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What we cannot speak about we must pass
over in silence.

Ludwig Wittgenstein



Foreword

Stability theory has an old and venerable history in the context of fluid mechanics:
much is known and much remains to be discovered. In our desire to model accu-
rately our highly nonlinear world, it is quite natural to begin slowly by determining
first the flow field for small values of a parameter such as the Reynolds, Rayleigh,
Taylor or Görtler numbers. In such cases, the flow is slow and nonlinear effects are
barely felt. Perhaps it is unsurprising then that such flows are stable, not that we
have yet defined this word. One potential definition of stability might be that the
flow is unique, but this idea is unsatisfactory because it mentions neither the
presence of nor the rôle played by disturbances of any kind. Consideration of these
matters is central to stability theory and is essential before pressing on to fully
numerical simulations and the transition to turbulence.

We all have an intuitive idea of what the words stable and unstable mean
because they may be related to many aspects of human life and experience:
nitroglycerine is unstable; a cyclist in motion is stable; a poorly constructed
building is unstable; a person may be said to have a stable character. Each of these
examples gives a hint as to what stability might mean in the context of fluid
mechanics. A small disturbance of the form of an impact applied to nitroglycerine
will cause it to explode. Even a poorly constructed building will collapse only when
the magnitude of an earthquake exceeds a certain value. An experienced cyclist
who has spent a lifetime successfully negotiating difficult terrain may be desta-
bilised (i.e. floored) by the sudden but unwelcome presence of a squirrel in the
wrong place. People with highly stable characters are able to manage to cope with
the usual pressures of life, but when a large disturbance arises (I am thinking here of
chronic job stresses, domestic issues, a bereavement, a mugging and so on), then a
breakdown of some kind could follow and life changes subsequently. All four
of these examples may be interpreted in terms of how the nature and the magnitude
of the disturbances can alter forever the original state.

Returning to fluid mechanics, it is well known that some flows, which we may
call basic states, will be destabilised by the presence of infinitesimally sized dis-
turbances, and that the value of the governing parameter above which this happens
may be minimised by the appropriate selection of the shape of the disturbance.
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The analysis which determines the critical value of the parameter is termed a linear
stability theory since the temporal growth of the disturbance satisfies a linear
evolution equation at least initially. A growing small-amplitude disturbance will
eventually saturate; the new flow will have a different appearance from that of the
basic state, and it also has fewer symmetries. On the other hand, other basic states
may resist small disturbances at a given value of the governing parameter but are
nevertheless helpless to resist the effect of larger ones. This, then, is the realm of the
energy stability analysis which may also be used to determine the critical parameter
below which nonlinear flow does not exist. Weakly nonlinear theory may also be
used to further the understanding of the full behind-the-scene behaviour of the
system being studied, and this includes pattern selection and bifurcations.

These different types of analysis, followed by comprehensive nonlinear simu-
lations of the governing equations, form the backbone of stability theory in general.
They have been described in detail both in monographs and in a bewilderingly large
number of journal papers over the last 100 years or so. This remains true even when
one restricts attention to convection in porous media. The fact that different basic
flows have a multitude of potentially different routes towards turbulence makes
stability theory a very interesting, challenging and rewarding topic to study even if
one does not consider its utility.

The present book is devoted to the concepts of absolute instability and con-
vective instability, a topic which is very new in the field of porous medium con-
vection. When a flow is absolutely unstable, a disturbance placed in one locality
will continue to grow within that locality. This does not preclude it spreading or
diffusing into formerly undisturbed regions as time passes. On the other hand, a
convective instability will correspond to a disturbance which also grows in time,
but where the background flow field is sufficiently strong that the disturbance will
eventually decay within the region where it was introduced. In other words, the
growing disturbance leaves the scene of the crime! The word, convective, when
used in this way, refers to the carrying away of the disturbance, an idea which
reflects the Latin etymology of the word. However, there is a potential confusion
between the use of the term, convective instability, to describe such a moving
instability mechanism and its use when talking about systems such as Bénard
convection which is a buoyancy-induced instability. Generally, the context will be
unambiguous, but the careful author might need to state something like the fol-
lowing in order to guarantee clarity: the present thermoconvective instability is a
convective instability as opposed to being an absolute instability.

Professor Barletta has crafted a monograph which describes with great clarity
how to determine whether an instability is absolute or convective. To do this, he has
set the scene in the earlier chapters by introducing the reader to the Fourier and
Laplace transforms and, in particular, to their role in the study of the evolution and
movement of wave packets. These are illustrated using simplified systems of partial
differential equations which display unstable behaviour of the kind which shows a
transition between convective instability and absolute instability. Part II brings the
reader an introduction to flows and convection in porous media, and a whole
chapter is devoted to the porous medium analogue of the Rayleigh–Bénard
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problem, often called the Darcy–Bénard problem or the Horton–Rogers–Lapwood
problem. Then, in Part III, the Prats variant of the Darcy–Bénard problem is con-
sidered where an externally applied pressure gradient drives a horizontal basic flow.
This is analysed in detail using all the theoretical concepts developed earlier, and
the transition from convective to absolute instability is studied. The analysis is also
extended to the equivalent vertical layer with sidewall heating and with fixed
pressure profiles at the surfaces. The final chapter and two appendices complete the
work, and these describe ancillary matters.

The present book fills an important gap in the market because it has been written
specifically to introduce the reader to the relatively recent topic of convective and
absolute instabilities but within the context of convection in porous media where
these ideas are unknown to all but a select few.

Finally, I would like to say a few words about the author. I count him as a very
good friend indeed and occasional confidante. Antonio and I have collaborated in
the publication of many journal and conference papers in the last 10 years, and I
look forward to very many more. The present book represents, in a way, a distil-
lation of an alternative life of his, one that I do not know and have not been part of,
where he has collaborated with others, and I have thoroughly enjoyed reading it
from end to end. I now know much more about the angst that the writing of a book
can induce, but this experience has not destabilised him! Rather, the book displays
well his clear thinking, erudite style and teaching ability. I have learned some new
tricks, and I hope that very many others do the same.

Bath, UK
October 2018

D. Andrew S. Rees
University of Bath
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Preface

It is an impression of this author that there is a disproportion between the plethora
of studies regarding the convective instability in porous media and those where the
analysis is pushed forward to investigate the transition to absolute instability. The
possible reason is that this concept is hardly recognised among the shared
knowledge within the porous media community. This is the main motivation behind
this book. In fact, this book is aimed to provide all the information necessary for
approaching an analysis of absolute instability for applications to flow and heat
transfer in fluid-saturated porous media.

This book is for those who study convection heat transfer at a graduate level and
have a specific interest for porous media applications. Another possible target is
those who are familiar with the topic of mechanical instability and aim to enter the
research topic of fluid mechanics and heat transfer in porous media. In both cases,
this book is meant to be a pedagogical guide that can be employed in a class on
thermal instability in porous media, or even as a self-learning tool.

All the mathematics needed to understand the topics of convective and absolute
instabilities is provided in Part I of this book. Chapters 2 and 3 provide a
self-contained introduction to the basic mathematical methods employed for the
assessment of instability in flow systems, namely the Fourier transform and calculus
with complex variables. Chapter 4 introduces the concept of instability in a
mechanical system with a finite number of degrees of freedom extending this
concept to a continuous system whose evolution is described by a partial differential
equation. This chapter provides formal definitions of convective and absolute
instabilities.

An introduction to the essential elements of fluid mechanics and convection heat
transfer is provided in Part II, where Chap. 5 contains the description of the
mathematical model of fluid flow, Chap. 6 discusses the basic ideas behind the
theory of fluid mechanics in porous media, while Chap. 7 contains a discussion
of the thermal instability through the classical case study of the Rayleigh–Bénard
problem and its variants. Among them, the applications to saturated porous media
are investigated, starting from the Horton–Rogers–Lapwood problem.

xi



Part III has its focus on the transition from convective to absolute instability in
porous media. Chapter 8 contains a discussion of Prats problem including a variant
formulation where the effects of the form-drag effect are taken into account. In
Chap. 9, cases where the analysis of convective and absolute instabilities is
approached numerically are presented. Finally, Chap. 10 offers a detailed
description of a numerical method for the solution of stability eigenvalue problems
for the convective or the absolute instability.

What is not present in this book is the nonlinear approach to instability. This
choice has been made to keep the mathematical difficulties at their lowest and
because the linear approach is in itself sufficiently wide and diversified as to provide
a very large amount of information. More than aiming for completeness in the
presentation of convective and absolute instabilities, it has been chosen to follow the
pedagogical way: discuss less, but be as detailed and comprehensible as you can be.

Bologna, Italy Antonio Barletta
October 2018
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Chapter 1
Introduction

There exist several industrial and environmental applications where heat transfer and
fluid flow in porous media happen to be of paramount importance. Such applications
span civil engineering with all that regards insulation materials in buildings and their
permeability to air and water vapour. Quite important is also the investigation of
groundwater flow in rocks and sands, and the study of geothermal reservoirs where
underground heating conditions occur.

In his pioneering study on the Rayleigh–Bénard instability of a boundary layer in
a porous medium, Wooding [12] had in mind the geothermal region of Wairakei, in
the North Island of New Zealand, where groundwater is driven by an upward convec-
tive force due to the high underground temperature. In his classical paper, Wooding
cites a previous paper by Lapwood [5] regarding the onset of convection cells in a
horizontal porous layer. Lapwood meant to extend the classical study by Rayleigh
[7] on the instability in a horizontal fluid layer with a vertical, downward-oriented,
temperature gradient to the case where the fluid saturates a porous medium. Even
though disregarded in Lapwood’s paper, there is a previously published study by
Horton and Rogers Jr [3] that discusses the same topic of thermal instability induced
by heating from below in a horizontal porous layer. This is the reason why it is nowa-
days a common stance calling Horton–Rogers–Lapwood problem, the mathematical
formulation of the thermal instability phenomenon caused by a vertical temperature
gradient in a horizontal porous layer. An alternative name is Darcy–Bénard problem
which acknowledges both the well-known experiments regarding convection cells in
a fluid by Henri Claude Bénard [4] and the classical law of momentum transfer in a
fluid-saturated porous medium formulated by Henry Philibert Gaspard Darcy [1].

The Rayleigh–Bénard instability is activated by a vertical temperature gradient
causing the fluid to be heated from below and cooled from above. Such a condition
promotes a buoyancy drift of the hotter fluid to the upper region and a downward drift
of the cooler fluid. This circumstance results in the emergence of structures called
convection cells. The observational fact is that no convection cells are producedwhen
the driving temperature gradient is not sufficiently intense or, in other terms, if the
temperature difference across the fluid region is not sufficiently large. The minimal
conditions leading to the formation of convection cells can be predicted theoretically,
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and, generally speaking, they can be formulated so that a dimensionless parameter,
the Rayleigh number, exceeds a critical value. Such a critical value depends on
the environment surrounding the fluid layer or the fluid-saturated porous layer. In
mathematical terms, it depends on the boundary conditions constraining the fluid
flow and heat transfer.

The model generally followed to assess the onset conditions of convection cells is
one of the stability analyses, carried out on the partial differential equations governing
the phenomenon of convection. In a stability analysis, we devise a basic state prior to
the emergence of the cells. In the Horton–Rogers–Lapwood problem, this basic state
is a situation where the fluid is at rest and a temperature gap across the fluid region
creates an externally impressed thermal forcing. Seeking the critical conditions for
the emergence of convection cells means, in this framework, establishing the neutral
stability condition or the transition from linear stability to convective instability.
In fact, the approach widespread across the literature is based on a presumption
of small-amplitude perturbations acting on the basic state. Under this scheme, the
partial differential equations governing the dynamics of the perturbations and the
heat transfer process are linearised by neglecting terms of order higher than the first
in the perturbation amplitude.

Most stability analyses available in the literature, regarding the Horton–Rogers–
Lapwood problem, are relative to linear perturbations. However, there are many
adopting anonlinear approachwhere the assumptionof small perturbations is relaxed.
An important investigation scheme in the nonlinear domain is based on the so-called
energy method. For a discussion of this method, we refer the reader to the excellent
books by Straughan [9, 10]. For a widespread analysis of convective instability in
porousmedia, authoritative reviews can be found inNield andBejan [6] andRees [8].

Within this framework, one may question about the role of this book. In fact,
there are many treatises and reviews regarding the onset of linear instability, and
hence of convection cells, in a porous layer. However, all of them are focussed on the
concept of convective instability happening when the value of the Rayleigh number
exceeds its critical threshold. If this focus is the central one in many cases where
the transition to instability has a linear nature, this is not so in general. Even in a
purely linear approach, the threshold to convective instability involves the dynamics
of pure Fourier modes with given wave numbers. However, the naturally emerging
perturbations are not necessarily Fourier modes, but they can be thought of as super-
position of Fourier modes, or wave packets. The linear dynamics of wave packets
is peculiar as, even if the superposition includes unstable Fourier modes, the wave
packet may well display a stable behaviour at large times, meaning that its amplitude
is ultimately damped in time. This mathematical concept is hard to grasp with purely
heuristic arguments, but its impact is of uttermost importance. It means that, even
if the critical value of the Rayleigh number for the onset of the convective insta-
bility is exceeded, a wave packet perturbation may still display a stable behaviour.
This automatically brings us to the quest of an upper parametric threshold in the
supercritical domain where all wave packet perturbations are unstable. Such a thresh-
old marks the transition to the absolute instability.
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The terminology, absolute instability, the concept and its applications are well
settled in the area of fluid dynamics. They started with studies regarding plasma
physics in the 1950s as reported, for instance, by Swanson [11]. Very soon, the idea
of absolute instability was extended to the fluid mechanics of internal flows and
boundary layers. Finally, studies of absolute instability appeared within the area of
convection in porous media. Among the earliest studies of absolute instability in
porous media, it must be mentioned the paper by Dufour and Néel [2]. Many others
followed, but not as many as the importance of this topic would deserve.

Notation

We will denote by R the set of real numbers, by C the set of complex numbers, by
Z the set of integer numbers, by N the set of natural numbers and by N0 the set of
natural numbers including zero. The imaginary unit is i = √−1, while the real and
imaginary parts of a complex number z are denoted by �(z) and �(z). The complex
conjugate of z is denoted by z̄.

The partial derivatives will be denoted by the standard notation, ∂/∂x or ∂/∂t .
The ordinary derivatives of a function f will be denoted either by, say, d f/d x or by
a prime, f ′. Higher-order ordinary derivatives of f will be also written as f ′′, f ′′′,
f ′′′′ and f (n), where n � 5 is the order of the derivative.
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Part I
Mathematical Models of Flow Instability

The basic mathematical tools behind the concepts of convective and absolute insta-
bility in flow systems are introduced. These include the method of Fourier transform
and the dynamics of wave packets. Such tools will be introduced here from scratch.
The application of Fourier transform to the analysis of the linear behaviour of pertur-
bations acting on an intrinsically nonlinear flow system is analysed by considering
specific mathematical models. Despite their scarce utility in the description of real-
world applications, these mathematical models have the great advantage of being
simple. As such, they are excellent arenas within which to start one’s practice in the
study of convective and absolute instability.



Chapter 2
Fourier Transform and Wave Packets

2.1 Integral Transforms

In several different conditions encountered in engineering and in physics, one may
find it useful to define the integral transform of a given function f (t), namely

f̃ (k) =
b∫

a

f (t) K (t, k) d t, (2.1)

where K (t, k) expresses the kernel of the integral transform. Typically, different
integral transforms correspond to different choices of the kernel function K (t, k)
and of the integration interval (a, b). The purpose in defining an integral transform is
to set a rule for linking a function of “time”, f (t), to a transformed function, f̃ (k), of
the independent variable, k. This independent variable can be physically interpreted
either as the “frequency” or the “wave number”. On the other hand, depending on
the type of transform and on its applications, t can be either intended as time or as a
spatial Cartesian coordinate. In this case, it is replaced by x .

Examples of integral transforms are:

• the Fourier transform,

K (t, k) = e−i kt

√
2π

, (a, b) = (−∞,∞) , k ∈ R ;

• the Laplace transform,

K (t, k) = e−kt , (a, b) = (0,∞) , k ∈ C ;

• the Hankel, or Fourier–Bessel, transform,

K (t, k) = t Jn(kt) , (a, b) = (0,∞) , k ∈ R ,
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where Jn denotes the Bessel function of first kind and order n ∈ N0;
• the Mellin transform,

K (t, k) = t k−1 , (a, b) = (0,∞) , k ∈ R .

In the following, we will focus on the Fourier transform as it is definitely the most
important within the stability analysis of flow systems.

2.2 The Fourier Transform

The aim of this section is not providing an exhaustive and mathematically rigorous
survey of the Fourier transform and its properties. In fact, there exist several mono-
graphs devoted to the study of integral transforms, more or less mathematically
oriented [1–3, 6].

2.2.1 Definition

Hereafter, we will choose to define and study the Fourier transform of functions
of x , intended as a coordinate. Thus, we interpret k as a wave number along the
x-direction. This choice, which at this stage is just a matter of notation, will turn out
to be appropriate for the stability analysis applications.

Given a function f (x), the Fourier transform is defined as

F{ f (x)}(k) = f̃ (k) = 1√
2π

∞∫

−∞
f (x) e−i kx d x . (2.2)

The conditions for this transform to be well defined are:

• f (x) is piecewise continuously differentiable;
• f (x) is absolutely integrable on R, namely

∞∫

−∞
| f (x)| d x < ∞ . (2.3)

2.2.2 Inversion of the Fourier Transform

The possibility to determine function f (x), if one knows its Fourier transform f̃ (k),
arises from Fourier’s integral formula,
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f (x) = 1

2π

∞∫

−∞

⎡
⎣

∞∫

−∞
f (s) e−i ks d s

⎤
⎦ ei kx d k . (2.4)

If x represents a finite discontinuity of f (x), then Eq. (2.4) must be modified as
follows:

1

2
[ f (x + 0) + f (x − 0)] = 1

2π

∞∫

−∞

⎡
⎣

∞∫

−∞
f (s) e−i ks d s

⎤
⎦ ei kx d k , (2.5)

where x + 0 and x − 0 indicate the limits where x is approached from the right and
from the left. From Eqs. (2.2) and (2.4), one may obtain the so-called inversion of
the Fourier transform

f (x) = F−1{ f̃ (k)}(x) = 1√
2π

∞∫

−∞
f̃ (k) ei kx d k . (2.6)

Equation (2.6) is the inversion formula of the Fourier transform. We note that the
conditions for the existence of the Fourier transform pose some strong restrictions
on the function f (x). These restrictions can be relaxed if one goes beyond the usual
concept of function and introduces the generalised functions or distributions. A
rigorous theory of distributions was first introduced by Laurent Schwartz (1915–
2002). This French mathematician was awarded in 1950 with the Fields medal for
his work on the theory of distributions. We will not describe the details of this
mathematical topic here, and we refer the reader to the book by Schwartz [5].

The most important distribution isDirac’s delta function, δ(x − x0). Dirac’s delta
function is such that δ(x − x0) = 0 for every x �= x0, and it is defined through the
relationship

∞∫

−∞
ϕ(x) δ(x − x0) dx = ϕ(x0) , (2.7)

where ϕ(x) is any test function picked up from a properly defined functional space.
Without any attempt to be rigorous, we merely mention that a typical choice is the
space of the smooth functions on (−∞,∞) with a compact support, i.e. functions
that vanish outside a bounded open interval in R [5]. The typical role of Dirac’s
delta function in the mathematical models of physical systems is for expressing the
density of a point-like object. Such a quantity is the result of a limit where it gets an
infinite value at a point, x0, and it is zero everywhere else.

If we evaluate the Fourier transform of Dirac’s delta function through Eq. (2.2),
and we employ Eq. (2.7), then we obtain
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f (x) = δ(x − x0) ,

f̃ (k) = 1√
2π

∞∫

−∞
δ(x − x0) e

−i kx d x = e−i kx0
√
2π

.
(2.8)

Conversely, one may note that the Fourier transform of function

f (x) = ei ax , (2.9)

where a is a constant, is given by

f̃ (k) = √
2π δ(k − a) . (2.10)

This result is easily proved by employing the inversion formula of Fourier transform,
Eqs. (2.6), and (2.7). Obviously, function f (x) defined by Eq. (2.9) is not absolutely
integrable on R, that is, it does not satisfy Eq. (2.3). In fact, its Fourier transform
exists only in the extended sense of the theory of distributions.

2.2.3 Some Properties of the Fourier Transform

The Fourier transform has several important properties. Most of them are straight-
forward consequences of its definition (2.2). A list of some properties of the Fourier
transform is the following:

• Linearity

F{a f (x) + b g(x)}(k) = a f̃ (k) + b g̃(k) , ∀a, b ∈ R . (2.11)

• Scaling

F{ f (ax)}(k) = 1

|a| f̃

(
k

a

)
, ∀a ∈ R , a �= 0 . (2.12)

• Shifting
F{ f (x − x0)}(k) = e−i kx0 f̃ (k), ∀x0 ∈ R . (2.13)

• Translation
F{ei k0x f (x)}(k) = f̃ (k − k0), ∀k0 ∈ R . (2.14)

• Derivative
F{ f ′(x)}(k) = i k f̃ (k) , (2.15)

F{ f (n)(x)}(k) = (i k)n f̃ (k) , ∀n ∈ N . (2.16)
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• Partial derivative

F

{
∂

∂x
f (x, t)

}
(k) = i k f̃ (k, t) , F

{
∂

∂t
f (x, t)

}
(k) = ∂

∂t
f̃ (k, t) , (2.17)

F

{
∂m

∂xm
∂n

∂tn
f (x, t)

}
(k) = (i k)m

∂n

∂tn
f̃ (k, t) , ∀m, n ∈ N0 , (2.18)

where, conventionally, ∂0/∂x0 = 1 and ∂0/∂t0 = 1 .
• Convolution
The convolution of two functions f (x) and g(x) is defined as

f (x)∗g(x) = 1√
2π

∞∫

−∞
f (x − x̂)g(x̂) d x̂ . (2.19)

Hence, another important property of the Fourier transform is the following:

F{ f (x)∗g(x)}(k) = f̃ (k) g̃(k) . (2.20)

We mention that the convolution between two functions has the usual properties
of a product, namely

commutative : f ∗g = g∗ f ;
associative : f ∗(g∗h) = ( f ∗g)∗h ;
distributive : f ∗(g + h) = f ∗g + f ∗h . (2.21)

Dirac’s delta function plays the role of the neutral element for the convolution,

f ∗ δ = δ ∗ f = f . (2.22)

2.2.4 Solution of the One-Dimensional Wave Equation

We aim to solve the partial differential equation

∂2ψ(x, t)

∂t2
= c2

∂2ψ(x, t)

∂x2
, (2.23)

for x ∈ (−∞,∞) and t ∈ [0,∞) with the initial conditions

ψ(x, 0) = f (x),
∂ψ(x, t)

∂t

∣∣∣∣
t=0

= c g′(x) . (2.24)
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Here, f (x) and g(x) are functions known a priori, while c is the phase velocity of
the wave, k is the wave number, and ω = ck is the angular frequency. We apply
the Fourier transform operator to both sides of the wave equation and we employ
Eq. (2.18), so that we obtain

∂2ψ̃(k, t)

∂t2
+ c2k2ψ̃(k, t) = 0 . (2.25)

By the same method, the initial conditions can be rewritten as

ψ̃(k, 0) = f̃ (k),
∂ψ̃(k, t)

∂t

∣∣∣∣∣
t=0

= i ck g̃(k) . (2.26)

Therefore, we have just to solve an ordinary differential problem where t is the
independent variable and k is a parameter. The general solution of Eq. (2.25) is

ψ̃(k, t) = ã(k) ei ckt + b̃(k) e−i ckt . (2.27)

The integration constants ã(k) and b̃(k) can be determined from the initial conditions,
namely

ã(k) + b̃(k) = f̃ (k) , ã(k) − b̃(k) = g̃(k) , (2.28)

so that we obtain

ã(k) = 1

2

[
f̃ (k) + g̃(k)

]
, b̃(k) = 1

2

[
f̃ (k) − g̃(k)

]
. (2.29)

Hence, the Fourier transform of our solution is given by

ψ̃(k, t) = 1

2
f̃ (k)

(
ei ckt + e−i ckt

) + 1

2
g̃(k)

(
ei ckt − e−i ckt

)
. (2.30)

On account of the shifting property, Eq. (2.13), we have

F−1
{
f̃ (k) ei ckt

}
= f (x + ct), F−1

{
f̃ (k) e−i ckt

}
= f (x − ct) , (2.31)

F−1
{
g̃(k) ei ckt

} = g(x + ct), F−1
{
g̃(k) e−i ckt

} = g(x − ct) . (2.32)

The solution of our problem is

ψ(x, t) = 1

2
[ f (x + ct) + f (x − ct)] + 1

2
[g(x + ct) − g(x − ct)] . (2.33)
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It is easily verified that, if we introduce G(x) = g′(x), then we have

ψ(x, t) = 1

2
[ f (x + ct) + f (x − ct)] + 1

2

x+ct∫

x−ct

G(s) ds . (2.34)

2.2.5 Solution of the One-Dimensional Diffusion Equation

Let us now solve the partial differential equation,

∂ψ(x, t)

∂t
= α

∂2ψ(x, t)

∂x2
, (2.35)

for x ∈ (−∞,∞) and t ∈ [0,∞) with the initial condition

ψ(x, 0) = f (x) . (2.36)

Here, α is the diffusion coefficient, or the thermal diffusivity in the case of the heat
conduction equation for a solid.

On applying the Fourier transform operator to both sides of the diffusion equation
and employing Eqs. (2.17) and (2.18), we obtain

∂ψ̃(k, t)

∂t
+ αk2ψ̃(k, t) = 0 . (2.37)

The initial condition can be rewritten as

ψ̃(k, 0) = f̃ (k) . (2.38)

Again, we have to solve an ordinary differential problem where t is the independent
variable and k is a parameter. The general solution is

ψ̃(k, t) = ã(k) e−αk2t . (2.39)

The integration constant ã(k) is easily determined from the initial condition, namely

ã(k) = f̃ (k) . (2.40)

Therefore, the Fourier transform of our solution is given by

ψ̃(k, t) = f̃ (k) e−αk2t . (2.41)
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If we denote e−αk2t as g̃(k, t), then we may write

ψ̃(k, t) = f̃ (k) g̃(k, t) , (2.42)

and invoke the convolution property, Eq. (2.20), for expressing the solution as

ψ(x, t) = 1√
2π

∞∫

−∞
f (x̂)g(x − x̂, t) d x̂ . (2.43)

We have just to evaluate the inverse Fourier transform of g̃(k) by employing Eq. (2.6),

g(x, t) = F−1{e−αk2t }(x) = 1√
2π

∞∫

−∞
e−αk2t+i kx d k . (2.44)

The integral can be evaluated as follows:

−αk2t + i kx = −
(
k
√

αt − i x

2
√

αt

)2

− x2

4αt
,

w = k
√

αt − i x

2α
√
t

, dw = √
αt d k , d k = dw√

αt
,

g(x, t) = e−x2/(4αt)

√
2παt

∞∫

−∞
e−w2

dw = e−x2/(4αt)

√
2παt

√
π = e−x2/(4αt)

√
2αt

.

(2.45)

To conclude, the solution can be expressed as

ψ(x, t) = 1

2
√

παt

∞∫

−∞
f (x̂) e−(x−x̂)2/(4αt) d x̂ . (2.46)

Equation (2.46) allows one to infer that, when the initial condition (2.38) involves a
point-like source at x = 0,

ψ(x, 0) = f (x) = δ(x) , (2.47)

Equations (2.43) and (2.45) yield

ψ(x, t) = g(x, t)√
2π

= e−x2/(4αt)

2
√

παt
. (2.48)

This means that the initial point-like distribution gradually spreads over the real axis
with Gaussian trend as time t increases. In fact, Eqs. (2.47) and (2.48) suggest one
of the many limit formula that lead to Dirac’s delta, namely
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Fig. 2.1 Illustration of the
limit in Eq. (2.49)

lim
s→0+

e−x2/(4s)

2
√

πs
= δ(x) . (2.49)

A sketch of how the Gaussian function becomes more and more peaked as s → 0+
resemblingmore andmore a distributionwith point-like support and infinite strength,
viz. Dirac’s delta function, is shown in Fig. 2.1.

2.2.6 Solution of the One-Dimensional Advection–Diffusion
Equation

The advection–diffusion equation is an extension of the diffusion equation discussed
in Sect. 2.2.5,

∂ψ(x, t)

∂t
+U0

∂ψ(x, t)

∂x
= α

∂2ψ(x, t)

∂x2
, (2.50)

for x ∈ (−∞,∞) and t ∈ [0,∞) with the initial condition

ψ(x, 0) = f (x) . (2.51)

The constant U0 defines an imposed flow that drives the diffusion along the x-axis.
By evaluating the Fourier transform of both sides of the advection equation and

by using Eqs. (2.17) and (2.18), we get
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∂ψ̃(k, t)

∂t
+ (αk2 + i kU0) ψ̃(k, t) = 0 . (2.52)

The initial condition (2.51) yields

ψ̃(k, 0) = f̃ (k) . (2.53)

Equations (2.52) and (2.53) define an ordinary differential problem where t is the
independent variable and k is a parameter. The general solution is

ψ̃(k, t) = ã(k) e−(αk2+i kU0)t . (2.54)

The integration constant ã(k) is evaluated from the initial condition, namely

ã(k) = f̃ (k) . (2.55)

The Fourier transform of ψ(x, t) is expressed as

ψ̃(k, t) = f̃ (k) e−(αk2+i kU0)t . (2.56)

On writing e−(αk2+i kU0)t as g̃(k, t), then we obtain

ψ̃(k, t) = f̃ (k) g̃(k, t) . (2.57)

We now employ the convolution property, Eq. (2.20), and express ψ(x, t) as

ψ(x, t) = 1√
2π

∞∫

−∞
f (x̂)g(x − x̂, t) d x̂ . (2.58)

We evaluate the inverse Fourier transform of g̃(k, t) by employing Eq. (2.6),

g(x, t) = F−1{e−(αk2+i kU0)t }(x) = 1√
2π

∞∫

−∞
e−αk2t+i k(x−U0t) d k . (2.59)

The evaluation of the integral in Eq. (2.59) yields

−αk2t + i k(x −U0t) = −
[
k
√

αt − i (x −U0t)

2
√

αt

]2

− (x −U0t)2

4αt
,

w = k
√

αt − i (x −U0t)

2α
√
t

, dw = √
αt d k , d k = dw√

αt
,

g(x, t) = e−(x−U0t)2/(4αt)

√
2παt

∞∫

−∞
e−w2

dw = e−(x−U0t)2/(4αt)

√
2αt

.

(2.60)
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The final expression of ψ(x, t) can be written as

ψ(x, t) = 1

2
√

παt

∞∫

−∞
f (x̂) e−(x−x̂−U0t)2/(4αt) d x̂ . (2.61)

With a reasoning similar to that presented in Sect. 2.2.5, Eq. (2.61) implies that, when
the initial condition (2.51) describes a point-like source at x = 0,

f (x) = δ(x) , (2.62)

Equations (2.43) and (2.60) lead to

ψ(x, t) = g(x, t)√
2π

= e−(x−U0t)2/(4αt)

2
√

παt
. (2.63)

Equation (2.63) describes a situation where the initial condition, given by a point-like
distribution at x = 0, gradually spreads over the real axis as time t increases, while
the maximum of this Gaussian signal travels along the x-direction with constant
velocity U0.

2.2.7 Solution of the One-Dimensional Schrödinger
Equation

The Schrödinger equation for the one-dimensional quantum evolution of a free par-
ticle reads [4],

i �
∂ψ(x, t)

∂t
= Hψ(x, t) , (2.64)

where � = 1.05457 × 10−34 J s is the reduced Planck’s constant, ψ(x, t) is the wave
function of the particle, and H is the Hamiltonian operator. For a one-dimensional
free particle, H is given by

H = − �
2

2m

∂2

∂x2
, (2.65)

where m is the particle mass. Thus, Eq. (2.64) can be rewritten as

∂ψ(x, t)

∂t
= i �

2m

∂2ψ(x, t)

∂x2
. (2.66)

Mathematically speaking, Eq. (2.66) is nothing but a diffusion equation (2.35) with
an imaginary diffusion coefficient,

α = i �

2m
. (2.67)
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This information is what is strictly needed to deduce from Eq. (2.46) the evolution
formula, at a given time t , of an initial wave function ψ(x, 0) = f (x), namely

ψ(x, t) =
√

m

2πi �t

∞∫

−∞
f (x̂) eim (x−x̂)2/(2�t) d x̂ . (2.68)

2.3 Plane Waves and Wave Packets

In general, we will call plane wave a function defined as

ψ(x, t) = A ei (kx−ωt) . (2.69)

Here, A is the amplitude of the wave, while k and ω are the wave number and the
angular frequency, respectively. With A, k and ω considered as constants, plane
waves are typical solutions of the wave equation (2.23), provided that

ω = ± ck . (2.70)

This is a special case, as c is a characteristic positive constant of governing equation
(2.23) and, hence, it is independent of k or, equivalently, ω = ± ck just means that ω
depends linearly on k. Such a situation defines a non-dispersive wave propagation.
On the other hand, dispersive waves occur when ω is a function of k and d2ω/d k2

is not identically zero. We also mention that A is not, in general, a constant as it can
be time-dependent.

A linear combination of several plane waves yields a wave packet, namely

ψ(x, t) =
∑
k

B(k, t) ei [kx−ω(k) t] , (2.71)

where B(k, t) is the product of the coefficients of the linear combination and the
amplitude of each plane wave. An alternative name for the plane waves is normal
modes.1

Hence, a wave packet is often devised as a superposition of several normal modes.
Such a superposition may involve a continuously varying k over a given real interval
or, possibly, over all real axis. In that case, the sum in Eq. (2.71) is rather an inte-
gral over all real values of k. For the continuum limit to be mathematically coher-
ent, B(k, t) becomes infinitesimal, namely B(k, t) = b(k, t) d k, so that Eq. (2.71) is
rewritten as

1It should be noted that a superposition of plane waves as described by Eq. (2.71) needs a time-
independent B(k, t) to provide a solution of the wave equation (2.23). On the other hand, other
partial differential equations allow the possibility that B(k, t) actually depends on time.
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ψ(x, t) =
∞∫

−∞
b(k, t) ei [kx−ω(k) t] d k . (2.72)

By comparing Eq. (2.6) with Eq. (2.72), one can immediately recognise that the
Fourier transform of ψ(x, t) is given by

ψ̃(k, t) = √
2π b(k, t) e−iω(k) t . (2.73)

On the basis of Eq. (2.73), every function ψ(x, t) that admits a Fourier transform can
be considered as a wave packet.

The main features of wave packets are illustrated in the following Sects. 2.3.1
and 2.3.2. This discussion follows that presented by [4] in Chap. 2 of his book, on
illustrating the wave–particle duality of quantum mechanics. Such a method applies
well beyond the domain of quantum theory and is extremely illuminating for general
wave phenomena.

2.3.1 Stationary Waves in x-Space and k-Space

Stationary wave packets are given by Eq. (2.72) when ω(k) = 0 and b(k, t) is time-
independent, namely

ψs(x) =
∞∫

−∞
bs(k) e

i kx d k . (2.74)

Equation (2.74) defines ψs(x) as a linear superposition of infinite standing plane
waveswithwavelengthλ = 2π/k. Thismeans that, say, twoneighbouringmaximaof
the real and imaginary parts of ei kx are separated by a distance 2π/k. Each stationary
wave, ei kx , is weighted by the coefficient function bs(k).
One may consider a Gaussian weight function

bs(k) = e−γ(k−k0)
2
, (2.75)

where γ > 0 is a constant parameter. One can substitute Eq. (2.75) into (2.74) and
evaluate the integral on the right-hand side of Eq. (2.74),

ψs(x) =
∞∫

−∞
e−γ(k−k0)

2
ei kx d k = ei k0x

∞∫

−∞
e−γκ2

eiκx dκ

= ei k0x
√

π

γ
e−x2/(4γ) . (2.76)
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Here, the change of variable κ = k − k0 has been done. On considering the square
modulus of bs(k) and the square modulus of ψs(x),

|bs(k)|2 = e−2γ(k−k0)
2
, |ψs(x)|2 = π

γ
e−x2/(2γ) , (2.77)

one realises that we have a Gaussian signal both in k-space and in x-space. We may
easily check that, when k = k0 ± Δk/2, whereΔk = 2/

√
2γ, the Gaussian signal in

k-space drops to e−1 times its peak value. When x = ±Δx/2, where Δx = 2
√
2γ,

the Gaussian signal in x-space drops to e−1 times its peak value (a qualitative sketch
is given in Fig. 2.2). If γ becomes smaller and smaller, the signal in k-space increases
its width Δk, while the signal in x-space decreases its width Δx . One may easily
check that

Δk Δx = 4 . (2.78)

The precise numerical value of the product is not important. What is important is
that the product Δk Δx is finite and independent of γ. A highly localised Gaussian

Fig. 2.2 Gaussian signals in
x-space and in k-space
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distribution in k-space, i.e. one with a small Δk, means a poorly localised Gaussian
distribution in x-space, i.e. one with a large Δx , and vice versa.

It is not possible to reduce the width of the Gaussian signal both in k-space and in
x-space. This feature is a statement of the Heisenberg uncertainty principle relative
to general wave phenomena [4].

2.3.2 Travelling Wave Packets

Let us now consider a non-stationary wave packet given by Eq. (2.72). The simplest
case is that of non-dispersive waves, with ω = ck, where c is a constant. In this case,
Eq. (2.72) describes a superposition of plane waves having a constant phase velocity
c. Then, a comparison between Eqs. (2.72) and (2.74), allows one to write

ψ(x, t) = ψs(x − ct) . (2.79)

The effect of the standing waves being replaced by travelling waves is just a rigid
translational motion of the wave packet with a velocity c. No distortion of the wave
packet is caused by the time evolution. This is the typical behaviour of the solutions
of Eq. (2.23) as it can be inferred from Eq. (2.33).

With dispersive waves, ω is not simply proportional to k. We are, therefore, inter-
ested in assuming a general relationship ω = ω(k), where ω(k)/k is not a constant.
We assume a wave packet strongly localised in k-space, with b(k, t) = bs(k) given
by Eq. (2.75) and a marked peak at k = k0, namely a quasi-monochromatic wave
packet. This means that γ in Eq. (2.75) is assumed to have a large value.

The strong localisation in k-space suggests that one may express ω(k) as a Taylor
expansion around k = k0 truncated to second order,

ω(k) ≈ ω(k0) + d ω

d k

∣∣∣∣
k=k0

(k − k0) + 1

2

d2ω

d k2

∣∣∣∣
k=k0

(k − k0)
2 . (2.80)

We use the notations

ω0 = ω(k0) , cg = d ω

d k

∣∣∣∣
k=k0

, σ = 1

2

d2ω

d k2

∣∣∣∣
k=k0

, (2.81)

where cg is called the group velocity.
We now substitute Eqs. (2.75), (2.80) and (2.81) in Eq. (2.72) and we obtain
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ψ(x, t) =
∞∫

−∞
e−γ(k−k0)

2
ei{kx−[ω0+(k−k0)cg+(k−k0)2σ]t} d k

=
∞∫

−∞
e−γκ2

ei{(k0+κ)x−[ω0+κcg+κ2σ]t} dκ

= ei(k0x−ω0t)

∞∫

−∞
e−(γ+i σt)κ2

eiκ(x−cgt) dκ

= ei(k0x−ω0t)

∞∫

−∞
e−γ∗κ2

eiκx
∗
dκ ,

(2.82)

where γ∗ = γ + i σt and x∗ = x − cgt . We note that the integral appearing in
Eq. (2.82) is just the same as that evaluated in Eq. (2.76), with γ replaced by γ∗
and x replaced by x∗. Thus, we may write

ψ(x, t) = ei(k0x−ω0t)

∞∫

−∞
e−γ∗κ2

eiκx
∗
dκ

= ei(k0x−ω0t)
√

π

γ + iσt
exp

[
−

(
x − cgt

)2
4 (γ + iσt)

]
.

(2.83)

Again, we consider the square moduli of b(k, t) and of ψ(x, t) as in Eq. (2.77),

|b(k, t)|2 = e−2γ(k−k0)
2
,

|ψ(x, t)|2 = π√
γ2 + σ2t2

exp

[
− γ

(
x − cgt

)2
2

(
γ2 + σ2t2

)
]

. (2.84)

One recognises Gaussian signals both in k-space and in x-space. The peak of the
Gaussian signal in x-space is located at x = cgt , and thus, it travels in the x-direction
with the constant group velocity, cg.

The width of the Gaussian signal in k-space is still defined as in Sect. 2.3.1 and it
is given by Δk = 2/

√
2γ. The width of the Gaussian signal in x-space, also defined

as in Sect. 2.3.1, is now a function of time,

Δx = 2
√
2γ

√
1 + σ2t2

γ2
. (2.85)

Equation (2.85) shows that the width of the Gaussian signal in x-space increases in
time. This means that the time evolution of the wave packet implies a spreading in
x-space with a decreasing value at the peak position, x = cgt . The latter feature can
be easily inferred from Eq. (2.84), and it is qualitatively sketched in Fig. 2.3.
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Fig. 2.3 Spreading of the
Gaussian wave packet in
x-space

2.4 Three-Dimensional Fourier Transform and Wave
Packets

Up to this point, we have discussed cases where the symmetries existing in the
physical system are such that the solution of the governing equation depends on just
one Cartesian coordinate, x . In the general case, with a f (x) where x = (x, y, z) is
the position vector, we can define the three-dimensional Fourier transform, namely

F3{ f (x, y, z)}(kx , ky, kz) = f̃ (kx , ky, kz)

= 1

(2π)3/2

∞∫

−∞

∞∫

−∞

∞∫

−∞
f (x, y, z) e−i(kx x+ky y+kz z) d x d y d z .

(2.86)

Such definition extends Eq. (2.2). In Eq. (2.86), k = (kx , ky, kz) is the wave vector.
The wave number, k, is given by the modulus of vector k, namely
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k = |k| =
√
k2x + k2y + k2z . (2.87)

The inversion formula of Fourier transform, Eq. (2.6), can be extended to the three-
dimensional case,

F−1
3 { f̃ (kx , ky, kz)}(x, y, z) = f (x, y, z)

= 1

(2π)3/2

∞∫

−∞

∞∫

−∞

∞∫

−∞
f̃ (kx , ky, kz) e

i(kx x+ky y+kz z) d kx d ky d kz .
(2.88)

The main properties of the three-dimensional Fourier transform are quite similar to
those reviewed in Sect. 2.2.3. In particular the transform of derivatives now reads

F3{∇ f } = i k f̃ (k) ,

F3{∇2 f } = −k2 f̃ (k) .
(2.89)

The definition of three-dimensional transform is really useful when the physical
domain is the whole real space R

3. If, on the contrary, one or two coordinates have
a limited range of variation, it is more appropriate to transform only the functional
dependence on the unbounded coordinate or coordinates. For instance, if both y ∈
[0, a] and z ∈ [0, b], while x ∈ R, one finds more useful a one-dimensional Fourier
transform given by

F{ f (x, y, z)}(k, y, z) = f̃ (k, y, z) = 1√
2π

∞∫

−∞
f (x, y, z) e−i kx d x . (2.90)

If z ∈ [0, b], while (x, y) ∈ R
2, one should rather employ a two-dimensional Fourier

transform, given by

F2{ f (x, y, z)}(kx , ky, z) = f̃ (kx , ky, z)

= 1

2π

∞∫

−∞

∞∫

−∞
f (x, y, z) e−i(kx x+ky y) d x d y .

(2.91)

In Eq. (2.91), the wave vector is just two-dimensional, k = (kx , ky). The inversion
formula for F2 reads

F−1
2 { f̃ (kx , ky, z)}(x, y, z) = f (x, y, z)

= 1

2π

∞∫

−∞

∞∫

−∞
f̃ (kx , ky, z) e

i(kx x+ky y) d kx d ky .
(2.92)
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A variant of Eq. (2.90) is appropriate for cylindrical systems where the polar coordi-
nates (r,φ) are employed instead of (y, z). For instance, one may have r ∈ [r1, r2]
and φ ∈ [0, 2π] in the case of a cylindrical layer. In these cases, Eq. (2.90) is rather
written as

F{ f (x, r,φ)}(k, r,φ) = f̃ (k, r,φ) = 1√
2π

∞∫

−∞
f (x, r,φ) e−i kx d x . (2.93)

The three-dimensional wave equation is given by

∂2ψ(x, t)
∂t2

= c2 ∇2ψ(x, t) . (2.94)

Simple solutions of Eq. (2.94) are the plane waves,

ψ(x, t) = A ei (k·x−ωt) . (2.95)

In fact, ψ(x, t) given by Eq. (2.95) is a solution of Eq. (2.94) provided that A is
a constant and Eq. (2.70) is satisfied with k = |k|. More general, dispersive, plane
waves entail a function ω(k) not necessarily given by a linear function of k. Thus,
a three-dimensional wave packet built by the superposition of plane waves with all
possible wave vectors, k ∈ R

3, is expressed as

ψ(x, t) =
∞∫

−∞

∞∫

−∞

∞∫

−∞
b(k, t) ei [k·x−ω(k) t] d kx d ky d kz , (2.96)

which is an extended form of Eq. (2.72). Comparison with Eq. (2.88) suggests that
function b(k, t) is directly related to the Fourier transform of ψ(x, t), namely

b(k, t) = 1

(2π)3/2
ψ̃(k, t) eiω(k) t . (2.97)

In three dimensions, there is much more that can be done in terms of wave packets.
For instance, one can create a superposition of those plane waves whose wave vector
is directed, say, along the x-axis, namely k = (k, 0, 0). In this case, one has

ψ(x, t) =
∞∫

−∞
b(k, y, z, t) ei [kx−ω(k) t] d k . (2.98)

Another possibility is that the linear combination of plane waves involves just those
waves having a wave vector lying on the (x, y) plane, k = (kx , ky, 0), namely
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ψ(x, t) =
∞∫

−∞

∞∫

−∞
b(kx , ky, z, t) e

i [kx x+ky y−ω(k) t] d kx d ky , (2.99)

Clearly, Eqs. (2.98) and (2.99) are to be compared with the partial Fourier transforms
in one and two dimensions as defined in Eqs. (2.90) and (2.91).

Other possibilities are allowed in three dimensions, for wave propagation, that
expand the limited class of plane waves. For instance, a point-like source may
generate spherical waves, invariant under general rotations around the origin. Such
waves are solutions of the spherically symmetric wave equation, i.e. a special case
of Eq. (2.94),

∂2ψ(r, t)

∂t2
= c2

r2
∂

∂r

[
r2

∂ψ(r, t)

∂r

]
, (2.100)

where r = |x| is the spherical radial coordinate. Spherical normal modes are given
by

ψ(r, t) = A
ei(kr−ωt)

r
, (2.101)

and they solve Eq. (2.100) provided that ω = ± kc and A is a constant. As for plane
waves, given by Eqs. (2.69), (2.101) with a constant amplitude A defines the case of
non-dispersive waves. Other partial differential equations might involve dispersive
spherical waves, where A is time-dependent and ω is a nonlinear function of k. Wave
packets can be built up from the superposition of these more general, dispersive,
spherical waves, so that we can write the analogous of Eqs. (2.71) and (2.72),

ψ(r, t) = 1

r

∑
k

B(k, t) ei [kr−ω(k) t] , (2.102)

and

ψ(r, t) = 1

r

∞∫

−∞
b(k, t) ei [kr−ω(k) t] d k , (2.103)

respectively, where Eq. (2.103) is relative to a case where k spans continuously the
whole real axis.
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Chapter 3
Large-time Behaviour of Wave Packets

3.1 What is a Holomorphic Function?

The main elements of the theory of the functions of a complex variable can be found
in many textbooks. Among these, the treatment presented in this section, as well as
in Sects. 3.2 and 3.3, mainly follows the much more extended presentations of this
topic available in Cartan [6], in Priestley [8], and in chapter 11 of Arfken et al. [4].

Let us recall the definition of set C. The set C coincides with R
2, in the sense

that to every pair (x, y) ∈ R
2 there corresponds one and only one complex number

z ∈ C defined as
z = x + i y . (3.1)

The real number x is called the real part of z, while real number y is called the
imaginary part of z,

x = �(z) , y = �(z) . (3.2)

The set R2 is also called the complex plane.
Unlike R

2, the set C is structured as a field. This means that it has not only an
inner operation of sum between any two elements, already present in R2, but also an
operation of product, not present in R

2. The product is defined as

{
z1 = x1 + i y1 ,

z2 = x2 + i y2 ,
�−→ z1 z2 = x1 x2 − y1 y2 + i (x1 y2 + y1 x2) . (3.3)

A special element of C is i, called the imaginary unit. On account of the definition
of product between any two complex numbers, given by Eq. (3.3), the product of the
imaginary unit and itself, i2, is equal to −1.

To every complex number z, there corresponds one and only one complex number
z, called the complex conjugate of z and defined as

z = x + i y , �−→ z = x − i y . (3.4)
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The product of z and z is a real number called the square modulus of z,

z = x + i y , �−→ z z = x2 + y2 ≡ |z|2 . (3.5)

The exponential of any z ∈ C is defined as the power series

ez =
∞∑

n=0

zn

n! . (3.6)

The main property of the exponential function is

ez ew = ez+w , ∀z, w ∈ C . (3.7)

The imaginary exponential function is an application R → C defined as θ → ei θ .
This function satisfies Euler’s formula,

ei θ = cos θ + i sin θ , ∀θ ∈ R . (3.8)

Since sin2 θ + cos2 θ = 1, Eq. (3.8) allows one to express any complex number with
modulus 1. Then,

∀z ∈ C ,
z

|z| = cos θ + i sin θ = ei θ . (3.9)

Equation (3.9) associates a real number θ to any complex number z. This real number
is called the argument of z, i.e. θ = arg(z). However, since the sine and cosine
functions are periodicwith period 2π , arg(z) is defined only up to integermultiples of
2π . Therefore, Eq. (3.9) gives rise to the so-called polar representation of a complex
number,

∀z ∈ C , z = |z| ei arg(z) = |z|
{
cos[arg(z)] + i sin[arg(z)]

}
. (3.10)

Since arg(z) is defined only up to integer multiples of 2π , it is not strictly speaking
an applicationC → R, but a so-calledmultifunction, ormultivalued function. In fact,
for a given z ∈ C, arg(z) can be a real number in the interval [−π, π ], and a real
number in the interval [π, 3π ], and a real number in the interval [−3π,−π ], … .
The terms of this infinite sequence of real numbers can be obtained by adding 2πk,
with k ∈ Z , to the first real number (the value in the interval [−π, π ]). The value in
the interval [−π, π ] is called the principal branch of arg(z).

Another important multivalued function is the (natural) logarithm of z, defined as
the inverse function of ez . From Eq. (3.8), the main property of the logarithm is

ln(z w) = ln(z) + ln(w) , ∀z, w ∈ C . (3.11)

From Eqs. (3.10) and (3.11), one obtains
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ln(z) = ln(|z|) + i arg(z) . (3.12)

Equation (2.13) shows that the logarithm of z is a multivalued function C → C. We
have a principal branch of ln(z) defined by considering the principal branch of the
argument of z, i.e. arg(z) ∈ [−π, π ].
Example 3.1 In order to evaluate the logarithm of −1, we have just to recognise,
from Eq. (3.8), that

− 1 = ei (π+2πk) , ∀k ∈ Z . (3.13)

Then, we deduce that

ln(−1) = iπ + 2iπk , ∀k ∈ Z . (3.14)

The principal branch value of ln(−1) is iπ .

3.1.1 Derivative of a Complex-Valued Function

The metric structure in C defined by the distance |z − w| between any two complex
numbers z and w allows us to extend the notions of limit and continuity defined in the
elementary analysis of real functions. These notions are formally identical to those of
the real analysis. The same holds for the notions of derivative and differentiability.
A function f : D → C, where D is an open connected subset of C, is said to be
differentiable at a point z0 ∈ D if

lim
z→z0
z∈D

f (z) − f (z0)

z − z0
= f ′(z0) ∈ C . (3.15)

Thismeans that, on considering f (z) = f (x, y)where x = �(z) and y = �(z), there
exists the double limit

lim
h1→0,h2→0

h1,h2∈R

f (x0 + h1, y0 + h2) − f (x0, y0)

h1 + i h2
= f ′(z0) ∈ C , (3.16)

where x0 = �(z0) and y0 = �(z0). Obviously, the real numbers h1, h2 must be cho-
sen as sufficiently small so that (x0 + h1) + i (y0 + h2) ∈ D . For the limit in the
left-hand side of Eq. (3.16) to exist, its value f ′(z0) must be independent of the spe-
cial way it is evaluated. For instance, one may evaluate the limit by keeping h2 = 0,
so that

f ′(z0) = lim
h1→0
h1∈R

f (x0 + h1, y0) − f (x0, y0)

h1
= ∂ f (x, y)

∂x

∣∣∣∣
(x,y)=(x0,y0)

. (3.17)
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Alternatively, one may evaluate the limit by keeping h1 = 0, so that

f ′(z0) = lim
h2→0
h2∈R

f (x0, y0 + h2) − f (x0, y0)

i h2

= 1

i

∂ f (x, y)

∂y

∣∣∣∣
(x,y)=(x0,y0)

= − i
∂ f (x, y)

∂y

∣∣∣∣
(x,y)=(x0,y0)

.

(3.18)

From Eqs. (3.17) and (3.18), one may easily infer that, if f (z) = f (x, y) is differ-
entiable at z0 = x0 + i y0 ∈ D , then

∂ f (x, y)

∂x

∣∣∣∣
(x,y)=(x0,y0)

+ i
∂ f (x, y)

∂y

∣∣∣∣
(x,y)=(x0,y0)

= 0 . (3.19)

Definition 3.1 If D is an open connected subset of C, a function f : D → C is
holomorphic in D if it is differentiable at every point z0 ∈ D .

We note that a holomorphic function f (z) has a very important feature. Let f (z) =
f (x, y), with z = x + i y, and let f (x, y) = u(x, y) + i v(x, y), where u and v are
real-valued functions. Then, Eq. (3.19) implies that

∂ f (x, y)

∂x
+ i

∂ f (x, y)

∂y
= 0 , (3.20)

namely

∂

∂x
[u(x, y) + i v(x, y)] + i

∂

∂y
[u(x, y) + i v(x, y)] = 0 ,

∂u(x, y)

∂x
− ∂v(x, y)

∂y
+ i

[
∂v(x, y)

∂x
+ ∂u(x, y)

∂y

]
= 0 . (3.21)

From Eq. (3.21), one easily proves the following theorem.

Theorem 3.1 (Cauchy–Riemann equations) Let D be an open connected subset of
C, and f : D → C be holomorphic inD with f (z) = f (x, y) = u(x, y) + i v(x, y),
where u and v are real-valued. Then, the Cauchy–Riemann equations hold,

∂u(x, y)

∂x
= ∂v(x, y)

∂y
,

∂v(x, y)

∂x
= −∂u(x, y)

∂y
. (3.22)

Equation (3.22) reveals that a holomorphic function f (z) is something more than
the mere representation of a differentiable function f (x, y) in an open subset of R2.
On account of the definition of complex conjugation, we have

z = x + i y , z = x − i y ,

x = z + z

2
, y = z − z

2 i
, (3.23)
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so that

∂ f (x, y)

∂z
= ∂x

∂z

∂ f (x, y)

∂x
+ ∂y

∂z

∂ f (x, y)

∂y

= 1

2

∂ f (x, y)

∂x
− 1

2 i

∂ f (x, y)

∂y
= 1

2

[
∂ f (x, y)

∂x
+ i

∂ f (x, y)

∂y

]
.

(3.24)

On account of Eqs. (3.20) and (3.24), we conclude that, when a differentiable function
in an open subset of R2, f (x, y), defines a holomorphic function in an open subset
of C, then f (x, y) depends on z, but it cannot depend on the complex conjugate of
z, namely

∂ f (x, y)

∂z
= 0. (3.25)

In a completely symmetric way, one can prove that if a differentiable function,
f (x, y), in an open subset of R2 defines a holomorphic function in an open sub-
set of C, then f (x, y) can depend on z̄, but it cannot depend on z.

Example 3.2 We can easily prove that f : R2 → R
2 such that f (x, y) = (x2 +

y2, 1 − x2 − y2) does not define a holomorphic function f : C → C. In fact,
f (x, y) = (x2 + y2, 1 − x2 − y2) is differentiable inR2. However, f : C → C such
that f (z) = z z + i (1 − z z) cannot be a holomorphic function. In fact, f depends
on both z and z̄, so that, in particular, Eq. (3.25) is not satisfied.

Let us define a harmonic function as a twice differentiable function f (x, y) with
a vanishing Laplacian, namely

∂2 f (x, y)

∂x2
+ ∂2 f (x, y)

∂y2
= 0 . (3.26)

In other words, a harmonic function is any solution of Laplace’s equation (3.26).
A general theorem can be proved.

Theorem 3.2 A twice differentiable function f (z, z̄) is harmonic if and only if it is
the sum of a holomorphic function of z and a holomorphic function of z̄.

The proof of this theorem is as follows. Let us first assume that

f (z, z̄) = F(z) + G(z̄) , (3.27)

where F(z) and G(z̄) are differentiable. Then, from Eq. (3.23), we have

0 = ∂ F

∂ z̄
= ∂ F

∂x

∂x

∂ z̄
+ ∂ F

∂y

∂y

∂ z̄
= 1

2

∂ F

∂x
− 1

2 i

∂ F

∂y
. (3.28)

Thus, we have
∂ F

∂x
= − i

∂ F

∂y
. (3.29)
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As a consequence,

∂2F

∂x2
+ ∂2F

∂y2
= − i

∂2F

∂x ∂y
+ i

∂2F

∂y ∂x
= 0 . (3.30)

Moreover, we have
∂G

∂z
= 0 , (3.31)

so that we obtain, by employing Eq. (3.23),

0 = ∂G

∂z
= ∂G

∂x

∂x

∂z
+ ∂G

∂y

∂y

∂z
= 1

2

∂G

∂x
+ 1

2 i

∂G

∂y
. (3.32)

Thus, we can write
∂G

∂x
= i

∂G

∂y
. (3.33)

As a consequence,

∂2G

∂x2
+ ∂2G

∂y2
= i

∂2G

∂x ∂y
− i

∂2G

∂y ∂x
= 0 . (3.34)

Therefore, we can conclude that F(z) + G(z̄) is a harmonic function. Conversely,
let us now assume that f (z, z̄) is harmonic. Then, we can express

∂2 f

∂x2
= ∂

∂x

∂ f

∂x
= ∂

∂x

(
∂ f

∂z

∂z

∂x
+ ∂ f

∂ z̄

∂ z̄

∂x

)
= ∂

∂x

(
∂ f

∂z
+ ∂ f

∂ z̄

)

= ∂

∂z

(
∂ f

∂z
+ ∂ f

∂ z̄

)
+ ∂

∂ z̄

(
∂ f

∂z
+ ∂ f

∂ z̄

)

= ∂2 f

∂z2
+ ∂2 f

∂ z̄2
+ 2

∂2 f

∂z ∂ z̄
,

(3.35)

and

∂2 f

∂y2
= ∂

∂y

∂ f

∂y
= ∂

∂y

(
∂ f

∂z

∂z

∂y
+ ∂ f

∂ z̄

∂ z̄

∂y

)
= i

∂

∂y

(
∂ f

∂z
− ∂ f

∂ z̄

)

= − ∂

∂z

(
∂ f

∂z
− ∂ f

∂ z̄

)
+ ∂

∂ z̄

(
∂ f

∂z
− ∂ f

∂ z̄

)

= −∂2 f

∂z2
− ∂2 f

∂ z̄2
+ 2

∂2 f

∂z ∂ z̄
.

(3.36)

Therefore,

0 = ∂2 f

∂x2
+ ∂2 f

∂y2
= 4

∂2 f

∂z ∂ z̄
, (3.37)
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a condition which can be satisfied if and only if f is the sum of a function of z and
a function of z̄, namely

f (z, z̄) = F(z) + G(z̄) . (3.38)

3.1.2 Path Integration in C

A path or a contour in C is nothing but an oriented open or closed curve in the
complex plane. Mathematically, a path inC is defined by a differentiable application
γ : [t1, t2] → C, γ = γ (t), where [t1, t2] ⊆ R is a real interval. Then, γ (t) is the
parametrisation of the path. For simplicity of notation, we will denote the path with
the same symbol γ of its parametrisation. The path integral on γ of a function f (z)
is defined as ∫

γ

f (z) d z =
t2∫

t1

f [γ (t)] γ ′(t) d t . (3.39)

It may be objected that the result of a path integration on a given oriented curve in the
complex planemay be dependent on the chosen parametrisation of that curve. In fact,
it may be proved that, under suitable conditions, two different parametrisations yield
the same contour integral. In the case of closed contours γ , the mentioned suitable
conditions mainly depend on the so-called winding number of the contour.

Example 3.3 To illustrate this point, let us evaluate

∫
γ

d z

z
, (3.40)

where γ is the unit circle centred in z = 0 and oriented counterclockwise. A
parametrisation of γ can be given by

γ (θ) = cos θ + i sin θ , θ ∈ [0, 2π ] . (3.41)

On account of Eq. (3.8), one may equivalently write

γ (θ) = ei θ , θ ∈ [0, 2π ] . (3.42)

Then, on account of Eq. (3.39), one has

∫
γ

d z

z
= i

2π∫
0

1

ei θ
ei θ d θ = i

2π∫
0

d θ = 2π i . (3.43)
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We note that one could have also employed other parametrisations of the unit circle,
such as

γ (θ) = ei θ = cos θ + i sin θ, θ ∈ [0, 4π ] , (3.44)

or
γ (θ) = ei θ = cos θ + i sin θ, θ ∈ [0, 6π ] . (3.45)

The result of the integration would have been 4π i in the first case and 6π i in the
second case. However, the winding number of the parametrisation defined on [0, 4π ]
is 2, and the winding number of the parametrisation defined on [0, 6π ] is 3. This
means that, in the first case, the point z = γ (t) undergoes two complete turns around
z = 0 and, in the second case, three complete counterclockwise turns around z = 0.

Incidentally, on relaxing the assumption of counterclockwise orientation of the
pathγ , one can devise both positive and negativewinding numbers. The latter concept
being relative to clockwise-oriented closed paths.

Here and in the following, if not differently specified, we will always assume that
the winding number of a closed path is 1.

3.1.3 Homotopy

We consider an open connected subset D ⊆ C and two closed paths γ1 and γ2 both
oriented counterclockwise, or both oriented clockwise. If there exists a continuous
map,

Λ : D × [0, 1] → D , (3.46)

such that
γ1(t) = Λ[γ1(t), 0], γ2(t) = Λ[γ1(t), 1] , (3.47)

for every t , then γ1 and γ2 are homotopic. In other words, γ1 and γ2 are said to be
homotopic in D if γ1 can be continuously deformed into γ2.

A special case is that of an oriented closed path γ which is homotopic in D to a
point z0 ∈ D . In this case, γ can be continuously shrunk to a point z0.

Theorem 3.3 Let us consider an open connected subsetD ⊆ Cand two closed paths
γ1 ⊆ D and γ2 ⊆ D both oriented counterclockwise, or both oriented clockwise. If
f : D → C is holomorphic, and if γ1 and γ2 are homotopic, then

∫
γ1

f (z) d z =
∫
γ2

f (z) d z . (3.48)

Corollary 3.1 Let us consider an open connected subset D ⊆ C and a closed path
γ ⊆ D homotopic to a point z0 ∈ D . If f : D → C is holomorphic, then
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∫
γ

f (z) d z = 0 . (3.49)

We note that the thesis of Corollary3.1 is not incompatible with the result obtained
working out the example regarding function f (z) = 1/z. In fact, in that exercise, the
function f (z) = 1/z is holomorphic in the punctured complex plane D = C \ {0},
due to the singularity in z = 0. Then, the unit circle centred in z = 0 is included in
D while the point z = 0 is not. Thus, one cannot even question about the homotopy
in D of the unit circle and the point z = 0.

IfD ⊆ C is open and connected, and if every closed path γ inD is homotopic to
a point in D , then D is called simply connected. Obviously, the punctured complex
plane C \ {0} is not simply connected.

Corollary 3.2 Let us consider a simply connected subset D ⊆ C and a closed path
γ ⊆ D . If f : D → C is holomorphic, then

∫
γ

f (z) d z = 0 . (3.50)

3.2 Laurent Expansions, Singular Points

Let us consider an annulus,

A = {z ∈ C : R1 < |z| < R2} . (3.51)

A function f : A → C has a Laurent expansion inA if there exists a power series,

∞∑
n=−∞

an zn = · · · + a−n

zn
+ · · · + a−2

z2
+ a−1

z
+ a0 + a1 z

+ a2 z2 + · · · + an zn + · · · ,

(3.52)

that converges in A and whose sum coincides with f (z) for every z ∈ A .

Theorem 3.4 Any holomorphic function in an annulus A , defined by Eq. (3.51),
has one and only one Laurent expansion.

An interesting special case is the limit R1 → 0, meaning a punctured disc

A0 = {z ∈ C : 0 < |z| < R} . (3.53)

Let us consider a holomorphic function f (z) in the punctured discA0. If f (z) cannot
be extended to a holomorphic function in the disc
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˜A0 = {z ∈ C : |z| < R} , (3.54)

the origin z = 0 is an isolated singularity of f (z). In other words, z = 0 is an isolated
singularity of f (z) unless the Laurent expansion of f (z) is such that

a−n = 0 , ∀n ∈ N . (3.55)

From the analysis of the Laurent expansion of f (z), there are two possible kinds of
isolated singularities.

• A pole — If only a finite number of coefficients a−n , with n ∈ N , is nonzero, the
isolated singularity is a pole. If N is the largest N ∈ N such that a−N �= 0, we say
that the pole is multiple with order N . If the largest N ∈ N such that a−N �= 0 is
N = 1, we say that the pole is simple.

• An essential singularity — If there is an infinite number of nonzero coefficients
a−n , with n ∈ N , the isolated singularity is an essential singularity.

We note that, if f (z) is a holomorphic function in the punctured discA0, Eq. (3.53),
with amultiple pole of order N , then zN f (z) is holomorphic in the disc ˜A0, Eq. (2.31).

We note that

f (z) = 1

z
(3.56)

has a simple pole at z = 0, while

f (z) = e1/z (3.57)

has an essential singularity at z = 0.
So far, we discussed the singularities of a function f (z). We know that there also

exist multivalued functions, an example being the logarithm ln(z), Eq. (3.12). We
know that there exist infinite branches of ln(z), each one determining a different
value associated with a given z. Other multivalued functions can be defined with the
fractional powers of z. An example is

f (z) = √
z = √|z| ei arg(z)/2 . (3.58)

If we consider the first branch arg(z) ∈ [−π, π ], we obtain values of
√

z with a
positive or zero real part. If we consider another branch, say [π, 3π ], we obtain
values of

√
z with a negative or zero real part. Both in the case of ln(z) and in the

case of
√

z, the multivaluedness can be represented by a branch cut in the complex
plane (see Fig. 3.1). The branch cut is the wavy line on the half-axis Re(z) � 0.
Every time we cross the branch cut and we enter a new branch of the multivalued
function. The origin of the branch cut, z = 0, is to be considered as a singularity of
the multivalued function, even if in a sense different from the isolated singularities
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Fig. 3.1 Branch cut in the
complex plane

of the functions discussed above. In fact, in this case we don’t base our definition on
the features of a Laurent series.

For the sake of simplicity, our definitions of Laurent series, isolated singularity,
pole and essential singularity were relative to the origin. The same definitions may
be relative to any other point z = z0 ∈ C without any substantial difference. Indeed,
we must consider an annulus,

Az0 = {z ∈ C : R1 < |z − z0| < R2} . (3.59)

Then, a Laurent expansion of a function f : Az0 → C exists if the power series,

∞∑
n=−∞

an (z − z0)
n = · · · + a−n

(z − z0)
n + · · · + a−2

(z − z0)
2 + a−1

z − z0
+ a0

+ a1 (z − z0) + a2 (z − z0)
2 + · · · + an (z − z0)

n + · · · ,

(3.60)

converges to f (z) for every z ∈ Az0 .
Let us consider an open connected subset D ⊆ C. If f : D → C is holomorphic

in D except for a set of isolated singularities of f (z) classified as poles, then f (z)
is said to be meromorphic in D .

3.3 Residues

Let f (z) be a holomorphic function in the punctured disc centred in z = z0,
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Az0 = {z ∈ C : 0 < |z − z0| < R} , (3.61)

and let z = z0 be a multiple pole of order N . Then, we may write the Laurent
expansion

f (z) =
∞∑

n=−N

an(z − z0)
n , ∀z ∈ Az0 . (3.62)

The coefficient a−1 is called the residue of f (z) at z = z0,

Res( f (z); z0) = a−1 . (3.63)

We can prove that, if z = z0 is a simple pole of a holomorphic function f (z) in the
punctured disc Az0 , Eq. (3.61), then the residue of f (z) at z = z0 can be evaluated
as

Res( f (z); z0) = lim
z→z0

(z − z0) f (z) . (3.64)

The proof is as follows. We express f (z) through its Laurent expansion

f (z) = a−1

z − z0
+ a0 + a1(z − z0) + a2(z − z0)

2 + · · · . (3.65)

Then,

(z − z0) f (z) = a−1 + a0(z − z0) + a1(z − z0)
2 + a2(z − z0)

3 + · · · . (3.66)

By taking the limit z → z0 at both sides of this equation, we obtain

lim
z→z0

(z − z0) f (z) = a−1 = Res( f (z); z0) . (3.67)

Furthermore, we can prove that, if z = z0 is a multiple pole of order N > 1 of a
holomorphic function f (z) in the punctured discAz0 , Eq. (3.61), then the residue of
f (z) at z = z0 can be evaluated as

Res( f (z); z0) = 1

(N − 1)! lim
z→z0

dN−1

d zN−1

[
(z − z0)

N f (z)
]

. (3.68)

Equation (3.68) can be proved by expressing f (z) through its Laurent expansion, so
that we obtain

(z − z0)N f (z) = a−N + a−(N−1)(z − z0) + · · ·
+ a−1(z − z0)N−1 + a0(z − z0)N + a1(z − z0)N+1 . . . .

(3.69)

One may easily verify that
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dN−1

d zN−1
(z − z0)

n = 0 , 0 � n < N − 1 ,

dN−1

d zN−1
(z − z0)

n = n!
(n − N + 1)! (z − z0)

n−N+1 , n � N − 1 . (3.70)

Thus, by employing Eqs. (3.67)–(3.69), we obtain

lim
z→z0

dN−1

d zN−1

[
(z − z0)

N f (z)
] = a−1 (N − 1)! = (N − 1)! Res( f (z); z0) . (3.71)

Theorem 3.5 (Cauchy’s Residue Theorem) Let us consider an open connected sub-
set D ⊆ C and a closed counterclockwise-oriented path γ ⊆ D . Let f (z) be a mero-
morphic function in D with a finite number of poles z1, z2, . . . , zm inside the region
bounded by γ , and such that γ does not pass through any singularities of f (z). Then,

∫
γ

f (z) d z = 2π i
m∑

k=1

Res( f (z); zk) . (3.72)

Cauchy’s residue theorem is of paramount importance in the complex analysis,
as it provides an extremely effective tool for the evaluation of integrals. For this
purpose, Theorem3.5 is completed by a useful lemma.

Lemma 3.1 Let f (z) be a meromorphic function in an open connected subset D ⊆
C that includes the sector of the complex plane

S = {z ∈ C : θ1 < arg(z) < θ2} . (3.73)

Let γ0(R; θ1, θ2) be the arc of the circle |z| = R included in S and oriented coun-
terclockwise. If

∀z ∈ S , lim|z|→∞ z f (z) = 0 , (3.74)

then

lim
R→∞

∫
γ0(R;θ1,θ2)

f (z) d z = 0 . (3.75)

3.3.1 Evaluation of Integrals

Let us consider a few examples, in order to see how Cauchy’s residue theorem can
be a very useful method for the evaluation of integrals.

Example 3.4 We want to evaluate the integral
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Fig. 3.2 Closed semicircular
path used in Example3.4

I =
∞∫

−∞

d x

x2 − 4x + 5
. (3.76)

Obviously, I is given by the limit R → ∞ of the integral

IR =
R∫

−R

d x

x2 − 4x + 5
. (3.77)

Function

f (z) = 1

z2 − 4z + 5
= 1

(z − 2 + i)(z − 2 − i)
(3.78)

is meromorphic in C with two simple poles in z = 2 − i and in z = 2 + i.
If we consider the closed semicircular path γ sketched in Fig. 3.2, the pole z =

2 + i is contained in the region bounded by γ , provided that R is sufficiently large.
The following identity holds

∫
γ

d z

z2 − 4z + 5
= IR +

∫
γ0(R;0,π)

d z

z2 − 4z + 5
, (3.79)

where
γ0(R; 0, π) = {z ∈ C : |z| = R, Im(z) > 0} . (3.80)

On account of Lemma3.1, we can write

lim
R→∞

∫
γ0(R;0,π)

d z

z2 − 4z + 5
= 0 . (3.81)
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Therefore, by invoking Cauchy’s residue theorem, we may write

I = lim
R→∞

∫
γ

d z

z2 − 4z + 5

= 2π i Res

(
1

(z − 2 + i)(z − 2 − i)
; 2 + i

)
= 2π i

1

2 i
= π ,

(3.82)

where Eq. (3.64) has been used for the evaluation of the residue.

Example 3.5 Let us consider the integral

I =
2π∫
0

d x

sin x + cos x + 5
. (3.83)

We note that a parametrisation of the unit circle,

C = {z ∈ C : |z| = 1} , (3.84)

oriented counterclockwise, is

z = ei x = cos x + i sin x , x ∈ [0, 2π ] , (3.85)

so that

d z = i ei xd x = i z d x , d x = − i
d z

z
. (3.86)

Then, on the unit circle C , we have

1

z
= e−i x = cos x − i sin x , x ∈ [0, 2π ] . (3.87)

As a consequence, we may write

cos x = 1

2

(
z + 1

z

)
, sin x = 1

2 i

(
z − 1

z

)
,

d x

sin x + cos x + 5
= − 2i d z

(1 − i)z2 + 10z + (1 + i)
. (3.88)

Therefore, we have

I = − 2 i
∫
C

d z

(1 − i)z2 + 10z + (1 + i)
. (3.89)

The function
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Fig. 3.3 Closed semicircular
path used in Example3.6

f (z) = 1

(1 − i)z2 + 10z + (1 + i)
(3.90)

has two simple poles at

z1 = 1 + i

2

(√
23 − 5

)
, z2 = − 1 + i

2

(√
23 + 5

)
. (3.91)

Only the pole z1 is in the region bounded by C , |z1| < 1, while z2 is outside this
region, |z2| > 1. Hence, on employing Cauchy’s residue theorem, we obtain

I = 4π Res( f (z); z1) = 2π√
23

. (3.92)

Example 3.6 We are now interested in evaluating the integrals

I1 =
∞∫

−∞

cos(kx)

x2 + 1
d x , I2 =

∞∫
−∞

sin(kx)

x2 + 1
d x , k > 0 . (3.93)

We note that, on account of Euler’s formula (3.8), we may write

I1 = �(I ) , I2 = −�(I ) , (3.94)

where

I =
∞∫

−∞

e−i kx

x2 + 1
d x . (3.95)

A comparison with the definition given by Eq. (2.2) leads us to the conclusion that
I is the Fourier transform of function F(x) = √

2π/(1 + x2) for the range k > 0.
Then, we can focus on the evaluation of I . We change the integration variable,
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y = kx , x = y

k
, d x = d y

k
, (3.96)

so that

I = k

∞∫
−∞

e−i y

y2 + k2
d y . (3.97)

On considering the closed semicircular path in Fig. 3.3, we write

∫
γ

e−i z

z2 + k2
d z = −

R∫
−R

e−i y

y2 + k2
d y +

∫
γ0(R,π,2π)

e−i z

z2 + k2
d z , (3.98)

where
γ0(R;π, 2π) = {z ∈ C : |z| = R, �(z) < 0} . (3.99)

Since �(z) < 0, we have

lim|z|→∞
z e−i z

z2 + k2
= 0 . (3.100)

Therefore, as consequence of Lemma3.1, we obtain

lim
R→∞

∫
γ0(R,π,2π)

e−i z

z2 + k2
d z = 0 , (3.101)

so that

I = − k lim
R→∞

∫
γ

e−i z

z2 + k2
d z . (3.102)

We employ Cauchy’s residue theorem to evaluate

∫
γ

e−i z

z2 + k2
d z . (3.103)

Function

f (z) = e−i z

z2 + k2
= e−i z

(z − i k)(z + i k)
(3.104)

has two simple poles z1 = i k and z2 = −i k. The closed path γ encircles the pole
z2, but not z1, provided that R is sufficiently large (R > k). Then, we have
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I = − k lim
R→∞

∫
γ

e−i z

z2 + k2
d z = − 2πk i Res( f (z); z2) . (3.105)

The residue is given by

Res( f (z); z2) = − e−k

2i k
. (3.106)

Therefore, we conclude that

I = 2πk i
e−k

2i k
= π e−k . (3.107)

This means that
I1 = π e−k , I2 = 0 . (3.108)

3.4 The Laplace Transform

The Laplace transform of a function f (t) is given by

L{ f (t)}(s) = f̃ (s) =
∞∫
0

f (t) e−st d t . (3.109)

The transform L{ f (t)} is defined in the complex half-plane �(s) > a where a is a
real constant such that the following condition holds:

| f (t)| < C eat , ∀t � 0, (3.110)

with a proper choice of a positive real constant C . A sketch of the domain where
f̃ (s) is defined is given in Fig. 3.4.

3.4.1 Inversion of the Laplace Transform

If the Laplace transform of a function f (t) is known, one may determine f (t). To
achieve this task, there exists a procedure for the inversion of the Laplace transform.
The inversion formula of the Laplace transform is as follows:

f (t) = L−1{ f̃ (s)}(t) = 1

2π i

p+i∞∫
p−i∞

f̃ (s) est d s , (3.111)
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Fig. 3.4 Domain where the
Laplace transform f̃ (s) is
defined

for every real number p > a. The integration must be performed along a line path in
the complex plane. This path is given by a vertical line that intersects the real axis,
�(s) = 0, at s = p (see Fig. 3.5).

Hence, the evaluation of the inverse Laplace transform implies the calculation of
an integral in the complex plane. The theory of the integration in C, and Cauchy’s
residue Theorem3.5, is a strong basis for the inversion of the Laplace transform. In
the simplest cases, one may utilise suitable tables where the pairs [ f (t), f̃ (s)] are
reported (see, for instance, Debnath and Bhatta [7]).

3.4.2 Main Properties of the Laplace Transform

Let f (t) and g(t) be any two functions satisfying Eq. (3.110). Among the main
properties of the Laplace transform, we mention the following:

• Linearity
For every pair of real constants (C1, C2), we have

L {C1 f (t) + C2 g(t)} (s) = C1 L{ f (t)}(s) + C2 L{g(t)}(s)
= C1 f̃ (s) + C2 g̃(s) .

(3.112)

• Derivative
On considering the first derivative of f (t) and evaluating its Laplace transform,
we obtain
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Fig. 3.5 Integration path for
the inversion formula,
Eq. (3.111)

L
{

f ′(t)
}
(s) =

∞∫
0

f ′(t) e−st d t = [
f (t) e−st

]∞
0 + s

∞∫
0

f (t) e−st d t

= s L{ f (t)}(s) − f (0) = s f̃ (s) − f (0) .

(3.113)

In a similar way, one may evaluate the Laplace transforms of higher-order deriva-
tives,

L
{

f ′′(t)
}
(s) = s2 f̃ (s) − s f (0) − f ′(0) ,

L
{

f (n)(t)
}
(s) = sn f̃ (s) − sn−1 f (0)
− sn−2 f ′(0) − · · · − f (n−1)(0) ,

(3.114)

where n � 2.

• Translation
The Laplace transform of f (t) ebt , where b ∈ R and b � a so that the condition
expressed by Eq. (3.110) is satisfied by f (t) ebt , is given by

L
{

f (t) ebt
}
(s) =

∞∫
0

f (t) e−(s−b)t d t = f̃ (s − b) . (3.115)

In the special case where f (t) = 1, we get
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L
{
ebt

}
(s) =

∞∫
0

e−(s−b)t d t = 1

s − b
. (3.116)

• Scaling
Let us consider the Laplace transform of f (bt), where b > 0. One has

L { f (bt)} (s) =
∞∫
0

f (bt) e−st d t = 1

b

∞∫
0

f (u) e−su/b d u

= 1

b
f̃
( s

b

)
. (3.117)

• Convolution
The Laplace transform of the convolution between two functions f (t) and g(t),
f (t)�g(t), defined as

f (t)�g(t) =
t∫

0

f (t̂) g(t − t̂) d t̂ , (3.118)

is given by the product of the Laplace transforms of f (t) e g(t),

L{ f (t)�g(t)}(s) = L{ f (t)}(s)L{g(t)}(s) = f̃ (s) g̃(s) . (3.119)

Although the definition of convolution given by Eq. (3.118) differs from the defini-
tion of convolution stated for the Fourier transform, Eq. (2.19), it shares the same
properties,

commutative � f �g = g� f ; (3.120)

associative � f �(g�h) = ( f �g)�h ; (3.121)

distributive � f �(g + h) = f �g + f �h . (3.122)

• Ratio between two polynomials
Let us consider f̃ (s) = G̃(s)/H̃(s), where G̃(s) and H̃(s) are two polynomials
such that the degree of H̃(s) is greater than that of G̃(s), and that H̃(s) has only
zeros with algebraic multiplicity 1. In that case, f̃ (s) can be expressed as the sum
of partial fractions,

f̃ (s) = c1
s − b1

+ c2
s − b2

+ · · · + cn

s − bn
, (3.123)

where b1, b2, . . . , bn are the zeros of H̃(s) and the coefficients ci can be evaluated
as
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ck = lim
s→bk

[(s − bk) f̃ (s)], ∀k = 1, . . . , n . (3.124)

In other words, the coefficients ck are the residues of f̃ (s) at the simple poles
s = bk . On account of the linearity and of the translation properties of the Laplace
transform, we obtain

f (t) = c1 e
b1t + c2 e

b2t + · · · + cn e
bnt =

n∑
k=1

ck e
bk t . (3.125)

3.4.3 Meromorphic Functions

Let us assume that f̃ (s) has no essential singularities and that its poles b1, b2, . . . ,
bn, . . . are in the complex half-plane �(s) < p. The integral expressing the inverse
Laplace transformof f̃ (s), Eq. (3.111), can be evaluated through a limit of the integral
of

f̃ (s) est (3.126)

evaluated on a closed path, γ , in the complex plane called the Bromwich contour,

f (t) = lim
R→∞

⎡
⎣ 1

2π i

∫
γ

f̃ (s) est d s

⎤
⎦ , (3.127)

where R is the radius of the curved part of the Bromwich contour. A sketch of this
contour in the complex plane is given in Fig. 3.6.

In the limit R → ∞, the integral on the semicircular part of the Bromwich contour
tends to zero provided that, on this semicircle, the following condition holds:

| f̃ (s)| <
M

Rκ
, (3.128)

where M and κ are positive constants [8, 9]. Moreover, in the limit R → ∞, the
integral along the vertical line of the Bromwich contour tends to coincide with the
integral that appears in the inversion formula of the Laplace transform, Eq. (3.111).
In the limit R → ∞, the Bromwich contour encloses all the poles of f̃ (s). Hence, the
inverse Laplace transform of f̃ (s) can be evaluated by employing Cauchy’s residue
Theorem3.5,
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Fig. 3.6 Bromwich contour

f (t) = 1

2π i

p+i∞∫
p−i∞

f̃ (s) est d s = lim
R→∞

⎡
⎣ 1

2π i

∫
γ

f̃ (s) est d s

⎤
⎦

=
∑

n

Res
(

f̃ (s) est ; bn

)
,

(3.129)

where γ is the Bromwich contour.
Equation (3.129) is the basis for the evaluation of the inverse Laplace transform

of f̃ (s) in all cases where f̃ (s) does not have either essential singularities or branch
points.

3.5 Saddle Points

If D is an open connected subset of C and D◦ its correspondent open connected
subset of R2, a holomorphic function f : D → C can be rewritten as a function of
two real variables, f : D◦ → R

2, by expressing z = x + i y and by evaluating the
real and imaginary parts of f (z). We have already pointed out that the resulting
f (x, y) is quite special on discussing the Cauchy–Riemann equations, Theorem3.1.
Other aspects of these special features are discussed in the following.

Let us denote by

u(x, y) = �( f (x + i y)) , v(x, y) = �( f (x + i y)) , (3.130)
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the real and imaginary parts of a holomorphic function f (z). Then, we can write

f (z) = u(x, y) + i v(x, y) . (3.131)

3.5.1 Stationary Point

Let us consider a point z0 = x0 + i y0 ∈ D such that f ′(z0) = 0. Since

x = z + z

2
, y = z − z

2i
, (3.132)

we obtain

f ′(z) =
[
∂u(x, y)

∂x

∂x

∂z
+ ∂u(x, y)

∂y

∂y

∂z

]
+ i

[
∂v(x, y)

∂x

∂x

∂z
+ ∂v(x, y)

∂y

∂y

∂z

]

= 1

2

[
∂u(x, y)

∂x
− i

∂u(x, y)

∂y

]
+ i

2

[
∂v(x, y)

∂x
− i

∂v(x, y)

∂y

]

= 1

2

[
∂u(x, y)

∂x
+ ∂v(x, y)

∂y

]
+ i

2

[
∂v(x, y)

∂x
− ∂u(x, y)

∂y

]
.

(3.133)

The condition f ′(z0) = 0 implies that, at (x, y) = (x0, y0), the following equations
hold

∂u

∂x
= − ∂v

∂y
,

∂v

∂x
= ∂u

∂y
. (3.134)

By invoking the Cauchy–Riemann equations (3.22), one may conclude that
Eqs. (3.22) and (3.134) can hold simultaneously at (x, y) = (x0, y0) if and only if

∂u

∂x
= 0 = ∂u

∂y
,

∂v

∂x
= 0 = ∂v

∂y
. (3.135)

Equation (3.135) means that (x, y) = (x0, y0), i.e. z = z0, is a stationary point of
both functions u and v.

The determinant of the Hessian matrix of either u or v may provide a charac-
terisation of the stationary point [3]. We have to evaluate the second derivatives of
f (x, y),

∂ f (x, y)

∂x
= f ′(z)

∂z

∂x
= f ′(z) ,

∂ f (x, y)

∂y
= f ′(z)

∂z

∂y
= i f ′(z) ,

∂2 f (x, y)

∂x2
= f ′′(z) ,

∂2 f (x, y)

∂y2
= − f ′′(z) ,

(3.136)

so that we may conclude that f (x, y) is a harmonic function, i.e. a solution of
Laplace’s equation,
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∂2 f (x, y)

∂x2
+ ∂2 f (x, y)

∂y2
= 0 . (3.137)

This is also a consequence of Theorem3.2. Since f = u + i v, Eq. (3.137) yields

∂2 f (x, y)

∂x2
+ ∂2 f (x, y)

∂y2
= 0 =⇒

⎧⎪⎪⎨
⎪⎪⎩

∂2u(x, y)

∂x2
+ ∂2u(x, y)

∂y2
= 0 ,

∂2v(x, y)

∂x2
+ ∂2v(x, y)

∂y2
= 0 ,

(3.138)

meaning that both u(x, y) and v(x, y) are harmonic functions. Equation (3.138)
allows one to conclude that the Hessian matrix of u(x, y) has a non-positive deter-
minant at the stationary point (x0, y0), and likewise for v(x, y),

∣∣∣∣∣∣∣∣

∂2u

∂x2

∂2u

∂x ∂y
∂2u

∂y ∂x

∂2u

∂y2

∣∣∣∣∣∣∣∣
= −

(
∂2u

∂x2

)2
−

(
∂2u

∂x ∂y

)2
� 0 . (3.139)

As a consequence of Eq. (3.139), the eigenvalues of theHessianmatrix cannot be both
positive or both negative, so that (x0, y0) can be neither a local maximum nor a local
minimum. On the other hand, (x0, y0) can be a saddle point for u(x, y)whenever the
determinant of the Hessian matrix is strictly negative. With just the same argument,
based on Eq. (3.138), this result can be achieved also for v(x, y), namely

∣∣∣∣∣∣∣∣

∂2v

∂x2

∂2v

∂x ∂y
∂2v

∂y ∂x

∂2v

∂y2

∣∣∣∣∣∣∣∣
= −

(
∂2v

∂x2

)2
−

(
∂2v

∂x ∂y

)2
� 0 . (3.140)

We note that the determinant of the Hessian matrix of either u(x, y) or v(x, y) is
strictly negative at the stationary point (x, y) = (x0, y0) when f ′′(z0) �= 0. In fact,
by employing the Cauchy–Riemann equations (3.22), one obtains

∂2u(x, y)

∂x2
= ∂2v(x, y)

∂x ∂y
,

∂2v(x, y)

∂x2
= − ∂2u(x, y)

∂x ∂y
. (3.141)

Thus, on account of Eqs. (3.136), (3.139), (3.140) and (3.141), one can infer that the
determinant of the Hessian matrix of u(x, y) at (x, y) = (x0, y0) is given by

∣∣∣∣∣∣∣∣

∂2u

∂x2

∂2u

∂x ∂y
∂2u

∂y ∂x

∂2u

∂y2

∣∣∣∣∣∣∣∣
= −

(
∂2u

∂x2

)2
−

(
∂2v

∂x2

)2
= −

∣∣∣∣∂
2 f

∂x2

∣∣∣∣
2

= −| f ′′(z0)|2 � 0 .

(3.142)
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Fig. 3.7 Illustration of Theorem3.6: contour lines of the real part of f (z) around a saddle point
z0 = x0 + i y0 and three-dimensional plot of u(x, y) = �( f (x, y)) at the saddle point

Likewise, for the determinant of the Hessian matrix of v(x, y) at (x, y) = (x0, y0),
one obtains

∣∣∣∣∣∣∣∣

∂2v

∂x2

∂2v

∂x ∂y
∂2v

∂y ∂x

∂2v

∂y2

∣∣∣∣∣∣∣∣
= −

(
∂2u

∂x2

)2
−

(
∂2v

∂x2

)2
= −

∣∣∣∣∂
2 f

∂x2

∣∣∣∣
2

= −| f ′′(z0)|2 � 0 .

(3.143)
The conclusion of this reasoning can be stated in the form of a theorem.

Theorem 3.6 LetD be an open connected subset ofC, and f : D → C be holomor-
phic in D . If there exists z0 = x0 + i y0 ∈ D such that f ′(z0) = 0 and f ′′(z0) �= 0,
then both the real and the imaginary parts of f (x, y) = f (x + i y) have a saddle
point at (x, y) = (x0, y0).

The saddle-point concept as discussed in Theorem3.6 is drawn qualitatively in
Fig. 3.7. In the figure caption, it is mentioned the real part of f (z), but there is no
intrinsic difference in the graphical features if one deals with the imaginary part.

A comment on Theorem3.6 can be useful. One may wonder what happens when
f ′′(z0) = 0. The answer is that, strictly speaking, one cannot employ the criterion
based on the sign of the determinant of theHessianmatrix, as it becomes inconclusive
when the determinant vanishes [3]. In fact, one may distinguish a case where all
derivatives of f (z) vanish at z = z0, namely f (n)(z0) = 0 for all n � 1. In this case,
a Taylor series expansion of f (z) around z = z0 is sufficient to prove that f (z)
is constant over the open connected subset of D . A more interesting alternative is
when there exists n � 3 such that f (n)(z0) �= 0. In this case, strictly speaking, we
do not have a saddle point at z = z0. In fact, we are dealing with a saddle point in a
generalised sense. A sketch of the geometrical features in a sample case with n = 3 is
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Fig. 3.8 Contour lines of the real part of f (z) around a monkey saddle point z0 = x0 + i y0, where
f ′(z0) = f ′′(z0) = 0 with f ′′′(z0) �= 0, and three-dimensional plot of u(x, y) = �( f (x, y)) at the
saddle point

presented in Fig. 3.8. This case is also called monkey saddle, as a saddle for monkeys
should allow a place for the tail and not only for the legs. For the generalised saddle
points, when the lowest n such that f (n)(z0) �= 0 is greater than 2, we call n the order
of the saddle point. A saddle point where f ′′(z0) �= 0 has order 2.

Whatever is the order of the saddle point, there exist ascending and descending
paths that depart from z0. This is clearly seen in the three-dimensional plots, reported
in Figs. 3.7 and 3.8, displaying �( f (z)) versus (x, y). Among these ascending and
descending paths, one may graphically detect those of steepest ascent and steepest
descent. These paths are central in the formulation of the asymptotic approximation
of wave packets at large times.

3.5.2 Paths from a Saddle Point

We consider an open connected subset of C, namelyD , and a holomorphic function
f : D → C. Let z0 ∈ D be a saddle point of order n.
In a small neighbourhood of z0, one can express z as

z = z0 + r ei ϕ , r � 0 , ϕ ∈ [0, 2π ] . (3.144)

Moreover, one canwrite an approximate expression of f (z) as a Taylor series centred
in z = z0 and truncated to the first two nonzero terms, namely

f (z) ≈ f (z0) + 1

n! f (n)(z0) (z − z0)
n . (3.145)
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Here, we are neglecting terms of order |z − z0|n+1, and we are assuming that all
derivatives of f (z) up to order n − 1 are zero at z = z0. We write f (n)(z0) in its polar
form as

f (n)(z0) = | f (n)(z0)| ei θ , (3.146)

where θ is the argument of f (n)(z0). On substituting Eqs. (3.144) and (3.146) into
(3.145), we obtain

f (z) ≈ f (z0) + 1

n! | f (n)(z0)| rn ei (θ+n ϕ)

= f (z0) + 1

n! | f (n)(z0)| rn
[
cos(θ + n ϕ) + i sin(θ + n ϕ)

]
.

(3.147)

On inspecting Eq. (3.147), one can conclude that the value of θ + n ϕ delineates if
and how the real and imaginary parts of function f (z) increase or decrease when z
departs from the saddle point z0 .

Let us consider �( f (z)). Equation (3.147) implies that �( f (z)) undergoes the
steepest increase when z departs from z0 if one chooses a path given by any line with
cos(θ + n ϕ) = 1. Thus we define, for �( f (z)), the lines of steepest ascent from z0
as those where

θ + n ϕ = 2mπ �−→ ϕ = 2m

n
π − θ

n
,

m = 0, 1, 2, . . . , n − 1 .
(3.148)

Since there exist n different determinations of the angle ϕ, predicted by Eq. (3.148),
there are n different paths of steepest ascent, for �( f (z)), departing from z0. These
paths can be easily detected in Figs. 3.7 and 3.8 and are explicitly displayed as thick
dashed lines in Fig. 3.9 for a saddle point of order 2 and in Fig. 3.10 for a saddle point
of order 3.

In an analogous way, we can easily detect those lines departing from the saddle
point z0 and such that �( f (z)) undergoes the steepest decrease. Those lines are
termed of steepest descent and, on account of Eq. (3.147), they are defined by the
condition cos(θ + n ϕ) = −1. Then, lines of steepest descent are such that

θ + n ϕ = (2m + 1)π �−→ ϕ = 2m + 1

n
π − θ

n
,

m = 0, 1, 2, . . . , n − 1 .
(3.149)

Again, there exist n different possible angles ϕ, predicted by Eq. (3.149) and, hence,
there are n different paths of steepest descent, for �( f (z)), departing from z0. These
paths can be easily detected in Figs. 3.7 and 3.8 and are explicitly displayed as thick
solid lines in Figs. 3.9 and 3.10 for saddle points of order 2 and 3, respectively.

We note that, along the lines of steepest ascent or steepest descent of �( f (z))
departing from a saddle point z0, the imaginary part of f (z) remains constant. In
fact, Eqs. (3.148) and (3.149) imply that, along lines of steepest ascent or steepest



3.5 Saddle Points 57

Fig. 3.9 Contour lines of the
real part of f (z) around a
saddle point z0 of order 2.
The thick solid lines are the
paths of steepest descent,
while the thick dashed lines
are the paths of steepest
ascent

Fig. 3.10 Contour lines of
the real part of f (z) around a
monkey saddle point, i.e. a
saddle point z0 of order 3.
The thick solid lines are
paths of steepest descent,
while the thick dashed lines
are paths of steepest ascent

descent of �( f (z)), θ + n ϕ is an integer multiple of π , so that sin(θ + n ϕ) is zero.
Thus, Eq. (3.147) implies that �( f (z)) = �( f (z0)) along lines of steepest ascent or
steepest descent of �( f (z)). In other words, the lines of steepest ascent or steepest
descent of �( f (z)) are contour lines of �( f (z)).
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3.5.3 Asymptotic Behaviour of Wave Packets at Large Times

Let us consider the three-dimensional wave packet given by Eq. (2.98),

ψ(x, t) =
∞∫

−∞
b(k, y, z, t) ei [kx−ω(k) t] d k . (3.150)

A particularly interesting case is one where the dependence on time of b(k, y, z, t)
is through an exponential function,

b(k, y, z, t) = b̂(k, y, z) eη(k) t . (3.151)

Then, on account of Eqs. (3.150) and (3.151), the expression of ψ(x, t), for a fixed
position x = (x, y, z), is given by the time-dependent integral

I (t) =
∞∫

−∞
φ(k) eλ(k) t d k . (3.152)

Here, the complex function λ(k) is defined as

λ(k) = η(k) − iω(k) , (3.153)

while
φ(k) = b̂(k, y, z) ei kx . (3.154)

The dependence of φ(k) on (x, y, z) is not explicitly declared with this notation as
what really matters, in the forthcoming analysis, is just the dependence on time of
the integral I (t) or, equivalently, we can consider our reasoning as relative to a fixed
position (x, y, z).

We aim to determine an approximate evaluation of I (t) for large times t . This task
can bemanaged by employing Theorem3.3. In fact, integral I (t) given byEq. (3.152)
can be considered as a path integral along a contour line γ coincident with the real
axis in the complex plane and oriented along its positive direction,

I (t) =
∫
γ

φ(k) eλ(k) t d k . (3.155)

Let us first imagine a situation where there exists a unique saddle point of function
λ(k), namely k0 ∈ C, and that φ(k) is not singular in k0. We can imagine to deform
path γ to γ ∗, where γ ∗ crosses the saddle point k0. A sketch of γ and γ ∗ is provided
in Fig. 3.11. The question is whether I (t) coincides with



3.5 Saddle Points 59

Fig. 3.11 Qualitative sketch
of path γ , coincident with
the real axis, and γ ∗ crossing
the saddle point k0 of λ(k)

I ∗(t) =
∫
γ ∗

φ(k) eλ(k) t d k . (3.156)

The answer relies on Theorem3.3. Integrals I (t) and I ∗(t) coincide if path γ can
be continuously deformed into γ ∗ within the domain where the integrand φ(k) eλ(k) t

is holomorphic. In other words, one must check that no singularity of φ(k) eλ(k) t

exists within the region bounded by γ ∪ γ ∗. This feature will be hereafter termed
holomorphy requirement.

An interesting case is when γ ∗ locally coincides with a steepest descent path for
�(λ(k)), crossing k0. If k0 is a second-order saddle point, in a small neighbourhood
of k0, we can approximate the integrand φ(k) eλ(k) t , according to Eq. (3.144), as

φ(k) eλ(k) t ≈ φ(k0) e
λ(k0) t eλ′′(k0)(k−k0)2 t/2 . (3.157)

Thus, following Eqs. (3.147) and (3.149) with n = 2, we get

φ(k) eλ(k) t ≈ φ(k0) e
λ(k0) t e− |λ′′(k0)|r2 t/2 . (3.158)

A change of r in the small interval [0, ε], for a positive ε � 1, provides a local
parametrization of γ ∗ in a small neighbourhood of k0.

A key point in the formulation of the steepest-descent approximation is the
following. The dominant contribution to I ∗(t) comes from a small neighbourhood
of k0, where the exponential |eλ(k) t | = e�(λ(k)) t is at its largest. In other words, an
approximation of I ∗(t) is given by

I ∗(t) =
∫
γ ∗

φ(k) eλ(k) t d k ≈ 2 ei ϕ φ(k0) e
λ(k0) t

ε∫
0

e− |λ′′(k0)|r2 t/2 d r , (3.159)

where the parametrization k = k0 + r ei ϕ , Eq. (3.144), has been used. We note that
factor 2 comes fromdoubling the contribution of the integral over r ∈ [0, ε] to include
a piece of steepest ascent path to reach k0 and one of steepest descent departing from
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k0. When t is very large, the integral of e− |λ′′(k0)|r2 t/2 over r ∈ [0, ε] does not differ
much from the integral over r ∈ [0,∞], as the Gaussian function undergoes a rapid
decay to 0 as r increases. Thus, we can write

I ∗(t) ≈ 2 ei ϕ φ(k0) e
λ(k0) t

∞∫
0

e− |λ′′(k0)|r2 t/2 d r

= ei ϕ φ(k0) e
λ(k0) t

√
2π

|λ′′(k0)| t
. (3.160)

From Eq. (3.149), we infer that ϕ is either π/2 − θ/2 or 3π/2 − θ/2, where θ is the
argument of λ′′(k0). As a consequence, we obtain

I ∗(t) ≈ ± i e−i θ/2 φ(k0) e
λ(k0) t

√
2π

|λ′′(k0)| t
. (3.161)

Let us assume the validity of the holomorphy requirement, then Theorem3.3 ensures
that I (t) = I ∗(t) and we achieve the steepest-descent approximation of I (t) at large
times,

I (t) =
∞∫

−∞
φ(k) eλ(k) t d k ≈ ± i e−i θ/2 φ(k0) e

λ(k0) t

√
2π

|λ′′(k0)| t
. (3.162)

The ambiguity in the sign of the approximated integral is a consequence of the a-
priori twofold choice in the definition of the steepest descent path that drives k away
from k0 along path γ ∗, as suggested by Fig. 3.9. This is not a big problem when one
is interested just in the large-time behaviour of |I (t)|, given by

|I (t)| ≈ |φ(k0)| e�(λ(k0)) t

√
2π

|λ′′(k0)| t
. (3.163)

If we now relax the assumption that k0 is a second-order saddle point of λ(k) and
assume a n > 2 order of the saddle point, Eq. (3.158) is now replaced by

φ(k) eλ(k) t ≈ φ(k0) e
λ(k0) t e− |λ(n)(k0)|rn t/n! . (3.164)

Equation (3.160) is modified into
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I ∗(t) ≈ 2 ei ϕ φ(k0) e
λ(k0) t

∞∫
0

e− |λ(n)(k0)|rn t/n! d r

= 2

n
ei ϕ φ(k0) �

(
1

n

)
eλ(k0) t

(
n!

|λ(n)(k0)| t

)1/n

. (3.165)

Here, �(z) is Euler’s gamma function [2],

�(z) =
∞∫
0

s z−1 e−s d s . (3.166)

Finally, Eqs. (3.162) and (3.163) are generalised to

I (t) =
∞∫

−∞
φ(k) eλ(k) t d k

≈ 2

n
ei (2m+1)π/n e−i θ/n φ(k0) �

(
1

n

)
eλ(k0) t

(
n!

|λ(n)(k0)| t

)1/n

, (3.167)

where m = 0, 1, 2, . . . , n − 1, and

|I (t)| ≈ 2

n
|φ(k0)| �

(
1

n

)
e�(λ(k0)) t

(
n!

|λ(n)(k0)| t

)1/n

. (3.168)

Equation (3.167) shows the effects of the multiplicity of the possible steepest descent
paths that depart from k0, resulting in n possible values of the positive integer m. As
m appears just in a phase factor, this multiplicity is ineffective when one deals with
|I (t)|, as shown by Eq. (3.168).

We assumed the existence of just one saddle point of λ(k). What if there are
more? With several saddle points, the steepest-descent approximation just keeps that
or those leading to the largest �(λ(k0)), so that one filters the leading contribution to
the integral I (t). It is possible that two or more saddle points share the same value
of �(λ(k0)). In that case, their contributions have to be summed up in order to form
the asymptotic approximation of the integral I (t).

For a more detailed and exhaustive discussion of the steepest-descent approx-
imation of time-dependent integrals, we refer the reader to textbooks on applied
mathematics such as Ablowitz and Fokas [1], Bender and Orszag [5], or the more
recent Arfken et al. [4]. All these books include a discussion of several examples
where the steepest-descent approximation is employed.

Example 3.7 Let us consider a case where I (t), given by Eq. (3.152), is defined with
φ(k) = 1 and

λ(k) = −4k2 + 2k + 4 i k , (3.169)
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namely

I (t) =
∞∫

−∞
e(−4k2+2k+4 i k) t d k . (3.170)

The integral on the right-hand side of Eq. (3.170) can be evaluated analytically, so
that we obtain

I (t) = 1

2

√
π

t
e−3 t/4 ei t . (3.171)

There is an interesting fact aboutEqs. (3.170) and (3.171).The integrand inEq. (3.170)
tends to ∞ when t → ∞, for every k such that 0 < k < 1/2. On the other hand,
Eq. (3.171) shows that I (t) tends to 0 when t → ∞. This situation is often repro-
duced with wave packets: although there are normal modes whose amplitude grows
in time, the wave packet as a whole might tend to 0 in the limit t → ∞.

One can apply to Eq. (3.170) the steepest-descent approximation. Since

λ′(k) = −8k + 2 + 4 i , λ′′(k) = −8 , (3.172)

there is a single saddle point,

k0 = 1 + 2 i

4
, (3.173)

of order n = 2. We have

λ(k0) = −3

4
+ i . (3.174)

Function λ(k) satisfies the holomorphy requirement over the whole complex plane.
We can thus apply Eq. (3.163) to obtain

|I (t)| ≈ 1

2

√
π

t
e−3 t/4 . (3.175)

In fact, in this case, the steepest-descent approximation yields the exact result for
|I (t)|, as it can be easily checked by comparing Eqs. (3.171) and (3.175).

Example 3.8 A classical application of the steepest-descent method is given by Stir-
ling’s approximation of the factorial [2]. We base the evaluation on Euler’s gamma
function, defined by Eq. (3.166), and on its property that, if n is a natural number,
then n! = �(n + 1) [2]. In fact, from Eq. (3.166), we can write

n! =
∞∫
0

sn e−s d s . (3.176)

We change the variable of integration to r = s/n, so that we obtain
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n! = nn+1

∞∫
0

e[ln(r)−r ] n d r . (3.177)

We aim to achieve an approximate expression of the integral on the right-hand side of
Eq. (3.177)whenn is very large. Then,we invoke the steepest-descent approximation.
We have

λ(r) = ln(r) − r . (3.178)

There is just one saddle point, λ′(r0) = 0, namely r0 = 1. We obtain

λ(r0) = −1 , λ′′(r0) = −1 . (3.179)

The saddle point is placed on the real axis and it is of order n = 2. The argument of
λ′′(r0) is θ = π and the steepest descent path just coincides with the real axis oriented
along its positive direction. This is a simple case where γ = γ ∗. From Eqs. (3.162)
and (3.177), we can finally write

n! ≈ √
2π nn+1/2 e−n , (3.180)

which is the well-known Stirling’s approximation for the factorial of a large natural
number n.

References

1. Ablowitz MJ, Fokas AS (2003) Complex variables: introduction and applications. Cambridge
University Press, Cambridge

2. Abramowitz M, Stegun I (1968) Handbook of mathematical functions. Dover, New York
3. Apostol TM (1967) Calculus, vol. 2: multi-variable calculus and linear algebra with applications

to differential equations and probability. Wiley, New York
4. Arfken GB,Weber HJ, Harris FE (2012) Mathematical methods for physicists: a comprehensive

guide. Elsevier, New York
5. Bender CM, Orszag SA (1999) Advanced mathematical methods for scientists and engineers I.

Springer, New York
6. Cartan H (1995) Elementary theory of analytic functions of one or several complex variables.

Dover, New York
7. Debnath L, Bhatta D (2014) Integral transforms and their applications. CRC Press, New York
8. Priestley HA (2003) Introduction to complex analysis. Oxford University Press, Oxford
9. Schiff JL (1999) The Laplace transform: theory and applications. Springer, New York



Chapter 4
Instability of a Flow System

4.1 Stability and Instability of a Mechanical System

The concepts presented in this section are a simplified version of what is available
in many textbooks on dynamical systems and classical mechanics. For a deeper
discussion of the topics proposed here, we refer the reader to Hirsch et al. [8] and
Arnold [1].

The state of a mechanical system is uniquely determined by a number N of
spatial coordinates, q1, q2, . . . , qN , and a number N of velocities associated with
these coordinates, v1, v2, . . . , vN . The state of the system is thus a point of a 2N -
dimensional space called phase space. The number N is the number of degrees of
freedom of the system.

For simplicity of notation, the N coordinateswill be denotedby the N -dimensional
vector q, while the N velocities will be denoted by the N -dimensional vector v. The
motion of the mechanical system is described by the system of first-order differential
equations, ⎧

⎪⎪⎨

⎪⎪⎩

d q
d t

= v ,

d v
d t

= F(q, v) ,

(4.1)

where the N -dimensional vector F is built with the components of the force per unit
mass acting on the system. For instance, let the studied system consist of Np pointlike
masses, then N = 3 Np. In this case, if qi is the j th coordinate (where j varies from
1 to 3) of the �th pointlike mass (where � varies from 1 to Np) with mass m�, then
the component Fi (q, v) is the j th component of the force acting on the �th pointlike
mass of the system divided by the mass m�.
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© Springer Nature Switzerland AG 2019
A. Barletta, Routes to Absolute Instability in Porous Media,
https://doi.org/10.1007/978-3-030-06194-4_4

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06194-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-06194-4_4


66 4 Instability of a Flow System

The solution of Eq. (4.1) requires the specification of the initial state, or the state
{q(0), v(0)} owned by the system at the initial instant of time, t = 0. Geometrically,
this solution yields a trajectory in the phase space.

The concept of stability of a solution of Eq. (4.1) is formulated according to
Lyapunov’s definition.1 Amotion of themechanical system, i.e. a solution {q(t), v(t)}
of the system of Eqs. (4.1), is called stable if for any positive real number ε, there is
a corresponding positive real number δε such that if the distance between two initial
conditions, {q(0), v(0)} and {q�(0), v�(0)}, is less than δε, then the two trajectories
in the phase space, {q(t), v(t)} and {q�(t), v�(t)}, have a distance less than ε for
every instant of time t > 0. In mathematical form, this definition can be expressed
as follows,

∀ ε > 0 , ∃ δε > 0 : ∥
∥{q(0), v(0)} − {q�(0), v�(0)}∥∥ < δε (4.2)

implies that ∥
∥{q(t), v(t)} − {q�(t) , v�(t)}∥∥ < ε , ∀ t > 0 . (4.3)

The distance ‖ · ‖ between any two points in the phase space is the Euclidean distance

∥
∥{q, v} − {q�, v�}∥∥ =

[
1

A

N∑

i=1

(qi − q�
i )

2 + 1

V 2

N∑

i=1

(vi − v�
i )

2

]1/2

, (4.4)

where we introduced two constants, A and V , with the dimensions of a length
and a velocity, respectively. These constants, whose value is set conventionally, are
introduced for the sole purpose of defining the distance between any two points of
the phase space in a dimensionless way.

In order to give a visual representation of the concept of stability of motion as
stated above, we can imagine that around a stable trajectory in phase space, there
is a cylinder of radius ε within which all the trajectories that differ from the stable
trajectory for a small perturbation of the initial conditions are contained. A graphical
representation of this notion is given in Fig. 4.1.

The concept of stability of motion for a mechanical system also applies to those
particular motions of the system that correspond to equilibrium states. A solution of
the equations of motion (4.1) is called an equilibrium state if it takes the form

{q(t), v(t)} = {q0, 0} , ∀ t ≥ 0 , (4.5)

where q0 is an N -dimensional constant vector, and 0 is the N -dimensional vector
with zero components. Thus, an equilibrium state corresponds to a trivial trajectory
that degenerates into a point. The equilibrium states admitted by a system of forces
F(q, v) are of course obtained as solutions of the vector equation

1Aleksandr Mikhailovich Lyapunov (1857–1918) was a Russian mathematician. He defended his
doctoral thesis, entitled “The general problem of the stability of motion”, at the University of
Moscow in 1892.
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Fig. 4.1 Qualitative sketch of stable and unstable trajectories in phase space according to
Lyapunov’s definition

F(q, 0) = 0 . (4.6)

According to the most general definition expressed by Eqs. (4.2) and (4.3), an equi-
librium state is deemed stable if

∀ ε > 0 , ∃ δε > 0 : ∥
∥{q0, 0} − {q�(0), v�(0)}∥∥ < δε (4.7)

implies that ∥
∥{q0, 0} − {q�(t) , v�(t)}∥∥ < ε , ∀ t > 0 . (4.8)

This notion of stability of an equilibrium state is often referred to as stability accord-
ing to Lyapunov.
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A stable equilibrium state, {q0, 0}, of amechanical system is called asymptotically
stable if there exists a positive real number R such that

∥
∥{q0, 0} − {q�(0), v�(0)}∥∥ < R (4.9)

implies that
lim

t→∞
∥
∥{q0, 0} − {q�(t), v�(t)}∥∥ = 0 . (4.10)

For an asymptotically stable equilibrium state, any trajectory in phase space that
originates from an initial state {q�(0), v�(0)}, lying in a small neighbourhood of the
equilibrium state {q0, 0}, tends to collapse to this state when time tends to infinity.

We note that asymptotic stability is a condition stronger than stability, so that
asymptotic stability of an equilibrium state implies stability, but not vice versa.

It should also be noted that the concepts of stability and of asymptotic stability
for an equilibrium state have, in general, a local meaning. In other words, these
concepts are the result of a criterion, Lyapunov’s criterion, which refers only to those
motions that originate from the neighbourhood of an equilibrium state, i.e. for initial
conditions that lie in a neighbourhood of this state. Lyapunov’s criterion does not
provide information on those trajectories whose initial condition is very far from
the equilibrium state. The local or global nature of the stability of an equilibrium
state of a mechanical system relies, ultimately, on the linearity or nonlinearity of
the system. A mechanical system is said to be linear if the vector function F(q, v)
is linear, otherwise it is deemed nonlinear. Generally speaking, the stability has
a local character for nonlinear mechanical systems and has a global character for
linear systems. For nonlinear mechanical systems, around an asymptotically stable
equilibrium state, there is a region of phase space called basin of attraction, such
that any state within the basin of attraction evolves along a trajectory that for t → ∞
collapses onto the equilibrium state. On the contrary, any state outside the basin of
attraction evolves along a trajectory that cannot enter the basin of attraction, for every
instant of time t > 0.

4.1.1 A Simple Mechanical System

As an example, consider the simplest case of a mechanical system, namely a system
with only one degree of freedom, N = 1. For this system, the phase space is two-
dimensional, the state is described by the pair {q, v}, and the equations of motion
take the form ⎧

⎪⎪⎨

⎪⎪⎩

d q

d t
= v ,

d v

d t
= F(q, v) .

(4.11)

In other terms, we consider a pointlike mass m subject to an external force. We
assume that the function F(q, v) is given by
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Fig. 4.2 Plot of the potential
energy ϕ(q)

F(q, v) = 1

m

(−k q + h q3 − β v
)

, (4.12)

where the constants k, h and β are non-negative. The system is therefore subject
to an attractive elastic force, −k q, a repulsive force, h q3, and a dissipative friction
force, −β v.

If k �= 0 and h �= 0, we may infer that there are three equilibrium states of the
system corresponding to the positions,

F(q, 0) = 0 ⇒ q = 0 , q = ±
√

k

h
. (4.13)

Conversely, if either k = 0 or h = 0, there is only one equilibrium state in the position
q = 0.

We can associate a potential energy to the attractive and repulsive forces, given
by

ϕ(q) = k
q2

2
− h

q4

4
. (4.14)

The trend of the potential energy ϕ(q) is shown in Fig. 4.2. Therefore, Eq. (4.12) can
be rewritten as

F(q, v) = − 1

m

[
d ϕ(q)

d q
+ β v

]

. (4.15)

We can also define a total energy defined as the sum of the kinetic energy and the
potential energy,

E(q, v) = m
v2

2
+ ϕ(q) . (4.16)

The derivative of E with respect to time reads

d E

d t
= m v

d v

d t
+ d ϕ

d q

d q

d t
= −v

(
d ϕ

d q
+ β v

)

+ d ϕ

d q
v = −β v2 , (4.17)
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Fig. 4.3 Constant energy
curves in the phase space.
The thicker line corresponds
to E = ϕmax

where Eqs. (4.11) and (4.15) have been employed. In the non-dissipative case, where
β = 0, Eq. (4.17) leads to the conclusion that the total energy remains invariant during
the system evolution. In this case, the force per unit mass F acting on the system is
associated with the potential energy,

F = − 1

m

dϕ

dq
. (4.18)

Since the force can be expressed in terms of the gradient of the potential energy, then
the system is conservative. On the other hand, the energy E is not invariant in the
dissipative case, β �= 0. The effect of the dissipative force is a decrease in time of
the total energy, E , as demonstrated by Eq. (4.17).

Thus, if β = 0, every trajectory of the system corresponds to a given energy E .
Stated differently, in the non-dissipative case, the trajectories in phase phase coincide
with the curves at constant energy.

Figure4.3 displays curves at constant energy. Among them, a special one is the
curve corresponding to E = ϕmax, where ϕmax is the maximum value of the potential
energy, Eq. (4.14), given by

ϕmax = k2

4 h
. (4.19)

The shape of the trajectories for β = 0 suggests that, among the three equilibrium
states defined by Eq. (4.13), only one is stable: that corresponding to the position
q = 0.Within this domain, all constant energy curves are closed orbits of smaller and
smaller size as E decreases. Lyapunov’s criterion is then satisfied by the equilibrium
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Fig. 4.4 Trajectories in
phase space for β > 0. The
thicker line is the constant
energy curve for E = ϕmax

state with q = 0. On the contrary, all trajectories around the equilibrium states with
q = ±√

k/h cannot be confined within a small neighbourhood of these points. This
behaviour is the effect of instability.

If β > 0, nothing changes both with respect to the stability of the state {0, 0}
and the instability of the states {−√

k/h, 0} and {√k/h, 0} (Fig. 4.4). Nevertheless,
there is an important difference: the energy defined by Eq. (4.16) is not conserved
along the trajectories in phase space. In other words, the trajectories do not coincide
with the closed curves of constant energy. The stable equilibrium state {0, 0} is
now asymptotically stable. The basin of attraction of such a state of equilibrium is
extended to that limited domain around the origin enclosed by the curve E = ϕmax.
Within the basin of attraction, the trajectories are not closed orbits, as in the non-
dissipative case, β = 0. On the contrary, they appear as spirals converging to the
stable equilibrium state {0, 0}. This behaviour is typical of asymptotic stability as
described by Eq. (4.10).

4.1.2 The Method of Small Perturbations

An alternative analysis of the stability or instability of the equilibrium states of a
mechanical system is based on the method of small perturbations. We consider again
the simple mechanical system described in Sect. 4.1.1. Its equations of motion are
given by Eqs. (4.11) and (4.12), namely
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⎧
⎪⎪⎨

⎪⎪⎩

d q

d t
= v ,

d v

d t
= 1

m

(−k q + h q3 − β v
)

.

(4.20)

If {q0, 0} is any equilibrium state, then it is a solution of Eq. (4.20). Let us perturb
this equilibrium state by superposing a very small disturbance. Mathematically, this
means writing

q = q0 + ε q̂ , v = 0 + ε v̂ = ε v̂ , (4.21)

where ε is a positive and very small number, called perturbation parameter. By
substituting Eq. (4.21) into the equations of motion, (4.20), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

ε
d q̂

d t
= ε v̂ ,

ε
d v̂

d t
= 1

m

[
−k q0 − k ε q̂ + h

(
q0 + ε q̂

)3 − β ε v̂
]

.

(4.22)

Since {q0, 0} is a solution of the equations of motion, we can simplify Eq. (4.22),

⎧
⎪⎪⎨

⎪⎪⎩

ε
d q̂

d t
= ε v̂ ,

ε
d v̂

d t
= 1

m

[−k ε q̂ + h
(
ε3 q̂3 + 3 ε2 q̂2 q0 + 3 ε q̂ q2

0

) − β ε v̂
]

.

(4.23)

The perturbation parameter is small, namely ε � 1, so that we can safely neglect
terms O(ε2) or higher with respect to terms O(ε). Thus, Eq. (4.23) yields

⎧
⎪⎪⎨

⎪⎪⎩

ε
d q̂

d t
= ε v̂ ,

ε
d v̂

d t
= 1

m

(−k ε q̂ + 3 ε h q̂ q2
0 − β ε v̂

)
.

(4.24)

Division by ε now leads to the equations of motion for small perturbations.

⎧
⎪⎪⎨

⎪⎪⎩

d q̂

d t
= v̂ ,

d v̂

d t
= 1

m

(−k q̂ + 3 h q̂ q2
0 − β v̂

)
.

(4.25)

Equations (4.25) are linear. This is a consequence of having neglected terms of order
higher than ε. For this reason, the assumption of small perturbations leads to lin-
earised equations of motion.
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Equation (4.25) can be collapsed into a single differential equation, namely

d2q̂

d t2
= 1

m

(

−k q̂ + 3 h q̂ q2
0 − β

d q̂

d t

)

. (4.26)

For the three equilibrium states q0 = 0 and q0 = ±√
k/h, we get analytical solutions.

In particular, for q0 = 0, we obtain

q̂(t) = e−βt/(2m)

[

q̂(0) cosh

(√
β2 − 4 k m

2m
t

)

+2m v̂(0) + β q̂(0)
√

β2 − 4 k m
sinh

(√
β2 − 4 k m

2m
t

)]

. (4.27)

Equation (4.27) shows that the perturbation q̂(t) always decreases in time if β > 0.
If β2 � 4 k m, the perturbation undergoes an exponential decay, where the leading
exponential is

exp

[

−
(

β

2m
−

√
β2 − 4 k m

2m

)

t

]

. (4.28)

One can easily check that the coefficient of this exponential is always negative, if k >

0, or zero, if k = 0. In both cases, the perturbation remains O(ε) for every t > 0, thus
ensuring stability according toLyapunov’s criterion. If 0 < β2 < 4 k m, the argument
of the hyperbolic cosine and sine becomes imaginary, so that these contributions can
be rewritten in terms of trigonometric cosine and sine. As a consequence, in this case,
Eq. (4.27) describes a decaying exponential multiplied by a periodic function of time.
Again, we have a response of stability for the equilibrium state q0 = 0. Finally, if we
consider the non-dissipative case, β = 0, Eq. (4.27) shows that the solution is purely
oscillatory, so that the perturbation remains O(ε) at any time.

For q0 = ±√
k/h, the analytical solution of Eq. (4.26) is

q̂(t) = e−βt/(2m)

[

q̂(0) cosh

(√
β2 + 8 k m

2m
t

)

+2m v̂(0) + β q̂(0)
√

β2 + 8 k m
sinh

(√
β2 + 8 k m

2m
t

)]

. (4.29)

The solution has an exponential behaviour in time, where the leading exponential is

exp

[(√
β2 + 8 k m

2m
− β

2m

)

t

]

. (4.30)

This exponential grows in time for every k > 0. This means that the perturbation will
not remain confined in a small neighbourhood of the equilibrium state and, hence,
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we have instability in the sense of Lyapunov. Considering k = 0 is not significant as
q0 = ±√

k/h would coincide with q0 = 0.
We can conclude that the method of small perturbations entirely confirms the

results of the stability analysis obtained by a direct evaluation of the trajectories in
phase space undergone by the mechanical system. A limitation in the use of this
method arises due to the local character of the information. We can only consider
small distances of the initial conditions from the equilibrium state. Moreover, in the
case of instability,we can only predict the time evolution of perturbations at the earlier
instants of time.When the growth in time makes the perturbation of order larger than
ε, then the linearised Eq. (4.26) becomes unreliable. In other words, nonlinearity
becomes dominant in governing the time evolution of the system.

4.2 Flow Stability with Burgers Equation

Let us consider the one-dimensional Burgers equation with a linear forcing term,

∂W

∂t
+ W

∂W

∂x
= ∂2W

∂x2
+ R (W − W0) , (4.31)

where R ∈ R and W0 ∈ R. We mention that Burgers equation is a toy model for
the one-dimensional flow of a fluid. In a paper by J. M. Burgers of 1939, entitled
“Mathematical examples illustrating relations occurring in the theory of turbulent
fluid motion”, a slightly different form of Eq. (4.31) was presented as a simplified
governing equation of a system developing turbulence [13].

Evidently, W = W0 is a solution of Eq. (4.31). This solution is stationary and,
as a consequence, it can be defined as an equilibrium state for Eq. (4.31). We can
investigate the stability of this equilibrium state, according to Lyapunov’s theory, by
perturbing it and checking the evolution in time of the perturbation. This procedure
is an extension of what has been found for a discrete mechanical system in Sect. 4.1.
Here, we have a continuous flow system, meaning that we have a partial differential
governing equation, Eq. (4.31), where the variable evolving in time is distributed
in space. In this simple model, space is one-dimensional and, hence, flow is one-
dimensional as well occurring along the real x-axis.

Hereafter, W = W0 will be called the basic solution of Eq. (4.31). To test its
stability, we will carry out an analysis of small perturbations according to the lines
discussed in Sect. 4.1.2.

4.2.1 Linear Stability Analysis

Alinear stability analysis of the basic solution,W = W0, is performedby superposing
a small perturbation to the basic solution, namely
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W = W0 + ε w , ε > 0 , (4.32)

where ε is a perturbation parameter such that ε � 1. We now substitute Eq. (4.32)
into (4.31),

ε
∂w

∂t
+ ε W0

∂w

∂x
+ ε2 w

∂w

∂x
= ε

∂2w

∂x2
+ ε R w . (4.33)

Then, neglecting terms O(ε2) and dividing by ε, we obtain

∂w

∂t
+ W0

∂w

∂x
= ∂2w

∂x2
+ R w . (4.34)

We employ the Fourier transform to solve Eq. (4.34), namely

w̃(k, t) = 1√
2π

∞∫

−∞
w(x, t) e−i kx d x ,

w(x, t) = 1√
2π

∞∫

−∞
w̃(k, t) ei kx d k . (4.35)

Here, k is the wave number.We can transform Eq. (4.34) by employing the properties
of the Fourier transform of partial derivatives, given by Eqs. (2.17) and (2.18). Thus,
we obtain

∂w̃

∂t
= λ(k) w̃ , (4.36)

where
λ(k) = R − k2 − i k W0 . (4.37)

The solution of Eq. (4.36) is

w̃(k, t) = w̃(k, 0) eλ(k) t . (4.38)

If we substitute Eq. (4.38) into the expression of w(x, t) given by Eq. (4.35), we can
write the perturbation as

w(x, t) = 1√
2π

∞∫

−∞
w̃(k, 0) ei kx eλ(k) t d k . (4.39)

The solutionw(x, t) expressed byEq. (4.39) depends on the initial condition,w(x, 0),
through its Fourier transform w̃(k, 0). Moreover, w(x, t) is represented as a wave
packet where

ω(k) = −(λ(k)) = k W0 (4.40)
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is the angular frequency, and

b(k, t) = 1√
2π

w̃(k, 0) e�(λ(k)) t (4.41)

is the time-dependent amplitude of the normal mode. The single normal mode, with
a given wave number ka , represents the evolution of an initial perturbation having
the shape of a plane wave, namely

w(x, 0) = 1√
2π

ei ka x . (4.42)

In fact, on account of Eqs. (2.9) and (2.10), from Eq. (4.42) one obtains a Dirac’s
delta distribution for w̃(k, 0),

w̃(k, 0) = δ(k − ka) . (4.43)

Then, Eq. (4.39) yields

w(x, t) = e�(λ(ka)) t

√
2π

ei[ka x−ω(ka)t] , (4.44)

where the angular frequency ω(k) is given by Eq. (4.40). Equation (4.44) defines
a plane wave perturbation propagating with a phase velocity ω(ka)/ka , whose
amplitude grows unboundedly in time if �(λ(ka)) > 0, or it is damped in time if
�(λ(ka)) < 0. The former alternative defines an unstable behaviour, while the latter
yields a stable character of the perturbation. We can now formally define the concept
of convective instability.

Definition 4.1 (Convective Instability) A single normal mode perturbation with a
given wave number k is deemed to be convectively stable if �(λ(k)) < 0. It is said
convectively unstable if�(λ(k)) > 0. The marginal condition where�(λ(k)) = 0 is
called neutral stability.

On account of Eq. (4.37), the condition of convective instability reads

R > k2 , (4.45)

with the curve given by R = k2 defining neutral stability.
A simple sketch resuming the concept of convective instability and the marginal

condition of neutral stability is displayed in Fig. 4.5. In this figure, only the domain
of positive wave numbers is represented, as the condition of convective instability
just involves k2 and is thus independent of the sign of k.

We note that convective instability, to some wave number k, is possible only
when R exceeds a critical value, denoted as Rc, which corresponds to the absolute
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Fig. 4.5 Qualitative sketch
of the definition of
convective instability as
implied by Eq. (4.45)

minimum of R along the neutral stability curve. The corresponding value of k is the
critical wave number, kc. Thus, we have

kc = 0 , Rc = 0 . (4.46)

Hereafter, a situation where R < Rc = 0 will be termed subcritical, while the con-
dition R > Rc = 0 will be termed supercritical.

The convective instability regards the behaviour of quite special initial pertur-
bations of the basic solution, having the form of plane waves with a given wave
number. These perturbations have an intrinsic non-local character as their support
is widespread all over the real x-axis. A more general perturbation comes from a
superposition of infinite plane waves with all possible wave numbers, as represented
by the Fourier integral, Eq. (4.39). These wave packets may describe perturbations
with a local support as it could be, for instance, when the initial condition w(x, 0) is a
Gaussian signal. In general, as pointed out in Sect. 2.2.1, the initial condition w(x, 0)
must be absolutely integrable over the real x-axis. Otherwise, the Fourier integral
can only make sense in a space of generalised functions, or distributions. This is the
reason why the normal mode initial condition, given by Eq. (4.42), leads to a Fourier
transform given by a Dirac’s delta. A normal mode is not absolutely integrable and
Dirac’s delta is not a function in the traditional sense, but a distribution.

Definition 4.2 (Absolute Instability) A perturbation w(x, t) is deemed to be abso-
lutely unstable if it is absolutely integrable over the real x-axis and if

lim
t→+∞ |w(x, t)| = +∞ , (4.47)

for every x ∈ R .
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Deciding whether a perturbation w(x, t) expressed through Eq. (4.39) is absolutely
unstablemeans checking the large-time behaviour of the Fourier integral on the right-
hand side of Eq. (4.39). This task can be accomplished by employing the steepest-
descent approximation described in Sect. 3.5.3. The first step is to determine the
saddle points of λ(k). In fact, Eq. (4.37) yields

λ′(k) = −2 k − i W0 . (4.48)

Equation (4.48) shows that there is just one, purely imaginary, saddle point,

k0 = − i W0

2
. (4.49)

Wemust now check that the holomorphy requirement is satisfied by w̃(k, t) expressed
by Eq. (4.38). We know that λ(k) is holomorphic for every k ∈ C. On the other hand,
w̃(k, 0) is arbitrary. However, in order to employ the steepest-descent approximation
as specified in Sect. 3.5.3, we need the assumption that no singularity of w̃(k, 0)
exists in the region of the complex plane bounded by the real k-axis, (k) = 0, and
the deformed curve γ ∗ locally crossing k0 through a path of steepest descent. If this
hypothesis regarding the initial state w(x, 0) holds, we can approximately evaluate
|w(x, t)| for large times, by employing Eq. (3.163), as

|w(x, t)| ≈ |w̃(k0, 0)|√
2 t

e�(λ(k0)) t . (4.50)

As a consequence of Eqs. (4.47) and (4.50), one can conclude that absolute instability
is attained when �(λ(k0)) > 0. On account of Eqs. (4.37) and (4.49), this means

R > Ra = W 2
0

4
, (4.51)

where Ra denotes the threshold for the onset of absolute instability. It is important
to emphasize that the condition of absolute instability is independent of the details
of the initial perturbation, w(x, 0), inasmuch as it is absolutely integrable over the
real x-axis and its Fourier transform, w̃(k, 0), allows one to satisfy the holomorphy
requirement relative to the steepest-descent method applied to the integral on the
right-hand side of Eq. (4.39).

A qualitative sketch of the concepts of convective instability and absolute insta-
bility is displayed in Fig. 4.6. This figure highlights that absolute instability is not
a modal condition, meaning that its validity does not depend on the behaviour of
individual normal modes, but on the asymptotic behaviour of a general class of per-
turbations. Interestingly enough, the condition of absolute instability turns out to
be a parametric condition, given by Eq. (4.51), mostly independent on the detailed
characteristics of the initial perturbations superposed to the basic stationary solution
through Eq. (4.32).
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Fig. 4.6 Qualitative sketch
of the definitions of
convective instability and
absolute instability as
implied by Eqs. (4.45) and
(4.51)

There is a physical picture of how the mathematical condition of absolute insta-
bility can be viewed. One can imagine the basic flow W0 as observed by a laboratory
reference frame and by a co-moving reference frame. An observer in the latter frame
travels downstream with speed W0 and detects normal modes of perturbation grow-
ing in time or damped in time. On the other hand, the view of an observer in the
laboratory reference frame is different. Such an observer sees the flowing fluid with
uniform velocity W0, detects the perturbations, but will also experience some dif-
ficulty in checking the ultimate behaviour of perturbations at large times. In fact,
normal modes of perturbation initially growing in time are convected downstream
by the basic flow, so that a growing normal mode can be driven away so fast that its
time growth is not actually perceivedwith the instruments employed by this observer.
If the basic flowvelocityW0 is sufficiently low (remember that the absolute instability
condition can be reformulated as W 2

0 < 4 R), then any actually unbounded growth
of each growing normal mode is correctly detected in the laboratory reference frame.

4.2.2 Time Evolution of a Special Perturbation Wave Packet

We can check the results of the steepest-descent approximation by a direct evaluation
of w(x, t) for a very special initial wave packet given by a Gaussian distribution,

w(x, 0) = e−x2
. (4.52)

Its Fourier transform is readily determined, namely
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w̃(k, 0) = 1√
2
e− k2

4 . (4.53)

Then, from Eqs. (4.37) and (4.38), we obtain

w̃(k, t) = 1√
2
exp

[

−k2

4
+ (R − k2 − i k W0) t

]

. (4.54)

The inverse Fourier transformof w̃(k, t), given byEq. (4.54), is evaluated analytically
as

w(x, t) = 1√
4 t + 1

exp

[

R t − (x − W0 t)2

4t + 1

]

. (4.55)

Plots showing the time evolution of w(x, t), given by Eq. (4.55), are presented in
Fig. 4.7 for the choice W0 = 1. Different positions, x , are considered. Each frame

Fig. 4.7 Plots of the time evolution of the Gaussian perturbation for W0 = 1, at different positions,
x , and with different values of R such that R < Rc, R = Rc, Rc < R < Ra and R > Ra
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Fig. 4.8 Plots of the spatial distribution of the Gaussian perturbation for W0 = 1, at different times,
t , and with different values of R such that R < Rc, R = Rc, Rc < R < Ra and R > Ra

corresponds to a value of R that is either subcritical, critical or supercritical. Among
the supercritical cases, R = 0.2 or R = 0.3, it is clearly displayed the expected
difference between the behaviour when R < Ra and that when R > Ra. The frame
with R = 0.3 clearly shows the large-time growing trend of the plots of |w(x, t)|
versus t for different positions, x . This behaviour is precisely what one expects on
the basis of the asymptotic expression of |w(x, t)| given by Eq. (4.50), and based on
the steepest-descent approximation.

The spatial distribution of theGaussian perturbation at different times is illustrated
in Fig. 4.8. The same cases considered in Fig. 4.7 are reported. We see that, when R
is subcritical or critical, there is a net decrease in height of the Gaussian maximum,
accompanied by a rightward displacement and a spreading, as time increases. This
is not the case when R is supercritical, as the maximum decreases at first, reaches
a minimum, but eventually it increases unboundedly in time. This behaviour is eas-
ily gathered from Eq. (4.55), as the position of the maximum is x = W0 t , and its
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height is

max
x∈R

|w(x, t)| = 1√
4 t + 1

eR t . (4.56)

The height decreases monotonically when R � 0, but it behaves non-monotonically
when 0 < R < 2. In fact, it decreases at first, reaches a minimum when

t = 2 − R

4 R
, (4.57)

and then it increases unboundedly. This explains the behaviour of the frames in
Fig. 4.8 corresponding to R = 0.2 and R = 0.3. What makes the difference between
the supercritical behaviour for R < Ra and R > Ra, so well evident in Fig. 4.7, is
the competition between the speed of the rightward displacement and the gradual
increase of themaximumheight at sufficiently large times. This competition results in
a signal at a given x gradually decreasing in time, if R < Ra, and gradually increasing
in time, if R > Ra. This is the essence of the transition from convective to absolute
instability.

4.3 Stability of Channelised Burgers Flow

The analysis of the instability occurring in Burgers flow can be modelled as three-
dimensional if we imagine that the flow along the x direction is directed, in fact,
through a channel with a rectangular cross section. In a rectangular channel, where
x ∈ R , y ∈ [0, L1] and z ∈ [0, L2], the three-dimensional version of Burgers equa-
tion (4.31) is given by

∂W
∂t

+ (W · ∇)W = ∇2W + R (W − W0) , (4.58)

whereW0 is the constant vector (W0, 0, 0), and W0 ∈ R is the same constant consid-
ered in the one-dimensional case envisaged in Sect. 4.2. Evidently, a basic stationary
solution of Eq. (4.58) is

W = W0 . (4.59)

We imagine the confining walls of the channel positioned at y = 0, y = L1, z = 0,
z = L2 as impermeable surfaces moving along the flow direction with velocityW0.
This assumption is compatible with a uniform velocity in the channel, as implied by
Eq. (4.59). Thus, we assume the system of boundary conditions,

t > 0 ; x ∈ R ; y = 0, L1 ; z ∈ [0, L2] : W = W0 ,

t > 0 ; x ∈ R ; y ∈ [0, L1] ; z = 0, L2 : W = W0 . (4.60)
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4.3.1 Linear Stability Analysis

The linear stability analysis of the solution,W = W0, can be carried out by writing

W = W0 + εw , ε > 0 , (4.61)

where ε is a small perturbation parameter, ε � 1. By substituting Eq. (4.61) into
Eq. (4.58),

ε
∂w
∂t

+ ε W0
∂w
∂x

+ ε2 (w · ∇)w = ε ∇2w + R εw . (4.62)

We neglect terms O(ε2) and divide by ε, so that we obtain

∂w
∂t

+ W0
∂w
∂x

= ∇2w + R w . (4.63)

Equation (4.63) governs the evolution of the linear perturbations w and, as a conse-
quence of Eqs. (4.60) and (4.61), its boundary conditions are

t > 0 ; x ∈ R ; y = 0, L1 ; z ∈ [0, L2] : w = 0 ,

t > 0 ; x ∈ R ; y ∈ [0, L1] ; z = 0, L2 : w = 0 . (4.64)

Due to the linearity of Eqs. (4.63) and (4.64), solutions can be sought as a series.
The method to be employed is the separation of variables, described in Appendix A.
Thus, we can write

w =
∞∑

n=1

∞∑

m=1

wnm(x, t) sin(αn y) sin(βm z) , (4.65)

where
αn = π n

L1
, βm = π m

L2
. (4.66)

Series solutions described by Eq. (4.66) identically satisfy the boundary conditions,
Eq. (4.65), provided that wnm(x, t) is a solution of

∂wnm

∂t
+ W0

∂wnm

∂x
= ∂2wnm

∂x2
+ (

R − α2
n − β2

m

)
wnm . (4.67)

We note that Eq. (4.34) is entirely equivalent to Eq. (4.67), provided that we replace
R with

Rnm = R − α2
n − β2

m , (4.68)

and w(x, t) with the vector function wnm(x, t). Thus, wnm(x, t) can be expressed
through the Fourier integral
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wnm(x, t) = 1√
2π

∞∫

−∞
w̃nm(k, 0) ei kx eλ(k) t d k , (4.69)

where λ(k) is now given by

λ(k) = Rnm − k2 − i k W0 , (4.70)

and w̃nm(k, 0) is the Fourier transform of the initial perturbation wnm(x, 0).
We can follow step by step the analysis described in Sect. 4.2.1 to conclude that,

on account of Eq. (4.45), convective instability occurs when

Rnm > k2 . (4.71)

This means
R > α2

n + β2
m + k2 . (4.72)

This condition is satisfiedwith theminimumvalue of R occurringwhenn = 1,m = 1
and k = 0. In other words, the critical values (kc, Rc) for the onset of convective
instability are

kc = 0 , Rc = π2

L2
1

+ π2

L2
2

. (4.73)

On the other hand, on account of Eq. (4.51), absolute instability is detected when

Rnm >
W 2

0

4
. (4.74)

As for the convective instability, the modes that allow the inequality (4.74) to be
satisfied with the least value of R are those with n = 1 and m = 1. Thus, the widest
region of absolute instability is defined by

R > Ra = W 2
0

4
+ π2

L2
1

+ π2

L2
2

. (4.75)

The channelisation of Burgers flow thus yields a stabilisation of the basic solution,
Eq. (4.59), by raising the thresholds to convective instability, Rc, and to absolute
instability, Ra. The stabilisation is due to the restriction imposed with respect to the
allowed modes of perturbation implied by the boundary conditions, Eq. (4.60). In
fact, the results described in Sect. 4.2.1 for the one-dimensional study are readily
recovered on taking the limit of an infinite channel cross section, namely L1 → ∞
and L2 → ∞ .
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4.4 Stability of a Convective Cahn–Hilliard Process

The convective Cahn–Hilliard equation is a partial differential equation formulated
as a model of the phase separation due to spinodal decomposition [6, 7]. In one-
dimensional form, it can be written as,

∂Ψ

∂t
= α Ψ

∂Ψ

∂x
− ∂2

∂x2

(

Ψ − Ψ 3 + ∂2Ψ

∂x2

)

, (4.76)

where α is a real positive constant which represents the driving force parameter.
Equation (4.76) can be equivalently expressed as

∂Ψ

∂t
= α Ψ

∂Ψ

∂x
+ 6Ψ

(
∂Ψ

∂x

)2

+ (
3Ψ 2 − 1

) ∂2Ψ

∂x2
− ∂4Ψ

∂ x4
, (4.77)

A possible basic stationary solution of Eq. (4.77) is given by

Ψ = Ψ0 = constant . (4.78)

4.4.1 Linear Stability Analysis

The linear stability of the basic solution, Ψ = Ψ0, is studied by superposing to Ψ0 a
small perturbation, namely

Ψ = Ψ0 + ε ψ , ε > 0 . (4.79)

As always, we consider ε as a small perturbation parameter, ε � 1. Substitution of
Eq. (4.79) into (4.77) yields

ε
∂ψ

∂t
= ε α Ψ0

∂ψ

∂x
+ ε2 α ψ

∂ψ

∂x
+ 6 ε2 Ψ0

(
∂ψ

∂x

)2

+ 6 ε3 ψ

(
∂ψ

∂x

)2

+ε
(
3Ψ 2

0 − 1
) ∂2ψ

∂x2
+ 6 ε2 Ψ0 ψ

∂2ψ

∂x2
+ 3 ε3 ψ2 ∂2ψ

∂x2
− ε

∂4ψ

∂ x4
. (4.80)

According to the hypothesis of small perturbations, we neglect the terms O(ε2) and
O(ε3). Then, we divide Eq. (4.80) by ε, and we obtain the linearised equation

∂ψ

∂t
= α Ψ0

∂ψ

∂x
+ (

3Ψ 2
0 − 1

) ∂2ψ

∂x2
− ∂4ψ

∂ x4
. (4.81)

Let us apply the Fourier transform to solve Eq. (4.81), namely

ψ̃(k, t) = 1√
2π

∞∫

−∞
ψ(x, t) e−i kx d x ,
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ψ(x, t) = 1√
2π

∞∫

−∞
ψ̃(k, t) ei kx d k . (4.82)

The transform of Eq. (4.81) is obtained by employing the properties of the Fourier
transform of partial derivatives, given by Eqs. (2.17) and (2.18). Then, we write

∂ψ̃

∂t
= λ(k) ψ̃ , (4.83)

where
λ(k) = i α Ψ0 k − (

3Ψ 2
0 − 1

)
k2 − k4 . (4.84)

The solution of Eq. (4.83) is

ψ̃(k, t) = ψ̃(k, 0) eλ(k) t . (4.85)

On substituting Eq. (4.85) into the expression ofψ(x, t) given by Eq. (4.82), wewrite
the perturbation as

ψ(x, t) = 1√
2π

∞∫

−∞
ψ̃(k, 0) ei kx eλ(k) t d k . (4.86)

As implied by Definition4.1, convective instability occurs when �(λ(k)) > 0. On
account of Eq. (4.84), this means

|Ψ0| <

√
1 − k2

3
. (4.87)

We note that the right-hand side of Eq. (4.87) is a function of k with an upper bound,
1/

√
3. Thus, the meaning of Eq. (4.87) is that, whatever is the real value of the con-

stants Ψ0 < 1/
√
3 and α, there always exists a normal mode with a suitable wave

number k that can destabilise the basic solution Ψ = Ψ0. In other words, convec-
tive instability to some normal modes is always possible provided that Ψ0 < 1/

√
3.

Furthermore, the value of the constant α does not influence in any way the onset of
convective instability.

We now investigate the transition from convective to absolute instability by
employing Definition4.2 and the steepest-descent approximation described in
Sect. 3.5.3. We first determine the saddle points of �(λ(k)), namely the solutions
of

λ′(k) = iα Ψ0 − 2
(
3Ψ 2

0 − 1
)

k − 4 k3 = 0 . (4.88)

For every assigned pair (α, Ψ0), there are three saddle points: k01, k02 and k03. In
general, by fixing the value of Ψ0, we can trace graphically the value of �(λ(k0i )),
with i = 1, 2, 3, as a function of α.
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A notable case is the limit where the driving force becomes vanishingly small,
α → 0. In this limit, the three saddle points are

k01 = 0 , k02 =
√

1 − 3Ψ 2
0

2
, k03 = −

√

1 − 3Ψ 2
0

2
. (4.89)

The saddle points k02 and k03 can be either purely imaginary or real depending on
whether |Ψ0| is larger or smaller than 1/

√
3. In every case, we obtain from Eq. (4.84)

λ(k01) = 0 , λ(k02) = λ(k03) = 1

4

(
3Ψ 2

0 − 1
)2

. (4.90)

The conclusion drawn from Eq. (4.90) is that the large-time approximation of the
wave packet growth rate can never be negative. Thus, according to the steepest-
descent approximation of Eq. (4.86), the dominant saddle points for the assessment
of the large-time behaviour of |ψ(x, t)| are k02 and k03, which are endowed with the
largest value of �(λ). This means that, for every choice of Ψ0, there is a transition
from stability to absolute instability in the limiting case α → 0 when Ψ0 = 1/

√
3.

Stated differently, in the limit α → 0, every constant solution Ψ = Ψ0 < 1/
√
3 can

be destabilised by normal modes with suitable values of k. Moreover, the amplitude
of a wave packet perturbation of Ψ = Ψ0 < 1/

√
3 ultimately grows in time, when t

is sufficiently large.
Let us now consider a nonzero driving force parameter, α. A quite simple case is

Ψ0 = 1/
√
3, where we obtain

k01 =
(

α

4
√
3

)1/3 √
3 + i

2
, k02 = −

(
α

4
√
3

)1/3 √
3 − i

2
,

k03 = −i

(
α

4
√
3

)1/3

. (4.91)

On account of Eqs. (4.84) and (4.91), we can write

�(λ(k01)) = �(λ(k02)) = −1

8

(
3

4

)1/3

α4/3 ,

λ(k03) = 1

4

(
3

4

)1/3

α4/3 . (4.92)

What can be concluded fromEq. (4.92), and from the steepest-descent approximation
of the right-hand side of Eq. (4.86), is that the saddle points that are pertinent to
establish the large-time behaviour of |ψ(x, t)| are k01 and k02. They are equipollent
in the sense that they yield the same negative growth rate,�(λ(k01)) = �(λ(k02)), as
shown by Eq. (4.92). On the other hand, the saddle point k03 is to be excluded as the
steepest-descent paths departing from this point run along the imaginary k-axis and
cannot be employed for the steepest-descent approximation of the perturbation wave
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Fig. 4.9 Regions of convective and absolute instabilities for a convective Cahn–Hilliard process

packet. We can state that the solution Ψ = Ψ0 = 1/
√
3 is linearly stable for every

positive value of α. The same conclusion is achieved for every choice of Ψ0 with
Ψ0 > 1/

√
3. On the other hand, when 0 < Ψ0 < 1/

√
3, the transition to absolute

instability takes place only for a sufficiently small α, as illustrated in Fig. 4.9.
We point out that the holomorphy requirement is automatically satisfied, as λ(k)

is holomorphic throughout the complex k-plane, as it is shown by Eq. (4.84). Obvi-
ously, since we are applying the steepest-descent approximation to the wave packet
ψ(x, t) expressed by Eq. (4.86), the initial condition must be such that ψ̃(k, 0) is a
holomorphic function of k. In fact, as discussed in Sect. 3.5.3, we have to assume the
absence of any singularity of ψ̃(k, 0) in the region of the complex plane bounded by
the real k-axis, (k) = 0, and the deformed curve γ ∗ locally crossing the pertinent
saddle points through a path of steepest descent.

4.5 Some Considerations on Convective and Absolute
Instabilities

There is a wide literature regarding the concepts of convective and absolute insta-
bilities. Most of the references regard fluid dynamics and, among them, we mention
the books by Charru [15], Manneville [12], Schmid and Henningson [4]. A quite
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detailed analysis of absolute instability in flow system can be found in the review
papers by Huerre [9] and Huerre and Monkewitz [10].

The origin of the concept of absolute instability is usually dated back to studies
in the field of plasma physics as reported by Dysthe [5]. A discussion of the concept
of absolute instability compared to convective instability is available in the second
edition of the book on fluid mechanics by Landau and Lifshitz [11].2 It is also worth
being mentioned that a slightly different version of the example of one-dimensional
Burgers flow, employed in Sect. 4.2 as a test case to introduce convective and absolute
instabilities, was previously discussed by Brevdo and Bridges [3], as well as by
Barletta and Alves [2].

Several studies available in the literature, and the paper by Brevdo and Bridges [3]
is an example, approach the discussion of the transition from convective to absolute
instability by employing a representation of the perturbationwave packet in terms of a
double Fourier–Laplace transform. This choice yields a mildly complicated version
of the mathematical analysis employed for the study of instability, and generally
speaking, it is not strictly necessary to achieve a rigorous definition of the concept
of absolute instability.

Another aspect of the literature that somehow tends to complicate life for the
newcomers of absolute instability is the tendency to mix this topic with that of
spatial normal modes. Spatial stability analysis aims to establish the growth or decay
of a localized perturbation, periodic in time downstream of the basic flow. Hence,
things are adjusted as to control the growth in space of a perturbation instead of
assessing its growth in time at a given position, as happens with the convective
stability analysis. In practice, spatial normal modes differ from the temporal normal
modes, that is the usual Fourier modes employed throughout this book, as the former
type of modes features a complex wave number, k, and a purely imaginary time
growth, �(λ(k)) = 0, which is often described as a purely real angular frequency.
For instance, the book by Schmid and Henningson [15] presents spatial normal
modes as some sort of prerequisite for the rigorous definition of absolute instability.
This choice is perfectly correct although the purely mathematical process of saddle-
point detection in the complex k-plane is endowed with a physical meaning, i.e. the
dynamics of spatial normal modes, that may sound a bit cryptical for a first approach
to absolute instability. In fact, the analysis in the complex k-plane is needed as an
implementation of the steepest-descent approximation of awave packet perturbation.
As such, no physical meaning for the complex values of k is strictly necessary as a
justification of themethod. Following the presentation of absolute instability in terms
of spatial normalmodes,what is purelymathematical, as the holomorphy requirement
discussed in Sect. 3.5.3, becomes a physical process of collision between different
branches of spatial normal modes, described through the so-called Briggs’ method
[14, 15]. Such a scheme, only apparently different from that presented here, can
be extremely suggestive when the concept of absolute instability is familiar to the
reader. On the other hand, it may appear to be a little convoluted as a first approach
to this matter.

2In this book, the terminology convected instability is used instead of convective instability.
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Part II
Flow and Convection in Porous Media

The physics of fluid flow is illustrated through its governing equations. The balance
of extensive physical properties of the fluid such as mass, momentum and energy is
exploited by introducing the Reynolds’ transport theorem. This mathematical tool
allows one to attain a general formulation of the local balance equations needed
for the description of fluid flow. The local balance equations are formulated for the
seepage flow in porous media. The framework based on the governing equations of
fluid flow is applied to the analysis of the Rayleigh–Bénard problem in a fluid and
in a saturated porous medium. The convective instability is exploited through the
analysis of a number of different conditions and assumptions.



Chapter 5
The Equations of Fluid Flow

5.1 The Description of Fluid Flow

The basic idea behind the classical description of the fluid flow is that a fluid is a
continuous medium. This means that, although a fluid (liquid or gas) has elemen-
tary constituents (atoms, ions and molecules), these constituents are so small that
the length scale of every phenomenon involved in the macroscopic fluid flow will
be much larger than the molecular scale. Hence, it is perfectly legitimate to con-
sider infinitesimal fluid elements (see Fig. 5.1). In fact, the mathematical concept
of infinitesimal scale is in any case relative to very small spatial domains where the
number of elementary constituents is still extremely large (of the order of Avogadro’s
constant, 6.022 × 1023).

The fluid is then described as partitioned in an infinite number of infinitesimal
fluid elements each one evolving in time along its own trajectory. This description
of the fluid flow presumes that we are able to know which is the spatial position
x = (x, y, z) of every infinitesimal fluid element at every instant of time t . In doing
this, we are implicitly assuming that the same spatial position x = (x, y, z) cannot
be occupied by two different infinitesimal fluid elements at the same instant of time
t (localisation hypothesis).

On tracing the trajectory of an infinitesimal fluid element, we can define its instan-
taneous velocity v at every instant of time t . If x(t) = (x(t), y(t), z(t)) is the instanta-
neous position of an infinitesimal fluid element, its instantaneous velocity is defined
as

v(t) = d x(t)
d t

. (5.1)

Therefore, we can define the velocity field, u(x, y, z, t), as the instantaneous
velocity v(t) of the infinitesimal fluid element occupying the position (x, y, z) =
(x(t), y(t), z(t)) at time t (see Fig. 5.2). The concept of velocity field is well-defined
inasmuch as the localisation hypothesis holds.

We assume that the number of atoms, ions or molecules contained in an infinites-
imal fluid element is large enough to consider it as a closed thermodynamic system.
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Fig. 5.1 A group of
infinitesimal fluid elements
evolving along their own
trajectories

Fig. 5.2 Instantaneous
velocity of an infinitesimal
fluid element occupying the
position
x(t) = (x(t), y(t), z(t)) at
time t

Then, at every time, we can reasonably think of an “internal” thermodynamic state
of the infinitesimal fluid element. The thermodynamic state of the infinitesimal fluid
element can be described in a fairly simpleway provided that it is a stable equilibrium
state. The latter assumption, called local equilibrium hypothesis, is a reasonable one
if the evolution of this very small thermodynamic system is sufficiently slow for hav-
ing an instantaneous thermal equilibration of the fluid element. That an infinitesimal
time is needed for reaching the thermodynamic equilibrium in a system of infinites-
imal size appears as quite conceivable, even if exceptions may arise when the time
evolution is so quick that the molecular processes lose coherence. An important
characteristic property of the fluid, that will be defined in the last section of this
chapter, is the thermal diffusivity α. For a given time scale Δt of the thermodynamic
evolution, one can construct a corresponding length scale with (α Δt)1/2. In a gas,
the breakdown of the local equilibrium hypothesis can be envisaged when this length
scale is of the order of the mean free path of the elementary constituents (atoms, ions
and molecules). The mean free path is the average distance travelled by a particle
between two collisions and is of variable order of magnitude, ranging from 10−7 m
for a gas at ambient pressure to several meters for a rarefied gas. In a liquid, the break-
down of the local equilibrium hypothesis is expected when (α Δt)1/2 is of the order
of the molecular size (10−10 m at its smallest). A consequence of the local equilib-
rium hypothesis is that the “internal” thermodynamic state of the infinitesimal fluid
element is determined by its temperature, T , and density, ρ. All the thermodynamic



5.1 The Description of Fluid Flow 95

Fig. 5.3 Extremely tangled
trajectories of three
infinitesimal fluid elements
in a turbulent flow

properties of the infinitesimal fluid element, such as the pressure, p, and the internal
energy per unit mass, ϕ, are functions of (ρ, T ).

The local equilibrium hypothesis implies that, at a given instant of time t , the
infinitesimal fluid element is characterised by a temperature T , a density ρ and a
pressure p. Thus, with a procedure perfectly similar to that invoked on defining
the velocity field, one can also define the temperature field, T (x, y, z, t), as the
temperature T of the infinitesimal fluid element occupying the position (x, y, z)
at time t . One can define the density field, ρ(x, y, z, t), as the density ρ of the
infinitesimal fluid element occupying the position (x, y, z) at time t . Finally, one
can define the pressure field, p(x, y, z, t), as the pressure p of the infinitesimal fluid
element occupying the position (x, y, z) at time t . We stress that this procedure
makes sense only if there is one and only one infinitesimal fluid element occupying
the position (x, y, z) at time t . The localisation hypothesis does not hold for every
flow regime, so that there exist fluid flows where the velocity field, the temperature
field, the density field, the pressure field cannot be consistently defined. These flows
generally take place when the flow rates are very high. When this happens, the flow
experiences a transition from laminar to turbulent. For turbulent flows, the localisation
hypothesis does not hold any more.

One can imagine the lack of validity of the localisation hypothesis as being a
consequence of the extremely tangled geometry of the trajectories in a turbulent
flow (see Fig. 5.3). The point is in fact even more complicated. The concept of
infinitesimal fluid element and of trajectory of an infinitesimal fluid element loses
any conceivability when the flow is turbulent. The physical reason is that molecular
diffusion mechanisms arise, leading to an internal mixing at the molecular scale.
Therefore, a given amount of fluid occupying an infinitesimal volume at the initial
instant of time t = 0 may be spread over a finite region, even of very large size, at
later times t > 0 (see Fig. 5.4).

We can conclude that we have a good paradigm for the description of fluid flows
of laminar nature, but we have no consistent paradigm for the description of turbulent
fluid flows. This problem prevents the possibility of a theory of turbulence, that is in
fact still lacking. What physicists and engineers can say about turbulence has been
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Fig. 5.4 Spreading over larger regions of an initially infinitesimal fluid element

conveyed during the last century into phenomenological models of turbulent flows,
that cannot in any case be considered as theories of turbulence.

5.2 Reynolds’ Transport Theorem

In order to describe fluid flow in a given region of space R, it is convenient to
investigate the displacements undergone, in a given time interval, by a fluid body,
i.e. a fluid part bounded by an ideal surface impermeable with respect to mass flux.
Obviously, this definition implies that a fluid body is a closed thermodynamic system.
The concept of fluid body is the basis of the Lagrangian description of fluid flow.1

Let us consider a fluid body having mass M e let us denote byRt ⊂ R the region
of space occupied by the fluid body at time t . Under fluid flow, the region of spaceRt

is continuously displaced driven by themoving fluid. The boundary ofRt is supposed
to be a regular closed surface denoted by ∂Rt . Each point in Rt is identified by the
changing coordinates (x(t), y(t), z(t)). The outward unit normal to ∂Rt is denoted
by n (see Fig. 5.5).

Let us consider any extensive property, Ψ , of the fluid body. In thermodynam-
ics, one calls extensive any property of a system whose instantaneous value can be
evaluated by summing up the values of the property assumed by all the subsystems
of the given system. Mass, volume, energy and entropy are just a few examples of
extensive properties. The mass of a system partitioned into two halves is the sum of
the masses of the two halves.

To every extensive property Ψ of the fluid body, one can always associate a
corresponding specific property, ψ , obtained by locally dividing the value of Ψ of
any subsystem by its mass. If the subsystem employed to defineψ is an infinitesimal
fluid element of mass dM = ρ dV , then one can intend ψ as a local field depending

1As opposed to the Lagrangian description, the Eulerian description is based on a fixed volume
through which the fluid flows. Thus, the Eulerian description is focussed on an open thermodynamic
system.
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Fig. 5.5 Displacement of
the fluid body occupying the
moving region Rt

on the local coordinates, as well as on time. Hence, the extensive character of the
property Ψ allows one to write

Ψ (t) =
∫∫∫

R t

ρ ψ dx dy dz , (5.2)

where the integration measure dx dy dz describes the infinitesimal moving volume
dV . By tracing the trajectory of each infinitesimal fluid element, one has a one–
to–one correspondence between the position at time t , (x(t), y(t), z(t)), and the
corresponding position at initial time, t = 0, namely (x(0), y(0), z(0)) = (X,Y, Z).
Obviously, if (x(t), y(t), z(t)) ∈ Rt , one has (X,Y, Z) ∈ R0. With this in mind, one
can change the measure of integration on the right-hand side of equation (5.2), by
introducing a suitable Jacobian, J . In particular, one obtains

Ψ (t) =
∫∫∫

R 0

ρ ψ J dX dY dZ . (5.3)

The Jacobian J is the determinant of the matrix expressing the change of coordinates
[1], from (x(t), y(t), z(t)) to (X,Y, Z). Hence, we can express J by employing the
Levi-Civita symbol, εi jk , and Einstein’s notation for repeated indices, namely

J = det

⎛
⎜⎜⎜⎜⎜⎝

∂x

∂X

∂x

∂Y

∂x

∂Z
∂y

∂X

∂y

∂Y

∂y

∂Z
∂z

∂X

∂z

∂Y

∂z

∂Z

⎞
⎟⎟⎟⎟⎟⎠

= εi jk
∂x1
∂Xi

∂x2
∂X j

∂x3
∂Xk

. (5.4)
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In Eq. (5.4), symbols (x1, x2, x3) and (X1, X2, X3) have been used instead of (x, y, z)
and (X,Y, Z), respectively, as they are more convenient to implement Einstein’s
notation for sums over repeated indices. For readers unfamiliar with Levi-Civita
symbol, or Kronecker’s delta, or Einstein’s notation for tensor operations, we refer
to Appendix B. In particular, the expression of J in Eq. (5.4) is a consequence of
equation (B.22) of Appendix B. We want to evaluate the time derivative of Ψ (t).
From Eq. (5.3), we obtain

dΨ

d t
=

∫∫∫

R 0

[
∂(ρ ψ)

∂t
J + ∂(ρ ψ)

∂xi

d xi
d t

J + ρ ψ
∂ J

∂t

]
dX dY dZ

=
∫∫∫

R 0

[
∂(ρ ψ)

∂t
J + ∂(ρ ψ)

∂xi
ui J + ρ ψ

∂ J

∂t

]
dX dY dZ , (5.5)

where the definitions of instantaneous velocity over a trajectory, and of velocity field,
u with components ui , have been employed. We now express the derivative ∂ J/∂t ,
by using again the definition of velocity field,

∂ J

∂t
= εi jk

∂u1
∂Xi

∂x2
∂X j

∂x3
∂Xk

+ εi jk
∂x1
∂Xi

∂u2
∂X j

∂x3
∂Xk

+ εi jk
∂x1
∂Xi

∂x2
∂X j

∂u3
∂Xk

= ∂u1
∂x


εi jk
∂x


∂Xi

∂x2
∂X j

∂x3
∂Xk

+ ∂u2
∂xm

εi jk
∂x1
∂Xi

∂xm
∂X j

∂x3
∂Xk

+∂u3
∂xn

εi jk
∂x1
∂Xi

∂x2
∂X j

∂xn
∂Xk

=
(

∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

)
εi jk

∂x1
∂Xi

∂x2
∂X j

∂x3
∂Xk

= (∇ · u) J , (5.6)

where we recognised that 
 can only be equal to 1, m can only be equal to 2, and n
can only be equal to 3. In fact, expressions such as

εi jk
∂x


∂Xi

∂x2
∂X j

∂x3
∂Xk

,

yield the determinant of a matrix with two equal rows, which is zero, unless 
 = 1.
On account of Eq. (5.6), Eq. (5.5) can be rewritten as

dΨ

d t
=

∫∫∫

R 0

[
∂(ρ ψ)

∂t
+ u · ∇(ρ ψ) + ρ ψ ∇ · u

]
J dX dY dZ

=
∫∫∫

R 0

[
∂(ρ ψ)

∂t
+ ∇ · (ρ ψ u)

]
J dX dY dZ , (5.7)

so that one finally has
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dΨ

d t
=

∫∫∫

R t

[
∂(ρ ψ)

∂t
+ ∇ · (ρ ψ u)

]
dx dy dz . (5.8)

Equation (5.8) represents the statement of Reynolds’ transport theorem.

5.3 Local Mass Balance Equation

In this section, the first and simplest application of Reynolds’ transport theorem is
presented: the deduction of the local mass balance equation. Let us assume that the
extensive property Ψ is the mass M of the fluid element. Since the fluid element
is a closed thermodynamic system, M does not change with time. Hence, the left-
hand side of equation (5.8) is zero. The specific property ψ is obtained as the ratio
between Ψ and the mass, so that one has ψ = 1 in this case. As a consequence,
Eq. (5.8) allows one to infer that

∫∫∫

R t

[
∂ρ

∂t
+ ∇ · (ρ u)

]
dx dy dz = 0 . (5.9)

Since Eq. (5.9) must hold for every possible choice of the fluid body and, thus,
for every region of space Rt included in the domain R occupied by the fluid, the
integrand must be identically zero. In other words, one has

∂ρ

∂t
+ ∇ · (ρ u) = 0 . (5.10)

The partial differential equation (5.10) is the local mass balance equation, well
known also as the equation of continuity. One can easily conclude that, if the density
field ρ can be considered as time independent and uniform, i.e. for an incompressible
flow, the equation of continuity is reduced to ∇ · u = 0. Hence, in this case, the
velocity field is solenoidal.2

Equation (5.10) allows one to reformulate Reynolds’ transport theorem through
the following equation:

dΨ

d t
=

∫∫∫

R t

[
ρ

∂ψ

∂t
+ ψ

∂ρ

∂t
+ ρ u · ∇ψ + ψ ∇ · (ρ u)

]
dx dy dz

=
∫∫∫

R t

ρ

(
∂ψ

∂t
+ u · ∇ψ

)
dX dY dZ =

∫∫∫

R t

ρ
Dψ

D t
dx dy dz . (5.11)

2The term solenoidal comes from electromagnetism as the magnetic induction field in a solenoid
is a vector field with zero divergence.
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In obtaining Eq. (5.11), use has been made of the mathematical identity

∇ · (ρ ψ u) = ρ u · ∇ψ + ψ ∇ · (ρ u) , (5.12)

and of the definition of substantial derivative,

Dψ

D t
= ∂ψ

∂t
+ u · ∇ψ . (5.13)

Hereafter, for the sake of brevity, the measure dx dy dz will be simply denoted by
dV so that Eq. (5.11) reads

dΨ

d t
=

∫∫∫

R t

ρ
Dψ

D t
dV . (5.14)

The alternative formulation of equation (5.10), based on Einstein’s notation, is given
by

∂ρ

∂t
+ ∂(ρ u j )

∂x j
= 0 . (5.15)

5.4 Forces Acting on a Fluid Body

The forces acting on the fluid body occupying the moving regionRt can be classified
as body forces acting on the infinitesimal fluid elements in the interior ofRt , and as
surface forces acting on the boundary ∂Rt . When dealing with surface forces, one
defines the traction, meaning the force per unit area acting on the boundary of the
fluid body.

Let bi denote the i th component of the body force, i.e. of the force per unit volume
acting on the fluid element and due to external fields of either gravitational, electric
or magnetic origin. Thus, the i th component of the resultant body force acting on the
fluid element is

F (b)
i =

∫∫∫

R t

bi dV . (5.16)

In the following, it will be tacitly assumed that the body force is of gravitational
origin, so that b = ρ g, where g is the gravitational acceleration. However, there can
be applications where also contributions due to external electric and magnetic fields
are important, as in the study of magnetohydrodynamics (MHD) [5].

In the evaluation of the total force Fi applied to the fluid element, one must
consider, in addition to the gravitational body force contribution, also the resultant
F (s)
i of the traction acting on the boundary surface of the fluid element, namely



5.4 Forces Acting on a Fluid Body 101

F (s)
i =

∫∫

∂R t

fi dS , (5.17)

where fi is the i th component of the traction, i.e. the force per unit area, acting on
the boundary surface ∂Rt of the fluid element, and dS is the measure of the surface
integral.

The traction fi can be expressed through the mechanical stress tensor σ as

fi = σi j n j , (5.18)

where n j is the j th component of the unit outward normal n to ∂Rt (see Fig. 5.5).
By employing Gauss’ theorem (see Appendix B), Eqs. (5.17) and (5.18) yield an
expression of F (s)

i in terms of a volume integral, namely

F (s)
i =

∫∫∫

R t

∂σi j

∂x j
dV , (5.19)

so that the resultant force acting on the fluid body is given by

Fi = F (b)
i + F (s)

i =
∫∫∫

R t

(
ρ gi + ∂σi j

∂x j

)
dV . (5.20)

5.5 Local Momentum Balance Equation

Let the extensive property Ψ be the i th component of momentum. On account of
the definition of momentum of a point-like object, one can easily conclude that the
corresponding specific property ψ is the i th component of the velocity field, ui .
From elementary mechanics, we know that the time derivative of the i th component
of momentum is equal to the i th component of the resultant force, Fi , acting on the
mechanical system. Then, Reynolds’ transport theorem (5.14) yields

∫∫∫

R t

ρ
D ui
D t

dV = Fi , (5.21)

so that, by employing equation (5.20), one obtains

∫∫∫

R t

(
ρ

D ui
D t

− ρ gi − ∂σi j

∂x j

)
dV = 0 . (5.22)



102 5 The Equations of Fluid Flow

We are in a situation identical to Eq. (5.9). The integral on the left-hand side of
equation (5.22) must be zero for every possible choice of the region of spaceRt , so
that the integrand must be identically zero,

ρ
D ui
D t

= ρ gi + ∂σi j

∂x j
. (5.23)

Equation (5.23) is the local momentum balance equation.

5.6 Local Angular Momentum Balance Equation

One of the main properties of the mechanical stress tensor σ is its symmetry, σi j =
σ j i . The symmetry of the mechanical stress tensor is a consequence of the local
balance of the angular momentum.

By remembering that the moment of a force is obtained through the vector prod-
uct between the position vector x and the force, the resultant moment of the forces
acting on the fluid body contained in Rt can be expressed, on account of equa-
tions (5.16) and (5.17), as

K =
∫∫∫

R t

x × (ρ g) dV +
∫∫

∂R t

x × f dS . (5.24)

Once more, we refer the reader to Appendix B for the properties of the Levi-Civita
symbol. By using Eqs. (5.18) and (B.20), we can write the i th component of K as

Ki =
∫∫∫

R t

ρ εi jk x j gk dV +
∫∫

∂R t

εi jk x j fk dS

=
∫∫∫

R t

ρ εi jk x j gk dV +
∫∫

∂R t

εi jk x j σk
 n
 dS . (5.25)

By employing Gauss’ theorem, the surface integral over ∂Rt can be rewritten as a
volume integral, so that Eq. (5.25) reads

Ki =
∫∫∫

R t

εi jk

[
ρ x j gk + ∂(x j σk
)

∂x


]
dV . (5.26)

Let the extensive property Ψ be the i th component of the angular momentum,
Li . Then, from elementary mechanics, the corresponding specific quantity ψ is
εi jk x j uk . As a consequence of Reynolds’ transport theorem, Eq. (5.14), one can
write
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d Li

d t
=

∫∫∫

R t

ρ εi jk
D(x j uk)

D t
dV =

∫∫∫

R t

ρ εi jk

[
x j

∂uk
∂t

+ u


∂(x j uk)

∂x


]
dV

=
∫∫∫

R t

ρ

[
εi jk x j

∂uk
∂t

+ εi jk u
 δ j
 uk + εi jk x j u


∂uk
∂x


]
dV

=
∫∫∫

R t

ρ

[
εi jk x j

∂uk
∂t

+ εi jk u j uk + εi jk x j u


∂uk
∂x


]
dV

=
∫∫∫

R t

ρ εi jk x j
Duk
D t

dV , (5.27)

where we recognised that ∂x j/∂x
 = δ j
, and that εi jk u j uk = 0 as it represents the
i th component of the vector product of u with itself. The mechanical balance of
angular momentum prescribes that

d Li

d t
= Ki . (5.28)

Then, we obtain

∫∫∫

R t

εi jk

[
ρ x j

Duk
D t

− ρ x j gk − ∂(x j σk
)

∂x


]
dV = 0 , (5.29)

which can be rewritten as
∫∫∫

R t

εi jk

[
ρ x j

Duk
D t

− ρ x j gk − x j
∂σk


∂x


− σk j

]
dV = 0 . (5.30)

Byemploying the localmomentumbalance equation (5.23), one can rewriteEq. (5.30)
as ∫∫∫

R t

εi jk σk j dV = 0 . (5.31)

Following the usual argument, since Eq. (5.31) must hold for every possible choice
of the regionRt , the integrand must be zero, so that we can write the local equation

εi jk σk j = 0 . (5.32)

Due to the properties of the Levi-Civita symbol (see Appendix B), Eq. (5.32) with
i = 1, 2, 3 yields the equalities
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σ32 = σ23 , σ31 = σ13 , σ12 = σ21 . (5.33)

This just means that σ is a symmetric tensor, i.e. that σi j = σ j i .

5.7 Local Energy Balance Equation

Let us now assume that the extensive propertyΨ is the energy E of the fluid element.
The energy per unit mass of the fluid, ψ , can be expressed as

ψ = ϕ + u · u
2

, (5.34)

where ϕ is the internal energy per unit mass. In other words, we are assuming that
ψ is the sum of the internal energy per unit mass and of the kinetic energy per unit
mass. On account of equations (5.14) and (5.34), Reynolds’ transport theorem yields

d E

d t
=

∫∫∫

R t

ρ

(
Dϕ

Dt
+ u · Du

Dt

)
dV . (5.35)

The thermodynamic energy balance can be written as

d E

d t
= Q̇ + Ẇ , (5.36)

where Q̇ and Ẇ are, respectively, the thermal power and the mechanical power
received by the fluid body. At time t , the thermal power received by the fluid body
that occupies the region of space Rt is the sum of two terms: the thermal power Q̇s

that crosses the boundary surface ∂Rt of the body; the thermal power Q̇g generated
within the fluid element (due to phenomena such as, for instance, the Joule effect in
the case of a conducting fluid carrying an electric current). The quantity Q̇g can be
expressed by introducing the thermal power generated per unit volume within the
fluid, qg, so that one has

Q̇g =
∫

R t

qg dV . (5.37)

The quantity Q̇s can be determined by means of the heat flux density q,

Q̇s = −
∫∫

∂R t

q · n dS , (5.38)
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where n is the outward normal unit vector to ∂Rt . By invoking Gauss’ theorem, one
can write

Q̇s = −
∫∫∫

R t

∇ · q dV . (5.39)

Then, one has

Q̇ = Q̇g + Q̇s =
∫∫∫

R t

(
qg − ∇ · q )

dV . (5.40)

The mechanical power Ẇ received from the fluid body coincides with the work per
unit time produced by the gravitational body force and by the traction acting on
the boundary ∂Rt of the fluid body. Inside Rt , one has a work per unit time due
to the gravitational field and acting on each infinitesimal volume element, given by
ρ g · u dV . Moreover, at every position in ∂Rt , one has an infinitesimal work per
unit time f · u dS, so that

Ẇ =
∫∫∫

R t

ρ g · u dV +
∫∫

∂R t

f · u dS =
∫∫∫

R t

ρ gi ui dV +
∫∫

∂R t

fi ui dS .

(5.41)
On account of equation (5.18), and by employing Gauss’ theorem, Eq. (5.41) can be
rewritten as

Ẇ =
∫∫∫

R t

ρ gi ui dV +
∫∫

∂R t

σi j ui n j dS =
∫∫∫

R t

[
ρ gi ui + ∂(σi j ui )

∂x j

]
dV

=
∫∫∫

R t

[
ρ gi ui + ui

∂σi j

∂x j
+ σi j

∂ui
∂x j

]
dV . (5.42)

On account of equations (5.35), (5.36), (5.40) and (5.42), one obtains

∫∫∫

R t

[
ρ

(
Dϕ

Dt
+ ui

Dui
Dt

)
− qg + ∂q j

∂x j
− ρ gi ui

− ui
∂σi j

∂x j
− σi j

∂ui
∂x j

]
dV = 0 . (5.43)

Equation (5.43) can be rewritten as

∫∫∫

R t

[
ρ

Dϕ

Dt
+

(
ρ

Dui
Dt

− ρ gi − ∂σi j

∂x j

)
ui

− qg + ∂q j

∂x j
− σi j

∂ui
∂x j

]
dV = 0 . (5.44)
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Thus, by employing equation (5.23), Eq. (5.44) can be simplified to

∫∫∫

R t

[
ρ

Dϕ

Dt
− qg + ∂q j

∂x j
− σi j

∂ui
∂x j

]
dV = 0 . (5.45)

Once again, we have reached a situation where an integral over Rt is zero. Due to
the arbitrary choice of the integration domain, we an conclude that the integrand is
zero. Thus, we obtain the local energy balance equation, namely

ρ
Dϕ

Dt
= −∂q j

∂x j
+ qg + σi j

∂ui
∂x j

. (5.46)

5.8 Viscous Stresses and Heat Flux

With fluids, the mechanical stress tensor is decomposed into an isotropic part and a
traceless part,

σi j = −p δi j + τi j . (5.47)

The term isotropic literally means independent of direction. In mathematics, a
second-rank tensor is termed isotropic when it is the product of a scalar and Kro-
necker’s delta. In fact, Kronecker’s delta has the special feature that its components
are the same in any Cartesian reference frame arbitrarily rotated around its origin.
In Eq. (5.47), p is the pressure field and τ is a second-rank tensor with zero trace,
that is τi i = 0, called viscous stress tensor. It models the viscous behaviour of the
fluid, which strongly depends on the specific fluid examined. There are several types
of fluids that fall into two main categories: Newtonian and non-Newtonian fluids.
Fluids falling in the former category are most of the fluids encountered in Nature,
such as water, oil or gases. For Newtonian fluids, τ is usually represented as

τi j = 2μDi j − 2

3
μ (∇ · u) δi j , (5.48)

where Di j is the strain tensor, defined as

Di j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
, (5.49)

and μ is the dynamic viscosity. The latter quantity is, in general, a thermodynamic
property of the fluid depending on its local temperature and pressure. Onemay easily
check from Eq. (5.49) that the trace of D coincides with ∇ · u, so that Eq. (5.48)
implies that the trace of τ is in fact zero. Equations (5.48) and (5.49) are consistent
with the symmetry property of the mechanical stress tensor σ .
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On account of equations (5.47)–(5.49), the term ∂σi j/∂x j on the right-hand side
of equation (5.23) can be rewritten as

∂σi j

∂x j
= − ∂p

∂xi
+ ∂τi j

∂x j
= − ∂p

∂xi
+ ∂

∂x j

[
μ

(
∂ui
∂x j

+ ∂u j

∂xi

)]

−2

3

∂

∂xi
(μ∇ · u) . (5.50)

A specially interesting case is one whereμ undergoes negligible changes in space
and time, so that it can be considered as a constant,

∂σi j

∂x j
= − ∂p

∂xi
+ μ

(
∂2ui

∂x j ∂x j
+ ∂2u j

∂xi ∂x j

)
− 2

3
μ

∂

∂xi
(∇ · u)

= − ∂p

∂xi
+ μ∇2ui + 1

3
μ

∂

∂xi
(∇ · u) . (5.51)

Another quantity that involves the mechanical stress tensor is the term σi j ∂ui/∂x j

appearing on the right-hand side of equation (5.46). Again, by invoking Eq. (5.47),
one can write

σi j
∂ui
∂x j

= −p ∇ · u + τi j
∂ui
∂x j

= −p ∇ · u + 1

2
τi j

(
∂ui
∂x j

+ ∂u j

∂xi

)
= −p ∇ · u + τi j Di j , (5.52)

where the symmetry of themechanical stress tensor σ , and hence of the viscous stress
tensor τ , has been employed. We mention that each term appearing in Eq. (5.52) has
a specific name and implied physical meaning,

−p ∇ · u =⇒ pressurework,
τi j Di j =⇒ viscous dissipation.

(5.53)

Pressure work expresses, within the local energy balance, the contribution due to
dilationor compressionprocesses experiencedby thefluid.On theother hand, viscous
dissipation accounts for the frictional heat generation caused by the fluid viscosity.
On account of equations (5.48) and (5.49), when the focus is on Newtonian fluids,
the viscous dissipation term can be expressed as

τi j Di j = 2μDi j Di j − 2

3
μ (∇ · u)2 . (5.54)

The double, implicit, sum over i and j means that Di j Di j is expanded into nine
terms. Three of them, namely the diagonal ones, yield (∇ · u)2. The conclusion is
that the right hand side of equation (5.54) cannot in any case be negative. Physically,
this means that viscous dissipation is a heat source term contribution to the energy
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balance of the fluid, whose cause is the flow itself. We mention that the viscous
dissipation term is often written in the form

τi j Di j = μΦ , (5.55)

where Φ is called the dissipation function,

Φ = 2Di j Di j − 2

3
(∇ · u)2 . (5.56)

Equation (5.56) shows that the dissipation function depends only on the velocity
field.

An important term of the local energy balance equation (5.46) is that expressing
heat diffusion, namely −∇ · q. This term can be rewritten on account of Fourier’s
law,

q = −κ ∇T , (5.57)

where κ is the thermal conductivity of the fluid. This quantity is a thermodynamic
property of the fluid and, in general, it depends on both temperature and pressure.

By taking into account Eqs. (5.50), (5.52), (5.54) and (5.57), one obtains an
expression of the local balance equations (5.15), (5.23) and (5.46) for a Newtonian
fluid given by

∂ρ

∂t
+ ∂(ρ u j )

∂x j
= 0 , (5.58)

ρ

(
∂ui
∂t

+ u j
∂ui
∂x j

)
= ρ gi − ∂p

∂xi
+ ∂

∂x j

[
μ

(
∂ui
∂x j

+ ∂u j

∂xi

)]

−2

3

∂

∂xi

(
μ

∂u j

∂x j

)
, (5.59)

ρ

(
∂ϕ

∂t
+ u j

∂ϕ

∂x j

)
= ∂

∂x j

(
κ

∂T

∂x j

)
+ qg − p

∂u j

∂x j
+ 2μDi j Di j

−2

3
μ

(
∂u j

∂x j

)2

. (5.60)

Equation (5.59) is well known as the Navier–Stokes equation.
The information conveyed by Eqs. (5.58)–(5.60) is not enough to determine the-

oretically the fluid flow. More details are needed such as the interplay between
thermodynamic properties, say κ or μ, and the local fluid temperature or pressure.
Convection studies often rely on an approximated scheme called the Oberbeck–
Boussinesq approximation.
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5.9 The Oberbeck–Boussinesq Approximation

When convection in fluids takes place, the mass density ρ can be approximated
as a reference constant density, ρ0, except for the gravitational body force term,
ρ gi in Eq. (5.59), where the variability of ρ is taken into account. Moreover, both
the dynamic viscosity and the thermal conductivity are assumed to be constant.
Therefore, the localmass,momentum and energy balance equations can be simplified
to

∂u j

∂x j
= 0 , (5.61)

ρ0

(
∂ui
∂t

+ u j
∂ui
∂x j

)
= ρ gi − ∂p

∂xi
+ μ∇2ui , (5.62)

ρ0

(
∂ϕ

∂t
+ u j

∂ϕ

∂x j

)
= κ ∇2T + qg + 2μDi j Di j . (5.63)

The density ρ, in the term ρ gi is assumed to be a function of temperature only, ρ(T ),
thus considering the dependence on the pressure as negligible. The linear equation
of state

ρ(T ) = ρ0 [1 − β (T − T0)] , (5.64)

is assumed, where β is the isobaric coefficient of thermal expansion,

β = − 1

ρ

(
∂ρ

∂T

)
p

, (5.65)

at the reference temperature T0. The coefficient β is positive. In Eq. (5.64), the depen-
dence on T is considered sufficiently weak as to be approximated linearly in a neigh-
bourhood of the reference value T0. This means that Eq. (5.64) can be intended as a
Taylor series expansion of ρ around T0,

ρ (T ) = ρ0 + ∂ρ

∂T

∣∣∣∣
T0

(T − T0) + O
(
(T − T0)

2 )
. (5.66)

From Eq. (5.64), the expression

ρ gi − ∂p

∂xi

in the local momentum balance equation (5.62) can be rewritten as

−ρ0 β (T − T0) gi − ∂P

∂xi

where P is called piezometric head, and it is defined as
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P = p − ρ0 gi xi . (5.67)

The quantity P is the difference between the pressure p and the hydrostatic pressure
ρ0 gi xi . As a consequence, Eqs. (5.61)–(5.63) can be rewritten as

∂u j

∂x j
= 0 , (5.68)

ρ0

(
∂ui
∂t

+ u j
∂ui
∂x j

)
= −ρ0 β (T − T0) gi − ∂P

∂xi
+ μ∇2ui , (5.69)

ρ0

(
∂ϕ

∂t
+ u j

∂ϕ

∂x j

)
= κ ∇2T + qg + 2μDi j Di j . (5.70)

The term
−ρ0 β (T − T0) gi

is directed vertically, either in the direction ofg or in the opposite direction, depending
on the sign of T − T0. Due to this term in the momentum balance, fluid elements
with a temperature higher than T0 are pushed upwards, while fluid elements with a
temperature lower than T0 are pushed downwards. This term is usually called the
buoyancy force and represents the common sense effect that the lighter (hotter) fluid
floats on top of the heavier (cooler) one. When the buoyancy force is negligible with
respect to the pressure force,

ρ0 β |T − T0| g � |∇P| ,

where g is the modulus of g, the convection flow process is called forced convec-
tion. In this flow regime, the buoyancy force term can be neglected in Eq. (5.69),
so that both Eqs. (5.68) and (5.69) do not contain any contribution of the tempera-
ture field. Therefore, in a forced convection problem, these equations can be solved
independently of equation (5.70), i.e. the local energy balance equation.

When the buoyancy force cannot be neglected, the convection flow process is
called either free convection, or natural convection, ormixed convection, or combined
forced and free convection, or buoyant flow. In this flow regime, the buoyancy force
term cannot be neglected in Eq. (5.69), so that this equation contains the temperature
field. Therefore, in a buoyant flow problem, Eqs. (5.68)–(5.70) form a system of
partial differential equations, so that they cannot be solved separately. We mention
that the terms free convection or natural convection are used when the flow is driven
only by the buoyancy force.

Thermodynamics ensures that ϕ = ϕ(T, ρ) for every single-phase or two-phase
stable equilibrium states [4, 6]. In the special case of a perfect gas, it is well known
that ϕ = ϕ(T ), so that [6]

dϕ = cv dT , (5.71)
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where cv is the specific heat at constant volume. In the case of either a liquid or
a real gas, one must rely on the Oberbeck–Boussinesq approximation by assuming
that an approximate equation of state ρ = ρ(T ) can be applied. This implies that
the pressure of the fluid does not change appreciably. Since ρ = ρ(T ) and since the
pair (T, ρ) yields a unique stable equilibrium state, then one concludes that all the
thermodynamic properties may be considered as functions of T . This conclusion
holds for the internal energy per unit mass, so that a relationship,

dϕ = c dT , (5.72)

can be established. The thermodynamic coefficient c, in general, does not coincide
either with cv or with the specific heat at constant pressure, cp. In fact, c is the total
derivative of the function ϕ = ϕ(T, ρ(T )) with respect to T , and not the partial
derivative of ϕ = ϕ(T, ρ) with respect to T , when ρ is kept constant. As is well
known, the latter is the correct thermodynamic definition of cv. The equation of
state ρ = ρ(T ) is one regarding a set of stable equilibrium states of the fluid with
approximately the same pressure. Then, one has

c =
(

∂ϕ

∂T

)
p

. (5.73)

Equation (5.73) is not the definition of the specific heat at constant pressure cp. As
is well known, cp is in fact defined as

cp =
(

∂h

∂T

)
p

, (5.74)

where h = ϕ + p/ρ is the enthalpy per unit mass. Then, one can easily write the
following relationship:

c = cp − p β

ρ
. (5.75)

Then, c is smaller than cp and differs from cv, except for the limiting case of a perfect
gas. Indeed, in the latter case, one can easily show that the equation of state of the
perfect gas and Eq. (5.75) ensures that c = cv, so that Eqs. (5.71) and (5.72) are
perfectly consistent.

One can question about the extent to which cp and cv differ from c in the case
of liquids. This topic has been examined by Barletta [3]. For water at atmospheric
pressure, as well as for most liquids, the assumption

c ≈ cp (5.76)

is a definitely reliable one. By using Eq. (5.72), one has
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∂ϕ

∂t
= c

∂T

∂t
,

∂ϕ

∂x j
= c

∂T

∂x j
, (5.77)

so that Eqs. (5.68)–(5.70) can be rewritten as

∂u j

∂x j
= 0 , (5.78)

ρ0

(
∂ui
∂t

+ u j
∂ui
∂x j

)
= −ρ0 β (T − T0) gi − ∂P

∂xi
+ μ∇2ui , (5.79)

ρ0 c

(
∂T

∂t
+ u j

∂T

∂x j

)
= κ ∇2T + qg + 2μDi j Di j . (5.80)

An alternative expression for Eqs. (5.78)–(5.80) is obtained on introducing the kine-
matic viscosity,

ν = μ

ρ0
, (5.81)

and the thermal diffusivity,

α = κ

ρ0 c
. (5.82)

Thus, we can write

∂u j

∂x j
= 0 , (5.83)

∂ui
∂t

+ u j
∂ui
∂x j

= −β (T − T0) gi − 1

ρ0

∂P

∂xi
+ ν ∇2ui , (5.84)

∂T

∂t
+ u j

∂T

∂x j
= α ∇2T + qg

ρ0 c
+ 2

ν

c
Di j Di j . (5.85)

Typical boundary conditions prescribed for the velocity field are impermeability at
the surface of a solid wall, meaning that the normal component of u is zero at this
boundary. Also, the tangential components of velocity must vanish at the surface of
a solid wall, and these conditions are termed no-slip conditions.

5.10 Governing Equations of Mass Diffusion

In general, the local mass balance equation of a fluid is given by Eq. (5.58). This
equation holds either for a fluid with a single chemical constituent or for a multicom-
ponent fluid. However, if one has a multicomponent fluid made up of N different
chemical species, one can imagine the fluid as the superposition of N pure fluids
coexisting in the same region of space. This means that, instead of a single velocity
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field u, one has to define N velocity fields un , where n = 1, 2, . . . , N , one for each
constituent. Moreover, one must define a mass density field, Cn , for the nth con-
stituent as

Cn = Mn

V
, (5.86)

where Mn is the mass of the nth constituent contained in an elementary volume V .
The overall fluid mass density is made up by the densities Cn of the constituents,

ρ =
N∑

n=1

Cn . (5.87)

It is a common practice calling concentrations themass densities of the N pure fluids.
The overall velocity field u of the multicomponent fluid can be defined as a

weighted mean value of the velocity fields un ,

u = 1

ρ

N∑
n=1

Cn un . (5.88)

5.10.1 Transport Theorem for Mass Diffusion

We know that Eq. (5.58) arises from Reynolds’ transport theorem relative to the
multicomponent fluid. With reference to the nth pure fluid, the transport theorem can
be formulated as

dΨn

d t
=

∫∫∫

R t

[
∂(Cn ψn)

∂t
+ ∇ · (Cn ψn un)

]
dV , n = 1, 2, . . . , N , (5.89)

whereΨn is any extensive property of the nth pure fluid,whileψn is the corresponding
specific property, i.e. the property obtained from the division ofΨn by the mass of the
nth constituent. The regionRt is that occupied by a givenmulticomponent fluid body
at time t . Again, the regionRt defines a closed thermodynamic system. If Ψn = Mn

is the mass of the nth chemical species contained in the volume Rt at time t , then
ψn = 1. Unlike the overall fluid mass M contained in Rt at time t , the mass Mn

is not independent of time since chemical reactions may occur in the fluid system.
Then, one may write

d Mn

d t
=

∫∫∫

R t

ṁn dV , (5.90)

where ṁn is the local mass production rate per unit volume of the nth chemical
species. On substituting Ψn = Mn and ψn = 1 in Eq. (5.89), one obtains
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∫∫∫

R t

[
∂Cn

∂t
+ ∇ · (Cn un) − ṁn

]
dV = 0, n = 1, 2, . . . , N . (5.91)

Since the regionRt has been chosen arbitrarily, the integral conditions can be satisfied
only if the integrand vanishes locally at every position in the domain occupied by
the fluid, namely if the local mass balance equations,

∂Cn

∂t
+ ∇ · (Cn un) − ṁn = 0 , n = 1, 2, . . . , N , (5.92)

hold. By summing all the N Eqs. (5.92), one obtains

∂ρ

∂t
+ ∇ · (ρ u) −

N∑
n=1

ṁn = 0 , (5.93)

where Eqs. (5.87) and (5.88) have been invoked. A comparison between Eqs. (5.93)
and (5.58) allows us to infer that

N∑
n=1

ṁn = 0 . (5.94)

Equation (5.94) implies that the chemical reactions possibly occurring in the fluid
system do not yield either a source or a sink for the overall fluid mass, i.e. the overall
fluid mass is locally conserved.

5.10.2 Concentrations and Mass Fluxes

Mass diffusion occurs within the fluid when, locally, the overall fluid velocity u
differs from the velocity un of the nth constituent. Then, if the mass diffusion takes
place, one may define a mass flux for each constituent,

Jn = Cn (un − u) , n = 1, 2, . . . , N . (5.95)

As a consequence, Eq. (5.92) yields

∂Cn

∂t
+ ∇ · (Cn u) + ∇ · Jn − ṁn = 0 , n = 1, 2, . . . , N , (5.96)

that can be rewritten as

∂Cn

∂t
+ u · ∇Cn + Cn ∇ · u + ∇ · Jn − ṁn = 0 , n = 1, 2, . . . , N . (5.97)
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5.10.3 The Oberbeck–Boussinesq Approximation

The Oberbeck–Boussinesq approximation is based on the assumption that the over-
all fluid density ρ may be treated as a constant in the local mass, momentum and
energy balance equations of the fluid, except for the gravitational body force in the
momentum balance. This exception allows one to model the density changes through
the effects of the buoyancy force. When mass diffusion takes place, the overall fluid
density ρ is considered not only as a function of the temperature T , but also of
N − 1 concentrations, C1,C2, . . . ,CN−1, treated as independent variables. The lat-
ter conclusion may be inferred from Eq. (5.87). The fluid density ρ may be either
considered as a function ofC1,C2, . . . ,CN assumed as independent, or as a function
of the independent variables T,C1,C2, . . . ,CN−1. In fact, each concentration Cn is
a function of T .

With small density changes occurring within the fluid, one can express ρ as a
linear function of the independent variables T,C1,C2, . . . ,CN−1,

ρ = ρ0

[
1 − β (T − T0) −

N−1∑
n=1

βC,n
(
Cn − Cn,0

)]
, (5.98)

where T0 is the reference temperature, Cn,0 is the reference concentration of the nth
component, ρ0 is the overall fluid density evaluated in the reference state, while

β = − 1

ρ

∂ρ

∂T
, βC,n = − 1

ρ

∂ρ

∂Cn
, n = 1, 2, . . . , N − 1 , (5.99)

are the isobaric coefficient of thermal expansion and the concentration expansion
coefficients, respectively. While β is positive, the coefficients βC,n can be either
positive or negative. In Eq. (5.99), these coefficients are evaluated at the reference
conditions T = T0 and Cn = Cn,0.

On the basis of equation (5.98), one can express the approximated momentum
balance. Therefore, the set of local balance equations to be solved in the Oberbeck–
Boussinesq approximation are

∇ · u = 0 , (5.100)

∂u
∂t

+ (u · ∇) u = − 1

ρ0
∇P − β (T − T0) g

−
N−1∑
n=1

βC,n
(
Cn − Cn,0

)
g + ν ∇2u , (5.101)

∂T

∂t
+ (u · ∇) T = α ∇2T + qg

ρ0 c
+ ν

c
Φ , (5.102)

∂Cn

∂t
+ (u · ∇)Cn = −∇ · Jn + ṁn, n = 1, 2, . . . , N − 1 . (5.103)
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We note that instead of the N equations (5.103), we have written just N − 1 equa-
tions. The reason is that the overall fluid mass balance equation (5.100) and the
N mass balance equations for the constituents of the multicomponent fluid are not
independent, as a consequence of the constraint equation (5.87).

The local momentum balance equation (5.101) displays two kinds of buoyancy
force: a thermal buoyancy induced by a possibly non-uniform temperature field,

−β (T − T0) g ,

and a mass diffusion buoyancy induced by possibly non-uniform concentrations of
the chemical components,

−
N−1∑
n=1

βC,n
(
Cn − Cn,0

)
g .

5.10.4 A Two-Component Mixture and Fick’s Law

Here, we refer for simplicity to a two-component fluid (N = 2). Since N = 2, we
have two concentrations C1 and C2, but just one of them is an independent variable
as a consequence of equation (5.87). We denote this concentration as C and the
corresponding mass flux as J.

Thus, from Eqs. (5.100)–(5.103), we have four local balance equations that we
can write, for convenience, according to Einstein’s notation

∂u j

∂x j
= 0 , (5.104)

∂ui
∂t

+ u j
∂ui
∂x j

= −β (T − T0) gi

−βC (C − C0) gi − 1

ρ0

∂P

∂xi
+ ν ∇2ui , (5.105)

∂T

∂t
+ u j

∂T

∂x j
= α ∇2T + qg

ρ0 c
+ 2

ν

c
Di j Di j , (5.106)

∂C

∂t
+ u j

∂C

∂x j
= −∂ Jj

∂x j
+ ṁ . (5.107)

We note that the set of four local balance equations (5.104)–(5.107) can be solved
to determine the four unknown fields ui , p, T and C . However, we have a further
unknown: the mass flux Ji . Hence, the differential problem is under-determined
(there are more unknowns than equations).

In 1855, a German physiologist and physicist, Adolf Eugen Fick, obtained a
phenomenological law establishing a relationship between Ji andC . This law is now
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well known as Fick’s law and can be formulated as [2]

Ji = −αm
∂C

∂xi
, (5.108)

where the positive quantity αm is the mass diffusivity. The mass diffusivity is a
thermodynamic property of the two-component mixture and, coherently with the
Oberbeck–Boussinesq approximation, it is considered as a constant. ThenEq. (5.107)
can be rewritten as

∂C

∂t
+ u j

∂C

∂x j
= αm ∇2C + ṁ . (5.109)

In this form, the local mass balance equation for the component with concentration
C exploits the strong mathematical analogy between the heat diffusion, described by
Eq. (5.106), and mass diffusion, described by Eq. (5.109).

Here, we have three fluid properties, α, αm and ν having the same units, and thus
defining two characteristic dimensionless ratios, thePrandtl number and the Schmidt
number,

Pr = ν

α
, Sc = ν

αm
. (5.110)

5.11 Local Entropy Balance Equation

The entropyS of the fluid body contained in the region of spaceRt is an extensive
property. If we denote with s the specific entropy, then Reynolds’ transport theorem,
Eq. (5.14), yields

dS

d t
=

∫∫∫

R t

ρ
Ds

D t
dV . (5.111)

We rely on Gibbs’ equation for an expression of ds [6],

ds = 1

T
dϕ − p

ρ2 T
dρ . (5.112)

From Eq. (5.112), one obtains an expression for the substantial derivative of s,

Ds

D t
= 1

T

Dϕ

D t
− p

ρ2 T

Dρ

D t
= 1

T

Dϕ

D t
+ p

ρ T
∇ · u , (5.113)

where Eqs. (5.10) and (5.13) have been employed. Substitution of Eq. (5.113) into
Eq. (5.111) yields
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dS

d t
=

∫∫∫

R t

(
ρ

T

Dϕ

D t
+ p

T
∇ · u

)
dV . (5.114)

The second law of thermodynamics leads to an entropy balance equation where the
infinitesimal change of entropy in a process is the sum of an entropy flux and an
entropy production due to irreversibility [6]. Thus, we can write

dS

d t
= −

∫∫

∂R t

q · n
T

dS + Ṡirr , (5.115)

where Ṡirr is the entropy production rate. As the entropy is an extensive property,
the entropy production rate can be expressed through a volume integral,

Ṡirr =
∫∫∫

R t

σirr dV . (5.116)

Here, σirr represents the entropy production rate per unit volume. Its local value
cannot be negative, due to the second law of thermodynamics,

σirr � 0 , (5.117)

where the equal sign implies reversibility. We also mention that the minus sign in
front of the surface integral on the right-hand side of equation (5.115) is motivated
by the need to express the incoming entropy flux across the boundary, whereas n is
the outward normal to ∂Rt .

By employing Gauss’ theorem and Eq. (5.116), Eqs. (5.114) and (5.115) yield

∫∫∫

R t

(
ρ

T

Dϕ

D t
+ p

T
∇ · u − 1

T 2
q · ∇T + 1

T
∇ · q − σirr

)
dV = 0 . (5.118)

We now invoke the local energy balance equation (5.46) and Eq. (5.52), so that we
obtain

∫∫∫

R t

(
qg
T

+ 1

T
τi j Di j − 1

T 2
q j

∂T

∂x j
− σirr

)
dV = 0 . (5.119)

As usual, Eq. (5.119) can be satisfied with an arbitrary domain of integration Rt if
the integrand is zero, namely if

σirr = qg
T

+ 1

T
τi j Di j − 1

T 2
q j

∂T

∂x j
. (5.120)
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Equation (5.120) is the local entropy balance equation. Due to Eq. (5.117), the local
entropy balance is effectively an inequality,

qg
T

+ 1

T
τi j Di j − 1

T 2
q j

∂T

∂x j
� 0 . (5.121)

If one dealswith aNewtonian fluid and if Fourier’s law (5.57) is employed, the contri-
butions of viscous dissipation, τi j Di j/T , and of heat diffusion, −(q j ∂T/∂x j )/T 2,
are both non-negative. In this situation, the inequality (5.121) becomes an effective
restriction only if one has to model heat sinks (qg < 0). This situation may occur,
for instance, in the case of endothermic chemical reactions.
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Chapter 6
Fluid Flow in Porous Media

6.1 The Basic Features of Flow in Porous Media

There are several excellent books regarding the dynamics of flow and convection in a
fluid-saturated porous medium. We mention Bear [3], Kaviany [6], Nield and Bejan
[17], Straughan [11] as examples of reference texts on these topics. This chapter is
just an outline of the main mathematical models employed in the stability analysis
of convection in porous media, with no ambition of being a complete or exhaustive
presentation of the state of the art.

The oldest, the simplest and the most widely employed model of fluid flow in
porous media is named after Darcy,1 a French scientist with a strong professional
interest in hydraulics. During his life, he was a civil engineer in the city of Dijon in
France. He projected and built a pressurisedwater distribution system inDijon. A few
years before his death, he conducted the experiments that allowed him to formulate
what today is well known as Darcy’s law. His publication The Public Fountains of
the City of Dijon contains an appendix written in 1856 entitled Determination of the
Laws of Water Flow Through Sand where his law is formulated.

Fluid flow in porous media is of paramount importance both for geophysical
applications such as filtration of water, hydrocarbons and gases in the soil and for
engineering. For instance, one may point out the interest of porous media with refer-
ence to hydrology of aquifers, underground repositories used for sequestering nuclear
waste, heat pipes, underground spreading of chemical waste, drainage and irrigation
in agriculture, thermal insulation engineering, enhanced recovery of petroleum reser-
voirs, grain storage, water flow in geothermal reservoirs.

Before formulatingDarcy’s law, let us review themain features of themacroscopic
description of fluid flow in porous media.

A porous medium is a solid material with void inner structures saturated by a
fluid, liquid or gas. One can think to sand, pebbles, bread or to a metallic foam. One

1Henry Philibert Gaspard Darcy (1803–1858).
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Fig. 6.1 Irregular
trajectories of fluid elements
moving inside a random
cloud of solid particles

Fig. 6.2 Representative
elementary volume V

V

can imagine that the void spaces within the solid are entirely filled by the moving
fluid (see Fig. 6.1).

A basic quantity for the description of a porous medium is the ratio between the
volume occupied by the fluid (voids) and the total volume including voids and solid.
Referring to Fig. 6.2, one can consider a representative elementary volume V , often
abbreviated as REV, small on a macroscopic scale even if large on the scale of the
single grain, pebble or microchannel that may be present inside the porous medium.
If Vf is the void part of V , we call porosity, ϕ, the ratio

ϕ = Vf

V
. (6.1)

The porosity is a dimensionless quantity strictly smaller than unity.
The study of convection in porous media is based on the assumption that a fluid-

saturated porous medium can be described as a continuum. This means that, in the
representative volume V of the system, the number of pores is very high. Therefore,
one can define a local fluid velocity field as an average value of the local fluid
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velocity u∗. There are two possible average values of u∗ usually introduced: the
intrinsic velocity, namely

U = 1

V f

∫∫∫

V f

u∗ dV , (6.2)

and the seepage velocity (also known as Darcy’s velocity), namely

u = 1

V

∫∫∫

V

u∗ dV . (6.3)

The intrinsic velocity is defined as an average performed in the void part V f of the
representative volume V . Since u∗ = 0 in the part of V not included in V f , the two
integrals on the right-hand sides of Eqs. (6.2) and (6.3) are equal. Then, one can
establish a very simple relationship between U and u, namely

u = ϕ U . (6.4)

This equation is well known as Dupuit–Forchheimer relationship.
The local value of the seepage velocity u depends on the shape and the size of

the pores as well as on the causes that determine the fluid motion. The relationship
between the local value of u and the forces acting on the fluid can be deduced by an
appropriate local average over the representative elementary volume of the Navier–
Stokesmomentumbalance, Eq. (5.59). However, due to the complexity of the system,
in most cases this relationship is postulated through a constitutive equation validated
experimentally.

Fig. 6.3 Engineered porous
medium described in
Example 6.1

z
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6.2 Local Momentum Balance in a Porous Medium

The simplest constitutive equation expressing the local seepage velocity of the fluid
is Darcy’s law, namely

μ

K
u = −∇ p + b , (6.5)

where K is a property of the system called permeability, μ is the dynamic viscosity
of the fluid, p is the fluid pressure, and b is the external body force per unit volume
applied to the fluid (in the simplest case, the gravitational body force ρ g).

The rationale behind the assumption given by Eq. (6.5) relies on the observation
that a porous medium can be thought of as a network of microscopic ducts where the
fluid flows. In the absence of external body forces, the pressure gradient along a duct
is proportional to the average fluid velocity in the duct itself, if the flow is laminar.
On the other hand, if the flow is highly turbulent (hydraulic regime), the pressure
gradient along a duct is proportional to the square of the average fluid velocity in the
duct itself. Darcy’s law refers to the case of laminar flow in the porous medium, so
that the permeability K is considered as a property of the medium depending on the
number of pores per unit area present in a cross-section transverse to the fluid flow,
on the shape of the pores and on their size.

Example 6.1 Let us consider an engineered porous medium such that the pores
form an ordered array of parallel infinitely long circular ducts each with a diameter
d (Fig. 6.3). Let z be the axis parallel to the ducts, and let the number of ducts per
unit area in a transverse section of the medium be N . Then, by comparison with the
relationship between the average velocity u∗

m and pressure drop Δp in this kind of
ducts, it is easily verified that

K = Nπ d4

128
.

In fact, it is well known that the average velocity u∗
m of fully developed laminar flow

in a circular duct, namely Hagen–Poiseuille flow, is given by

u∗
m = − d2

32μ

dp

dz
.

One may notice that u∗
m = U ; i.e. u∗

m coincides with the intrinsic velocity U .
Moreover, the porosity is given by ϕ = N π d2/4. Then, on account of Dupuit–
Forchheimer relationship, the Darcy velocity u is given by

u = Nπ d2

4
u∗
m = − Nπ d4

128μ

dp

dz
.

As a consequence of Eq. (6.5), one obtains the expression for K .
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A variant version of Darcy’s law is formulated by including an extra inertial term
proportional to ∂u/∂t ,

ρ Ca
∂u
∂t

+ μ

K
u = −∇ p + b , (6.6)

where Ca is called acceleration coefficient. With a further generalisation, the dimen-
sionless scalar coefficientCa is replaced by a tensor coefficient, by taking into account
the non-isotropic character of the inertial effect [11].

If the hypothesis of laminar fully developed flow in each pore cannot be applied,
then proportionality between acting forces and the resulting fluid velocity must be
relaxed in favour of a gradual transition towards a hydraulic regime where act-
ing forces are proportional to the square of the fluid velocity in each pore. An
extended form of Eq. (6.5) has been proposed which accounts for this effect, i.e.
Darcy–Forchheimer’s model,

μ

K

(
1 + F ρ

√
K

μ
|u|

)
u = −∇ p + b . (6.7)

In Eq. (6.7), |u| is the modulus of u, ρ is the fluid mass density, and F is a property
of the porous medium called the form-drag coefficient. It is easily verified that F is
a dimensionless property of the porous medium.

Obviously, Darcy–Forchheimer’s model includes Darcy’s law as a special case,
i.e. in the limit F → 0. On the other hand, whenever F ρ |u|√K/μ � 1, transition
to an hydraulic regime for the fluid flow inside the pores occurs. A widely accepted
criterion to establish when Darcy’s law must be abandoned in favour of Darcy–
Forchheimer’s model is formulated with the permeability-based Reynolds number,

ReK = ρ |u| √K

μ
. (6.8)

Darcy’s law gradually loses its validity when ReK ∼ 1/F or greater. From Eq. (6.8),
a clever way to apply this criterion is taking |u| as the maximum value over the flow
domain.

A common feature of Darcy’s law and of Forchheimer’s extension of this law
is that they refer to a tightly packed solid with a fluid flowing in very small pores.
Indeed, this is a circumstance very far from a free-flowing fluid. One can complete
either Eq. (6.5) or (6.7) with just one velocity boundary condition on each boundary
surface. This boundary condition can be, for instance, impermeability (u · n = 0,
where n is the unit vector normal to the surface). However, one cannot allow also a
no-slip condition on the same surface, as the problem would be over-specified. This
is due to the low differential order of Darcy’s and Darcy–Forchheimer’s models of
local momentum balance in a fluid-saturated porous medium.
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The impossibility to prescribe no-slip conditions at the boundary walls creates a
sharp distinction between the Navier–Stokes fluid model and the models of fluid-
saturated porous media based either on Darcy’s law or on Forchheimer’s extension of
this law. In some cases, a continuous transition from themomentum balance equation
of a clear fluid (Navier–Stokes equation) to Darcy’s law is considered as realistic.
Along this direction, it has been proposed the so-called Brinkman’s model for fluid
flow in a porous medium. This model allows one to prescribe no-slip wall conditions
as for a Navier–Stokes clear fluid. According to Brinkman’s model, Eq. (6.5) must
be replaced by

μ

K
u − μeff ∇2u = −∇ p + b , (6.9)

where the quantity μeff is called effective viscosity: it depends on the fluid viscosity
μ and on the porosity of the medium where the fluid flows. A commonly employed
correlation for the effective viscosity is Einstein’s formula for dilute suspensions,
namely

μeff = μ [1 + 2.5 (1 − ϕ)] . (6.10)

If the porosity is equal to 1, one has a clear fluid and Eq. (6.10) implies that μeff =
μ. If ϕ = 1, Eq. (6.10) reduces to the Navier–Stokes equation without the inertial
contribution (negligible acceleration), provided that the limit of infinite permeability
is also taken (K → ∞). On the other hand, in the limit of a very small permeability
(K → 0), the first term on the left-hand side of Eq. (6.10), μu/K , becomes much
larger than the second term, μeff ∇2u. Therefore, in the limit K → 0, Brinkman’s
model reduces to Darcy’s law, Eq. (6.5). It must be pointed out that the limit K → 0
yields a singular behaviour next to the impermeable boundaries where the no-slip
conditions cannot be applied anymore.

6.3 Local Mass and Energy Balance Equations

By employing a local volume averaging procedure, the mass and energy balance
equations of a fluid-saturated porous medium can be expressed as

ϕ
∂ρ

∂t
+ ∇ · (ρ u) = 0 , (6.11)

and

ρ c

(
σ

∂T

∂t
+ u · ∇T

)
= κeff ∇2T + qg + μΦ . (6.12)

In Eq. (6.12), the thermal conductivities of the solid and of the fluid are considered
as constant, σ is the heat capacity ratio defined as
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σ = ϕ ρ c + (1 − ϕ) ρs cvs

ρ c
, (6.13)

while κeff is the effective thermal conductivity of the fluid-saturated porous medium
defined as

κeff = ϕ κ + (1 − ϕ) κs . (6.14)

In Eqs. (6.13) and (6.14), the properties ρ, c and κ refer to the fluid, while ρs, cvs and
κs refer to the solid matrix.

The term qg in Eq. (6.12) is the power generated per unit volume in the fluid-
saturated porous medium by, for instance, Joule heating or chemical reactions. The
last term on the right-hand side of Eq. (6.12), μΦ, is the power per unit volume
generated by viscous dissipation.

Consistently with Eq. (6.11), if the seepage flow involves mass diffusion in the
fluid, the concentration C of the diffusing species satisfies the partial differential
equation

ϕ
∂C

∂t
+ u · ∇C = αm,eff ∇2C + ϕ ṁ , (6.15)

where αm,eff = ϕ αm is the effectivemass diffusivity of the fluid saturating the porous
medium. Equation (6.15) is the porous medium version of Eq. (5.109), and it is
relative to a binary mixture.

6.3.1 Local Thermal Non-equilibrium

In the local thermal non-equilibrium model (LTNE), the heat transfer across the
fluid-saturated porous medium is described with two distinct temperature fields.
Thus, one defines two different local temperatures, one for the solid and one for
the fluid. There is an inter-phase heat transfer rate, modelled through a constant
coefficient h multiplying the local temperature difference between the phases. Thus,
two energy balance equations have to be written for the two phases [8, 11, 15],

(1 − ϕ) ρs cvs
∂Ts

∂t
= (1 − ϕ) κs ∇2Ts + (1 − ϕ) qgs + h (Tf − Ts) , (6.16)

ϕ ρ c
∂Tf

∂t
+ ρ c u · ∇Tf = ϕ κ ∇2Tf + μΦ + ϕ qgf + h (Ts − Tf) . (6.17)

The inter-phase heat transfer coefficient h in Eqs. (6.16) and (6.17) describes the
thermal energy exchange between the solid and the fluid phase. In Eqs. (6.16) and
(6.17), two independent heat sources are envisaged in the solid and in the fluid, qgs
and qgf .

The lack of local thermal equilibrium between the solid and fluid phases is
exploited by locally and instantaneously distinct values of the temperature. Such
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situation actually arises when very fast transient processes occur. It is definitely
favoured also under stationary conditions when there are markedly different values
of the fluid and solid thermal conductivities, as well as for sufficiently low values
of the inter-phase heat transfer coefficient h. The latter condition tends to favour an
independent behaviour of the two temperature fields.

The two-temperature model based on Eqs. (6.16) and (6.17) actually leads to
the local energy balance with local inter-phase equilibrium, Eq. (6.12), when the
coefficient h tends to infinity. This feature is easily verified if one writes the sum of
Eqs. (6.16) and (6.17), together with Eq. (6.16),

(1 − ϕ) ρs cvs
∂Ts

∂t
+ ϕ ρ c

∂Tf

∂t
+ ρ c u · ∇Tf

= (1 − ϕ) κs ∇2Ts + ϕ κ ∇2Tf + μΦ + (1 − ϕ) qgs + ϕ qgf , (6.18)

(1 − ϕ) ρs cvs
∂Ts

∂t
= (1 − ϕ) κs ∇2Ts + (1 − ϕ) qgs + h (Tf − Ts) . (6.19)

If one takes the limit h → ∞ in Eq. (6.19), one just retains the leading contribution,
namely the last term on the right-hand side. Thus, Eq. (6.19) yields in this limit the
local thermal equilibrium condition, Tf = Ts. By substituting this limiting condition
inEq. (6.18), one is led toEq. (6.12), completed by the definitions given byEqs. (6.13)
and (6.14). The power generated per unit volume is to be intended as

qg = (1 − ϕ) qgs + ϕ qgf . (6.20)

The use of the two-temperature model for the local energy balance poses a problem
regarding the correct formulation of the boundary conditions to be prescribed for
Tf and Ts. The condition of a prescribed boundary temperature has in fact a natural
formulation where a local thermal equilibrium is assumed at the boundary,

Tf = Ts = Tw(x, t) , (6.21)

where Tw(x, t) is a known function expressing the wall temperature distribution
which, in general, depends both on the position x and on time t .

Things are definitely more complicated when a condition of prescribed wall heat
flux is to be allowed at the boundary. In this case, the solid and fluid phases are
potentially independent absorbers of the incoming heat flux at the boundary. There
are several studies of this problem, and a survey can be found, for instance, in Alazmi
and Vafai [2]. The simplest model to be adopted when a wall heat flux distribution
qw(x, t) is prescribed can be formulated as

Tf = Ts , − (1 − ϕ) κs
∂Ts

∂n
− ϕ κ

∂Tf

∂n
= qw(x, t) , (6.22)
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where ∂/∂n denotes the normal derivative to the boundary. The model expressed by
Eq. (6.22) makes sense when the bounding wall has a very high thermal conductivity
so that a local equilibration of the otherwise different temperatures of the two phases,
Tf and Ts, is a sensible assumption.

6.3.2 Viscous Dissipation

We pointed out that, either in Eqs. (6.12) or (6.17), the term μΦ yields the power
per unit volume generated by viscous dissipation. The expression of μΦ depends
on the model for momentum balance employed. As pointed out in Nield [10], the
term μΦ can be evaluated according to the general rule,

μΦ = fd · u , (6.23)

where
fd = −∇ p + b , (6.24)

is the drag force. The drag force has an expression which depends on the model
adopted for the momentum transfer,

Darcy’s law −→ fd = μ

K
u ; (6.25)

Darcy–Forchheimer’s model −→ fd = μ

K

(
1 + F ρ

√
K

μ
|u|

)
u ; (6.26)

Brinkman’s model −→ fd = μ

K
u − μeff ∇2u . (6.27)

Nield’s rule expressed byEq. (6.23) is still the object of some controversies especially
with reference to its application in the case of Brinkman’s model. Let us refer for
simplicity to an incompressible flow,∇ · u = 0.Onewould expect that, in the limiting
case of an infinite permeability K → ∞, the expression ofμΦ implied byEqs. (6.23)
and (6.27) is consistent with the expression of the dissipation function for a Navier–
Stokes fluid, Eq. (5.56), namely

Φ = 2Di j Di j , Di j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (6.28)

On the contrary, in the limit K → ∞ and ϕ → 1, Eqs. (6.23) and (6.27) yield

Φ = −u · ∇2u , (6.29)
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since μeff = μ in the limiting case of a fluid clear of solid material, as implied
by Eq. (6.10). The difference between the expressions of Φ given in Eqs. (6.28)
and (6.29) is apparent as Eq. (6.28) yields an expression containing only first-order
derivatives of the velocity components, while the right-hand side of Eq. (6.29) con-
tains second-order derivatives of the velocity components. Moreover, while Φ given
byEq. (6.28) can only be positive or zero, there could be flows such that the right-hand
side of Eq. (6.29) is negative.

Al-Hadhrami et al. [1] proposed a different expression of Φ in the case of
Brinkman’s model, namely

Φ = 1

K
u · u + 2

μeff

μ
Di j Di j . (6.30)

The advantage of the expression of Φ as given by Eq. (6.30) is that Φ cannot be
negative, and the two limiting cases of Darcy’s law (K → 0) and Navier–Stokes
fluid (K → ∞, ϕ → 1) are correctly recovered. However, the scientific debate on
this subject is still open. An interesting contribution on this topic comes from the
paper by Breugem and Rees [4].

6.4 The Buoyancy Force

The Oberbeck–Boussinesq approximation can be invoked for the seepage flow in
porous media, along the same lines defined in Sect. 5.9. Again, the basic idea is
assuming a variable density only in the gravitational body force b = ρ g. Then, a
Taylor series expansion of the fluid density as a function of T , around the reference
temperature T0, truncated to first order is written, as in Eq. (5.66), and this leads to the
definition of a piezometric head, as in Eq. (5.67), and a buoyancy force proportional
to T − T0.

If one invokes the validity of Darcy’s law, the set of local balance equations
according to the Oberbeck–Boussinesq approximation is given by

∂u j

∂x j
= 0 , (6.31)

μ

K
ui = −ρ0 β (T − T0) gi − ∂ P

∂xi
, (6.32)

ρ0 c

(
σ

∂T

∂t
+ u j

∂T

∂x j

)
= κeff ∇2T + qg + μ

K
u j u j . (6.33)

In the domain of validity of Darcy–Forchheimer’s model, Eqs. (6.31)–(6.33) are to
be replaced by
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∂u j

∂x j
= 0 , (6.34)

μ

K

(
1 + F ρ

√
K

μ
|u|

)
ui = −ρ0 β (T − T0) gi − ∂ P

∂xi
, (6.35)

ρ0 c

(
σ

∂T

∂t
+ u j

∂T

∂x j

)
= κeff ∇2T + qg

+ μ

K

(
1 + F ρ

√
K

μ
|u|

)
u j u j . (6.36)

Another formulation of the Oberbeck–Boussinesq approximation based on
Brinkman’s model can be written in a similar manner. In this case, the only conjec-
tural element is the form of the viscous dissipation contribution in the local energy
balance equation, as discussed in Sect. 6.3.2.

6.5 Non-Newtonian Flow in Porous Media

The seepage flow of non-Newtonian fluids in porous media has been the object of a
widespread interest over the past decades. Many situations in the real world involve
departure from theNewtonianfluid behaviour. Thismayhappenwith theflowof poly-
meric fluids, and of heavy oils or liquid hydrocarbons. The non-Newtonian character
of the fluid yields modified formulations of the local momentum balance equation
with respect to Darcy’s law. Different formulations occur for different classes of
non-Newtonian fluids [13, 16].

The simplest case is that of power-law fluids, where the relationship between the
viscous stress tensor and the strain tensor is nonlinear. In the simple case where the
velocity field is solenoidal, Eq. (5.48) is replaced by

τi j = 2 μ̂ (Dk� Dk�)
(n−1)/2 Di j , (6.37)

where μ̂ is the consistency factor, while n is the power-law index. For the seepage
flowof a power-lawfluid in a porousmedium,Darcy’s law is to be extended according
to a formulation originally proposed by Christopher and Middleman [5],

μ̂∗

K
|u|n−1u = −∇ p + b , (6.38)

where μ̂∗ is the effective consistency factor. Obviously, both Eqs. (6.37) and (6.38)
yield their Newtonian counterparts when n = 1. In particular, Eq. (6.38) coincides
with Eq. (6.5) when n = 1, provided that the effective consistency factor is identified
with the dynamic viscosity of the Newtonian fluid.
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A more complicated type of non-Newtonian fluids is that described by the Bing-
ham model. Fluids within this class display a behaviour which is intermediate
between a solid and a Newtonian fluid. In other words, a tangential stress imposed
on the boundary of the fluid determines a corresponding nonzero strain only if the
tangential stress exceeds a threshold value. When this threshold is exceeded, the
excess tangential stress applied to the boundary is proportional to the strain as for
Newtonian fluids. Several biological fluids behave in this manner. A thorough anal-
ysis of Bingham flow in porous media has been presented by Rees [14] and by Nash
and Rees [9]. In particular, the simplest mathematical formulation of the extended
Darcy’s law for Bingham fluids was expressed by Pascal [12],

⎧⎪⎨
⎪⎩
u = 0 , |fd| < ξ ,

μ

K

(
1 + K ξ

μ |u|
)
u = fd , |fd| > ξ .

(6.39)

Here, fd is the drag force, defined by Eq. (6.24), namely fd = −∇ p + b. The positive
parameter ξ is the yield pressure gradient distinguishing the stagnant regime, u =
0, from flow, u 	= 0. Darcy’s law for a Newtonian fluid is easily recovered from
Eq. (6.39) in the limit ξ → 0.

Several studies on convection in porous media involve viscoelastic fluids. These
fluids display a nature that includes both the viscous damping, typical of Newto-
nian fluids, and the elastic response typical of solids. When the flow of these non-
Newtonian fluids happens in porous media, the extension of Darcy’s law is based on
the so-called Oldroyd-B model, as mentioned by Khuzhayorov et al. [7],

μ

K

(
1 + τ2

∂

∂t

)
u =

(
1 + τ1

∂

∂t

)
fd . (6.40)

Again, the drag force fd is given by Eq. (6.24), while τ1 and τ2 are the relaxation
time and the retardation time, respectively. The formulation based on Eq. (6.40) is
consistent only if τ1 ≥ τ2. The special case τ1 = τ2 yields the Newtonian behaviour,
while the limit τ2 → 0 corresponds to the so-called Maxwell model for linear vis-
coelasticity. Equation (6.40) shows that, in the case of stationary fluid flow in porous
media, there is no difference between the behaviour of a Newtonian fluid and that of
a linear viscoelastic fluid, as the time derivatives in Eq. (6.40) are ineffective.
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Chapter 7
Rayleigh–Bénard Convection

7.1 Heating a Fluid Layer from Below

The investigation of the fluid dynamics thermally induced by a vertical temperature
gradient imposed on a fluid layer initiatedwith the experiments carried out by Bénard
[1] at the beginning of the twentieth century. Such investigation was the subject of
Henri Claude Bénard’s doctoral thesis defended at Sorbonne University, in Paris.
These experiments documented the formation of flow cells in a shallow fluid layer
where the temperature on the lower wall is higher than on the upper free surface,
provided that the prescribed temperature difference is higher than a threshold value.
Bénard’s experiments were carried out with the prescribed higher temperature within
a range between 50 ◦C and 100 ◦C, by employing liquids such as wax and whale oil
(spermaceti), which melt in this temperature range and do not display significant
surface evaporation. For the readers interested in the scientific biography of Bénard,
we recommend the review written by Wesfreid and published in Chapter 1 of the
book edited by Mutabazi et al. [8].

Pearson [11] gave theoretical support to the idea that the thermal buoyancy force
was not responsible of the phenomenon observed in Bénard’s experiments. In Pear-
son’s paper, his conclusion is: “we see that the buoyancy mechanism has no chance
of causing convection cells, while the surface tension mechanism is almost certain to
do so, and that observations support this”. On the other hand, the theoretical scheme
adopted for many years to explain Bénard’s observations is that the thermal expan-
sion of fluid elements close to the lower hot wall determines a vertical buoyancy
force compensated by the viscous resistance. When these competing forces reach an
equilibrium and, eventually, the buoyancy force prevails over the viscous resistance,
the convection cellular flow is established [10]. The dimensionless parameter com-
paring the extent of the buoyancy force to that of the viscous resistance is nowadays
well known as the Rayleigh number,

Ra = g β (T1 − T2) L3

ν α
. (7.1)

© Springer Nature Switzerland AG 2019
A. Barletta, Routes to Absolute Instability in Porous Media,
https://doi.org/10.1007/978-3-030-06194-4_7

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06194-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-06194-4_7


136 7 Rayleigh–Bénard Convection

L

T1 > T2

T2

g

Fig. 7.1 A train of counter-rotating cells in a fluid layer bounded by two isothermal planes

As shown in Fig. 7.1, T1 > T2 is the temperature of the lower heated wall, while T2
is the temperature of the upper free boundary, g is the modulus of the gravitational
acceleration g, and L is the thickness of the fluid layer. Actually, it is the Rayleigh
number that displays a threshold, called the critical value, Rac, which defines the
condition for the onset of the buoyancy-induced cells, namely Ra > Rac. Despite
the correctness of Pearson’s conclusions [11] about Bénard’s experiments, there are
several other experimental circumstances where the onset of the flow cells is in
fact caused by the thermal buoyancy force and, hence, by the condition Ra > Rac.
This happens, for instance, in the classical experiment reported by Schmidt and
Milverton [15], as well as in many natural situations quite common in oceanography,
meteorology, or geophysics [10]. Figure7.1 shows that the flow pattern is a train of
counter-rotating cells.

In the following, we will not investigate the role played by the surface tension,
highlighted by Pearson [11], and focus our attention on the thermal buoyancy force as
the cause of cells. This approach stems from the pioneering paper by Lord Rayleigh
[13], and it has been developed by several authors, over an entire century, in a really
huge literature. Extensive surveys on this topic can be found in many books. Just a
few examples are Chandrasekhar [2], Koschmieder [6], Getling [4], Drazin and Reid
[3].

7.2 The Rayleigh–Bénard Problem

The onset of buoyancy-induced cells is a classical problem of free convection in
a horizontal fluid layer heated from below, viz. the well-known Rayleigh–Bénard
problem. More precisely, in its simplified formulation, one assumes an infinitely
wide horizontal fluid layer bounded by two isothermal planes. The lower boundary
plane is kept isothermal at temperature T1, while the upper boundary plane is kept
isothermal at temperature T2 < T1. As is well known, buoyancy-induced cells appear
when the Rayleigh number exceeds the critical value Rac. The critical value depends
on the boundary conditions assumed at the isothermal boundaries. There are three
main cases, classically devised in the literature:
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(a) (b)

Fig. 7.2 Simple planforms of the convection cells: a straight rolls; b toroidal rolls

• Both boundaries are rigid and impermeable walls, so that impermeability and no-
slip boundary conditions are prescribed on the velocity field. In this case, Rac ≈
1707.76.

• The lower boundary is a rigid and impermeable wall, while the upper boundary is a
stress-free surface.With stress-free surface, we mean that the boundary conditions
for the velocity are impermeability and vanishing tangential components of the
viscous stress tensor, τi j . In this case, Rac ≈ 1100.65.

• Both boundaries are stress-free surfaces. In this case, Rac = 27π4/4 ≈ 657.511.

The third case is the only one admitting a fully analytical solution, and it was orig-
inally regarded in the paper by Lord Rayleigh [13]. We mention that the stress-free
boundary conditions embody a simplified physical model of the interface between a
viscous liquid and a low-viscosity gas.

We have established that the boundary conditions prescribed at the horizontal
boundary planes of the fluid layer influence the critical value of the Rayleigh number
for the onset of the instability. The vertical sidewalls bounding laterally the shal-
low layer play an important role in shaping the planform of the buoyancy-induced
cells. The planform is in fact the shape of the cells as detected on a plane cutting
horizontally the fluid layer. The planform of the buoyancy-induced cells depends
on several features of the system including the shape of the lateral confining walls,
even when the fluid layer is extremely shallow. Two sample cases are illustrated in
Fig. 7.2, namely that of the straight rolls, and that of the toroidal rolls. The latter
planform is favoured when the sidewall is a vertical cylindrical surface with circular
cross section.

The onset of buoyancy-induced cells in a fluid initially at rest may be viewed as a
manifestation of the convective instability of the rest state, where the fluid velocity u
is zero everywhere. In this sense, in the study of the Rayleigh–Bénard problem, we
employ a linear stability analysis, so that the critical condition Ra = Rac represents
the threshold for the rest state to become convectively unstable.
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At this stage, the reader may have noticed the twofold meaning of the terms “con-
vection”, “convective” and “convectively” in the present discussion. These terms
naturally address a special type of heat transfer occurring in the fluid, i.e. the con-
vection, and the specific type of instability arising in the fluid, i.e. the convective
instability. As it should be clear from our definition given in Chap.4, the convective
instability may well emerge in flow systems where no convection heat transfer is
present or may take place. There is no reasonable way to overcome this termino-
logical conflict without introducing artificial terms different from those commonly
employed in the literature. The author is confident that the context where the term is
used makes its meaning unambiguous in every case.

If we consider a fluid layer, initially at rest, subject to an externally imposed
temperature difference (heating from below), the rest state becomes unstable giving
rise to buoyancy-induced cells when the Rayleigh number becomes sufficiently high.

In order to regard the Rayleigh–Bénard problem as a stability analysis, we need
to develop the governing equations for the perturbations superposed onto a basic
stationary state of the fluid.

7.3 Stability and Instability of Fluid Systems

As extensively discussed in Chap.4, the basic idea behind Lyapunov’s concept of
instability is that we must consider an initial state of a system and a trajectory
originating from this initial state. Then, we slightly perturb the initial state and
examine the perturbed trajectory. If the small perturbation results, for a sufficiently
large time, in a definitely different trajectory, then we have an unstable behaviour.
Otherwise, we have stability. Instability is a consequence of an extremely strong
dependence of the time evolution on the initial conditions.

If we apply Lyapunov’s idea to the governing equations of a fluid, we must think
of a trajectory as the time evolution of a given flow and we must think of an equi-
librium state as a stationary flow. On checking the stability of a stationary flow, we
must slightly perturb the velocity, pressure and temperature fields and see if the per-
turbation drives the system far away from its original stationary flow. If this happens,
then we have an unstable flow. Otherwise, we have a stable flow.

A fluid flow can be unstable even in the absence of a thermal coupling, i.e. if the
flow is isothermal or if the buoyancy force is negligible. In this case, the origin of
the instability is in the governing mass and momentum balance equations and, in
particular, in the nonlinear inertial term,

u j
∂ui
∂x j

,

of the local momentum balance equation (5.84),
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∂ui
∂t

+ u j
∂ui
∂x j

= − 1

ρ0

∂P

∂xi
+ ν ∇2ui .

In the absence of this nonlinear term, every stationary flowwithout a thermal coupling
would be stable. The instability of an isothermal, or forced convection, flow is called
hydrodynamic instability. Since, in this case, the temperature field does not appear
either in the local mass balance equation or in the local momentum balance equation,
the analysis of the hydrodynamic instability does not involve the solution of the local
energy balance equation.

Another kind of instability is that driven by the thermal coupling of the velocity
field through the buoyancy force. This kind of instability is called thermal instability.
The thermal instability depends not only on the nonlinearity of the local momentum
balance, but it is also driven by the nonlinear convective term,

u j
∂T

∂x j
,

as well as by the nonlinear viscous dissipation term, 2 ν Di j Di j/c, of the local energy
balance equation (5.85),

∂T

∂t
+ u j

∂T

∂x j
= α ∇2T + qg

ρ0 c
+ 2 ν

c
Di j Di j .

In order to illustrate the method for testing the stability or instability of a basic fluid
flow, we refer to a Newtonian fluid and we consider the governing local balance
equations (5.83)–(5.85), within the Oberbeck–Boussinesq approximation,

∂u j

∂x j
= 0 , (7.2)

∂ui
∂t

+ u j
∂ui
∂x j

= −β (T − T0) gi − 1

ρ0

∂P

∂xi
+ ν ∇2ui , (7.3)

∂T

∂t
+ u j

∂T

∂x j
= α ∇2T + qg

ρ0 c
+ 2 ν

c
Di j Di j , (7.4)

where the thermal power generated per unit volume,qg(x, t), is considered as a known
function, independent of the fields (u, P, T ). If we want to test the stability of a basic
solution, (ub, Pb, Tb), of Eqs. (7.2)–(7.4), we proceed as follows.Weperturb the basic
solution, i.e., we express the fields (u, P, T ) as

ui = ubi + εUi , P = Pb + ε Π , T = Tb + ε Θ , (7.5)

where ε is the perturbation parameter. The terms εUi , ε Π and ε Θ express the pertur-
bation of the basic solution.We remember that the basic solution (ub, Pb, Tb) satisfies
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Eqs. (7.2)–(7.4), and, on substituting Eq. (7.5) into Eqs. (7.2)–(7.4), we obtain

ε
∂Uj

∂x j
= 0 , (7.6)

ε
∂Ui

∂t
+ εUj

∂ubi
∂x j

+ ε ub j
∂Ui

∂x j
+ ε2Uj

∂Ui

∂x j

= −ε β Θ gi − ε

ρ0

∂Π

∂xi
+ ε ν ∇2Ui , (7.7)

ε
∂Θ

∂t
+ ε ub j

∂Θ

∂x j
+ εUj

∂Tb
∂x j

+ ε2Uj
∂Θ

∂x j

= ε α ∇2Θ + 4 ε ν

c
Dbi j Di j + 2 ε2ν

c
Di j Di j , (7.8)

where

Dbi j = 1

2

(
∂ubi
∂x j

+ ∂ub j
∂xi

)
, Di j = 1

2

(
∂Ui

∂x j
+ ∂Uj

∂xi

)
. (7.9)

We mention that the non-homogeneous term, qg, in Eqs. (7.2)–(7.4) does not appear
any more in the perturbation Eqs. (7.6)–(7.8), since (ubi , Pb, Tb) is a solution of
Eqs. (7.2)–(7.4).

Equations (7.6)–(7.8) express the governing equations for the perturbation fields
(Ui ,Π,Θ). We note that these equations contain a coupling to the basic solution
(ubi , Pb, Tb) only as a consequence of the nonlinear terms

u j
∂ui
∂x j

, u j
∂T

∂x j
,

2 ν

c
Di j Di j ,

that appear in Eqs. (7.3) and (7.4). Without these nonlinear terms, the perturbations
would be uncoupled to the basic solution, so that the perturbation of the basic solution
would be independent of the basic solution. This circumstance would result in a
stability of the basic solution whatever it may be. Thus, we have established a link
between the instability and the nonlinearity of the governing equations.

At this point, we have two alternatives: we may assume that the perturbations
are small, or we may investigate perturbations of arbitrarily large amplitude. In the
first case, we perform a linear stability analysis. In the second case, we investigate
the nonlinear stability of the flow. The first option is the simplest one, and we will
restrict all the forthcoming discussion to this case. Assuming small perturbations
means assuming ε � 1, so that we can neglect the terms O

(
ε2
)
with respect to the

terms O(ε) in Eqs. (7.6)–(7.8). Therefore, we can simplify ε from Eqs. (7.6)–(7.8)
and rewrite them as
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∂Uj

∂x j
= 0 , (7.10)

∂Ui

∂t
+Uj

∂ubi
∂x j

+ ub j
∂Ui

∂x j
= −β Θ gi − 1

ρ0

∂Π

∂xi
+ ν ∇2Ui , (7.11)

∂Θ

∂t
+ ub j

∂Θ

∂x j
+Uj

∂Tb
∂x j

= α ∇2Θ + 4 ν

c
Dbi j Di j . (7.12)

One may solve Eqs. (7.10)–(7.12) and check what the time evolution of the pertur-
bation is like: if it leads to an increasingly large departure from the basic solution,
or if it leads to an asymptotic recovery of the basic solution. In the first case, we
have a response of instability for the basic flow, while in the second case, we have
an outcome of stability.

7.4 Formulation of the Rayleigh–Bénard Problem

In Sect. 7.2, we have seen that a crucial point in modelling the Rayleigh–Bénard
system is the definition of the velocity boundary conditions. As illustrated in Fig. 7.3,
the z-axis is taken as vertical, while the x and y axes are horizontal. For the sake of
mathematical simplicity, we will initially model the boundaries z = 0 and z = L as
impermeable and stress-free. In doing this, we follow the approach chosen by Lord
Rayleigh [13] in his pioneering paper. The determination of the onset conditions for
the development of convection cells can be approached by a linear stability analysis,
based on Eqs. (7.10)–(7.12).

7.4.1 Governing Equations

The critical condition for the onset of convection cells in the fluid layer is obtained
starting from the basic state where the fluid is at rest,

z

0

L

T1 > T2

T2

g z

y

x

Fig. 7.3 Rayleigh–Bénard system: choice of the coordinate axes
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ubi = 0 , Tb = T1 − (T1 − T2)
z

L
. (7.13)

In fact, onemay easily verify that Eq. (7.13) is a solution of the localmass,momentum
and energy balance equations (7.2)–(7.4) under the assumption that no volumetric
heat source is present in the fluid, namely qg = 0. We also mention that Eq. (7.13)
is compatible with the conditions of stress-free and impermeable boundaries, as
the velocity is zero everywhere. Also the thermal boundary conditions of isother-
mal surfaces at z = 0 and z = L , with temperatures T1 and T2, are satisfied. Thus,
Eqs. (7.10)–(7.12) yield

∂Uj

∂x j
= 0 ,

∂Ui

∂t
= −β Θ gi − 1

ρ0

∂Π

∂xi
+ ν ∇2Ui ,

∂Θ

∂t
− W

T1 − T2
L

= α ∇2Θ , (7.14)

where we denoted as (U, V,W ) the (x, y, z) components of the velocity perturba-
tion Ui . The boundary conditions for the velocity and temperature fields model the
constraints of uniform temperature, impermeability and vanishing tangential viscous
stresses at z = 0, L . Here, we define the viscous stress tensor associated with the
velocity perturbation,

Ti j = μ

(
∂Ui

∂x j
+ ∂Uj

∂xi

)
. (7.15)

Thus, the boundary conditions can be written either as

z = 0, L : W = 0 = Θ , Tzx = 0 = Tzy , (7.16)

or, equivalently, as

z = 0, L : W = 0 = Θ ,
∂W

∂x
+ ∂U

∂z
= 0 = ∂W

∂y
+ ∂V

∂z
. (7.17)

Since W = 0 at z = 0, L , we can rewrite Eq. (7.17) as

z = 0, L : W = 0 = Θ ,
∂U

∂z
= 0 = ∂V

∂z
. (7.18)

The perturbation equations can be further simplified by allowing an appropriate scal-
ing of the quantities, so that the study is carried out with a dimensionless formulation,

Ui

α/L
→ Ui ,

Θ

T1 − T2
→ Θ ,

Π

ρ0να/L2
→ Π ,
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xi
L

→ xi ,
t

L2/α
→ t . (7.19)

Thus, Eqs. (7.14) and (7.18) can be rewritten in a dimensionless form as

∂Uj

∂x j
= 0 , (7.20)

1

Pr

∂Ui

∂t
= Ra Θ δi3 − ∂Π

∂xi
+ ∇2Ui , (7.21)

∂Θ

∂t
− W = ∇2Θ , (7.22)

z = 0, 1 : W = 0 = Θ ,
∂U

∂z
= 0 = ∂V

∂z
, (7.23)

where δi3 is the (i, 3) component of Kronecker’s delta, namely the i th component
of the unit vector ez = (0, 0, 1), while the dimensionless parameters Pr and Ra are
the Prandtl number and the Rayleigh number defined as

Pr = ν

α
, Ra = gβ(T1 − T2)L3

να
. (7.24)

The term− ∂Π/∂xi can be encompassed by taking the curl of themomentumbalance
equation so that one obtains:

(
1

Pr

∂

∂t
− ∇2

)(
∂W

∂x
− ∂U

∂z

)
= Ra

∂Θ

∂x
, (7.25)

(
1

Pr

∂

∂t
− ∇2

)(
∂W

∂y
− ∂V

∂z

)
= Ra

∂Θ

∂y
. (7.26)

We derive Eq. (7.25) with respect to x , and Eq. (7.26) with respect to y. Then, we
sum the two resulting equations, so that we obtain

(
1

Pr

∂

∂t
− ∇2

)[
∇2W − ∂

∂z

(
∂Uj

∂x j

)]
= Ra ∇2

2Θ , (7.27)

where ∇2
2 is the two-dimensional Laplace operator, defined as

∇2
2Θ = ∂2Θ

∂x2
+ ∂2Θ

∂y2
. (7.28)
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By taking into account the localmass balance equation, ∂Uj/∂x j = 0 ,we can extract
a set of two partial differential equations in the unknowns (W,Θ), which describe
the linear stability problem,

(
1

Pr

∂

∂t
− ∇2

)
∇2W = Ra ∇2

2Θ ,

∂Θ

∂t
− W = ∇2Θ ,

z = 0, 1 : W = 0 = Θ ,
∂2W

∂z2
= 0 , (7.29)

The boundary conditions ∂2W/∂z2 = 0, at z = 0, 1, are retrieved by deriving the
stress-free conditions at z = 0, 1, given by Eq. (7.23),

∂U

∂z
= 0 ,

∂V

∂z
= 0 ,

with respect to x and y, respectively, by summing them so that one obtains

∂

∂z

(
∂Uj

∂x j

)
− ∂2W

∂z2
= 0 ,

and finally by employing the local mass balance equation, ∂Uj/∂x j = 0 .

7.4.2 Normal Mode Analysis

Equations (7.29) can be solved by employing the Fourier transform method. We will
follow a procedure similar to that described, for instance, in Sect. 4.2. The significant
difference is that we now employ two-dimensional Fourier transforms, defined by
Eqs. (2.91) and (2.92)

W̃ (kx , ky, z, t) = 1

2π

∞∫
−∞

∞∫
−∞

W (x, y, z, t) e−i(kx x+ky y) d x d y ,

W (x, y, z, t) = 1

2π

∞∫
−∞

∞∫
−∞

W̃ (kx , ky, z, t) e
i(kx x+ky y) d kx d ky ,
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Θ̃(kx , ky, z, t) = 1

2π

∞∫
−∞

∞∫
−∞

Θ(x, y, z, t) e−i(kx x+ky y) d x d y ,

Θ(x, y, z, t) = 1

2π

∞∫
−∞

∞∫
−∞

Θ̃(kx , ky, z, t) e
i(kx x+ky y) d kx d ky . (7.30)

In other words, we are seeking solutions expressed through a superposition of Fourier
modes, or normal modes, propagating in the (x, y) plane along the direction of the
wavevector (kx , ky).Weare dealingwith two-dimensional and, hence, doubleFourier
transforms. Thismeans that the property of partial derivatives expressed byEq. (2.18)
applies to the derivatives both with respect to x and those with respect to y. This
means that the Fourier transforms of ∇2W , ∇2Θ and ∇2

2Θ are given, respectively,
by (

∂2

∂z2
− k2
)
W̃ ,

(
∂2

∂z2
− k2
)

Θ̃ , −k2 Θ̃ ,

where k = (k2x + k2y)
1/2 is the wave number.

The use of the Fourier transform method, for the solution of Eq. (7.29), implies
that W̃ and Θ̃ are the new unknowns to be determined. This task can be accomplished
by using the separation of variables, described in AppendixA, namely by separating
the dependence on z and on t . Thus, we can express W̃ and Θ̃ as linear combinations
of separated solutions written as

W̃ = f (z) eλ t , Θ̃ = h(z) eλ t , (7.31)

where λ = η − iω ∈ C is a complex parameter, ω ∈ R is the angular frequency, and
η ∈ R is the growth rate. As usual, for a given k, η > 0 means convective instability,
η < 0 means stability, while η = 0 indicates the threshold condition of neutral, or
marginal, stability.

By evaluating the two-dimensional Fourier transform of Eq. (7.29), and by
employing Eq. (7.31), the stability problem is formulated as

(
1

Pr
λ − d2

d z2
+ k2
)(

d2

d z2
− k2
)

f + Ra k2 h = 0 , (7.32)

(
λ − d2

d z2
+ k2
)
h − f = 0 , (7.33)

z = 0, 1 : f = 0 ,
d2 f

d z2
= 0 , h = 0 . (7.34)
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We can combine the two Eqs. (7.32) and (7.33) into a single (sixth-order) ordinary
differential equation in the sole unknown function h,

(
1

Pr
λ − d2

d z2
+ k2
)(

d2

d z2
− k2
)(

λ − d2

d z2
+ k2
)
h + Ra k2 h = 0 , (7.35)

with the boundary conditions

z = 0, 1 : h = 0 ,
d2h

d z2
= 0 ,

d4h

d z4
= 0 . (7.36)

We mention that the boundary conditions d2h/dz2 = 0 are obtained from Eq. (7.33)
by taking the limits z → 0 and z → 1 and by usingEq. (7.34). Likewise, the boundary
conditions d4h/dz4 = 0 are obtained from Eq. (7.33) derived twice with respect to
z.

A solution of the differential problem, expressed by Eqs. (7.35) and (7.36), is
easily found, namely

h(z) = sin(n π z) , n = 1, 2, 3, . . . , (7.37)

provided that

(
1

Pr
λ + n2 π2 + k2

) (
n2 π2 + k2

) (
λ + n2 π2 + k2

)− Ra k2 = 0 , (7.38)

The additional algebraic equation (7.38) is the so-called dispersion relation of sta-
bility. Since λ = η − iω, the imaginary part of the dispersion relation vanishes if
and only if

ω
(
n2π2 + k2

) [
2 η + (Pr + 1)

(
n2π2 + k2

)] = 0 . (7.39)

For convectively unstable or neutrally stable modes, i.e. for η ≥ 0, this equation
can be satisfied only if ω = 0, meaning that only zero-frequency normal modes are
allowed. This result is well known in the literature as the principle of exchange of
stabilities [12]. As it has been pointed out by Pellew and Southwell [12], the physical
meaning of this principle is that “while oscillatory motions are not excluded by this
investigation, they are permitted only in circumstances making for stability, i.e. in
which they decay”. In fact, also stable modes cannot be oscillatory as it will be shown
in Sect. 7.5.1.

7.4.3 Neutral Stability

Since ω = 0 when η ≥ 0, for convectively unstable or neutrally stable states, the real
part of the dispersion relation (7.38) vanishes if
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Ra =
(
n2π2 + k2

) (
η + n2π2 + k2

) (
Pr−1η + n2π2 + k2

)
k2

. (7.40)

Convective instability means that there exists a positive integer, n = 1, 2, 3, . . .),
such that the growth rate is positive, namely η > 0. On gradually increasing Ra
starting from zero, one encounters instability first with n = 1, so that one has

Ra =
(
π2 + k2

)3
k2

, (neutral stability),

Ra >

(
π2 + k2

)3
k2

, (convective instability),

and thus, necessarily,

Ra <

(
π2 + k2

)3
k2

,

implies stability. Figure7.4 displays the neutral stability curve, namely the plot of
function

Ra(k) =
(
π2 + k2

)3
k2

. (7.41)

Its minimum defines the onset of convection cells,

kc = π√
2

≈ 2.22144 , Rac = 27π4

4
≈ 657.511 . (7.42)

Fig. 7.4 Neutral stability
curve for the
Rayleigh–Bénard problem
with stress-free and
impermeable boundary
conditions at z = 0, 1
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7.5 Rayleigh–Bénard Problem with Other Types
of Boundary Conditions

In cases where the boundary surfaces z = 0, 1 are not both stress-free, the convective
stability analysis partly changes. For instance, when both surfaces z = 0, 1 are rigid
impermeable walls, no-slip boundary conditions for the velocity have to be imposed
at z = 0, 1. Thus, Eq. (7.29) changes to the form

(
1

Pr

∂

∂t
− ∇2

)
∇2W = Ra ∇2

2Θ ,

∂Θ

∂t
− W = ∇2Θ ,

z = 0, 1 : W = 0 = Θ ,
∂W

∂z
= 0 . (7.43)

In the intermediate case, where z = 0 is subject to no-slip conditions and z = 1 is
stress-free, we have (

1

Pr

∂

∂t
− ∇2

)
∇2W = Ra ∇2

2Θ ,

∂Θ

∂t
− W = ∇2Θ ,

z = 0 : W = 0 = Θ ,
∂W

∂z
= 0 ,

z = 1 : W = 0 = Θ ,
∂2W

∂z2
= 0 . (7.44)

In other terms, the partial differential equations for the perturbations are unaffected
by changed boundary conditions, the only change being the boundary conditions
for W and Θ . The reason is simple. The governing partial differential equations
for the perturbations just depend on the basic solution that satisfies both stress-free
boundary conditions and no-slip boundary conditions at z = 0, 1. In all these cases,
the basic solution is given by Eq. (7.13). Equations (7.43) and (7.44) show that, when
a boundary surface turns from stress-free to no-slip, one of the boundary conditions
turns from ∂2W/∂z2 = 0 to ∂W/∂z = 0. The reason is that the condition of vanishing
second derivative ∂2W/∂z2 is a consequence of the vanishing tangential components
of the viscous stress tensor. If a boundary, say z = 1, has impermeability and no-slip
conditions, then one may write

z = 1 : U = 0 , V = 0 , W = 0 .
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By employing such conditions, as well as the local mass balance equation (7.20) in
the limit z → 1, one readily reaches the conclusion

z = 1 : W = 0 ,
∂W

∂z
= 0 .

The method described in Sect. 7.4.2 can still be applied, together with the separation
of variables expressed by Eq. (7.31). Hence, if no-slip boundary conditions for the
velocity are imposed at both z = 0 and z = 1, Eqs. (7.32)–(7.34) are replaced by

(
1

Pr
λ − d2

d z2
+ k2
)(

d2

d z2
− k2
)

f + Ra k2 h = 0 , (7.45)

(
λ − d2

d z2
+ k2
)
h − f = 0 , (7.46)

z = 0, 1 : f = 0 ,
d f

d z
= 0 , h = 0 . (7.47)

In the case of mixed no-slip and stress-free boundary conditions at z = 0 and z = 1,
respectively, one has

z = 0 : f = 0 ,
d f

d z
= 0 , h = 0 ,

z = 1 : f = 0 ,
d2 f

d z2
= 0 , h = 0 , (7.48)

instead of Eq. (7.47).
One may well say that, although possible, an analytical solution for either the dif-

ferential problems, given by Eqs. (7.45)–(7.47) and by Eqs. (7.45), (7.46) and (7.48),
is not the most convenient approach. An easier, reliable and accurate procedure to
get the solution of either these differential problems is the use of a numerical solver
for differential eigenvalue problems. We refer the reader to Chap.10 for a discussion
of the numerical method, and for the implementation of the code needed to develop
this numerical solver. Figures7.5 and 7.6 display, respectively, the neutral stability
curves for the Rayleigh–Bénard problem with rigid and impermeable boundaries,
i.e. for the conditions given by Eq. (7.47), and for the mixed case where the lower
boundary is rigid while the upper boundary is stress-free, i.e. for the conditions given
by Eq. (7.48). The shape of these neutral stability curves is not much different from
that of the curve displayed in Fig. 7.4.We will see that this shape is surprisingly com-
mon for the diverse variants of the Rayleigh–Bénard problem. The most important
difference between Figs. 7.4, 7.5 and 7.6 is in the position of the minimum, namely
in the values of kc and Rac. With the boundary conditions expressed by Eq. (7.47),
we obtain
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Fig. 7.5 Neutral stability
curve for the
Rayleigh–Bénard problem
with rigid and impermeable
boundary conditions at
z = 0, 1
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kc = 3.11632 , Rac = 1707.76 , (7.49)

while in the mixed case given by Eq. (7.48), we obtain

kc = 2.68232 , Rac = 1100.65 . (7.50)

These results allow one to conclude that the presence of stress-free boundaries tends
to favour the onset of convective instability. In fact, the case where both the imper-
meable boundaries are rigid is the one where the instability requires the highest
Rayleigh number. The mixed case is intermediate, while the case with two stress-
free boundaries is that where the instability emerges at the lowest Rayleigh number.
One can rephrase this conclusion by saying that the no-slip condition is a stabilising
mechanism for the thermal instability.

7.5.1 The Principle of Exchange of Stabilities

By employing integration by parts over z ∈ [0, 1], we can write

1∫
0

f̄
d4 f

d z4
dz = −

1∫
0

d f̄

d z

d3 f

d z3
dz =

1∫
0

∣∣∣∣d
2 f

d z2

∣∣∣∣
2

dz , (7.51)
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Fig. 7.6 Neutral stability
curve for the
Rayleigh–Bénard problem
with rigid and impermeable
boundary conditions at
z = 0, and with stress-free
and impermeable boundary
conditions at z = 1
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1∫
0

f̄
d2 f

d z2
dz = −

1∫
0

∣∣∣∣d f

d z

∣∣∣∣
2

dz , (7.52)

1∫
0

h
d2h̄

d z2
dz = −

1∫
0

∣∣∣∣d hd z
∣∣∣∣
2

dz , (7.53)

where the primes denote derivatives with respect to z, the overline denotes com-
plex conjugation, and either the boundary conditions given by Eq. (7.47) or those
expressed by Eq. (7.48) are employed.

We stress that the chain of integrations by parts in Eqs. (7.51)–(7.53) holds both
with the set of boundary conditions (7.47) and with the set of boundary conditions
(7.48). We finally mention that Eqs. (7.51)–(7.53) are valid also in the case where
both boundaries are rigid and stress-free, described by Eq. (7.34).

Let us consider Eqs. (7.45) and (7.46). We multiply Eq. (7.45) by f̄ and integrate
over z ∈ [0, 1]. Then, by employing Eqs. (7.52) and (7.53), we obtain

1∫
0

∣∣∣∣d
2 f

d z2

∣∣∣∣
2

dz +
(
2 k2 + λ

Pr

) 1∫
0

∣∣∣∣d f

d z

∣∣∣∣
2

dz +
(
k2 + λ

Pr

)
k2

1∫
0

| f |2 dz

− Ra k2
1∫

0

f̄ h dz = 0 . (7.54)
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Let us write the complex conjugate of Eq. (7.46),

(
λ̄ − d2

d z2
+ k2
)
h̄ − f̄ = 0 . (7.55)

We multiply Eq. (7.55) by h and integrate over z ∈ [0, 1]. By using Eqs. (7.52) and
(7.53), we obtain

1∫
0

∣∣∣∣d hd z
∣∣∣∣
2

dz + (λ̄ + k2
) 1∫
0

|h|2 dz −
1∫

0

f̄ h dz = 0 . (7.56)

We can combine Eqs. (7.54) and (7.56) to obtain

1∫
0

∣∣∣∣d
2 f

d z2

∣∣∣∣
2

dz +
(
2 k2 + λ

Pr

) 1∫
0

∣∣∣∣d f

d z

∣∣∣∣
2

dz +
(
k2 + λ

Pr

)
k2

1∫
0

| f |2 dz

− Ra k2

⎡
⎣

1∫
0

∣∣∣∣d hd z
∣∣∣∣
2

dz + (λ̄ + k2
) 1∫
0

|h|2 dz
⎤
⎦ = 0 . (7.57)

We recall that λ = η − iω. Thus, the imaginary part of Eq. (7.57) is given by

ω

⎛
⎝ 1

Pr

1∫
0

∣∣∣∣d f

d z

∣∣∣∣
2

dz + k2

Pr

1∫
0

| f |2 dz + Ra k2
1∫

0

|h|2 dz
⎞
⎠ = 0 . (7.58)

The expression in round brackets on the left-hand side of Eq. (7.58) is positive, unless
the perturbation is identically zero, i.e. f = 0 = h. Therefore, we can conclude that

ω = 0 . (7.59)

so that the principle of exchange of stabilities holds. If we consider the real part of
Eq. (7.57), we obtain

1∫
0

∣∣∣∣d
2 f

d z2

∣∣∣∣
2

dz + 2 k2
1∫

0

∣∣∣∣d f

d z

∣∣∣∣
2

dz + k4
1∫

0

| f |2 dz

− Ra k2

⎡
⎣

1∫
0

∣∣∣∣d hd z
∣∣∣∣
2

dz + k2
1∫

0

|h|2 dz
⎤
⎦
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+ η

⎛
⎝ 1

Pr

1∫
0

∣∣∣∣d f

d z

∣∣∣∣
2

dz + k2

Pr

1∫
0

| f |2 dz − Ra k2
1∫

0

|h|2 dz
⎞
⎠ = 0 . (7.60)

Equation (7.60) leads to some interesting conclusions. At neutral stability, η = 0, we
infer that Ra is positive for every k and Pr . Moreover, either the neutral stability
curve Ra(k) displays a singularity when k → 0 or d2 f/dz2 is identically vanishing
in this limit. Indeed, a singular behaviour of the neutral stability curve is implied by
Eq. (7.41), for the case where both boundaries are rigid and stress-free.

Another feature which can be inferred fromEq. (7.60) is that, in the limit Ra → 0,
the growth rate η cannot be positive. An obvious feature on physical grounds as
Ra → 0 is achieved when the temperature difference between the bounding surfaces
tends to zero. Under such conditions, the buoyancy force cannot activate and sustain
any natural convection flow.

An important aspect of the principle of exchange of stability formulated by the
integral method just described is that Eq. (7.59) holds independently of η being
negative, zero or positive. This is a slight, but interesting, feature with respect to
what we were able to infer from Eq. (7.39) for the case where both boundaries are
rigid and stress-free.

7.6 The Horton–Rogers–Lapwood Problem

A stability analysis of the rest state not referring to a clear fluid layer, but to a
fluid-saturated porous medium was performed by Horton and Rogers Jr [5], and by
Lapwood [7]. The Horton–Rogers–Lapwood (HRL) problem is the porous medium
analogue of the Rayleigh–Bénard problem for a clear fluid. The analysis of the HRL
problem was originally performed by assuming the validity of Darcy’s law and by
employing linearised governing equations. During the years, several extensions of
the HRL problem have been studied including treatment of Darcy–Forchheimer’s
model, of Brinkman’s model and adopting a weakly nonlinear stability analysis. For
a review of these results, one can refer to Rees [14] and Tyvand [16].

7.6.1 Formulation of the Problem

By analogy with the Rayleigh–Bénard problem, let us consider a horizontal fluid-
saturated porous layer having thickness L , bounded by two impermeable planes. The
lower boundary plane is maintained at temperature T1, while the upper boundary
plane has a uniform temperature T2 < T1.

For the mathematical formulation of the problem, we rely on the framework
discussed in Sect. 6.4. By assuming the validity of Darcy’s law, of the Oberbeck–
Boussinesq approximation, the governing equations of the saturated porous medium,
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without any volumetric heat source, qg = 0, can be written as

∂u j

∂x j
= 0 ,

ν

K
ui = −β (T − T0) gi − 1

ρ0

∂P

∂xi
,

σ
∂T

∂t
+ u j

∂T

∂x j
= α ∇2T + ν

K c
u ju j , (7.61)

where α = κeff/(ρ0 c) and ν = μ/ρ0. If we want to test the stability of a basic
solution, (ubi , Pb, Tb), we proceed as follows. We perturb the basic solution, i.e., we
express the fields (ui , P, T ) as

ui = ubi + εUi , P = Pb + ε Π, T = Tb + ε Θ,

where ε is a positive dimensionless quantity, the perturbation parameter. The terms
εUi , ε Π and ε Θ express the perturbation of the basic solution.

Thus, we obtain the perturbation equations,

ε
∂Uj

∂x j
= 0 ,

ε ν

K
Ui = −ε β Θ gi − ε

ρ0

∂Π

∂xi
,

ε σ
∂Θ

∂t
+ ε ub j

∂Θ

∂x j
+ εUj

∂Tb
∂x j

+ ε2Uj
∂Θ

∂x j
= ε α ∇2Θ

+ 2 ε ν

K c
ub j U j + ε2ν

K c
Uj U j . (7.62)

The perturbation equations (7.62) express the dynamics of the perturbation fields
(Ui ,Π,Θ). We note that these equations contain a coupling with the basic solution
(ubi , Pb, Tb) only as an effect of the nonlinear terms

u j
∂T

∂x j
,

ν

K c
u ju j .

As in the case of a clear fluid, we have two alternatives: we may assume that the
perturbations are small, orwemay investigate perturbations of arbitrarily large ampli-
tude. In the first case, we perform a linear stability analysis. In the second case, we
carry out a nonlinear stability analysis.
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The first option is the simplest one, and we will restrict all the forthcoming dis-
cussion to this case. Assuming small perturbations means requiring ε � 1, so that
we can neglect the terms O

(
ε2
)
with respect to the terms O(ε) in the perturbation

equations.
Therefore, we can simplify ε from the perturbation equations (7.62) and rewrite

them as
∂Uj

∂x j
= 0 ,

ν

K
Ui = −β Θ gi − 1

ρ0

∂Π

∂xi
,

σ
∂Θ

∂t
+ ub j

∂Θ

∂x j
+Uj

∂Tb
∂x j

= α ∇2Θ + 2 ν

K c
ub j U j . (7.63)

One may solve these equations and check what the time evolution of the perturbation
is like: if it leads to an increasingly large departure from the basic solution, or if it
leads to an asymptotic recovery of the basic solution. In the first case, we have
a response of instability for the basic flow, while in the second case, we have an
outcome of stability. The critical condition for the onset of convection in the layer is
obtained by a linear stability analysis carried out starting from the basic state,

ubi = 0 , Tb = T1 − (T1 − T2)
z

L
. (7.64)

The nature of the basic state leads to a dramatic simplification of the linearised
perturbation equations. In fact, Eq. (7.63) simplify to

∂Uj

∂x j
= 0 ,

ν

K
Ui = −β Θ gi − 1

ρ0

∂Π

∂xi
,

σ
∂Θ

∂t
− W

T1 − T2
L

= α ∇2Θ . (7.65)

The perturbation equations can be further simplified by allowing an appropriate scal-
ing of the physical quantities, in order to carry out the study through a dimensionless
formulation. Hence, we define the dimensionless quantities bymeans of the scalings,

Ui

α/L
→ Ui ,

Θ

T1 − T2
→ Θ ,

Π

ρ0να/K
→ Π ,

xi
L

→ xi ,
t

σ L2/α
→ t , (7.66)
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so that the dimensionless perturbation equations can be written as

∂Uj

∂x j
= 0 ,

Ui = R Θ δi3 − ∂Π

∂xi
,

∂Θ

∂t
− W = ∇2Θ , (7.67)

with the boundary conditions,

z = 0, 1 : W = 0 = Θ . (7.68)

In particular, the conditions W = 0 express the impermeability of the boundaries.
The parameter R defines the Darcy–Rayleigh number,

R = gβ(T1 − T2)K L

να
. (7.69)

A comparison with Eq. (7.24) reveals that the Darcy–Rayleigh number differs from
the Rayleigh number of a clear fluid mainly due to the factor K L instead of L3.

The term − ∂Π/∂xi can be encompassed by taking the curl of the momentum
balance equation, which yields

∂W

∂x
− ∂U

∂z
= R

∂Θ

∂x
, (7.70)

∂W

∂y
− ∂V

∂z
= R

∂Θ

∂y
. (7.71)

We derive Eq. (7.70) with respect to x and Eq. (7.71) with respect to y. Then, we sum
the two resulting equations, so that we obtain

∇2W = R ∇2
2Θ + ∂

∂z

(
∂Uj

∂x j

)
. (7.72)

By taking into account the local mass balance equation, ∂Uj/∂x j = 0, we can extract
a set of two partial differential equations in the unknowns (W,Θ), describing the
stability problem,

∇2W = R ∇2
2Θ ,

∂Θ

∂t
− W = ∇2Θ , (7.73)
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with the boundary conditions

z = 0, 1 : W = 0 = Θ . (7.74)

7.6.2 Normal Modes

As in the Rayleigh–Bénard problem, the governing equations for the perturbations
can be solved by employing the Fourier transform method. With the definitions
formulated in Eqs. (7.30) and (7.31), we can express the Fourier transformed stability
problem in the form (

d2

d z2
− k2
)

f + R k2 h = 0 ,

(
λ − d2

d z2
+ k2
)
h − f = 0 , (7.75)

with the boundary conditions

z = 0, 1 : f = 0 = h . (7.76)

We can combine the two equations into a single (fourth-order) ordinary differential
equation, (

d2

d z2
− k2
)(

λ − d2

d z2
+ k2
)
h + R k2 h = 0 ,

z = 0, 1 : h = 0 ,
d2h

d z2
= 0 . (7.77)

A solution of this differential problem is easily found, namely

h(z) = sin(n π z), n = 1, 2, 3, . . . , (7.78)

provided that
(n2π2 + k2)

(
λ + n2π2 + k2

)− R k2 = 0 . (7.79)

This additional algebraic equation is the dispersion relation of stability. We recall
that the complex parameter λ can be expressed in terms of its real part η and its
imaginary part −ω, that is λ = η − iω. Thus, the imaginary part of the right-hand
side of Eq. (7.79) vanishes if and only if

ω
(
n2π2 + k2

) = 0 . (7.80)
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This equation can be satisfied if and only if ω = 0, meaning that only normal modes
with zero frequency are allowed (principle of exchange of stabilities).

7.6.3 Neutral Stability

Since ω = 0, the real part of the dispersion relation given by Eq. (7.79) yields

R = (n2π2 + k2)
(
η + n2π2 + k2

)
k2

. (7.81)

Stability means that, for all n = 1, 2, 3, . . .), one has a negative growth rate, η < 0.
In other words, one may conclude that

R <

(
π2 + k2

)2
k2

,

implies stability, while

R =
(
π2 + k2

)2
k2

,

yields neutral stability, and

R >

(
π2 + k2

)2
k2

,

defines convective instability. The neutral stability curve, namely the plot of function

R(k) =
(
π2 + k2

)2
k2

(7.82)

is displayed in Fig. 7.7. Theminimum of this curve yields the conditions for the onset
of convection cells in the porous layer,

kc = π ≈ 3.14159 , Rc = 4π2 ≈ 39.4784 . (7.83)

It has been shown that the critical value of the Rayleigh number for the onset of
convective cells in Rayleigh–Bénard convection is given by either Eq. (7.42), or
Eq. (7.49), or Eq. (7.50), depending on the prescribed velocity boundary conditions.
If one compares these results with Eq. (7.83), the first-glance conclusion is that it
is easier to have convective instabilities in a Darcy porous medium than in a clear
fluid. However, this is false as the Rayleigh number Ra is proportional to L3, while
the Darcy–Rayleigh number R is proportional to K L . Since the permeability K
is usually very small [9], it is much more common having a clear fluid layer with
Ra ∼ 103 than a fluid-saturated porous layer with R ∼ 10.
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Fig. 7.7 Neutral stability
curve for the
Horton–Rogers–Lapwood
problem with impermeable
and isothermal boundary
conditions at z = 0, 1
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7.6.4 Form-Drag Effect

If one assumes Darcy–Forchheimer’s model for local momentum balance, instead
of Darcy’s model, the set of governing equations is changed to

∂u j

∂x j
= 0 ,

ν

K

(
1 + F

√
K

ν

√
u�u�

)
ui = −β (T − T0) gi − 1

ρ0

∂P

∂xi
,

σ
∂T

∂t
+ u j

∂T

∂x j
= α ∇2T + ν

K c

(
1 + F

√
K

ν

√
u�u�

)
u ju j . (7.84)

The terms proportional to the form-drag coefficient F do not affect the linearised
perturbation equations when the basic state is a rest state, namely when ubi = 0. In
fact, the terms proportional to F yield contributions of order ε2 or ε3 when the rest
state is perturbed. In this case, both the basic solution

ubi = 0 , Tb = T1 − (T1 − T2)
z

L
. (7.85)

and the linearised perturbation equations
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∂Uj

∂x j
= 0 ,

ν

K
Ui = −β Θ gi − 1

ρ0

∂Π

∂xi
,

σ
∂Θ

∂t
− W

T1 − T2
L

= α ∇2Θ . (7.86)

are exactly the same as those obtained by employingDarcy’s law. Thus, the condition
for the onset of convection cells is not affected by the form-drag effect.

7.6.5 Brinkman’s Model

Changing the local momentum balance equation from Darcy’s model to Brinkman’s
model and, thus, allowing for a Laplacian term contribution, as well as for no-slip
conditions at the boundaries, sensibly affects the linear stability analysis.

A new parameter appears in the dimensionless perturbation equations, the Darcy
number, namely

Da = μeff K

μ L2
, (7.87)

whereμeff is the effective viscosity. When Da → 0, the results obtained by employ-
ing Darcy’s law are recovered. On the other hand, we recover the results obtained for
a Navier–Stokes fluid when Da → ∞. Darcy’s limit is Da → 0 since the Darcy’s
law behaviour happens when the permeability is much smaller than the macroscopic
scale of the porous medium, namely K � L2. By the same reasoning, we can state
that the clear fluid limit is approached when the porous medium has an extremely
large permeability, so that K � L2. In describing the transition from Darcy’s flow
to clear fluid flow, the Darcy number Da plays a key role. In general, the critical
values (kc, Rc) depend on Da.

In the case of Brinkman’s model, the local mass, momentum and energy balance
equations admit the same basic solution as with the other models, namely

ubi = 0 , Tb = T1 − (T1 − T2)
z

L
. (7.88)

Therefore, the linearised local balance equations for the perturbation fields can be
written as

∂Uj

∂x j
= 0 ,

ν

K
Ui − νeff ∇2Ui = −β Θ gi − 1

ρ0

∂Π

∂xi
,
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σ
∂Θ

∂t
− W

T1 − T2
L

= α ∇2Θ , (7.89)

where νeff = μeff/ρ0. It is worth noting that the local energy balance equation for
the perturbations given by the third Eq. (7.89), as expected, does not contain any
contribution from the viscous dissipation effect, as such term is of higher order in the
perturbation parameter ε and, hence, it is neglected in the linear approximation. This
feature arises despite the uncertain form of the viscous dissipation function, either if
it is given by Eq. (6.29) or by Eq. (6.30).

We introduce the same scaling defined by Eq. (7.66) in order to rewrite Eqs. (7.89)
in a dimensionless form,

∂Uj

∂x j
= 0 ,

Ui − Da ∇2Ui = R Θ δi3 − ∂Π

∂xi
,

∂Θ

∂t
− W = ∇2Θ . (7.90)

By evaluating the curl of the momentum balance equation, we obtain

(
1 − Da ∇2

) (∂W

∂x
− ∂U

∂z

)
= R

∂Θ

∂x
, (7.91)

(
1 − Da ∇2) (∂W

∂y
− ∂V

∂z

)
= R

∂Θ

∂y
. (7.92)

We now derive Eq. (7.91) with respect to x , and Eq. (7.92) with respect to y. Then,
we sum the two resulting equations, so that we obtain

(
1 − Da ∇2

) [∇2W − ∂

∂z

(
∂Uj

∂x j

)]
= R ∇2

2Θ , (7.93)

and, by employing the local mass balance equation, ∂Uj/∂x j = 0, we can write

(
1 − Da ∇2

)∇2W = R ∇2
2Θ . (7.94)

As for the Rayleigh–Bénard problem, the boundary conditions can be expressed so
that both boundary walls are isothermal, impermeable and stress-free, namely

z = 0, 1 : W = 0 = Θ ,
∂2W

∂z2
= 0 . (7.95)

Thus, the stability problem is formulated in terms of the scalar fields W and Θ .
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(
1 − Da ∇2

)∇2W = R ∇2
2Θ ,

∂Θ

∂t
− W = ∇2Θ ,

z = 0, 1 : W = 0 = Θ ,
∂2W

∂z2
= 0 . (7.96)

The Fourier transform is employed to determine the solution of Eqs. (7.96). Accord-
ingly, we use the definitions given by Eqs. (7.30) and (7.31), so that Eqs. (7.96) yield

(
1 − Da

d2

d z2
+ Da k2

)(
d2

d z2
− k2
)

f + R k2 h = 0 ,

(
λ − d2

d z2
+ k2
)
h − f = 0 ,

z = 0, 1 : f = 0 ,
d2 f

d z2
= 0 , h = 0 . (7.97)

The solution of Eqs. (7.97) can be sought in the form

h(z) = sin(n π z) , n = 1, 2, 3, . . . , (7.98)

provided that the dispersion relation,

(
1 + Da n2 π2 + Da k2

) (
n2 π2 + k2

) (
λ + n2 π2 + k2

)− R k2 = 0 , (7.99)

holds. Since λ = η − iω, the imaginary part of Eq. (7.99) yields

ω
(
1 + Da n2 π2 + Da k2

) (
n2 π2 + k2

) = 0 . (7.100)

This means that the principle of exchange of stabilities is valid or, equivalently, that
only non-travelling normal modes are allowed, i.e. those with ω = 0. The real part
of Eq. (7.99) yields

R =
(
1 + Da n2 π2 + Da k2

) (
n2 π2 + k2

) (
η + n2 π2 + k2

)
k2

. (7.101)

Instability is activated first by the n = 1 normal modes. Then, neutral stability hap-
pens with

R =
(
1 + Da π2 + Da k2

) (
π2 + k2

)2
k2

, (7.102)

convective instability (η > 0) occurs with
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R >

(
1 + Da π2 + Da k2

) (
π2 + k2

)2
k2

, (7.103)

and stability is confined in the parametric region where

R <

(
1 + Da π2 + Da k2

) (
π2 + k2

)2
k2

. (7.104)

The neutral stability condition, Eq. (7.102), suggests that the neutrally stable value
of R for a given k increases with Da. The limit Da → 0 yields a perfect agree-
ment between Eqs. (7.102) and (7.82). In fact, in the limit Da → 0, Brinkman’s law
reduces to Darcy’s law. In order to recover the case of a clear fluid, whose neutral
stability condition is expressed through Eq. (7.41), we must take the limit Da → ∞.
This limit can be taken consistently by employing the Rayleigh number,

Ra = R

Da
= gβ(T1 − T2)L3

νeff α
, (7.105)

instead of the Darcy–Rayleigh number. Here, Eqs. (7.69) and (7.87) have been
employed. We note that there is a slight difference between the definitions of Ra
given by Eqs. (7.1) and (7.105). The difference is in the denominator of Eq. (7.105)
where νeff appears instead of the fluid kinematic viscosity ν. Such a discrepancy
has no effect when the limit of a clear fluid is approached, i.e. the limit where the
porosity tends to one, ϕ → 1. In this limit, νeff and ν tend to coincide. This cir-
cumstance is evident by employing the definition νeff = μeff/ρ0 and Eq. (6.10). The
neutral stability condition given by Eq. (7.102) can be reformulated in terms of Ra
as

Ra =
(

1

Da
+ π2 + k2

) (
π2 + k2

)2
k2

. (7.106)

Evidently, Eq. (7.106) agrees with Eq. (7.41) when Da → ∞. Plots of the neutral
stability curves are displayed in Figs. 7.8 and 7.9, in the (k, R) plane or in the (k, Ra)

plane, for different values of Da.
We have already mentioned that the critical values of k, R and Ra depend on

the Darcy number. The evaluation of the minimum for the neutral stability functions
R(k) and Ra(k) yields

kc = 1

2

√√√√
√(

Da π2 + 1
) (
9 Da π2 + 1

)− Da π2 − 1

Da
,

Rc = 27 Da2 π4 + 18 Da π2 − 1

8 Da
+
(
9 Da π2 + 1

)3/2
8 Da

√
Da π2 + 1 ,
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Fig. 7.8 Neutral stability
curves R(k) for the
Rayleigh–Bénard problem in
a porous layer, according to
Brinkman’s model, with
impermeable and stress-free
boundary conditions at
z = 0, 1
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Fig. 7.9 Neutral stability
curves Ra(k) for the
Rayleigh–Bénard problem in
a porous layer, according to
Brinkman’s model, with
impermeable and stress-free
boundary conditions at
z = 0, 1
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. (7.107)

By taking the limit Da → 0 of kc and Rc, one obtains the results given by Eq. (7.83).
On the other hand, the limit Da → ∞ of kc and Rac yields the results given by
Eq. (7.42). The plots reported in Figs. 7.8 and 7.9 suggest that the use of R is suitable
to describe cases close to Darcy’s regime, where Da is very small. The Rayleigh
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Fig. 7.10 Plots of kc, Rc and
Rac for the Rayleigh–Bénard
problem in a porous layer,
according to Brinkman’s
model, with impermeable
and stress-free boundary
conditions at z = 0, 1
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number, Ra, is the suitable parameterwhen the flow takes place in a highly permeable
medium, that is in a regime of large Darcy number, under conditions fairly close to
those of a clear fluid. The behaviour of the critical values kc, Rc and Rac versus Da
is displayed in Fig. 7.10. These plots suggest that the critical values of k and Ra for
a clear fluid are in fact almost attained when Da ∼ 1. The Darcy’s law regime, on
the other hand, requires values of Da smaller than 10−3.

7.7 A Porous Layer with Uniform Heat Flux Boundaries

Interesting variants of the Horton–Rogers–Lapwood problem come out when the
thermal boundary conditions switch from isothermal to uniform heat flux. Themech-
anism of heating from below can be thermal contact, at the lower boundary, with an
external thermal reservoir at a given temperature higher than that prescribed at the
upper boundary. Alternatively, one can think to a given heat supply at the lower
boundary provided through, say, an electric resistance. In this case, the boundary
condition becomes one of uniform heat flux. Hence, we can devise a situation where,
at z = 0, we have a uniform incoming heat flux q0 and, at z = L , we have a uniform
temperature T0. In this case, we prescribe
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z = 0 : −κeff
∂T

∂z
= q0 ,

z = L : T = T2 . (7.108)

For the sake of simplicity, we rely on Darcy’s law. The basic state of the Horton–
Rogers–Lapwood problem is slightly modified,

ubi = 0 , Tb = T2 + q0 (L − z)

κeff
. (7.109)

The differential equations for the perturbations of the basic state are still given by
Eq. (7.65), provided that one defines

T1 = T2 + q0 L

κeff
. (7.110)

The dimensionless scaling of the governing equations can be carried out by employ-
ing Eq. (7.66), then Eqs. (7.67) are still valid, while Eq. (7.68) is replaced by

z = 0 : W = 0 = ∂Θ

∂z
,

z = 1 : W = 0 = Θ . (7.111)

We employ the Fourier transform method for the solution of Eqs. (7.67) and (7.111).
Hence, we use Eqs. (7.30) and (7.31) to obtain

(
d2

d z2
− k2
)

f + R k2 h = 0 ,

(
λ − d2

d z2
+ k2
)
h − f = 0 ,

z = 0 : f = 0 = d h

d z
,

z = 1 : f = 0 = h . (7.112)

The difference with respect to the corresponding formulation of the Horton–Rogers–
Lapwood problem, Eqs. (7.75) and (7.76), is just in the boundary condition at z = 0.
This change makes a significant difference with respect to the complexity of the
mathematical solution.
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7.7.1 The Principle of Exchange of Stabilities

The boundary conditions in Eq. (7.112) allow one to write the following formulas of
integration by parts:

1∫
0

f̄
d2 f

d z2
dz = −

1∫
0

∣∣∣∣d f

d z

∣∣∣∣
2

dz ,

1∫
0

d2h̄

d z2
h dz = −

1∫
0

∣∣∣∣d hd z
∣∣∣∣
2

dz . (7.113)

Onmultiplying by f̄ the first Eq. (7.112), andmultiplying by h the complex conjugate
of the second Eq. (7.112), we obtain

1∫
0

∣∣∣∣d f

d z

∣∣∣∣
2

dz + k2
1∫

0

| f |2 dz

− R k2

⎡
⎣

1∫
0

∣∣∣∣d hd z
∣∣∣∣
2

dz + (λ̄ + k2
) 1∫
0

|h|2 dz
⎤
⎦ = 0 . (7.114)

We recall that λ = η − iω, so that the imaginary part of Eq. (7.114) reads

ω R k2
1∫

0

|h|2 dz = 0 . (7.115)

The integral on the left-hand side of Eq. (7.115) is positive, unless the perturbation
is identically zero, i.e. h = 0. If h is identically zero, then Eq. (7.114) implies that
also f is identically zero. Hence, we conclude that Eq. (7.115) can be satisfied by
perturbations not identically zero, ifω = 0. Thismeans that the principle of exchange
of stabilities holds, i.e., only Fourier modes with a zero phase velocity, ω/k = 0, are
allowed.

7.7.2 Solution of the Instability Eigenvalue Problem

The first and the second Eq. (7.112) can be rewritten as a single fourth-order equation
in h. In the following, we will find the solution relative to the condition of neutral
stability, so that we set λ = η = 0. Then, we can formulate a differential problem
equivalent to Eq. (7.112), namely

(
d2

d z2
− k2
)2

h − R k2 h = 0 ,
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z = 0 : d h

d z
= 0 ,

d2h

d z2
= k2 h ,

z = 1 : h = 0 ,
d2h

d z2
= 0 . (7.116)

The characteristic equation associated with the differential equation (7.116) is given
by (

s2 − k2
)2 − R k2 = 0 . (7.117)

Its solutions are s = ±χ1 and s = ± iχ2 where

χ1 =
√
k
(√

R + k
)

, χ2 =
√
k
(√

R − k
)

. (7.118)

Hence, h(z) can be written as

h(z) = C1 e
χ1 z + C2 e

−χ1 z + C3 e
iχ2 z + C2 e

−iχ2 z . (7.119)

The coefficients C1, C2, C3 and C4 have to be chosen so that the four boundary con-
ditions given by Eq. (7.116) are satisfied. This means that we can write the algebraic
equation

⎛
⎜⎜⎝

χ1 −χ1 iχ2 −iχ2

1 1 −1 −1
e χ1 e−χ1 eiχ2 e−iχ2

χ2
1 e

χ1 χ2
1 e

−χ1 −χ2
2 e

iχ2 −χ2
2 e

−iχ2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

C1

C2

C3

C4

⎞
⎟⎟⎠ = 0 . (7.120)

Equation (7.120) admits only the trivial solution, where all coefficients C1, C2, C3

and C4 are zero, unless the determinant of the 4 × 4 matrix is zero. The coefficients
cannot be identically zero, because this would imply a vanishing perturbation of the
basic state. Then, the condition of zero determinant must hold, namely

χ2 sinh χ1 cosχ2 + χ1 cosh χ1 sin χ2 = 0 . (7.121)

Equation (7.121), together with Eq. (7.118), yields the dispersion relation at neutral
stability in an implicit form where R cannot be explicitly expressed as a function of
k. Although analytical, the expression of the dispersion relation given by Eq. (7.121)
must be handled with care. In fact, Eq. (7.121) is just a condition of zero determi-
nant and, as such, it may contain spurious solutions. An evident one is χ2 = 0 or,
equivalently, k = √

R. This solution must be excluded as writing Eq. (7.119) implies
that the four solutions e±χ1 z, e±iχ2 z are assumed to be independent. This is untrue
if χ2 = 0. In fact, one may easily check that Eq. (7.116) does not admit any nonzero
solution h whenever k = √

R.
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Fig. 7.11 Neutral stability
curve for the
Horton–Rogers–Lapwood
problem with impermeable
boundaries, uniform heat
flux at z = 0 and uniform
temperature at z = 1
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An alternative to using the implicit dispersion relation (7.121) is adopting the
numerical method described in Chap.10 for the solution of Eq. (7.112) with λ = 0.
Either way, one can gather the numerical data needed to draw the neutral stability
curve in the (k, R) plane. A plot of the neutral stability curve and of the convec-
tive instability region is displayed in Fig. 7.11. This figure shows that the point of
minimum R along the curve, namely the critical condition, is identified by

kc = 2.32621 , Rc = 27.0976 . (7.122)

This result was first pointed out in the paper by Lapwood [7].

7.7.3 Porous Layer with Uniform Heat Flux at Both
Boundaries

The boundary condition of uniform heat flux can be prescribed both at the lower
boundary and at the upper boundary. A situation can be imagined where all the heat
supplied to the lower boundary is removed from the upper boundary, so that a steady
condition can be allowed. Under such conditions, Eq. (7.108) is replaced by

z = 0, L : −κeff
∂T

∂z
= q0 . (7.123)
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The basic state considered in Eq. (7.109) satisfies Eq. (7.123). The only important
remark is that the constant temperature T2 is now undefined or, stated differently,
its value can be fixed arbitrarily. The reason is that, in a rest state, the temperature
field is determined as a solution of the local energy balance equation which contains
only derivatives of T . If the temperature boundary conditions are those given by
Eq. (7.123), then one can conclude that T can be determined only up to an arbitrary
additive constant.

The change needed in the eigenvalue problem expressed by Eq. (7.112) is just in
the boundary conditions. Hence, we can write

(
d2

d z2
− k2
)

f + R k2 h = 0 ,

(
λ − d2

d z2
+ k2
)
h − f = 0 ,

z = 0, 1 : f = 0 = d h

d z
. (7.124)

One can easily check that the principle of exchange of stabilities holds. In fact, the
integration by parts formulas reported in Eq. (7.113) are still valid, as a consequence
of the boundary conditions specified in Eq. (7.124). Then, the same discussion and
conclusions reached in Sect. 7.7.1 can be drawn.

The solutionofEq. (7.124) for the neutrally stablemodes,withλ = 0, canbe found
analytically through the same procedure described in Sect. 7.7.2. Equation (7.116)
now reads (

d2

d z2
− k2
)2

h − R k2 h = 0 ,

z = 0, 1 : d h

d z
= 0 ,

d2h

d z2
= k2 h . (7.125)

No change is needed in Eqs. (7.118) and (7.119), as they rely only on the ordinary
differential equation. On the other hand, Eq. (7.120) is replaced by

⎛
⎜⎜⎝

χ1 −χ1 iχ2 −iχ2

1 1 −1 −1
χ1 e χ1 −χ1 e−χ1 iχ2 eiχ2 −iχ2 e−iχ2

e χ1 e−χ1 −eiχ2 −e−iχ2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

C1

C2

C3

C4

⎞
⎟⎟⎠ = 0 . (7.126)

The condition of zero determinant for the 4 × 4 matrix yields the dispersion relation,

k2 sinh χ1 sin χ2 + χ1 χ2 (cosh χ1 cosχ2 − 1) = 0 . (7.127)
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Through a numerical algorithm for root finding, Eqs. (7.118) and (7.127) can be
employed to gather the numerical data needed to draw the neutral stability curve,
viz. the lower bound to the convective instability region in the (k, R) plane. Again,
the alternative is carrying out a fully numerical solution of the system of ordinary
differential stability problem through the shooting method, along the lines discussed
in Chap.10.

The shape of the neutral stability curve is quite dissimilar to that illustrated in
Fig. 7.11, relative to the hybrid case where the lower boundary is subject to a uniform
heat flux and the upper boundary is kept isothermal. The dissimilarity can be easily
revealed by looking for an asymptotic solution in the limit k → 0. By relying on
the inverse proportionality between wave number and wavelength, we can define
this limit as one of large wavelengths. We express h(z) and R as power series with
respect to the small parameter k2,

h(z) =
∞∑
n=0

hn(z) k
2n , R =

∞∑
n=0

Rn k
2n . (7.128)

This is perfectly legitimate as the wave number appears in Eq. (7.125) only through
its square, k2. By substituting Eq. (7.128) into (7.125) and collecting like powers of
k2, we obtain the zeroth-order boundary value problem, namely

d4h0
d z4

= 0 ,

z = 0, 1 : d h0
d z

= 0 ,
d2h0
d z2

= 0 . (7.129)

The solution of Eq. (7.129) is
h0(z) = A , (7.130)

where A is an arbitrary constant. To first order in k2, we obtain the boundary value
problem

d4h1
d z4

− R0 A = 0 ,

z = 0, 1 : d h1
d z

= 0 ,
d2h1
d z2

= A . (7.131)

Provided that
A (R0 − 12) = 0 , (7.132)

Equation (7.131) yields the solution

h1(z) = B + A

2
z2 − A z3 + A

2
z4 , (7.133)
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Fig. 7.12 Neutral stability
curve for the
Horton–Rogers–Lapwood
problem with impermeable
boundaries having uniform
heat flux at z = 0, 1
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where B is another arbitrary constant. If we assume A = 0, whatever is its value, we
obtain

R0 = 12 . (7.134)

Equation (7.134), together with Eq. (7.128), leads to the conclusion that the neutral
stability function R(k) is not singular when k → 0, as it happens in the cases illus-
trated in Figs. 7.7 and 7.11. On the other hand, it approaches the constant value 12
when k → 0. Starting from this limiting value, the neutral stability function R(k) is
monotonic increasing, as shown in Fig. 7.12. This means that the critical values of k
and R for the onset of convective instability are

kc = 0 , Rc = 12 . (7.135)

We have found that, on replacing the isothermal condition at the lower boundary with
a uniform heat flux condition, the critical value of R decreases from 4π2 ≈ 39.4784
to 27.0976. If also the upper boundary is subject to a uniform heat flux, then Rc

further decreases to 12. Hence, we conclude that boundaries at uniform heat flux
yield a destabilisation of the basic state with respect to isothermal boundaries.

7.8 A Note on the Shape of Convection Cells

A visualisation of the convection cells can be easily obtained when a single normal
mode with a given wave vector (kx , ky) is considered,
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W = 1

2π
W̃ ei(kx x+ky y) , Θ = 1

2π
Θ̃ ei(kx x+ky y) , (7.136)

where Eq. (7.30) is taken into account. We have already pointed out, in Sect. 7.2, that
manifold shapes of convection cells may arise at the onset of convective instability.
The simplest geometry of the convection cells is straight rolls, whose planforms
are illustrated in frame (a) of Fig. 7.2. Without any loss of generality, we can choose
such straight rolls as having axes perpendicular to the (x, z) plane. The mathematical
representation of this case is a wave vector directed along the x-axis, i.e. a situation
where kx = k and ky = 0. In this case, we have no dependence on y, so that the local
mass balance equation, that is the condition of zero divergence for the velocity field
Ui , can be written as

∂U

∂x
+ ∂W

∂z
= 0 . (7.137)

This equation is identically satisfied by defining a streamfunction, Ψ (x, z, t), such
that

U = ∂Ψ

∂z
, W = −∂Ψ

∂x
. (7.138)

Obviously, Ψ is defined only up to an arbitrary additive function of t . This function
of time can be fixed in a convenient way. For instance, on the basis of Eq. (7.136)
and of the assumptions kx = k and ky = 0, one can define it so that

Ψ = 1

2π
Ψ̃ ei k x . (7.139)

The isolines of Ψ are called the streamlines. The streamlines provide a natural
description of the two-dimensional velocity field (U, 0,W ), as the tangent to the
streamlines is the field (U, 0,W ) itself. This result is an immediate consequence of
the definition given by Eq. (7.138). On account of Eqs. (7.136) and (7.139), we can
find a simple equation linking the fields W and Ψ , or W̃ and Ψ̃ , namely

W = −i k Ψ , W̃ = −i k Ψ̃ . (7.140)

As a consequence of Eq. (7.140), we infer that the streamlines are, in fact, coincident
with the isolines of W . In order to get a graphical representation of the streamlines,
we must remember that the physically significant field is not W , which is complex-
valued, but its real part.

In the Rayleigh–Bénard problem, and in all its variants considered in this chapter
included the Horton–Rogers–Lapwood problem with either isothermal or isoflux
boundary conditions, the principle of exchange of stabilities holds. In particular, this
means that the fields W̃ and Θ̃ are real-valued. Then, we can write

�(W ) = 1

2π
W̃ cos(k x) , �(Ψ ) = − 1

2π k
W̃ sin(k x) . (7.141)
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z= 0
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(b)

Fig. 7.13 Streamlines of the normal mode perturbation at the onset of convective instability for: a
the Rayleigh–Bénard problem with stress-free and isothermal boundaries; b the Horton–Rogers–
Lapwood problem with impermeable and isothermal boundaries

If we consider the Rayleigh–Bénard problem for a fluid layer bounded by stress-
free and isothermal planes, or the Horton–Rogers–Lapwood problem for a saturated
porous medium bounded by impermeable and isothermal planes, the expression of
W̃ is such that

W̃ = C sin(n π z) eηt , (7.142)

where C is a constant. Equation (7.142) can be deduced from Eqs. (7.31), (7.33) and
(7.37).

A sensible case where one may wish to draw the streamlines of the perturbation
normal mode is at the critical conditions for the onset of instability, namely η = 0,
n = 1 and k = kc. With these conditions, Eqs. (7.141) and (7.142) yield

�(Ψ ) = − C

2π kc
sin(π z) sin(kc x) . (7.143)

We found that kc = π/
√
2 for the Rayleigh–Bénard problem and kc = π for the

Horton–Rogers–Lapwood problem, as reported in Eqs. (7.42) and (7.83), respec-
tively. Thus, the streamlines can be easily represented in the (x, z) plane by employ-
ing equation (7.143) as the isolines �(Ψ ) = constant .

Figure7.13 shows the streamlines at the onset of convective instability, relative to
a perturbation normal mode, with k = kc for either the Rayleigh–Bénard problem or
theHorton–Rogers–Lapwood problem.On comparing frames (a) and (b) of Fig. 7.13,
one may note the more stretched horizontal width of the Rayleigh–Bénard cells. The
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Horton–Rogers–Lapwood cells have a characteristic square shape, due to the critical
value kc = π implying the same periodicity of �(Ψ ) along the x and z directions.

If we move from those cases amenable to a fully analytical solution, then the
function f (z) adopted to express W̃ is not given by a simple sine function, but it
is determined numerically. This does not change much in what we have said about
plotting the streamlines of the normalmode perturbation at critical conditions, except
that Eq. (7.143) is in fact replaced by

�(Ψ ) = − 1

2π kc
f (z) sin(kc x) . (7.144)

Ultimately, the aspect ratio of the cells is determined uniquely by the value of kc in
each single case.
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Part III
From Convective to Absolute Instability

in Porous Media

The transition from convective to absolute instability in porous media is illustrated
through some examples spanning from two-dimensional to three-dimensional cases.
The existence of a horizontal flow is the cause of the transition. When the basic
flow is switched off, then the onset of convective instability implies the simultaneous
onset of absolute instability. Typically, there exists a growing parametric gap between
convective and absolute instability, expressed through the Darcy-Rayleigh number,
as the basic flow rate increases. Numerical solutions are needed in some cases.
A numerical method, that can be employed for the study of both convective and
absolute instability, is illustrated in the final chapter.



Chapter 8
Transition to Absolute Instability
in Porous Media: Analytical Solutions

8.1 Absolute Instability in Porous Media

Most of the literature regarding the instability of flow in a porous medium is relative
to the convective instability. The transition to absolute instability has been studied
by some authors, but the literature on this specific subtopic is quite limited. One of
the earlier papers on this subject is by Dufour and Néel [9].

The transition to absolute instability in the Prats problem is examined within an
analytical and numerical study of the instability patterns of mixed convection in a
horizontal porous channel. The Prats problem is a widely used denomination for the
variant of the Horton–Rogers–Lapwood problem where the only changed feature
is the presence of a forced horizontal flow. In fact, the original paper by Prats [12]
develops the analysis of the onset of convective instability in a horizontal porous
channel bounded by parallel impermeable and isothermal walls, with heating from
below, and a uniform horizontal flow. Another study by Joulin and Ouarzazi [11]
proposes a more complicated situation where the instability is not only driven by the
heat transfer, which is induced by heating from below, but also by a simultaneous
mass diffusion caused by the Soret effect. The latter physical effect consists in the
existence of a solute mass flux contribution induced by the temperature gradient.
Under these conditions, Joulin and Ouarzazi [11] present a thorough analysis of the
transition from convective to absolute instability.

Delache et al. [7] further developed the investigation carried out by Dufour and
Néel [9] on including also the form-drag term contribution in the momentum bal-
ance, i.e., by considering Darcy–Forchheimer’s model instead of Darcy’s law. These
authors also suggest some interesting comparison with experimental results.

The analysis of the transition to absolute instability has been investigated also for
non-Newtonian flows in porous media. This is the case of the studies presented by
Hirata and Ouarzazi [10] and by Alves and Barletta [1]. The former study is relative
to a viscoelastic fluid described through the Oldroyd-B model, while the latter deals
with a power-law fluid.
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A wide research work has been carried out by Brevdo [6], Brevdo and
Ruderman [4, 5], Diaz and Brevdo [8]. This work regarded cases where a verti-
cal forced flow through a horizontal porous layer is accompanied by a prescribed
horizontal temperature gradient. The authors concluded that the onset of convective
instability coincides with the onset of absolute instability whenever the horizontal
temperature gradient is zero. In fact, the effect of the horizontal temperature gradient
is a secondary horizontal basic flow, which can induce the parametric delay in the
onset of absolute instability with respect to convective instability.

The analysis of absolute instability in the Prats problem has been recently recon-
sidered by Barletta and Alves [2] and by Barletta and Celli [3]. In these papers, the
effect of a finite Darcy–Prandtl number and that of an open upper boundarywere con-
sidered, respectively. We mention that the Darcy–Prandtl number is a dimensionless
parameter arising when convection problems in porousmedia are formulated starting
from the local momentum balance given by Eq. (6.6), instead of the usual Darcy’s
law expressed by Eq. (6.5). When the Darcy–Prandtl number tends to infinity, the
convection flow becomes compatible with the local momentum balance expressed
by Eq. (6.5) [2].

8.2 Prats Problem

What is nowwell known as the Prats problem, after Prats [12], is the stability analysis
of the uniform horizontal flow in a porous channel bounded by a pair of horizontal
parallel planes, both impermeable and isothermal. A sketch of the horizontal porous
layer is given in Fig. 8.1. We assume that the flow system is two-dimensional by
considering all fields as independent of the spanwise y-coordinate. We also assume
that the effect of viscous dissipation is negligible. When taken into account, this
effect may alter significantly the stability analysis of the Prats problem.

The two-dimensional velocity field (u,w), lying in the (x, z) plane, the tempera-
ture field T , the coordinates (x, z) and time t, can be written in a dimensionless form
by adopting the following transformations

z

0

L

T1 > T2

T2

g z

y

x

Fig. 8.1 A sketch of the horizontal porous channel, of the (x, y, z) coordinate frame and of the
boundary conditions
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(u,w)
L

α
→ (u,w) ,

T − T2
T1 − T2

→ T ,

(x, z)
1

L
→ (x, z) ,

t

L2/α
→ t . (8.1)

Here, L is the height of the channel, as illustrated in Fig. 8.1, while α is the average
thermal diffusivity of the porous medium.

Following the Oberbeck–Boussinesq approximation and Darcy’s law, the local
balance equations of mass, momentum and energy are written as

∂u

∂x
+ ∂w

∂z
= 0 ,

∂u

∂z
− ∂w

∂x
= −R

∂T

∂x
,

σ
∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z
= ∂2T

∂x2
+ ∂2T

∂z2
, (8.2)

where σ is the ratio between the average volumetric heat capacity of the saturated
porous medium and the volumetric heat capacity of the fluid. In Eq. (8.2), the local
momentum balance has been formulated by evaluating the y component of the curl
for Darcy’s law. The Darcy–Rayleigh number R is defined as

R = gβ(T1 − T2)KL

να
, (8.3)

where β is the thermal expansion coefficient of the fluid, and g is the modulus of the
gravitational acceleration g.

We prescribed the boundary conditions at z = 0, 1 as

z = 0 : w = 0 , T = 1 ,

z = 1 : w = 0 , T = 0 . (8.4)

We introduce a streamfunction ψ , defined as

u = ∂ψ

∂z
, w = − ∂ψ

∂x
. (8.5)

Thus, we satisfy the first equation (8.2), while the second and third differential equa-
tions (8.2) can be rewritten as

∂2ψ

∂x2
+ ∂2ψ

∂z2
+ R

∂T

∂x
= 0 ,

σ
∂T

∂t
+ ∂ψ

∂z

∂T

∂x
− ∂ψ

∂x

∂T

∂z
= ∂2T

∂x2
+ ∂2T

∂z2
. (8.6)
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The boundary conditions (8.4) are now expressed as

z = 0 : ∂ψ

∂x
= 0 , T = 1 ,

z = 1 : ∂ψ

∂x
= 0 , T = 0 . (8.7)

8.2.1 The Basic Solution

There exists a stationary solution, (ψb,Tb), of Eqs. (8.6) and (8.7) describing a uni-
form velocity in the x-direction, and a pure conduction regime across the porous
channel,

ψb = Pe z , Tb = 1 − z , (8.8)

where

Pe = U0 L

α
(8.9)

is the Péclet number associated with the basic horizontal and uniform flow with
constant velocity U0 in the porous channel. One may easily check, from Eq. (8.5),
that ψb = Pe z yields

ub = Pe , wb = 0 . (8.10)

Without any loss of generality, we focus on the situation Pe � 0, as negative Péclet
numbers do not identify physically different flow conditions.

8.2.2 Stability Analysis

Perturbations of the basic solution are defined as,

ψ = ψb + ε Ψ , T = Tb + ε Θ , (8.11)

where |ε| � 1. Let us substitute Eq. (8.11) into Eqs. (8.6) and (8.7), by taking into
account Eq. (8.8) and by neglecting terms O(ε2). Thus, one obtains

∂2Ψ

∂x2
+ ∂2Ψ

∂z2
+ R

∂Θ

∂x
= 0 ,

σ
∂Θ

∂t
+ Pe

∂Θ

∂x
+ ∂Ψ

∂x
= ∂2Θ

∂x2
+ ∂2Θ

∂z2
,
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z = 0, 1 : ∂Ψ

∂x
= 0 , Θ = 0 . (8.12)

We now express (Ψ,Θ) through their Fourier transforms,

Ψ̃ (k, z, t) = 1√
2π

∞∫

−∞
e−i k x Ψ (x, z, t) d x,

Ψ (x, z, t) = 1√
2π

∞∫

−∞
ei k x Ψ̃ (k, z, t) d k,

Θ̃(k, z, t) = 1√
2π

∞∫

−∞
e−i k x Θ(x, z, t) d x ,

Θ(x, z, t) = 1√
2π

∞∫

−∞
ei k x Θ̃(k, z, t) d k , (8.13)

and we also write

Ψ̃ = f (z) eλ(k) t , Θ̃ = − i k h(z) eλ(k) t . (8.14)

Then, by employing Eqs. (8.13) and (8.14), we can apply the Fourier transform to
Eq. (8.12) and obtain (

d2

d z2
− k2

)
f + R k2 h = 0 ,

[
d2

d z2
− k2 − σ λ(k) − i k Pe

]
h + f = 0 ,

z = 0, 1 : f = 0 , h = 0 . (8.15)

The solution of the differential eigenvalue problem (8.15) is easily obtained by defin-
ing the parameter

γ (k) = σ λ(k) + i k Pe , (8.16)

so that Eq. (8.15) reads

(
d2

d z2
− k2

)
f + R k2 h = 0 ,
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[
d2

d z2
− k2 − γ (k)

]
h + f = 0 ,

z = 0, 1 : f = 0 , h = 0 . (8.17)

We can easily reckon that the eigenvalue problem (8.17) coincides with that for-
mulated for the Horton–Rogers–Lapwood problem, expressed by Eqs. (7.75) and
(7.76). The only difference is that, in Eq. (8.17), γ appears instead of λ. The obvious
consequence is that the analytical dispersion relation written for Eq. (8.17) is easily
retrieved from Eq. (7.79), namely

(n2π2 + k2)
[
γ (k) + n2π2 + k2

] − R k2 = 0 , n = 1, 2, 3, . . . . (8.18)

One can solve Eq. (8.18) for γ (k) and obtain

γ (k) = R k2 − (n2π2 + k2)2

n2π2 + k2
, n = 1, 2, 3, . . . . (8.19)

8.2.3 Convective Instability

Equation (8.19) is the starting point for both the study of convective instability and
that of absolute instability. As for the convective instability, we have to take k ∈ R

and separate the real and the imaginary parts of Eq. (8.19). We must remember that
λ = η − iω, where η is the growth rate of the normal mode and ω is the angular
frequency. Then, on account of Eqs. (8.16) and (8.19), we can write

η = R k2 − (n2π2 + k2)2

σ
(
n2π2 + k2

) , ω = k Pe

σ
, n = 1, 2, 3, . . . . (8.20)

The first conclusion which can be drawn from Eq. (8.20) regards the angular fre-
quency. The meaning of the equation ω = k Pe/σ is that the dimensionless phase
velocity of the normal mode with wave number k is a constant, ω/k = Pe/σ . The
physical implications of this finding are that the normal modes travel along the
x-direction with a dimensionless phase velocity different from the dimensionless
velocity of the basic flow, Pe. The former can be greater, equal or smaller than the
latter depending on the heat capacity ratio, σ , being smaller, equal or greater than 1,
respectively. This conclusion can be correctly established only with length, time and
velocity scales defined consistently, as we did in Eq. (8.1). The consistency means,
in particular, that the velocity scale is the ratio of the length scale and the timescale.
Such consistent choice of the scales in defining the dimensionless quantities is an
unnecessary complication when handling the Horton–Rogers–Lapwood problem, or
its variants explored in Chap.7. In fact, in those cases, the principle of exchange of
stabilities ensures that the phase velocity of the disturbances involved in the onset
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of convective instability is zero. Incidentally, the principle of exchange of stabilities
is implied by the equationω/k = Pe/σ , as onemay easily recognise that theHorton–
Rogers–Lapwood problem is nothing but the limiting case of the Prats problemwhen
Pe → 0.

The second conclusion drawn from Eq. (8.20) regards the threshold for the onset
of convective instability. Indeed, convective instability arises when the growth rate
η becomes positive, i.e. when

R >
(π2 + k2)2

k2
, (8.21)

while the neutral stability condition is

R = (π2 + k2)2

k2
. (8.22)

Both Eqs. (8.21) and (8.22) have been obtained by considering the modes with n = 1
as these modes yield the lowest threshold values of R for attaining positive growth
rates, η > 0. The neutral stability function R(k) defined by Eq. (8.22) just coincides
with that obtained for theHorton–Rogers–Lapwood problem and given byEq. (7.82).
Obviously, the critical values of k and R are still given by Eq. (7.83).

We remark that the neutral stability condition (8.22) is not influenced by the Péclet
number, Pe. The only effect of the horizontal flow regards the travelling nature of
the normal modes. The phase velocity tends to zero in the limit Pe → 0, when the
Prats problem coincides with the Horton–Rogers–Lapwood problem. Thus, in this
limit, one recovers the principle of exchange of stabilities.

8.2.4 Absolute Instability

In the analysis of absolute instability, one has to test the asymptotic behaviour of the
wave packets,

Ψ (x, z, t) = 1√
2π

∞∫

−∞
eλ(k) t+i k x f (z) d k ,

Θ(x, z, t) = − i√
2π

∞∫

−∞
k eλ(k) t+i k x h(z) d k , (8.23)

when t → ∞. Equation (8.23) is obtained by substituting Eq. (8.14) into Eq. (8.13).
We point out that f (z) and h(z), being determined by solving Eq. (8.15),
do depend on k in general. Detecting the asymptotic behaviour at large time of
the wave packets given by Eq. (8.23) means adopting the steepest-descent approxi-
mation. This approximation is illustrated in Sect. 3.5.3. Simple applications of this
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method to the analysis of absolute instability have been discussed in Chap.4. In fact,
absolute instability means that

lim
t→+∞ |Ψ (x, z, t)| = ∞ , lim

t→+∞ |Θ(x, z, t)| = ∞ , (8.24)

for every x ∈ R, with 0 < z < 1. We mention that the wave packets given by
Eq. (8.23) implicitly depend on n = 1, 2, 3, . . . . Then, one should define general
wave packet perturbations by summing up Fourier integrals with different n. This
aspect can be safely left implicit provided that one tests compliance of the limiting
conditions (8.24) for, at least, one value of n.

The method based on the steepest-descent approximation is very powerful as
it reveals that the fulfilment of the limiting conditions (8.24) just depends on the
properties of the dispersion relation (8.19). In fact, from Eq. (8.16), Eq. (8.19) can be
rewritten as

σ λ(k) = R k2 − (n2π2 + k2)2

n2π2 + k2
− i k Pe , n = 1, 2, 3, . . . . (8.25)

As illustrated in Sect. 4.2.1, the first step is determining the saddle points of λ(k). In
other words, we have to determine the roots of equation

λ′(k) = 0 , (8.26)

in the complex plane, k ∈ C. Equations (8.25) and (8.26) yield

2 k R n2π2

(n2π2 + k2)2
= 2 k + iPe . (8.27)

The solution of Eq. (8.27) is particularly simple in the limiting case of no horizontal
flow,Pe = 0, namely for the Horton–Rogers–Lapwood problem. In this special case,
Eq. (8.27) yields four saddle points, given by

k20 = − n2π2 ± R1/2 nπ . (8.28)

With the minus sign in Eq. (8.28), we obtain two purely imaginary saddle points,

k0 = i
√
n2π2 + R1/2 nπ , k0 = − i

√
n2π2 + R1/2 nπ . (8.29)

Equation (8.25) implies that λ(k) has two singularities given by the imaginary simple
poles

k = i nπ , k = −i nπ . (8.30)

Then,we conclude that it is impossible to deform continuously the real line�(k) = 0,
without sweeping the two singularities given by Eq. (8.30), so that it becomes locally
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a line of steepest descent through the saddle points given byEq. (8.29). In otherwords,
the two saddle points expressed by Eq. (8.29) are not involved in the steepest-descent
approximation of the wave packets defined by Eq. (8.23). Then, we must exclude
these saddle points in evaluating the threshold value of R for absolute instability. We
are left with the two saddle points given by

k20 = − n2π2 + R1/2 nπ . (8.31)

When Eq. (8.31) is substituted into Eq. (8.25) with Pe = 0, one has

σ λ(k0) = R1/2
(
R1/2 − 2 nπ

)
. (8.32)

Equation (8.32) reveals that λ(k0) is real and that it is positive when

R > 4 n2π2 . (8.33)

This inequality establishes the condition for the onset of absolute instability. In fact,
the threshold value R = Ra for absolute instability is obtained from Eq. (8.33) by
considering the most unstable case, namely n = 1. Thus, we can write

Ra = 4π2 . (8.34)

By comparing Eqs. (7.83) and (8.34), one can conclude that the threshold value of R
for the onset of absolute instability, Ra, coincides with the critical value, Rc. In other
words, when instability arises with Pe = 0, it is both convective and absolute. This
conclusion is what one should expect on purely physical grounds. In fact, we pointed
out in Sect. 4.2.1 that absolute instability differs from convective instability inasmuch
as there exists a flowwhich drives the perturbationmodes downstream. Such flow can
be so intense as to conceal the actual time growth of some normal modes included in
a perturbation wave packet by convecting away such modes. When the basic flow is
switched off, that is when Pe = 0, convective instability implies absolute instability,
so that the two thresholds Rc and Ra coincide.

By employing the threshold value of R given by Eq. (8.34), we can evaluate the
pertinent saddle points through Eq. (8.31). We obtain

k0 = ±π . (8.35)

On account of Eq. (7.83), this means that the two saddle points lie on the real axis
and that k0 = ± kc .

Another sensible comment regards the role played by parameter σ . We said that
σ does not influence the parametric threshold for convective stability, expressed
by Eq. (8.22). We can also infer that the threshold for absolute instability is not
influenced by the value of σ , as well. From Eq. (8.34), this is quite evident in the case
Pe = 0. When Pe > 0, just the same conclusion is expected as the saddle points k0
are evaluated by solvingEq. (8.27)which does not containσ .Moreover, the condition
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Fig. 8.2 Prats problem:
migration of the pertinent
saddle points, with
increasing values of Pe, for
the threshold to absolute
instability
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of absolute instability is determined by the inequality 	(λ(k0)) > 0, or equivalently
σ 	(λ(k0)) > 0, by employing Eq. (8.25). The right-hand side of Eq. (8.25) does not
contain σ . Thus, we conclude that the value of σ only affects the phase velocity of
the normal mode perturbations driving the instability.

When Pe > 0, detecting the saddle points by employing Eqs. (8.25) and (8.27)
implies the solution of a system of two algebraic equations, that is λ′(k0) = 0 and
	(λ(k0)) = 0. This means that we findmultiple complex roots of Eq. (8.27) for every
value of Pe > 0. Each saddle point k0 is associated with a uniquely determined real
value of R. By analogy with what we found for the case Pe = 0, we expect that just
twoof these roots represent the pertinent saddle points for establishing the value ofRa.
The value ofRa is to be obtained fromEq. (8.25) through the condition	(λ(k0)) = 0,
which yields the threshold for absolute instability.

The practical strategy is starting from Pe = 0 and gradually increasing Pe. We
assume n = 1, consistently with what we did for the case Pe = 0. Step by step, one
tracks the migration of the saddle points k0 starting from those found with Pe = 0,
and given byEq. (8.35).With each of these saddle points, one evaluates the associated
value of R as the root of 	(λ(k0)) = 0. The position of the saddle points which are
relevant for the onset of absolute instability is illustrated in Fig. 8.2. Such points are
tracked for increasing values of Pe > 0. For each value of Pe, there are two twin
points differing only by the sign of the real part of k0. They originate from the pair
defined by Eq. (8.35), with Pe = 0, and they have drifted to negative values of �(k0),
when Pe > 0.

There are multiple saddle points k0 for every assignment of (n,Pe,R). One then
associates a value of R to every fixed pair (n,Pe), by imposing the third algebraic
equation 	(λ(k0)) = 0. Such procedure can be practically illustrated by considering
the case where n = 1 and Pe = 10. We obtain
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Fig. 8.3 Prats problem: map
of the isolines of 	(λ) = λr
(black solid lines) for
Pe = 10 and
R = Ra = 57.8036. The
dashed black lines are for
λr = 0. The grey dots are the
saddle points, while the grey
lines are the lines of steepest
descent. The black asterisk
denotes the singularity
k = −iπ
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k0 = ± 3.39297 − i 1.89300 , R = 57.8036 ,

k0 = ± 1.84692 + i 3.39151 , R = −36.0935 ,

k0 = i 1.51492 , R = 25 ,

k0 = − i 6.51492 , R = 25 . (8.36)

We have to exclude the saddle points k0 = ± 1.84692 + i 3.39151 as they would
yield a negative value of R for the onset of absolute instability, −36.0935, which is
unphysical given that we must get Ra � Rc. Just the same argument leads us to the
exclusion of the purely imaginary saddle points k0 = i 1.51492 and k0 = − i 6.51492.
This means that, with Pe = 10, the pertinent saddle points for the onset of absolute
instability are k0 = ± 3.39297 − i 1.89300 and that the threshold for the onset of
absolute instability is Ra = 57.8036. All this reasoning is to be completed by check-
ing whether the holomorphy requirement is satisfied with Pe = 10, Ra = 57.8036
and the pair of saddle points k0 = ± 3.39297 − i 1.89300.

Figure 8.3 displays a map of the isolines of 	(λ) = λr in the complex k plane
relative to the case Pe = 10 and R = Ra = 57.8036. The lines of steepest descent
crossing the twin saddle points k0 = ± 3.39297 − i 1.89300 are displayed in grey.
It is evident from Fig. 8.3 that one can continuously deform the path γ given by
the real axis, �(k) = 0, into a path γ ∗ which crosses both the twin saddle points,
k0 = ± 3.39297 − i 1.89300. Such deformation can be exploited so that γ ∗ locally
coincides with a line of steepest descent and no singularity of λ(k) is enclosed
within the region bounded by γ ∪ γ ∗, as described in Sect. 3.5.3. Then, the premises
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Fig. 8.4 Prats problem: plot
of Ra versus Pe as obtained
by solving Eq. (8.27) with
	(λ(k)) = 0. The values of
Ra are compared with
Rc = 4π2, which is
independent of Pe
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for applying the steepest-descent approximation, denoted under the shorthand of
holomorphy requirement, are all satisfied.

One may wonder whether taking n > 1 can affect the conclusion just drawn for
Pe = 10. If one sets n = 2, Eq. (8.36) is to be replaced with

k0 = ± 6.58511 − i 2.24028 , R = 180.111 ,

k0 = ± 3.02861 + i 6.72099 , R = −69.4442 ,

k0 = i 4.26228 , R = 25 ,

k0 = − i 9.26228 , R = 25 . (8.37)

Again, the values R = −69.4442 and R = 25 are to be excluded as possible candi-
dates for Ra as they are smaller than Rc. Then, one is left with R = 180.111 that, in
any case, does not provide a lower threshold to absolute instability than that obtained
by considering n = 1.

This lengthy description refers to the evaluation of Ra for a very special case, that
is, Pe = 10. It should be ideally repeated for every value of Pe. In practice, such a
check of the holomorphy requirement can only be carried out for a finite number
of values of Pe. What one concludes is that the evaluation of Ra can be practically
achieved, for a given Pe, by tracking the continuous change of the twin saddle points
given by Eq. (8.35) for Pe = 0. The resulting evaluation of Ra versus Pe is illustrated
in Fig. 8.4. This figure shows that, starting with Ra = Rc = 4π2 for Pe = 0, a gap
exists between the thresholds of convective and absolute instabilities as Pe increases
above zero. This gap grows larger and larger with Pe.
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A feature highlighted by Fig. 8.4 is the linear behaviour in the trend of Ra versus
Pe when Pe becomes very large. The characteristics of this asymptotic regime can
be detected by setting

R = ξ Pe , (8.38)

where ξ is a constant to be determined. We substitute Eq. (8.38) into Eq. (8.27), and
we let Pe → ∞. What we obtain is

2 k ξ n2π2

(n2π2 + k2)2
= i , (8.39)

while the dispersion relation (8.25) can be approximated as

σ λ(k)

Pe
= ξ k2

n2π2 + k2
− i k , n = 1, 2, 3, . . . . (8.40)

The saddle points k0 and the corresponding values of ξ are obtained by solving the
system made with equations (8.39) and 	(σ λ(k)/Pe) = 0, as expressed by employ-
ing Eq. (8.40). The result is

k0 = ± π n

4

√
7 + √

17 − iπ n

4

√
5 + 3

√
17 , ξ = π n

8

√
51

√
17 − 107 ,

k0 = ± π n

4

√
7 + √

17 + iπ n

4

√
5 + 3

√
17 , ξ = −π n

8

√
51

√
17 − 107 .

(8.41)

Obviously, the saddle points leading to a negative ξ are to be rejected as Ra = ξ Pe,
with Pe > 0, cannot be negative. Thus, the pair of twin saddle points leading to the
threshold of absolute instability in the limit Pe → ∞ is

k0 = ± π n

4

√
7 + √

17 − iπ n

4

√
5 + 3

√
17 ≈ (± 2.61941 − i 3.27327) n .

(8.42)

For n = 1, the pair of saddle points given by Eq. (8.42) are displayed in Fig. 8.2.
One may easily reckon that the location of the saddle points pertinent for evaluating
the threshold to absolute instability tends to attain rapidly its asymptotic settlement,
defined by Eq. (8.42) with n = 1, when Pe becomes larger than 50.

The attainment of the asymptotic regime is in fact illustrated in Fig. 8.5, where
the trend of Ra/Pe versus Pe is displayed. This figure shows the asymptote,

Ra

Pe
= π

8

√
51

√
17 − 107 ≈ 3.99084 , (8.43)

as a dotted line. One may evaluate that Ra/Pe matches its asymptotic value within
less than 5% when Pe > 45.5.
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Fig. 8.5 Prats problem: plot
of Ra/Pe versus Pe as
compared with the
asymptotic behaviour for
large values of Pe (dotted
line) given by Eq. (8.43)
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Table 8.1 reports the threshold data defining the transition to absolute instability.
The whole range of positive Péclet numbers is spanned, thus showing the extrema
of very small Pe, where Ra approaches Rc = 4π2, and that of very large Pe, where
Ra/Pe approaches its asymptotic value given by Eq. (8.43).

Regarding the possible saddle points obtained by solving Eq. (8.27), for a given
(Pe, n), a comment is desirable regarding those expressed analytically as

k0 = − i

4

(
Pe ±

√
16 n2π2 + Pe2

)
. (8.44)

These saddle points yield simultaneously 	(λ(k0)) = 0 and �(λ(k0)) = 0, with

R = Pe2

4
. (8.45)

This family of solutions of the dispersion relation (8.27) has been encountered either
in Eq. (8.36) or in Eq. (8.37) relative to the sample case Pe = 10 with n = 1 and
n = 2, respectively. In that example, we excluded these saddle points as they were
subcritical with R = Pe2/4 = 25 < Rc. However, this is not always the case. In fact,
for n = 1, these solutions regard the supercritical domain for Pe > 4π ≈ 12.5664
and, provided that Pe is less than approximately 18.6583, they are associated with
values of R = Pe2/4 smaller than the values of Ra evaluated so far and reported
either in Fig. 8.4 or in Table 8.1. Does it mean that we should amend our conclusions
about the threshold to absolute instability for the range 4π < Pe < 18.6583? The
answer is negative. If these saddle points were to contribute to the evaluation of
Ra, then k0 should coincide with kc = π when Pe = 4π and Ra = Rc, but this is
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Table 8.1 Prats problem: pertinent saddle points and threshold values ofRa for the onset of absolute
instability

Pe k0 Ra Ra/Pe

0 ±3.14159 39.4784 ∞
1 ±3.15128 − i 0.24846 39.7269 39.7269

5 ±3.29255 − i 1.12014 45.0277 9.00553

7 ±3.35371 − i 1.46714 49.5519 7.07884

10 ±3.39297 − i 1.89300 57.8036 5.78036

15 ±3.34682 − i 2.38924 74.0236 4.93491

20 ±3.24476 − i 2.68308 91.9528 4.59764

25 ±3.14596 − i 2.85317 110.732 4.42926

30 ±3.06606 − i 2.95566 129.947 4.33158

35 ±3.00401 − i 3.02135 149.404 4.26868

40 ±2.95570 − i 3.06602 169.003 4.22506

45 ±2.91750 − i 3.09797 188.692 4.19315

50 ±2.88675 − i 3.12176 208.441 4.16882

60 ±2.84058 − i 3.15458 248.054 4.13424

70 ±2.80776 − i 3.17599 287.761 4.11087

80 ±2.78332 − i 3.19097 327.522 4.09403

90 ±2.76444 − i 3.20201 367.319 4.08133

100 ±2.74943 − i 3.21048 407.140 4.07140

1000 ±2.63194 − i 3.26797 3998.25 3.99825

∞ ±2.61941 − i 3.27327 ∞ 3.99084

obviously not the case. Another reason is the following. For every Pe within the
range 4π < Pe < 18.6583 and for n = 1, the two saddle points given by Eq. (8.44)
and corresponding to Ra = Pe2/4 are purely imaginary. One lies between the two
singularities k = ± iπ , while the other one lies below k = − iπ . Trying to draw a
deformed path, which is locally of steepest descent and which crosses both these
saddle points is not possible without trapping the singularity k = − iπ within the
region of space between the deformed path and the real k-axis. This feature precludes
the application of the holomorphy requirement. Thus, we infer that the branches of
saddle points defined by Eq. (8.44) are not genuine branches of absolute instability,
so that they can be disregarded.

8.3 Prats Problem with Form-Drag Effect

We now explore how our analysis of convective and absolute instabilities in the Prats
problem changes by assuming Darcy–Forchheimer’s law, instead of Darcy’s law, to
model the local momentum balance. Again, we carry out a two-dimensional study by
assuming that all fields are independent of the spanwise y-coordinate. As in Sect. 8.2,
we neglect the effect of viscous dissipation for the sake of simplicity.
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The two-dimensional velocity field (u,w), lying in the (x, z) plane, the tempera-
ture field T , the coordinates (x, z) and time t, can be written in a dimensionless form
by adopting the transformation (8.1).

Following Eq. (7.84), within the Oberbeck–Boussinesq approximation and
according to Darcy–Forchheimer’s law, the local balance equations of mass, momen-
tum and energy are given by

∂u

∂x
+ ∂w

∂z
= 0 ,

∂(Ξ u)

∂z
− ∂(Ξ w)

∂x
= −R

∂T

∂x
,

σ
∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z
= ∂2T

∂x2
+ ∂2T

∂z2
. (8.46)

In Eq. (8.46), the local momentum balance has been formulated by evaluating the
curl of the local momentum balance. Function Ξ is defined as

Ξ = 1 + G
√
u2 + w2 , (8.47)

while the dimensionless parameters R and G are given by

R = gβ(T1 − T2)KL

να
, G = Fα

√
K

νL
, (8.48)

where F is the form-drag coefficient. The governing equations (8.46) are completed
by the boundary conditions,

z = 0 : w = 0 , T = 1 ,

z = 1 : w = 0 , T = 0 . (8.49)

By analogy with Eq. (8.6), we write a streamfunction–temperature formulation of
the governing equations and boundary conditions

∂

∂x

(
Ξ

∂ψ

∂x

)
+ ∂

∂z

(
Ξ

∂ψ

∂z

)
+ R

∂T

∂x
= 0 ,

σ
∂T

∂t
+ ∂ψ

∂z

∂T

∂x
− ∂ψ

∂x

∂T

∂z
= ∂2T

∂x2
+ ∂2T

∂z2
,

z = 0 : ∂ψ

∂x
= 0 , T = 1 ,

z = 1 : ∂ψ

∂x
= 0 , T = 0 . (8.50)
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The same stationary solution, (ψb,Tb), expressed by Eqs. (8.8) and (8.9) satisfies
also Eq. (8.50). We already pointed out that this solution describes a uniform flow,
in the x-direction, with a dimensionless rate expressed by the Péclet number Pe and
with a linear temperature distribution along the vertical z-direction. We implicitly
consider Pe � 0, as a sign change of Pe does not correspond to physically different
situations.

8.3.1 Stability Analysis

We assume perturbations of the basic solution given by,

ψ = ψb + ε Ψ = Pe z + ε Ψ , T = Tb + ε Θ = 1 − z + ε Θ , (8.51)

where |ε| � 1. On substituting Eq. (8.51) into Eq. (8.50) and neglecting termsO(ε2),
one obtains

(1 + G Pe)
∂2Ψ

∂x2
+ (1 + 2G Pe)

∂2Ψ

∂z2
+ R

∂Θ

∂x
= 0 ,

σ
∂Θ

∂t
+ Pe

∂Θ

∂x
+ ∂Ψ

∂x
= ∂2Θ

∂x2
+ ∂2Θ

∂z2
,

z = 0, 1 : ∂Ψ

∂x
= 0 , Θ = 0 . (8.52)

Following the usual procedure, established with Eq. (8.13), we write (Ψ,Θ) in terms

of their Fourier transforms,
(
Ψ̃ , Θ̃

)
, given by

Ψ̃ = f (z) eλ(k) t , Θ̃ = − i k h(z) eλ(k) t . (8.53)

Then, by employing Eqs. (8.13) and (8.53), we employ the Fourier transformation
for Eq. (8.52) to write

[
(1 + 2G Pe)

d2

d z2
− (1 + G Pe) k2

]
f + R k2 h = 0 ,

[
d2

d z2
− k2 − σ λ(k) − i k Pe

]
h + f = 0 ,

z = 0, 1 : f = 0 , h = 0 . (8.54)
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The eigenvalue problem (8.54) is solved by combining the two ordinary differential
equations into a single one,

[
(1 + 2G Pe)

d2

d z2
− (1 + G Pe) k2

] [
d2

d z2
− k2 − γ (k)

]
h − R k2 h = 0 ,

(8.55)
where γ (k) is defined in the same manner as in the analysis of the Prats problem
carried out in terms of Darcy’s law, namely

γ (k) = σ λ(k) + i k Pe . (8.56)

The eigenfunction h(z) can be expressed as

h(z) = sin(nπ z) , n = 1, 2, 3, . . . , (8.57)

so that the boundary conditions (8.54) are satisfied, while substitution of Eq. (8.57)
into Eq. (8.55) yields the dispersion relation

[
(1 + 2G Pe) n2 π2 + (1 + G Pe) k2

] [
n2 π2 + k2 + γ (k)

] − R k2 = 0 . (8.58)

Equation (8.58) can be solved for γ (k) to obtain

γ (k) = R k2 − [
(1 + 2G Pe) n2 π2 + (1 + G Pe) k2

] (
n2 π2 + k2

)
(1 + 2G Pe) n2 π2 + (1 + G Pe) k2

, (8.59)

with n = 1, 2, 3, . . . .

8.3.2 Convective Instability

The analysis of the convective instability for the Prats problem with form-drag effect
has been carried out by Rees [13].

By recalling that λ = η − iω and by taking into account Eq. (8.56), the imaginary
part of the dispersion relation (8.58) yields

(σ ω − k Pe)
[
(1 + 2G Pe) n2 π2 + (1 + G Pe) k2

] = 0 . (8.60)

Thus, we obtain just the same expression of ω as given by Eq. (8.20) for the case
where the validity of Darcy’s law is invoked,

ω = k Pe

σ
. (8.61)



8.3 Prats Problem with Form-Drag Effect 197

As a consequence, we reach the same conclusion discussed for the case of Darcy’s
flow. The phase velocity of the normal mode with wave number k is a constant,
ω/k = Pe/σ . On the other hand, the expression of the growth rate η is inferred from
Eq. (8.59),

η = R k2 − [
(1 + 2G Pe) n2 π2 + (1 + G Pe) k2

] (
n2 π2 + k2

)
σ

[
(1 + 2G Pe) n2 π2 + (1 + G Pe) k2

] , (8.62)

and it depends explicitly on the form-drag parameter G.
Convective instability arises when the growth rate η becomes positive. Equa-

tion (8.62) implies that this is the case when

R >

(
π2 + k2

)2
k2

+ G Pe

(
2π2 + k2

) (
π2 + k2

)
k2

, (8.63)

while the neutral stability condition is written as

R =
(
π2 + k2

)2
k2

+ G Pe

(
2π2 + k2

) (
π2 + k2

)
k2

. (8.64)

Equations (8.63) and (8.64) are relative to modes with n = 1. In fact, these modes
yield the least threshold for attaining positive growth rates,η > 0. In the limitG → 0,
that is switching off the form-drag effect, we recover the neutral stability function
R(k) determined for the Prats problemmodelled by Darcy’s law, given by Eq. (8.22).
The effect of the form-drag coefficient is a stabilisation of the basic state. In fact, for
a given k, the neutral stability value of R, defined by the right-hand side of Eq. (8.64),
is an increasing function of the form-drag parameter G. The larger is G, the larger
is the value of R needed for the onset of convective instability. The critical values of
k and R are given by

kc = π

(
1 + 2G Pe

1 + G Pe

)1/4

, Rc = π2
(√

1 + 2G Pe + √
1 + G Pe

)2
. (8.65)

As expected, in the Darcy’s law limiting case, G → 0, the critical values of k and R
coincide with those expressed by Eq. (7.83).

Unlike the case where Darcy’s law hold, when G > 0 the neutral stability con-
dition (8.64) is influenced by the Péclet number, Pe, through the product G Pe. On
the other hand, when the basic horizontal flow has a zero rate, Pe → 0, the convec-
tive stability analysis of the Prats problem is not influenced by the form-drag effect.
In this limit, the neutral stability condition and the critical values (kc,Rc) coincide
with those found for the Horton–Rogers–Lapwood problem, as we pointed out in
Sect. 7.6.4.
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Fig. 8.6 Prats problem with
form-drag effect: neutral
stability curves in the (k,R)

plane for different values of
G Pe
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Fig. 8.7 Prats problem with
form-drag effect: plot of kc
versus G Pe
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A graphical representation of the neutral stability condition as described by
Eq. (8.64) is provided in Fig. 8.6. The stabilising effect of the increasing param-
eter G Pe is clearly illustrated in this figure.

Plots of kc and Rc versus G Pe are reported in Figs. 8.7 and 8.8. These figures
clearly indicate that both the critical value of k and that of R, given by Eq. (8.65),
increase with the intensification of the form-drag effect.
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Fig. 8.8 Prats problem with
form-drag effect: plot of Rc
versus G Pe
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8.3.3 Absolute Instability

The detection of the parametric transition to absolute instability involves the study
of the asymptotic behaviour at large times for wave packet disturbances governed by
Eq. (8.52). Such wave packets are still given by Eq. (8.23), with λ(k) now given by
Eqs. (8.56) and (8.59), namely

σ λ(k) = R k2 − [
(1 + 2G Pe) n2 π2 + (1 + G Pe) k2

] (
n2 π2 + k2

)
(1 + 2G Pe) n2 π2 + (1 + G Pe) k2

− i k Pe ,

(8.66)

with n = 1, 2, 3, . . . . We follow the usual procedure, so that our first step is deter-
mining the saddle points of λ(k). This means finding the roots of equation

λ′(k) = 0 , (8.67)

in the complex plane, k ∈ C. On account of Eq. (8.66), Eq. (8.67) yields

2 k R (1 + 2G Pe) n2π2

[
(1 + 2G Pe) n2π2 + (1 + G Pe) k2

]2 = 2 k + iPe . (8.68)

The solution of Eq. (8.68) to yield the saddle points and the evaluation of the associ-
ated values of R by setting 	(λ(k)) = 0 goes much in the same manner as described
in Sect. 8.2.4 relative to the case of Darcy’s flow regime. When the form-drag effect
is important, the position of the saddle point depends not only on Pe but also
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on G. Unlike in the case of convective instability, where the neutral stability
condition depends just on the product G Pe, here the two parameters G and Pe
act independently, as made evident by Eqs. (8.67) and (8.68). What we concluded
in Sect. 8.2.4 for the case Pe = 0 still holds for every G > 0. In fact, the form-drag
contribution to the momentum balance is ineffective when Pe = 0. This means that
Eq. (8.34) holds for every value of G if Pe = 0.

The evaluation of the saddle points depends significantly on G. Thus, with n = 1,
Pe = 10 and G = 0.05, Eq. (8.36) is now replaced by

k0 = ± 3.78103 − i 2.02087 , R = 99.7984 ,

k0 = ± 2.13913 + i 3.93823 , R = −67.5161 ,

k0 = i 1.57971 , R = 53.9911 ,

k0 = − i 6.82254 , R = 33.9434 . (8.69)

The determination of the saddle points identifying the transition to absolute instability
is straightforward.We exclude those leading to a negativeR, and those withR smaller
than Rc. With Pe = 10 and G = 0.05, Eq. (8.65) yields Rc = 68.7329. Thus, we
conclude that the saddle points which are relevant for the onset of absolute instability
are k0 = ± 3.78103 − i 2.02087 and that Ra = 99.7984.

Tracking the threshold conditions for absolute instability, with a given G, means
recording the evolution of the saddle points as Pe increases above zero.We start from
the pair given by Eq. (8.35), and we approach asymptotically the regime defined by
the limit Pe → ∞. We can study this asymptotic regime by recognising that the
correct scaling of R at large Pe is not given by Eq. (8.38), but we have

R = ζ G Pe2 , (8.70)

instead.
Then, we keep the parameters ζ and G finite while Pe → ∞, so that Eqs. (8.39)

and (8.40) are now rewritten as

4 k ζ n2π2

(2 n2π2 + k2)2
= i , (8.71)

and
σ λ(k)

Pe
= ζ k2

2 n2π2 + k2
− i k , n = 1, 2, 3, . . . . (8.72)

One identifies the saddle points
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k0 = ± π n

2

√
7 + √

17

2
− iπ n

2

√
5 + 3

√
17

2
≈ (± 3.70440 − i 4.62910) n ,

(8.73)
as associated with the positive value

ζ = π n

4

√
51

√
17 − 107

2
≈ 5.64390 n . (8.74)

Thus, we identify the threshold to absolute instability in the limiting case Pe → ∞
by setting n = 1, namely

Ra

G Pe2
= π

4

√
51

√
17 − 107

2
≈ 5.64390 . (8.75)

The migration of the saddle points, as Pe increases above zero, starting from those
found for Pe = 0, is illustrated in Fig. 8.9. The top left frame, relative to G = 0, is
congruent with Fig. 8.2. A comparison with the top right frame of Fig. 8.9, relative
to G = 0.01, highlights the discontinuity in the large Pe behaviour when G switches
from0 to an arbitrarily small, but positive, value. This is a consequence of the different
behaviours definedbyEqs. (8.43) and (8.75). IfG = 0,Ra ∼ PewhenPe is extremely
large, while Ra ∼ Pe2 whenG > 0 and Pe � 1. In fact, the plots reported forG = 0
and G = 0.01 compare well for Pe < 5, while an increasing discrepancy is detected
for higher values of Pe. The evolution of these plots as G becomes larger and larger
is displayed in the other frames of Fig. 8.9, relative to G = 0.02, 0.05, 0.1, 0.2.
What is common to all the frames with G > 0 is the position of the saddle points for
Pe = 0 and Pe → ∞.

Figure 8.10 shows the thresholds to convective instability,R = Rc, and to absolute
instability, R = Ra, versus Pe. Different frames are relative to different values of G.
We note that the gap between the values of Ra and Rc increases rapidly with Pe,
starting from 0 when Pe = 0 and tending to infinity when Pe → ∞. The frame for
G = 0 is congruent with the plots provided in Fig. 8.4. As we already pointed out,
this is the only case where Rc is independent of Pe. When G > 0, Rc increases with
Pe approaching an asymptotic regime where

Rc

G Pe
= π2

(
1 + √

2
)2 ≈ 57.5243 , (8.76)

whenPe � 1. Equation (8.76) is a consequence of Eq. (8.65). A comparison between
Eqs. (8.75) and (8.76) reveals that Ra grows more rapidly than Rc for large values of
Pe, so that

Ra

Rc
=

(
3
√
2 − 4

) √
51

√
17 − 107

8π
Pe ≈ 0.0981134Pe . (8.77)
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Fig. 8.9 Prats problemwith form-drag effect: migration of the pertinent saddle points, with increas-
ing values of Pe and fixed values of G, for the threshold to absolute instability
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Fig. 8.10 Prats problem with form-drag effect: thresholds Rc and Ra to convective and absolute
instabilities versus Pe, with increasing values of G
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Fig. 8.11 Prats problem
with form-drag effect: plots
of Ra/(Rc Pe) versus Pe
within the range
0.01 � G � 0.2
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Equation (8.77) is to be intended as an asymptotic formula. Evidently, it does not
make any good sense if Pe is smaller than approximately 10.19, as it would predict
Ra < Rc, which is absurd. Interestingly enough, Eq. (8.77) reveals that the asymptotic
behaviour of the ratio Ra/Rc is independent of G > 0.

Interestingly enough, on account of Eqs. (7.83) and (8.43), relative to the case
G = 0, Eq. (8.77) does not hold true in the Darcy’s flow limit, as we have

Ra

Rc
=

√
51

√
17 − 107

32π
Pe ≈ 0.101089Pe . (8.78)

In practice, the discrepancy between Eq. (8.78), for G = 0, and Eq. (8.77), for any
G > 0, is not very strong, but it is symptomatic of the difference in the asymptotic
behaviour detected in these cases when Pe � 1.

Figure 8.11 displays the trend of Ra/(Rc Pe) versus Pe for different values of
G within the range 0.01 � G � 0.2. The dependence on G is barely visible, and
it is concentrated in a narrow region between Pe = 10 and Pe = 100. This is an
interesting, to some extent expected, behaviour. In fact, when Pe � 1, one has the
asymptotic formula Ra/(Rc Pe) = 1/Pe, which is independent of G exactly as it
happens with Eq. (8.77) for the limiting case Pe � 1. That a slight dependence on
G is indeed present is better illustrated in Fig. 8.12, where the same data reported in
Fig. 8.11 are zoomed in the range 10 � Pe � 100.

A check that the holomorphy requirement is satisfied in the limiting casePe → ∞
is illustrated in Fig. 8.13. This figure displays the behaviour of 	(λ) as a function of
the real and imaginary parts of k. Much in the same manner as Fig. 8.3, we reckon
that Fig. 8.13 suggests the possibility of a regular deformation of the path �(k) = 0
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Fig. 8.12 Prats problem
with form-drag effect: plots
of Ra/(Rc Pe) versus Pe
within the range
0.01 � G � 0.2
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Fig. 8.13 Prats problem
with form-drag effect: map
of the isolines of
σ 	(λ)/Pe = Λr (black
solid lines) for the limiting
case Pe → ∞ with
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are the saddle points, while
the grey lines are the lines of
steepest descent. The black
asterisk denotes the
singularity of λ(k) at
k = −iπ

√
2

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

••

Λr = 2

Λr = 2 Λr = 2

Λr = −2

Λr = −2

(k)

(k
)

so that the saddle points k0, given by Eq. (8.73), are locally crossed along lines of
steepest descent. By the adjective “regular”, we mean that no singularity of 	(λ) is
swept in the deformation, so that the region in the complex plane between �(k) = 0
and the deformed path does not include any singularity. We need to move along
paths of steepest descent only in a neighbourhood of each saddle point. In fact, the
Gaussian approximation of the integrand, in the wave packet representation (8.23),
is rapidly damped as we depart from the saddle point. We recall that, as illustrated
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in Sect. 3.5.3, the Gaussian approximation (3.159) of a time-dependent integral is
the core of the steepest-descent method for capturing the large-time behaviour of the
integral. In Fig. 8.13, just one singularity is displayed, namely k = −iπ

√
2, as one

expects by inspecting equation (8.72) with n = 1.

8.4 Moving to Three Dimensions

In the formulation of the Prats problem, discussed in Sect. 8.2, we adopted a two-
dimensional scheme disregarding the dependence of all physical fields on the span-
wise coordinate y. Such a scheme is legitimate as far as the porous channel has a
very small widthH in the y-direction, namelyH/L � 1. Assuming non-infinitesimal
values of H/Lmeans relaxing the assumption of two-dimensional flow. In this case,
the velocity, pressure and temperature fields are to be considered as functions of
(x, y, z, t). We rely on Darcy’s law, for the sake of simplicity, namely on Eq. (7.61),
where we consider the effect of viscous dissipation as negligible.

One may envisage a lateral confinement along the spanwise y-direction with adi-
abatic and impermeable sidewalls. Hence, a streamfunction formulation is out of the
question, as it is feasible only for two-dimensional flows, while a pressure formu-
lation is possible. Starting from Eq. (7.61), where we neglect the viscous dissipa-
tion term ν uj uj/(K c), we evaluate the divergence of the local momentum balance
equation and we employ the local mass balance equation. Thus, in a dimensionless
formulation, we write

∂2P

∂x2
+ ∂2P

∂y2
+ ∂2P

∂z2
− R

∂T

∂z
= 0 ,

σ
∂T

∂t
− ∂P

∂x

∂T

∂x
− ∂P

∂y

∂T

∂y
−

[
∂P

∂z
− R (T − r)

]
∂T

∂z

= ∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
. (8.79)

where r = (T0 − T2)/(T1 − T2) is a parameter depending on the choice of the refer-
ence temperature, T0, for the Oberbeck–Boussinesq approximation.

In Eq. (8.79), a scaling consistent with Eq. (8.1) has been implicitly adopted and
we allowed for the definition of the dimensionless quantity P, namely

K

μα
P → P . (8.80)

The basic solution with a uniform velocity profile, given by Eqs. (8.8)–(8.10), still
holds. It can be reformulated as
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∂Pb

∂x
= −Pe ,

∂Pb

∂y
= 0 ,

∂Pb

∂z
= R (1 − z − r) , Tb = 1 − z . (8.81)

We note that Eq. (8.81) reflects the adiabatic and impermeable nature of the sidewalls,
as one must satisfy the boundary conditions ∂T/∂y = 0 and ∂P/∂y = 0. Hereafter,
we will assume the sidewalls to be placed at the dimensionless positions y = 0, τ ,
where

τ = H

L
. (8.82)

The small perturbations of the basic state (8.81) are defined as

P = Pb + ε Π , T = Tb + ε Θ . (8.83)

On substituting Eq. (8.83) into Eq. (8.79) and neglecting the termsO(ε2) leads to the
governing equations for the three-dimensional perturbations,

∂2Π

∂x2
+ ∂2Π

∂y2
+ ∂2Π

∂z2
− R

∂Θ

∂z
= 0 ,

σ
∂Θ

∂t
+ Pe

∂Θ

∂x
+ ∂Π

∂z
− RΘ = ∂2Θ

∂x2
+ ∂2Θ

∂y2
+ ∂2Θ

∂z2
. (8.84)

Instead of Eq. (8.12), the boundary conditions are now written as

y = 0, τ : ∂Π

∂y
= 0 ,

∂Θ

∂y
= 0 ,

z = 0, 1 : ∂Π

∂z
= 0 , Θ = 0 . (8.85)

We note that Eqs. (8.84) and (8.85) do not depend on the reference temperature
parameter r = (T0 − T2)/(T1 − T2). This means that the stability analysis is not
influenced by the choice of T0 and, hence, by the value of r. This is an important
fact regarding instability in a horizontal channel. We anticipate that the conclusion
becomes quite the opposite if we consider flow in a vertical porous channel, as it will
become clear in Sect. 9.2.

The perturbations (Π,Θ) are now written as wave packets by employing the
Fourier transform,

Π̃(k, y, z, t) = 1√
2π

∞∫

−∞
e−i k x Π(x, y, z, t) d x ,
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Π(x, y, z, t) = 1√
2π

∞∫

−∞
ei k x Π̃(k, y, z, t) d k ,

Θ̃(k, y, z, t) = 1√
2π

∞∫

−∞
e−i k x Θ(x, y, z, t) d x ,

Θ(x, y, z, t) = 1√
2π

∞∫

−∞
ei k x Θ̃(k, y, z, t) d k . (8.86)

We can now separate the dependence on y and z, by writing

Π̃(k, y, z, t) =
∞∑

�=0

∞∑
n=1

Π̃�,n(t) cos

(
� π y

τ

)
cos(nπ z) ,

Θ̃(k, y, z, t) =
∞∑

�=0

∞∑
n=1

Θ̃�,n(t) cos

(
� π y

τ

)
sin(nπ z) . (8.87)

We easily reckon that Eq. (8.87), when substituted in Eq. (8.86), allows one to infer
that the boundary conditions at y = 0, τ and z = 0, 1 declared in Eq. (8.85) are iden-
tically satisfied.

The three-dimensional formulation expressed by Eq. (8.87) includes the two-
dimensional modes discussed in Sect. 8.2. Such modes are, in fact, those correspond-
ing to � = 0 as this selection suppresses any dependence on y.

By applying the Fourier transform to Eq. (8.84), one obtains

(
n2 π2 + �2 π2

τ 2
+ k2

)
Π̃�,n + nπ R Θ̃�,n = 0 ,

(
n2 π2 + �2 π2

τ 2
+ k2

)
Θ̃�,n + σ

d Θ̃�,n

d t
+ i k Pe Θ̃�,n − nπ Π̃�,n − R Θ̃�,n = 0 ,

(8.88)
where Eq. (8.87) has been taken into account.

Equations (8.88) can be solved by writing

Π̃�,n(t) = Π̃�,n(0) e
λ(k) t , Θ̃�,n(t) = −

n2 π2 + �2 π2

τ 2
+ k2

nπ R
Π̃�,n(0) e

λ(k) t ,

(8.89)
with the dispersion relation now given by
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σ λ(k) =
R

(
�2 π2

τ 2
+ k2

)
−

(
n2π2 + �2 π2

τ 2
+ k2

)2

n2π2 + �2 π2

τ 2
+ k2

− i k Pe ,

n = 1, 2, 3, . . . , � = 0, 1, 2, . . . . (8.90)

8.4.1 Convective Instability

Following the usual procedure, in the analysis of convective instability, we must
remember that λ = η − iω, where η is the growth rate of the normal mode and ω is
its angular frequency. Thus, by considering the real part and the imaginary part of
the dispersion relation (8.90), we obtain

η = R κ2 − (n2π2 + κ2)2

σ
(
n2π2 + κ2

) , ω = k Pe

σ
, n = 1, 2, 3, . . . , (8.91)

where

κ2 = �2 π2

τ 2
+ k2 , � = 0, 1, 2, . . . . (8.92)

A comparison between Eq. (8.91) and its two-dimensional counterpart (8.20) imme-
diately suggests that the neutral stability condition has formally the same expression
as for the two-dimensional case. More precisely, it is given by Eq. (8.22) with param-
eter κ instead of the wave number k,

R = (π2 + κ2)2

κ2
. (8.93)

This means that the onset of convective instability is still triggered by the n = 1
modes. Hence, the minimum of the neutral stability curve is now expressed as

κc = π , Rc = 4π2 , (8.94)

which replaces Eq. (7.83). There is just one difference: κ appears instead of k. This
means that, in general, there is not only a two-dimensional mode (� = 0) as a pos-
sible source of convective instability. Obviously, for such mode, one recovers the
result found with the two-dimensional analysis, namely kc = π , consistently with
Eq. (7.83). However, with three-dimensional modes (� �= 0), one has

kc = π

√
1 − �2

τ 2
. (8.95)
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Evidently, a mode with � = 1 can be involved only if τ � 1, a mode with � = 2
can be involved only if τ � 2, and so on. This simple observation is coherent with
our statement that a two-dimensional analysis is a reliable model when τ = H/L is
small enough. In particular, the two-dimensional nature of the critical mode, with
κc = kc = π , arises when τ < 1 as we can only have � = 0 in this case, meaning y
independent modes. When 1 � τ < 2, we have two modes satisfying the criticality
condition expressed by Eq. (8.95), namely

� = 0 , kc = π ,

� = 1 , kc = π

√
1 − 1

τ 2
. (8.96)

When 2 � τ < 3, we have three modes, namely

� = 0 , kc = π ,

� = 1 , kc = π

√
1 − 1

τ 2
,

� = 2 , kc = π

√
1 − 4

τ 2
. (8.97)

When 3 � τ < 4, we have four modes, and so forth.
The plurality of possible modes triggering the onset of convective instability

widens as τ increases. The simplest case being that with τ < 1 where only the two-
dimensional mode with kc = π is involved.

The completely different types of two-dimensional modes potentially driving
convective instability are those with k = 0 and � �= 0. Such modes were not included
in the analysis conveyed in Sect. 8.2.3 as they display a dependence on the pair of
coordinates (y, z). Furthermore, the modes envisaged in Sect. 8.2.3 do not lead to
any instability when k → 0, as testified by the singularity at k = 0 in the right-hand
side of Eq. (8.22). Equations (8.92) and (8.93) depict a different situation, with the
neutral stability value of R being a function of τ for every � �= 0 and k = 0. In
particular, there exists a range of the aspect ratio τ where the modes with � = 1 are
those leading to the lowest neutral stability value of R. There exists a neighbouring
range of τ where the modes with � = 2 prevail, and so forth. The transition from the
�th mode to the (� + 1)th mode in the neutral stability condition with an increasing
aspect ratio τ is illustrated in Fig. 8.14. This figure shows that, as τ increases, larger
and larger values are involved in the onset of convective instability. From Eqs. (8.92)
and (8.93), one may infer that the transition value of τ from the range where the �th
mode triggers the onset of convective instability to the range where the (� + 1)th
mode prevails is

τ = √
� (� + 1) . (8.98)
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Fig. 8.14 Three-
dimensional analysis of the
Prats problem: the neutral
stability condition for the
k = 0 modes in the (τ,R)

plane (solid line). The
vertical dotted lines mark the
transition between different �
modes. The horizontal dotted
line denotes the critical value
of R
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We note that, on account of Eqs. (8.92) and (8.93), the critical condition R = Rc =
4π2 occurs with k = 0 modes for any τ = �, where � = 1, 2, 3, . . . . Hence, the
neutral stability curve displayed in Fig. 8.14 displays a sequence of minima for
τ = 1, 2, 3, . . . . This conclusion reflects the geometry of the preferred convection
cells for the onset of convective instability, i.e., the square geometry. This aspect was
pointed out in Sect. 7.8 and illustrated in Fig. 7.13, with reference to the Horton–
Rogers–Lapwood problem with impermeable and isothermal boundaries.

8.4.2 Absolute Instability

The analysis of the absolute instability is to be based on the dispersion relation (8.90)
and on the derivative of λ(k). As usual, λ′(k) is to be set equal to zero in order to
determine the saddle points, whereas the condition 	(λ(k)) = 0 serves to establish
the associated value of R. Thus, starting from Eq. (8.90), the condition λ′(k) = 0
reads

2 k R n2π2

(
n2π2 + �2 π2

τ 2
+ k2

)2 = 2 k + iPe . (8.99)

Equations (8.90) and (8.99), differently from Eqs. (8.25) and (8.27), display a depen-
dence on the ratio �/τ . Any value of such ratio is effectively a real positive number
that may correspond to different � modes and to different aspect ratios τ . Relatively
to the absolute instability analysis, it is quite evident that the � = 0 modes are to
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be considered equivalent to � �= 0 modes having an infinite aspect ratio τ . In other
words, for τ → ∞ and for each Péclet number, Pe, the absolute instability threshold,
Ra, coincides with that evaluated for the two-dimensional case reported in Sect. 8.2.4.

The two-dimensional case is represented by �/τ = 0. Then, we have to test the
behaviour of the saddle points k0 and to the corresponding values of R when �/τ

increases above 0. We consider the Péclet number Pe = 10 and n = 1, so that the
saddle points for the two-dimensional case �/τ = 0 are expressed by Eq. (8.36). If
we take �/τ = 0.01, we obtain

k0 = ± 3.39291 − i 1.89310 , R = 57.8045 ,

k0 = ± 1.84689 + i 3.39165 , R = −36.0948 ,

k0 = i 1.51479 , R = 25.0108 ,

k0 = − i 6.51499 , R = 25.0006 ,

k0 = i 0.000500177 , R = 98690.8 . (8.100)

From Eqs. (8.36) and (8.100), we conclude that there is a little difference in the
saddle points for �/τ = 0 and those for �/τ = 0.01. There is indeed a new one,
purely imaginary and close to the origin of the k plane, where R is extremely large,
R = 98690.8. We expect that such saddle point is moved to the origin, with R → ∞,
when �/τ → 0. This is the reason why the two-dimensional analysis did not reveal
any such point. The other saddle points reported in Eq. (8.100) can be easily put
in correspondence with those listed in Eq. (8.36). The numerical values are slightly
altered with respect to the two-dimensional case. The interesting fact is that there is
no good candidate for the threshold value Ra that can be gathered from Eq. (8.100) to
replace that obtained with the two-dimensional analysis, namely Ra = 57.8036. In
fact, the change from �/τ = 0 to �/τ = 0.01 does not provide any saddle pointwhose
corresponding R is both larger than Rc = 4π2 and smaller than the two-dimensional
threshold value for absolute instability, Ra = 57.8036. Just the same happens if we
further increase to �/τ = 0.1. We get

k0 = ± 3.38719 − i 1.90297 , R = 57.9011 ,

k0 = ± 1.84401 + i 3.40539 , R = −36.2194 ,

k0 = i 1.50091 , R = 26.1248 ,

k0 = −i 6.52134 , R = 25.0581 ,

k0 = i 0.0518395 , R = 980.612 . (8.101)
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The outcome from Eqs. (8.100) and (8.101) is that there is no good candidate that
emerges from the three-dimensional analysis for the replacement of our threshold
for absolute instability, Ra = 57.8036. One can check the saddle points for larger
values of �/τ . With �/τ = 1, we find

k0 = ± 3.06328 − i 2.81016 , R = 68.5544 ,

k0 = ± 1.65805 + i 4.59899 , R = −47.3176 ,

k0 = −i 7.16371 , R = 30.5193 . (8.102)

With �/τ = 10, we obtain

k0 = ± 0.821325 + i 31.5818 , R = −315.833 ,

k0 = −i 32.3801 , R = 228.491 ,

k0 = −i 30.4151 , R = 435.856 ,

k0 = −i 5.05459 , R = 1032.32 . (8.103)

Finally, with �/τ = 100 we have

k0 = ± 0.278039 + i 314.175 , R = −3141.75 ,

k0 = −i 314.442 , R = 2811.27 ,

k0 = −i 313.876 , R = 3511.08 ,

k0 = −i 5.00050 , R = 98740.8 . (8.104)

The conclusion drawn from Eqs. (8.100)–(8.104) is that, no matter how much we
increase the value of �/τ above zero, the three-dimensional analysis does not alter the
findings of the two-dimensional analysis. The correct threshold to absolute instability
for Pe = 10 is detected by setting �/τ = 0, namely Ra = 57.8036.

The same type of analysis can be carried out with different values of the Péclet
number, Pe. Table 8.2 is relative to Pe = 5, while Table 8.3 reports the saddle points
for Pe = 20.

Both these tables allow one to reach the same conclusion declared for Pe = 10.
On inspecting the behaviour of the saddle points by increasing the value of �/τ above
zero, one does not detect any case where the value of R corresponding to a given
saddle point is both larger or equal to Rc and smaller than the value of Ra estimated
with the two-dimensional analysis (�/τ = 0). This means that, whatever is the value
of Pe and τ , the three-dimensional analysis does not provide any change with respect
to the findings of the two-dimensional analysis, succinctly reported in Table 8.1. In
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Table 8.2 Three-dimensional analysis of the Prats problem: saddle points of λ(k) and correspond-
ing values of R for Pe = 5, n = 1 and different values of �/τ

�/τ k0 R

0 ± 3.29255 − i 1.12014 45.0277

± 1.51430 + i 3.36050 −17.3610

i 2.13114 6.25

−i 4.63114 6.25

0.01 ± 3.29245 − i 1.12022 45.0281

± 1.51428 + i 3.36064 −17.3617

i 2.13122 6.25136

−i 4.63126 6.25029

i 0.000250041 98709.5

0.1 ± 3.28256 − i 1.12803 45.0689

± 1.51173 + i 3.37459 −17.4274

i 2.13932 6.38733

−i 4.64281 6.27873

i 0.0254128 1000.38

1 ± 2.60121 − i 1.96765 50.8973

± 1.34343 + i 4.57619 −23.1883

−i 5.67901 8.87912

10 ± 0.601695 + i 31.5779 −157.892

−i 32.0817 98.1192

−i 30.7344 253.875

−i 2.52575 1013.18

100 ± 0.197378 + i 314.175 −1570.88

−i 314.359 1341.65

−i 313.960 1839.27

−i 2.50025 98722.0

other words, the value of Ra for a given Pe is independent of the aspect ratio τ . This
conclusion is in no way the result of a formal mathematical proof, but rather the
outcome of an inductive reasoning based on numerical data.

8.4.3 On the Different Meanings of Three Dimensionality

The three-dimensional nature of the instability has beenmodelled by assuming a pair
of plane-parallel sidewalls bounding laterally the horizontal flow. Thewhole analysis
has been based on the assumption that the sidewalls are adiabatic and impermeable.

There are two levels of arbitrariness in our model of three dimensionality. One is
the existence and the plane-parallel geometry of the lateral boundaries. The other is
the type of boundary conditions assumed at the sidewalls.
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Table 8.3 Three-dimensional analysis of the Prats problem: saddle points of λ(k) and correspond-
ing values of R for Pe = 20, n = 1 and different values of �/τ

�/τ k0 R

0 ± 3.24476 − i 2.68308 91.9528

± 2.13593 + i 3.38608 −74.7989

i 0.905049 100

−i 10.9050 100

0.01 ± 3.24472 − i 2.68320 91.9548

± 2.13590 + i 3.38622 −74.8013

i 0.904350 100.121

−i 10.9051 100.001

i 0.00100112 98615.7

0.1 ± 3.24132 − i 2.69522 92.1583

± 2.13278 + i 3.39985 −75.0395

i 0.822457 115.111

−i 10.9069 100.083

i 0.113910 891.598

1 ± 3.10130 − i 3.76867 112.140

± 1.93786 + i 4.59367 −96.5459

−i 11.1053 108.208

10 ± 1.08953 + i 31.5869 −631.828

−i 32.8959 513.232

−i 29.8254 775.094

−i 10.1388 1109.05

100 ± 0.390162 + i 314.175 −6283.50

−i 314.562 5812.17

−i 313.756 6793.05

−i 10.0010 98815.8

The absence of lateral boundaries can be intended as a limiting case of the analysis
carried out so far, with τ → ∞. There is a spanwise wave number given by ks =
� π/τ that displays a discrete spectrum for every finite τ . However, in the limiting
case, the spectrum becomes continuous as the distance between two neighbouring
wave numbers, π/τ , tends to zero when τ → ∞. Therefore, the normal modes
defined by Eqs. (8.86) and (8.87) yield a situation where such modes propagate along
a direction described by awave vector with components (k, ks) lying in the horizontal
(x, y) plane. Thus, the lateral boundaries, when moved to infinity, are ineffective for
the convective and absolute stability analysis.

The role of the boundary conditions prescribed at the lateral boundaries, when
τ is finite, is another matter. In fact, these boundary conditions are quite impor-
tant in defining the y-dependent eigenfunctions to be used in Eq. (8.87) instead of
the cosine, as well as their corresponding eigenvalues to be employed instead of
ks = � π/τ . To a far deeper extent, the boundary conditions prescribed at the sidewalls
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are of paramount importance in assessing the type of stationary flow solution to be
considered as the basic state. Not necessarily any possible model of sidewalls can be
compatible with the uniform flow endowed with a purely vertical temperature gradi-
ent, as described by Eq. (8.81). The nature of the basic state may be deeply influenced
by the temperature and pressure constraints prescribed on the lateral boundaries. The
sidewalls assumed in the stability analysis carried out in Sects. 8.4.1 and 8.4.2 are a
natural expression of the heating-from-below scenario, where the onset of convection
cells is a consequence of the vertical temperature gradient induced by the thermal
forcing at the lower boundary wall.
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Chapter 9
Transition to Absolute Instability
in Porous Media: Numerical Solutions

9.1 A Variant Prats Problem with Uniform Heat Flux

Let us consider a horizontal porous channel having a rectangular cross section with
height L. We adopt a two-dimensional description where the coordinates are chosen
so that x is the longitudinal horizontal axis and z is the transverse vertical axis. We
are assuming heating from below with a uniform heat flux, q0, at z = 0, while the
upper boundary, z = L, is kept isothermal with temperature T2. We point out that
this setup is just the same considered in Sect. 7.7 as a possible variant of the Horton–
Rogers–Lapwood problem. By analogy with the Prats problem [4], the presence of
a horizontal flow along the x-direction is taken into account.

9.1.1 Dimensionless Formulation

The velocity field, u = (u,w), and the temperature field, T , as well as the coordi-
nates, (x, z), and time, t, can be written in a dimensionless form by adopting the
transformation

(u,w)
L

α
→ (u,w) , (T − T2)

κeff

q0 L
→ T ,

(x, z)
1

L
→ (x, z) ,

t

L2/α
→ t , (9.1)

whereα is the average thermal diffusivity andκeff is the average thermal conductivity
of the porous medium. Through this scaling, the Oberbeck–Boussinesq approxima-
tion of the governing local balance equations is still given by Eq. (8.2), where the
Darcy–Rayleigh number is now defined as
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R = g β q0 K L2

ν α κeff
, (9.2)

while the boundary conditions are expressed as

z = 0 : w = 0 ,
∂T

∂z
= −1 ,

z = 1 : w = 0 , T = 0 . (9.3)

By analogy with what we did for the analysis of the Prats problem carried out in
Chap.8, we introduce a streamfunction ψ , defined as

u = ∂ψ

∂z
, w = − ∂ψ

∂x
, (9.4)

so that the governing local balance equations are now formulated as

∂2ψ

∂x2
+ ∂2ψ

∂z2
+ R

∂T

∂x
= 0 ,

σ
∂T

∂t
+ ∂ψ

∂z

∂T

∂x
− ∂ψ

∂x

∂T

∂z
= ∂2T

∂x2
+ ∂2T

∂z2
. (9.5)

With this formulation, we can express the boundary conditions (9.3) as

z = 0 : ∂ψ

∂x
= 0 ,

∂T

∂z
= −1 ,

z = 1 : ∂ψ

∂x
= 0 , T = 0 . (9.6)

The stationary solution, (ψb,Tb), of the governing equations (9.5) and boundary
conditions (9.6) is still expressed by Eq. (8.8). It describes a uniform velocity in the
x-direction, with a vertical temperature gradient,

ψb = Pe z , Tb = 1 − z . (9.7)

Here, Pe is the Péclet number relative to the basic horizontal and uniform flow in
the porous channel, defined by Eq. (8.9).

The next step is, as usual, assuming small amplitude perturbations of the basic
stationary flow,

ψ = ψb + ε Ψ , T = Tb + ε Θ , (9.8)

such that |ε| � 1. The linearised equations for the perturbation fields (Ψ,Θ) are
solutions of the partial differential equations
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∂2Ψ

∂x2
+ ∂2Ψ

∂z2
+ R

∂Θ

∂x
= 0 ,

σ
∂Θ

∂t
+ Pe

∂Θ

∂x
+ ∂Ψ

∂x
= ∂2Θ

∂x2
+ ∂2Θ

∂z2
, (9.9)

with the boundary conditions

z = 0 : ∂Ψ

∂x
= 0 ,

∂Θ

∂z
= 0 ,

z = 1 : ∂Ψ

∂x
= 0 , Θ = 0 . (9.10)

We express the perturbations, (Ψ,Θ), through their Fourier transforms, (Ψ̃ , Θ̃), as
exploited in Eq. (8.13), and we write

Ψ̃ = f (z) eλ(k) t , Θ̃ = − i k h(z) eλ(k) t . (9.11)

Thus, the differential eigenvalue problem for the stability analysis is obtained from
Eqs. (9.9) and (9.10) and reads

(
d2

d z2
− k2

)
f + R k2 h = 0 ,

[
d2

d z2
− k2 − γ (k)

]
h + f = 0 ,

z = 0 : f = 0 ,
d h

d z
= 0 ,

z = 1 : f = 0 , h = 0 , (9.12)

where
γ (k) = σ λ(k) + i k Pe . (9.13)

Due to the boundary conditions prescribed for the eigenfunctions (f , h), it is impos-
sible to express the solution of Eq. (9.12) in terms of a simple sine function, as in the
classical formulation of Prats problem with impermeable isothermal boundaries. In
fact, a sine function, sin(nπ z), fulfils the boundary conditions for f , but not those
for h. Obviously, Eq. (9.12) can be solved analytically by employing the character-
istic equation method, but this approach leads to an implicit dispersion relation, as
described in Sect. 7.7.2. Then, there is no great advantage in tackling the stability
analysis with this technique. A numerical solution is preferable.

Our focus is not a dispersion relation in the classical sense, but its differential
counterpart, namely the eigenvalue problem (9.12).
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9.1.2 Convective Instability

The convective instability analysis starts from the principle of exchange of stabilities.
One can employ just the same reasoning provided in Sect. 7.7.1, the only difference
is that γ appears in Eq. (9.12) instead of λ. Thus, we can prove that

�(γ ) R k2
1∫

0

|h|2 dz = 0 , (9.14)

by the same arguments employed for the proof of Eq. (7.115). Our conclusion is that
�(γ ) = 0. Since λ = η − iω, on account of Eq. (9.13), we can write

ω = k Pe

σ
. (9.15)

This is just the same conclusion drawn in Eq. (8.20) relative to the Prats problemwith
isothermal conditions at both boundaries z = 0, 1. It can be rephrased as γ = σ η.
Then, the neutral stability condition (η = 0) is determined by the numerical solution
of Eq. (9.12) with γ = 0,

(
d2

d z2
− k2

)
f + R k2 h = 0 ,

(
d2

d z2
− k2

)
h + f = 0 ,

z = 0 : f = 0 ,
d h

d z
= 0 ,

z = 1 : f = 0 , h = 0 . (9.16)

This finding allows one to establish an important fact. The neutral stability condition,
determined by the solution of Eq. (9.16), is independent of the Péclet number, Pe.
Thus, one can determine such condition for the case Pe = 0. This special case is
that examined in Sect. 7.7.2. In other words, the neutral stability curve, evaluated
numerically, is that drawn in Fig. 7.11. The solution of Eq. (9.16) is employed to
determine the numerical function R(k), i.e. the neutral stability function. In other
words, R is computed as the eigenvalue of Eq. (9.16), for every prescribed value of
k ∈ R. The result of this computation is provided in Fig. 7.11. This figure shows
the point of minimum R along the neutral stability curve, i.e. the critical point for
convective instability. The critical values of the wave number and of the Darcy–
Rayleigh number are, in fact,
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kc = 2.32621 , Rc = 27.0976 . (9.17)

Such behaviour is qualitatively the same found for the Prats problemwith isothermal
boundaries, studied in Sect. 8.2.3. The neutral stability condition is not affected by
the basic horizontal flow, and the neutral stability curve is thus the same as for the
case Pe = 0, namely for the limiting case where the Prats problem coincides with
the Horton–Rogers–Lapwood problem.

9.1.3 Absolute Instability

The study of absolute instability relies on the steepest-descent approximation of the
perturbation wave packets,

Ψ (x, z, t) = 1√
2π

∞∫
−∞

eλ(k) t+i k x f (z) d k ,

Θ(x, z, t) = − i√
2π

∞∫
−∞

k eλ(k) t+i k x h(z) d k . (9.18)

Hence, the first step is the determination of the saddle points in the complex plane,
k = k0 ∈ C, such that λ′(k) = 0. The threshold of absolute instability occurs when
the prescribed value ofR detects the condition of zero asymptotic growth,	(λ(k0)) =
0. This threshold condition defines Ra.

The basis for the evaluation of Ra is still the eigenvalue problem (9.12), together
with Eq. (9.13). However, the numerical solution of Eq. (9.12) must be approached
with the specification that k = kr + i ki is a complex variable with real part kr and
imaginary part ki. We assume Pe and R to be prescribed quantities. The fulfilment
of the saddle-point condition can be automatically implemented by forcing the con-
straint λ′(k) = 0. One can implement this constraint by doubling the order of the
differential problem (9.12). To this end, we define

f̂ = ∂f

∂k
, ĥ = ∂h

∂k
. (9.19)

Then, we obtain the extended eigenvalue problem

d2f

d z2
− k2 f + R k2 h = 0 ,

d2h

d z2
− [

k2 + σ λ(k) + i k Pe
]
h + f = 0 ,



222 9 Transition to Absolute Instability in Porous Media: Numerical Solutions

d2 f̂

d z2
− k2 f̂ + R k2 ĥ − 2 k f + 2R k h = 0 ,

d2ĥ

d z2
− [

k2 + σ λ(k) + i k Pe
]
ĥ + f̂ − (2 k + iPe) h = 0 ,

z = 0 : f = 0 ,
d h

d z
= 0 , f̂ = 0 ,

d ĥ

d z
= 0 ,

z = 1 : f = 0 , h = 0 , f̂ = 0 , ĥ = 0 , (9.20)

where we took into account that γ (k) = σ λ(k) + i k Pe and that λ′(k) = 0. The
notation seems a bit equivocal as, on writing Eq. (9.19), we intend (f , h) as functions
of k and z, while the extended eigenvalue problem iswritten by employing the symbol
of ordinary derivatives with respect z, that is d/dz. This choice is made for internal
consistency with the convention applied so far in this book, and because there are
not reasonable possibilities to mistake the meaning of this notation. We finally note
that there is no ambiguity as Eq. (9.20) involves only ordinary differential equations,
as the only derivatives employed there are derivatives with respect to z.

The solution of Eq. (9.20) can be worked out by assuming an eigenvalue problem
structure. In this sense, there is no formal difference with respect to the solution of
Eq. (9.16). In the case of problem (9.20), the procedure is more complicated because
the eigenfunctions are four, (f , h, f̂ , ĥ), instead of two, as in Eq. (9.16). Moreover,
(f , h, f̂ , ĥ) are complex-valued, while the eigenfunctions (f , h) of problem (9.16) are
real-valued. These facts do not alter the intrinsic nature of Eq. (9.20), which is the
same as that of Eq. (9.16). They are both ordinary differential eigenvalue problems.
This means that the numerical technique for their solution is, in principle, just the
same. For details, we refer the reader to Chap.10, while for alternatives such as the
compound matrix method or the Chebyshev tau method we mention the papers by
Straughan and Walker [5] and by Dongarra et al. [2].

The strategy in the solution of Eq. (9.20) is based on the general characteristics of
the saddle points k0 ∈ C pertinent for the determination of the threshold valueR = Ra

for the transition from convective to absolute instability. These characteristics are the
fulfilment of

λ′(k) = 0 , (9.21)

which is a built-in feature of the eigenvalue problem (9.20), and the requirement

	(λ(k)) = 0 . (9.22)

This requirement must be considered as an input datum, inasmuch as the value of
Pe. The output constants to be determined, namely the eigenvalues, are

	(k) , �(k) , �(σ λ(k)) , R . (9.23)
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In order to check if this solution strategy is consistent, we reformulate Eq. (9.20)
as an initial value problem, by introducing suitably defined unknown constants. We
expand the conditions at the lower boundary so that now we have

z = 0 : f = 0 ,
d f

d z
= 1 , h = a1 ,

d h

d z
= 0 ,

f̂ = 0 ,
d f̂

d z
= 0 , ĥ = a2 ,

d ĥ

d z
= 0 . (9.24)

Setting df /dz = 1 serves only to fix the, otherwise arbitrary, scale of the eigen-
functions (f , h, f̂ , ĥ). The condition df̂ /dz = 0 is a consequence of this scale-fixing
constraint. It is obtained from df /dz = 1 by taking its derivative with respect to k
and by employing Eq. (9.19). The complex constants a1 and a2 must be determined,
together with the real variables listed in Eq. (9.23), by imposing the end conditions
at the upper boundary,

z = 1 : f = 0 , h = 0 , f̂ = 0 , ĥ = 0 . (9.25)

The end conditions are relative to complex eigenfunctions. Thus, they effectively
correspond to eight real equations. They are enough to determine the four real vari-
ables given by Eq. (9.23) and the four real variables given by the real and imaginary
parts of a1 and a2. We point out that the complex constants a1 and a2 are internal
variables with no direct physical meaning. In fact, their values are a consequence
of the condition df /dz = 1 imposed to fix, in an arbitrary manner, the scale of the
eigenfunctions. A change in this scale-fixing condition alters the values of a1 and a2,
while it does not modify the values of the four real variables listed in Eq. (9.23).

We refer the reader to Chap.10 for a more detailed description of the numerical
algorithms employed and of their implementation. The framework for the evaluation
of the variables given by Eq. (9.23) is, in fact, the shooting method. Its use is based
on a root-finding technique in order to impose the end conditions (9.25). Finding
numerically the roots of Eq. (9.25) is possible if one suitably initialises the procedure
by prescribing guess values of the unknown variables to be determined. The efficient
way to achieve this task is starting from a parametric condition where the solution is
known, and then incrementing step by step the input value of Pe by small amounts,
in order to track the change of the solution with the Péclet number. The guess values
at a given step are the computed eigenvalues at the previous step. The smaller is the
step, i.e. the smaller is the amount of the Pe increment, the better is the choice of the
guess values.

In fact, a case where the value ofRa for a givenPe can be easily guessed isPe = 0.
In this case, one expects Ra = Rc = 27.0976. Consistently, in this case, one expects
also

	(k0) = ± kc = ± 2.32621 , �(k0) = 0 , �(σ λ(k0)) = 0 . (9.26)



224 9 Transition to Absolute Instability in Porous Media: Numerical Solutions

These predictions are grounded on the idea that the rest state (Pe = 0) is one where
there is no parametric gap between convective and absolute instabilities, namely
Ra = Rc. In fact, when there is no basic flow driving the perturbation downstream,
the Fourier normal modes are non-travelling, so that they amplify or damp in place.
This is a consequence of the principle of exchange of stabilities. In such situations,
even a single Fourier mode which undergoes an exponential amplification is suffi-
cient to induce an unbounded amplification, for large times, of thewhole perturbation
wave packet. Beyond this heuristic argument, the principle of exchange of stabilities
ensures that, with Pe = 0, the critical values k = ± kc and R = Rc are the saddle
points and their relative Darcy–Rayleigh number, R, yielding the threshold to abso-
lute instability. In fact, the principle of exchange of stabilities proved in Sect. 7.7.1,
namely for the case Pe = 0, ensures that �(λ(k)) = 0, while the condition of neutral
stability provides the constraint 	(λ(k)) = 0. Therefore, the neutral stability condi-
tion implies λ(k) = 0 and, hence, also λ′(k) = 0, which is the saddle point condition.
Among the neutrally stable k modes, the critical values are selected because they
correspond to the minimum condition ∂R/∂k = 0. The latter condition is implicitly
assumed on writing the absolute instability eigenvalue problem (9.20). We finally
point out that the critical wave numbers are always two, having the same absolute
value, while we generally identify kc with the positive one. The reason is easily gath-
ered from inspection of the convective instability eigenvalue problem (9.16) where
k appears only through its square, k2.

One can keep track of the gradual displacement of the saddle point starting from
the real axis k0 = ± 2.32621, when Pe = 0, to the complex k plane when Pe > 0.
Figure9.1 displays the migration of the saddle points in the k plane as Pe increases
above 0. This figure reveals that the imaginary part of k continuously decreases

Fig. 9.1 Prats problem with
isoflux lower boundary:
migration of the pertinent
saddle points, with
increasing values of Pe, for
the threshold to absolute
instability
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Fig. 9.2 Prats problem with
isoflux lower boundary: plot
of �(σ λ(k0)) versus Pe for
the saddle points k0, at the
threshold to absolute
instability, with positive or
negative 	(k0)

below 0, while the real part undergoes a non-monotonic trend. Figure9.1 can be
directly compared with Fig. 8.2, relative to the Prats problem with isothermal lower
boundary. Figures8.2 and 9.1 are indeed very similar, especially for large values
of Pe. An interesting fact regards the behaviour for the limiting case Pe → ∞. If
one considers Eq. (9.20), the asymptotic behaviour for large Péclet numbers can be
identified by writing

R = ξ Pe , σ λ = �Pe , f = fm Pe . (9.27)

By substituting Eq. (9.27) into Eq. (9.12), by employing Eq. (9.13) and by keeping
the leading terms for large Pe, one obtains

h = fm
� + i k

, (9.28)

where the modified eigenfunction fm must satisfy the differential equation

(
d2

d z2
− k2 + ξ k2

� + i k

)
fm = 0 , (9.29)

with the boundary conditions

fm(0) = 0 = fm(1) . (9.30)

Equations (9.29) and (9.30) are solved by writing
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Fig. 9.3 Prats problem with
isoflux lower boundary: plot
of �(σ λ(k0)/Pe) versus Pe
for the saddle points k0, at
the threshold to absolute
instability, with positive or
negative 	(k0). The dotted
lines display the asymptotic
behaviour given by
Eqs. (9.27) and (9.33)

fm(z) = sin(nπ z) , n = 1, 2, 3, . . . , (9.31)

provided that the dispersion relation

� = ξ k2

n2π2 + k2
− i k , n = 1, 2, 3, . . . (9.32)

is satisfied.
Equation (9.32) coincides with Eq. (8.40). This means that the determination of

the saddle points and the threshold value of ξ are exactly the same as for the Prats
problem with isothermal lower boundary. Hence, the limiting regime Pe → ∞ does
not make any difference between the isoflux and isothermal conditions at the lower
boundary. One may note that Eq. (9.28) marks an evident incompatibility between
the eigenfunction h and the condition of a vanishing derivative dh/dz at z = 0. This
is a consequence of the stretching experienced by the eigenfunctions (f , h) when
Pe unboundedly increases. This behaviour results in a singularity as evidenced by
Eqs. (9.27) and (9.28). In fact, one can reckon that h becomes negligible with respect
to f as Pe → ∞, meaning that either f tends to infinity and h remains finite or f
remains finite and h tends to zero. The sensible result is that the saddle points k0 and
the ratio Ra/Pe can still be approximated through Eqs. (8.42) and (8.43), if Pe 
 1.
In fact, Fig. 9.1 displays also the saddle points k0 for the limiting case Pe → ∞. As
for the parameter � introduced in Eq. (9.27), its numerical estimate for Pe 
 1 can
be obtained directly from Eq. (9.32), namely

k0 ≈ ± 2.61941 − i 3.27327 , � ≈ ∓ i 4.66458 . (9.33)
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Fig. 9.4 Prats problem with
isoflux lower boundary: plot
of Ra (solid line) versus Pe,
as compared with Rc (dashed
line) which is independent of
Pe
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Equation (9.33) is obtained by substitution of k0, evaluated for n = 1 through
Eq. (8.42), as well as of ξ = Ra/Pe given by Eq. (8.43), into Eq. (8.40).

Figure9.2 shows that the imaginary part of σ λ(k0) continuously decreases from
0 as Pe increases, for the saddle points with 	(k0) > 0. The reverse occurs for the
twin saddle points having 	(k0) < 0. The same numerical data over a larger range
of Péclet numbers are reported in Fig. 9.3 as plots of �(σ λ(k0)/Pe) versus Pe, in
order to illustrate the asymptotic behaviour described by Eqs. (9.27) and (9.33). We
note that both �(σ λ(k0)) and Pe tend to zero when Pe → 0, while their ratio tends
to a finite limit. This finite limiting value can be easily determined on the basis of
Eq. (9.15) and on the equalities k0 = ± kc, Ra = Rc, for Pe → 0. In fact, we reckon
that �(σ λ(k0)/Pe) = �(σ λ(± kc)/Pe) tends to ∓ kc = ∓ 2.32621.

The trend of the threshold valueRa for the onset of absolute instability is displayed
in Fig. 9.4 as a function of Pe. The critical value Rc is shown for comparison as a
dashed line. This figure clearly displays the asymptotic linear trend of Ra versus
Pe when Pe 
 1. A neat view of the asymptotic behaviour of Ra/Pe expressed by
Eq. (8.43) is shown in Fig. 9.5, where the asymptote, ξ = Ra/Pe ≈ 3.99084, is drawn
as a dotted line. A comparison between Figs. 8.5 and 9.5 is useful. The differences are
hardly discernible when Pe > 10. This observation is congruent with our previous
findings regarding the poor influence on the transition to absolute instability of the
thermal boundary condition at the lower boundary, when the horizontal through flow
becomes more and more intense.

Figure9.6 shows the isolines of 	(σ λ) in the complex k plane for the test case
with Pe = 20 and R = Ra = 88.5310. This map of the lines 	(λ) = λr = constant
serves as a check of the holomorphy requirement. The paths of steepest descent
crossing the saddle points,
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Fig. 9.5 Prats problem with
isoflux lower boundary: plot
of Ra/Pe (solid line) versus
Pe, as compared with its
asymptotic value
ξ = Ra/Pe ≈ 3.99084
(dotted line)
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Fig. 9.6 Prats problem with
isoflux lower boundary: map
of the isolines of 	(λ) = λr
(black solid lines) for
Pe = 20 and
R = Ra = 88.5310. The
dashed black lines are for
λr = 0. The grey dots are the
saddle points, while the grey
lines are the lines of steepest
descent. The black asterisk
denotes the singularity
k = −iπ

k0 = ± 3.16611 − i 2.71779 , (9.34)

are drawn in this figure as grey lines. The lines of steepest descent are isolines of
�(λ). In this sample case, they correspond to�(σ λ) = ∓ 78.8420. Themap reported
in Fig. 9.6 shows that, in fact, there exists a path, locally of steepest descent across
the twin saddle points given by Eq. (9.34), that does not trap any singularity of 	(λ)
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in the region between such path and the real line �(k) = 0. A singularity is displayed
at k = −iπ , thus marking a close analogy to the otherwise only qualitatively similar
map reported in Fig. 8.3. The occurrence of such singularity was proved analytically
for the Prats problem with isothermal lower boundary, as shown in Sect. 8.2.4. In the
case examined in Fig. 9.6, the singularity at k = −iπ emerges as an upshot of the
numerical solution.

9.2 Thermal Instability in a Vertical Porous Channel

Up to this point, we have always investigated cases where the instability was driven
by a mechanism of heating from below. However, there are situations such that the
instability may occur even in a vertical porous layer, where the basic temperature
gradient is the result of side heating.

A fairly simple example was proposed and analysed by Barletta [1]. In this paper,
the study is focussed on the convective instability. In Barletta [1], the aim is to show
that the classical proof presented by Gill [3] cannot be extended to the case where
the porous layer is bounded by permeable planes instead of impermeable walls.
The forthcoming analysis involves a situation where, unlike the cases examined by
Gill [3] and Barletta [1], a vertical forced flow is present. This variant discloses the
possibility of a transition from convective to absolute instability.

9.2.1 Problem Formulation

Let us consider a vertical porous slab bounded by two vertical and permeable planes
at x = ±L/2, kept at uniform temperatures T1 and T2 < T1, respectively. We note
that the generality of our analysis is not influenced in any way by the choice T2 < T1,
as there is no physical difference between the left and right boundaries. On the other
hand, when dealing with horizontal layers, it is quite evident that the direction of
gravity makes a big physical difference between the lower boundary and the upper
boundary.

A sketch of the vertical porous layer, of the coordinate frame and of the boundary
conditions is given in Fig. 9.7. The permeable boundaries allow a perfect mechanical
and thermal contact with external fluid reservoirs at temperatures T1 and T2. There-
fore, the boundary pressure at x = ±L/2 is imposed externally. More precisely, we
assume that the boundary conditions allow an externally forced pressure gradient,
∂P/∂z, along the vertical z-axis. Such gradient is considered as constant. We recall
that P denotes the local difference between the fluid pressure and hydrostatic pres-
sure.

According to all the previous examples, the x and y axes are horizontal with the
x-axis perpendicular to the bounding planes, while the z-axis is vertical and upward
oriented. We adopt a two-dimensional formulation with all the fields being invariant
along the y-direction.
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Fig. 9.7 A sketch of the
vertical porous layer with
permeable boundaries, of the
(x, y, z) coordinate frame
and of the boundary
conditions
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We adopt the Oberbeck–Boussinesq approximation and Darcy’s law, together
with the assumption of a negligible viscous dissipation. Thus, we arrange the dimen-
sionless local balance of mass, momentum and energy in the pressure/temperature
formulation according to the two-dimensional version of Eq. (8.79), namely

∂2P

∂x2
+ ∂2P

∂z2
− R

∂T

∂z
= 0 ,

σ
∂T

∂t
− ∂P

∂x

∂T

∂x
−

[
∂P

∂z
− R (T − r)

]
∂T

∂z
= ∂2T

∂x2
+ ∂2T

∂z2
, (9.35)

where r = (T0 − T2)/(T1 − T2) is the temperature ratio depending on the choice of
the reference temperature,T0, already introduced inSect. 8.4,while the dimensionless
quantities are scaled as defined byEqs. (8.1) and (8.80). TheDarcy–Rayleigh number,
R, is given by Eq. (8.3).

We note that the dimensionless velocity components along the x and z directions
are expressed through Darcy’s law as

u = −∂P

∂x
, w = −∂P

∂z
+ R (T − r) . (9.36)

The boundary conditions are expressed in a dimensionless form as

x = −1

2
: ∂P

∂z
= −Pe , T = 1 ,
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x = 1

2
: ∂P

∂z
= −Pe , T = 0 , (9.37)

wherePe is the Péclet number associated with the externally forced pressure gradient
along the z direction.

9.2.2 The Basic Solution

A stationary solution of Eqs. (9.35) and (9.37) is given by

∂Pb

∂x
= 0 ,

∂Pb

∂z
= −Pe , Tb = 1

2
− x , (9.38)

thus describing a vertical flow,

ub = 0 , wb = Pe + R

(
1

2
− r − x

)
, (9.39)

where Eqs. (9.36) and (9.38) have been taken into account. The resulting vertical
flow is the superposition of an externally forced uniform flow parametrised by the
Péclet number, Pe, and a buoyancy-induced flow given by an x dependent linear
velocity profile. The latter term depends on both R and r. We note that the net flow
rate associated with the basic flow velocity, wb, is given by

1/2∫
−1/2

wb dx = Pe + R

(
1

2
− r

)
. (9.40)

Hence, there is a special value of r such that the buoyant flow term, proportional
to R, yields a vanishing contribution to the net flow rate. This special value is r =
(T0 − T2)/(T1 − T2) = 1/2 which, in dimensional terms, means a special choice of
the reference temperature, i.e. T0 = (T1 + T2)/2, the arithmetic mean of the two
boundary temperatures, T1 and T2.

9.2.3 Stability Analysis

Small perturbations of the basic state (9.39) are defined as

P = Pb + ε Π , T = Tb + ε Θ . (9.41)
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We substitute Eq. (9.41) into Eqs. (9.35) and (9.37) and neglect termsO(ε2). We thus
obtain the governing equations for the perturbations,

∂2Π

∂x2
+ ∂2Π

∂z2
− R

∂Θ

∂z
= 0 ,

σ
∂Θ

∂t
+ ∂Π

∂x
+

[
Pe + R

(
1

2
− r − x

)]
∂Θ

∂z
= ∂2Θ

∂x2
+ ∂2Θ

∂z2
, (9.42)

with the boundary conditions

x = ±1

2
: ∂Π

∂z
= 0 , Θ = 0 . (9.43)

Equations (9.42) and (9.43) imply that the evolution of perturbations is influenced
by the parameter r. This fact marks a deep difference with respect to what happens
for the case of a horizontal channel, as pointed out in Sect. 8.4. In other words, for a
vertical channel, the choice of the reference temperature T0 in the formulation of the
Oberbeck–Boussinesq approximation matters. One can adopt a twofold approach to
this issue:

• Make amindful choice of T0 so that the first-order Taylor series expansion of ρ(T ),
given by Eq. (5.57), is best satisfied. This choice is one where ρ(T0) is the average
density of the fluid or, equivalently, T0 is the average temperature. Thus, having
in mind the base solution (9.38), T0 is to be chosen as the arithmetic mean of the
two boundary temperatures, T1 and T2, namely T0 = (T1 + T2)/2. This implies
that the parameter r = (T0 − T2)/(T1 − T2) be equal to 1/2.

• Rescale the Péclet number as

Pe∗ = Pe + R

(
1

2
− r

)
. (9.44)

By employing the scaled Péclet number, Pe∗, instead of Pe in Eqs. (9.42) and
(9.43), the stability analysis becomes formally independent of r. This option does
not imply any specific choice of T0. On the other hand, this means a redefinition
of the Péclet number so that it express the net flow rate along the channel, Pe∗,
and not the strength of the vertical pressure gradient, Pe.

Whatever option is chosen, the stability analysis is just the same, being based on the
differential problem

∂2Π

∂x2
+ ∂2Π

∂z2
− R

∂Θ

∂z
= 0 ,

σ
∂Θ

∂t
+ ∂Π

∂x
+ (Pe − R x)

∂Θ

∂z
= ∂2Θ

∂x2
+ ∂2Θ

∂z2
,
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x = ±1

2
: ∂Π

∂z
= 0 , Θ = 0 . (9.45)

Here, Pe denotes either the Péclet number with r = 1/2, or the scaled Péclet number
(the asterisk is omitted for simplicity of notation), defined by Eq. (9.44), if we adopt
the strategy of not fixing the value of r.

On seeking a solution for Eqs. (9.43) and (9.45) in terms of Fourier transforms,
we take into account that the flow direction is the z-axis, so that we define

Π̃(k, x, t) = 1√
2π

∞∫
−∞

e−i k z Π(x, z, t) d z ,

Π(x, z, t) = 1√
2π

∞∫
−∞

ei k z Π̃(k, x, t) d k ,

Θ̃(k, x, t) = 1√
2π

∞∫
−∞

e−i k z Θ(x, z, t) d z ,

Θ(x, z, t) = 1√
2π

∞∫
−∞

ei k z Θ̃(k, z, t) d k , (9.46)

where the dependence on t of Π̃ and Θ̃ is factored out through exponential terms,
namely

Π̃ = f (x) eλ(k) t , Θ̃ = h(x) eλ(k) t . (9.47)

By employing Eqs. (9.46) and (9.47), the Fourier transformed Eqs. (9.43) and (9.45)
yield (

d2

d x2
− k2

)
f − i k R h = 0 ,

[
d2

d x2
− k2 − σ λ(k) − i k (Pe − R x)

]
h − d f

d x
= 0 ,

x = ±1

2
: f = 0 , h = 0 . (9.48)

According to the usual procedure, we define the parameter

γ (k) = σ λ(k) + i k Pe , (9.49)

so that Eq. (9.48) is rewritten as
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(
d2

d x2
− k2

)
f − i k R h = 0 ,

[
d2

d x2
− k2 − γ (k) + i k R x

]
h − d f

d x
= 0 ,

x = ±1

2
: f = 0 , h = 0 . (9.50)

9.2.4 Convective Instability

The study of convective instability is based on the eigenvalue problem (9.50). Where
we have to set 	(λ) = 0 in order to detect the zero growth rate modes, that is the
neutrally stable Fourier modes. On account of Eq. (9.49), we have 	(γ ) = 0. Fur-
thermore, since λ = η − iω, we can write �(γ ) = −σ ω + k Pe = −σ ωm, where
ωm happens to be a modified angular frequency. Hence, Eq. (9.50) reads

(
d2

d x2
− k2

)
f − i k R h = 0 ,

(
d2

d x2
− k2 + i σ ωm + i k R x

)
h − d f

d x
= 0 ,

x = ±1

2
: f = 0 , h = 0 . (9.51)

Evidently, ωm = ω when the forced flow is switched off, i.e. when Pe = 0. When
Pe �= 0, the forced flow has no explicit influence on the mathematical solution of
the eigenvalue problem (9.51) consistently with the (k,R, ωm) parametrisation. This
means that, if we solve Eq. (9.51) by setting k as input parameter, we can determine
numerically the eigenvalue pair (R, ωm), independently of the Péclet number. This
is the reason why the convective instability analysis is influenced by the value of Pe
only when it comes to the determination ofω fromωm. On the other hand, the neutral
stability curve in the (k,R) plane is just the same as that drawn for the special case
Pe = 0, discussed by Barletta [1].

The numerical method described in Chap.10 is employed to solve the eigenvalue
problem (9.51) and thus to obtain the neutral stability function R(k). The additional
difficulty with respect to the case discussed in Sect. 9.1 is that, in this case, we do not
have a formal proof regarding the principle of exchange of stabilities. In other words,
we cannot prove rigorously that �(γ ) = −σ ωm = 0. In fact, this result comes out
only through the output data of the numerical solution. The neutrally stable modes
for any given k happen to display a zero modified angular frequency. This inductive
origin of the result �(γ ) = −σ ωm = 0 implies a complication in the numerical
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Fig. 9.8 Neutral stability
curve for the vertical porous
channel with isothermal and
permeable boundaries
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solution as we have to manage complex-valued eigenfunctions (f , h) and, hence, an
effective doubled order for the differential eigenvalue problem to tackle. We have
indeed to dealwith a fourfold eigenfunction structure, (	(f ),�(f ),	(h),�(h)). This
means a computationally heavier object to be treated numerically, but no effective
difference in the algorithmic framework of the method.

Figure9.8 displays the neutral stability curve and the convective instability region
in the (k,R) plane. The shape of the curve is quite dissimilar from all that we encoun-
tered so far in the analysis of instability induced by heating from below. The neutral
stability curve is not the plot of a single-valued function R(k), as it happens for the
Rayleigh–Bénard problem or the Horton–Rogers–Lapwood problem in their mani-
fold variants. The neutral stability curve for the flow in a vertical porous channel has
a droplike shape confining an internal region of convective instability. The point of
minimum R along this curve defines the critical values kc and Rc,

kc = 1.05950 , Rc = 197.081 . (9.52)

Another peculiar point along the neutral stability curve is that of maximum k, where

kmax = 1.27291 , Rmax = 253.340 . (9.53)

There was no such maximum wavelength in all our previous examples of convective
instability. Its physical meaning is that Fourier modes with a wave number exceed-
ing the maximum do not contribute to the onset of convective instability. In other
terms, such large wavelength modes are ineffective in exciting an unstable response
from the flow system. We mention that the numerical data used to draw the neutral
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stability curve in Fig. 9.8 displayed values ofσ |ωm| smaller than 10−10. This provides
inductive evidence that ωm is effectively zero or, equivalently, that the relation

ω = k Pe

σ
(9.54)

holds true for neutrally stable modes.

9.2.5 Absolute Instability

We now focus our analysis on the collective evolution at large times of perturba-
tion wave packets, so that we aim to detect a possible transition from convective to
absolute instability in the supercritical domain R � Rc. As usual, the tool adopted
to accomplish this task is the steepest-descent approximation of wave packet distur-
bances. This means starting from Eq. (9.48) in order to implement the saddle point
condition λ′(k) = 0, with k ∈ C. As in Sect. 9.1.3, we define

f̂ = ∂f

∂k
, ĥ = ∂h

∂k
, (9.55)

so that the eigenvalue problem (9.48) doubles its differential order through a deriva-
tion of the differential equations and boundary conditions with respect to k, namely

(
d2

d x2
− k2

)
f − i k R h = 0 ,

[
d2

d x2
− k2 − σ λ(k) − i k (Pe − R x)

]
h − d f

d x
= 0 ,

(
d2

d x2
− k2

)
f̂ − i k R ĥ − 2 k f − iRh = 0 ,

[
d2

d x2
− k2 − σ λ(k) − i k (Pe − R x)

]
ĥ − d f̂

d x
− [2 k + i (Pe − R x)] h = 0 ,

x = ±1

2
: f = 0 , h = 0 , f̂ = 0 , ĥ = 0 , (9.56)

where the condition λ′(k) = 0 has been taken into account.
The solution of the eigenvalue problem (9.56) is tackled by fixing as input data

the values of Pe and	(σ λ). In particular, in order to detect the threshold to absolute
instability, we set 	(σ λ) = 0. The output eigenvalues sought with the numerical
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solution are (k,R,�(σ λ)). To this end, we employ the shooting method along the
same lines discussed in Sect. 9.1.3.

There is a symmetry of the stability eigenvalue problem (9.48) which governs
both the onset of convective instability and the transition to absolute instability. In
fact, Eq. (9.48) is invariant under the transformation

x → −x , k → −k , R → R , Pe → −Pe ,

λ → λ , f → −f , h → h . (9.57)

The symmetry expressed by Eq. (9.57) ensures that the analysis of instability with
a negative Péclet effectively means a reversed sign of k, but it does not imply any
modification of the threshold values of R either for convective or absolute instability.
This is physically not as obvious as for the instability in a horizontal layer. In fact, in
the case of a vertical layer, the direction of the propagating disturbances is the vertical
z-direction, where the positive or negative z-directions mean parallel or antiparallel
directions with respect to gravity.

Further insights into the structure of the eigenvalue problem can be gathered by
writing the complex conjugate of Eq. (9.48), namely

(
d2

d x2
− k̄2

)
f̄ + i k̄ R h̄ = 0 ,

[
d2

d x2
− k̄2 − σ λ̄ + i k̄ (Pe − R x)

]
h̄ − d f̄

d x
= 0 ,

x = ±1

2
: f̄ = 0 , h̄ = 0 , (9.58)

where, having in mind the transition to absolute instability, we allowed k ∈ C. Both
Eqs. (9.48) and (9.58) can be equivalently employed for detecting the relevant saddle
points. The two eigenvalue problems coincide when we apply the transformation

k → −k̄ , λ → λ̄ . (9.59)

As a consequence, for every prescribed Pe and R, there is a pair of twin saddle points
with opposite real parts and equal imaginary parts. Therefore, the values of λ for these
twin saddle points have equal real parts and opposite imaginary parts. We reckon
that just the same property of the pertinent saddle points for the threshold to absolute
instability is implicitly reported in Figs. 9.1 and 9.2, relative to a different example.
The existence of twin saddle points with opposite real parts is also displayed in
Figs. 8.2 and 8.9. This situation suggests a general feature of the absolute instability
analyses, even if a formal proof would require a characterisation of what a stability
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Fig. 9.9 Vertical porous
channel with isothermal and
permeable boundaries:
migration of the pertinent
saddle points, with
increasing values of Pe, for
the threshold to absolute
instability

eigenvalue problem is meant to be. We do not aim to solve this formal conundrum
here, and we focus again on our specific analysis.

On account of the above-mentionedmathematical properties of the stability eigen-
value problem, with no loss of generality, we will refer our forthcoming analysis to
the case Pe � 0. The idea behind the search of the relevant saddle points for the tran-
sition to absolute instability is starting from Pe = 0 and then gradually increasing
Pe. In fact, the case of no net average flow across the channel is one where we already
ascertained, although inductively, that the principle of exchange of stabilities holds
at neutral stability. Then, the condition of neutral stability is one where λ(k) = 0, so
that we expect Ra = Rc = 197.081 and

	(k0) = ± kc = ± 1.05950 , �(k0) = 0 , �(σ λ(k0)) = 0 . (9.60)

Starting from these data relative toPe = 0, one can track the solution of Eq. (9.56) by
gradually increasing Pe above 0. Figure9.9 shows the migration of the twin saddle
points with Pe > 0 originated from those given by Eq. (9.60). Figure9.10 displays
the threshold Darcy–Rayleigh number for the transition to absolute instability, Ra,
plotted versusPe and compared with the critical valueRc = 197.081. Oncemore, we
see an ever- increasing gap Ra − Rc as Pe increases. Furthermore, Fig. 9.11 displays
the trend of �(σ λ(k0)) versus Pe. Both Figs. 9.10 and 9.11 reveal some significant
similarities with Figs. 9.4 and 9.2, respectively. However, there is an evident differ-
ence. The asymptotic regime for Pe 
 1 where both Ra and �(σ λ(k0)) are linear
functions of Pe, widely discussed in Sect. 9.1.3, turns out to be unsuited to the plots
reported in Figs. 9.10 and 9.11.

Another element of discrepancy emerges from Fig. 9.9. This figure appears to
be dissimilar from Fig. 9.1 because there is no clue of k0 attaining an asymptotic



9.2 Thermal Instability in a Vertical Porous Channel 239

Fig. 9.10 Vertical porous
channel with isothermal and
permeable boundaries: plot
of Ra (solid line) versus Pe,
as compared with Rc (dashed
line) which is independent of
Pe
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Fig. 9.11 Vertical porous
channel with isothermal and
permeable boundaries: plot
of �(σ λ(k0)) versus Pe for
the saddle points k0, at the
threshold to absolute
instability, with positive or
negative 	(k0)

value for Pe → ∞, despite the very wide range of values of Pe. In fact, we note
that Pe = 100 is a very large value given that we are dealing with seepage flows in
porous media.

An example where the fulfilment of the holomorphy requirement is satisfied is
displayed in Fig. 9.12. In this figure, the test case where Pe = 20 and R = Ra =
258.755. This case corresponds to the threshold to absolute instability. The steepest-
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Fig. 9.12 Vertical porous
channel with isothermal and
permeable boundaries: map
of the isolines of 	(λ) = λr
(black solid lines) for
Pe = 20 and
R = Ra = 258.755. The
dashed black lines are for
λr = 0. The grey dots are the
saddle points, while the grey
lines are the lines of steepest
descent

descent paths crossing the twin saddle points,

	(k0) = ± 1.04255 , �(k0) = −0.311223 ,

�(σ λ(k0)) = ∓ 19.9514 , (9.61)

are drawn as grey lines. It is evident from Fig. 9.12 that no singularities appear within
the region of the k plane around the saddle points. Thus, one can devise a continuous
deformation of the real axis, �(k) = 0, matching locally the steepest-descent paths.
In other words, the holomorphy requirement can be considered as satisfied. Just the
same conclusions can be drawn by considering Fig. 9.13 relative to the case where
Pe = 50 and R = Ra = 437.549. Again, we are considering a threshold value of R
for the onset of absolute instability, with the pertinent saddle points being, in this
case,

	(k0) = ± 0.902055 , �(k0) = −0.363949 ,

�(σ λ(k0)) = ∓ 40.9155 . (9.62)

Such saddle points are denoted as grey dots in Fig. 9.13.We conclude that, in both the
test cases examined in Figs. 9.12 and 9.13, the holomorphy requirement is satisfied.

We recall from Definition 4.2 and Eq. (4.50) that the transition to absolute insta-
bility is mathematically associated with a transition from a negative to a positive
	(λ(k0)). In fact, the numerical solution of Eq. (9.56) can be carried out, not only
by setting 	(λ) = 0, but also by prescribing any negative or positive value of 	(λ).
This alternative serves to evaluate R versus Pe corresponding to negative or positive



9.2 Thermal Instability in a Vertical Porous Channel 241

Fig. 9.13 Vertical porous
channel with isothermal and
permeable boundaries: map
of the isolines of 	(λ) = λr
(black solid lines) for
Pe = 50 and
R = Ra = 437.549. The
dashed black lines are for
λr = 0. The grey dots are the
saddle points, while the grey
lines are the lines of steepest
descent

Fig. 9.14 Vertical porous
channel with isothermal and
permeable boundaries: plot
of Ra (solid line) versus Pe,
as compared with R versus
Pe evaluated for negative and
positive growth rates 	(λ)

(dotted and dashed lines)

growth rates of thewave packet disturbances. The result is reported in Fig. 9.14where
the solid line showing the trend of Ra versus Pe is displayed together with the dotted
line relative to an absolutely stable condition, 	(σ λ) = −1, and the dashed line rel-
ative to an absolutely unstable condition, 	(σ λ) = 1. As expected, these plots show
that the absolutely unstable case, 	(σ λ) = 1, corresponds to values of R larger than
Ra, while the opposite occurs for the absolutely stable case, 	(σ λ) = −1.
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9.3 Concluding Remarks Regarding Numerical Solutions

We have seen the numerical method applied to the solution of absolute stability
problems. One would have expected some intrinsic extra difficulty emerging when
an analytical dispersion relation is not available or when it is too complicated to
be practically preferable with respect to a numerical solution. In fact, the treatment
of a numerical instance of absolute instability involves the solution of an ordinary
differential eigenvalue problem. The order of such eigenvalue problem is doubled
if compared with that involved in establishing the convective instability thresh-
old. Moreover, the absolute instability eigenvalue problem involves complex eigen-
functions even if the neutral stability condition requires only real eigenfunctions.
However, the algorithm for the numerical solution is not different from that employed
for the convective instability analysis. Another important element is that, even when
an analytical dispersion relation is available and it is expressed with simple rational
functions, as it happens for the Prats problem discussed in Sect. 8.2, the evaluation of
the saddle points needs the use of a numerical root-finding procedure. At least, this
is what happens in general except for some very special cases. These considerations
suggest that some numerical computation within the absolute instability analysis
emerges in every case, even when the stability dispersion relation is expressed ana-
lytically. Our conclusion is that there is no true additional encumbrance, or limitation
in the amount of results that can be gathered, when the stability analysis is to be car-
ried out in a fully numerical framework.
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Chapter 10
Numerical Solution of Instability
Problems

10.1 Numerical Solution of Instability Problems

There is a wide literature regarding the description of numerical methods for the
analysis of the onset of instability in fluid systems. A very interesting analysis of this
topic,mainly relative to the tau-method, has been carried out in the paper byDongarra
et al. [4]. Amore general and comparative description of different numerical methods
is available in the books byStraughan [9, 10]. The purpose of this chapter is to provide
the presentation of a specific numerical method aimed to the solution of eigenvalue
stability problems, namely the shootingmethod. Thismethod is formulated to address
the convective instability analysis of a flow problem, but it can be employed with
little effort also in the solution of absolute instability problems. We describe how
the shooting method works, and how it can be implemented within the open-source
Octave environment [5]. The presentation of the method and of its code will be
illustrated by a specific example. The fundamental steps are the reformulation of the
differential eigenvalue problem as an initial value problem and the solution of the
target conditions at the end of the interval where the eigenvalue problem is defined.

10.2 A Convective Instability Problem

We recall the differential problem defining the Rayleigh–Bénard instability in a hori-
zontal fluid layer bounded by a pair of impermeable, rigid and isothermal boundaries,
analysed in detail in Sect. 7.5. This problem is based on Eqs. (7.45)–(7.47), namely

(
η

Pr
− d2

d z2
+ k2

) (
d2

d z2
− k2

)
f + Ra k2 h = 0 ,

(
η − d2

d z2
+ k2

)
h − f = 0 ,
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z = 0, 1 : f = 0 ,
d f

d z
= 0 , h = 0 , (10.1)

where we employed the equality λ = η proved in Sect. 7.5.1. We recall that k, η, Pr
and Ra are real parameters. By employing the notation with primes expressing the
derivatives with respect to z, Eq. (10.1) can be rewritten as

f ′′′′ −
(
2 k2 + η

Pr

)
f ′′ +

(
k2 + η

Pr

)
k2 f − Ra k2 h = 0 ,

h′′ − (
η + k2

)
h + f = 0 ,

z = 0, 1 : f = 0 , f ′ = 0 , h = 0 . (10.2)

Equation (10.2) defines a real eigenvalue problem, meaning that both f and h are
to be considered as real-valued functions. In fact, the ordinary differential equations
are linear and homogeneous. The boundary conditions are linear and homogeneous
as well. This means that if ( f, h) is a solution of Eq. (10.2), then (C f,C h) is also a
solution of Eq. (10.2), for every constant C ∈ R. In other words, Eq. (10.2) displays
a scale invariance. The scale of the solution can be arbitrarily fixed by adding an
extra boundary condition, say,

h′(0) = 1 . (10.3)

The combined Eqs. (10.2) and (10.3) display a number of boundary conditions, i.e.
seven, larger than the overall order of the differential equations, i.e. six. This circum-
stance allows one to solveEqs. (10.2) and (10.3) by evaluating not only the unknowns,
( f, h), but also one of the governing parameters (k, Pr, Ra, η). In other words, these
considerations mean that Eq. (10.2) defines an eigenvalue problem where ( f, h) are
the eigenfunctions and, say, Ra is the eigenvalue.

10.2.1 The Initial Value Problem

The formulation of the method described in this chapter starts with a reconfiguration
of Eq. (10.2) as an initial value problem. In other words, we rewrite Eq. (10.2) as

f ′′′′ −
(
2 k2 + η

Pr

)
f ′′ +

(
k2 + η

Pr

)
k2 f − Ra k2 h = 0 ,

h′′ − (
η + k2

)
h + f = 0 ,

f (0) = 0 , f ′(0) = 0 , f ′′(0) = ξ , f ′′′(0) = ζ ,

h(0) = 0 , h′(0) = 1 , (10.4)
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where Eq. (10.3) has been employed, and the governing parameters,

{k, Pr, Ra, η, ξ, ζ } ,

are considered as prescribed. In Eq. (10.4), there is a number of initial conditions
coincident with the order of the system of differential equations. Thus, the system
admits a unique solution, ( f, h), for every given set of values of the governing
parameters. This statement is grounded on the uniqueness theorem of initial value
problems [1–3]. We now subdivide the governing parameters into a set of input
parameters, whose value is to be considered known a priori,

input parameters =⇒ {k, Pr, η} ,

and a set of unknown, or output, parameters,

output parameters =⇒ {Ra, ξ, ζ } .

This subdivision is motivated by having omitted in Eq. (10.4) the target, or end, con-
ditions prescribed at z = 1. Such conditions are to be satisfied by the solution ( f, h),
as specified in Eq. (10.2). The imposed validity of the target conditions completes
the shooting method, as it allows one to obtain the output parameters.

10.2.2 The Shooting Method

The target conditions indicated in Eq. (10.2) are

f (1) = 0 , f ′(1) = 0 , h(1) = 0 . (10.5)

In fact, there are three output parameters to be determined through the three equa-
tions (10.5).

The evaluation of the parameters {ξ, ζ } provides little interesting information, as
these parameters have been introduced just to make the formulation of the initial
value problem consistent. On the other hand, determining Ra is precisely the task
we want to achieve with our numerical solver.

If we are able to implement the shootingmethod through a computer code, thenwe
are virtually able to determine the output value Ra for every possible assignment of
the input data {k, Pr, η}. In other terms, we are able to draw on the (k, Ra) plane the
regions where the growth rate of the normal modes, η, is negative, zero and positive.
Thismeans stability, neutral stability and instability, respectively.Obviously, drawing
these regions in the (k, Ra) plane requires a fixed value of Pr . An exception is the
neutral stability curve, η = 0, that separates the stability and instability regions in
the (k, Ra) plane. One can immediately check from Eq. (10.2) that this curve is
independent of Pr .
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10.3 Implementation of the Numerical Solver

In order to build up the numerical code, the first step is transforming the higher-order
differential equations given by Eq. (10.4) into a system of six first-order differential
equations. This is an easy task if we define a vector function Xn , n = 1, 2, 3, 4, 5, 6,
such that

X1 = f , X2 = f ′ , X3 = f ′′ , X4 = f ′′′ , X5 = h , X6 = h′ . (10.6)

From Eq. (10.4), we infer that we need to solve the initial value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d X1

d t
= X2 ,

d X2

d t
= X3 ,

d X3

d t
= X4 ,

d X4

d t
=

(
2 k2 + η

Pr

)
X3 −

(
k2 + η

Pr

)
k2 X1 + Ra k2 X5 ,

d X5

d t
= X6 ,

d X6

d t
= (

η + k2
)
X5 − X1 ,

X1(0) = 0 , X2(0) = 0 , X3(0) = ξ ,

X4(0) = ζ , X5(0) = 0 , X6(0) = 1 .

(10.7)

Here, we have chosen to denote with t , instead of z, the independent variable. Indeed,
this is an unnecessary, but harmless, choice done just to follow the traditional notation
for the evolution variable in initial value problems.

We aim to implement the numerical solver of the initial value problem defined in
Eq. (10.7) by employing the open-source software Octave [5]. For this task, we have
to declare a function:

function r = f1 (y,k)

NN = 2000;

Pr = 0.7;

eta = 0;

Ra = y(1); xi = y(2); zeta = y(3);

f = @(x, t) [x(2);

x(3);

x(4);

(2*kˆ2+eta/Pr)*x(3)-(kˆ2+eta/Pr)*kˆ2*x(1)+Ra*kˆ2*x(5);
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x(6);

(eta+kˆ2)*x(5)-x(1)];

t = linspace (0, 1, NN)’;

lsode_options("absolute tolerance", 1e-16);

lsode_options("relative tolerance", 1e-15);

x = lsode (f, [0; 0; xi; zeta; 0; 1], t);

r(1) = x(NN,1);

r(2) = x(NN,2);

r(3) = x(NN,5);

endfunction

The function is called f1. It has two input variables, y and k. The former is an
array with three components, corresponding to the constants Ra, xi and zeta. The
unknown vector function Xn(t) in the initial value problem given by Eq. (10.7) is
denoted in the code through the array x, having six components. Within the code
that defines function f1, we have a nested function definition relative to f. Function
f yields the right-hand sides of the differential equations (10.7).

The variable t is defined, through the Octave built-in function linspace,
as a row vector with NN = 2000 linearly spaced elements in the interval 0 � t � 1.
Obviously, the larger isNN, the higher is the accuracy and, unavoidably, also the com-
putational time. In the code reported above, we aim to evaluate the neutral stability
data, eta = 0, which are independent of Pr, so that having set the value 0.7 is
necessary but ineffective in this case.

The core part for the definition of function f1 is the assignment of the output of
function lsode to the variable x. The Octave built-in function lsode returns the
solution of the system of first-order differential equations where the derivative of the
unknowns functions Xn(t) is equal to the array defined by the elements of f, the initial
conditions are set to the values given by the array [0; 0; xi; zeta; 0; 1],
and the independent variable is the row vector t. The name of the built-in function
lsode comes from the acronym LSODE, which stands for Livermore Solver for
Ordinary Differential Equations described by Radhakrishnan and Hindmarsh [7].
This solver was developed byHindmarsh as a Fortran subroutine based on theAdams
method for non-stiff problems and the backward differentiation formula (BDF) for
stiff problems [7]. The lsode_options are used to fix both the absolute
tolerance and the relative tolerance parameters sought by the LSODE.
The former parameter is smaller than the latter, with the relative tolerance
providing a measure of the number of accurate significant figures in the numerical
solution [7].

The variable r is the output of function f1, and its evaluation is the final part of the
code where the three components r(1), r(2) and r(3) are identified with X1(1),
X2(1) and X5(1). In fact, the target conditions for the shooting method, expressed
through Eq. (10.5), can be reformulated by employing Eq. (10.6) as

X1(1) = 0 , X2(1) = 0 , X5(1) = 0 . (10.8)
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This means that, in the end, x(NN,1), x(NN,2) and x(NN,5), that are identified
with the three components of the output array r, must be zero.

The definition of function f1 serves only to implement the solution of the initial
value problem defined by Eq. (10.7). The second part of the code accomplishes the
shooting method and, hence, the determination of Ra, ξ and ζ for given input values
of k, Pr and η,

fileID1 = fopen(file1,’w’);

kk = linspace(kmin,kmax,Nmax);

yy = [1708; 1; -1];

yyold = yy;

options=optimset(’MaxIter’,1e5,’TolFun’,1e-16);

for ll = 1:Nmax

k = kk(ll);

yy = fsolve(@(y) f1(y,k),yyold,options);

yyold = yy;

format long;

printf("k = %.15f\n", k);

printf("Ra = %.15f\n", yy(1));

fflush(stdout);

fprintf(fileID1,’( %.10f , %.10f )\n’, k, yy(1));

endfor

fclose(file1);

The objective is creating a file, named file1, where the neutral stability data Ra(k)
are stored. Here, the chosen output format for these data is (k , Ra), but one can
obviously adapt this format in compliance to the rules of the specific post-processing
tool employed for drawing the neutral stability curve. At some point at the beginning
of the Octave script, one must declare the variable file1 by specifying the full
path of the text output file. This file will contain several strings of data (k , Ra),
depending on how many values of k are directed to the solver function f1. At the
beginning of the Octave script, onemust assign specific values to the variableskmin,
kmax and Nmax, say,

kmin = 3;

kmax = 6;

Nmax = 100;

meaning that we intend to span 100 values of k ∈ [3, 6]. In our code, the 100 points
are equally spaced and assigned to the variable kk through the built-in function
linspace. The array yy contains our guessed values for the unknown variables
Ra,xi,zeta. This array is employed to initialise the variableyyold, that is updated
at each iteration within the loop statement for. The core of the for loop statement
is the function fsolve whose purpose is solving the target conditions given by
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Eq. (10.8). This function is based on the Fortran subroutine library MINPACK, and
it is aimed to solve systems of nonlinear equations [5]. Accuracy options for fsolve
are assigned through the optimset statement and stored in the variable options.
The first argument of function fsolve is an array of variables that is constrained
to be zero through the optimisation algorithm. In our case, this array is the output
of function f1. The three unknowns Ra, xi and zeta are evaluated by fsolve
on the basis of the guess values assigned to yyold and, eventually, they are stored
in the variable yy. The last code lines within the for loop are meant for updating
the guess values yyold with the output values stored in yy and for processing the
output instructions. These guess values are those employed in the next iteration,
where the wave number k shifts to the next one of the Nmax values defined through
the linspace function. The output generated is both visualised in the terminal and
written in the text file whose path file1 is to be assigned at the beginning of the
Octave script.

Plots of the numerical values of Ra versus k are displayed in Fig. 10.1. Such data
are relative to Pr = 0.7. This value of Pr influences only the position of the curves
with η = ±1, but it does not affect the neutral stability curve, η = 0. The position
of the curves with η = ±1 is consistent with the conclusion that the convective
instability region lies above the neutral stability curve, while the region of stability
lies below. Just the same qualitative behaviour is inferred through the analytical
solution in the case where both boundaries are stress-free, as illustrated in Sect. 7.4.3.

By employing the above-described Octave script, one may note that the number
of elements NN, set to 2000 in our code, yields only minor changes in the numerical
results. On the other hand, the value of relative tolerance in the options of lsode
is very important. The effect of different values assigned to the relative tolerance,
given an absolute tolerance of 10−18, is shown in Table 10.1.

Fig. 10.1 Plots of Ra versus
k, relative to the case
Pr = 0.7, with η = −1
(stability), η = 0 (neutral
stability), and η = 1
(convective instability), for
the Rayleigh–Bénard
problem with rigid and
impermeable boundaries,
Eq. (10.2)
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Table 10.1 Solution of the eigenvalue problem given by Eq. (10.2) with k = 3 and η = 0: effect
of a decreasing relative tolerance in the options of lsode

Relative tolerance Ra ξ ζ

10−4 1711.15227795 245.510186884 −1561.82037502

10−5 1711.26143906 245.518156714 −1561.87849074

10−6 1711.27597922 245.519402137 −1561.88611575

10−10 1711.27714887 245.519544948 −1561.88677843

10−12 1711.27714905 245.519545013 −1561.88677859

10−15 1711.27714905 245.519545014 −1561.88677859

10.4 Determination of the Critical Values

In order to obtain the critical values kc and Rac, wemust detect the point of minimum
Ra along the neutral stability curve in the (k, Ra) plane. This means that this point
is one where the neutral stability function Ra(k) has a zero derivative. There is a
technique that allows one to evaluate directly the critical values kc and Rac. This
technique consists in doubling the differential order of the eigenvalue problem to be
solved, in our case that defined by Eq. (10.2), by deriving each equation with respect
to the wave number k. This technique is described, for instance, in Rees and Bassom
[8]. If we consider Eq. (10.2), with η = 0, we can derive each differential equation
and each boundary condition with respect to k, so that we obtain

f ′′′′ − 2 k2 f ′′ + k4 f − Ra k2 h = 0 ,

h′′ − k2 h + f = 0 ,

f̂ ′′′′ − 2 k2 f̂ ′′ + k4 f̂ − Ra k2 ĥ − 4 k f ′′ + 4 k3 f − 2 Ra k h = 0 ,

ĥ′′ − k2 ĥ + f̂ − 2 k h = 0 ,

z = 0, 1 :
f = 0 , f ′ = 0 , h = 0 ,

f̂ = 0 , f̂ ′ = 0 , ĥ = 0 .
(10.9)

Here, we denoted with f̂ and ĥ the functions

f̂ = ∂ f

∂k
, ĥ = ∂h

∂k
. (10.10)

There is obviously no term containing ∂Ra/∂k, in the third Eq. (10.9), because we
are seeking the minimum of the neutral stability function Ra(k). The solution of
Eq. (10.9) allows one to determine the two eigenvalues k and Ra, without any input
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parameter to be prescribed. Such eigenvalue pair, (k, Ra), yields in fact the critical
values of k and Ra.

The numerical solution follows the procedure described in Sects. 10.2.1, 10.2.2
and 10.3. First, one has to complete the initial conditions in order to match the order
of the system of differential equations (10.9),

f (0) = 0 , f ′(0) = 0 , f ′′(0) = ξ , f ′′′(0) = ζ ,

h(0) = 0 , h′(0) = 1 ,

f̂ (0) = 0 , f̂ ′(0) = 0 , f̂ ′′(0) = ξ̂ , f̂ ′′′(0) = ζ̂ ,

ĥ(0) = 0 , ĥ′(0) = 0 . (10.11)

Here, parameters ξ̂ and ζ̂ are defined as

ξ̂ = ∂ξ

∂k
, ζ̂ = ∂ζ

∂k
. (10.12)

The shooting method is meant to determine the six unknown parameters, k, Ra, ξ ,
ζ , ξ̂ and ζ̂ , through the six target conditions included in Eq. (10.9), namely

f (1) = 0 , f ′(1) = 0 , h(1) = 0 ,

f̂ (1) = 0 , f̂ ′(1) = 0 , ĥ(1) = 0 . (10.13)

One can easily generalise the Octave script described in Sect. 10.3 with reference to
the doubled system of differential equations (10.9). The vector function Xn has now
twelve components instead of six,

X1 = f , X2 = f ′ , X3 = f ′′ , X4 = f ′′′ , X5 = h , X6 = h′ ,

X7 = f̂ , X8 = f̂ ′ , X9 = f̂ ′′ , X10 = f̂ ′′′ , X11 = ĥ , X12 = ĥ′ .

(10.14)
Then, function f1 is defined through the piece of code,

function r = f1 (y)

NN = 2000;

k = y(1); Ra = y(2); xi = y(3); zeta = y(4);

xxi = y(5); zzeta = y(6);

f = @(x, t) [x(2);

x(3);

x(4);

2*kˆ2*x(3)-kˆ4*x(1)+Ra*kˆ2*x(5);

x(6);
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kˆ2*x(5)-x(1);

x(8);

x(9);

x(10);

2*kˆ2*x(9)-kˆ4*x(7)+Ra*kˆ2*x(11)+4*k*x(3) ...

-4*kˆ3*x(1)+2*Ra*k*x(5);

x(12);

kˆ2*x(11)-x(7)+2*k*x(5)];

t = linspace (0, 1, NN)’;

lsode_options("absolute tolerance", 1e-16);

lsode_options("relative tolerance", 1e-15);

x = lsode (f, [0; 0; xi; zeta; 0; 1; 0; 0; xxi;

zzeta; 0; 0], t);

r(1) = x(NN,1); r(2) = x(NN,2); r(3) = x(NN,5);

r(4) = x(NN,7); r(5) = x(NN,8); r(6) = x(NN,11);

endfunction

where we denoted with xxi and zzeta the variables corresponding to ξ̂ and ζ̂ .
Then, the shooting method to solve the target conditions is coded as

yyold = [3; 1708; 1; -1; 1; -1];

options=optimset(’MaxIter’,1e5,’TolFun’,1e-16);

yy = fsolve(@(y) f1(y),yyold,options);

zz = f1(yy);

format long;

printf("kc = %.15f\n", yy(1));

printf("Rac = %.15f\n", yy(2));

fflush(stdout);

The guess values for the six unknown parameters, k, Ra, ξ , ζ , ξ̂ and ζ̂ , are stored
in the array yyold and determined through the built-in function fsolve. Running
the Octave script yields output values corresponding to the six components of the
array yy,

kc = 3.11632355482 , Rac = 1707.76177710 ,

ξc = 257.467534625 , ζc = −1665.14952033 ,

ξ̂c = 105.475318349 , ζ̂c = −919.577067424 . (10.15)

Since choosing guess values to store in yymight have an influence on the accuracy of
the solution produced by fsolve, we can rerun the script by employing Eq. (10.15)
to produce the new guess values. Then, yyold is now defined as

yyold = [3.11632355482; 1707.76177710; 257.467534625;

-1665.14952033; 105.475318349; -919.577067424];
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In fact, the output is almost left unchanged, at least within ten of the twelve significant
figures reported in Eq. (10.15).

In order to have a comparison with accurate numerical results available in the
literature, we can slightly alter our Octave script in order to obtain the critical values
kc and Rac relative to the case with an impermeable rigid lower boundary and a
stress-free upper boundary, where the boundary conditions are given by Eq. (7.48)
instead of Eq. (7.47). Glomski and Johnson [6] reported the results

kc = 2.68232175769341424484389 ,

Rac = 1100.64960688767678462749 . (10.16)

It must be mentioned that many more figures are given by these authors. On the other
hand, if we run our Octave script, we obtain

kc = 2.68232175769 ,

Rac = 1100.64960689 . (10.17)

Within twelve significant figures, the agreement is perfect.

10.5 An Absolute Instability Problem

We now illustrate how the numerical method described in Sects. 10.2–10.4 can be
adapted for use with absolute instability problems. To this end, we consider the
eigenvalue problem examined in Sect. 9.1.3 and given by Eq. (9.20), namely

f ′′ − k2 f + R k2 h = 0 ,

h′′ − [
k2 + σ λ(k) + i k Pe

]
h + f = 0 ,

f̂ ′′ − k2 f̂ + R k2 ĥ − 2 k f + 2 R k h = 0 ,

ĥ′′ − [
k2 + σ λ(k) + i k Pe

]
ĥ + f̂ − (2 k + i Pe) h = 0 ,

z = 0 : f = 0 , h′ = 0 , f̂ = 0 , ĥ′ = 0 ,

z = 1 : f = 0 , h = 0 , f̂ = 0 , ĥ = 0 . (10.18)

The implementation of the shooting method for the solution of the eigenvalue prob-
lem (10.18) features an important difference with respect to the analysis made in
Sects. 10.2–10.4. In fact, the eigenfunctions ( f, h, f̂ , ĥ) are complex-valued. Thus,
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we have to consider the real and the imaginary parts of ( f, h, f̂ , ĥ), hereafter denoted
with “r” and “i” subscripts, so that we must deal with an eight-tuple of real functions,
( fr, fi, hr, hi, f̂r, f̂i, ĥr, ĥi).

By separating the real and imaginary parts of the eigenfunctions, and by remem-
bering that both k and λ are complex, we rewrite Eq. (10.18) as

f ′′
r = (

k2r − k2i
)
fr − 2 kr ki fi − R

(
k2r − k2i

)
hr + 2 kr ki R hi ,

f ′′
i = (

k2r − k2i
)
fi + 2 kr ki fr − R

(
k2r − k2i

)
hi − 2 kr ki R hr ,

h′′
r = (

k2r − k2i + sr − ki Pe
)
hr − (2 kr ki + si + kr Pe) hi − fr ,

h′′
i = (

k2r − k2i + sr − kiPe
)
hi + (2 kr ki + si + kr Pe) hr − fi

f̂ ′′
r = (

k2r − k2i
)
f̂r − 2 kr ki f̂i − R

(
k2r − k2i

)
ĥr + 2 kr ki R ĥi

+ 2 kr fr − 2 ki fi − 2 R kr hr + 2 R ki hi ,

f̂ ′′
i = (

k2r − k2i
)
f̂i + 2 kr ki f̂r − R

(
k2r − k2i

)
ĥi − 2 kr ki R ĥr

+ 2 ki fr + 2 kr fi − 2 R ki hr − 2 R kr hi ,

ĥ′′
r = (

k2r − k2i + sr − ki Pe
)
ĥr − (2 kr ki + si + kr Pe) ĥi − f̂r

+ 2 kr hr − (2 ki + Pe) hi ,

ĥ′′
i = (

k2r − k2i + sr − ki Pe
)
ĥi + (2 kr ki + si + kr Pe) ĥr − f̂i

+ (2 ki + Pe) hr + 2 kr hi ,

z = 0 : fr = 0 , h′
r = 0 , f̂r = 0 , ĥ′

r = 0 ,

fi = 0 , h′
i = 0 , f̂i = 0 , ĥ′

i = 0 ,

z = 1 : fr = 0 , hr = 0 , f̂r = 0 , ĥr = 0 ,

fi = 0 , hi = 0 , f̂i = 0 , ĥi = 0 .
(10.19)

We reconfigure Eq. (10.19) as an initial value problem by completing the conditions
prescribed at z = 0, namely

fr(0) = 0 , f ′
r (0) = 1 , fi(0) = 0 , f ′

i (0) = 0 ,

hr(0) = ξ1 , h′
r(0) = 0 , hi(0) = ξ2 , h′

i(0) = 0 ,
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f̂r(0) = 0 , f̂ ′
r (0) = 0 , f̂i(0) = 0 , f̂ ′

i (0) = 0 ,

ĥr(0) = ξ̂1 , ĥ′
r(0) = 0 , ĥi(0) = ξ̂2 , ĥ′

i(0) = 0 . (10.20)

In Eqs. (10.19) and (10.20), sr and si denote the real and imaginary parts of σ λ, while
the parameters ξ̂1 and ξ̂2 are defined as

ξ̂1 = ∂ξ1

∂k
, ξ̂2 = ∂ξ2

∂k
. (10.21)

We mention that the constraints f ′
r (0) = 1 and f ′

i (0) = 0 define the scale fixing
condition for the eigenfunctions and, in fact, it can be rewritten as f ′(0) = 1. We
recall that such a condition has been discussed in Sect. 10.2 and formulated in dif-
ferent terms through Eq. (10.3). For every prescribed set of values for the governing
parameters, {

kr, ki, Pe, R, sr, si, ξ1, ξ2, ξ̂1, ξ̂2
}

, (10.22)

there is a unique solution of Eq. (10.19). In fact, the number of initial conditions
(10.20) matches the differential order of the system of differential Eqs. (10.19). Our
solution strategy is based on the definition of the input data, known a priori,

input parameters =⇒ {Pe, sr} ,

and output data, or unknown parameters,

output parameters =⇒
{
kr, ki, R, si, ξ1, ξ2, ξ̂1, ξ̂2

}
.

The shootingmethod allows the evaluation of the eight output parameters by adopting
a root finding algorithm for the solution of the eight target conditions

fr(1) = 0 , hr(1) = 0 , f̂r(1) = 0 , ĥr(1) = 0 ,

fi(1) = 0 , hi(1) = 0 , f̂i(1) = 0 , ĥi(1) = 0 . (10.23)

If the input parameter si is set equal to 0, the output value of R is expected to yield
the threshold value Ra for the transition to absolute instability, while kr and ki yield
the real and the imaginary parts of the saddle point k0 ∈ C. The output values of ξ1,
ξ2, ξ̂1 and ξ̂2 have no direct physical meaning as they depend on our, arbitrary, choice
of the scale fixing conditions, f ′

r (0) = 1 and f ′
i (0) = 0.
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The implementation of the numerical solver through an Octave script follows
the approach discussed in Sect. 10.3. We first define the vector function Xn , with
n = 1, 2, . . . , 16,

X1 = fr , X2 = f ′
r , X3 = fi , X4 = f ′

i ,

X5 = hr , X6 = h′
r , X7 = hi , X8 = h′

i ,

X9 = f̂r , X10 = f̂ ′
r , X11 = f̂i , X12 = f̂ ′

i ,

X13 = ĥr , X14 = ĥ′
r , X15 = ĥi , X16 = ĥ′

i . (10.24)

Thus, the initial value problem based on Eqs. (10.19) and (10.20) can be rewritten
in terms of a system of first-order ordinary differential equations. The core of the
Octave script is the definition of function f1 for the numerical solution of the initial
value problem,

function r = f1 (y,Pe)

NN = 600;

sr = 0;

kr = y(1); ki = y(2); R = y(3); si = y(4);

xi1 = y(5); xi2 = y(6); xxi1 = y(7); xxi2 = y(8);

f = @(x, t) [x(2);

(krˆ2-kiˆ2)*x(1)-2*kr*ki*x(3)-R*(krˆ2- ...

kiˆ2)*x(5)+2*kr*ki*R*x(7);

x(4);

(krˆ2-kiˆ2)*x(3)+2*kr*ki*x(1)-R*(krˆ2- ...

kiˆ2)*x(7)-2*kr*ki*R*x(5);

x(6);

(krˆ2-kiˆ2+sr-ki*Pe)*x(5)-(2*kr*ki+si+kr*Pe)*x(7)-x(1);

x(8);

(krˆ2-kiˆ2+sr-ki*Pe)*x(7)+(2*kr*ki+si+kr*Pe)*x(5)-x(3);

x(10);

(krˆ2-kiˆ2)*x(9)-2*kr*ki*x(11)-R*(krˆ2- ...

kiˆ2)*x(13)+2*kr*ki*R*x(15)+2*kr*x(1)-2*ki*x(3)- ...

2*R*kr*x(5)+2*R*ki*x(7);

x(12);

(krˆ2-kiˆ2)*x(11)+2*kr*ki*x(9)-R*(krˆ2- ...

kiˆ2)*x(15)-2*kr*ki*R*x(13)+2*ki*x(1)+2*kr*x(3)- ...

2*R*ki*x(5)-2*R*kr*x(7);

x(14);

(krˆ2-kiˆ2+sr-ki*Pe)*x(13)-(2*kr*ki+si+kr*Pe)* ...

x(15)-x(9)+2*kr*x(5)-(2*ki+Pe)*x(7);

x(16);
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(krˆ2-kiˆ2+sr-ki*Pe)*x(15)+(2*kr*ki+si+kr*Pe)* ...

x(13)-x(11)+(2*ki+Pe)*x(5)+2*kr*x(7)];

t = linspace (0, 1, NN)’;

lsode_options("absolute tolerance", 1e-16);

lsode_options("relative tolerance", 1e-15);

x = lsode (f, [0; 1; 0; 0; xi1; 0; xi2; 0; 0; 0; 0; 0; ...

xxi1; 0; xxi2; 0], t);

r(1) = x(NN,1); r(2) = x(NN,3); r(3) = x(NN,5);

r(4) = x(NN,7); r(5) = x(NN,9); r(6) = x(NN,11);

r(7) = x(NN,13); r(8) = x(NN,15);

endfunction

We note the use of the newline character “...” employed to continue a long state-
ment to the next line. Once more, the independent variable is denoted as t, meaning
the coordinate z. Such a variable is a row vector with NN = 600 equally spaced
nodes defined through the linspace function with t ranging from 0 to 1. Func-
tion f1 depends on the variables y and Pe, with y being an eight components array
containing all the output parameters of the shooting method solution,

{kr, ki, R, si, ξ1, ξ2, ξ̂1, ξ̂2} ,

where ξ̂1 and ξ̂2 have been denoted as xxi1 and xxi2. The input variable sr is set
equal to 0 in order to detect the threshold value of R for the transition to absolute
instability.

The initial conditions given by Eq. (10.20) and coded through the vector function
Xn defined in Eq. (10.24), namely the array x, are provided as one of the arguments
of function lsode. The latter is the function providing the numerical solution of
the initial value problem obtained through the LSODE solver. The output of the
function f1 is the eight components array r. Such array serves to force compliance
of the target conditions expressed by Eq. (10.23), by employing the coding given by
Eq. (10.24). In the definition of r, the components of x are evaluated at node NN,
that is at the end node of the interval, where t is equal to 1. The target conditions
expressed by Eq. (10.23) are fulfilled if all components of r are as close as possible
to zero. This constraint is accomplished by employing function fsolve based on
the Fortran subroutine library MINPACK,

fileID1 = fopen(file1,’w’);

PP = linspace(Pemin,Pemax,Nmax);

yy = [2.3262145792; 0; 27.0976278778; 0; 1; 0; 1; 0];

yyold = yy;

options=optimset(’MaxIter’,1e5,’TolFun’,1e-16);

for ll = 1:Nmax

Pe = PP(ll);

yy = fsolve(@(y) f1(y,Pe),yyold,options);

zz = f1(yy,Pe);
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yyold = yy;

format long;

printf("Pe = %.15f\n", Pe);

printf("R = %.15f\n", yy(3));

fflush(stdout);

fprintf(fileID1,’%.10f %.10f %.10f %.10f %.10f\n’, ...

Pe, yy(1), yy(2), yy(3), yy(4));

endfor

fclose(file1);

The file named file1 contains the evaluated output variables kr, ki, R and si
organisedwith rows labelled by the Péclet number,Pe. The value of R is the threshold
Ra corresponding to the input Pe. The values of Pe and R are also displayed on
the terminal at each iteration of the for loop. The loop stops after Nmax iterations,
where the value of Nmaxmust be previously declared. The interval of Péclet numbers
ranging from Pemin to Pemax must be previously declared as well.

The output data kr, ki, R and si are the first four elements of the array y
employed by function f1. Function fsolve calls function f1 in order to evaluate
y so that the components of r are constrained to be zero. Function fsolve employs
the array yyold as a guess for the array y to be determined. At each iteration of
the for loop, the array yyold is updated by assigning the values of y obtained at
the previous iteration. The initialisation is relative to an assumed Pemin equal to 0,
with the first four components of yyold given by their critical values, as declared
in Sect. 9.1.3 on writing Eq. (9.26).

By analogy with Table 10.1, the effect of different relative tolerances for the
lsode initial value solver is shown in Table 10.2. The output values reported in
this table are obtained with an absolute tolerance of 10−16. The test case examined
is Pe = 10 with sr = 0. Therefore, the values of kr and ki are the real and imaginary
parts of the saddle point k0 ∈ C pertinent for the transition to absolute instability,
while the reported value of R is in fact Ra.

Table 10.2 Solution of the absolute instability eigenvalue problem given by Eq. (10.18) with Pe =
10 and �(σ λ) = sr = 0: effect of a decreasing relative tolerance in the options of lsode

Relative tolerance kr ki R si

10−4 3.2102790002 −1.9980466234 52.0998313332 −34.1531641659

10−5 3.2102828920 −1.9980485749 52.0999155514 −34.1531956201

10−6 3.2102845839 −1.9980494229 52.0999521699 −34.1532092950

10−10 3.2102848043 −1.9980495336 52.0999569382 −34.1532110760

10−12 3.2102848043 −1.9980495336 52.0999569391 −34.1532110763

10−15 3.2102848043 −1.9980495336 52.0999569391 −34.1532110763
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Appendix A
Separation of Variables

In this appendix, the separation of variables is illustrated using a couple of sample
partial differential equations: the two-dimensional Laplace–Poisson equation and the
diffusion equation. Finally, a three-dimensional example is presented and examined
in detail.

A.1 Laplace–Poisson Equation

A well-known equation of applied mathematics is the Laplace–Poisson equation,

∇2ψ(x) = q(x) , ∀x ∈ D . (A.1)

where ψ is the unknown function and q is a source function, known a priori. Ex-
amples of Laplace–Poisson equations in mathematical physics are the equation of
the scalar electric potential in steady-state electromagnetism and the local energy
balance equation in the theory of stationary heat conduction.

From the mathematical viewpoint, Eq. (A.1) is a second-order elliptic equation.
Equation (A.1) is defined in a three-dimensional domain D ⊆ R

3 with a boundary
surface ∂D where appropriate boundary conditions must be prescribed. Symmetries
maybepresent in the geometry ofD , aswell as in the formof the boundary conditions,
such that the solution ψ of equation (A.1) is subject to an invariance.

For instance, if (x, y, z) is a set of Cartesian coordinates inD ,ψ may be invariant
for arbitrary translation transformations along the z-direction.

This example suggests that physically significant cases may be reduced to a prop-
erly defined two-dimensional domain Ω ⊆ R

2 with boundary ∂Ω . We will illustrate
the separation of the variables with reference to these special cases, i.e. we will focus
on the two-dimensional Laplace–Poisson equation, namely

© Springer Nature Switzerland AG 2019
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∂2ψ(x, y)

∂x2
+ ∂2ψ(x, y)

∂y2
= q(x, y) . (A.2)

Different kinds of boundary conditions may be defined for the two-dimensional
Laplace–Poisson equation. We will consider the Dirichlet, Neumann and Robin
boundary conditions.

First Kind or Dirichlet Boundary Conditions

ψ(x) = f (x) , ∀x ∈ ∂Ω , (A.3)

where f (x) is any prescribed function defined on ∂Ω .

Second Kind or Neumann Boundary Conditions

∂ψ(x)
∂n

= f (x) , ∀x ∈ ∂Ω , (A.4)

where ∂/∂n is the normal derivative to the boundary line ∂Ω . Usually, the preferred
choice for the normal unit vector n is with the boundary line ∂Ω having an outward
orientation.

Third Kind or Robin Boundary Conditions

∂ψ(x)
∂n

+ h ψ(x) = f (x) , ∀x ∈ ∂Ω , (A.5)

where h is a prescribed constant parameter.
The adjective “homogeneous” is quite important for the characterisation of a

partial differential equation or of its boundary conditions, but what does it mean?
A partial differential equation, say the Laplace–Poisson equation, is homogeneous
if its source term q(x) vanishes ∀x ∈ Ω . In this case, the Laplace–Poisson equation
is a linear partial differential equation meaning that any linear combination of two
solutions is itself a solution. The boundary conditions given by Eqs. (A.3)–(A.5) are
said to be homogeneous when f (x) vanishes ∀x ∈ ∂Ω . In this case, the boundary
conditions are linear in the same sense as described above.

We are interested in the solution of equation (A.2). We first note that the general
solution of this partial differential equation can be expressed as

ψ(x) = ψ̂(x) + Ψ (x) , (A.6)

where ψ̂(x) is a particular solution of equation (A.2), while Ψ (x) is the general
solution of the Laplace equation, namely

∂2Ψ (x, y)

∂x2
+ ∂2Ψ (x, y)

∂y2
= 0 . (A.7)
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There is no general rule for determining a particular solution of equation (A.2)
and, obviously, no need to determine it if the partial differential equation (A.2)
is homogeneous, i.e. if q(x) = 0, ∀x ∈ Ω . In the homogeneous case, one can set
ψ̂(x) = 0, ∀x ∈ Ω and just focus the attention on the determination of Ψ (x) . The
procedure is as follows:

• Equation (A.7) is linear, so that a linear combination of solutions is itself a solution;
• We choose as basic solutions the “separated” solutions, Ψ (x) = A(x) B(y) ;
• We combine linearly the separated solutions in order to express the general solu-
tion.

Then, we first set
Ψ (x) = A(x) B(y) , (A.8)

and substitute in Eq. (A.7), so that we obtain

B(y) A′′(x) = −A(x) B ′′(y) =⇒ 1

A(x)
A′′(x) = − 1

B(y)
B ′′(y) , (A.9)

where the primes denote differentiation with respect to the independent variable. In
this case, the independent variable is either x or y . We obtain an equation where the
left-hand side depends only on x , while the right-hand side depends only on y. Then,
there must exist a constant λ ∈ R such that

A′′(x) = −λ A(x) , (A.10)

B ′′(y) = λ B(y) . (A.11)

The separation constant λ is called the eigenvalue. It can be either positive, or nega-
tive, or zero. Whether λmust be non-negative or non-positive depends on the bound-
ary conditions. This point will become clearer in the following. At this stage, it is
not restrictive the assumption λ � 0. In this case, we call Eq. (A.10) the eigenvalue
equation and A(x) the eigenfunction.

We will now formulate a theorem without proving it. Among the many treatises
on applied mathematics, for a proof of this theorem and a more extensive and rig-
orous survey of the eigenvalue problems involved in the separation of variables for
partial differential equations we refer the reader, for instance, to Section 6.6 of the
book by Herman [1].

Theorem A.1 (Sturm–Liouville) A Sturm–Liouville eigenvalue problem is defined
by the second-order differential equation

[
a(r) u′(r)

]′ + [b(r) + λ c(r)] u(r) = 0 ,

in the interval r1 � r � r2, and by a pair of boundary conditions at r = r1 and
r = r2,
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h1 u(r) + k1 u′(r) = 0 in r = r1 ,

h2 u(r) + k2 u′(r) = 0 in r = r2 ,

with prescribed real constants h1, h2, k1 and k2 . The functions a(r), b(r) and c(r)

are known a priori, real-valued, differentiable and defined on the interval [r1, r2].
We assume that a(r) > 0 and c(r) > 0 for every r ∈ [r1, r2].

The following propositions hold:

• the Sturm–Liouville eigenvalue problem admits non-trivial solutions only for spe-
cial values of λ called eigenvalues; the corresponding non-trivial solutions are
called eigenfunctions;

• the eigenvalues are infinite and can be structured in an increasing sequence {λn};
• eigenfunctions um(r), un(r) corresponding to different eigenvalues λm, λn are or-

thogonal, meaning that

r2∫

r1

c(r) um(r) un(r) dr = 0 .

In the statement of this theorem, it is assumed that the functions a(r), b(r) and c(r)

are such that the second-order differential equation defines a well-posed eigenvalue
problem. For instance, this assumption deals with the sign of the functions a(r)

and c(r) within the interval [r1, r2]. In fact, a simple counter-example leading to an
ill-posed eigenvalue problem can be obtained by the choice a(r) = 1, b(r) = 0 and
c(r) = −1.

The adjective “orthogonal” used in the statement of the Sturm–Liouville theorem
suggests that the space of the solutions of an eigenvalue problem can be endowed
with an inner product operation as mathematicians do for a vector space. In fact, the
inner product operation in a space of functions allows one to define a special kind of
infinite-dimensional vector space called Hilbert space.

The separation of variables in Eq. (A.7) is allowed if Ω is a rectangle in the (x, y)

plane, i.e. if
Ω = [0, L] × [0, H ] . (A.12)

The boundary of Ω is thus made of four sides

x = 0 , x = L , y = 0 , y = H .

This means four boundary conditions to be prescribed for the solutions ψ of equa-
tion (A.2).

Remark A.1 The separation of variables can be applied if the associated Laplace
equation (A.7) is endowed with four boundary conditions for Ψ such that not less
than three are homogeneous. In fact, in this case, one can write the function Ψ as
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Ψ (x, y) =
∑

n

ηn An(x) Bn(y) , (A.13)

where An(x) and Bn(y) are determined, up to an overall multiplicative constant,
as solutions of equations (A.10) and (A.11), by employing the three homogeneous
boundary conditions. These solutions are found together with suitable eigenvalues
λn . On the other hand, the coefficients ηn form a sequence which can be determined
by employing the inhomogeneous boundary condition.

We mention that the four boundary conditions for Ψ are obtained from those
prescribed on ψ when the particular solution ψ̂ has been chosen, i.e. by employing

Ψ = ψ − ψ̂ .

Then, following Remark A.1, the possibility of applying the separation of variables
often depends on how clever was the choice of ψ̂ .

Remark A.2 InEqs. (A.10) and (A.11),we can chooseλ � 0 if the non-homogeneous
boundary condition of Ψ is either on y = 0 or on y = H . We can choose λ ≤ 0 if
the non-homogeneous boundary condition of Ψ is either on x = 0 or on x = L .

Example A.1 We aim to solve the following problem

∂2ψ

∂x2
+ ∂2ψ

∂y2
= 1 ,

in the domain Ω = [0, L] × [0, H ], with the boundary conditions

ψ(0, y) = ψ(L , y) = ψ(x, 0) = ψ(x, H) = 0 .

We first seek the particular solution of the partial differential equation. Such solution
can be conveniently chosen as

ψ̂(x, y) = − 1

2
x (L − x) .

Then, the boundary conditions for Ψ are

Ψ (0, y) = Ψ (L , y) = 0, Ψ (x, 0) = Ψ (x, H) = 1

2
x (L − x) .

There are two non-homogeneous boundary conditions, so that the separation of vari-
ables, according to Remark A.1, cannot be applied. In fact, we can if we first use the
superposition principle, i.e. if we recognise that

Ψ (x, y) = Ψ1(x, y) + Ψ2(x, y) ,



266 Appendix A: Separation of Variables

where Ψ1(x, y) is the solution of

Problem 1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2Ψ1

∂x2
+ ∂2Ψ1

∂y2
= 0 ,

Ψ1(0, y) = Ψ1(L , y) = 0 ,

Ψ1(x, 0) = 1

2
x (L − x) , Ψ1(x, H) = 0 ,

and Ψ2(x, y) is the solution of

Problem 2

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2Ψ2

∂x2
+ ∂2Ψ2

∂y2
= 0 ,

Ψ2(0, y) = Ψ2(L , y) = 0 ,

Ψ2(x, 0) = 0 , Ψ2(x, H) = 1

2
x (L − x) .

One can easily show that

Ψ2(x, y) = Ψ1(x, H − y) , ∀(x, y) ∈ [0, L] × [0, H ] .

Then, we have just to solve Problem 1 by the separation of variables. We solve
Eq. (A.10) with λ � 0 . Since the boundary conditions are

Ψ1(0, y) = Ψ1(L , y) = 0 ,

we conclude that An(0) = An(L) = 0 , so that

An(x) = sin
(

x
√

λn

)
,

with √
λn = π n

L
, ∀n ∈ N .

We note that the eigenfunctions An(x) are defined only up to an arbitrary overall
constant scale factor. The functions Bn(y) must be such that Bn(H) = 0, in order
to satisfy the boundary condition Ψ1(x, H) = 0 . Then, by solving Eq. (A.11), we
obtain

Bn(y) = sinh
[π n

L
(H − y)

]
.

By expressing Ψ1(x, y) as a linear combination of all the products An(x) Bn(y), we
can write

Ψ1(x, y) =
∞∑

n=1

ηn sin
(π n

L
x
)
sinh

[π n

L
(H − y)

]
.



Appendix A: Separation of Variables 267

The arbitrary coefficients ηn can be determined by imposing the fourth boundary
condition, i.e. the inhomogeneous one,

Ψ1(x, 0) = 1

2
x (L − x) ,

1

2
x (L − x) =

∞∑

n=1

ηn sin
(π n

L
x
)
sinh

(
π n H

L

)
.

We multiply both sides of this equation by an eigenfunction Am(x) and integrate
with respect to x over the interval [0, L] , namely

1

2

L∫

0

x (L − x) sin
(π m

L
x
)
dx

=
∞∑

n=1

ηn sinh

(
π n H

L

) L∫

0

sin
(π m

L
x
)
sin

(π n

L
x
)
dx .

On account of Theorem A.1, we can write the orthogonality condition,

L∫

0

sin
(π m

L
x
)
sin

(π n

L
x
)
dx = 0 , ∀m 
= n .

Moreover, one can easily show that

L∫

0

x (L − x) sin
(π m

L
x
)
dx = 2 [1 − (−1)m] L3

m3π3
,

L∫

0

sin2
(π m

L
x
)
dx = L

2
, ∀m ∈ N .

We can deduce an expression for the generic ηn , namely

ηn = 0 , ∀n ∈ N , n = even,

ηn = 4 L2

n3 π3 sinh(π n H/L)
, ∀n ∈ N , n = odd .
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The final expression of Ψ1(x, y) is

Ψ1(x, y) =
∑

n∈N
n=odd

4 L2

n3 π3 sinh(π n H/L)
sin

(π n

L
x
)
sinh

[π n

L
(H − y)

]
.

To conclude, the solution of the problem is given by

ψ(x, y) = −1

2
x (L − x)

+
∑

n∈N
n=odd

4 L2

n3 π3 sinh(π n H/L)
sin

(π n

L
x
)
sinh

[π n

L
(H − y)

]

+
∑

n∈N
n=odd

4 L2

n3 π3 sinh(π n H/L)
sin

(π n

L
x
)
sinh

(π n

L
y
)

.

A.2 Diffusion Equation

The diffusion equation can be expressed as

∇2ψ(x, t) + q(x, t) = ∂ψ(x, t)

∂t
. (A.14)

Equation (A.14) is defined in a spatial domainD ⊆ R
3 with a boundary surface ∂D

and in a time interval [0, t0].
The solution of Eq. (A.14) is possible if one specifies an initial condition,

ψ(x, 0) = F(x) , ∀x ∈ D . (A.15)

Wemust also specify boundary conditions that can be of the same kind as that defined
for the Laplace–Poisson equation and given by Eqs. (A.3) and (A.5). Equation (A.14)
can be solved by expressing the solution ψ(x, t) as

ψ(x, t) = ψ̂(x, t) + Ψ (x, t) , (A.16)

where ψ̂(x, t) is an arbitrarily chosen particular solution of Eq. (A.14), whileΨ (x, t)
is the general solution of the associated homogeneous diffusion equation,

∇2Ψ (x, t) = ∂Ψ (x, t)

∂t
. (A.17)
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Since there is no general method to obtain a convenient particular solution of
Eq. (A.14), we will focus on the solution of Eq. (A.17) by the separation of variables.
We follow the usual procedure. We first express Ψ (x, t) as the product

Ψ (x, t) = A(x) B(t) . (A.18)

By substituting Eq. (A.18) in Eq. (A.17), we obtain

1

A(x)
∇2 A(x) = 1

B(t)
B ′(t) . (A.19)

The left-hand side of Eq. (A.19) depends only on x, while the right-hand side depends
only on t . Then, there must exist a separation constant such that

∇2 A(x) = − α2 A(x) , (A.20)

B ′(t) = − α2 B(t) . (A.21)

In this case, we are not free to choose the sign of the separation constant. We have
to choose, in fact, α2 � 0. The reason is that one of the two ordinary differential
equations (A.20) and (A.21), is first order and, as such, it cannot give rise to an
eigenvalue problem. Therefore, α2 is the eigenvalue and A(x) the corresponding
eigenfunction.

It is quite important to point out that all this reasoning works well provided that
the boundary conditions for Ψ (x, t) are all homogeneous.

Up to an arbitrary constant factor (that can be considered as part of the eigenfunc-
tion, with a proper normalisation), function B(t) can be expressed as

B(t) = e−α2t . (A.22)

Since Eq. (A.17) is linear, any linear combination of solutions is itself a solution.
Hence, we can express the general solution of Eq. (A.17) as

Ψ (x, t) =
∞∑

n=0

An(x) e−α2
n t , (A.23)

where we have assumed an infinite numerable sequence of eigenvalues α2
0, α

2
1 , . . . ,

α2
n , . . . .
Symmetries in the domain D and in the boundary conditions may imply that the

solutions of the eigenvalue equation (A.20) are invariant by translations along two
Cartesian axes, say y and z. In this case, the eigenfunctions depend only on x and
Eq. (A.20) becomes an ordinary differential equation,

A′′(x) = − α2 A(x) . (A.24)
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The solution, provided that α 
= 0 , is given by

A(x) = η cos(αx) + η̂ sin(αx) , (A.25)

where η and η̂ are integration constants. As a consequence, Eq. (A.23) can be rewrit-
ten as

Ψ (x, t) =
∞∑

n=0

[
ηn cos(αn x) + η̂n sin(αn x)

]
e−α2

n t . (A.26)

The coefficients ηn and η̂n are determined by employing the initial and boundary
conditions.

A.3 On the Separation of Variables in Three Dimensions

The separation of variables is a powerful tool. We have just given some hints to
understand what the method is like for the solution of the two-dimensional Laplace–
Poisson equation or for the one-dimensional diffusion equation. What happens if we
consider the three-dimensional Laplace–Poisson equation?What happens if we have
to solve the two-dimensional or three-dimensional diffusion equation?

The general answer is that the method can still be used, but it becomes more com-
plicated. More precisely, we must apply it several times, on separating one variable
at a time.

Example A.2 We aim to solve the Laplace equation,

∂2ψ(x, y, z)

∂x2
+ ∂2ψ(x, y, z)

∂y2
+ ∂2ψ(x, y, z)

∂z2
= 0 ,

in the domain [0, 1] × [0, 1] × [0, 1] with the six boundary conditions,

ψ(0, y, z) = 0 , ψ(1, y, z) = 1 , (A.27)

ψ(x, 0, z) = 0 , ψ(x, 1, z) = 0 , (A.28)

ψ(x, y, 0) = 0 , ψ(x, y, 1) = 0 .

First of all, we write
ψ(x, y, z) = M(x, y) C(z) .
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We substitute in the Laplace equation,

1

M(x, y)

[
∂2

xx M(x, y) + ∂2
yy M(x, y)

] = − 1

C(z)
C ′′(z) .

Both sides of this equation must coincide with a positive constant (α2), so that we
can split the equation into a pair of equations

∂2
xx M(x, y) + ∂2

yy M(x, y) = α2 M(x, y) ,

C ′′(z) = − α2 C(z) .

The boundary conditions ψ(x, y, 0) = 0 and ψ(x, y, 1) = 0 allow us to determine
the eigenfunctions Cn(z) and the eigenvalues (α2

n) . We obtain

Cn(z) = sin(nπ z) , αn = n π , n ∈ N .

From the linearity of the Laplace equation, we can express ψ(x, y, z) as a sum of
separated solutions

ψ(x, y, z) =
∞∑

n=1

Mn(x, y) sin(nπ z) .

We go ahead with the separation of variables relative to the partial differential equa-
tion,

∂2
xx Mn(x, y) + ∂2

yy Mn(x, y) = (n π)2 Mn(x, y) ,

We express Mn(x, y) as a product

Mn(x, y) = A(x) B(y) .

We substitute in the partial differential equation so that we can write

1

A(x)
A′′(x) − (n π)2 = − 1

B(y)
B ′′(y) .

We obtained an equation where the left-hand side depends only on x , while the
right-hand side depends only on y. Then, there must exist a constant μ2 ∈ R such
that

A′′(x) = [
μ2 + (n π)2

]
A(x) ,

B ′′(y) = −μ2 B(y) .
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The boundary conditions ψ(x, 0, z) = 0 and ψ(x, 1, z) = 0 allow us to determine
the eigenfunctions Bm(y) and the eigenvalues μ2

m . We obtain

Bm(y) = sin(mπy), μm = m π, m ∈ N .

A solution of the ordinary differential equation for A(x) compatible with the bound-
ary condition ψ(0, y, z) = 0 is

Am,n(x) = sinh
(
πx

√
m2 + n2

)
.

Then, we may write

Mn(x, y) =
∞∑

m=1

ηm,n sinh
(
πx

√
m2 + n2

)
sin(mπy) ,

and, hence,

ψ(x, y, z) =
∞∑

n=1

∞∑

m=1

ηm,n sinh
(
πx

√
m2 + n2

)
sin(mπy) sin(nπ z) .

The coefficientsηm,n can be determined by imposing the non-homogeneous boundary
condition ψ(1, y, z) = 1, namely

1 =
∞∑

n=1

∞∑

m=1

ηm,n sinh
(
π

√
m2 + n2

)
sin(mπy) sin(nπ z) .

We multiply both sides of this equation by sin(pπy) sin(qπ z), where p and q are
positive integers, and perform a double integration with respect to y and z in the
domain [0, 1] × [0, 1] . Then, we obtain

1∫

0

sin(pπy) dy

1∫

0

sin(qπ z) dz

=
∞∑

n=1

∞∑

m=1

ηm,n sinh
(
π

√
m2 + n2

) 1∫

0

sin(pπy) sin(mπy) dy

×
1∫

0

sin(qπ z) sin(nπ z) dz . (A.29)

Since Bm(y) = sin(mπy) and Cn(z) = sin(nπ z) have been obtained by solving
Sturm–Liouville eigenvalue problems, Theorem A.1 can be invoked. We can thus
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write the orthogonality relationship

1∫

0

sin(pπy) sin(mπy) dy = 1

2
δmp , ∀m, p ∈ N .

Obviously, the result for m = p (or n = q) is not a consequence of the Sturm–
Liouville theorem, but it comes from a direct evaluation of the integral. Another
useful integral formula is

1∫

0

sin(pπy) dy = 1 − (−1)p

πp
, ∀p ∈ N .

We thus obtain the coefficients ηm,n ,

ηm,n = 4 [1 − (−1)m] [1 − (−1)n]

π2 m n sinh
(
π

√
m2 + n2

) .

To conclude, the solution of the problem is given by

ψ(x, y, z) = 16

π2

∑

n∈N
n=odd

∑

m∈N
m=odd

sinh
(
πx

√
m2 + n2

)

m n sinh
(
π

√
m2 + n2

) sin(mπy) sin(nπ z) .
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Appendix B
An Introduction to Tensors and to Einstein’s
Notation

For convenience, we denote the Cartesian coordinates as (x1, x2, x3) instead of
(x, y, z), and with e1, e2 and e3 the unit vectors along the three Cartesian axes.

Since Einstein’s notation is useful when dealing with tensors, it is better to define
precisely this concept. A tensor A in R

3, where R is the set of real numbers, is an
application,

A : R
3 × R

3 × · · · × R
3

︸ ︷︷ ︸
n times

→ R ,

A(u1,u2, . . . ,un) ∈ R , (B.1)

that is linear with respect to each of its n arguments.
The linearity of A implies that, if we express the n vectors, u1,u2, . . . ,un ,

through their components along the three Cartesian axes,

u1 =
3∑

i=1

u1i ei , u2 =
3∑

i=1

u2i ei , . . . un =
3∑

i=1

uni ei , (B.2)

the real value of A(u1,u2, . . . ,un) can be expressed as

A(u1, u2, . . . , un) =
3∑

i1=1

3∑

i2=1

· · ·
3∑

in=1

u1i1u2i2 · · · unin A(ei1 , ei2 , . . . , ein ) . (B.3)

This expression highlights a fundamental aspect of tensors: their action on a n-tuple
of vectors is uniquely determined by the numbers

A(ei1 , ei2 , . . . , ein ) = Ai1i2...in . (B.4)

This is the reason why a tensor, A, is often identified with an object endowed with n
indices, Ai1i2...in .
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The number n is called the rank of tensor A. A tensor of rank 1 is regarded as a
vector A, such that

A(u) =
3∑

i=1

ui A(ei ) =
3∑

i=1

ui Ai = u · A . (B.5)

In other words, the action of A on an arbitrary vector u yields the scalar product
between u and A. Similarly, a tensor of rank 2 is identified with a 3 × 3 matrix Ai j .

A quite important tensor of rank 2 is Kronecker’s delta, δ. It is defined so that

δ(u, v) = u · v , (B.6)

for every pair (u, v) ∈ R
3 × R

3. As a consequence of its definition, we find out that
δi j = 1 if i = j and δi j = 0 if i 
= j . By definition, Kronecker’s delta is a symmetric
tensor, meaning that δ(u, v) = δ(v,u) or, equivalently, that δi j = δ j i .

Another fundamental definition is the Levi-Civita symbol. It is a tensor of rank 3
denoted as ε and defined so that

ε(u, v,w) = u · (v × w) . (B.7)

Its definition implies that

ε(ei , v,w) = (v × w)i , (B.8)

or, formulated differently,

(v × w)i =
3∑

j=1

3∑

k=1

εi jk v j wk . (B.9)

From this equation, we obtain an important property of the Levi-Civita symbol εi jk =
1 if (i, j, k) is equal to (1, 2, 3) or to any even1 permutation of (1, 2, 3), say (2, 3, 1).
Symbol εi jk = −1 if (i, j, k) is equal to any odd permutation of (1, 2, 3), say (1, 3, 2).
Finally, εi jk = 0 if either i = j , or j = k, or i = k.

Another important property of the Levi-Civita symbol is the possibility to obtain
an expression of the determinant of a 3 × 3 matrix,

M =
⎛

⎝
M11 M12 M13

M21 M22 M23

M31 M32 M33

⎞

⎠ . (B.10)

1Let us consider the infinite string 123123123123 · · · . We call even permutation of (1, 2, 3) any
chunk of three neighbouring elements of this string ordered from left to right, namely (1, 2, 3),
(2, 3, 1), or (3, 1, 2). On the other hand, an odd permutation of (1, 2, 3) is any chunk of three
neighbouring elements of this string ordered from right to left, namely (3, 2, 1), (1, 3, 2), or (2, 1, 3).
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Obviously, we can write

det(M) = M11 (M22 M33 − M32 M23)

− M12 (M21 M33 − M31 M23)

+ M13 (M21 M32 − M31 M22) . (B.11)

By denoting the i th row vector of M as

M(i) = (Mi1, Mi2, Mi3) , (B.12)

we can rewrite Eq. (B.11) as

det(M) = M(1) · (
M(2) × M(3)) . (B.13)

Therefore, by employing Eqs. (B.7), (B.12) and (B.13), we finally obtain

det(M) = ε
(
M(1),M(2),M(3)

) =
3∑

i=1

3∑

j=1

3∑

k=1

εi jk M1i M2 j M3k . (B.14)

A useful tool for managing tensor algebra is Einstein’s notation. As recalled above,
the scalar product between two vectors a and b is defined as

a · b = a1 b1 + a2 b2 + a3 b3 =
3∑

i=1

ai bi . (B.15)

We note that the sum over i is evaluated for the three values i = 1, 2, 3. This sum
is referred to the expression ai bi where the index i is repeated. Einstein’s idea is a
shorthand for such sums widely used in the vector and tensor analysis. The rule is
the following: in a vector (or tensor) expression where the index i is repeated, the
sum over i is implied. In other words,

ai bi

means, according to Einstein’s notation,

3∑

i=1

ai bi .

Obviously, Einstein’s shorthand notation can be extended to expressions involving
the sum over more than just one index. The convention was introduced by Einstein
in 1916 on formulating the general theory of relativity. Later, Albert Einstein used to
joke about that: “I havemade a great discovery in mathematics; I have suppressed the
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summation sign every time that the summation must be made over an index which
occurs twice” [2].

Another interesting example, beyond the scalar product between two vectors, is
the product of a second-rank tensor, i.e. a 3 × 3 matrix M , and a vector a,

(M · a )i = Mi1 a1 + Mi2 a2 + Mi3 a3 =
3∑

j=1

Mi j a j . (B.16)

Einstein’s notation is, in this case,

(M · a )i = Mi j a j , (B.17)

the sum over the repeated index j being implied.
Einstein’s notation can be used also for representing the trace of a second-rank

tensor and the divergence of a vector,

tr(M) = M11 + M22 + M33 =
3∑

i=1

Mii ⇒ tr(M) = Mii , (B.18)

∇ · a = ∂a1

∂x1
+ ∂a2

∂x2
+ ∂a3

∂x3
=

3∑

i=1

∂ai

∂xi
⇒ ∇ · a = ∂ai

∂xi
. (B.19)

By adopting the Levi-Civita symbol, one can express the vector product,

(a × b )i = εi jk a j bk , (B.20)

the curl of a vector

(∇ × b )i = εi jk
∂bk

∂x j
, (B.21)

and the determinant of a 3 × 3 matrix M ,

det(M) = εi jk M1i M2 j M3k . (B.22)

There is an important fact about Einstein’s notation. Its use is limited to products or
to derivatives, so that the sum of the i th component of two vectors a and b, written as

ai + bi ,

does not involve any implicit sum over the repeated index i . This simple fact must
be always kept in mind when employing this notation, in order to avoid any possible
confusion.
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We introducedKronecker’s delta and theLevi-Civita symbol. There are interesting
relationships that can be built between these tensors. Starting from the vector identity,

(a × b ) · (u × v) = (a · u)(b · v) − (a · v)(b · u) , (B.23)

which can be proved straightforwardly on applying the definitions of scalar product
and vector product, we can finally build up a relationship between the Levi-Civita
symbol and Kronecker’s delta. In fact, we can write

εi jk εilm a j bk ul vm = (δ jl a j ul)(δkm bk vm) − (δ jm a j vm)(δkl bk ul) , (B.24)

and, by factoring the product a j bk ul vm , we obtain the identity

εi jk εilm = δ jl δkm − δ jm δkl . (B.25)

Another interesting relationship is

εi jk = det

⎛

⎝
δi1 δi2 δi3

δ j1 δ j2 δ j3

δk1 δk2 δk3

⎞

⎠ =
∣∣∣∣∣
∣

δi1 δi2 δi3

δ j1 δ j2 δ j3

δk1 δk2 δk3

∣∣∣∣∣
∣

. (B.26)

This relationship can be proved by observing that both the left-hand side and the
right-hand side are zero when any pair of indices within (i, j, k) are equal, as two
rows of the determinant are equal. Moreover, any even permutation of (i, j, k) leaves
unchanged both εi jk and the determinant, while any odd permutation of (i, j, k)

changes the sign of both εi jk and of the determinant. If we apply the relationship to
(i, j, k) = (1, 2, 3), we obtain

ε123 =
∣∣∣
∣∣∣

δ11 δ12 δ13
δ21 δ22 δ23
δ31 δ32 δ33

∣∣∣
∣∣∣
=

∣∣∣
∣∣∣

1 0 0
0 1 0
0 0 1

∣∣∣
∣∣∣
= 1 , (B.27)

and this completes the proof.
An important result of vector analysis is Gauss’ theorem [1]. This theorem states

that, given a vector field A, a finite region V with a regular closed boundary ∂V
having a unit outward normal n, then the following equation holds:

∫∫

∂V

A · n dS =
∫∫∫

V

∇ · A dV , (B.28)

where dS and dV denote the measure for the surface and volume integrals, respec-
tively. Equation (B.28) can be easily rewritten according to Einstein’s notation,

∫∫

∂V

A j n j dS =
∫∫∫

V

∂ A j

∂x j
dV . (B.29)
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In this form, one can easily extend the validity of Gauss’ theorem relative to a tensor
field of rank 2,

∫∫

∂V

Ai j n j dS =
∫∫∫

V

∂ Ai j

∂x j
dV , (B.30)

or, in general, to a tensor field of rank k,

∫∫

∂V

Ai1i2...ik nik dS =
∫∫∫

V

∂ Ai1i2...ik

∂xik

dV . (B.31)
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A
Absolute instability, definition, 77
Acceleration coefficient, 125
Advection equation, 15
Amplitude, 18
Angular frequency, 12, 18, 145
Argument of a complex number, 30
Asymptotic stability, 67

B
Basic solution, 74, 139
Basin of attraction, 68
Bingham model, 132
Body force, 100
Branch cut, 38
Briggs’ method, 89
Brinkman’s model, 126
Bromwich contour, 50
Buoyancy force, 110, 130
Buoyant flow, 110
Burgers equation, 74

C
Cahn–Hilliard equation, 85
Cauchy–Riemann equations, 32
Cauchy’s residue theorem, 41
Coefficient of thermal expansion, 109, 115
Combined forced and free convection, 110
Co-moving reference frame, 79
Complex plane, 29
Concentration, 113
Concentration expansion coefficients, 115
Consistency factor, 131
Continuous medium, 93
Convective instability, 137

Convective instability, definition, 76
Convolution, 11, 49
Critical value, 76, 136

D
Darcy–Forchheimer’s model, 125, 193
Darcy number, 160
Darcy–Rayleigh number, 156
Darcy’s law, 121, 124
Darcy’s velocity, 123
Degrees of freedom, 65
Density field, 95
Diffusion equation, 13, 268
Dirac’s delta function, 9
Dirichlet boundary conditions, 262
Dispersion relation, 146, 157
Dispersive waves, 18, 25
Dissipation function, 108
Distribution, 9
Dupuit–Forchheimer relationship, 123
Dynamic viscosity, 106

E
Effective thermal conductivity, 127
Effective viscosity, 126
Eigenfunction, 263
Eigenvalue equation, 263
Eigenvalue problem, 149, 244, 263
Einstein’s formula, 126
Einstein’s notation, 97, 277
Enthalpy, 111
Entropy production rate, 118
Equation of continuity, 99
Equilibrium state, 66
Essential singularity, 38
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Euler’s formula, 30
Euler’s gamma function, 61
Extensive property, 96

F
Fick’s law, 117
Fluid body, 96
Forced convection, 110
Form-drag coefficient, 125, 194
Fourier’s law, 108
Fourier transform, 8, 144
Free convection, 110

G
Gaussian, 14, 17
Gauss’ theorem, 101, 279
Generalised function, 9
Gibbs’ equation, 117
Group velocity, 21
Growth rate, 145

H
Hagen–Poiseuille flow, 124
Harmonic function, 33, 52
Heat capacity ratio, 126, 184
Heat flux density, 104
Hilbert space, 264
Holomorphic function, 32
Holomorphy requirement, 59, 189, 227, 239
Homotopy, 36
Hydrodynamic instability, 139

I
Impermeability condition, 112, 125
Incompressible flow, 99
Infinitesimal fluid element, 93
Initial state, 65
Instantaneous velocity, 93
Integral transform, 7
Intrinsic velocity, 123
Inversion formula, 9, 24, 46
Isolated singularity, 38
Isotropic, 106

K
Kernel, 7
Kinematic viscosity, 112
Kronecker’s delta, 98, 143, 276

L
Laboratory reference frame, 79
Lagrangian description, 96
Laplace-Poisson equation, 261
Laplace transform, 46
Laurent expansion, 37, 39
Levi-Civita symbol, 97, 276
Linearisation, 72
Linear mechanical system, 68
Local angular momentum balance equation,

102
Local energy balance equation, 104
Local entropy balance equation, 119
Local equilibrium hypothesis, 94
Localisation hypothesis, 93
Local mass balance equation, 99
Local momentum balance equation, 101
Local T hermal Non-Equilibrium (LTNE),

127
Lyapunov’s definition of stability, 66

M
Mass diffusion buoyancy, 116
Mass diffusivity, 117, 127
Mass flux, 114
Mass production rate, 113
Maxwell model, 132
Mechanical stress tensor, 101
Meromorphic function, 39
Mixed convection, 110
Multiple pole, 38
Multivalued function, 30, 38

N
Natural convection, 110
Navier–Stokes equation, 108
Neumann boundary conditions, 262
Neutral stability, 145
Neutral stability, definition, 76
Newtonian fluid, 106
Nonlinear mechanical system, 68
Non-Newtonian fluid, 106
Normal modes, 18
No-slip condition, 112, 125

O
Oberbeck–Boussinesq approximation, 109,

115, 206
Oldroyd-B model, 132
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P
Path integral, 35
Path integration, 35
Péclet number, 182, 218
Permeability, 124
Perturbation, 72
Perturbation parameter, 72, 75, 83, 85, 139
Phase space, 65
Phase velocity, 12, 167, 184
Piezometric head, 109, 130
Plane wave, 18, 25
Polar representation, 30
Pole, 38
Porosity, 122
Position vector, 23
Power-law index, 131
Prandtl number, 117, 143
Prats problem, 179
Pressure field, 95
Pressure work, 107
Principal branch, 30
Principle of exchange of stabilities, 146, 150,

152, 158, 162, 184, 220, 224

Q
Quasi-monochromatic, 21

R
Rank of a tensor, 276
Rayleigh number, 135, 143
Relaxation time, 132
Residue, 39
Retardation time, 132
Robin boundary conditions, 262

S
Saddle point, 51, 53–55
Schmidt number, 117
Schrödinger equation, 17
Seepage velocity, 123
Separation of variables, 83, 145, 261
Shooting method, 223, 243, 245
Simple pole, 38
Simply-connected set, 37
Solenoidal vector field, 99
Spatial normal modes, 89
Specific heat, 111
Specific property, 96
Spherical normal modes, 26

Stable motion, 66
Stationary waves, 19
Steepest ascent, 55, 56
Steepest descent, 55, 56
Steepest-descent approximation, 59, 78, 185
Stirling’s approximation, 62
Strain tensor, 106
Streamfunction, 173, 181, 218
Streamlines, 173
Sturm–Liouville theorem, 263
Subcritical, 77
Substantial derivative, 100
Supercritical, 77
Superposition principle, 265
Surface forces, 100

T
Temperature field, 95
Temporal normal modes, 89
Tensor, 275
Thermal buoyancy, 116
Thermal conductivity, 108
Thermal diffusivity, 94, 112
Thermal instability, 139
Thermodynamic state, 94
Three-dimensional Fourier transform, 23
Traction, 100
Two-dimensional Fourier transform, 24, 144

U
Uncertainty principle, 21

V
Velocity field, 93
Viscoelastic fluid, 132
Viscous dissipation, 107
Viscous stress tensor, 106

W
Wave equation, 11, 18, 25
Wave number, 12, 18, 23, 145
Wave packet, 18, 25
Wave vector, 23, 145
Winding number, 36

Y
Yield pressure gradient, 132
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