
Chapter 2
A Very Brief Introduction to Quantum
Computing and Quantum Information
Theory for Mathematicians

Joseph M. Landsberg

Abstract This is a very brief introduction to quantum computing and quantum
information theory, primarily aimed at geometers. Beyond basic definitions and
examples, I emphasize aspects of interest to geometers, especially connections with
asymptotic representation theory. Proofs can be found in standard references such as
Kitaev et al. (Classical and quantum computation, vol. 47. American Mathematical
Society, Providence, 2002) and Nielson and Chuang (Quantum computation and
quantum information. Cambridge University Press, Cambridge, 2000) as well as
Landsberg (Quantum computation and information: Notes for fall 2017 TAMU
class, 2017).

2.1 Overview

I begin, in Sect. 2.2, by presenting the postulates of quantum mechanics as a natural
generalization of probability theory. In Sect. 2.3 I describe basic entanglement
phenomena of “super dense coding”, “teleportation”, and Bell’s confirmation of the
“paradox” proposed by Einstein-Podolsky-Rosen. In Sect. 2.4 I outline aspects of
the basic quantum algorithms, emphasizing the geometry involved. Section 2.5 is a
detour into classical information theory, which is the basis of its quantum cousin
briefly discussed in Sect. 2.7. Before that, in Sect. 2.6, I reformulate quantum theory
in terms of density operators, which facilitates the discussion of quantum informa-
tion theory. Critical to quantum information theory is von Neumann entropy and in
Sect. 2.8 I elaborate on some of its properties. A generalization of “teleportation”
is discussed in Sect. 2.9. Regarding practical computation, the exponential growth
in size of (C2)⊗n with n that appears in quantum information theory leads to the
notion of “feasible” states discussed in Sect. 2.10, which has interesting algebraic
geometry associated to it. I conclude with a discussion of representation-theoretic
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aspects of quantum information theory, including a discussion of the quantum
marginal problem in Sect. 2.11. I do not discuss topological quantum computing,
which utilizes the representation theory of the braid group. For those interested in
more details from this perspective, see [18].

2.2 Quantum Computation as Generalized Probabilistic
Computation

In this section I take the point of view advocated in [1] and other places that quantum
computing should be viewed as a natural generalization of probabilistic computing,
and more generally that the laws of quantum mechanics as generalizations of the
laws of probability.

2.2.1 Classical and Probabilistic Computing via Linear
Algebra

This section is inspired by Arora and Barak [2, Exercise 10.4].
Classical communication deals with bits, elements of {0, 1}, which will be

convenient to think of as elements of F2, the field with two elements. Let fn : Fn
2 →

F2 be a sequence of functions. Give R2 basis {|0〉, |1〉} (such notation is standard in
quantum mechanics) and give (R2)⊗m = R2m

basis {|I 〉 | I ∈ {0, 1}m}. In this way,
we may identify F

m
2 with the set of basis vectors of R2m

. A computation of fn (via
an arithmetic or Boolean circuit) may be phrased as a sequence of linear maps on
a vector space containing R2n

, where each linear map comes from a pre-fixed set
agreed upon in advance. In anticipation of what will come in quantum computation,
the pre-fixed set of maps (called gates in the literature) will be taken from maps
having the following properties:

1. Each linear map must take probability distributions to probability distributions.
This implies the matrices are stochastic: the entries are non-negative and each
column sums to 1.

2. Each linear map only alters a small number of entries. For simplicity assume it
alters at most three entries, i.e., it acts on at most R23 and is the identity on all
other factors in the tensor product.

In quantum computation, the first propertywill be replaced by requiring the linear
maps to be completely positive and trace preserving (see Sect. 2.7). The second is
the same and justified because “universal” quantum computing is possible with such
maps, even requiring the three factors to be adjacent, which is essentially due to the
classical Cartan-Dieudonné theorem.
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To facilitate comparison with quantum computation, first restrict to reversible
classical computation. The complexity class of a sequence of functions in classical
reversible computation is the same as in arbitrary classical computation.

For example, if we want to effect (x, y) �→ x ∗ y, consider the map

|x, y, z〉 �→ |x, y, z ⊕ (x ∗ y)〉 = |x, y, z ⊕ (x ∧ y)〉 (2.1)

(where the second expression is for those preferring Boolean notation) and act as the
identity on all other basis vectors (sometimes called registers). Here z will represent
“workspace bits”: x, y will come from the input and z will always be set to 0 in the
input. In the basis |000〉, |001〉, |010〉, |100〉, |011〉, |101〉, |110〉, |111〉, of R8, the
matrix is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.2)

This gate is sometimes called the Toffoli gate and the matrix the Toffoli matrix.
The swap (negation) gate ¬ is realized by the matrix

σx =
(
0 1
1 0

)
. (2.3)

The swap and Toffoli matrices can perform any computation that is accomplished
via a sequence of matrices drawn from some finite set of Boolean operations, each
acting on a fixed number of basis vectors with at worst a polynomial in n size
increase in the number of matrices needed. For those familiar with Boolean circuits,
any sequence of Boolean circuits (one for each n) may be replaced by a sequence
with just Toffoli and negation gates with at worst a polynomial (in n) blow up in
size.

A probability distribution on {0, 1}m may be encoded as a vector in R2m
: If

the probability distribution assigns probability pI to I ∈ {0, 1}m, assign to the
distribution the vector v = ∑

I pI |I 〉 ∈ R2m
.

The matrices (2.2), (2.3) realize classical computation. To add randomness to
enable probabilistic computation, introduce the matrix

( 1
2

1
2

1
2

1
2

)
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which acts on a single R2 corresponding to a fair coin flip. Note that the coin flip
matrix is not invertible, which will be one motivation for quantum computation in
Sect. 2.2.2. Work in R2n+s+r

where r is the number of times one needs to access a
random choice and s is the number of matrices (arithmetic operations) in addition
to the coin tosses needed to compute f .

A probabilistic computation, viewed this way, starts with |x0r+s〉, where x ∈ F
n
2

is the input. One then applies a sequence of admissible stochastic linear maps to
it, and ends with a vector that encodes a probability distribution on {0, 1}n+s+r .
One then restricts this to {0, 1}p(n), that is, one takes the vector and throws away
all but the first p(n) entries. This vector encodes a probability sub-distribution,
i.e., all coefficients are non-negative and they sum to a number between zero and
one. One then renormalizes (dividing each entry by the sum of the entries) to
obtain a vector encoding a probability distribution on {0, 1}p(n) and then outputs the
answer according to this distribution. Note that even if our calculation is feasible
(i.e., polynomial in size), to write out the original output vector that one truncates
would be exponential in cost. A stronger variant of this phenomenon will occur
with quantum computing, where the result will be obtained with a polynomial
size calculation, but one does not have access to the vector created, even using an
exponential amount of computation.

To further prepare for the analogy with quantum computation, define a proba-
bilistic bit (a pbit) to be an element of

{p0|0〉 + p1|1〉 | pj ∈ [0, 1] and p0 + p1 = 1} ⊂ R
2.

Note that the set of pbits (possible states) is a convex set, and the basis vectors
are the extremal points of this convex set.

2.2.2 A Wish List

Here is a wish list for how one might want to improve upon the above set-up:

1. Allow more general kinds of linear maps to get more computing power, while
keeping the maps easy to compute.

2. Have reversible computation: we saw that classical computation can be made
reversible, but the coin flip was not. This property is motivated by physics, where
many physical theories require time reversibility.

3. Again motivated by physics, one would like to have a continuous evolution of
the probability vector, more precisely, one would like the probability vector to
depend on a continuous parameter t such that if |ψt1〉 = X|ψt0〉, then there exist
admissible matrices Y,Z such that |ψt0+ 1

2 t1
〉 = Y |ψt0〉 and |ψt1〉 = Z|ψt0+ 1

2 t1
〉

and X = ZY . In particular, one wants operators to have square roots. (Physicists
sometimes state this as “time evolution being described by a semi-group”.)
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One way to make the coin flip reversible is, instead of making the probability
distribution be determined by the sum of the coefficients, one could take the sum of
the squares. If one does this, there is no harm in allowing the entries of the output
vectors to become negative, and one could use

H := 1√
2

(
1 1
1 −1

)
(2.4)

for the coin flip. The matrix H is called the Hadamard matrix or Hadamard gate in
the quantum computing literature. If we make this change, we obtain our second
wish, and moreover have many operations be “continuous”, because the set of
matrices preserving the norm-squared of a real-valued vector is the orthogonal
group O(n) = {A ∈ Matn×n | AAT = Id}. So for example, any rotation has a
square root.

However our third property will not be completely satisfied, as the matrix

(
1 0
0 −1

)

which represents a reflection, does not have a square root in O(2).
To have the third wish satisfied, allow vectors with complex entries. From now

on let i = √−1. For a complex number z = x+iy let z = x−iy denote its complex
conjugate and |z|2 = zz the square of its norm.

So we go from pbits, {p|0〉 + q|1〉 | p, q ≥ 0 and p + q = 1} to qubits, the set
of which is

{α|0〉 + β|1〉 | α, β ∈ C and |α|2 + |β|2 = 1}. (2.5)

The set of qubits, considered in terms of real parameters, looks at first like the
3-sphere S3 in R4  C2. However, the probability distributions induced by |ψ〉 and
eiθ |ψ〉 are the same so it is really S3/S1 (the Hopf fibration), i.e., the two-sphere
S2. In the quantum literature this is referred to as the Bloch sphere. Geometrically,
it would be more natural (especially since we have already seen the need to re-
normalize in probabilistic computation) to work with projective space CP1  S2 as
our space of qubits, instead of a subset of C2. So the set of qubits is better seen as
(2.5) modulo the equivalence |ψ〉 ∼ eiθ |ψ〉.

For v = (v1, . . . ,vn) ∈ Cn, write |v|2 = |v1|2 + · · ·+ |vn|2. The set of stochastic
matrices is now replaced by the unitary group

U(n) := {A ∈ Matn×n(C) | |Av| = |v| ∀|v〉 ∈ C
n}.

The unitary group satisfies the third wish on the list: For all A ∈ U(n), there
exists a matrix B ∈ U(n) satisfying B2 = A.
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Consider wish 1: it is an open question! However at least our generalized
probabilistic computation includes our old probabilistic computation because the
matrices (2.2), (2.3), (2.4) are unitary.

An indication that generalized probability may be related to quantum mechanics
is that the interference patterns observed in the famous two slit experiments is
manifested in generalized probability: one obtains a “random bit” by applying H

to |0〉: H |0〉 = 1√
2
(|0〉 + |1〉). However, if one applies a second quantum coin flip,

one loses the randomness as H 2 = Id so H 2|0〉 = |0〉, which, as pointed out in [1],
could be interpreted as a manifestation of interference.

2.2.3 Postulates of Quantum Mechanics and Relevant Linear
Algebra

Here are the standard postulates of quantummechanics and relevant definitions from
linear algebra.

P1 Associated to any isolated physical system is a Hilbert spaceH, called the state
space. The system is completely described at a given moment by a unit vector |ψ〉 ∈
H, called its state vector, which is well defined up to a phase eiθ with θ ∈ R.
Alternatively one may work in projective space PH.

Explanations A Hilbert space H is a (complete) complex vector space endowed
with a non-degenerate Hermitian inner-product, h : H × H → C, where
by definition h is linear in the first factor and conjugate linear in the second,
h(|v〉, |w〉) = h(|w〉, |v〉) for all v,w, and h(|v〉, |v〉) > 0 for all |v〉 �= 0.

The Hermitian inner-product h allows an identification ofH with H∗ by |w〉 �→
〈w| := h(·, |w〉). This identification will be used repeatedly. Write h(|v〉, |w〉) =
〈w|v〉 and |v| = √〈v|v〉 for the length of |v〉.

If H = Cn with its standard basis, where |v〉 = (v1, . . . ,vn), the standard
Hermitian inner-product on Cn is 〈w|v〉 = ∑n

j=1 wjvj . I will always assume Cn is
equipped with its standard Hermitian inner-product.

Remark 2.2.1 When studying quantum mechanics in general, one needs to allow
infinite dimensional Hilbert spaces, but in the case of quantum computing, one
restricts to finite dimensional Hilbert spaces, usually (C2)⊗N .

P2 The state of an isolated system evolves with time according to the Schrödinger
equation

ih̄
d|ψ〉
dt

= X|ψ〉

where h̄ is a constant (Planck’s constant) and X is a fixed Hermitian operator,
called the Hamiltonian of the system. (Physicists, enamored of the letter H , often
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also use it to denote the Hamiltonian.) Here, recall that the adjoint of an operator
X ∈ End(H), is the operator X† ∈ End(H) such that 〈X†v|w〉 = 〈v|Xw〉 for all
v,w ∈ H and X is Hermitian if X = X†. For a general Hilbert space, the Unitary
group is U(H) := {U ∈ End(H) | |Uv| = |v| ∀|v〉 ∈ H}.

How is generalized probability related to Schrödinger’s equation? Let U(t) ⊂
U(H) be a smooth curve with U(0) = Id. Write U ′(0) = d

dt
|t=0U(t). Consider

0 = d

dt
|t=0〈v|w〉

= d

dt
|t=0〈U(t)v|U(t)w〉

= 〈U ′(0)v|w〉 + 〈v|U ′(0)w〉.

Thus iU ′(0) is Hermitian. We are almost at Schrödinger’s equation. Let u(H) =
TIdU(H) denote the Lie algebra of U(H) so iu(H) is the space of Hermitian
endomorphisms. For X ∈ End(H), write Xk ∈ End(H) for X · · · X applied k times.
Write eX := ∑∞

k=0
1
k!X

k . If X is Hermitian, then eiX ∈ U(H). Postulate 2 implies
the system will evolve unitarily, by (assuming one starts at t = 0), |ψt 〉 = U(t)|ψ0〉,
where

U(t) = e
−itX

h̄ .

Measurements Our first two postulates dealt with isolated systems. In reality, no
system is isolated and the whole universe is modeled by one enormousHilbert space.
In practice, parts of the system are sufficiently isolated that they can be treated
as isolated systems. However, they are occasionally acted upon by the outside
world, and one needs a way to describe this outside interference. For our purposes,
the isolated systems will be the Hilbert space attached to the input in a quantum
algorithm and the outside interference will be the measurement at the end. That
is, after a sequence of unitary operations one obtains a vector |ψ〉 = ∑

zj |j 〉
(here implicitly assuming the Hilbert space is of countable dimension), and as in
generalized probability:

P3 The probability of obtaining outcome j under a measurement is |zj |2.
In Sect. 2.6, motivated again by probability, P1, P3 will be generalized to new

postulates that give rise to the same theory, but are more convenient to work with in
information theory.

A typical situation in quantum mechanics and quantum computing is that there
are two or more isolated systems, say HA,HB that are brought together (i.e.,
allowed to interact with each other) to form a larger isolated system HAB . The
larger system is called the composite system. In classical probability, the composite
space is {0, 1}NA × {0, 1}NB . In our generalized probability, the composite space is
(C2)⊗NA⊗(C2)⊗NB = (C2)⊗(NA+NB):
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P4 The state of a composite system HAB is the tensor product of the state spaces
of the component physical systemsHA,HB :HAB = HA⊗HB .

When dealing with composite systems, we will need to allow partial measure-
ments whose outcomes are of the form |I 〉⊗|φ〉 with |φ〉 arbitrary.

This tensor product structure gives rise to the notion of entanglement, which
accounts for phenomenon outside of our classical intuition, as discussed in the next
section.

Definition 2.2.2 A state |ψ〉 ∈ H1⊗ · · · ⊗Hn is called separable if it corresponds
to a rank one tensor, i.e., |ψ〉 = |v1〉⊗ · · · ⊗|vn〉 with each |vj 〉 ∈ Hj . Otherwise it
is entangled.

2.3 Entanglement Phenomena

2.3.1 Super-Dense Coding1

Physicists describe their experiments in terms of two characters, Alice and Bob. I
generally follow this convention. Let H = C2⊗C2 = HA⊗HB , and let |epr〉 =
|00〉+|11〉√

2
(called the EPR state in the physics literature after Einstein-Podolsky-

Rosen). Assume this state has been created, both Alice and Bob are aware of it,
Alice is in possession of the first qubit, and Bob the second. In particular Alice can
act on the first qubit by unitary matrices and Bob can act on the second. This all
happens before the experiment begins.

Now say Alice wants to transmit a two classical bit message to Bob, i.e., one of
the four states |00〉, |01〉, |10〉, |11〉 by transmitting qubits. We will see that she can
do so transmitting just one qubit. If she manipulates her qubit by acting on the first
C2 by a unitary transformation, |epr〉 will be manipulated. She uses the following
matrices depending on the message she wants to transmit:

to transmit act by to obtain

|00〉 Id |00〉+|11〉√
2

|01〉
(
1 0
0 −1

)
=: σz

|00〉−|11〉√
2

|10〉
(
0 1
1 0

)
=: σx

|10〉+|01〉√
2

|11〉
(
0 −1
1 0

)
=: −iσy

|01〉−|10〉√
2

1Physicists use the word “super” in the same way American teenagers use the word “like”.
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where the names σx, σy, σz are traditional in the physics literature (the Pauli
matrices). If Alice sends Bob her qubit, so he is now in possession of the modified
|epr〉 (although he does not see it), he can determine which of the four messages
she sent him by measuring the state in his possession. More precisely, first Bob
acts on C2⊗C2 by a unitary transformation that takes the orthonormal basis in the
“to obtain” column to the standard orthonormal basis (this is a composition of two
Hadamard matrices), to obtain a state vector whose probability is concentrated at
one of the four classical states. He then measures, and obtains the correct classical
state with probability one.

In summary, with preparation of an EPR state in advance, plus transmission of a
single qubit, one can transmit two classical bits of information.

2.3.2 Quantum Teleportation

Here again, Alice and Bob share half of an EPR state, Alice is in possession of
a qubit |ψ〉 = α|0〉 + β|1〉, and wants to “send” |ψ〉 to Bob. However Alice is
only allowed to transmit classical information to Bob. We will see that she can
accomplish her goal by transmitting two classical bits. Write the state of the system
as

1√
2
[α|0〉⊗(|00〉 + |11〉) + β|1〉⊗(|00〉 + |11〉)]

where Alice can operate on the first two qubits. If Alice acts on the first two qubits

by H⊗σx = 1√
2

(
1 1
1 −1

)
⊗

(
0 1
1 0

)
, she obtains

1

2
[|00〉⊗(α|0〉 + β|1〉) + |01〉⊗(α|1〉 + β|0〉) + |10〉⊗(α|0〉 − β|1〉) + |11〉⊗(α|1〉 − β|0〉)] .

Notice that Bob’s coefficient of Alice’s |00〉 is the state |ψ〉 that is to be
transmitted. Alice performs a measurement. If she has the good luck to obtain |00〉,
then she knows Bob has |ψ〉 and she can tell him classically that he is in possession
of |ψ〉. But say she obtains the state |01〉: the situation is still good, she knows Bob

is in possession of a state such that, if he acts on it with σx =
(
0 1
1 0

)
, he will obtain

the state |ψ〉, so she just needs to tell him classically to apply σx . Since they had
communicated the algorithm in the past, all Alice really needs to tell Bob in the first
case is the classical message 00 and in the second case the message 01. The cases
of 10 and 11 are similar.

In summary, a shared EPR pair plus sending two classical bits of information
allows transmission of one qubit.
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Remark 2.3.1 In the literature this phenomenon is named quantum teleportation.
Since information is transmitted at a speed slower than the speed of light, the use of
the word “teleportation”, which implies instantaneous transmission, is misleading.

2.3.3 Bell’s Game

The 1935 Einstein-Podolsky-Rosen paper [10] challenged quantum mechanics
with the following thought experiment that they believed implied instantaneous
communication across distances, in violation of principles of relativity: Alice and
Bob prepare |epr〉 = 1√

2
(|00〉+|11〉), then travel far apart. Alice measures her bit. If

she gets 0, then she can predict with certainty that Bob will get 0 in his measurement,
even if his measurement is taken a second later and they are a light year apart.

Ironically, this thought experiment has been made into an actual experiment. One
modern interpretation (see, e.g., [2]) is that there is no paradox because the system
does not transmit information faster than the speed of light, but rather they are acting
on information that has already been shared. What follows is a version from [7],
adapted from the presentation in [2].

Charlie chooses x, y ∈ {0, 1} at random and sends x to Alice and y to Bob. Based
on this information, Alice and Bob, without communicating with each other, get to
choose bits a, b and send them to Charlie. The game is such that Alice and Bob play
on a team. They win if a ⊕ b = x ∧ y, i.e., either (x, y) �= (1, 1) and a = b or
(x, y) = (1, 1) and a �= b.

2.3.3.1 Classical Version

Note that if Alice and Bob both always choose 0, they win with probability 3
4 .

Theorem 2.3.2 ([3]) Regardless of the strategy Alice and Bob use, they never win
with probability greater than 3

4 .

See, e.g., [2, Thm. 10.3] for a proof.

2.3.3.2 Quantum Version

Although there is still no communication allowed between Alice and Bob, they will
exploit a pre-shared |epr〉 to gain an advantage over the classical case. Alice and
Bob prepare |epr〉 = |00〉+|11〉√

2
in advance, and Alice takes the first qubit and Bob

the second. When Alice gets x from Charlie, if x = 1, she applies a rotation by π
8 to

her qubit, and if x = 0 she does nothing. When Bob gets y from Charlie, he applies
a rotation by −π

8 to his qubit if y = 1 and if y = 0 he does nothing. (The order
these rotations are applied does not matter because the corresponding operators on
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(C2)⊗2 commute.) Both of them measure their respective qubits and send the values
obtained to Charlie.

Theorem 2.3.3 With this strategy, Alice and Bob win with probability at least 4
5 .

The idea behind the strategy is that when (x, y) �= (1, 1), the states of the two
qubits will have an angle at most π

8 between them, but when (x, y) = (1, 1), the
angle will be π

4 . That is, when (x, y) �= (1, 1), the manipulationmakes it more likely
that Alice and Bob’s measurements produce the same outcomes, and less likely to
produce the same outcome when (x, y) = (1, 1). See [2, Thm. 10.4] for details.

2.4 Quantum Algorithms

Rather than giving a detailed description of the algorithms, I just present a few main
ideas that illustrate the differences with classical and probabilistic algorithms.

2.4.1 Grover’s Search Algorithm

The problem: given Fn : Fn
2 → F2, computable by a poly(n)-size classical circuit,

find a such that Fn(a) = 1 if such a exists.
Grover found a quantum circuit of size poly(n)2

n
2 that solves this problem with

high probability. Compare this with a brute force search, which requires a circuit
of size poly(n)2n. No classical or probabilistic algorithm is known that does better
than poly(n)2n. Note that it also gives a size poly(n)2

n
2 probabilistic solution to

the NP-complete problem SAT (it is stronger, as it not only determines existence of
a solution, but finds it).

I present the algorithm for the following simplified versionwhere one is promised
there exists exactly one solution. All essential ideas of the general case are here.

Problem Given Fn : Fn
2 → F2, computable by a poly(n)-size classical circuit, and

the information that there is exactly one vector a with Fn(a) = 1, find a.

The idea of the algorithm is to start with a vector equidistant from all possible
solutions, and then to incrementally rotate it towards a. What is strange for our
classical intuition is that one is able to rotate towards the solution without knowing
what it is, and similarly, we won’t “see” the rotation matrix either.

Work in (C2)⊗n+s where s = s(n) is the size of the classical circuit needed to
compute Fn. I suppress reference to the s “workspace bits” in what follows.

The following vector is the average of all the classical (observable) states:

|av〉 := 1

2
n
2

∑
I∈{0,1}n

|I 〉. (2.6)
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Refl(v) =v’

v

av

a a

a a

v’

Rot(v)= Refl(v’)

v

Fig. 2.1 Rotation of v to Rot(v) via two reflections

To prepare |av〉, note that H |0〉 = 1√
2
(|0〉 + |1〉), so applying H⊗n to |0 · · · 0〉

transforms it to |av〉. The cost of this is n gates (matrices).
Since |av〉 is equidistant from all possible solution vectors, 〈av|a〉 = 1

2
n
2
. We

want to rotate |av〉 towards the unknown a. Recall that cos( � (|v〉, |w〉)) = 〈v|w〉
|v||w| .

Write the angle between av and a as π
2 − θ , so sin(θ) = 1

2
n
2
.

A rotation is a product of two reflections. In order to perform the rotation Rot

that moves |av〉 towards |a〉, first reflect in the hyperplane orthogonal to |a〉, and
then in the hyperplane orthogonal to |av〉, as in Fig. 2.1, which is valid for rotating
any vector |v〉 towards |a〉.

Consider the map

|xy〉 �→ |x(y ⊕ F(x))〉 (2.7)

defined on basis vectors and extended linearly. To execute this, use the s workspace
bits that are suppressed from the notation, to effect s reversible classical gates.
Initially set y = 0 so that the image is |x0〉 for x �= a, and |x1〉 when x = a. Next

apply the quantumgate Id⊗
(
1 0
0 −1

)
which sends |x0〉 �→ |x0〉, and |x1〉 �→ −|x1〉.

Finally apply the map |xy〉 �→ |x(y ⊕ F(x))〉 again.
Thus |a0〉 �→ −|a0〉 and all other vectors |b0〉 are mapped to themselves, as

desired.
Next we need to reflect around |av〉. It is easy to reflect around a classical state,

so first perform the map H−1⊗n = H⊗n that sends |av〉 to |0 · · · 0〉, then reflect in
the hyperplane perpendicular to |0 · · ·0〉 using the Boolean function g : Fn

2 → F2
that outputs 1 if and only if its input is (0, . . . ,0), in the role of F for our previous
reflection, then apply H⊗n again so the resulting reflection is about |av〉. (Note that
both these reflections have polynomial size cost.)

The composition of these two reflections is the desired rotation Rot . The vector
Rot|av〉 is not useful as measuring it only slightly increases the probability of
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obtaining |a〉, but if one composes Rot with itself O( 1
θ
) times, one obtains a vector

much closer to |a〉. (Note that θ ∼ sin(θ) so 1
θ

∼ √
N .)

For more details, see, e.g., [2, Thm. 10.13] or [20, §6.1].

2.4.2 The Quantum Discrete Fourier Transform

Underlying the famous quantum algorithm of Shor for factoring integers and
Simon’s algorithm that led up to it, are “quantum” versions of the discrete Fourier
transform on finite abelian groups.

The DFT for Z/MZ, in vector notation, for j ∈ Z/MZ, is

|j 〉 �→ 1√
M

M−1∑
k=0

ωjk|k〉

where ω = e
2πi
M . It is a unitary change of basis such that in the new basis,

multiplication in Z/MZ is given by a diagonal matrix, and the classical FFT writes
the DFT as a product of O(log(M)) sparse matrices (each with M << M2 nonzero
entries), for a total cost of O(log(M)M) < O(M2) arithmetic operations.

Say M = 2m. The DFT can be written as a product of O(m3) = O(log(M)3)

controlled local unitary operators. Hence one can approximately construct the
output vector by a sequence of poly(m) unitary operators from our gate set with
the caveat that we won’t be able to “see” it.

Here is the quantum DFT: It will be convenient to express j in binary and view
C

M = (C2)⊗m, i.e., write

|j 〉 = |j1〉⊗ · · · ⊗|jm〉

where j = j12m−1 + j22m−2 + · · · + jm20 and ji ∈ {0, 1}. Write the DFT as

|j1〉⊗ · · · ⊗|jm〉

�→ 1√
M

M−1∑
k=0

ωjk|k〉

= 1√
M

∑
ki∈{0,1}

ωj(
∑m

l=1 kl2m−l )|k1〉⊗ · · ·⊗|km〉

= 1√
M

∑
ki∈{0,1}

m⊗
l=1

[
ωjkl2m−l |kl〉

]
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= 1√
M

∑
ki∈{0,1}

m⊗
l=1

[
ω(j122m−1−l+···+jm2m−l )kl |kl〉

]

= 1

2
m
2

(|0〉 + ωjm2−1 |1〉)⊗(|0〉 + ωjm−12−1+jm2−2 |1〉)⊗(|0〉 + ωjm−22−1+jm−12−2+jm2−3 |1〉)
(2.8)

⊗ · · ·⊗(|0〉 + ω
∑m−1

s=0 jm−s2m−(s+1) |1〉)

where for the last line if 2m − s − l > m, i.e., s + l < m, there is no contribution
with js because ω2m = 1, and I multiplied all terms by 1 = ω−2m

to have negative
exponents.

It will be notationallymore convenient to write the quantum circuit for this vector
with the order of factors reversed, so I describe a quantum circuit that produces

1√
2
(|0〉 + ω

∑m−1
s=0 jm−s2m−(s+1) |1〉)⊗ · · ·⊗ 1√

2
(|0〉 + ωjm−22−1+jm−12−2+jm2−3 |1〉)

(2.9)

⊗ 1√
2
(|0〉 + ωjm−12−1+jm2−2 |1〉)⊗ 1√

2
(|0〉 + ωjm2−1 |1〉).

Set

Rk =
(
1 0

0 ω2k

)
, (2.10)

then (2.9) is obtained as follows: first apply H to (C2)1 then a linear map 
1Rj ,
defined by |x〉⊗|y〉 �→ |x〉⊗Rj |y〉 if |x〉 �= |0〉 and to |x〉⊗|y〉 if |x〉 = |0〉, to
(C2)j⊗(C2)1 for j = 2, . . . ,m. Note that at this point only the (C2)1-term has
been altered. From now on leave the (C2)1-slot alone. Next apply H to (C2)2 then

1Rj−1 to (C2)j⊗(C2)2 for j = 3, . . . ,m. Then apply H to (C2)3 then 
1Rj−2 to
(C2)j⊗(C2)3 for j = 4, . . . ,m. Continue, until finally one just applies H to (C2)m.
Finally to obtain the DFT, reverse the orders of the factors (a classical operation).

In practice, one has to fix a quantum gate set, i.e., a finite set of unitary operators
that will be allowed in algorithms, in advance. Thus in general it will be necessary
to approximate the transformations Rk from elements of our gate set, so one only
obtains an approximation of the DFT.

2.4.3 The Hidden Subgroup Problem

Given a discrete group G with a specific representation of its elements in binary,
a function f : G → F

n
2, and a device that computes f (for unit cost), and the
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knowledge that there exists a subgroup G′ ⊂ G such that f (x) = f (y) if and only
if xy−1 ∈ G′, find G′.

For finitely generated abelian groups, it is sufficient to solve the problem for
G = Z⊕k as all finitely generated abelian groups are quotients of some Z⊕k .

Simons algorithm is for the hidden subgroup problem with G = Z
⊕m
2 , see [15,

§13.1]. The DFT2 matrix is just

H = 1√
2

(
1 −1

−1 1

)

and G′ is the subgroup generated by a ∈ Z
⊕m
2 .

Shor’s algorithm for factoring (after classical preparation) amounts to the case
G = Z and F is the function x �→ ax modN . It has generated intense
interest in quantum computation because no classical or probabilistic polynomial
time algorithm for factoring is known. For example, most “secure” electronic
communication is based on the difficulty of factoring a number into its prime
factors, so the real world impact of a quantum computer would be substantial.
See, e.g., http://www.math.tamu.edu/~jml/CNSA-Suite-and-Quantum-Computing-
FAQ.pdf. See, e.g., [2, §10.6] for an exposition of Shor’s algorithm.

2.5 Classical Information Theory

Quantum information theory is based on classical information theory, so I review the
classical theory. The discovery/invention of the bit by Tukey and its development by
Shannon [22] was one of the great scientific achievements of the twentieth century,
as it changed the way one views information, giving it an abstract formalism that is
discussed in this section. The link to quantum information is explained in Sect. 2.7.

The basic question is: given a physical channel, e.g., a telegraph wire, what is the
maximum rate of transmission of messages allowing for a small amount of error? I
begin with toy examples, leading up to Shannon’s two fundamental theorems.

2.5.1 Data Compression: Noiseless Channels

(Following [6]) A source emits symbols x from an alphabet X that we want to store
efficiently so we try to encode x in a small number of bits, to say y ∈ Y in a way
that one can decode it later to recover x (Fig. 2.2).

The symbols from X do not necessarily occur with the same frequency. Let p =
PX denote the associated probability distribution. What is the minimum possible
size for Y? Since we are dealing in bits, it will be convenient to use the logarithms
of cardinalities, so define the capacity as Cap(PX ) := min log |Y|.

http://www.math.tamu.edu/~jml/CNSA-Suite-and-Quantum-Computing-FAQ.pdf
http://www.math.tamu.edu/~jml/CNSA-Suite-and-Quantum-Computing-FAQ.pdf
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source x XY dest.
E D

Fig. 2.2 Message from source encoded into bits then decoded

Consider the case X = {a, b, c, d}where p(a) = 0.1, p(b) = 0, p(c) = 0.4 and
p(d) = 0.5. One can clearly get away with |Y| = 3, e.g., for the encoder, send a, b

to 1, c to 2 and d to 3, then for the decoder, send 1 to a, 2 to c and 3 to d . In general,
one can always throw away symbols with probability zero. On the other hand, one
cannot map two distinct symbols that do occur to the same symbol, as there would
be no way to distinguish them when decoding. Thus Cap(p) = log supp(p), where
supp(p) = #{x ∈ X | p(x) > 0}.

Now say we are willing to tolerate a small error. First rephrase what we did
probabilistically: Let penc(y|x) denote the conditional probability distribution of
the encoder E and pdec(x|y) that of the decoderD. Our requirement was for all x,

p[x = D ◦ E(x)] =
∑
y,x ′

penc(y|x)pdec(x ′|y)δx,x ′ = 1.

Now relax it to

∑
x,y,x ′

p(x)penc(y|x)pdec(x ′|y)δx,x ′ ≥ 1 − ε.

for some error ε that we are willing to tolerate. In addition to throwing out the
symbols that do not appear, we may also discard the largest set of symbols whose
total probability is smaller than ε. Call the corresponding quantity Capε(p). In this
example, if one takes ε > 0.1, one can lower storage cost, taking |Y| = 2.

Recall that a probability distribution p : X → [0, 1] must satisfy
∑

x∈X p(x) =
1. Relax this to non-normalized probability distributions, q : X → [0, 1], where∑

x∈X q(x) ≤ 1. We obtain: Capε(p) = min log supp(q), where the min is taken
over all non-normalized probability distributions q satisfying q(x) ≤ p(x) and∑

x∈X q(x) ≥ 1 − ε.
Now say we get not a single symbol, but a string of n symbols, so we seek an

encoder E : X n → Y(n), where Y(n) is a set that varies with n, and decoder
D : Y(n) → X n, and we want to minimize |Y(n)|, with a tolerance of error that
goes to zero as n goes to infinity. In practice one wants to send information through
a communication channel (e.g. telegraph wire). The channel can only send a limited
number of bits per second, and we want to maximize the amount of information we
can send per second: limε→0 limn→∞ 1

n
Capε(pn).

The string x1 · · · xn =: xn is identically and independently distributed (i.i.d), that
is each xj is drawn from the same probability distribution and the draw of xj is
independent of the draws of the other xi . Say X = {1, . . . ,d} with p(j) = pj .
The probability of any given string occurring depends only on the number of 1’s 2’s
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etc. in the string and not on their order. A string with cj j ’s occurs with probability
p

c1
1 · · ·pcd

d . (Note that c1+· · ·+cd = n.) The number of strings with this probability
is

(
n

c1, . . . ,cd

)
:= n!

c1! · · · cd !
and we need to estimate this quantity.

Stirling’s formula implies ln(n!) = n ln(n) − n + O(ln(n)). In particular, for
0 < β < 1 such that βn ∈ Z,

log

(
n

βn

)
= n[−β log(β) − (1 − β) log(1 − β)] + O(log(n)).

Let H(β) = −β log(β) − (1 − β) log(1 − β) and more generally, for p =
(p1, . . . ,pd), let

H(p) = −
d∑

i=1

pi log(pi),

the Shannon entropy of p. It plays a central role in information theory.
Define a map wt : X n → R

d by xn �→ (c1, . . . ,cd ), where cj is the number
of j ’s appearing in xn. Then the expectation is E[wt(xn)] = (np1, . . . ,npd). The
weak law of large numbers states that for any ε > 0,

lim
n→∞ p[||1

n
wt(xn) − E[wt(xn))]||1 > ε] = 0

where for f : Z → Rd , define ||f ||1 = ∑
z∈Z |f (z)|. In our case, Z = X n.

Now simply throw out all strings xn with || 1
n
(wt (xn) − E[wt(xn))]||1 > ε, and

take Y(n) of size

|Y(n)| = #{xn | ||1
n
(wt(xn) − E[wt(xn))]||1 < ε}

=
∑
xn|

|| 1n (wt (xn)−E[wt(xn))]||1<ε

(
n

wt(xn)

)
.

If ε is small, the multinomial coefficients appearing will all be very close to

(
n

np1, . . . ,npd

)
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and for what follows, one can take the crude approximation

|Y(n)| ≤ poly(n)

(
n

np1, . . . ,npd

)
(2.11)

(recall that d is fixed).
Taking logarithms, the right hand side of (2.11) becomes nH(p) + O(log(n)).

Thus

1

n
log |Y(n)| ≤ H(p) + o(1)

and limε→0 limn→∞ 1
n
Capε(pn) ≤ H(p).

Theorem 2.5.1 ([22]) limε→0 limn→∞ 1
n
Capε(pn) = H(p).

The full proof uses the law of large numbers.

2.5.2 Transmission over Noisy Channels

Say symbols x are transmitted over a channel subject to noise, and symbols y are
received so one may or may not have y = x. Intuitively, if the noise is small, with
some redundancy it should be possible to communicate accurate messages most of
the time. In a noiseless channel the maximal rate of transmission is just H(pX ),
but now we must subtract off something to account for the uncertainty that, upon
receiving y, that it was the signal sent. This something will be the conditional
entropy: Recall the conditional probability of i occurring given knowledge that
j occurs (assuming p(j) > 0): pX |Y (i|j) = pX ,Y (i,j)

pY (j)
(also recall pY (j) =∑

i pX ,Y(i, j)). Define the conditional entropy

H(pY |pX ) := −
∑
i,j

pX ,Y (i, j) logpY |X (j |i).

Note that

H(pY |pX ) = H(pX ,Y) − H(pX ) (2.12)

or equivalently H(pX ,Y) = H(pX ) + H(pY |pX ), the uncertainty of pX ,Y is the
uncertainty of pX plus the uncertainty of pY given pX . In particular H(pY ) ≥
H(pY |pX ), i.e., with extra knowledge, our uncertainty about pY cannot increase,
and decreases unless pX and pY are independent.
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2.5.2.1 Capacity of a Noisy Channel

Define the capacity of a noisy channel to be the maximum rate over all possible
probability distributions on the source:

Cap := maxqX
(
H(qX ) − H(qX |pY )

)
.

Shannon [22] proves that Cap lives up to its name: if the entropy of a discrete
channel is below Cap then there exists an encoding p of the source such that
information can be transmitted over the channel with an arbitrarily small frequency
of errors. The basic idea is the same as the noiseless case, however there is a novel
feature that now occurs frequently in complexity theory arguments—that instead
of producing an algorithm to find the efficient encoding, Shannon showed that a
random choice of encoding will work.

After presenting the proof, Shannon remarks: “An attempt to obtain a good
approximation to ideal coding by following the method of the proof is generally
impractical. . . . Probably this is no accident but is related to the difficulty of giving
an explicit construction for a good approximation to a random sequence”. To my
knowledge, this is the first time that the difficulty of “finding hay in a haystack”
(phrase due to Howard Karloff) is mentioned in print. This problem is central to
complexity: for example, Valiant’s algebraic version of P �= NP can be phrased
as the problem of finding a sequence of explicit polynomials that are difficult to
compute, while it is known that a random sequence is indeed difficult to compute.
According to A. Wigderson, the difficulty of writing down random objects was also
explicitly discussed by Erdös, in the context of random graphs, at least as early as
1947, in relation to his seminar paper [11]. This paper, along with [22] gave rise to
the now ubiquitous probabilistic method in complexity theory.

2.6 Reformulation of Quantum Mechanics

I discuss two inconveniences about our formulation of the postulates of quantum
mechanics, leading to a reformulation of the postulates in terms of density operators.

2.6.1 Partial Measurements

A measurement of a state |ψ〉 = ∑
zI |I 〉 was defined as a procedure that gives us

I = (i1, . . . ,in) ∈ {0, 1}n with probability |zI |2. But in our algorithms, this is not
what happened: we were working not in (C2)⊗n, but (C2)⊗n+m where there were m

“workspace” qubits we were not interested in measuring. So our measurement was
more like the projections onto the spaces |I 〉⊗(C2)⊗m. I now define this generalized
notion of measurement.
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To make the transition, first observe that |zI |2 = 〈ψ|I |ψ〉, where I :
(C2)⊗n → C|I 〉 is the orthogonal projection onto the line spanned by |I 〉.

Say we are only interested in the first n bits of a system of n + m bits, and
want to know the probability a measurement gives rise to some I represented by a
vector |I 〉 ∈ (C2)⊗n, but we have |ψ〉 ∈ (C2)⊗n+m. Adopt the notation |φ〉〈ψ| :=
|φ〉⊗〈ψ|. Then the probability of obtaining |I 〉 given |ψ〉 is

p(|I 〉 | |ψ〉) =
∑

J∈{0,1}m
p(|ψ〉, |IJ 〉)

=
∑
J

〈ψ|IJ 〉〈IJ |ψ〉

= 〈ψ|(|I 〉〈I |⊗ Id(C2)⊗m)|ψ〉
= 〈ψ|M|ψ〉

where M : (C2)⊗n+m → |I 〉⊗(C2)⊗m =: M is the orthogonal projection
operator. With this definition, one can allow M ⊂ H to be any linear subspace,
which will simplify our measurements. (Earlier, if we wanted to measure the
probability of a non-basis state, we had to change bases before measuring.) Write
pψ(M) := 〈ψ|M|ψ〉 for the probability of measuring |ψ〉 in state M.

One may think of projection operators as representing outside interference of a
quantum system, like adding a filter to beams being sent that destroy states not in
M. Recall that in classical probability, one has the identity:

p(M1 ∪ M2) = p(M1) + p(M2) − p(M1 ∩ M2). (2.13)

The quantum analog is false in general: Let H = C2, M1 = C|0〉 and M2 =
C(|0〉 + |1〉) Let |ψ〉 = α|0〉 + β|1〉 with |α|2 + |β|2 = 1. Then (and in general)
pψ(span{M1,M2}) �= pψ(M1) + pψ(M2) − pψ(M1 ∩ M2).

However, one can recover (2.13) if the projection operators commute:

Proposition 2.6.1 If M1M2 = M2M1 then for all ψ , pψ(span{M1,

M2}) = pψ(M1) + pψ(M2) − pψ(M1 ∩ M2).

2.6.2 Mixing Classical and Quantum Probability

A typical situation in probability is as follows: you want a cookie, but can’t make up
your mind which kind, so you decide to take one at random from the cookie jar to
eat. However when you open the cupboard, you find there are two different cookie
jars H and T , each with a different distribution of cookies, say PH and PT . You
decide to flip a coin to decide which jar and say your coin is biased with probability
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p for heads (choice H ). The resulting probability distribution is

pPH + (1 − p)PT .

Let’s encode this scenario with vectors. Classically, if vectors corresponding to
PH ,PT are respectively vH , vT , the new vector is pvH +(1−p)vT . The probability
of drawing a chocolate chip (CC) cookie is pPH (CC) + (1 − p)PT (CC) =
pvH,CC + (1 − p)vT ,CC .

But what should one take in generalized probability (where one uses the �2 norm
instead of the �1 norm)? Given |ψA〉 = ∑

zI |I 〉, |ψB〉 = ∑
wJ |J 〉, we want to

make a measurement that gives us p|zCC |2+(1−p)|wCC|2. Unfortunately |pzCC +
(1 − p)wCC |2 �= p|zCC |2 + (1 − p)|wCC |2 in general. To fix this problem one
enlarges the notion of state and further modifies the definition of measurement.

Our problem comes from having a mixture of �1 and �2 norms. The fix will be
to rewrite |ψ〉 in a way that the �2 norm becomes an �1 norm. That is, construct an
object that naturally contains the squares of the norms of the coefficients of |ψA〉.
Consider the endomorphism |ψA〉〈ψA| = ∑

I,J zI zJ |I 〉〈J |. It is rank one, and in
the standard basis its diagonal entries are the quantities we want.

To measure them, let J denote the projection onto the J -th coordinate. Then

trace(J |ψA〉〈ψA|) = |zA,J |2

is the desired quantity.
Now back to our cookie jars, set

ρ = p|ψA〉〈ψA| + (1 − p)|ψB 〉〈ψB |

and observe that

trace(J ρ) = p|zA,J |2 + (1 − p)|zB,J |2

as desired.
Given a finite set of states {|ψ1〉, . . . ,|ψs〉}, with p(|ψi〉) = pi , and

∑
i pi = 1,

set ρ = ∑
k pk |ψk〉〈ψk | ∈ End(H). Note that ρ has the properties

(1) ρ = ρ†, i.e., ρ is Hermitian,
(2) ∀|η〉, 〈η|ρ|η〉 ≥ 0, i.e., ρ is positive,
(3) trace(ρ) = 1.

This motivates the following definition:

Definition 2.6.2 An operator ρ ∈ End(H) satisfying 1,2,3 above is called a density
operator.

Note that a density operator that is diagonal in the standard basis of Cd

corresponds to a probability distribution on {1, . . . ,d}, so the definition includes
classical probability as well as our old notion of state (which are the rank one
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density operators). The set of density operators is invariant under the induced action
of U(H) on End(H).

Different scenarios can lead to the same density operator. However, two states
with the same density operator are physically indistinguishable.

2.6.3 Reformulation of the Postulates of Quantum Mechanics

Postulate 1 Associated to any isolated physical system is a Hilbert space H, call
the state space. The system is described by its density operator ρ ∈ End(H).

Postulate 2 The evolution of an isolated system is described by the action of unitary
operators on ρ.

Postulate 3 Measurements correspond to a collection of projection operators
Mj

such that
∑

k Mk
= IdH. The probability that ρ is in measured in state

Mj is trace(Mj
ρ). Such measurements are called “Positive Operator-Valued

Measurements”, or POVM, in the literature.

Sometimes it is convenient to allow more general measurements than POVM:

Postulate 3′ Projective measurements correspond to a collection of Hermitian
operators Xj ∈ EndH such that

∑
k Xk = IdH. The probability that ρ is in

measured in state Xj is trace(Xjρ).

Postulate 4 regarding composite systems is unchanged.

Remark 2.6.3 Note that for A ∈ EndH = H∗⊗H, trace(A) is the image of
A under the contraction map H∗⊗H → C, 〈v|⊗|w〉 �→ 〈v|w〉. For A ∈
End(H1⊗H2) = (H∗

1⊗H∗
2)⊗(H1⊗H2), define the partial trace traceH1(A) to be

the image of A under the contraction H∗
1⊗H∗

2⊗H1⊗H2 → H∗
2⊗H2 given by

〈φ|⊗〈ψ|⊗|v〉⊗|w〉 �→ 〈φ|v〉〈ψ|⊗|w〉 = 〈φ|v〉|w〉〈ψ|.

2.6.4 Expectation and the Uncertainty Principle

Let A ∈ End(H) be a Hermitian operator with eigenvalues λ1, . . . ,λk and
eigenspacesMj . If our system is in state ρ, one can considerA as a random variable
that takes the value λj with probability trace(Mj

ρ).
The expectation of a random variable X : X → R is E[X] := ∑

j∈X X(j)p(j).
If a system is in state ρ, the expectation of a Hermitian operator A ∈ End(H)

is trace(Aρ) because E[A] = ∑
λj

λj trace(Mj
ρ) = trace((

∑
λj

λjMj
)ρ) =

trace(Aρ).
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One way mathematicians describe the famous Heisenberg uncertainty principle
is that it is impossible to localize both a function and its Fourier transform. Another
interpretation comes from probability:

First note that given a random variable, or Hermitian operatorX, one can replace
it with an operator of mean zero X̂ := X − E(Xρ) Id. For notational convenience, I
state the uncertainty principle for such shifted operators.

The variance var(X) of a random variable is var(X) = E[X − E(X)]2. The
standard deviation σ(X) = √

var(X) of X is a measure of the failure of the
corresponding probability distribution to be concentrated at a point, i.e., failure of
the induced probability distribution to have a certain outcome.

Proposition 2.6.4 Let X,Y be Hermitian operators of mean zero, corresponding
to observables on a system in state ρ, let Then

σ(X)σ(Y ) ≥ | trace([X,Y ]ρ)|
2

.

The uncertainty principle says that the failure of two Hermitian operators to
commute lower bounds the product of their uncertainties. In particular, if they do
not commute, neither can give rise to a classical (certain) measurement. It is a
consequence of the Cauchy-Schwarz inequality.

2.6.5 Pure and Mixed States

Definition 2.6.5 Let ρ ∈ End(H) be a density operator. If rank(ρ) = 1, i.e. ρ =
|ξ〉〈ξ |, ρ is called a pure state, and otherwise it is called a mixed state.

The partial trace of a pure state can be a mixed state. For example, if ρ = |ψ〉〈ψ|
with ψ = 1√

2
(|00〉 + |11〉) ∈ H1⊗H2, then traceH2(ρ) = 1

2 (|0〉〈0| + |1〉〈1|).
The following proposition shows that one could avoid density operators alto-

gether by working on a larger space:

Proposition 2.6.6 An arbitrary mixed state ρ ∈ End(H) can be represented as the
partial trace traceH′ |ψ〉〈ψ| of a pure state in End(H⊗H′) for some Hilbert space
H′. In fact, one can always take H′ = H∗.

Given a density operator ρ ∈ End(H), there is a well defined operator
√

ρ ∈
End(H) whose eigenvectors are the same as for ρ, and whose eigenvalues are the
positive square roots of the eigenvalues of ρ. To prove the proposition, given ρ ∈
H⊗H∗, consider |√ρ〉〈√ρ| ∈ End(H⊗H∗). Then ρ = traceH∗(|√ρ〉〈√ρ|). A
pure state whose partial trace is ρ is called a purification of ρ.
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2.7 Communication Across a Quantum Channel

Now instead of having a source X×n our “source” is H⊗n, where one can think of
H⊗n = H⊗n

A , and Alice will “transmit” a state to Bob, and instead of a probability
distribution p one has a density operator ρ.

What is a quantum channel? It should be a linear map sending ρ ∈ End(HA) to
some �(ρ) ∈ End(HB).

First consider the special case HA = HB . One should allow coupling with an
auxiliary system, i.e.,

ρ �→ ρ⊗σ ∈ End(HA⊗HC). (2.14)

One should also allow the state ρ⊗σ to evolve in End(HA⊗HC), i.e., be acted upon
by an arbitrary U ∈ U(HA⊗HC). Finally one should allow measurements, i.e.,
tracing out theHC part. In summary, a quantum channelHA → HA is a map of the
form ρ �→ traceHC

(U(ρ⊗σ)U−1). More generally to go fromHA toHB , one needs
to allow isometries as well. Such maps are the completely positive trace preserving
maps (CPTP), where a map 
 is completely positive if 
⊗ IdHE

is positive for all
HE .

We seek an encoder E and decoder D and a compression spaceH0n:

H⊗n E−→ H0n = (C2)⊗nR D−→ H⊗n

with R as small as possible such that E ◦ D(ρ⊗n) converges to ρ⊗n as n → ∞. To
determine R, we need a quantum version of entropy.

Definition 2.7.1 The von Neumann entropy of a density operator ρ is H(ρ) =
− trace(ρ log(ρ)).

Here log(ρ) is defined as follows: write ρ in terms of its eigenvectors and
eigenvalues, ρ = ∑

j λj |ψj 〉〈ψj |, then log(ρ) = ∑
j log(λj )|ψj 〉〈ψj |.

If ρ = ∑
j λj |ψj 〉〈ψj |, then H(ρ) = − ∑

j λj log(λj ) so if ρ is classical (i.e.,
diagonal), one obtains the Shannon entropy.

Proposition 2.7.2 The von Neumann entropy has the following properties:

(1) H(ρ) ≥ 0 with equality if and only if ρ is pure.
(2) Let dimH = d . Then H(ρ) ≤ log(d) with equality if and only if ρ = 1

d
IdH.

(3) If ρ = |ψ〉〈ψ| ∈ End(HA⊗HB), then H(ρA) = H(ρB), where ρA =
traceHB

(ρ) ∈ End(HA).

Notice that in particular von Neumann entropy is maximized for |epr〉. In
Sects. 2.8 and 2.9 I discuss entanglement as a resource and von Neumann entropy
as a measurement of that resource.

Theorem 2.7.3 ([21], The Quantum Noiseless Channel Theorem) Let (H, ρ)

be an i.i.d. quantum source. If R > H(ρ), then there exists a reliable compression
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scheme of rate R. That is, there exists a compression space H0n, of dimension 2nR ,
and encoder E : H⊗n → H0n and a decoder D : H0n → H⊗n such that D ◦
E(ρ⊗n) converges to ρ⊗n as n → ∞. If R < H(ρ), then any compression scheme
is unreliable.

2.8 More on von Neumann Entropy and Its Variants

First for the classical case, define the relative entropy H(p||q) := − ∑
pi log

qi

pi
=

−H(p) − ∑
i pi log(qi). It is zero when p = q and is otherwise positive. Define

the relative von Neumann entropyH(ρ||σ) := trace(ρ log(ρ))− trace(ρ log(σ )). It
shares the positivity property of its classical cousin: [16] H(ρ||σ) ≥ 0 with equality
if and only if ρ = σ .

Proposition 2.8.1 (von Neumann Entropy Is Non-decreasing Under Projective
Measurements) Let i be a complete set of orthogonal projectors, set ρ′ =∑

i iρi . Then H(ρ′) ≥ H(ρ) with equality if and only if ρ′ = ρ.

If we think of the entropy of ρ as a measurement of entanglement, i.e., a
measurement of ρ as a communication resource, we see this resource decreases
after a measurement.

Proof First note that 0 ≤ H(ρ||ρ′) = −H(ρ) − trace(ρ log(ρ′)). Now

trace(ρ log(ρ′)) = trace

(∑
i

iρ log(ρ′)
)

= trace

(∑
i

iρ log(ρ′)i

)

because 2
i = i and trace(AB) = trace(BA). Now i commutes with ρ′ and

log(ρ′) because ij = 0 if i �= j , so

trace(ρ log(ρ′)) = trace(
∑

i

iρi log(ρ′))

= trace(ρ′ log(ρ′))

= −H(ρ′)

Putting it all together, we obtain the result. ��
Here and in what follows ρAB is a density operator on HA⊗HB and ρA =

traceHB
(ρAB), ρB = traceHA

(ρAB) are respectively the induced density operators
onHA,HB .
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von Neumann entropy is sub-additive:H(ρAB) ≤ H(ρA)+H(ρB) with equality
if and only if ρAB = ρA⊗ρB . It also satisfies a triangle inequality: H(ρAB) ≥
|H(ρA) − H(ρB)|.

Recall the conditional Shannon entropy is defined to be H(pX |pY ) =
− ∑

i,j pX×Y (i, j) logpX |Y (i|j), the entropy of pX conditioned on y = j ,
averaged over Y . It is not clear how to “condition” one density matrix on
another, so one needs a different definition. Recall that Shannon entropy satisfies
H(pX |pY ) = H(pX×Y) − H(pY), and the right hand side of this expression does
make sense for density operators, so define, for ρAB a density operator onHA⊗HB ,

H(ρA|ρB) := H(ρAB) − H(ρB). (2.15)

Note that H(ρA|ρB) is a function of ρAB , as ρB = traceHA
ρAB .

WARNING: it is possible that the conditional von Neumann entropy is negative
as it is possible that H(ρB) > H(ρAB). Consider the following example: Let |ψ〉 =
1√
2
(|00〉 + |11〉) ∈ HA⊗HB . Then ρA = 1

2 IdHA
= 1

2 (|0〉〈0| + |1〉〈1|) so H(ρA) =
1, but H(|ψ〉〈ψ|) = 0 because |ψ〉〈ψ| is pure.

However, vestiges of positivity are true in the quantum case:

Theorem 2.8.2 (Strong Sub-additivity) Let ρABC be a density operator on
HA⊗HB⊗HC . Then

H(ρC |ρA) + H(ρC |ρB) ≥ 0 (2.16)

and

H(ρABC) − [H(ρAB) + H(ρBC)] + H(ρB) ≥ 0. (2.17)

Strong sub-additivity has many consequences: entropy is non-increasing under
operations such as conditioning, discarding a subsystem does not increase mutual
information, and quantum operations (CPTP maps) do not increase mutual informa-
tion, see, e.g. [20, §11.4.2] for a discussion.

2.9 Entanglement and LOCC

We have seen several ways that entanglement is a resource already for the space
HA⊗HB = C

2⊗C
2: given a shared |epr〉 = 1√

2
(|00〉+|11〉), one can transport two

bits of classical information using only one qubit (“super dense coding”) and one
can also transmit one qubit of quantum information from Alice to Bob by sending
two classical bits (“teleportation” ).
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Given a quantum state ρ ∈ End(HA⊗HB), one would like to know how
“entangled” it is, e.g., what quantum states could it be used to transport with the aid
of classical communication (as in teleportation)? In this section I discuss measures
of “quality of entanglement”.

2.9.1 LOCC

Assume several different laboratories can communicate classically, have prepared
some shared states in advance, and can perform unitary and projection operations
on their parts of the states, as was the situation for quantum teleportation. More
precisely, make the following assumptions:

• H = H1⊗ · · · ⊗Hn, and theHj share an entangled state |ψ〉. Often one will just
haveH = HA⊗HB and |ψ〉 = α|00〉 + β|11〉.

• The laboratories can communicate classically.
• Each laboratory is allowed to perform unitary and measurement operations on

their own spaces.

The above assumptions are called LOCC for “local operations and classical
communication”. It generalizes the set-up for teleportation Sect. 2.3.2.

Restrict to the case H = HA⊗HB , each of dimension two. I will use |epr〉 as a
benchmark for measuring the quality of entanglement.

We will not be concerned with a single state |ψ〉, but the tensor product of many
copies of it, |ψ〉⊗n ∈ (HA⊗HB)⊗n. “How much” entanglement does |ψ〉⊗n have?
An answer is given in Sect. 2.9.4.

To gain insight as to which states can be produced via LOCC from a given
density operator, return to the classical case. For the classical cousin of LOCC,
by considering diagonal density operators, we see we should allow alteration of a
probability distribution by permuting the pj (permutation matrices are unitary), and
more generally averaging our probability measure under some probability measure
on elements ofSd (the classical cousin of a projectivemeasurement), i.e., we should
allow

p �→
∑

σ∈Sd

qσμ(σ)p (2.18)

where μ : Sd → GLd is map sending a permutation to a d ×d permutation matrix,
and q is a probability distribution onSd .

This is because the unitary and projection local operators allowed amount to

ρ �→
k∑

j=1

pjUjρUj
−1
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where the Uj are unitary and p is a probability distribution on {1, . . . ,k} for some
finite k.

2.9.2 A Partial Order on Probability Distributions Compatible
with Entropy

Shannon entropy is non-increasing under an action of the form (2.18). The partial
order on probability distributions determined by (2.18) is the dominance order:

Definition 2.9.1 Let x, y ∈ Rd , write x↓ for x re-ordered such that x1 ≥ x2 ≥
· · · ≥ xd . Write x ≺ y if for all k ≤ d ,

∑k
j=1 x

↓
j ≤ ∑k

j=1 y
↓
j .

Note that if p is a probability distribution concentrated at a point, then q ≺ p for
all probability distributions q , and if p is such that pj = 1

d
for all j , then p ≺ q for

all q , and more generally the dominance order is compatible with the entropy in the
sense that p ≺ q implies H(p) ≥ H(q).

Recall that a matrix D ∈ Matd×d is doubly stochastic if Dij ≥ 0 and all
column and row sums equal one. Let DSd ⊂ Matd×d denote the set of doubly
stochastic matrices. Birkhoff [5] showed DSd is the convex hull of μ(Sd ), and
Hardy-Littlewood-Polya [13] showed {x | x ≺ y} = DSd · y.

2.9.3 A Reduction Theorem

The study of LOCC is potentially unwieldy because there can be numerous rounds
of local operations and classical communication, making it hard to model. The
following result eliminates this problem:

Proposition 2.9.2 If |ψ〉 ∈ HA⊗HB can be transformed into |φ〉 by LOCC, then it
can be transformed to |φ〉 by the following sequence of operations:

(1) Alice performs a single measurement with operators Mj .
(2) She sends the result of her measurement (some j ) to Bob classically.
(3) Bob performs a unitary operation on his system.

The key point is that for any vector spaces V,W , an element f ∈ V ⊗W , may be
considered as a linear map W∗ → V . In our case,H∗

B  HB so |ψ〉 induces a linear
map HB → HA which gives us the mechanism to transfer Bob’s measurements to
Alice.

For X ∈ HA⊗HB , let singvals(X) denote the set of its singular values Now I
can state the main theorem on LOCC:

Theorem 2.9.3 ([19]) For states |ψ〉, |φ〉 ∈ HA⊗HB , |ψ〉 ↝ |φ〉 by LOCC if and
only if singvals(|ψ〉) ≺ singvals(|φ〉).
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2.9.4 Entanglement Distillation (Concentration) and Dilution

To compare the entanglement resources of two states |φ〉 and |ψ〉, consider |φ〉⊗m

for large m with the goal of determining the largest n = n(m) such that |φ〉⊗m may
be degenerated to |ψ〉⊗n via LOCC. Due to the approximate and probabilistic nature
of quantum computing, relax this to degenerating |φ〉⊗m to a state that is close to
|ψ〉⊗n.

There is a subtlety for this question worth pointing out. Teleportation was defined
in such a way that Alice did not need to know the state she was teleporting,
but for distillation and dilution, she will need to know that its right singular
vectors are standard basis vectors. More precisely, if she is in possession of
|ψ〉 = √

p1|v1〉⊗|1〉 + √
p2|v2〉⊗|2〉 , she can teleport the second half of it to

Bob if they share |epr〉 ∈ HA⊗HB . More generally, if she is in possession of
|ψ〉 = ∑d

j=1
√

pj |vj 〉⊗|j 〉 ∈ HA′⊗HA′′ , she can teleport it to Bob if they share
enough EPR states. In most textbooks, Alice is assumed to possess states whose
singular vectors are |jj〉’s and I will follow that convention here. Similarly, if
|ψ〉 = ∑d

j=1
√

pj |jj〉 ∈ HA⊗HB , I discuss how many shared EPR states they
can construct from a shared |ψ〉⊗m.

Define the entanglement cost EC(ψ) to be infm
n(m)
m

where n(m) copies of ψ

can be constructed from |epr〉⊗m by LOCC with error going to zero as m → ∞.
Similarly, define the entanglement value, or distillable entanglement EV (ψ) to be
supm

n(m)
m

where n(m) copies of |epr〉 can be constructed with diminishing error
from |ψ〉⊗m by LOCC. One has EV (ψ) = EC(ψ) = H(|ψ〉〈ψ|).
Remark 2.9.4 In classical computation one can reproduce information, but this
cannot be done with quantum information in general. This is because the map
|ψ〉 �→ |ψ〉⊗|ψ〉, called the Veronese map in algebraic geometry, is not a linear
map. This observation is called the no cloning theorem in the quantum literature.
However, one can define a linear map, e.g., C2 → C2⊗C2 that duplicates basis
vectors, i.e., |0〉 �→ |0〉⊗|0〉 and |1〉 �→ |1〉⊗|1〉. But then of course α|0〉 + β|1〉 �→
α|0〉⊗|0〉 + β|1〉⊗|1〉 �= (a|0〉 + β|1〉)⊗2.

For mixed states ρ on HA⊗HB , one can still define EC(ρ) and EV (ρ),
but there exist examples where they differ, so there is not a canonical measure
of entanglement. A wish list of what one might want from an entanglement
measure E:

• Non-increasing under LOCC.
• If ρ is a product state, i.e., ρ = |φA〉〈φA|⊗|ψB〉〈ψB |, then E(ρ) = 0.

The two conditions together imply any state constructible from a product state
by LOCC should also have zero entanglement. Hence the following definition:

Definition 2.9.5 A density operator ρ ∈ End(H1⊗ · · · ⊗Hn) is separable if ρ =∑
i piρi,1⊗ · · · ⊗ρi,n, where ρi,α ∈ End(Hα) are density operators, pi ≥ 0, and∑
i pi = n. If ρ is not separable, ρ is entangled.
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Definition 2.9.6 An entanglement monotone E is a function on density operators
onHA⊗HB that is non-increasing under LOCC.

An example of an entanglement monotone different from EV ,EC useful for
general density operators is the squashed entanglement [9]

Esq(ρAB) := infC{1
2
[H(ρA | ρC) + H(ρB | ρC) − H(ρAB | ρC)] | ρAB = traceHC

(ρABC)}.

For bipartite states, all entanglement measures are compatible with the order of
states from most to least entangled. This breaks down already for tripartite states.

Remark 2.9.7 An entanglement measure appealing to geometers is SLOCC
(stochastic local operations and classical communication) defined originally in
[4], which asks if |ψ〉 ∈ H1⊗ · · · ⊗Hd is in the same SL(H1)×· · ·×SL(Hd ) orbit
as |φ〉 ∈ H1⊗ · · · ⊗Hd . If one relaxes this to orbit closure, then it amounts to being
able to convert |ψ〉 to |φ〉 with positive probability. While appealing, and while
there is literature on SLOCC, given the probabilistic nature of quantum computing,
its use appears to be limited to very special cases, where the orbit structure is
understood (e.g., d ≤ 4, dimHj = 2).

2.10 Tensor Network States

Assuming interactions between particles should be short-ranged enough (which is
satisfied in most physically relevant set-ups), if we have an arrangement of electrons,
say on a circle, as in Fig. 2.3.

It is highly improbable that the electrons will share entanglement with any but
their nearest neighbors. This is fortuitous, because if one is dealing with thousands
of electrons and would like to describe their joint state, a priori one would have to
work with a vector space of dimension 2n, with n in the thousands, which is not

Fig. 2.3 Electrons arranged
on a circle
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feasible. The practical solution to this problem is to define a subset of (C2)⊗n of
reasonable dimension (e.g. O(n)) consisting of the probable states.

For another example, say the isolated system consists of electrons arranged along
a line as below.

...

and we only want to allow electrons to be entangled with their nearest neighbors.
This leads to the notion of Matrix Product States (MPS): draw a graph reflecting
this geometry, with a vertex for each electron. To each vertex, attach edges going
from the electron’s vertex to those of its nearest neighbors, and add an additional
edge not attached to anything else (these will be called physical edges). If our space
is H1⊗ · · · ⊗Hn, then, assuming vertex j has two neighbors, attach two auxiliary
vector spaces, Ej−1, E

∗
j , and a tensor Tj ∈ Hj⊗Ej−1⊗E∗

j . If we are on a line,
to vertex one, we just attach T1 ∈ H1⊗E∗

1 , and similarly, to vertex n we attach
Tn ∈ Hn⊗En−1. Now consider the tensor product of all the tensors

T1⊗ · · · ⊗Tn ∈ (H1⊗E∗
1 )⊗(H2⊗E1⊗E∗

2 )⊗ · · · ⊗(Hn−1⊗En−2⊗E∗
n−1)⊗(Hn⊗En−1)

Assume each Ej has dimension k. We can contract these to obtain a tensor T ∈
H1⊗ · · · ⊗Hn. If k = 1, we just obtain the product states. As we increase k,
we obtain a steadily larger subset of H1⊗ · · · ⊗Hn, that fills the entire space for
sufficiently large (exponential size) k. The claim is that the tensors obtainable in
this fashion (for some k determined by the physical setup) are exactly those locally
entangled states that we seek. (The first and last tensors in this set-up may be
interpreted as boundary values, related to interaction with the outside world.)

...v1 2 3 4 n
v v v vn−1v

E E E En−1321

For the circle, the only difference in the construction is to make the construction
periodic, so T1 ∈ H1⊗En⊗E∗

1 and Tn ∈ Hn⊗En−1⊗E∗
n . Such states are called

Matrix product states or MPS in the physics literature.
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Sometimes for applications (e.g. translation invariant systems on the
circle) one requires the same tensor be placed at each vertex. If the tensor
is

∑
i,j,α Ti,j,α〈i|⊗|j 〉⊗vα , the resulting tensor is

∑
Ti1,i2,α1Ti2,i3,α2 · · · Tin,i1,αnvα1

⊗ · · · ⊗vαn .
For a second example, consider electrons arranged in a rectangular array (or on

a grid on a torus), where each vertex is allowed to interact with its four nearest
neighbors. Such states are called projected entangled pair states or PEPS in the
physics literature.

Assume we place the same tensor at each vertex. If our grid is n×n and periodic,
we obtain a map (Ck)⊗4⊗Cd → (Cd )⊗n2 .

Definition 2.10.1 Let � be a directed graph with vertices vα and two kinds of
edges: “physical” edges ei , that are attached to a single vertex, and “auxiliary” (or
entanglement) edges es between two vertices. Associate to each physical edge a
vector space Vi (in the quantum case, Vi = Hi is a Hilbert space), and to each
auxiliary edge a vector space Es , of dimension es . Let e = (e1, . . . ,ef ) denote the
vector of these dimensions. A tensor network state associated to (�, {Vi}, e) is a
tensor T ∈ V1⊗ · · · ⊗Vn obtained as follows: To each vertex vα , associate a tensor

Tα ∈ ⊗i∈αVi⊗s∈in(α)E
∗
s ⊗t∈out (α)Et .

Here in(α) are the edges going into vertex α and out (α) are the edges going
out of the vertex. The tensor network state associated to this configuration is
T := contr(T1⊗ · · · ⊗Tg) ∈ V1⊗ · · · ⊗Vn. Let T NS(�, V1⊗ · · · ⊗Vn, e) ⊂
V1⊗ · · · ⊗Vn denote the set of tensor network states.

Other graphs that occur are trees, which also appear in the numerical analysis
literature, see [12].
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Example 2.10.2 Let � be:

v

e
e

v

e

v

1

2

3

1

2

3

Then

T NS(�, V1⊗V2⊗V3, e) = T NS(�, (E∗
1⊗E2)⊗(E∗

2⊗E3)⊗(E∗
3⊗E1), e)

= End(V1) × End(V2) × End(V3) · M〈e1,e2,e3〉.

Here M〈e1,e2,e3〉 is the matrix multiplication tensor, for A ∈ Mate1×e2 , B ∈
Mate2×e3 , C ∈ Mate3×e1 , (A,B,C) �→ trace(ABC). Let e1, . . . ,ee1 be a basis
of E1, f1, . . . ,fe2 be a basis of E2, and g1, . . . ,ge3 be a basis of E3.

There are many open questions about tensor network states: only in very few
cases is there a satisfactory description of the states producible from a given graph
and parameters. Regarding algebraic geometry, one can ask for a description of the
ideal of the Zariski closure of the set of states producible from a given graph and
parameters. Such information would be extremely useful for applications.

2.11 Representation Theory in Quantum Information
Theory

Say we have a state ρ ∈ HA⊗HB or in HA1⊗ · · · ⊗HAd create-able by a device
or experiment and we perform the experiment numerous times to get a state ρ⊗n ∈
H⊗n

A ⊗H⊗n
B . What is the “value” of such states for information theory? What are

measurements of these states likely to produce? It turns out (partial) answers to these
questions can be gained by exploiting representation theory, see Theorem 2.11.5. I
review the relevant representation theory and then apply it to describe the solution
to the quantummarginal problem, which discusses which pairs of states onHA,HB

may arise as partial traces of some ρAB ∈ End(HA⊗HB).
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2.11.1 Review of Relevant Representation Theory

(Isomorphism classes of) irreducible representations of the permutation group Sd

are indexed by partitions of d , write [π] for the Sd -module corresponding to the
partition π . The irreducible polynomial representations of GL(V ) are indexed
by partitions π = (p1, . . . ,p�(π)) with �(π) ≤ dimV . Write SπV for the
corresponding GL(V )-module.

Theorem 2.11.1 (Schur-Weyl Duality) As a GL(V ) × Sd -module,

V ⊗d =
⊕
|π |=d

SπV ⊗[π].

Let Pπ : V ⊗d → SπV ⊗[π] denote theGL(V )×Sd -module projection operator.
One is often interested in decompositions of a module under the action of a

subgroup. For example Sd(V ⊗W) is an irreducible GL(V ⊗W)-module, but as a
GL(V ) × GL(W)-module it has the decomposition, called the Cauchy formula,

Sd(V ⊗W) = ⊕|π |=dSπV ⊗SπW. (2.19)

We will be particularly interested in the decomposition of Sd(U⊗V ⊗W) as a
GL(U)×GL(V )×GL(W)-module. An explicit formula for this decomposition is
not known. Write

Sd(U⊗V ⊗W) =
⊕

|π |,|μ|,|ν|=d

(SπU⊗SμV ⊗SνW)⊕kπ,μ,ν .

The numbers kπ,ν,μ that record the multiplicities are called Kronecker coefficients.
They have several additional descriptions. For example, Sπ (V ⊗W) =⊕

|μ|,|ν|=d (SμV ⊗SνW)⊕kπ,μ,ν , and kπ,μ,ν = dim([π]⊗[μ]⊗[μ])Sd =
mult([d], [π]⊗[μ]⊗[ν]) = mult([π], [μ]⊗[ν]).

2.11.2 Quantum Marginals and Projections onto Isotypic
Subspaces of H⊗d

In this section I address the question: what are compatibility conditions on density
operators ρ on HA⊗HB , ρ′ on HA and ρ′′ on HB such that ρ′ = traceHB

(ρ),
ρ′′ = traceHA

(ρ)? As you might expect by now, compatibility will depend only on
the spectra of the operators.

Above I discussed representations of the general linear group GL(V ) where V

is a complex vector space. In quantum theory, one is interested in representations
on the unitary group U(H) on a Hilbert space H. The unitary group is a real Lie
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group, not a complex Lie group, because complex conjugation is not a complex
linear map. It is a special case of a general fact about representations of a maximal
compact subgroups of complex Lie groups have the same representation theory as
the original group, so in particular the decomposition of H⊗d as a U(H)-module
coincides with its decomposition as a GL(H)-module.

For a partition π = (p1, . . . ,pd) of d , introduce the notation π = (
p1
d

, . . . ,
pd

d
)

which is a probability distribution on {1, . . . ,d}.
Theorem 2.11.2 ([8]) Let ρAB be a density operator on HA⊗HB . Then there
exists a sequence (πj , μj , νj ) of triples of partitions such that kπj ,μj ,νj �= 0 for
all j and

lim
j→∞ πj = spec(ρAB)

lim
j→∞ μj = spec(ρA)

lim
j→∞ νj = spec(ρB).

Theorem 2.11.3 ([17]) Let ρAB be a density operator on HA⊗HB such that
spec(ρAB), spec(ρA) and spec(ρB) are all rational vectors. Then there exists an
integer M > 0 such that

kM spec(ρA),M spec(ρB),M spec(ρC) �= 0.

Theorem 2.11.4 ([17]) Let π,μ, ν be partitions of d with kπ,μ,ν �= 0 and
satisfying �(π) ≤ mn, �(μ) ≤ m, and �(ν) ≤ n. Then there exists a density
operator ρAB on Cn⊗Cm = HA⊗HB with spec(ρAB) = π , spec(ρA) = μ, and
spec(ρB) = ν.

Klyatchko’s proofs are via co-adjoint orbits and vector bundles on flag varieties,
while the proof of Christandl-Mitchison is information-theoretic in flavor.

Recall the relative entropy H(p||q) = − ∑
i pi log

qi

pi
, which may be thought of

as measuring how close p, q are because it is non-negative, and zero if and only if
p = q . A key step in the Christandl-Mitchison proof is the following theorem:

Theorem 2.11.5 ([14]) Let ρ ∈ End(H) be a density operator, where dimH = n.
Let |π | = d and let Pπ : H⊗d → SπH⊗[π] be the projection operator. Then

trace(Pπρ⊗d) ≤ (d + 1)(
n
2)e−dH(π|| spec(ρ)).

A key step of the proof is that the projection of eI to SπV ⊗[π] is nonzero if and
only if wt(eI ) ≺ π .

Let Specm,n,mn denote the set of admissible triples (spec(ρA), spec(ρB),

spec(ρAB)) and KRONm,n,mn the triples (μ, ν, π) of normalized partitions
(μ, ν, π) with �(μ) ≤ m, �(ν) ≤ n, �(π) ≤ mn and kπ,μ,ν �= 0.
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The theorems above imply:

Specm,n,mn = KRONm,n,mn.

In particular, Specm,n,mn is a convex polytope.
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