
333© Springer Nature Switzerland AG 2019 
M. Hasanuzzaman et al. (eds.), Plant Abiotic Stress Tolerance, 
https://doi.org/10.1007/978-3-030-06118-0_14

Silicon: A Sustainable Tool in Abiotic 
Stress Tolerance in Plants

Chanchal Malhotra and Riti Thapar Kapoor

 Introduction

The world’s population is approximately seven billion, and it has been predicted to 
enhance by ten billion in the next 50 years (Glick 2014). Food security is considered 
as one of the most serious challenges. Recent trends of crop production indicate that 
fertility of soil is declining due to intensive use of natural resources, indiscriminate 
use of pesticides, and lack of proper soil management practices (Cakmak 2001). 
There is a need to use new technologies which could help us to curb the problem of 
food insecurity. Abiotic stress is known as one of the most important constraints to 
agricultural production in the world (Meena et  al. 2017). Abiotic stresses have 
become more common and challenging due to the unpredictable climate conditions. 
The change in climatic conditions has exacerbated the frequency and severity of 
many abiotic stresses with significant reduction in crop yield (Carmen and Roberto 
2011). More than 70% decrease in crop yield has been reported due to land degrada-
tion, undesirable effects on agriculture, loss of biodiversity, and abiotic stresses 
(Veatch-Blohm 2007). The main constraints to agricultural production are change in 
environmental conditions causing various abiotic stresses such as drought, flood, 
high and low temperature, salinity, UV-B radiation, inadequate mineral supply, and 
heavy metal toxicity (Jewell et al. 2010; Shrivastava and Kumar 2015). Hence, there 
is a need to find the reliable eco-friendly methods to alleviate the impact of abiotic 
stresses on agricultural system to sustainably meet growing global food demands. 
The management of the soil with mineral nutrients offers both environmental and 
economic benefits (Marschner 1995). The positive effects of silicon on the crop 
yield and quality have been well documented (Liang et al. 2015). The beneficial 
effects of silicon in stressed plants are more visible than non-stressed plants (Cooke 
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and Leishman 2016). The role of silicon in enhancing the resistance of plants to 
various abiotic stresses has been widely recognized by researchers (Guo et al. 2005; 
Gunes et al. 2007; Etesami and Beattie 2017; Etesami and Jeong 2018).

Application of silicon in agriculture is a sustainable strategy for the alleviation of 
abiotic stresses in plants (Cooke and Leishman 2011; Guntzer et  al. 2012; Van 
Bockhaven et al. 2013; Hernandez-Apaolaza 2014; Adrees et al. 2015; Coskun et al. 
2016; Imtiaz et al. 2016; Luyckx et al. 2017; Wang et al. 2017; Etesami and Jeong 
2018). Silicon fertilizers are safe, eco-friendly, and cost-effective in comparison to 
other chemical/synthetic fertilizers even for small and marginal plant growers. 
Hence, silicon can be used as a growth regulator to improve plant growth and resis-
tance under stress conditions.

 Occurrence of Silicon in the Soil

Silicon is the second most abundant element in earth’s crust in terms of quantity 
(Mcginnity 2015), and it comprises up to 70% of soil mass (Ma and Yamaji 2008; 
Ahmed et al. 2014). Silicon forms a major portion of soil as silicate but its avail-
ability to plants is low (Zhu and Gong 2014). Balakhnina and Borkowska (2013) 
reported that most of the sources of silicon are insoluble and in a plant-unavailable 
form. Silicon exists in the form of silicic acid (H4SiO4), a non-charged molecule in 
soil solution at the concentration 0.1–0.6 mM and pH less than 9 (Epstein 2009). 
The concentration of silicon in soil solution is equivalent to some of the macro- 
elements such as potassium, calcium, and phosphorus (Epstein 1994). The soil con-
tains 50–400 g silicon/kg of soil but the silicon content in the soil depends on the 
type of soil as sandy soil contains more silicon in comparison to clay soil 
(Matichenkov and Calvert 2002). Lovering and Engel (1959) reported that forest in 
the 1 hectare land can extract about 5000 tonnes of silicon in 5000 years. According 
to the reports of Food and Agricultural Organization (FAO 1998), approximately 
210–224 million tonnes of silicon is removed from the arable soils all around the 
world and soils become less fertile due to low availability of silicon content. The 
incorporation of silicon in soil improves the fertility of soil through physical and 
chemical properties, improved water absorption capacity, and maintenance of nutri-
ents in a soil in the plant available form.

 Sources of Silicon

The surface of earth is covered with 27.7% of silicon next to oxygen but the exis-
tence of silicon in its pure form is rare (Mitra 2015). Silicon is deposited in the form 
of quartz (SiO2), sand and sandstone in the earth crust (Rédei 2008). Agricultural 
wastes such as silicate slag, steel slag, electric furnace slag, baggase furnace ash, 
lignite fly ash, and rice straw are rich in silicon and can be used in crop fields to 
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increase the crop yield (Kalra et al. 2003). Calcium silicate obtained as a by-product 
of phosphorus production is one of the most widely used silicon fertilizer. Potassium 
silicate is highly soluble and can be used in hydroponic culture for laboratory 
experiments but it is expensive. The other sources of silicon have been used com-
mercially are silica gel, calcium silicate hydrate, etc.

 Silicon: Essential Element for Plants

Earlier researchers reported that silicon is not an essential element for plants but 
difficulties in growing plants in silicon-free environment made this assumption 
incorrect and silicon was designated as an essential element for the growth and 
development of plants. Justus Von Leibig proposed the use of sodium silicate as a 
silicon fertilizer as early as in the year 1840. Silicon is a beneficial element to higher 
plants as its effects are frequently linked to morphological, physiological, and 
molecular aspects of plants (Ma 2004; Lobato et al. 2009). Silicon acts as a quasi- 
essential element for plants because its deficiency can cause various abnormalities 
in growth, reproduction, and overall development of plants (Epstein and Bloom 
2005). The sand is applied to rice fields at 2–3 tonnes/acre once in 2 or 3 years in 
southern part of India is considered as a good source of silicon. The farmers in 
Texas and Florida use certified green sand containing silicates to get higher crop 
yield. Silicon has been recognized as an agronomically essential element for rice 
cultivation in Japan because silicon promotes the growth and yield of rice. Silicon 
nutrition to the plants improves plant protective mechanism against diseases, insect 
attack, and unfavorable environmental conditions (Guntzer et al. 2011; Dallagnol 
et al. 2011; Liu et al. 2014).

 Silicon Content in Plants

The content of silicon in plants shows a large variability ranging from 0.1 to 10% 
dry weight (Hodson et al. 2005). According to Marschner (1995), there are three 
classes of silicon absorbers: (1) silicon accumulator plants as they accumulate large 
amount of silicon—wheat, rice, millet, and sugarcane; (2) silicon non-accumulator 
plants—snapdragon plant; (3) silicon-excluder plants—soybean. Silicon accumula-
tors have silicon concentration more than 1% and silicon/calcium ratio  >  1 and 
excluders have silicon concentration below 0.5% and silicon/calcium ratio < 0.5. 
The plants which do not meet these criteria are considered as intermediate plants. 
Monocotyledons such as rice, sugarcane, and maize absorb silicon in large quanti-
ties due to the presence of silicon transporters in comparison to dicotyledons (Ma 
et al. 2016). The aerial plant parts accumulate more silicon in comparison to roots. 
Silicon content in plants increased with the age of crop plants and due to this older 
leaves are rich in silicon concentration than younger leaves (Henriet et al. 2006).
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 Silicon Mitigates Abiotic Stresses in Plants

Silicon is known as the only element that is able to increase plant resistance to envi-
ronmental stresses. Silicon-mediated alleviation of abiotic stresses such as salinity, 
drought, UV-B radiation, flooding, freezing, lodging, high temperature, and heavy 
metal toxicity has been reported (Reynolds et al. 2016; Debona et al. 2017; Kim 
et al. 2017; Etesami and Jeong 2018). The benefits of silicon accumulation in wet-
land environment have been studied in terms of increased ability to resist water 
current and allow roots to better penetrate the mud (Struyf and Conley 2008). The 
most important function of silicon lies in its potential to confer tolerance in plants 
to multiple stresses (Fig. 1).

 Salinity Stress

Salinity is one of the most significant abiotic stresses for crop plants (Chinnusamy 
et al. 2005). Approximately 20% of the total arable area has been degraded by salin-
ity (Shrivastava and Kumar 2015). Salt interferes with plant growth by ion cytotox-
icity (Greenway and Munns 1980), nutrient imbalance (Khan et  al. 2000), and 
oxidative damage (Hernandez et al. 2000). Silicon has been reported to improve salt 
tolerance in different crops (Liang et al. 2007; Reezi et al. 2009). Silicon can reduce 
Na+ uptake by plants under salt stress by (1) reducing membrane permeability of 
root cells, (2) improving structure and stability of root cells (Exley 2015; Luyckx 
et al. 2017), (3) mediating stimulation of the root plasma membrane H+-ATPase, 
and (4) facilitating Na+ export from the cell. Exogenous application of silicon 
improved gas exchange characteristics in many plant species under salinity 
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Fig. 1 Effect of silicon fertilizer on abiotic stresses
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condition (Etesami and Jeong 2018). The water status of leaf and water use effi-
ciency of crops was increased by silicon application in many salt-stressed plants 
(Coşkun et  al. 2016). Silicon deposited as silica gel in the cell wall of the roots 
provides binding sites for the salts and reduces their translocation to shoots which 
consequently improved plant growth and development (Lux et al. 2003).

Silicon deposition and polymerization in leaves limits transpiration and salt 
accumulation and improved water storage within plant tissues, which allowed 
higher growth rate, salt dilution within the plant cells, and mitigating salt toxicity 
effects (Bradbury and Ahmad 1990). Increase in salinity rises Na+, Cl−, and SO4

2− 
contents and decrease in K+, Ca2+, and Mg2+contents in a number of crop species 
(John et  al. 2003). The addition of silicon to saline environment significantly 
decreased the Na+content but increased K+ concentration (Ashraf et  al. 2010). 
Salinity-induced accumulation of ROS including superoxide radical, hydroxyl radi-
cal, and hydrogen peroxide are detrimental to cells at higher concentration because 
they cause oxidative damage to membrane lipids, proteins, chlorophyll, and nucleic 
acids (Mittler 2002; Keles et al. 2004; Gunes et al. 2007). The application of silicon 
under salt stress significantly increased superoxide dismutase, peroxidase, catalase, 
and glutathione reductase activity in barley roots (Liang et al. 2003) and cucumber 
(Zhu et  al. 2004). The higher efficiency of antioxidant defense enzymes in salt- 
stressed plants with silicon application coincided with a decrease in their electrolyte 
leakage and lipid peroxidation level and H2O2 content, suggesting that oxidative 
damage induced by salinity stress can be alleviated by silicon supplementation 
(Moussa 2006; Wang et al. 2010).

 Drought Stress

Drought is one of the major abiotic stresses that adversely affects growth and pro-
ductivity of agricultural crops (Bodner et al. 2015). Drought or water deficit leads to 
stomatal closure, reduced transpiration rate, decrease in water potential of plant 
tissues, decrease in photosynthesis, and ultimately plant growth is inhibited 
(Yordanov et al. 2003). The ameliorative effect of silicon on drought stress has been 
related to the reduction in loss of water by transpiration (Romero-Aranda et  al. 
2006), osmotic adjustment (Trenholm et al. 2004), improved nutrient uptake (Gunes 
et al. 2008a), and activation of antioxidant defense system (Gunes et al. 2008b). 
Agarie et al. (1998) reported that deposition of silicon in the cell wall reduced tran-
spiration and increased internal storage of water under drought stress. The mitigat-
ing effect of silicon on drought stress could be related to the hydrophilic nature of 
SiO2.nH2O which maintains the water in plant tissues and protects plant tissues 
from drought (Gong et al. 2005). An important mechanism of drought tolerance is 
the osmotic adjustment as it helps to retain water in plant tissues despite low water 
potential (Romero-Aranda et al. 2006). Kaya et al. (2006) found that silicon supply 
increased Ca concentration which played a vital role in maintaining membrane per-
meability and stability. Liang (1999) reported that under water stress condition, K+ 
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concentration increased in the presence of silicon possibly because of the activation 
of H+-ATPase in the cell membrane. Potassium is one of the primary osmotic sub-
stances which contribute to osmotic adjustment (Ashraf et  al. 2001). Silicon- 
mediated maintenance of higher level of K+ is essential in achieving better survival 
with improved growth under water stress (Umar 2002). Drought-induced reduction 
in chlorophyll content can be alleviated by silicon and hence improved photosyn-
thesis under drought stress (Kaya et al. 2006). The effect of silicon stimulation on 
root growth may be due to increased root elongation caused by an increase in cell 
wall extensibility in the growth region as observed in sorghum (Hattori et al. 2003).

Wang et al. (2015) reported significant increase in the root/shoot ratio in silicon- 
treated plants, and it was due to the silicon-mediated modification in root morphol-
ogy which increased water uptake ability of silicon-treated plants. The augmented 
water uptake during the addition of silicon in water deficit condition is the result of 
improved root hydraulic conductance (Hattori et al. 2008) and root activity (Chen 
et al. 2011). It has been reported that improved structural stability due to the binding 
of silicon with cell wall hemicellulose can be beneficial in water shortage condition 
for the plants (Ma et al. 2015).

 Thermal Stress

Temperature is one of the most important environmental factors governing plant 
growth and development (Monjardino et al. 2005). Thermal stress (cold and heat) 
may disturb the balance between ROS and antioxidant activity in plants. Application 
of silicon has been reported to alleviate heat stress in different plant species (Epstein 
1999). Heat stress is detrimental to plant growth and dry matter accumulation because 
it inhibits protein synthesis, enzyme activity, chlorophyll formation, photosynthesis, 
and increases transpiration (Gibson and Paulsen 1999). Commuri and Jones (2001) 
reported that extended periods of drought and high temperature lead to poor vigor 
and shallow rooting. According to Takahashi and Kurata (2007), silicon deposition in 
the cell wall of xylem vessels prevents the compression of vessels under the condi-
tions of high transpiration caused by heat stress (Hattori et  al. 2005; Liang et  al. 
2007). However, high level of silicon in cell wall reduced transpiration loss caused by 
higher temperature thus allowing continued metabolic functions under high tempera-
ture. According to Epstein (1999), plants wilt less, resist sunburn and are generally 
more tolerant to heat stress when silicon is applied to plant growth medium. The sup-
ply of silicon has been found to produce higher concentrations of RUBP-carboxylase 
enzyme in leaf tissues which help in CO2 metabolism in stress environment (Gunes 
et al. 2008b). Soundararajan et al. (2014) treated Salvia splendens with silicon under 
high temperature and found that the activities of SOD, APX, and GPX were increased.

The chilling and frost stresses can cause irreversible damage to plant cells due to 
mechanical forces generated by the formation of extracellular ice crystals, cellular 
dehydration, and increased concentration of intracellular salts (Steponkus 1984). It 
has been reported that freezing increases the level of ROS in plants and increased 
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lipid peroxidation arising from the accumulation of ROS is the major cause of mem-
brane damage (McKersie et al. 1993). Studies have shown that supply of silicon 
under low temperature stress regulated the activity of antioxidant defense system 
and alleviated oxidative damage caused by chilling or frost (Ma et al. 2001). It has 
been reported that silicon improves leaf and stem strength through deposition in the 
cuticle and by maintaining cell wall polysaccharide and lignin polymers, thus pro-
tected plants from low temperature and frost (Ohyama 1985; Hull 2004). The pho-
tosynthetic electron transport, CO2 fixation, Rubisco activity, and stomatal 
conductance are the major targets impaired by low temperature stress in plants. 
Application of silicon under frost conditions resulted in higher concentration of 
chlorophyll (Schmidt et  al. 1999) and RUBP-carboxylase enzyme in leaf tissue. 
This enzyme regulated the metabolism of CO2 and enables the plant to make more 
efficient use of available levels of CO2 under low temperature stress. The leaves of 
silicon-treated plants (cucumber, rice, maize, and sunflower) grown hydroponically 
at low temperature (0–4 °C) were more resistant to cold-induced wilting and root 
ability to absorb nutrients was higher. Silicon-mediated alleviation of freezing 
injury may be attributed to enhanced antioxidant defense activities and consequent 
reduced membrane oxidative damage through better water retention in leaf tissues 
(Liang et al. 2003; Zhu et al. 2004; Gong et al. 2005).

 Radiation

Exogenous application of silicon showed alleviating effects of UV-B stress on soy-
bean, wheat, and maize (Yao et  al. 2011; Shen et  al. 2014). Many studies have 
revealed that silicon application can induce resistance to UV-B stress by the modi-
fication of physiological and biochemical processes in plants (Schaller et al. 2013; 
Tripathi et al. 2017). According to Tripathi et al. (2017), UV-B stress was signifi-
cantly improved with the use of silicon nanoparticles on wheat seedlings.

 Wounding Stress

Wounding stress is caused by physical injury in plants, and it may be due to wind or 
herbivore attack. Such injuries can cause the death of plant tissues and make it vul-
nerable to pathogenic attack. Wounds initiate oxidative stress thereby damaging the 
cell membranes. The antioxidant activities of catalase and peroxidase are signifi-
cantly increased in silicon-treated wounded rice plants compared to control plants 
and improved mechanical strength to overcome losses from wounding stress (Kim 
et  al. 2014). A similar trend of increased antioxidant enzyme activity was also 
observed in wheat (Gong et al. 2005), maize, and barley (Liang et al. 2005). The 
accumulation of antioxidative enzymes in silicon-treated plants functions as a strat-
egy for coping with wounding stress.
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 Heavy Metal Toxicity

Heavy metal pollution is rapidly increasing, and it originates from natural sources 
as well as anthropogenic activities including mining, industrial waste, sewage 
sludge, and excessive use of fertilizer and pesticides (Nagajyoti et al. 2010). The 
relationship between silicon supplementation and metal tolerance in plants has been 
widely studied (Shi et  al. 2005; da Cunha and do Nascimento 2009; Kaya et  al. 
2010). Silicon supplementation decreased metal toxicity such as toxicity of alumi-
num (Wang et al. 2004), boron (Gunes et al. 2007), cadmium (Liang et al. 2005), 
chromium (Tripathi et al. 2012), copper (Li et al. 2008), and zinc (Neumann and Zur 
Nieden 2001). The possible mechanism behind the silicon inhibition of metal trans-
port in plants may be due to the thickening of the casparian strips in the endodermis 
and cell wall of the xylem due to the deposition of silicon in the cell wall (Chen 
et al. 2000; da Cunha and do Nascimento 2009).

Excessive metal exposure induces leaf chlorosis and necrosis by affecting chlo-
rophyll synthesis and breakdown of the cell membrane. It was reported that silicon 
reduced the toxic effects of metals in plants by stimulating the production of root 
exudates (Adrees et al. 2015; Imtiaz et al. 2016). Silicon can reduce metal toxicity 
in plants by increasing the content and accumulation of macronutrients (Ca, Mg, P, 
and K) and micronutrients (Zn, Fe, and Mn) (Etesami and Jeong 2018).

The key mechanism of silicon-mediated metal toxicity alleviation in higher 
plants include: (1) complexation or co-precipitation of toxic metal ions with sili-
con; (2) immobilization of toxic metal ions in the growth media; (3) stimulation of 
antioxidant defense system; (4) uptake processes; (5) compartmentation or homog-
enous distribution of metal ions within plants (Liang et al. 2005); (6) accelerating 
suberin lamellae, casparian bands, root vascular tissues development, and lignifi-
cation; (7) enhancing the activity of gas exchange characteristics (net photosyn-
thetic rate, stomatal conductance, transpiration rate, and water use efficiency); (8) 
change in plant morphological traits (increase in length of leaves, leaf area, num-
ber of leaves per plant, root volume, root length, and total root surface area); (9) 
regulating plant phytohormones; (10) helping the formation of the tertiary endo-
dermal cell wall; (11) localizing in root endodermis, which serve as a barrier to 
block heavy metal entrance into cells (Adrees et  al. 2015; Imtiaz et  al. 2016). 
Silicon has been shown to alleviate the adverse effects of nutritional imbalance 
stress in plants (Hernandez-Apaolaza 2014; Etesami and Beattie 2017; Etesami 
and Jeong 2018).

 Macronutrients

The excessive use of nitrogen fertilizer causes lodging, mutual shading, and suscep-
tibility of plants to pests and diseases (Ma 2004). The adverse effects due to exces-
sive nitrogen fertilizers can be minimized by the use of silicon as the presence of 
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silicate crystals in plant tissues provide mechanical barrier which hinders feeding of 
insects and inhibits fungal diseases by inhibiting fungal germ tube penetration of 
epidermis (Savant et  al. 1999). Silicon can alleviate nitrogen deficiency-induced 
stress in plants by (1) increasing the uptake of nitrogen, (2) improving nodulation 
and better N2 fixation in legume plants, (3) increasing N use efficiency, and (4) alter-
ing primary metabolism due to stimulating amino acid remobilization.

Phosphorus is essential mineral element but most of phosphorus in soils is in 
biologically unavailable form. Soundararajan et al. (2016) reported that silicon fer-
tilization increased P availability in various graminaceous species. Silicon can alle-
viate P shortage-induced stress in plants by (1) improving utilization of P by 
increasing phosphorylation; (2) decreasing excess Fe, Mn, and Al uptake and (3) 
increasing water-soluble phosphorus concentration. Owino-Gerroh and Gascho 
(2005) reported that application of soluble silicon in acid soils can decrease adsorp-
tion of phosphorus in soils and increase the amount of bioavailable phosphorus.

Potassium is one of the major macronutrients which has an important role in the 
growth and development of plants. Silicon can alleviate K-deficiency-induced stress 
by influencing the availability of K in the soil and plants and modulating antioxidant 
enzymes to alleviate K-deficiency-induced membrane lipid peroxidation and oxida-
tive stress (Miao et al. 2010; Pei et al. 2010). Silicon can increase calcium and mag-
nesium level in soil and plants. The improved absorption of calcium may be due to 
an increase in the movement of plasma membrane H+-ATPase due to the addition of 
silicon (Etesami and Jeong 2018).

Silicon application influences the nutrient content of sunflower by increasing the 
accumulation of both macro- and micronutrients (Savić and Marjanović-Jeromela 
2013). Silicon can alleviate the effect of micronutrient deficiency stress on the 
plants grown under nutrient-poor conditions (Pavlovic et al. 2013; Bityutskii et al. 
2014; Hernandez-Apaolaza 2014). It has been reported that silicon alleviates chlo-
rosis in plants due to Fe deficiency by (1) forming Fe plaque on root; (2) increasing 
Fe transport from root to shoot; (3) maintaining the balance of other micronutrients 
such as Fe/Mn ratio; (4) accumulating Fe-mobilizing compounds such as citrate (in 
xylem sap and root and shoot tissues) or catechins (in roots); (5) the activation of 
Fe-deficiency-associated genes and (6) Fe chelate reductase (Etesami and Jeong 
2018). Under Fe toxicity conditions, silicon can protect plants from excess of Fe 
stress by (1) releasing OH− by roots; (2) increasing the oxidizing capacity of roots, 
which changes ferrous iron (Fe2+) into ferric iron (Fe3+) and (3) increasing the iron 
precipitation in the growth media or at root surfaces (iron plaque) as Fe (III)-silicates 
(You-Qiang et al. 2012).

Silicon is able to mitigate manganese deficiency in plants by enhancing the roots 
oxidizing capacity, which gives a higher Mn-oxidation rate in the rhizosphere (Li 
et  al. 1999). Silicon can also mitigate the excess stress of Mn by affecting 
Mn-oxidation state, which promotes its precipitation, regulates the Fenton reaction, 
and mediates the Mn adsorption on cell walls.

Silicon influences zinc plant nutrition under deficiency stress conditions (Pascual 
et al. 2016) by (1) remobilizing the Zn pools in the roots, (2) changing Zn distribu-
tion in plants, (3) increasing citrate in plants, and (4) activating the Zn-deficiency 
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mechanism. Silicon can also mitigate the excess stress of Zn by avoiding the Zn 
transport to more sensitive organs of plant by enhancing Zn2+ adsorption on the 
deposits of the silicate.

Si also influences copper plant nutrition in the plants grown under Cu stress con-
ditions by affecting the distribution of Cu within leaves (Frantz et al. 2011). Silicon 
can mitigate the excess stress of Cu in the plants by the formation of silicon deposits 
on the cell wall, which increases the Cu-binding sites.

 Silicon-Induced Growth Regulation and Abiotic Stress 
Tolerance in Plants

 Plant Growth Improvement

An increase in plant growth and development due to silicon application has been 
reported in rice (Ma and Yamaji 2008; Kim et al. 2012), cotton (Li et al. 1989), 
soybean (Hamayun et al. 2010), wheat (Gong et al. 2005), sorghum (Hattori et al. 
2005), cucumber (Feng et al. 2009), barley (Savant et al. 1999), bean (Zuccarini 
2008), tomato (Al-aghabary et al. 2005; Liang et al. 2007), spinach (Eraslan et al. 
2008), and maize (Liang et al. 2005).

Silicon foliar fertilizer is advantageous for sugar beet production and a significant 
increase has been reported in sugar yield (Artyszak et al. 2014). Silicon has increased 
yield by 22% in potato (Luz et al. 2008), 30% in rice, and 45% in sugarcane (Kingston 
2008). The application of silicon in canola improved yield and oil content and 
reduced pesticide and fungicide usage (Lynch 2008). Silicon augmentation in soil-
less cultivation of corn salad improved the yield, quality, and shelf life of corn by the 
regulation of nutrient acquisition, uptake of nitrate/iron, phenoloxidase gene expres-
sion, and protection of chlorophyll pigment from degradation (Gottardi et al. 2012). 
Silicon inclusion in tissue culture medium resulted in the enhancement of axillary 
shoot induction, alleviation of hyperhydricity (Soundararajan et  al. 2017), callus 
induction (Islam et al. 2005), and root morphogenesis (Asmar et al. 2013).

Aquaporins are essential transmembrane proteins that maintain the uptake and 
movement of water molecules across the cell membranes particularly under abiotic 
stress condition (Boursiac et al. 2005). According to Boursiac et al. (2008), aquapo-
rin activity is susceptible to change in the ROS level as H2O2 stimulated by salt 
stress resulted in the prevention of aquaporin function.

The higher expression of genes related to aquaporin results in the rapid water 
uptake which also dilutes the excess concentration of Na+ ions lethal for the 
plants (Gao et al. 2010). The findings of Sutka et al. (2011) illustrated that the 
abundance of aquaporin genes in the roots balance the water uptake by the plants 
even under water deficit conditions. The enhancement of aquaporin-related 
genes by silicon might improve the water status in plants under salinity and 
drought stress. The improvement of water status and ion balance aid in the rec-
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lamation of plants from abiotic stress. It is known that silicon can increase the 
uptake of nutrients by increasing root activity (Chen et  al. 2011), enhancing 
water uptake (Sonobe et al. 2010), and improving hydraulic conductance of roots 
(Hattori et al. 2008).

 Increase in Root System of Plants

Abiotic stresses adversely affect the growth and yield of plants by limiting the 
uptake and translocation of water and essential nutritional ions (Hu and Schmidhalter 
2005). Nutrient absorption is linked to root surface region and root length. An 
increase in root surface area provides more exposed areas for the absorption of dis-
persed ions (Barber 1995). Silicon can improve root growth and subsequently 
enhance nutrient uptake, improve nutrient balance, and plant shoot biomass under 
salinity (Kim et al. 2016; Li et al. 2015) and drought (Chen et al. 2011). It has been 
reported that silicon facilitates root growth through increasing cell wall extensibility 
in the growth zone of roots (Vaculík et al. 2009). Silicon has also contributed to 
stimulation of nutrient uptake by increasing water uptake (Sonobe et al. 2010). The 
higher root growth increases water acquisition (increased water use efficiency) and 
nutrient uptake, it subsequently alleviates the adverse stress effects in silicon-treated 
plants. Water deficit also limits nutrient uptake through roots and subsequent trans-
port to shoots, thereby reducing nutrient availability and metabolism (Farooq et al. 
2009). Silicon-mediated selective transport capacity for K+ over Na+ and thereby 
increases in K+/Na+, which may be one of the main mechanisms improving plant 
growth and yield under abiotic stress.

 Improvement of Water Relations

Romero-Aranda et al. (2006) stated that silicon helps in water restoration in salt- 
stressed plants due to its hydrophilic nature. Silicon can decrease salt toxicity for 
plants and improve plant growth under salinity stress by different mechanism 
including: (1) increasing water storage in plants which contributes to salt dilu-
tion (Tuna et al. 2008); (2) increasing thickness of leaves which results in leaf 
water content and water potential (Gong et al. 2003) and (3) deposition of silicon 
in leaves which reduces transpiration from leaf surface and decreases the escape 
of water molecules from the leaf surface (Keller et al. 2015). It has been recog-
nized that drought stress substantially reduces the leaf water potential and water 
content in drought-stressed plants. Silicon also influences water relation and 
improves significantly the photosynthesis and water status in non-irrigated crops 
(Rizwan et al. 2015). Gao et al. (2005) observed that silicon application enhanced 
water use efficiency in drought-stressed maize by reducing leaf transpiration 
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rate. According to Rizwan et al. (2015), silicon can influence stomatal movement 
in plants.

Some of the mechanisms by which silicon can result in higher efficient use of 
water, enhance root water uptake by roots, and increase drought tolerance in plants 
under water deficit stress (Zhu and Gong 2014) include: (1) altering transpiration 
(Farooq et al. 2009); (2) forming a cuticle-silica double layer on leaf epidermal tissue 
which reduces leaf transpiration and water flow rate in xylem vessels (Zhu and 
Gong 2014); (3) accumulation of soluble sugars and amino acids (Sonobe et  al. 
2010); (4) deposition of silicon on root cell wall, which affects the wetting proper-
ties of xylem vessels and water/solute transport (Gao et al. 2005); (5) maintaining 
photosynthetic pigments content (Lobato et  al. 2009); (6) improving chloroplast 
ultrastructure; (7) increasing activities of antioxidant enzymes (Gong et al. 2005); 
(8) enhancing the activity of phosphoenolpyruvate carboxylase and the concentra-
tion of inorganic phosphate in plant leaves (Gong and Chen 2012).

 Regulation of Biosynthesis of Compatible Solutes

Under stressful conditions such as salinity and drought, concentration of compatible 
solutes or osmolytes such as proline (Pei et al. 2010), glycine betaine, and polyols 
(Parida and Das 2005) increased in plants. Silicon application also increased plant 
tolerance to salinity and drought stress by modifying the levels of solutes such as 
proline (Yin et al. 2013), glycine betaine (Torabi et al. 2015), carbohydrates (Ming 
et  al. 2012), polyols, antioxidant compounds (Hashemi et  al. 2010), and soluble 
sugars and free amino acids (Hajiboland et al. 2016). These compatible solutes may 
increase plant resistance to abiotic stresses by (1) maintaining higher leaf water 
potential during stress; (2) scavenging free radicals and buffering cellular redox 
potential, which keep plants protected against oxidative stress and (3) stabilizing 
subcellular structures (membranes and proteins) (Fahad et  al. 2015). It has been 
found that the compatible solutes may also act as oxygen radical scavengers (An 
and Liang 2013; Abbas et al. 2015). Silicon alleviated drought stress in the plants by 
osmotic adjustment inducing the production of soluble sugars and amino acids such 
as alanine and glutamic acid (Zhu and Gong 2014).

 Photosynthesis

It has been reported that silicon delays chlorophyll degradation in plant species 
under abiotic stresses (Al-aghabary et  al. 2004; Feng et  al. 2010; Gottardi et  al. 
2012). Silicon has also been shown to result in higher concentration of chlorophyll 
per unit area of leaf tissue. There are two possible mechanisms have been reported: 
The first one was related with the structural protection of the chloroplast membranes 
by silicon (Al-aghabary et al. 2004; Feng et al. 2010) and second was the effect of 
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silicon on strengthened cell walls which might contribute to a more favorable posi-
tion of leaves to intercept light and increased the photosynthesis (Ma and Takahashi 
2002). Silicon contributes to maintain micronutrients balance such as Fe/Mn ratio 
(Pich et al. 1994), which is also beneficial in enhancing chlorophyll synthesis and 
provides a possible explanation for the stimulation in growth of Fe-deficient plants 
supplied with silicon (Pavlovic et al. 2013; Bityutskii et al. 2014). The increase in 
citrate concentration in plants has been reported with silicon supply. Citrate is one 
of the molecules that joined iron on its transport through the xylem (Rellán-Álvarez 
et al. 2010).

 Polyamines Synthesis and Metabolism

Plants with high level of polyamines such as putrescine, spermidine, and spermine 
reported to possess more resistance against environmental stresses (Quinet et  al. 
2010; Pottosin and Shabala 2014). The elevated levels of genes responsible for the 
synthesis of polyamines mitigate the negative effects of oxidative stress (Roy and 
Wu 2001; Tang et al. 2007). The augmentation of silicon elevated the expression 
level of S-adenosyl-l-methionine decarboxylase (SAMDC) gene which encodes a 
vital enzyme involved in the biosynthesis of polyamines. Polyamines are involved 
in various vital processes such as replication, transcription, translation, stabilization 
of membranes, and modulation of enzyme activities in addition to stress tolerance. 
Hence, the regulation of genes involved in polyamine biosynthesis by silicon could 
not only help in the stress alleviation but also improve the fundamental processes in 
cells and increased the growth and development of plants.

 Antioxidative Defense System

Plants continuously produce several active oxygen species (AOS) or reactive oxy-
gen species (ROS) such as superoxide anion (O2

−), hydrogen peroxide (H2O2), and 
hydroxyl radical (OH−) during photosynthesis and respiration processes in different 
cell organelles such as mitochondria, chloroplast, and peroxisomes. ROS can cause 
serious oxidative damage to the biomolecules such as protein, membrane lipids, and 
nucleic acids in the cells (Apel and Hirt 2004; Tripathi et al. 2017). The scavenging 
of ROS is most important defense mechanism to cope with stress conditions in 
plants (Baxter et al. 2014). Silicon nutrition in plants enhances the production of 
antioxidants and enzymes involved in detoxification of the free radicals (Zhu et al. 
2004). Plants can maintain homeostasis by two different detoxification mechanisms 
involving enzymatic and non-enzymatic antioxidants (Mittler 2002; Sytar et  al. 
2013; Wu et al. 2017). Application of silicon can improve ROS scavenging ability 
in plants by development of ROS scavenging enzymes such as superoxide dismutase 
(SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) and 
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non-enzymatic antioxidants such as glutathione, ascorbate, and carotenoids 
(Crusciol 2009; Shen et al. 2010; Torabi et al. 2015).

Etesami and Jeong (2018) reported that silicon maintained cell membrane per-
meability and stability of the plants grown under abiotic stresses. Silicon applica-
tion can also increase the glutathione concentration and suppress the malondialdehyde 
concentration (Liang et al. 2006). Zhu et al. (2004) reported that silicon is respon-
sible for inhibiting the membrane damage caused by the formation of 
 malondialdehyde, which causes the lipid peroxidation of membranes. By regulating 
antioxidant defense system, silicon can decrease lipid peroxidation in plants (Kim 
et al. 2017).

Silicon enhanced abiotic stress tolerance capacity which is linked to accumula-
tion of photorespiratory enzymes (Nwugo and Huerta 2011). Silicon has been 
reported to prevent the damage of membrane caused by the formation of malondial-
dehyde (MDA) (Zhu et al. 2004) by regulating antioxidant defense system in plants 
(Zhu and Gong 2014). Silicon has also been found to decrease the concentration of 
MDA, the end-product of lipid peroxidation, in salt-stressed barley (Liang et  al. 
2003), maize (Moussa 2006), and grapevine (Soylemezoglu et al. 2009), thus may 
help to maintain membrane integrity and decrease membrane permeability.

Ma et al. (2016) found that silicon reduced H2O2 accumulation and increased 
expression of antioxidant enzyme genes in wheat under drought stress. Farooq et al. 
(2016) observed that silicon treatment increased the antioxidant capacity of rice 
plants under cadmium stress. Many experiments have assessed the impact of silicon 
on plants subjected to abiotic stress at the level of gene expression (Liu et al. 2014; 
Yin et al. 2016), and it is now becoming apparent that silicon may effect primary 
metabolism in higher plants (Sanglard et al. 2014).

 Phytohormone Regulation

Phytohormones are known to play vital role in the ability of plants to acclimatize to 
different environment by different mechanism (Fahad et  al. 2015). It has been 
reported that silicon application may enhance the plant tolerance to abiotic stresses 
by adjusting the level of phytohormones (Kim et al. 2014). Gibberellin regulates all 
aspects of plant life from seed germination to vegetative growth and fruiting 
(Colebrook et  al. 2014). Endogenous bioactive GA1 and GA4 content increased 
when higher doses of silicon were applied to cucumber plants under salinity and 
drought stress (Hamayun et al. 2010). This clearly suggests that GAs play signifi-
cant role in salt and drought stress alleviation. Silicon is known to increase plant 
growth, which can also be associated with the effect of exogenous gibberellin appli-
cation to crop plants. It shows that silicon application activates gibberellin biosyn-
thesis in order to maintain growth and impart stress tolerance.

Silicon is essential for life processes such as DNA replication (Okita and Volcani 
1978; Martin-Jézéquel et al. 2000). Silicon was found to delay leaf senescence by 
activation of the cytokinin pathway in both silicon accumulating and non- 
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accumulating plant species (Markovich et al. 2017). Silicon can increase plant toler-
ance to diseases by increasing the expression of genes involved in plant resistance 
to pests and diseases, enhancing the production of phenolic compounds, lignin and 
enzymes of phenylpropanoid pathway and by enhancing the concentration of poly-
phenol, antimicrobial flavonoids, and anthocyanin (Etesami and Jeong 2018).

 Future Perspectives

Based on current knowledge, reviewed here, it can be stated that silicon is non- 
corrosive, non-pollutive element, and its excessive amount in soil does not pose any 
harm to plants. Silicon is a modest and major element of soil with enormous benefits 
to plants especially in the mitigation of abiotic stresses.

We suggest several future avenues of research:

 1. Researches are needed to investigate the effect of silicon on plant biochemistry 
and gene regulation under abiotic stresses.

 2. Nanotechnology-related applications can be used to explore possibilities for the 
formulation of silicon nanoparticles to elevate stress tolerance in plants.

 3. The resistance of plants to various environmental stresses can be enhanced by 
genetic modification of root ability to take up silicon and its accumulation in dif-
ferent plant parts. It will reduce the silicon expenditure in crop fields.

 4. Silicon possess multifaceted role in the regulation of genes involved in various 
physiological mechanism such as photosynthesis, secondary metabolism, poly-
amine biosynthesis, and transcription. Hence, there is a need of deep investiga-
tion related to the molecular level modulations triggered by silicon 
supplementation for physiological improvement of plant growth under stress 
conditions.

 5. The meta-analysis-related studies on the alleviation of abiotic stresses by silicon 
highlighted that most studies have focused on single species and single-stress 
models but there is a lack of studies which looked to compare effects between 
species or stress types.

 6. Farmers and researchers should be aware about the potential application of sili-
con in agriculture. Farmers should know the correct dose of silicon for particular 
crop and mode and time of silicon application on the crop plants to increase crop 
productivity.

Silicon is useful and sustainable fertilizer for crops facing a spectrum of environ-
mental stresses. The application of silicon in the agriculture sector can improve food 
security by raising crop tolerance to adverse environmental conditions by enhancing 
adaptability of crops to different stresses. Silicon may be complementary option in 
silicon-deficient areas as silicon fertilizer can provide economic as well as ecologi-
cal benefits.
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