an interesting fact aboutEqs. (3.170) and (3.171).The integrand inEq. (3.170)
tends to ∞ when t → ∞, for every k such that 0 < k < 1/2. On the other hand,
Eq. (3.171) shows that I (t) tends to 0 when t → ∞. This situation is often repro-
duced with wave packets: although there are normal modes whose amplitude grows
in time, the wave packet as a whole might tend to 0 in the limit t → ∞.

One can apply to Eq. (3.170) the steepest-descent approximation. Since

λ′(k) = −8k + 2 + 4 i , λ′′(k) = −8 , (3.172)

there is a single saddle point,

k0 = 1 + 2 i

4
, (3.173)

of order n = 2. We have

λ(k0) = −3

4
+ i . (3.174)

Function λ(k) satisfies the holomorphy requirement over the whole complex plane.
We can thus apply Eq. (3.163) to obtain

|I (t)| ≈ 1

2

√
π

t
e−3 t/4 . (3.175)

In fact, in this case, the steepest-descent approximation yields the exact result for
|I (t)|, as it can be easily checked by comparing Eqs. (3.171) and (3.175).

Example 3.8 A classical application of the steepest-descent method is given by Stir-
ling’s approximation of the factorial [2]. We base the evaluation on Euler’s gamma
function, defined by Eq. (3.166), and on its property that, if n is a natural number,
then n! = �(n + 1) [2]. In fact, from Eq. (3.166), we can write

n! =
∞∫
0

sn e−s d s . (3.176)

We change the variable of integration to r = s/n, so that we obtain
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n! = nn+1

∞∫
0

e[ln(r)−r ] n d r . (3.177)

We aim to achieve an approximate expression of the integral on the right-hand side of
Eq. (3.177)whenn is very large. Then,we invoke the steepest-descent approximation.
We have

λ(r) = ln(r) − r . (3.178)

There is just one saddle point, λ′(r0) = 0, namely r0 = 1. We obtain

λ(r0) = −1 , λ′′(r0) = −1 . (3.179)

The saddle point is placed on the real axis and it is of order n = 2. The argument of
λ′′(r0) is θ = π and the steepest descent path just coincides with the real axis oriented
along its positive direction. This is a simple case where γ = γ ∗. From Eqs. (3.162)
and (3.177), we can finally write

n! ≈ √
2π nn+1/2 e−n , (3.180)

which is the well-known Stirling’s approximation for the factorial of a large natural
number n.
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