
Chapter 7
Differential Geometry of Quantum
States, Observables and Evolution

F. M. Ciaglia, A. Ibort, and G. Marmo

Abstract The geometrical description of Quantum Mechanics is reviewed and
proposed as an alternative picture to the standard ones. The basic notions of
observables, states, evolution and composition of systems are analysed from this
perspective, the relevant geometrical structures and their associated algebraic
properties are highlighted, and the Qubit example is thoroughly discussed.

7.1 Introduction

Finding a unified formalism for both QuantumMechanics and General Relativity is
an outstanding problem facing theoretical physicists. From the mathematical point
of view, the structural aspects of the two theories could not be more different.

QuantumMechanics is prevalently an algebraic theory; the transformation group,
in the sense of Klein’s programme, is a group of linear transformations (the group
of unitary transformations on a Hilbert space for instance). General Relativity, on
the other hand, sees the triumph of Differential Geometry. The covariance group of
the theory is the full diffeomorphisms group of space-time.

The usual approach of non-commutative geometry consists on the algebraization
of the geometrical background [9]; here, we will discuss an opposite attempt: to
geometrise the algebraic description of Quantum Mechanics. In different terms, we
attempt at a description of Quantum Mechanics where non-linear transformations
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are possible and the full diffeomorphisms group of the carrier space becomes the
covariance group of the theory.

Thus we are going to introduce a “quantum differential manifold” as a carrier
space for our description of Quantum Mechanics, that is, a standard smooth
manifold (possibly infinite-dimensional) that will play the role of the carrier space of
the quantum systems being studied. We shall use a simplifying assumption to avoid
introducing infinite dimensional geometry which would go beyond the purposes of
this presentation, which is conceptual rather than technical.

Of course, this idea is not new and it has been already explored earlier. Just
to mention a few, we may quote the early attempts by Kibble [21], the essay by
Asthekar and Schilling [2], the mathematical foundations laid by Cirelli et al. [8]
and the systematic search for a geometric picture led by Marmo (see for instance
early ideas in the subject in the book [12] and some preliminary results in [16] or
the review [11]). This work is a continuation of this line of thought and contains a
more comprehensive description of such attempt.

Let us briefly recall first the various pictures of Quantum Mechanics, emphasis-
ing the algebraic structures present in their description.

7.1.1 On the Many Pictures of Quantum Mechanics

As it is well known, modern Quantum Mechanics was first formulated by Heisen-
berg as matrix mechanics, immediately after Schrödinger formulated his wave
mechanics. These pictures got a better mathematical interpretation by Dirac [10] and
Jordan [4, 20] with the introduction of Hilbert spaces and Transformation Theory.
Further, a sound mathematical formulation was provided by von Neumann [27].

In all of these pictures and descriptions, the principle of analogy with classical
mechanics, as devised by Dirac, played a fundamental role. The canonical commu-
tation relations (CCR) were thought to correspond or to be analogous to the Poisson
Brackets on phase space. Within the rigorous formulation of von Neumann, domain
problems were identified showing that at least one among position and momentum
operators should be an unbounded operator [29]. To tackle these problems, Weyl
introduced an “exponentiated form” of the commutation relations in terms of unitary
operators [28], i.e., a projective unitary representation of the symplectic Abelian
vector group, interpreted also as a phase-space with a Poisson Bracket. The C∗-
algebra of observables, a generalization of the algebraic structure emerging from
Heisenberg picture, would be obtained as the group-algebra of the Weyl operators.

7.1.2 Dirac-Schrödinger vs. Heisenberg-Weyl Picture

Even if commonly used, there is not an universal interpretation of the term “picture”
used above as applied to a particular mathematical embodiment of the axioms used
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in describing quantum mechanical systems. The description of any physical system
requires the identification of:

1. States.
2. Observables.
3. A probability interpretation.
4. Evolution.
5. Composition of systems.

Thus, in this work, a “picture” for a quantum mechanical system will consist
of a mathematical description of: (1) a collection of states S ; (2) a collection of
measurable physical quantities or observables A ; (3) a statistical interpretation of
the theory, that is, a pairing:

μ : S × A → Bo(R) (7.1)

where Bo(R) is the set of Borel probability measures on the real line and if ρ ∈ S
denotes a state of the system and a an observable, then, the pairing μ(ρ, a)(Δ)

is interpreted as the probability P(Δ|a, ρ) that the outcome of measuring the
observable a lies in the Borelian set Δ ⊂ R if the system is in the state ρ. In addition
to these “kinematical” framework a “picture” of a quantum system should provide
(4) a mathematical description of its dynamical behaviour and (5) prescription for
the composition of two different systems.

7.1.2.1 Dirac-Schrödinger Picture

Thus, for instance, in the Dirac-Schrödinger picture with any physical system we
associate a complex separable Hilbert space H . The (pure) states of the theory
are given by rays in the Hilbert space, or equivalently by rank-one orthogonal
projectors ρ = |ψ〉〈ψ|/〈ψ|ψ〉 with |ψ〉 ∈ H . Observables are Hermitian or
self-adjoint operators a (bounded or not) on the Hilbert space and the statistical
interpretation of the theory is provided by the resolution of the identityE (or spectral
measure E(dλ)) associated to the observable by means of the spectral theorem,
a = ∫

λE(dλ). Thus the probability P(Δ|a, ρ) that the outcome of measuring the
observable A when the system is in the state ρ would lie in the Borel set Δ ⊂ R, is
given by:

P(Δ|a, ρ) =
∫

Δ

Tr(ρE(dλ)) . (7.2)

Moreover the evolution of the system is dictated by a Hamiltonian operator H by
means of Schrödinger’s equation:

ih̄
d

dt
|ψ〉 = H |ψ〉 .
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Finally, if HA and HB denote the Hilbert spaces corresponding to two different
systems, the composition of them has associated the Hilbert spaceHA ⊗ HB .

7.1.2.2 Heisenberg-Born-Jordan

In contrast, in the Heisenberg-Born-Jordan picture a unital C∗-algebra A is
associated to any physical system. Observables are real elements a = a∗ in A
and states are normalised positive linear functionals ρ on A :

ρ(a∗a) ≥ 0 , ρ(1A ) = 1 ,

where 1A denotes the unit of the algebra A . The GNS construction of a Hilbert
space Hρ , once a state ρ is chosen, reproduces the Dirac-Schrödinger picture.
Similar statements can be made with respect to the statistical interpretation of the
theory. Given a state ρ and an observable a ∈ A , the pairing μ between states
and observables, Eq. (7.1), required to provide a statistical interpretation of the
theory is provided by the spectral measure associated to the Hermitian operator
πρ(a) determined by the canonical representation of the C∗-algebra A in the
Hilbert spaceHρ obtained by the GNS construction with the state ρ. Alternatively,
given a resolution of the identity, i.e., in the discrete setting, Ej ∈ A such that
Ei ·Ej = δijEj , and

∑
j Ej = 1A , we define pj (ρ) = ρ(Ej ) ≥ 0,

∑
j pj (ρ) = 1.

This provides the probability function of the theory.
The evolution of the theory is defined by means of a Hamiltonian H ∈ A , H =

H ∗, by means of Heisenberg equation:

ih̄
da

dt
= [H, a] .

Finally, composition of two systems with C∗-algebras AA and AB would be
provided by the tensor product C∗-algebra AAB = AA ⊗ AB (even though
there is not a unique completion of the algebraic tensor product of C∗-algebras
in infinite dimensions, a problem that will not concern us here as the subsequent
developments are restricted to the finite-dimensional situation in order to properly
use the formalism of differential geometry).

7.1.2.3 Other Pictures

The Dirac-Schrödinger and Heisenberg-Born-Jordanare far from being the only two
pictures of Quantum Mechanics. Other pictures include the Weyl-Wigner picture,
where an Abelian vector group V with an invariant symplectic structure ω is
required to possess a projective unitary representation:

W : V → U (H ) , W(v1)W(v2)W(v1)
†W(v2)

† = eiω(v1,v2)1H .
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The tomographic picture [18] has been developed in the past few years and uses a
tomographic map U and includes the so called Wigner picture based on the use of
pseudo probability distributions on phase space; a picture based on the choice of a
family of coherent states has also been partially developed recently (see for instance
[5]). A deep and careful reflexion would be required to analyse the ‘Lagrangian
picture’ proposed by Dirac and Schwinger, that would be treated elsewhere.

7.2 A Geometric Picture of Quantum Mechanics

As it was discussed in the introduction, the proposal discussed in this work
departs from the other ones in setting a geometrical background for the theory,
so that the group of natural transformations of the theory becomes the group of
diffeomorphisms of a certain carrier space. In this picture, the carrier space P
we associate with every quantum system is the Hilbert manifold provided by the
complex projective space. By taking this point of view, states and observables should
be defined by means of functions on P . This carrier space comes equipped with
a Kählerian structure, i.e., a symplectic structure, a Riemannian structure and a
complex structure. All three tensors, pairwise, satisfy a compatibility condition, two
of them will determine the third one. We will show how to implement on this carrier
space the minimalist requirements stated at the beginning of Sect. 7.1.2.

As it was commented before, to properly use the formalism of differential geom-
etry, we shall restrict our considerations to finite dimensional complex projective
spaces. We believe that, at this stage, considering infinite-dimensional systems
would introduce a significative amount of technical difficulties without adding any
relevant improving in the exposition of the structural aspects of the ideas we want to
convey. A more thorough analysis of the infinite-dimensional case will be pursued
elsewhere.

It is our hope that the “geometrization” of Quantum Mechanics can be useful to
understand under which conditions any “generalized” geometrical quantum theory
reduces to the conventional Dirac-Schrödinger picture.

The Carrier Space P is taken to be the complex projective space CP(H )

associated with the n-dimensional complex Hilbert space H . This a Hilbert
manifold with a Kähler structure even in the infinite-dimensional case [8]. The
Kähler structure of P consists of a complex structure J , a metric tensor g called
the Fubini-Study metric, and a symplectic form ω. These tensor fields are mutually
related according to the following compatibility condition

g (X , J (Y )) = ω (X , Y ) , (7.3)

where X and Y are arbitrary vector fields on P . The complex sum h = g + ıω is
a Hermitian tensor on P . Following [2, 11], we consider the canonical projection
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π : H0 → CP(H ) ≡ P associating to each non-zero vector ψ ∈ H0
1 its ray

[ψ] ∈ P and the Hermitian tensor:

h̃ = π∗h = 〈dψ|dψ〉
〈ψ|ψ〉 − 〈dψ|ψ〉〈ψ|dψ〉

〈ψ|ψ〉2 . (7.4)

The real part of this tensor is symmetric, and defines the pullback to H of the
Fubini-Study metric g, while the imaginary part is antisymmetric and defines the
pullback toH of the symplectic form ω.

We stress that, because our description is tensorial, we may perform any non-
linear transformation without affecting the description of the theory. For instance,
introducing an orthonormal basis {|ej 〉}j=1,...,n in H , we can write every normal-
ized vector |ψ〉 in H as a probability amplitude |ψ〉 = √

pj eiϕj |ej 〉, pj ≥ 0 for
all j . Clearly, (p1, . . . , pn) is a probability vector, that is,

∑
pj = 1, while eiϕj is a

phase factor. Then we can compute h̃ in this nonlinear coordinate system obtaining:

h̃ = 1

4

[〈d(ln p) ⊗ d(lnp)〉p − 〈d(ln p)〉p ⊗ 〈d(lnp)〉p
] +

+ 〈dϕ ⊗ dϕ〉p − 〈dϕ〉p ⊗ 〈dϕ〉p + i

2

[〈d (lnp) ∧ dϕ〉p − 〈d (ln p)〉p ∧ 〈dϕ〉p
]

,

(7.5)

where 〈 · 〉p denotes the expectation value with respect to the probability vector p.
Note that (the pullback of) g is composed of two terms, the first one is equivalent
to the Fisher-Rao metric on the space of probability vectors (p1 . . . pn), while the
second term can be interpreted as a quantum contribution to the Fisher-Rao metric
due to the phase of the state [13].

Given a smooth function f ∈ F (P), we denote by Xf , Yf the vector fields
given respectively by: Xf = Λ(df ), and Yf = R(df ), where Λ = ω−1 and
R = g−1. The vector fields Xf will be called Hamiltonian vector fields and Yf ,
gradient vector fields. Note that the compatibility condition among ω, g and J

allows us to write Yf = J (Xf ).
The special unitary group SU(H ) acts naturally onP = CP(H ) by means of

isometries of the Kähler structure. The infinitesimal version of this action is encoded
in a set of Hamiltonian vector fields {XA | A ∈ su(H )} such that they close on a
realization of the Lie algebra su(H ) of SU(H ). This means that, given A,B ∈
su(H ), there are Hamiltonian vector fields XA,XB on P such that [XA,XB] =
−X[A,B] [1].

1H0 denotes the Hilbert space H with the zero vector removed.
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The fact that SU(H ) acts preserving the Kähler structure means that the
Hamiltonian vector fields for the action preserve ω, g and J , that is, LXAω =
LXAg = LXAJ = 0 for every XA. Note that this is not true for a Hamiltonian
vector field Xf associated with a generic smooth function f onP .

It is interesting to note that the Hamiltonian vector fields XA together with the
gradient vector fields YA = J (XA) close on a realization of the Lie algebra sl(H ),
that is, the Lie algebra of the complex special linear group SL(H ) which is the
complexification of SU(H ). In order to see this, we recall the definition of the
Nijenhuis tensor NJ associated with the complex structure J (see definition 2.10,
and equation 2.4.26 in [24]):

NJ (X, Y ) = (
LJ (X)(T )

)
(Y ) − (J ◦ LX(J )) (Y ) , (7.6)

where X,Y are arbitrary vector fields on P . A fundamental result in the theory of
complex manifold is that the (1, 1)-tensor field J defining the complex structure of
a complex manifold must have vanishing Nijenhuis tensor [25]. This means that the
complex structure J onP is such that NJ = 0, which means:

(
LJ (X)(J )

)
(Y ) = (J ◦ LX(J )) (Y ) , (7.7)

where X,Y are arbitrary vector fields on P . In particular, if we consider the
Hamiltonian vector field XA, we know thatLXA J = 0, and thus:

(
LJ (XA)(J )

)
(Y ) = 0 (7.8)

for every vector field Y onP . Eventually, we prove the following:

Proposition 7.1 LetA,B be generic elements in the Lie algebra su(H ) of SU(H )

The Hamiltonian and gradient vector fields XA,XB, YA, YB on P close on a
realization of the Lie algebra sl(H ), that is, the following commutation relations
among Hamiltonian and gradient vector fields hold:

[XA ,XB ] = −X[A ,B] , [XA , YB ] = −Y[A ,B] , [YA , YB ] = X[A ,B] .
(7.9)

Proof The first commutator follows directly from the fact that there is a left action
of SU(H ) on P of which the Hamiltonian vector fields XA are the fundamental
vector fields. Regarding the second commutator, we recall that YA = J (XA) and
thatLXA J = 0, so that:

[XA , YB] =LXA (J (XB)) =
= (

LXA J
)
(XB) + J

(
LXA XB

) =
=J ([XA ,XB]) = −Y[A ,B]

(7.10)
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as claimed. Finally, using Eq. (7.8) together with the fact that J ◦ J = −Id because
it is a complex structure, we obtain:

[YA , YB] =LJ (XA) (J (XB)) =
= (

LJ (XA)(J )
)
XB + J

(
LJ (XA)XB

) =
=J ([YA ,XB]) = X[A ,B]

(7.11)

as claimed. ��
Since P is a compact manifold, all vector fields are complete, in particular, the

Hamiltonian and gradient vector fields of Proposition 7.1 are complete. This means
that the realization of the Lie algebra sl(H ) integrates to an action of SL(H )

on P . We will see that this action on P allows us to define an action of SL(H )

on the spaceS of quantum states.

Remark 7.1 Instead of the complex projective space, we may as well have started
with a generic homogeneous space of SU(H ) as a carrier manifold. Every such
manifold is a compact Kähler manifold, and the Hamiltonian and gradient vector
fields associated with elements in su(H ) close on a realization of the Lie algebra
of SL(H ) which integrates to a group action. Indeed, all we need to prove an
analogue of Proposition 7.1 is a Kähler manifold on which SU(H ) acts by means
of isometries of the Kähler structure.

The complex projective space may be selected requiring the holomorphic
sectional curvature ofP to be constant and positive. Indeed, from the Hawley-Isuga
Theorem [17, 19], it follows that complex projective spaces are the only (connected
and complete) Kähler manifolds of constant and positive holomorphic sectional
curvature (in our setting equal to 2/h̄) up to Kähler isomorphisms.

Observables are real functions f ∈ F (P) satisfying:

LXf R = 0 , (7.12)

i.e., such that the Hamiltonian vector fields defined by them are isometries for the
symmetric tensor R = g−1. In particular, if F is a complex-valued function on
P generating a complex-valued Hamiltonian vector field XF which is Killing for
g (hence for R), then there necessarily exist a, b Hermitian operators such that
[2, 8, 11, 26]:

F([ψ]) = 〈ψ|a|ψ〉
〈ψ|ψ〉 + ı

〈ψ|b|ψ〉
〈ψ|ψ〉 . (7.13)

This result is interesting but not unexpected, Hamiltonian vector fields are infinites-
imal generators of symplectic transformations. If they also preserve the Euclidean
metric, they must be infinitesimal generators of rotations, then the intersection of
symplectic and rotations are unitary transformations, whose infinitesimal generators
are (skew) Hermitian matrices. From what we have just seen it follows that the
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observables can be identified with the expectation-value functions:

ea([ψ]) = 〈ψ|a|ψ〉
〈ψ|ψ〉 (7.14)

with a a Hermitian operator on H (notice that, consistently, A = ı a is an element
in the Lie algebra su(H ) of the unitary group SU(H )). We will denote the family
of observables asK (P) or simplyK for short.

We find out that, under adequate conditions, the family of functions K con-
stitutes a Lie-Jordan algebra. Indeed, the space of Kählerian functions, that is,
those satisfying condition (7.12) above, because of Hawley-Igusa theorem carries
a natural C∗-algebra structure and its real part a Lie-Jordan one ([3, 17, 19], [22,
Thm. 7.9]). By using a GNS construction for the C∗-algebra we get a Hilbert space,
returning to the Dirac-Schrödinger picture.

By using Λ (ω) and R (g) we can define the following brackets among functions
onP:

{f1, f2} := Λ(df2, df1) = ω(Xf1 ,Xf2) = Xf2(f1) , (7.15)

(f1, f2) := R(df1, df2) = g(Yf1 , Yf2) . (7.16)

The antisymmetric bracket {·, ·} is a Poisson bracket since it is defined starting from
a symplectic form. Furthermore, being [Xf1,Xf2] = −X{f1,f2} for every smooth
functions f1, f2 on P , and since [XA,XB ] = −X[A,B] for the Hamiltonian vector
fields associated with A,B ∈ su(H ), we have:

− X[A,B] = [XA,XB ] = [Xfa ,Xfb ] = −X{fa,fb} , (7.17)

where we have switched the notation ea to fa to make formulas more familiar and
readable. From (7.17) it follows:

{fa, fb} = fı[a,b] , (7.18)

where we used the fact that A = ıa and B = ıb. This means that (K (P), {·, ·}) is
a Lie algebra.

On the other hand, a direct computation [11] shows that:

(fa, fb) := R(dfa, dfb) = g(Ya, Yb) = fa�b − fa · fb , (7.19)

where a � b = ab + ba. Then, we may define the symmetric bracket:

< f1, f2 >:= (f1, f2) + f1 · f2 (7.20)
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so that on the subspace of observables we have:

< fa, fb >= fa�b . (7.21)

Because of the properties of the symmetric product � on Hermitian operators,
the bracket < ·, · > turns out to be a Jordan product. Furthermore, the set of
observables endowed with the antisymmetric product {·, ·} and the symmetric
product < ·, · > is a Lie-Jordan algebra [6, 7, 14]. By complexification, that is,
considering complex-valued functions FA = fa1 + ıfa2 for some Hermitian a1, a2,
we obtain a realization of the C∗-algebraB(H ) by means of smooth functions on
P = CP(H ) according to [8, 11]:

FA � FB := 1

2
(FA · FB + (FA, FB) + ı{FA,FB}) =

= 1

2
(< FA,FB > +ı{FA,FB }) = FAB .

(7.22)

We may extend this product to arbitrary complex-valued functions obtaining a �-
product.

Because we are in finite dimensions we can consider the critical points of the
observables (that is, expectation value functions). An observable is said to be generic
if all critical points are isolated. The values of the observable function at these
critical points constitute the spectrum of the observable. The set of critical point
of a generic observable may be thought of as the geometrical version adapted to
P ≡ CP(H ) of an orthogonal resolution of the identity on H . If a critical point
is not isolated, the critical set is actually a submanifold of (real) even dimension. If
the observable has value zero in some critical set, this set is a complex projective
space.

We postpone a complete discussion of the critical values of a given observable
and restrict our analysis to generic observables. With the help of any generic
observable we can now define quantum states. The space S of quantum states
is a subset of K whose elements are defined as follows. A function in K
will define a state if its evaluation on the set of isolated critical points of any
generic observable will be a probability distribution on n-elements, i.e., a discrete
probability distribution. In a certain sense, we may think of quantum states (in finite
dimensions) as a sort of noncommutative generalization of discrete probability
distributions. Essentially, quantum states are identified with the expectation-value
functions

eρ([ψ]) = 〈ψ|ρ|ψ〉
〈ψ|ψ〉

associated with density operators, that is, ρ ∈ B(H ), ρ = ρ†, 〈ψ|ρ|ψ〉 ≥ 0 for all
|ψ〉 ∈ H , and Tr(ρ) = 1. In the infinite-dimensional case ρ must be trace-class in
order for this last requirement to make sense.
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On the other hand, the expectation value function associated with a quantum
state will define a “continuous” probability distribution on the carrier space provided
by the complex projective space. Essentially, a quantum state is identified with an
observable (expectation value function) eρ ∈ K such that eρ([ψ]) ≥ 0 for all
[ψ] ∈ P (ρ ∈ B(H ) is a positive semidefinite operator), and (Trρ = 1):

∫

P
eρ dνω = 1 , (7.23)

where dνω = ωn is the symplectic volume form normalized by
∫
P dνω = 1.

This point of view would be closer to the point of view taken by Gelfand and
Naimark to define states as functions of positive-type in the group algebra of any
Lie group. They would be of positive-type when pulled back to the group from the
homogeneous space. It is clear that they form a convex body whose extremals are
the pure quantum states.

In this context, the pairing map between quantum states and observables
given by:

E(eρ, fa) =
∫

P
fa eρ dνω (7.24)

is interpreted as the mean value for the outcome of a measurement of the observable
fa on the quantum state eρ .

Remark 7.2 In the infinite-dimensional case we must pay attention to topological
and measure-theoretical issues since quantum states are required to be measurable
with respect to the symplectic measure νω, while observables are not.

We may define the following map:

P � [ψ] �→ ρψ := |ψ〉〈ψ|
〈ψ|ψ〉 ∈ B(H ) . (7.25)

This map allows us to identify the points of P with rank-one projectors on H ,
and, since rank-one projector are density operators, we identify the points in the
carrier space P with particular quantum states. These quantum states are precisely
the extremal points of the convex setS of all quantum states, that is, pure quantum
states. In this context, the expectation value function eρΨ associated with the pure
quantum state ρΨ encodes the transition probabilities between the normalized vector
|Ψ̃ 〉 associated with |Ψ 〉 and every other normalized vector |Φ̃〉 inH :

eρΨ ([Φ]) = 〈Φ|ρΨ |Φ〉
〈Φ|Φ〉 = 〈Φ|Ψ 〉〈Ψ |Φ〉

〈Φ|Φ〉〈Ψ |Ψ 〉 = |〈Ψ̃ |Φ̃〉|2 . (7.26)

Recalling that a quantum state is a positive function on P , that is, eρ ≥ 0,
we can define the rank of a quantum state as the codimension of the closed
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submanifold e−1
ρ (0) ⊂ P . With this definition, it is clear that the rank is invariant

under the group of diffeomorphisms. As a matter of fact it is possible to show that
the complex special Lie group SL(H ) acting on P by means of diffeomorphisms
acts transitively on the space of states with the same rank, providing in this way
a stratification of the space of states. To be able to change the rank of a state, to
describe decoherence, we need to use semigroups.

Writing |ψG〉 ≡ G|ψ〉 with G ∈ SL(H ), the action of the special linear group
SL(H ) on the carrier spaceP reads:

[G] : [ψ] �→ [G]([ψ]) = [ψG] . (7.27)

In terms of the rank-one projector ρψ we have:

ρψ �→ G · ρψ = G|ψ〉〈ψ|G†

〈ψ|G† G|ψ〉 = GρψG†

Tr(G†ρψG)
. (7.28)

We may generalize this action to any density operator by setting:

G · ρ = G†ρG

Tr(G†ρG)
. (7.29)

However, because the action is nonlinear this is an assumption that cannot derived
from the action on rank-one projectors. By means of this action we would get an
orbit of density operators and thus an orbit of probability distributions once we
identify the density operators with their associated expectation-value functions.
Each orbit being characterised by the rank of ρ. For a system with n levels
(dimH = n) we would get n different orbits. The one of maximal dimension
would be the bulk, while the boundary of the closed convex body S of quantum
states would be the union of orbits of dimensions less than n. The geometry of S
as developed in [6, 7, 16] will be exposed in Sect. 7.2.1.

The statistical interpretation of the theory is provided by a geometric measure.
The idea is to extend the notion of spectral measure to a geometric manifold as
it was proposed for instance by Skulimowski [26] in the case of the complex
projective space P . Thus we may use a slightly extended notion defined as: a
geometric positive-operator-valued measure (GPOV-measure) on a space of states
of a geometric quantum theory is a map p : B(R) → K (P) (whereB(R) denotes
the σ -algebra of Borelian sets in R) such that:

1. Positivity monotonicity and normalization:

0 ≤ p(∅)([ψ]) ≤ p(Δ)([ψ]) ≤ p(R)([ψ]) = 1 .
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2. Additivity: μ is additive, i.e.,

p(∪n
k=1Δk)([ψ]) =

n∑

k=1

p(Δk)([ψ]) ,

for all [ψ] ∈ P , n ∈ N, Δk, k = 1, . . . , n, disjoint Borel sets on R.

Thus, consider for instance a GPOV-measure p with finite support, suppp =
{λ1, . . . , λr }, then the statistical interpretation of the theory will be provided, as in
the standard pictures, by the probability distribution pk([ψ]) = p({λk})([ψ]) ≥ 0,∑

k pk([ψ]) = 1.
In general a GPOV-measure p will be provided by any observable ea by means

of the corresponding spectral measure Ea(dλ) associated to the Hermitian operator
a, that is

p(Δ)([ψ]) =
∫

Δ

Tr (ρψ)E(dλ)) =
∫

Δ

〈ψ|E(dλ)|ψ〉
〈ψ|ψ〉 ,

in accordance with the probabilistic interpretation of a physical theory, Eq. (7.1),
and the standard pictures, Eq. (7.2).

Hamiltonian evolution, or evolution of closed systems, will be defined by the
Hamiltonian vector field Xh associated with the observable h, that is:

df

dt
= Xh(f ) .

We call the observable h the Hamiltonian function for the evolution.
The composition of systems will be discussed in Sect. 7.3.

7.2.1 Quantum States and Open Systems

The geometry of S as a closed convex body in the affine ambient space T1 of
Hermitian operators on H with trace equal to 1 has been extensively developed in
[6, 7]. In these works, it is shown that there exist two bivector fields Λ and R on
T1 by means of which the infinitesimal version of the action of SL(H ) onS may
be recovered in terms of Hamiltonian and gradient-like vector fields. In this case,
the Poisson bivector field Λ does not come from a symplectic structure, and the
symmetric bivector fieldR is not invertible (there is no metric tensor g = R−1).
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7.2.1.1 The Qubit

We will briefly recall here the results of [6, 7] concerning the geometry of the space
of all states, pure or mixed for the qubit. Every 2 by 2 Hermitian matrix A may be
written in the form:

A =
[

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

]

,

or, written as combination of Pauli matrices:

σ0 =
[
1 0
0 1

]

, σ1 =
[
0 1
1 0

]

, σ2 =
[
0 −i

i 0

]

, σ3 =
[
1 0
0 −1

]

,

we get:

A = a0σ0 + a1σ1 + a2σ2 + a3σ3 .

In particular it is well known that any density operator ρ, that is Tr ρ = 1, 0 ≤
ρ2 ≤ ρ can be written as:

ρ = 1

2
(σ0 + x · σ ) , ||x|| ≤ 1 .

Thus the spaceS of all qubit states is the Bloch’s ball in R
3:

S = {x ∈ R
3 | x2

1 + x2
2 + x2

3 ≤ 1} .

Remark 7.3 In the n-dimensional case H ∼= C
n, this construction allows us to

identify pure states as rank-one projectors in B(H ). However, they will only be a
closed portion of the 2(n − 1)-dimensional unit sphere in R2n−1.

The tensor field Λ in the coordinates x1, x2, x3 reads:

Λ = εijkxi
∂

∂xj

∧ ∂

∂xk

, (7.30)

while the symmetric tensor field R is given by:

R = δjk
∂

∂xj

⊗ ∂

∂xk

− xjxk
∂

∂xj

⊗ ∂

∂xk

.

Remark 7.4 (On the Bivector Λ) The choice of the bivector Λ requires a comment.
If we identify R

3 with the dual of the Lie algebra of SU(2), we can consider
x = (x1, x2, x3) as the linear functions on the dual of the Lie algebra su(2) of
SU(2). Therefore the Lie bracket of su(2) induces a Poisson bracket on su(2)∗
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whose Poisson tensor is given by Λ. Notice that SU(2) is the subgroup of unitary
operators of determinant one of the group of unitary operators ofH = C

2.
An alternative way of deriving Λ is to consider the projection map S3 → S2

related with the momentummap associated with the symplectic action of the unitary
group on the Hilbert space H . Such map μ : H → su(2)∗ provides a symplectic
realization of the Poisson manifold su(2)∗.

In this context, observables correspond to affine functions on S , that is, fa =
ajxj +a0, a0, aj ∈ R. Consequently, the Hamiltonian vector fields Xa = Λ(dfa, ·),
and the gradient-like vector fields Ya = R(dfa, ·) are given by:

Xa = εjkla
jxk

∂

∂xl
, Ya = aj ∂

∂xj
− akxkΔ ,

with Δ = xj ∂/∂xj the dilation vector field on R
3. Lie algebra generated by the

family of vector fields Xf , Yf is the Lie algebra SL(2,C).
It is now possible to construct a Lie-Jordan algebra (see for instance [6, 7, 14])

with commutative Jordan product ◦ and Lie product {·, ·} on the space of observables
(affine functions) out of the tensorsR and Λ. Such algebra is defined by:

xj ◦ xk = R(dxj , dxk) + xjxk , {xj , xk} = Λ(dxj , dxk) .

Then we find:

xj ◦ xj = 1 , xj ◦ xk = 0 , ∀j �= k .

Combining the Jordan product and the Lie product we can define:

xj � xk = xj ◦ xk + i{xj , xk}

and we get:

xj ◦ xk = 1

2
(xj � xk + xk � xj ) , {xj , xk} = − i

2
(xj � xk − xk � xj )

The involution * will be complex conjugation and we get a C∗-algebra which
can be used either to go back to the Hilbert space via de GNS construction or to go
back to the Heisenberg picture if we realise the algebra in terms of operators.

Let us remark that as our algebras are described by means of tensor fields, it
is evident that the particular coordinate system we use to describe the ball does
not play any role. The convexity structure may well become hidden. For instance,
parametrising Bloch’s ball with spherical coordinates (r, θ, ϕ), the relevant tensor
fields would be:

R = (1 − r2)
∂

∂r
⊗ ∂

∂r
+ 1

r2

∂

∂θ
⊗ ∂

∂θ
+ 1

r2 sin2 θ

∂

∂ϕ
⊗ ∂

∂ϕ
,
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and

Λ = 1

r sin θ

∂

∂θ
∧ ∂

∂ϕ
.

It is now clear by inspection that Hamiltonian vector fields and gradient vector fields
are tangent to the sphere of pure states S2 = {r = 1}. The interior of the ball is an
orbit of the group SL(2,C) and it is generated by the functions r cos θ , r sin θ sin ϕ

and r sin θ cosϕ by means ofR and Λ.
To describe decoherence one needs vector fields which are generators of

semigroups so that they will be directed vector fields not vanishing on the sphere
of pure states.

7.2.1.2 Open Quantum Systems: the GKLS Equation

Let us consider the Kossakowski-Lindblad equation (see for instance [6] and
references therein):

d

dt
ρ = L(ρ) ,

with initial data ρ(0) = ρ0 and,

L(ρ) = −i[H,ρ] + 1

2

∑

j

([Vjρ, V
†
j ] + [Vj, ρV

†
j ])

= −i[H,ρ] − 1

2

∑

j

[V †
j Vj , ρ]+ +

∑

j

VjρV
†
j ,

say with, Tr Vj = 0, and Tr (V †
j Vk) = 0 if j �= k. We see immediately that the

equations of motion split into three terms:

1. Hamiltonian term: −i[H,ρ]
2. Symmetric term (or gradient) : − 1

2

∑
j [V †

j Vj , ρ]+
3. Kraus term (or jump vector field):

∑
j VjρV

†
j .

It is possible to associate a vector field with this equation of motion [6, 7]. It
turns out that the one associated with the Kraus term Z, is a nonlinear vector field,
similar to the nonlinear vector field Y , associated with the symmetric tensor, the
gradient vector field. The nonlinearity pops up because the two maps are not trace
preserving therefore we have to introduce a denominator for the map to transform
states into states. The “miracle” of the Kossakowski-Lindblad form of the equation
is that the two nonlinearities cancel each other so that the resulting vector field is
actually linear [6, 7].



7 Differential Geometry of Quantum States 169

Example 7.1 (The Phase-Damping of a q-Bit) Consider now:

L(ρ) = −γ (ρ − σ3ρσ3) ,

we find the vector field:

ZL = −2γ

(

x1
∂

∂x1
+ x2

∂

∂x2

)

which allows to visualise immediately the evolution.

7.3 Composition of Systems

As we mentioned in the introductory remarks, the composition of two systems A,B

in the Dirac-Schrödinger picture is simply the tensor product HA ⊗ HB = HAB .
If our starting input is the complex projective space P(H ), we cannot consider
the Cartesian product P(HA) × P(HB) because this would not contain all the
information of the composite system, it would not contain what Schrödinger called
the principal characteristic of quantum mechanics: the entangled states. According
to our general procedure, we should associated with the composite system the
complex projective space related to HA ⊗ HB . It is easy to visualise the situation
in the case of the qubit. Here the complex projective space is S2, for two qubits we
would have S2 × S2. However if we take correctly the tensor product C2 ⊗ C

2 and
then the associated complex projective space, we would get P(C2 ⊗ C

2) = CP
3

which is six-dimensional and not four-dimensional as S2 ×S2. The additional states
account for the entangled states, while the immersion of S2 × S2 into CP

3 would
give the space of separable states.

Amore intrinsic way would be to consider the tensor productAA⊗AB = AAB of
the C∗-algebrasAA andAB of expectation value functions on the Kähler manifolds
of the physical subsystems, use the GNS construction to build a Hilbert space on
which the chosen completion AA ⊗ A B would have an irreducible representation,
and the associated complex projective space should be considered to represent the
composition of the two systems. Having the space describing the composite system
we could proceed as usual.

7.3.1 Decomposing a System

Given the C∗-algebra AAB of the total system we may now look for the two C∗-
algebras, say AA and AB , of the original components as subalgebras of the total
C∗-algebra. We would ask of the subalgebras that they have in common only the
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identity and they commute with each other. Moreover we require that AA ⊗ AB ,
after completion, be isomorphic with the total algebra.

To recover the states of the two subsystems we may define two projections, say:
πA : SAB → SA, πA(ρ) = ρA, ρA(a) = ρ(a ⊗ 1B), and πB : SAB → SB ,
πB(ρ) = ρB , ρB(b) = ρ(1A ⊗ b), for all a ∈ AA, b ∈ AB , ρ ∈ SAB .

We find that ρAB �= ρA ⊗ρB . Indeed, the quantity Tr (ρAB −ρA ⊗ρB)k for every
k, say integer, would provide possible measures of entanglement.

As a matter of fact both ρA and ρB are no more elements of the complex
projective space associated to the two subsystems. They turn out to be, by
construction, non-negative, Hermitian and normalised linear functionals, each one
for the total C∗-algebra, that is, they are mixed states.

If we consider a unitary evolution on the composite system, say UρU†, we could
consider, for any trajectory U(t)ρ0U(t)†, the projection on the subsystem A , say:

ρA(t)(a) = (U(t)ρ0U(t)†)(a ⊗ 1B) = ρ0(U(t)†(a ⊗ 1B)U(t)) .

If ρ0 is a separable pure state, it will project onto a pure state onto the subsystem.
However, as time goes by, ρ(t) will not be separable anymore and we get an
evolution of a mixed state for the subsystem out of the evolution of a pure state
for the total system. By letting the separable state ρ0 vary by changing the second
factor in AB while preserving the first factor in AA, we would get an evolution for
the projection on the system AA which originates from the same initial point but
would evolve with different trajectories, each one depending on the second factor.

When is it possible to describe the projected evolution by means of a vector
field? This means that the projected trajectories would be described by a semigroup
because the evolution would change the rank. The answer to this question was
provided by A. Kossakowski and further formalised by Gorini, Kossakowski,
Sudarshan and Linbland [15, 23]. The trajectories would be solutions of the
Kossakowski-Lindblad master equation.

7.4 Conclusions and Discussion

The geometric description of mechanical systems based on the Kähler geometry
of the space of pure states of a closed quantum system is proposed as an alternative
picture of QuantumMechanics. The composition of systems is also briefly discussed
in this setting.

The tensorial description of Quantum Mechanics would allow for generic
nonlinear transformations, hopefully more flexible to deal with nonlinearities, like
entanglement, entropies and so on. Thus, the geometrical-tensorial description
allows to recover as a covariance group of our description the full diffeomorphism
group (similarly to General Relativity).
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To illustrate the various aspects of the theory we study finite-dimensional
systems, with a particular focus on the qubit example. It is shown that in the carrier
space of the theory there are Hamiltonian and gradient vector fields Xa and Yb

generating the action of the Lie group SL(H ). This action may be extended to
the closed convex body S of all quantum states. From the point of view of the
affine ambient space T1 of Hermitian operators with trace equal to 1 in which S
naturally sits, we find that this action has, again, an infinitesimal description in
terms of Hamiltonian and gradient-like vector fields closing on a realization of the
Lie algebra sl(H ). Moreover, from the perspective of the evolution, to describe
semigroups we have to introduce Kraus vector fields on T1. Having described
the dynamics in terms of vector fields will provide a framework to describe non-
Markovian dynamics. States in the “bulk” may have as “initial conditions” pure,
extremal states. The evolution would be described by a family of semigroups
associated with higher order vector fields.
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