
Chapter 6
Hilbert Functions and Tensor Analysis

Luca Chiantini

Abstract We show how well known tools of algebraic geometry for the study
of finite sets can be fruitfully applied to the study of Waring decompositions
of symmetric tensors (forms). We mainly focus on the uniqueness of a given
decomposition (the identifiability problem), and show how, in some cases, one can
effectively determine the uniqueness even in some range in which the Kruskal’s
criterion does not apply.

6.1 Introduction

The paper aims to introduce some basic geometric methods for the study of the
decompositions of tensors. It is mainly devoted to symmetric decompositions of
symmetric tensors, which can be identified with homogeneous polynomials, i.e.
forms.

Decomposing a form F as a sum of powers (Waring decomposition) is a crucial
step to understand the complexity of F . The complexity, or (Waring) rank, of F is
indeed given by the minimal number of summands which are necessary to express
F as a sum of powers.

In many effective cases, it turns out that one has one decomposition of F as a sum
of powers, and the problem is to determine if the given decomposition has minimal
length or it is unique (up to trivialities). Just to give a couple of examples:

– in the Strassen problem, one has a form which is a sum F = F1 + F2 where
F1, F2 are forms defined over two different, disjoint sets of variables. Then one
can assume to have a minimal decomposition of both F1 and F2. The problem is
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to determine if the sum of the two decompositions gives a decomposition of F of
minimal length. See [10] and [27], for recent accounts on the theory.

– in the application of tensor analysis to signal processing, there are computational
methods which can determine (an approximation of) one decomposition of a
tensor F . Since one aims to reconstruct the original components of a mixed
signal, the uniqueness of the decomposition is crucial to guarantee that the
computed decomposition is (in a small neighborhood of) the correct one (see
e.g. [26]).

For the identifiability problem, i.e. in order to determine that a decomposition is
unique (up to trivialities), the most popular criterion is the Kruskal’s criterion (see
Theorem 6.9 below), which requires the calculation of the Kruskal rank of a set
of points (see Definition 6.1). Kruskal’s criterion only works for small values of the
rank. Recently, for symmetric tensors, there is a series of results which show how the
Kruskal’s criterion can be modified, to widen slightly the range of application (see
[2, 4, 5, 14]). These extensions of Kruskal’s criterion are mainly based on methods
of algebraic geometry for the study of finite sets in projective spaces.

Since we believe that geometric tools for the study of finite projective sets can
contribute to many other aspects of the theory of symmetric (and maybe also non-
symmetric) tensors, and we feel that several tools are not widely known in the
community of researchers in tensor analysis, we provide here an account of methods
which constitute the background for the theory developed in [14] and [2].

As a by-product, we show how similar argument yield a slight extension of the
results of [2], for forms of degree 4, even to the case in which the Kruskal rank of a
given decomposition is not maximal (see Theorem 6.12).

We hope, in this way, to contribute to the propagation of geometric tools which
can help a lot our insight into the analysis of decompositions of specific tensors.

The structure of the paper is the following. The first section contains some basic
definitions, basic results and remarks which are useful in the theory. The second
section contains a list of results on tensors which are proved by means of the
Hilbert function. The third section is devoted to prove a new result, which extends
a recent criterion, proved by Angelini, Vannieuwenhoven and the author [2], for
the (symmetric) identifiability of a symmetric tensor in a range where the Kruskal’s
criterion does not apply. The result requires a deep analysis of the Hilbert function
of a finite set in a projective space. In the last section there is a short list of possible
developments of the theory and open problems.

6.2 Tensors and Projective Geometry

Since the study of tensors under a geometric point of view is strictly related with
systems of homogeneous polynomials and their solutions, it is natural, from a
mathematical point of view, to treat tensors defined over an algebraically closed
field, as the complex field C.
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At the risks of losing a strict connection with experience, yet the choice of
working over C will not sound so odd to specialists of quantum information theory,
where the algebraic properties of complex numbers play a primary role in many
quantum manipulations.

Less familiar is the choice of working on projective spaces of tensors. The
idea behind using the projective setting is that the phenomena encoded in a tensor
T are as well encoded in its multiples aT , for a ∈ C a non-zero constant. In
projective spaces, a point P is an equivalence class containing a vector and its
multiples. At the cost of dropping the one-to-one correspondence between points
and coordinates (which are defined up to scaling), projective geometry provides a
compact algebraic ambient where some operations, like linear dependence, have a
natural interpretation.

Thus, we drop the probabilistic approach, in which the sum of some entries of
the tensors are forced to be 1, since they represent the probabilities of some event,
and we will freely multiply tensors by (complex) scalars. It is an ubiquitous fact that
all the results that we obtain can be translated in the probabilistic language, without
any loss of validity. The main, non-trivial aspect of the projective point of view is
the notion of product of projective spaces, which does not produce a linear variety.

So, we consider a complex vector space V of dimension n + 1, which we will
often identify with Cn+1, thanks to the choice of a basis. We will think of V as
the space of linear forms a0x0 + a1x1 + · · · + anxn, where x1, . . . , xn can be
identified with the elements of the chosen basis or with variables. Consequently, the
space Symd(V ) = Symd(Cn+1) will be identified with the space of homogeneous
polynomials (forms) of degree d in the n + 1 variables x0, . . . , xn.

Instead of considering directly symmetric tensors as vectors of Symd(V ), we
consider the projective space P(Symd(V )) and consider points T in this space. Thus
T corresponds to a symmetric tensor or a form, modulo scaling. Any representative
for the equivalence of class of T is a set of coordinates for T . As Symd(V ) has
dimension

(
n+d
d

)
, the space P(Symd(V )) has projective dimension

N(d, n) :=
(

n + d

d

)
− 1.

The next step is the definition of a (non-linear) map from P(V ) = Pn to the space
P(Symd(V )) = PN(d,n): the Veronese map.

To do that, choose an order for the monomials of degree d in n + 1 variables
M0, . . . ,MN , N = N(d, n). One of the most popular order is the lexicographic
one, and we will opt for it for the rest of the paper.

Then, use the coordinates to define a map νd,n as follows. Let a point P ∈ P(V )

have coordinates a0x0 + · · · + anxn. We will write:

P = [a0x0 + · · · + anxn].
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We define νd,n by sending P to the equivalence class

νd,n(P ) = [(a0x0 + · · · + anxn)
d ].

The class νd,n(P ) does not depend on the choice of a representative for the class P ,
so we get a well defined projective map. We will refer to this map as the Veronese
map of degree d in n + 1 variables. We will often write νd for the Veronese map,
when there is no confusion on the number of variables.

We notice that the Veronese maps are embeddings.

Proposition 6.1 Every Veronese map νd,n is injective.

Proof Assume that two points P,Q ∈ Pn have the same image in νd,n. Choose
coordinates in P(V ) and let a0x0 + · · · + anxn be coordinates for P and b0x0 +
· · · + bnxn be coordinates for Q. Then (b0x0 + · · · + bnxn)

d is equal to α(a0x0 +
· · · + anxn)

d , for some α ∈ C \ {0}. Since C is algebraically closed, then, after
scaling a0x0 + · · ·+ anxn by a d-root of α, we may assume (b0x0 + · · ·+ bnxn)

d =
(a0x0 + · · · + anxn)

d . Thus bi = εiai , for some choice of the d-roots of unit εi ,
i = 0, . . . , n. We want to prove that the εi’s are all equal, so that P = Q. Indeed,
since ε

(d−j)
0 ε

j
i = 1 for all i, j , multiplying by ε

j
0 it follows ε

j
0 = ε

j
i for any j , hence

ε0 = εi for all i.

Notice that the previous construction is not the unique way to define a Veronese
map. Often vd,n(P ) is defined by computing bi = Mi(a0, . . . , an) for i = 0, . . . , N
and sendingP to the equivalence class [b0M0+· · ·+bNMN ].Wemade our choice in
order to make it obvious that the image of the Veronese map is the set of formswhich
are a power of a linear forms. Since the two choices differ only by the multiplication
by a non-singular diagonal matrix, the geometric properties will not be affected after
taking any of the choices.

Next, we need to fix some notation for finite subsets of a projective space.
Let A ⊂ P

n be a non-empty finite set. We denote by �(A) the cardinality of A.
We will say that A is linearly independent when choosing a set of coordinates for
each point of A we get a set of linearly independent vectors. This definition does
not depend on the choice of the coordinates for each point.

We will denote with 〈A〉 the linear span of A.

Remark 6.1 The projective dimension of 〈A〉 is at most �(A) − 1. The dimension
of 〈A〉 is equal to �(A) − 1 precisely when A is linearly independent.

Notice that, by elementary linear algebra, for any finite set A ⊂ Pn = P(V ) the
dimension of the linear span 〈A〉 is equal to n minus the dimension of the space of
linear forms that vanish at the points of A.

Definition 6.1 LetA ⊂ Pn be a finite set. TheKruskal rank is the maximum integer
kA such that any subset B ⊂ A of cardinality �(B) ≤ kA is linearly independent.

Notice that kA is at most equal to �(A), and kA = �(A) if and only if A is linearly
independent. Unless A is a singleton, then kA is always bigger than 1. Moreover
kA = 2 exactly when A is aligned.
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Obviously the Kruskal rank of a set of points A ⊂ Pn cannot exceed neither
n + 1, nor the cardinality of A. We have indeed:

kA ≤ dim〈A〉 + 1 ≤ �(A).

Next definition concerns the case where the Kruskal rank is maximal.

Definition 6.2 A finite setA ⊂ Pn is in linear general position (LGP) if the Kruskal
rank of A is maximal, i.e. the Kruskal rank is equal to min{�(A), n + 1}. This is
equivalent to say that for any a ≤ n + 1, any subset of A of cardinality a is linearly
independent.

Next, we come to the definition of decomposition of a (symmetric) tensor.

Definition 6.3 LetA ⊂ Pn = P(V ) be a finite set. We say thatA is a decomposition
of the tensor T ∈ P(Symd(V )), or equivalently that A computes T , if T belongs to
the span 〈νd(A)〉.
Definition 6.4 Let A ⊂ Pn be a decomposition of T . A is minimal if we cannot
find a proper subset A′ of A such that T ∈ 〈νd(A′)〉.
Remark 6.2 If A ⊂ Pn is a decomposition of T and satisfies the minimality
property, then in particular the points of νd(A) are linearly independent, i.e.,

dim(〈νd(A)〉) = �(A) − 1.

6.2.1 The Hilbert Function of Finite Sets in Projective Spaces

We collect in this section a series of definitions and propositions which are well
known to people working in algebraic geometry, but maybe not so familiar to
other people working in tensor analysis. The main definition is the Hilbert function
of a finite set in a projective space, which is a basic tool for our results on the
decompositions of symmetric tensors.

Definition 6.5 Let Y ⊂ Cn+1 be an ordered, finite set of cardinality � of vectors.
Fix an integer d ∈ N.

The evaluation map of degree d on Y is the linear map

evY (d) : Symd(Cn+1) → C
�

which sends F ∈ Symd(Cn+1) to the evaluation of F at the vectors of Y .

We will use the evaluation map to define the Hilbert function of a finite set Z ⊂
Pn.
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Remark 6.3 Let A ⊂ Pn be a finite set, with a definite order. Choose a set of
homogeneous coordinates for the points of A. We get an ordered set of vectors
Y ⊂ Cn+1, for which the evaluation map evY (d) is defined for every d .

If we change the choice of the homogeneous coordinates for the points of the
fixed set A, we get another ordered set Y ′ ⊂ Cn+1 and the evaluation map evY ′(j)

differs from evY (j) for the multiplication by a non-singular diagonal matrix. Thus
the rank of evY (j) and evY ′(j) are the same for all j .

It is also clear that the rank of evY (j) does not depend on how we ordered the
points of A.

Let f : Cn+1 → Cn+1 be an automorphism and consider the associated change
of coordinates Pn → Pn, that we call again f , by abuse. Then the evaluation on Y

and f (Y ) differ by the multiplication by a non-singular matrix. Thus for any d the
maps evY (d) and evf (Y )(d) have the same rank.

Definition 6.6 Let Z ⊂ P
n be a finite set. Choose an order and an ordered set of

homogeneous coordinates Y for the points of A. Define the Hilbert function of Z as
the map

hZ : Z → N hZ(d) = rank(evY (d)).

By the previous remark, the Hilbert function does not depend on the choice of the
coordinates, as well as it does not vary after a change of coordinates in Pn.

People who are expert of algebraic geometry may wonder why we did not
define the Hilbert function as the rank of the restriction maps H 0(O(d)) →
H 0(OZ(d)), where O,OZ indicate respectively the structure sheaves of Pn and A.
This would simplify the notation, since the restriction is well defined, regardless
of a choice of coordinates for the points of A. On the other hand, our definition
is immediately accessible also to readers who are not expert about cohomology,
structure sheaves and so on.We preferred to make our basic definition more familiar
and easily computable for a wider audience. We based our definition on the choice
of coordinates because only after a choice of coordinates for the points of A one has
a natural identification of H 0(OZ(d)) with C�.

There is a different notation for the Hilbert function, which is widely used in
algebraic geometry. Since it clarifies some aspects, we introduce it.

Remark 6.4 Recall that the homogeneous ideal IZ of the set Z in the polynomial
ring C[t0, . . . , tn] is the ideal generated by all the homogeneous polynomials
(forms) which vanish at all the points of Z. Thus, IZ is a graded ideal. Its degree d

summand IZ(d) is exactly the kernel of the evaluation map evZ(d).
Notice that, indeed, the kernel does not depend on the choice of homogeneous

coordinates for the points ofZ, because the vanishing of a form at a projective point
P is independent from the choice of a specific set of homogeneous coordinates
for P .
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Thus, recalling that the vector space of forms of degree d we have

hZ(d) = dim(Symd(Cn+1)) − dim(IZ(d)) =
(

n + d

n

)
− dim(IZ(d)).

Consequently, we introduce the following notation:

Definition 6.7 Let Z be a finite subset of the projective space Pn and let hZ be
its Hilbert function. For any d ≥ 0, the value hZ(d) is also called the number of
conditions that Z imposes to forms of degree d .

We say that Z imposes independent conditions to forms of degree d , or also that
the points of Z are separated by forms of degree d , if hZ(j) = �(Z). This happens
exactly when, for (any choice of) a set Y of homogeneous coordinates for the points
of Z, the evaluation map evY (d) surjects.

Remark 6.5 Let us explain in more details the last definition. Set � = �(Z), and fix
an order for the points of Z.

Take a vector ej = (0, . . . , 0, 1, 0, . . . , 0) (1 is in the j -th position) of the natural
basis of C�, which corresponds to the j -th point Pj of Z in the given order. We say
that Pj is separated in Z by forms of degree d if ej belongs to the image of the
evaluation map evY (d). Indeed, in this case, ej is the evaluation of a form F of
degree d . Thus there exists a form F which vanishes at all the points of Z, but Pj .
Notice that this is independent on the choice of the homogeneous coordinates Y .

If hZ(j) = �(Z), i.e. if the evaluation map evY (d) surjects, then any point of Z

is separated.

The link between the Hilbert function of finite sets and the decompositions of
symmetric tensors is mainly based on the following formula, which gives a different,
geometric interpretation of the values hZ(d).

Proposition 6.2 Let νd,n : Pn → PN , N = N(d, n), be the d-th Veronese
embedding of Pn. For any finite set Z ⊂ Pn, and for any d ≥ 0, the value hZ(d)

determines the dimension of the span of νd(Z). I.e.:

hZ(d) = dim(〈νd,n(Z)〉) + 1.

Proof We know that the value hZ(d) is equal to the dimension of Symd(Cn+1)

minus the dimension of the space IZ(d), where IZ is the homogeneous ideal of Z

in C[t0, . . . , tn]. If we identify the coordinates in P
N(d,n) = P(Symd(Cn+1)) with

the monic monomials Mj ’s of degree d in C[t0, . . . , tn] (say with the lexicographic
order), then any element of IZ(d) corresponds to a linear form in P(Symd(Cn+1)).
The claim follows by Remark 6.1.

Definition 6.8 We define the first difference of the Hilbert function DhZ of Z as:

DhZ(j) = hZ(j) − hZ(j − 1), j ∈ Z.

The set of non-zero values of DhZ is called the h-vector of Z.
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The following properties of hA and DhA are elementary and well-known in
algebraic geometry.We recall them because theywill be useful throughout the paper.

Lemma 6.1 Set � = �(Z). Then we have:

(i) hZ(d) ≤ � for all d;
(ii) DhZ(d) = 0 for d < 0;
(iii) hZ(0) = DhZ(0) = 1;
(iv) DhZ(d) ≥ 0 for all d;
(v) hZ(d) = �(Z) for all d ≥ �(Z) − 1;
(vi) hZ(i) = ∑

0≤d≤i DhZ(d);
(vii) DhZ(d) = 0 for d 
 0 and

∑
d DhZ(d) = �(Z);

(viii) if hZ(d) = �(Z), then DhZ(d + 1) = 0.

Proof (i) is a consequence of the definition. (ii) follows immediately since the space
Symd(Cn+1) is (0) for d negative. (iii) follows since Sym0(Cn+1) = C and the
evaluation of a constant form c is equal to c(1, . . . , 1) ∈ C�.

To see (iv), fix an ordered set of coordinates Y for the points of Z and fix a linear
form Λ which does not vanish at any vector of the finite set Y . Then for any form F

of degree d , the evaluation ofΛF at Y is equal to the evaluation of F at Y multiplied
by a fixed non-singular diagonal matrix, whose entries are the evaluations of Λ at
the vectors of Y . Thus the image of evY (d + 1) contains a subspace isomorphic to
the image of evY (d). It follows that hZ(d + 1) ≥ hZ(d), hence DhZ(d) ≥ 0.

To see (v), choose for each point Pj ∈ Z a linear form Lj which vanishes at Pj

and does not vanish at any other point Pk ∈ Z. Then for any j call Fj the product
of the linear formsLk , k �= j . Fj is a form of degree �−1, which vanishes at all the
points of Z, except Pj . Thus, the evaluation of Fj at an ordered set of coordinates
Y for the points of Z is a vector (c1, . . . , c�) with ck = 0 for k �= j and cj �= 0. It
follows that evY (�−1) is surjective. Then, by (iv), evY (d) surjects for all d ≥ �−1.

(vi) is a triviality. (vii) and (viii) are obvious consequences of (v) and (vi).

Proposition 6.3 With the previous notation, if Z′ ⊂ Z, then, for every d ∈ Z, we
have hZ′(d) ≤ hZ(d) and DhZ′(d) ≤ DhZ(d).

Proof Fix, as usual, an ordered set of coordinates Y ′, Y for the points of Z′, Z
respectively. Then we have an obvious forgetful map f : C� → C�′

, where �′ =
�(Z′), such that evY ′(d) = f ◦ evY (d) for all d . This implies that hZ′(d) ≤ hZ(d).

The second inequality is less trivial, and we will need some algebra. Write R for
the polynomial ring C[t0, . . . , tn] and call IZ the ideal generated by forms which
vanish at the points of Z. The inclusion IY ⊂ R determines, for every d ∈ Z an
exact sequence of vector spaces:

0 → IY (d) → R(d) → (R/I)(d) → 0,
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where R(d),R/IZ(d) are the graded pieces of the rings R,R/I respectively, in
degree d . It follows by Remark 6.3 that for any d:

hZ(d) = dim(R/IZ(d)).

The natural inclusion IZ ⊂ IZ′ induces a surjection R/IZ(d) → R/IZ′(d) for all
d . Let Λ be a linear form in C[t0, . . . , tn], which does not vanish at any point of Z.
The multiplication by Λ induces an inclusion R/IZ(d) → R/IZ(d + 1). Indeed if
F ∈ R(d) is a form which does not vanish at some point P ∈ Z, then LF cannot
vanish at P , i.e. the class of LF is non-zero in R/IZ(d + 1). Call JZ the ideal
generated by IZ and Λ. We have an exact sequence:

0 → R/IZ(d) → R/IZ(d + 1) → R/JZ(d + 1) → 0

which proves that

DhZ(d) = dim(R/JZ(d + 1)).

Similarly Λ induces an embedding R/IZ′(d) → R/IZ′ (d + 1) and DhZ′(d) =
dim(R/JZ′(d)). Now look at the commutative diagram:

0 → R/IZ(d)
L−→ R/IZ(d + 1) → R/JZ(d + 1) → 0

↓ ↓ ↓
0 → R/IZ′(d)

L−→ R/IZ′(d + 1) → R/JZ′(d + 1) → 0

Since the central vertical map R/IZ(d +1) → R/IZ′(d +1) surjects, by the snake’s
lemma also the map R/JZ(d + 1) → R/JZ′(d + 1) surjects. Then DhZ(d) =
dim(R/JZ(d + 1)) ≥ dim(R/JZ′(d + 1)) = DhZ′(d). This proves the second
claim.

Perhaps, the most important algebraic result on Hilbert functions of finite sets is
the maximal growth principle found by Macaulay. Roughly speaking, the maximal
growth principle gives an upper bound for the value of hA(i + 1) in terms of
hZ(i) and the dimension of the ambient space. We list below the most relevant
consequences for the application to the study of tensors and forms.

Proposition 6.4 Assume that for some j > 0 we have DhZ(j) ≤ j . Then:

DhZ(j) ≥ DhZ(j + 1).

In particular, if for some j > 0, DhZ(j) = 0, then DhZ(i) = 0 for all i ≥ j .

Proof See Section 3 of [8].

Example 6.1 Let us see what happens for hZ(1). Since for i = 1 the domain of the
evaluation map is Sym1(Cn+1) = Cn+1, then clearly hZ(1) ≤ n + 1. So hZ(1) = 0
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can hold only if �(Z) ≤ n+ 1. Moreover the kernel of the evaluation map evZ(1) is
isomorphic to the space of linear forms in Pn which vanish at Z. Thus:

hZ(1) = 1 + dim(〈Z〉).

In particular, hZ(1) = 0 if and only if Z is linearly independent.

Remark 6.6 Assume that for some j we have DhZ(j) = 0, so that hZ(j − 1) =
hZ(j). By Proposition 6.4, for any i ≥ j also DhZ(i) = 0, i.e., hZ(j − 1) = hZ(i)

for any i ≥ j . Therefore, by part (v) of Lemma 6.1, hZ(j − 1) is equal to the
cardinality of Z, i.e., the evaluation map in degree j − 1 surjects and Z imposes
independent conditions to hypersurfaces of degree j − 1.

Remark 6.7 Assume hZ(i) = �(Z) − 1. Then hZ(i + 1) > hZ(i), by Remark 6.6.
Thus, if hZ(i) = �(Z) − 1, then necessarily hZ(i + 1) = �(Z).

Hilbert functions of finite sets share many other properties. One can find an
accurate account of the theory in the book of Iarrobino and Kanev [20] and in the
book of Migliore [24].

We will focus on the Cayley-Bacharach property, which is defined as follows:

Definition 6.9 A finite set Z ⊂ P
n satisfies the Cayley-Bacharach property in

degree i, abbreviated as CB(i), if, for any P ∈ Z, every form of degree i vanishing
at Z \ {P } also vanishes at P .

Remark 6.8 One should compare CB with the property of separating points. In a
sort of sense, the CB property is the contrary of the separation property.

– Z is separated in degree i if for all P ∈ Z, there exists a form of degree i

vanishing at Z \ {P } and not vanishing at P .
– Z does not satisfy CB if there exists P ∈ Z and there exists a form of degree i

vanishing at Z \ {P } and not vanishing at P .

In particular, if Z satisfies CB(i), then hypersurfaces of degree i cannot separate
the points of Z, i.e. hZ(i) < �(Z).

Example 6.2 The set Z consisting of four points in P2, three of them aligned, does
not satisfy CB(1), and hZ(1) < 4.

Let Z be a set of 6 points in P2.
If the 6 points are general, then DhZ = (1, 2, 3), and Z satisfies CB(1). Since

hZ(2) = 6, Z does not satisfy CB(2).
If Z lies on an irreducible conic, then DhZ = (1, 2, 2, 1), and Z satisfies CB(2),

and, hence, CB(1).
If Z has 5 points on a line plus one point off the line, then DhZ = (1, 2, 1, 1, 1),

and Z does not satisfy CB(1).

Remark 6.9 IfZ satisfies CB(i), then it satisfies CB(i−1) too. Otherwise, one could
find P ∈ Z and a hypersurfaceF ⊂ P

n of degree (i −1) such that Z \ {P } ⊂ F and
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P /∈ F . Therefore, if HP ⊂ Pn is a hyperplane not containing P , then F ∪ HP ∈
H 0(JZ\{P }(i)) \ H 0(JZ(i)), which contradicts the hypothesis.

Remark 6.10 Assume that Z satisfies CB(i). Call IZ the homogeneous ideal of Z.
For any P ∈ Z call IZ\{P } the homogeneous ideal of Z \ {P }. Then for all j ≤ i we
have IZ and IZ\{P } are equal in degree j . It follows that:

hZ(j) = hZ\{P }(j) and DhZ(j) = DhZ\{P }(j) ∀j ≤ i. (6.1)

The following proposition, which gives a strong bound on the Hilbert function of
sets with a Cayley-Bacharach property, is a refinement of a result due to Geramita,
Kreuzer, and Robbiano (see Corollary 3.7 part (b) and (c) of [18]).

Theorem 6.1 If a finite set Z ⊂ P
n satisfies CB(i), then for any j such that 0 ≤

j ≤ i + 1 we have

DhZ(0) + DhZ(1) + · · · + DhZ(j) ≤ DhZ(i + 1 − j) + · · · + DhZ(i + 1).

Proof See Theorem 4.9 of [2].

Finally, let us point out the relation between the Hilbert functions of a finite set
Z and of its image in a Veronese map νd(Z).

Remark 6.11 Let Z ⊂ Pn be a finite set and let νd(Z) ⊂ PN be its image in the
d-th Veronese map. Then

hZ(d) = hνd(Z)(1).

Namely the inverse image in νd of a linear form Λ in PN corresponds to a form of
degree d in Pn, and the consequent map CN+1 → Symd(Cn+1) surjects. Moreover
it is easy to see that, for any choice of coordinates Y for the points of Z in Pn

and the consequent choice νd(Y ) of coordinates for the points of νd(Z), one has
evY ′(L) = evY (ν−1

d (L)), so that the claim follows.
In particular, since νd is a bijection, then hZ(d) = �(Z) if and only if hνd(Z)(1) =

�(νd(Z)), i.e. if and only if νd(Z) is linearly independent (see Example 6.1).

The following result will be useful in the proof of Theorem 6.12

Proposition 6.5 Let Z be a finite set in Pn. Call k the Kruskal rank of Z. If
�(Z) ≤ 2k − 1, then Z is separated by forms of degree 2. Hence v2(Z) is linearly
independent.

Proof We know that k ≤ n + 1. For any point P ∈ Z, consider a partition of the
residue Z \ {P } in two disjoint sets Z1, Z2, each of cardinality at most k − 1.
Since k − 1 ≤ n, then the span Li of Zi has dimension strictly smaller than
n. Moreover, Li does not contain P , for otherwise Z has k linearly dependent
points, which contradicts the assumption on the Kruskal rank of Z. Thus, there
are hyperplanesH1,H2 containingZ1 and Z2 respectively and both missing P . The



136 L. Chiantini

union Q = H1 ∪ H2 is a quadric which misses P and contains the remaining points
of Z.

6.3 Results on Tensors from Classical Projective Geometry

The section is devoted to list a series of results on tensors whose proof is based on
the study of the Hilbert function of finite sets. In many cases we omit the proof, or
give only a short draft it.

Remark 6.12 Fix integers d, n > 1 and consider symmetric tensors in the space
P(Symd(Cn+1)). In [1] Alexander and Hirschowitz determined the unique value
rd,n such that the set of tensors of rank rd,n is dense in P(Symd(Cn+1)). It turns out
that rd,n coincides with the expected value, except for a short list of exceptions.

We will call rd,n the generic rank.

Definition 6.10 We say that a tensor T ∈ P(Symd(Cn+1)) of rank r is identifiable
if T has only one minimal decomposition A with �(A) = r , up to scaling and
permutations of the summands.

Identifiability is a relevant property for tensors for many applications, as
explained in Sect. 6.1.

If we fix a subgeneric value of the rank r < rd,n, then the set of tensors of rank
≤ r in P(Symd(Cn+1)) is irreducible and its general element has rank r , so we can
talk about a general tensor of rank r . For general tensors of rank r < rd,n, thanks to
the fundamental preparatory works [1, 11], and [3], the situation with respect to the
identifiability property has been completely described in [13].

Theorem 6.2 Let d, r ≥ 2. The general tensor in P(Symd(Cn+1)) of subgeneric
rank r < rd,n is identifiable, unless it is one of the following cases:

1. d = 2;
2. d = 6, n = 2, and r = 9;
3. d = 4, n = 3, and r = 8;
4. d = 3, n = 5, and r = 9.

In the first case there are infinitely many decompositions. In the three last excep-
tional cases, there are exactly two decompositions.

Proof See Theorem 1.1 of [13].

Remark 6.13 On the contrary, when r = rd,n, there are very few cases in which
a general tensor of rank r is identifiable. The classification has been proved by
Galuppi and Mella, see [17].

When r > rd,n, the situation is less known. It is not even obvious what is the
meaning of generic tensors, since the set of tensors of given rank can have many
components.
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In any case, one expects that a sufficiently general tensor is not identifiable,
though for r > rn,d very few things are known.

For the case r = rn,d , the situation is completely described in [1, 23] and mainly
in [17]: there are many decompositions, unless d, n are included in a short list of
cases.

Let us turn to the problem of the identifiability of one specific given tensor T ∈
P(Symd(Cn+1)), of which we know a minimal decomposition A ⊂ Pn = P(Cn+1)

with �(A) = r .
Recall that minimal means that the set vd(A) is linearly independent. We do not

assume that �(A) is actually the rank of T , i.e. we do not know if T has some other
decomposition with smaller cardinality.

Let us start recalling the following, classical result of Sylvester, which disposes
of the case n = 1, the case of binary forms:

Theorem 6.3 Assume n = 1, i.e. consider the space of tensor P(Symd(C2)). Then
r2,d = (d + 1)/2 if d is odd, r2,d = (d + 2)/2 if d is even. Moreover every tensor of
rank r < r2,d is identifiable.

Proof See [28].

Indeed, to be precise, when n = 1 and d is odd, also tensors of rank r2,d are
identifiable. See Theorem 6.4 below.

So, we restrict ourselves to the case n > 1.
The reason why an analysis of the Hilbert functions is relevant for the identifia-

bility property is expressed in the following lemma, which can be found in [4]:

Lemma 6.2 Consider two different minimal decompositions A,B of a tensor T ∈
P(Symd(Cn+1)). In other words, we have:

T ∈ 〈νd(A)〉 ∩ 〈νd(B)〉.

Then if Z = A ∪ B, we get hZ(d) < �(Z), so that DhZ(d + 1) > 0.

Proof Set Z = A ∪ B. First assume that A,B are disjoint. The existence of T

implies that νd(Z) is not linearly independent. By Example 6.1, this implies that
linear forms in the space PN spanned by νd(Pn) do not separate the points of νd(Z).
By Remark 6.11, this implies that forms of degree d in Pn do not separate the points
of Z. The claims follow by part viii) of Lemma 6.1 and Proposition 6.4.

If A ∩ B �= ∅, define B ′ = A \ B, so that Z is the disjoint union of A and
B ′. By elementary linear algebra, 〈νd(A)〉 ∩ 〈νd(B)〉 is also spanned by νd(A ∩ B)

and 〈νd(A)〉 ∩ 〈νd(B ′)〉. By the minimality of A, T cannot belong to the span of
νd(A ∩ B). Thus 〈νd(A)〉 ∩ 〈νd (B ′)〉 is non empty, and the claim follows again, as
above, by part viii) of Lemma 6.1 and Proposition 6.4.

We can be more precise about the dimension of the intersection of the span of
νd(A) and νd(B).
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Lemma 6.3 Let A,B ⊂ Pn be disjoint finite sets. Set Z = A ∪ B. Then:

dim(〈νd(A)〉 ∩ 〈νd(B)〉) = �(Z) − hZ(d) − 1.

If A ∩ B �= ∅, then:

dim(〈νd(A)〉 ∩ 〈νd(B)〉) ≤ dim(νd(A ∩ B)) + �(Z) − hZ(d).

Proof The first formula in an exercise for the application of the Grassmann
intersection formula. The second formula follows since, setting B0 = B \ A so that
A,B0 are disjoint and Z = A∪B0, by elementary linear algebra 〈νd(A)〉∩ 〈νd (B)〉
is spanned by νd(A ∩ B)) and 〈νd(A)〉 ∩ 〈νd(B0)〉.

An extension of Sylvester’s theorem, which works for all symmetric tensors
in P(Symd(Cn+1)), is possible for n > 1 only for small values of the rank. The
following statement is proved in Theorem 1.5.1 of [9]. We give here an alternative
proof, in terms of the Hilbert function of decompositions.

Theorem 6.4 Assume that a tensor T ∈ P(Symd(Cn+1)) has a decomposition A

with �(A) ≤ (d + 1)/2. Then T has rank �(A) and it is identifiable.

Proof Assume on the contrary that T has a second decomposition B with �(B) ≤
�(A), and take the union Z = A ∪ B. Then �(Z) ≤ 2�(A) ≤ d + 1. By Lemma 6.2
we have DhZ(d + 1) > 0. Thus by Proposition 6.4 and by point iii) of Lemma 6.1
we get DhZ(j) > 0 for j = 0, . . . , d + 1. Hence

∑
j DhZ(j) ≥ d + 2, which

contradicts point vii) of Lemma 6.1.

An easy extension of Theorem 6.4 is given by the following result.

Theorem 6.5 Assume that a tensor T ∈ P(Symd(Cn+1)) has a decomposition A

with �(A) ≤ (d + n)/2, such that 〈A〉 = Pn. Then T has rank �(A) and it is
identifiable.

Proof Assume on the contrary that T has a second decomposition B with �(B) ≤
�(A), and take the union Z = A ∪ B. Then �(Z) ≤ 2�(A) ≤ d + n. By Lemma 6.2
we have DhZ(d + 1) > 0. Thus by Proposition 6.4 and by point iii) of Lemma 6.1
we get DhZ(j) > 0 for j = 0, . . . , d + 1. By Example 6.6 and by Proposition 6.3
we get hZ(1) = n+1, so that DhZ(1) = n. Hence

∑
j DhZ(j) ≥ d +n+1, which

contradicts point vii) of Lemma 6.1.

A tensor T ∈ P(Symd(Cn+1)) is concise if there exist no linear subspaces W ⊂
Cn+1, of codimension 1, such that T belongs to P(Symd(W)).

The previous statement implies that when T is concise and it has a decomposition
of cardinality ≤ (d + n)/2, then T is identifiable.

To go further, we may assume some restrictions on the geometry of a decompo-
sition A of T .
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Lemma 6.4 Let Z ⊂ Pn be a finite set and assume that for some j ≥ 1: DhZ(j +
1) = DhZ(j) = 1. Then Z contains an aligned subset Z′ of cardinality �(Z′) =
j + 2, and DhZ(i) = DhZ′(i) for all i ≥ j .

Proof See Lemma 2 of [7].

The following result gives a further extension of Theorem 6.4 (compare with
Theorem 2 of [4]).

Proposition 6.6 Fix a form T ∈ P(Symd(Cn+1)) and a minimal decomposition
A ⊂ Pn of T . Assume that �(A) ≤ d and A does not contain an aligned subset of
cardinality d/2. Then T has rank �(A) and it is identifiable.

Proof Assume there exists another decompositionB of T with �(B) ≤ d and call Z
the unionZ = A∪B. Then �(Z) ≤ 2d , moreover, by Lemma 6.2,DhZ(d +1) > 0,
which implies DhZ(d) > 0. By Example 6.1 we get that hA(1) = 2, hence also
hZ(1) = 2, by Now assume DhZ(d) ≥ 2. Then DhZ(j) ≥ 2 for j = 1, . . . , d ,
by Proposition 6.4, so that

∑
j DhZ(j) ≥ 2d + 2, which contradicts point vii) of

Lemma 6.1. Then for some j ≥ 1, j ≤ d , we have DhZ(j) < 2. By Proposition 6.4
again, this implies DhZ(d) = DhZ(d + 1) = 1. Hence by Lemma 6.4, Z contains
an aligned subset Z′ with �(Z′) ≥ d + 2, and DhZ(i) = DhZ′(i) for i > d . Since
Z′ cannot contain A, then there exists a proper subset A′ ⊂ A and a subset B ′ ⊂ B

such that Z′ = A′ ∪B ′. ShrinkingB ′, if necessary, we may assume that B ′ ∩A = ∅,
so that also A′ ∩ B ′ = ∅. Then by (6.3):

dim(〈νd(A′)〉 ∩ 〈νd (B ′)〉) = �(Z′) − hZ′(d) − 1 =
∑

i>d

hZ′(i) =

=
∑

i>d

hZ(i) = dim(〈νd(A)〉 ∩ 〈νd (B0)〉),

where B0 = B \ A. Thus:

〈νd(A′)〉 ∩ 〈νd(B ′)〉 = 〈νd(A)〉 ∩ 〈νd(B0)〉

Since, as in the proof of Lemma 6.3, the intersection 〈νd(A)〉 ∩ 〈νd(B)〉 is spanned
by νd(A ∩ B) and 〈νd(A)〉 ∩ 〈νd(B0)〉, it follows that T belongs to the span of
νd((A ∩ B) ∪ A′). The minimality of A implies A = (A ∩ B) ∪ A′, so the points
of A which are not contained in B are aligned. By assumption �(A′) ≤ d/2 and
�(A′) + �(B ′) = �(Z′) ≥ d + 2, it follows that �(B ′) ≥ 2+ d/2. Thus �(A ∩ B) ≤
�(B) − 2 − d/2 ≤ �(A) − 2 − d/2. Then

�(A) ≤ �(A′) + �(A ∩ B) ≤ d/2 + �(A) − 2 − d/2 = �(A) − 2,

a contradiction.
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In order to go further in the study of the identifiability of symmetric tensors,
one needs a refinement of Lemma 6.4. The refinement is provided by the following,
strong result of Bigatti, Geramita and Migliore (for the case n = 2 the result has
been proved by Davis).

Theorem 6.6 Let Z ⊂ Pn be a finite set. Assume that for some s ≤ j , DhZ(j) =
DhZ(j + 1) = s. Then there exists a reduced curve C of degree s such that, setting
Z′ = Z ∩ C and Z′′ = Z \ Z′:

1. for i ≥ j − 1, hZ′(i) = hZ(i) − �(Z′′);
2. for i ≤ j , hZ(i) = hC(i);

3. DhZ′(i) =
{

DhC(i) for i ≤ j + 1;
DhZ(i) for i ≥ j.

In particular, DhZ′(i) = s for s ≤ i ≤ j + 1.
For n = 2, i.e. when Z ⊂ P2, we also have:

hZ′′(j − 1) = �(Z′′) and DhZ′′ (i) = DhZ(i + s) − s for i + s ≤ j.

Proof See Theorem 3.6 of [8], and [15] for the case n = 2.

Thanks to Theorem 6.6, for the case n = 2 one can prove an extension of
Proposition 6.6:

Theorem 6.7 Fix a form T ∈ P(Symd(C3)) and a minimal decompositionA ⊂ Pn

of T . Assume that for all j the Kruskal rank of vj (A) is maximal, i.e. it is equal to
the minimum between �(A) and

(
j+2
2

)
. If

�(A) <
d2 + d

8
,

then T has rank �(A) and it is identifiable.

Proof See Theorem 1.4 of [5], in which the general uniform position (GUP)
assumption is equivalent to the condition that the Kruskal rank of vj (A) is maximal
for all j .

One aspect of the study of decomposition which has not been developed
appropriately derives from the observation that Sylvester Theorem 6.3 can be
sharpened as follows.

Theorem 6.8 Assume n = 1. Assume that T ∈ P(Symd(C2)) has a minimal
decomposition A with �(A) < d + 1. Then for any other minimal decomposition
B of T one has �(A) + �(B) ≥ d + 2.

Proof Assume on the contrary that T has a second decomposition B with �(B) +
�(A) ≤ d+1, and take the unionZ = A∪B. Then �(Z) ≤ d+1. Then we conclude
as in the proof of Theorem 6.4.
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Remark 6.14 One can prove a statement similar to Theorem 6.5 under the assump-
tion that 〈A〉 = Pn. Namely in this case for any other minimal decomposition B of
T one has �(A) + �(B) ≥ d + n. Details are left to the reader.

6.4 Kruskal’s Criterion and Terracini’s Criterion

The most famous and most used criterion for detecting the identifiability of a given
tensor was proved by Kruskal in 1977 (see [21]). Kruskal’s criterion was originally
proved for 3way, non necessarily symmetric, tensors. The application to symmetric
tensors of any size is described e.g. in [14]. We recall the result here, rephrased in
terms of the geometric language.

Theorem 6.9 (Reshaped Kruskal’s Criterion) Let T ∈ Symd(Cn+1) and let
A ⊂ Pn be a minimal decomposition of T . Fix a partition d = a + b + c, with
0 < a ≤ b ≤ c. Write ka, kb, kc for the Kruskal ranks of va(A), vb(A), vc(A)

respectively. If

�(A) ≤ ka + kb + kc − 2

2

then T has rank �(A) and it is identifiable.

Of course the efficiency of the previous criterion depends on the choice of the
partition. One should observe that computing the Kruskal ranks can be demanding,
for large values of d , unless the coordinates matrices of va(A), vb(A), vc(A) have
full rank. For that reason, and also for widening the range in which Kruskal’s
criterion applies, it is usually convenient to us a maximally unbalanced partition

Example 6.3 Consider the case d = 4. The unique partition is a = b = 1, c = 2.
If 2 ≤ �(A) ≤ n + 1, in the most favorable case in which ka = kb = kc = �(A),

then the condition �(A) ≤ (ka + kb + kc − 2)/2 is automatically satisfied and
Kruskal’s criterion applies.

If n + 1 < �(A) ≤ (
n+2
2

)
, then the most favorable case is ka = kb = n + 1 and

kc = �(A). In this situation �(A) ≤ (ka +kb +kc −2)/2 is equivalent to �(A) ≤ 2n.
So, one cannot hope to apply directly Kruskal’s criterion, for d = 4, as soon as

�(A) > 2n.

A direct improvement of Kruskal’s criterion is impossible, unless one adds some
extra test on the tensor T . Namely Kruskal’s criterion (even in its reshaped version)
is known to be sharp, in its maximal range.

Theorem 6.10 For any n, d there exist a, b, c and a tensor T ∈ Symd(Cn+1) with
a minimal decomposition A such that the Kruskal’s ranks ka, kb, kc are maximal
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(i.e. ka = min{�(A),
(
n+a
a

)
, and a similar equality holds for b and c), with

�(A) = ka + kb + kc

2

and such that T is not identifiable.

Proof The proof is essentially due to Derksen ([16]), who proved the result in the
non symmetric case. Remark 1.1 of [2] contains the observation that, when T is
symmetric, then Derksen’s construction provides several symmetric decompositions
of T .

Thus, given a decomposition A of a fixed symmetric tensor T , one can test the
identifiability (and the rank) of T by computing the Kruskal ranks ka of the images
of A in suitable Veronese embeddings, hoping to obtain ka + kb + kc ≥ 2�(A) + 2.
If the inequality holds, Kruskal’s theorem guarantees the identifiability of T .

Typically, the reshaped Kruskal’s criterion works for small values of �(A). To
study the identifiability of tensors in a wider range, one needs to add some new test
for T .

An example of a test that, together with Kruskal’s test, can provide an affirmative
answer for the identifiability of T , is provided by an observation which comes out
from the Terracini’s description of the tangent space to the set of tensors of fixed
rank.

In the space P(Symd(Cn+1)), call Σr the set of tensors of rank r .
For small values of r , i.e. for r(n+1) ≤ (

n+d
d

)
, Σr is locally closed in the Zariski

topology, i.e. it is an open subset of a projective subvariety (the r-th secant variety
of the Veronese image vd(Pn)).

Consider the symmetric product (Pn)(r). In the product

P(Symd(Cn+1)) × (Pn)(r)

consider the subvariety AΣr of pairs (T , [{P1, . . . , Pr }]) such that the set A =
{P1, . . . , Pr } is mapped by vd to a finite set which spans a subspace of dimension
r − 1 in P(Symd(Cn+1)) (i.e. vd(A) is linearly independent) and T belongs to the
span of vd(A).

The set AΣr , which is a quasi-projective variety, is called the abstract secant
variety of vd(Pn). The projection to the first factor maps AΣr surjectively to Σr .

Definition 6.11 Define the r-th secant map sr as the map projection to the first
factor

sr : AΣr → P(Symd(Cn+1)).

The image of the secant map is Σr . The inverse image of a tensor T of rank r in
the secant map is the set of decompositions of T .
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Since vd(Pn) is a smooth variety, then (Pn)(r) is smooth, outside the diagonals.
Thus also AΣr , which is a Pr−1 bundle over a subset of (Pn)(r) which does not meet
the diagonals, is smooth.

Definition 6.12 The tangent space to AΣr at a point (T , [{P1, . . . , Pr }]) maps, in
the differential of sr , to the space T in PN = P(Symd(Cn+1)) spanned by the
tangent spaces to vd(Pn) at the points vd(P1), . . . , vd(Pn). We call this space the
Terracini space of the decomposition A = {P1, . . . , Pr } of T .

The name of Terracini space comes from the celebrated Terracini’s Lemma,
which says that, for a general choice of T ∈ Σr and for r ≤ N , the Terracini
space is the tangent space to Σr at T . Thus, a computation of the dimension of the
Terracini space at a general point corresponds to compute the dimension of the set
Σr of tensors of rank r ≤ N .

Remark 6.15 The dimension of the Terracini space T is naturally bounded:

dim(T ) ≤ (n + 1)r − 1,

and the equality means that the tangent spaces to vd(Pn) at the points vd(Pi)’s are
linearly independent.

Since AΣr is a Pr−1 bundle over a quasi-projective variety of dimension nr , then
(n+1)r−1 = dim(AΣr). It follows that the dimension of the Terracini space equals
(n + 1)r − 1 when the differential of sr has maximal rank.

Remark 6.16 The decomposition A of T ∈ P(Symd(Cn+1)) corresponds to the
datum of r linear forms L1, . . . , Lr in the polynomial ring R = C[x0, . . . , xn].

The Terracini space can be naturally identified with the degree d homogeneous
piece of the ideal in R spanned by

Ld−1
1 m + · · · + Ld−1

r m,

where m is the ideal generated by the variables.
It follows that the computation of the dimension of the Terracini space at a

decomposition of T is a straightforward application of simple algorithm of linear
algebra.

We refer to the book [20] for the (elementary) proof of this statement.

The use of the Terracini space in the computation of the identifiability of a form
T is meaningful in the following situation.

Proposition 6.7 Let A be a decomposition of T of length r and assume that there
exists a non trivial family At of decompositions of T , such that A0 = A. Then the
Terracini space of A has dimension strictly smaller than (n + 1)r − 1.

Proof At determines a positive dimensional subvariety W in the fiber of sr over T .
Thus, there exists a tangent vector to AΣr at (T , [A]), where [A] is the point of the
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symmetric product corresponding to A, which is killed by the differential of sr at
(T , [A]). Then use Remark 6.15.

Now, we can introduce our strategy in finding criteria for the identifiability of
symmetric tensors, which works in a range slightly wider than the Kruskal’s one.

If we can prove that tensors T which are non identifiable must have a positive
dimensional family of different decompositions, containing the given decomposi-
tion A, then we can check the identifiability of T by computing the dimension of
the Terracini space.

The fact that non identifiable tensors have indeed a positive dimensional family
of different decompositions, is false in general. It turns out, however, that this fact
holds in some cases, especially when we are outside the Kruskal’s numerical range,
but very close to it.

A way to produce positive dimensional family of different decompositions is
explained in the following:

Proposition 6.8 Assume that a decomposition A of length r of T is contained in a
projective curve C ⊂ P

n which is mapped by vd to a space Pm, with m < 2r − 1.
Then there exists positive dimensional family of different decompositions At of T ,
such that A0 = A.

Proof T belongs to the span of vd(A), which is contained in the span of vd(C),
which is contained in Pm. The condition m < 2r + 1 implies that there is a positive
dimensional family of subsets At ⊂ C such that T ∈ 〈vd(At)〉. Namely, the abstract
r secant variety AΣC

r of C has dimension 2r − 1, thus all the components of the
fibers of the map AΣC

r → Pm are positive dimensional.

Now we can mix together the analysis of the Hilbert function, the Cayley-
Bacharach condition and the computation of the dimension of the Terracini space,
to produce a criterion for the identifiability of T .

Theorem 6.11 (See [2]) Let T be a quartic form in n + 1 variables, and consider
a decomposition A of T of length 2n + 1.

Assume that:

a) the Kruskal rank of A is n + 1;
b) the Terracini space at A has (the maximal) dimension (2n + 1)(n + 1) − 1.

Then T has rank 2n + 1 and it is identifiable.

Notice that conditions a) and b) are expected to hold for a general quartic, i.e.
outside a proper Zariski closed subset (of measure 0) in the space of quartics. Thus
the previous theorem provides a criterion to prove the identifiability of T , except for
very special tensors.

Proof We give a sketch of the proof.
First notice that, by Proposition 6.5, the set v2(A) is linearly independent, i.e. it

has Kruskal rank 2n + 1.
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Call B a different decomposition of length ≤ 2n + 1 for T , which we want to
exclude. Call Z the union Z = A ∪ B and consider the Hilbert function of Z.

First step is to prove that Z has the Cayley-Bacharach property CB(4). This is
almost clear when A∩B = ∅, while if A∩B �= ∅ the claim follows from Kruskal’s
theorem.

Next, since Z has the property CB(4), by Theorem 6.1 it follows soon that
DhZ(3)+DhZ(4)+DhZ(5) ≥ hA(2) = 2n+1, so that hZ(2) = hA(2) = 2n+1.
Then one invokes the following extension of the classical Castelnuovo’s Lemma:

Lemma 6.5 (See [2], Lemma 5.4) Let Z be a set of r ≥ 2n + 3 points in Pn

which impose at most 2n + 1 conditions to quadrics. Assume that Z has a subset
Z′ of 2n + 1 points in LGP. Then the entire Z is in LGP and it is contained in an
irreducible rational normal curve.

The classical formulation of Castelnuovo’s lemma required that the whole set
Z is in LGP, which we cannot assume in our setting, because we only know the
position of A, which contains 2n + 1 points of Z, while we have no control of the
points of B. Fortunately, the extension matches exactly our requirements. Now we
can turn back to the proof of the Theorem.

Since Z has a subset, namely A, which is in LGP, then it follows that Z, hence
also A, sits in a rational normal curveC of Pn. The image of C in the Veronese map
v4 spans a P4n. Hence the claim follows by Proposition 6.8.

6.5 A New Result on the Decomposition of Tensors

In this section we improve slightly Theorem 6.11, by removing the assumption that
the Kruskal rank of A is n + 1, and replacing it by a numerical assumption on �(A).
At a certain point of the proof we will need the cohomological properties of the
residue of a finite set with respect to a hyperplane. This is the unique passage in
which some sophisticated algebraic machinery enters into the proof.

Let Z be a finite set in Pn, and let H be a hyperplane. Call Z1 the intersection
Z1 = Z ∩ H and call Z2 the set:

Z2 = Z \ Z1 = Z \ (Z ∩ H).

For obvious reasons, Z2 is called the residue of Z with respect to H .
If IZ, IZ2 denote the homogeneous ideals of Z,Z2 respectively, the multiplica-

tion by an equation of H determines an exact sequence of graded modules:

0 → IZ2(1) → IZ(2)
ρ−→ IZ1,H (2) (6.2)

in which the rightmost ideal IZ1,H is the homogeneous ideal of Z1 in H .
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The following result is a straightforward application of the cohomology of maps
of sheaves:

Lemma 6.6 Assume that Z2 is linearly independent. Then the rightmost map ρ in
sequence (6.2) is surjective.

Proof The cokernel of ρ is contained in the cohomology group H 1(IZ2(1)), where
IZ2 is the ideal sheaf of Z2. Moreover H 1(IZ2(1)) vanishes if Z2 is linearly
independent, because in this case the evaluation map ev(1) on Z2 determines a
surjective map Cn+1 → C

�(Z2).

Remark 6.17 With the same trick, one can prove the following general statement:
Assume that the residue Z2 of a finite set Z, with respect to a hyperplane H , is

separated by forms of degree d −1. Then any form of degree d in H which contains
Z1 = Z \ Z2 can be lifted to a form of degree d in Pn which contains Z.

As a consequence, in the hypothesis of Lemma 6.6, it turns out that every quadric
of the hyperplane H that contains Z2 can be lifted to a quadric of Pn that contains
Z.

We will need the following, well known remark for linearly independent sets W

in a projective space Pn:

Lemma 6.7 Let W be a linearly independent finite set in Pn. Then for any Q /∈ W ,
there exists a quadric of Pn containing W and missing Q. In other words, the ideal
of W is generated by quadrics.

Proof The proof is an easy argument of linear algebra. After shrinking n we may
always assume W = {P1, . . . , Pn+1}. If Q does not belong to the span of any proper
subset of W , just by taking two hyperplanes containing two proper subsets we get
the claim. Thus, reorder the points of W so that P1, . . . , Ps (s ≥ 2, s ≤ n) is a
minimal subset whose span L containsQ. Since the points are linearly independent,
the span M of P1, . . . , Ps−1, Ps+1 intersects L in the span of P1, . . . , Ps−1, hence
by minimality it does not contain Q. Similarly, the span M ′ of Ps, Ps+2, . . . , Pn+1
intersects L only in Pn. The union of a general hyperplane containing M and a
general hyperplane containing M ′ provides a quadric containing W and missing Q.

Now we are ready to state and proof our result.

Theorem 6.12 Let T be a quartic form in n + 1 variables, and consider a
decompositionA of T . Call k the Kruskal rank of A and assume that �(A) ≤ 2k−1.
Assume that the Terracini space at A has (maximal) dimension (2k − 1)(n+ 1)− 1.

Then T has rank 2k − 1 and it is identifiable.

Notice that since k ≤ n + 1, it follows �(A) ≤ 2n + 1. Moreover, by
Proposition 6.5, we know that A is separated by quadrics, i.e. v2(A) is linearly
independent. This implies immediately that also v4(A) is linearly independent.
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Notice also that if �(A) < 2k − 1, then A satisfies the hypothesis of the reshaped
Kruskal’s criterion, because in this case

�(A) ≤ k + k + �(A) − 2

2
,

so that the identifiability of A follows immediately.
Thus the Theorem produces a new criterion only for �(A) = 2k − 1. Hence we

assume, in the proof, that �(A) = 2k − 1.

Proof As in the proof of Theorem 6.11, we will prove that, under the assumptions,
if another decomposition B of cardinality �(B) ≤ 2k − 1 exists, then there exists
a curve C containing A and such that v4(C) spans a space of dimension ≤ 4k − 4,
which contradicts the assumption 2).

Of course, we may assume that A spans Pn, otherwise we simply decrease n. It
follows that 2k − 1 > n and the difference of the Hilbert function of A is:

DhA(0) = 1, DhA(1) = n, DhA(2) = 2k − 2 − n.

Assume that a second decomposition B exists. The first step is to prove that Z =
A ∪ B satisfies the Cayley Bacharach property CB(4), which holds by following
verbatim the proof of the similar statement in Theorem 6.2 of [2].

It follows then, by Theorem 6.1, that the difference of the Hilbert function of Z

satisfies DhZ(3)+DhZ(4)+DhZ(5) = 2k−1, so that in particular �(B) = 2k−1,
A,B are disjoint and the difference of the Hilbert function of Z satisfies:

DhZ(0) = 1, DhZ(1) = n, DhZ(2) = 2k − 2 − n.

Thus, summing up, one gets hZ(2) = hA(2), i.e. all the quadrics that contain A

must contain Z.
The assumption that k is the Kruskal rank of A means that any subset of k

points in A is linearly independent, while there exists a subset of k + 1 points
which generates a subspace Λ = Pk−1. After rearranging the points, we may
assume that P1, . . . , Pk+1 generateΛ, Pk+1, . . . , Pk+q are also contained in Λ, and
Pk+q+1, . . . , P2k−1 are outside Λ. Notice that we may always assume that A is non
degenerate, thus k+q < 2k−1. Call Λ′ the space generated by Pk+q+1, . . . , P2k−1.
Any pair of hyperplanes H,H ′ which contain Λ,Λ′ respectively, determine a
quadric which contains A. It follows that all the points of B are contained either
in Λ or in Λ′.

Let Q be a point of B which lies in Λ. For any subset W of k − 1 points among
P1, . . . , Pk+q consider the hyperplane LW of Λ spanned by W . If Q belongs to no
hyperplanes LW , then there are quadrics in Λ which contain P1, . . . , Pk+q . Thus if
H is a general hyperplane containing Λ then there are quadrics in H which contain
P1, . . . , Pk+q and miss Q. Since the set Pk+q+1, . . . , P2k−1 is linearly independent,
by our assumption on the Kruskal rank of A, then by Lemma 6.6 one finds a quadric
of Pn which contains A and misses Q, contradicting hZ(2) = hA(2).
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Hence, there exists a set W of k − 1 points among P1, . . . , Pk+q which spans a
hyperplaneLW of Λ containing Q. Since W is linearly independent, by Lemma 6.7
one can find a quadric K in LW that contains W and misses Q. Since, by our
assumption on the Kruskal rank of A, also {P1, . . . , Pk+q} \ W , which contains
at most k points, is linearly independent, then by Lemma 6.6 we can lift K to a
quadric K ′ of Λ which misses Q and contains P1, . . . , Pk+q . As above, K ′ lifts to
a quadric K ′′ which contains A and misses Q. Thus we have a contradiction with
hZ(2) = hA(2).

It follows that all the points of B belong to Λ′. In particular, the form T does
not involve all the variables. After choosing carefully the coordinates x0, . . . , xn in
Pn, we may assume that T does not involve xn. But then, by replacing xn with txn

in the points of A (actually in the points of A ∩ Λ), as t varies we get a family of
decompositions of T which coincides with A for t = 1. By Proposition 6.7, this
contradicts the assumption that the Terracini space has maximal dimension.

Remark 6.18 As in Section 6 of [2], one can create an algorithm that uses
Theorem 6.12 to detect the identifiability of quartics of low rank. Given a symmetric
decomposition of length r of a quartic

T =
r∑

i=1

ν4(Pi),

in the form of the collection of points A = {Pi = [mi]}ri=1 ⊂ Pn, we can
apply the following algorithm for verifying that the given decomposition of T is
identifiable:

1) Kruskal’s test: compute the Kruskal rank k of A;

S1. If r > 2k − 1, the criterion cannot be applied.
S2. If r < 2k − 1, use the reshaped Kruskal criterion from [13, Section 6.2].
S3. If r = 2k − 1, perform the:

2) Terracini’s test: check that the dimension of 〈Tm1ν4(C
n+1), . . . , Tmr ν4(C

n+1)〉
is (2k − 1)(n + 1) − 1.

If all these tests are successful, then T is of rank r and is identifiable.

Notice that the computation of the Kruskal rank of A turns out to be the heaviest
step of the algorithm.

6.6 Final Remarks and Open Problems

1. We believe that the range in which the non-identifiability of tensors implies the
existence of a positive dimensional family of decompositions (which can be
detected by the computation of the Terracini space) goes beyond the numerical
bounds given in Theorems 6.11 and 6.12.
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In order to extend the previous results, however, one needs extensions of the
basic Castelnuovo’s Lemma 6.5. What we would need is to replace the existence
of a rational normal curve, predicted by Lemma 6.5 for sets of points with special
Hilbert functions, with the existence of other types of curves (elliptic, or even of
higher genera), when the number of points increases.

Similar results are known in some cases (see e.g. [19, 25]), but not in a form
that can be immediately applied to our situation.

We would like to stimulate further researches on the geometry of sets of points
with special Hilbert functions, with the final target of an application to tensor
analysis.

2. The geometric methods known so far for the study of the identifiability of
specific tensors, as the Kruskal’s criterion and the extension given in the previous
sections, are based on the study of the geometry of a given decomposition. The
idea has a basic bug: once the identifiability follows from geometric properties of
a given decompositionA, then it must hold for all the tensors which lie in the span
of vd(A) (at least those for which A is minimal), regardless of the coefficients
that are used to produce the form T . Of course, we can expect that a similar
uniform behavior holds only for small values of the rank r . When r increases,
then it is natural to expect that the space 〈vd(A)〉 contains both identifiable and
non-identifiable points.

As a consequence, we need criteria for identifiability which are able to dis-
tinguish between different points of the span 〈vd(A)〉 of a given decomposition
A.

We believe that a geometric analysis of A and of its linked sets of points
can produce geometric criteria which reach much further than the range of
application of Kruskal’s criterion.

3. A different approach to the study of the identifiability of tensors is contained
in the paper [22]. The authors prove that when the space spanned by partial
derivatives of the form T (the catalecticant space, in the terminology of [20])
meets the corresponding variety in a finite set of the expected length r , then r is
the rank of T and the tensor is identifiable.

The method of partial derivatives has the advantage that it does not need
to start with a given decomposition. On the other hand, for special tensors, it
does not describe the geometric situation which yields the non-uniqueness of
the decomposition. Furthermore, the method relies on the computation of an
intersection of algebraic varieties, i.e. on methods of computer algebra, which
usually cost a lot in terms of computational complexity.

We believe that a mix of the two methods, which will be the target of a
forthcoming paper, will produce new, interesting developments in the theory.

4. We wonder if the analysis of tensor decomposition by means of geometric
methods, related with the study of finite sets in projective spaces, can be extended
beyond the case of symmetric tensors. For general tensors, the natural substitute
for the Hilbert function is the multigraded Hilbert function. Indeed, for general
tensors, one has only to consider the first piece of the multigraded Hilbert
function, i.e. the piece bounded by the origin and the multidegree (1, . . . , 1). For
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this piece of the Hilbert function, which is basically the Segre function, in the
terminology of [12] and [6], very few is known. For instance, we do not know
an analogue of Lemma 6.1, which lists the most elementary properties. A study
of the Segre function, aimed to an application to tensor analysis, will probably
yield several new, valuable results on the theory.
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