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Abstract Nanocarriers have been widely employed in the diagnosis and treatment
of various diseases. The drug release kinetics and pharmacodynamics could be
adjusted by changing the materials, designs, and physicochemical properties of the
carriers. Furthermore, the carrier surface could be modified to minimize the parti-
cle clearance, increase the circulation duration, escape the biological protective
mechanisms, penetrate through physical barriers, and prolong the residence of the
drug at the target site. Among lung diseases, acute lung injury has been considered
life-threatening with approximately 190,000 cases and 74,500 deaths per year in
the USA. Numerous researches have reported the efficacy of drug-encapsulated
nanoparticles in the treatment of acute lung injury. The use of nanoparticles could
help minimize the effect of airway defenses in the lung, thus provides a prolonged
retention, sustained drug release, and targeted delivery to the lung tissues.
Meanwhile, the toxicity of nanoparticles in the lungs needs to be investigated thor-
oughly to alleviate the safety concerns. In this chapter, we discuss the targeted
pulmonary delivery of surface-modified nanocarriers to efficiently treat acute lung
injury.
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1 Nanoparticles

1.1 Introduction of Nanoparticles

Targeted nanoparticles especially nano-sized drug delivery systems were first intro-
duced into the field of medicine in the nineteenth century. In the 1960s, nanoparti-
cles were developed for vaccination delivery [1]. From then on, nanotechnology has
been furthered in numerous clinical trials and several products available on the mar-
ket, particularly in the diagnosis and treatment of cancer [2, 3]. Also, a wide range
of nanocarrier types has been fabricated and optimized as advanced drug delivery
systems.

Nanoparticles have been fabricated from various macromolecular materials with
the size ranging from 1 to 200 nm to drive therapeutic agents into the body tissue
[4]. A wide range of diseases has been targeted with nanoparticles such as cancer [5]
or tuberculosis [6]. Despite a long history of research and development, the number
of marketed products with nanoparticles remains limited. The first commercial
product was Abraxane® (available in 2005), which was formulated as an injectable
albumin nanoparticle suspension with paclitaxel to treat cancer [7] (Table 17.1).

1.2 Properties of Nanoparticles

Nanoparticles have been commonly used as drug carriers where the active therapeu-
tical ingredients could be dissolved, entrapped, encapsulated, adsorbed, or attached
to the particles using various fabrication methods including solvent evaporation,
nanoprecipitation, or multiple emulsions [7-9]. The drugs can be retained in the
particles with covalent, electrostatic interactions or the like [10]. These solid col-
loidal nano-sized particles are constructed with biocompatible and biodegradable
materials that decompose at a certain rate in the body. The degradation process of
these materials could be adjusted to alter the drug release and the physicochemical
properties of the nanoparticles [11].

The circulation, absorption, and elimination of nanoparticles in the human body
vary depending on the properties of the particles and the targeted tissues. Blood—
brain barrier allows nanoparticles with size less than 1 nm to efficiently pass through
while nanoparticle of 6 nm dimension could penetrate the continuous capillaries in
muscles, lungs, and skin tissue. With the size range from 40 to 60 nm, nanoparticles
could escape the fenestrated capillaries in kidney, intestine, and endocrine or exo-
crine glands [12]. There has been found agglomeration of large nanoparticles (size
of more than 600 nm) in liver, spleen, and bone marrow [13]. The electrostatic
properties of nanoparticles could be employed to facilitate or inhibit the particle
endocytosis. Positively charged nanoparticles could be attached rapidly to cells with
the negatively charged surface [12]. Nanoparticles have long been used as imaging
agents and drug carriers due to their numerous advantages such as (1) large
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surface-volume ratio, (2) biological mobility, (3) enhanced tissue penetration, (4)
drug protection against degradation or loss, (5) sustained and controlled drug
release, (6) reduction of dose frequency, (7) improved patient compliance, and (8)
increased drug level at the target site [7, 14, 15].

1.3 Surface-Modified Nanoparticles

These days, nanoparticle surface and dimensions have been modified to minimize the
particle clearance, increase the circulation time, escape the biological protective
mechanisms, penetrate through physical barriers, and prolong the residence of the
drug at the target site [7]. Thus, various moieties have been utilized for modification
and functionalization of the nanoparticle surface in accord with different stimuli [12].

Nanoparticles could be stimulated by endogenous or exogenous factors. The
endogenous stimulus includes redox, enzyme, and pH while light, ultrasound, and
magnetic fields have been employed as exogenous factors to manipulate the behav-
ior of nanoparticles [16]. Surface modification and polymeric coating of nanocarri-
ers could allow altering the half-life, biocompatibility, biodistribution, circulation
duration, stimuli reactivity, and therapeutic application [10, 17]. Furthermore, the
hydrophilicity of nanoparticles was found to primarily determine the rate of particle
binding on blood components. Hydrophobic nanoparticles without surface func-
tionalization have been indicated to be eliminated rapidly whereas the circulation
was significantly enhanced as these particles were coated with hydrophilic poly-
mers or surfactant to increase the hydrophilicity [18] (Fig. 17.1).

Controlled and sustained drug release from nanoparticles is critical to the thera-
peutic efficacy. The drug release can be triggered by stimuli or occur in sustained
mode over a certain period of time [10]. The drugs could diffuse out of the particles
or the particles might slowly and gradually degrade to release the drug load. The

Nanocarriers Derived from
MNatural Polymers
Chitosan Nanocarriers Mesoporous Nanoparticles
Hyaluronic Acid POHﬂzx:c%P:‘mm- Carbon Nanotubes
Alginic Acid and Its Salts Graphene
Carbon-Based Nanoparticles
Nanocarriers of Synthetic Graphene Oxide
Polymers
Nanocarriers Nanodiamonds
Solid Lipid Nanoparticles
{SLNs) Gold Nanoparticles
MNanostructured Lipid Carriers Silver
(NLCs)
Lipid-Based Nanoparticles Iron Oxide Nanoparticles
Multifunctional SLNs and
NLCs Dendrimers

Liposomes

Fig. 17.1 Types of nanocarriers. Source: Author’s representation
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stimuli-responsive release of drug from nanoparticles may facilitate the drug accu-
mulation in the targeted tissues. These stimuli could be generated by a modification
in the biological environment including cell environment, pH alteration, and
disease-related enzymes or external physical forces such as light, ultrasound, heat,
electrical, and magnetic fields. Ultrasound-sensitive microbubbles have been
employed to release therapeutic agent to the local targets [19]. Microbubbles fabri-
cated from lung surfactants caused a significant enhancement in drug targeted depo-
sition as compared to lipid-only microbubbles [20]. Interestingly, the application
and control of magnetic fields could drive aerosol droplets encompassing super-
paramagnetic iron oxide to the targeted locations in the mice’s lungs in vivo [21].

1.4  Potential Toxicity of Nanoparticles

A comprehensive understanding of biocompatibility, biodistribution, and degrada-
tion of nanoparticles is expected to properly utilize the particles [10]. The physical
properties including geometry, dimensions, surface charge, and morphology have
been found to alter the therapeutic effects of nanoparticles [22]. In particular, rod-
shaped particles were more toxic than spherical particles [23]. Long fibers could
less likely be captured by macrophages, thus minimize their elimination from the
system and cause inflammation [24]. Surface functionalization of nanoparticles
could change their biodistribution, effectiveness, and toxicity. Specifically, bioper-
sistent carbon nanotubes could be modified and functionalized to enhance the
hydrophilicity and rapid clearance via renal excretion [25]. A small change in the
physicochemical properties of nanoparticles could be exaggerated into significant
alteration in the biological response. Thus, the biological safety of nanoparticles
needs to be evaluated and monitored with care [10].

1.5 Conclusion

Nano-sized carriers are a promising platform for controlled drug delivery due to
their dimensions, permeability, and drug loading. Furthermore, surface functional-
ization could be used to enhance the targetability as well as to reduce the toxicity
[12]. The nanomaterials could be coated or conjugated with various segments to
prepare multifunctional and stimuli-responsive drug delivery system [12] which
allows to modify drug release profile, specific targeting, compatibility, and several
other advantages. More and more clinically effective nanocarriers are expected in
the market in the future.
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2 Acute Lung Injury

2.1 Pulmonary Drug Delivery

The lung offers several beneficial properties for rapid and efficient drug delivery due
to the large alveolar surface area, a thin layer of the epithelial barrier, extensive blood
circulation, avoidance of the first-pass hepatic metabolism, and low proteolytic
activity in the alveolar space [26—-29]. The metabolic activities in the lung are signifi-
cantly lower than that in the gastrointestinal tract and the liver [10]. These properties
not only enhance the systemic drug delivery but also improve the efficacy of treat-
ment of lung diseases. Furthermore, drug administration via the lung has been pre-
ferred due to its noninvasiveness and the possibility for self-administration.

Despite the aforementioned advantages, there are only limited products on the
market for lung delivery. The only inhalable product of therapeutic protein on the
market is Pulmozyme® (dornase alfa, Genentech Inc., San Francisco, CA, USA).
Exubera (Inhalable insulin, Pfizer, New York, NY, USA) was approved by US Food
and Drug Administration in 2006, but later withdrawn from the US market in 2007
due to the deficiency of consumer demand.

The lung has an effective mechanism of clearing external agent, thus making it
challenging to deposit drugs in a region in the lung. Inhalable particles could be
eliminated from the lung by two mechanisms. Firstly, particles can be cleared by the
moving patches of mucus layer in the conducting zone of the lung. The clearance
would be more efficient in lung diseases with an increase in mucus production and
thickness [10]. Secondly, in the deep lung, macrophages (on the air side of the
alveolar cells) could engulf and digest to remove insoluble particles rapidly.

2.2 Introduction of Acute Lung Inflammation

An acute lung injury (ALI) is a disease in which the lungs could not sufficiently
provide oxygen to the body, causing low levels of oxygen in the blood (hypoxemia).
The leading causes of ALI have been found to be pneumonia, sepsis, lung trauma,
burns, near drowning, and other condition related to inflammation or damage to the
lungs. As first described in 1967, Acute lung injury (ALI) was diagnosed with acute
respiratory distress, cyanosis refractory to oxygen therapy, decrease lung compli-
ance, and diffuse infiltrates on chest radiography [30]. In 1988, this definition was
expanded to encompass the level of positive end-expiratory pressure, the ratio of the
partial pressure of arterial oxygen to the fraction of inspired oxygen, the static lung
compliance, and the degree of infiltration evident on chest radiography [31]. Later,
the lung injury score was included to evaluate the severity level of the disease in
clinical trials [32]. American-European Consensus Conference Committee pro-
posed a new definition that classifies the severity of lung injury and segregates the
patients into two groups:acute lung injury (less severe hypoxemia) and acute respi-
ratory distress syndrome (more severe hypoxemia) [33].



340 H. X. Nguyen

Recent surveys reveal that approximately 190,000 cases of ALI with 74,500
deaths per year in the US [34]. This life-threatening disease has been influencing
millions of people every year over the world [35]. The in-hospital mortality rate of
ALI was estimated to be 38.5% [34], which could be reduced to 31% using low-
tidal volume ventilation [36, 37]. The primary cause of death was attributed to sep-
sis or multiple organ dysfunction syndromes.

2.3 Mechanism and Properties of Acute Lung Injury

ALI could occur due to either direct or indirect mechanical, toxic, infectious, or
inflammatory challenges to the lung [38]. The most common cause of ALI was
severe pulmonary sepsis, following by trauma, aspiration, multiple blood transfu-
sion, acute pancreatitis, inhalation injury, and drug toxicity [39].

The interaction and communication between different cell types have been inves-
tigated to discover the pathology of ALI. Mechanism of ALI most likely relates to
cell death in necrosis and apoptosis [35]. In lung injury, cell death could occur based
on oncosis [40], cathepsin-dependent cell death, or autophagy. A wide range of cell
types is associated with ALI such as alveolar epithelial and vascular endothelial
cells (change in permeability to cause edema formation and alveolocapillary injury)
and platelets and immune cells (inflammatory response) [41—44]. ALI is involved in
a prothrombotic and antifibrinolytic shift that facilitate fibrin deposition, thus,
advance the inflammation [45].

ALIand ARDS are represented by bilateral exudative chest infiltrate which could
be diagnosed by roentgenograms [44, 46]. ALI can progress rapidly from an initial
stage of a leaky edematous lung to a proliferative phase with deposition of fibrin and
a reduction in respiratory compliance, and to a fibrotic phase with scarring lung.
The hallmarks of ALI—protein extravasation and formation of lung edema—were
caused by excessive inflammation, alteration in coagulation and fibrin deposition,
and increase in permeability of the alveolocapillary barrier [38].

3 Nanoparticles to Treat Acute Lung Injury

3.1 Advantages of Nanoparticles for Lung Delivery

The large surface area of alveolar, a thin layer of epithelial barrier, and a dense net-
work of blood vessels facilitate the delivery of various therapeutic agents [47]. The
use of nanoparticles could help to minimize the effect of airway defenses in the lung.
Once delivered to the lungs, nanoparticles could have a prolonged retention, sus-
tained drug release, and targeted delivery to the lung tissues [10, 48]. Extensive stud-
ies have been conducted for the pulmonary delivery of polymeric nanoparticles for
various compounds including asthmatic drugs [49, 50], antituberculosis drugs [51],
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and anticancer drugs [52, 53]. Also, liposomal nanoformulations have been investi-
gated and evaluated to be a promising platform for drug delivery. Currently, multiple
liposomal formulations are FDA-approval products available on the market while
several others are studied in clinical trials [54]. Liposome has a major advantage of
being fabricated from compounds compatible and endogenous to the lung (such as
lung surfactants), thus becoming a preferred pulmonary drug delivery system. Some
marketed liposomal products for the treatment of acute respiratory distress syndrome
are Exosurf® (Colfosceril Palmitate, GlaxoSmithKline, Brentford, UK) and
Alveofact® (Bovactant, Lyomark Pharma, Oberhaching, Germany) [55]. Budesonide-
encapsulated liposomes have been developed to deliver the drug at a controlled
release rate to maintain the therapeutic concentrations in rat lungs in vivo. This lipo-
somal formulation also helped to reduce the systemic exposure and toxicity [56].
Interestingly, multiple drugs could be combined and delivered to the lung simultane-
ously using nanocarrier systems. Nanoparticles offer several benefits as they could
penetrate the lung more deeply and enter the alveolar areas [10]. Furthermore,
nanoparticle-based systems evade macrophage clearance effectively and permeate
the lung epithelium. Also, the surface of nanoparticles could be modified and func-
tionalized to enhance the drug bioavailability, to improve the penetration into the
mucus layer, and aid targeted delivery [10]. The deposition of nanocarriers could be
prolonged by using mucoadhesive materials, for instance, biodegradable polysac-
charide chitosan [7]. Yamamoto and colleagues fabricated peptide elcatonin-encap-
sulated PLGA nanoparticles whose surface was modified with chitosan. Once
delivered to the lungs of guinea pigs, the particles caused a significant decrease in
blood calcium levels as compared to the initial concentrations. Furthermore, this
effect was prolonged and sustained up to 24 h (due to the slow elimination of chito-
san-modified particles), which was markedly longer than unmodified particles [57].

3.2 Surface-Modified Nanoparticles for Lung Delivery

The use of surface-modified nanoparticles is beneficial for lung delivery. Brush-
shaped nanoparticles have been formed with low molecular weight poly(ethylene
glycol) chains (PEG) for a reduction of phagocytosis [58]. Furthermore, PEGylated
nanocarriers were found to easily and readily penetrate the mucus layer in chronic
obstructive lung diseases [59]. In contrary, chitosan could be used to modify the
particle surface to enhance the mucoadhesion and circulation. Thus, chitosan-modified
nanoparticles could reside for a longer period at the targeted site to improve the drug
uptake, bioavailability, and therapeutic efficacy. This property is particularly desir-
able for the treatment of nonobstructive lung diseases including allergy and lung
cancer [10]. Interestingly, biological fluids could modify the surface of particles to
form protein corona whose properties are enhanced as compared to the original
particles [60]. Lung surfactant phospholipids have been used to coat nanoparticles
to alleviate toxicity as well as to improve cellular uptake [61]. Furthermore, the
agglomeration of the particles helps create large agglomerates to be digested by
macrophages [62] (Table 17.2).
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Table 17.2 Surface-modified nanoparticles for acute lung injury

Nanoparticles Effect Mechanism Study model References
Polydopamine Anti- Polydopamine with | Murine models [63]
nanoparticles inflammation enriched phenol
(similar to melanin) | therapeutic groups functioned as

effect on acute | a radical scavenger to

inflammation- eliminate reactive

induced injury | oxygen species
Lung-targeting Good particle Reduce the levels of | Rat [64]
functionalized size distribution, | TNF-a, IL-8, and
nano-sterically morphology, TGF-f1 in rat
stabilized encapsulation bronchoalveolar
unilamellar efficiency, and | lavage fluid and the
liposomes loaded high specificity | expression of NK-kB
with glucocorticoids | to the lung. in the lung tissues,
methylprednisolone thus alleviate lung

injuries and enhance
rat survival

Generation IV The treatment of | Dendrimers were Ex vivo rabbit [65]
polyamidoamine ischemia- taken up in epithelial | model
dendrimers reperfusion- cells and

induced acute macrophages.

lung injury
Dry powder Good Novel delivery [66]
formulations of aerodynamic system against lung

inhalable apigenin-
loaded bovine serum

properties of the
particles and

injury with potential
antioxidant activity

albumin antioxidant
nanoparticles activity of

encapsulated

apigenin
Two-component Capability to Exhibit excellent In vitro predictive | [67]
co-spray dried reach lower aerosol dispersion lung deposition
DMEF:D-Man DPIs | airways to treat | performance with a | modeling
with high load of inflammation in | human DPI device
dimethyl fumarate | pulmonary

diseases
Human amniotic Display Recover the integrity | A murine model of | [68]
fluid stem cells remarkable of the alveolar- acute lung injury

labeled with
dual-polymer-coated
UCNP-PEG-PEI
nanoparticles

positive effects
on ALI-damaged
lung tissue
repair.

capillary membrane,
attenuate
transepithelial
leukocyte and
neutrophil migration,
and down-regulate
proinflammatory
cytokine and
chemokine
expression

(continued)
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Table 17.2 (continued)
Nanoparticles Effect Mechanism Study model References
Poly-lactic-co- Upregulate Targeted pulmonary | Rat lungs [69]
glycolic acid pulmonary EpoR | EpoR upregulation
nanoparticles- expression and | mitigates acute
facilitated cDNA downstream oxidative lung
delivery signal damage
transduction in
rats for 21 days,
Attenuate
hyperoxia-
induced damage
in lung tissue
based on
apoptosis,
oxidative
damage of DNA,
protein and lipid,
tissue edema,
and alveolar
morphology
Nanoparticles based | When Attenuate alveolar Mouse model of [70]
on 2-Adrenergic fluid clearance, lung | ALI induced by
polyethyleneimine | Receptor (32AR) | water content, lipopolysaccharide
and DNA was applied as | histopathology,
the therapeutic | bronchioalveolar
gene, PEI/B2AR | lavage cellularity,
treatment protein concentration,
significantly and inflammatory
attenuated the cytokines in mice
severity of ALI. | with preexisting ALI
PEI/DNA
nanoparticles
could be an
efficient agent in
ALI treatment.
Shell cross-linked The K(d) values | Recognize and [71]

knedel-like polymer
nanoparticles

of the
nanoparticle-
attached PNAs
were about an
order of
magnitude
greater than the
free PNAs

selectively inhibit of
mRNA sequences for
inducible nitric oxide
synthase (iNOS),
which are
overexpressed at sites
of inflammation
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3.3 Factors Affecting Nanoparticles Delivery to the Lung

The deposition and distribution of nanoparticles in the lungs vary depending on
several factors such as breathing rate, lung volume, air flow, and particle size [10].
Multiple studies have suggested that particle size plays the most important role in
manipulating the distribution and deposition of the particles in the lung. Small par-
ticles (size range from 1 to 5 pm) are deposited in the deep regions while inhaled
particles (whose size is larger than 10 pm) are found primarily in the oropharyngeal
region [72, 73]. A requirement for lung delivery is the proper design of the carrier
systems [74]. Pulmonary delivery of inhaled particles is dominated by various fac-
tors such as particle size, particle density, and the mass median aerodynamic diam-
eter in which the particle size could guarantee a maximum distribution and
deposition of the particle in the deep lung [75]. The rate of clearance is primarily
affected by the particle size in the alveolar region. Several studies have been per-
formed to investigate the interaction between nanoparticles and macrophages. Large
particle (aerodynamic diameter more than 6 pm) are exhaled without being phago-
cytosed [76], microparticles (aerodynamic diameter 1-5 pm) are effectively taken
up by macrophages, while nanoparticles (aerodynamic diameter less than 200 nm)
could penetrate the cellular barrier and the particle phagocytosis by alveolar macro-
phages can be reduced [48, 77, 78]. These indicate that nanoscale particles could
avoid macrophage clearance while being deposited in the deep lung, especially the
alveolar regions [10]. However, small particles require a high level of energy for
fabrication and disaggregation. Inhaled particles could be deposited in the lung by
inertial impaction, sedimentation, and diffusion. The particle deposition is analo-
gous to the settling of spherical particles under gravity force through the air.
Nanoparticles, which is not deposited in the lungs, is exhaled to result in a major
loss of the delivered dose [79].

3.4 Pulmonary Delivery of Nanoparticles Using Dry Powder
Carriers

Proper dry powder formulations and carrier systems have been developed and opti-
mized to deposit nanoparticles to the alveolar regions to enhance the efficacy of
their pulmonary delivery [80]. Kawashima and coworkers employed hydroxypro-
pylmethyl cellulose phthalate (HPMCP) nanospheres (hydrophilic nanoparticles) to
facilitate the inhalation properties of dry powder pranlukast hydrate [81]. The
authors mixed the surface nanospheres and drug powder with lactose. Thus, in the
in vitro inhalation test, the emission and dispersibility of surface-modified drug
powder increased significantly and the powder was effectively delivered to the deep
lung. Kawashima et al. fabricated insulin-loaded PLGA nanospheres. Then, an
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ultrasonically assisted nebulizer was utilized to deliver the nanospheres to the tra-
chea of guinea pigs. The authors reported a significant decrease in the blood glucose
and a sustained hypoglycemic effect for 48 h. The results were attributed to the
controlled release of insulin from the nanospheres and their deposition in multiple
regions of the lung [82]. Tsapis and coworkers employed a spray drying method to
manufacture large porous particles. Using 1,2-dipalmitoyl-sn-glycero-3-phos-
phocholine and 1,2-dimyristoyl-sn-glycero-3-phophoethanolamine (surfactants),
and lactose, the authors could tailor the physicochemical properties of the spray-
dried powder for pulmonary delivery [78]. Interestingly, nanoparticles could be
loaded in a carrier matrix. Sham and colleagues dissolved lactose in nanoparticle
suspension before spray drying to obtain nanoparticles-incorporated carrier powder.
The authors observed a marked change in the particle size and reported the possibil-
ity of manipulating the delivery and release of nanoparticles [80]. In another study,
Grenha et al. used lactose and mannitol together with a spray drying method to
prepare microspheres, which contain insulin-incorporated nanoparticles for pulmo-
nary drug delivery. The drug release from nanoparticles was found to be unaffected
by the microencapsulation. Furthermore, this system allows to effectively deliver
macromolecules via pulmonary administration [47]. The spray drying technique
was also employed by Ely and colleagues to prepare effervescent carrier particles
which incorporate ciprofloxacin-loaded nanoparticles. The authors could manage to
alter the particle size to maximize the particle deposition in the deep lung. The use
of effervescent carrier particles resulted in a marked enhancement in the drug
release. Also, they observed an insignificant change in the nanoparticles dimension
upon being released from the effervescent carrier particles [74]. Pulmonary admin-
istration is a promising platform to deliver nanoparticles carried in dry powders.
The nebulization parameters of the matrix should be optimized to minimize particle
aggregation and to facilitate the drug delivery into the deep lungs [83].

3.5 Pulmonary Delivery of Nanoparticle Suspensions Using
Nebulization

Nanoparticles could be delivered by spraying or nebulizing the nanoparticle suspen-
sion. Dailey and coworkers formulated a surfactant-free nanoparticle suspension for
pulmonary drug delivery. This system could provide a high encapsulation efficiency
due to the electrostatic interactions between the drug molecules and the particles.
The authors reported that the use of anionic diethylaminopropyl amine-poly(vinyl
alcohol)-grafted-poly(lactide-co-glycolide)-contained formulation and an increase
in the amount of carboxy methyl cellulose helped to minimize the particle aggrega-
tion [84]. Also, Yamamoto et al. prepared and modified the surface of PLGA nano-
spheres using chitosan to enhance the delivery efficacy of calcitonin to the lung.
After the administration of chitosan-modified PLGA nanoparticles to the trachea of
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guinea pigs, the blood calcium was reported to decrease by 80%. Furthermore, the
therapeutic level of the drug was sustained for 24 h, which was markedly longer
than the unmodified particles. This result could be explained by the mucoadhesion
of the nanoparticles to the bronchial mucous and local tissue in the lung as well as
the prolonged drug release from the particles. Moreover, chitosan could enhance the
drug permeability by loosening the intercellular tight junctions [57]. In another
study, itraconazole-loaded nanoparticles were fabricated, dispersed in aqueous
media, and nebulized to the murine lung in vivo. This local delivery system led to a
high drug concentration in the lung, and a decreased possibility of adverse effects
[85]. Thus, nebulizing nanoparticle suspensions is a promising technique to deliver
therapeutical agents to the lung. The physicochemical stability of the suspension
needs to be maintained for clinical efficacy.

3.6 Local Delivery of Nanoparticles to the Lung

The local delivery of nanoparticles allows to enhance, sustain, and control the drug
level at the target site to treat respiratory diseases [7]. Also, this targeted delivery
could reduce the required dose, avoid the drug degradation in the gastrointestinal
tract (oral administration), and minimize the systemic toxicity. Vaughn and col-
leagues delivered itraconazole-loaded nanoparticles to treat fungal infections of
Aspergillus fumigatus. The pulmonary delivery of itraconazole nanoparticles to
mice in vivo showed a significantly high and sustained drug concentration in the
lung tissues while the drug level in serum was controlled to maximize the treatment
efficacy as well as to reduce the possible systemic toxicity [86]. In addition to sus-
tained drug concentrations in the lung, target delivery to certain cells or tissues has
been found beneficial. For example, various therapeutic compounds including
rifampicin, isoniazid, and pyrazinamide were formulated to target the drug delivery
to alveolar macrophages to optimize the treatment of pulmonary tuberculosis [6].
Several studies fabricated and characterized drug-encapsulated nanoparticles for
in vivo tests on guinea pigs. PLGA nanoparticles could be delivered to the lungs to
maintain the therapeutic levels of the drugs in the plasma as well as in the lungs for
a prolonged period of time [87]. Also, this approach allowed to decrease the overall
dose and reduce the systemic exposure. Furthermore, the surface of PLGA nanopar-
ticles has been functionalized and modified with wheat germ agglutinin whose bio-
adhesive properties facilitate its interaction with lectin receptors embedded in the
alveolar epithelium to maintain the drug concentration in the lung tissues [88]. This
system could result in a sustained drug level in the plasma for 14 days and in the
lung for 15 days. Similarly, PLGA nanoparticles which were formulated with
sodium alginate and chitosan provided a sustained drug delivery to the lungs of
guinea pigs in vivo to eradicate tubercle bacilli from M. tuberculosis-infected guinea

pigs [51].
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3.7 Technical Issues of Nanoparticles to the Lung

Nanoparticles are usually formulated in colloidal solutions for nebulization [7].
However, the storage in an aqueous medium could induce polymer hydrolysis and
degradation of drugs. Furthermore, the small dimensions and interactions between
particles result in the agglomeration and settling of nanoparticles, thus, cause a
reduced functionality of the nebulizer. To overcome these challenges, lyophilization
has been employed to dry nanoparticles to obtain a stable storage form which can be
later dispersed in an aqueous solution for administration [89, 90]. Stabilizers such
as cryoprotectant sugars and surfactants are used to enhance the stability, maintain
the characteristics of nanoparticles during lyophilization, and to facilitate resuspen-
sion of the dry particles. These stabilizers dissolve in the resuspended solution and
are delivered together with the particles.

3.8 Toxicity of Nanoparticles to the Lung

Despite multiple advantages offered by nanoparticles, they still possess some safety
concerns. Li et al. reported that polyamidoamine which is a promising material for
nanocarriers could cause autophagic cell death in human lung carcinoma cell line
(A549 cells) and acute lung injury in mice in vivo, especially the administration of
polyamidoamine might lead to mortality [91]. Card and coworkers reviewed the
applications of nanoparticles for imaging, diagnostic, and therapeutic use in the
lung [92] and stated that several nanomaterials could cause inflammation and fibro-
sis in the lung. Toxicity of nanoparticles in the lungs has been evaluated in the
environmental health field, especially “ultrafine” particles with the aerodynamic
diameter less than 100 nm [7]. The nanoscale dimension of ultrafine particles, on
the one hand, provide the therapeutic application, on the other hand, might result in
toxicity and undesirable health effects. Ultrafine particles could penetrate epithelial
and endothelial cells, be taken up efficiently by cells, and distributed in bone mar-
row, lymph nodes, spleen, liver, heart, the central nervous system, and ganglia [93—
95]. The biological activity of nanoparticles could lead to inflammatory and
oxidative stress reactions. Several authors have reviewed the effects of physico-
chemical properties of nanoparticles such as dimensions, surface charge, geometry,
and lipophilicity on their efficacy in vivo [96-99]. The toxicity of nonbiodegradable
nanoparticles could be markedly different from those biodegradables. There is an
insignificant interaction between biodegradable materials and biological systems.
Moreover, the speed of degradation of biodegradable nanoparticles leads to a cer-
tain variation in the toxic responses. In particular, biodegradable PLGA nanoparti-
cles resulted in markedly lower inflammatory response than nonbiodegradable
polystyrene nanoparticles [100]. Nanoparticles could translocate from the lung to
other organs to cause adverse reactions in those organs. The toxicological potential
of nanoparticles is negatively correlated with the particle size. Certain levels of
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toxicity have been observed with inhalable single-wall carbon nanotubes (SWCNT)
[85]. Warheit and colleagues investigated the toxicity of SWCNT on rats in vivo and
reported that a high-dose pulmonary exposure led to mortality after 24 h. Pulmonary
delivery of SWCNT caused multifocal granulomas, which indicated the nonuni-
form distribution and translocation of SWCNT-induced toxicity in rats [101].
Similarly, Shvedova et al. reported inflammatory responses in the lungs of mice
after exposure to SWCNTSs. The toxicity could progress to a reduction of pulmonary
function as well as increased vulnerability to infection [102].
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