
From Monolith to Microservices:
A Classification of Refactoring Approaches

Jonas Fritzsch1(&), Justus Bogner2, Alfred Zimmermann2,
and Stefan Wagner1

1 Institute of Software Technology, University of Stuttgart, Stuttgart, Germany
{jonas.fritzsch,

stefan.wagner}@informatik.uni-stuttgart.de
2 Reutlingen University of Applied Sciences, Reutlingen, Germany

{justus.bogner,

alfred.zimmermann}@reutlingen-university.de

Abstract. While the recently emerged Microservices architectural style is
widely discussed in literature, it is difficult to find clear guidance on the process
of refactoring legacy applications. The importance of the topic is underpinned
by high costs and effort of a refactoring process which has several other
implications, e.g. overall processes (DevOps) and team structure. Software
architects facing this challenge are in need of selecting an appropriate strategy
and refactoring technique. One of the most discussed aspects in this context is
finding the right service granularity to fully leverage the advantages of a
Microservices architecture. This study first discusses the notion of architectural
refactoring and subsequently compares 10 existing refactoring approaches
recently proposed in academic literature. The approaches are classified by the
underlying decomposition technique and visually presented in the form of a
decision guide for quick reference. The review yielded a variety of strategies to
break down a monolithic application into independent services. With one
exception, most approaches are only applicable under certain conditions. Further
concerns are the significant amount of input data some approaches require as
well as limited or prototypical tool support.

Keywords: Microservices � Monolith � Modernization � Refactoring �
Cloud � Decomposition � Transformation � Modularization �
Software architecture

1 Introduction

An increased tendency by organizations to move existing enterprise-scale applications
to the cloud can be observed. The reasons to do so are manifold: high availability and
redundancy, automatic scaling, easier infrastructure management and compliance with
latest security standards ensure a more agile and combined flow of development and
operation, also referred to as DevOps [5]. Driven by this new paradigm, the design,
build, deployment and maintenance of business applications has fundamentally chan-
ged. To overcome this gap and make existing monolithic applications “cloud-ready”,

© Springer Nature Switzerland AG 2019
J.-M. Bruel et al. (Eds.): DEVOPS 2018, LNCS 11350, pp. 128–141, 2019.
https://doi.org/10.1007/978-3-030-06019-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-06019-0_10

they need to run as flexible, loosely-coupled compositions of specialized services,
which lately emerged as the Microservices architecture style.

Monolithic applications that have grown over years can become large, complex and
in later stages even fossilize [39], meaning the accumulated technical debt results in
obscure structures that make the product unmaintainable with a reasonable effort. Even
in earlier stages, a single developer or even architect is unable to keep detailed insight
into all components and their interfaces. This makes the monolith hard to maintain and
cumbersome with regards to adapting newer and better technologies. Furthermore, the
effort for changing initial design choices later on requires immense effort. Besides,
monolithic applications are often incapable to scale on the module level, but rather per
duplicating instances of the whole application. This is in most cases an inefficient
approach in responding to quickly changing workloads while maintaining optimal
resource utilization.

A new architectural style, referred to as Microservices, promises to address these
issues. It started as a trend in software engineering industry practice which was first
described in detail by Lewis and Fowler [25]. Contextually related modules have to be
identified and encapsulated into a service, providing high cohesion inwards and loose
coupling outwards. To leverage most from the design, functionality has to be split up
with appropriate granularity. However, building a new application from scratch based
on a Microservices architecture can be a very expensive and time-consuming task. On
the other hand, the process of refactoring a mature monolithic application into
Microservices can be a long-lasting endeavor too, depending on the condition of the
system in place.

This study aims to fill the gap in scientific research by comparing and classifying
refactoring approaches proposed in academic literature. The results can help architects
and developers to gain an overview of currently available refactoring approaches and
hereby facilitate their specific transformation process. Researchers may profit from the
findings through quickly understanding the current state of the field. The key objective
of the study design is formulated as a research question:

RQ: What are existing architectural refactoring approaches in the context of decom-
posing a monolithic application architecture into Microservices and how can they be
classified with regards to the techniques and strategies used?

2 Architectural Refactoring and Decomposition

Refactoring as an activity to extend the lifetime of existing software products is a
behavior preserving code transformation to improve the source code that structurally
deteriorated over time [30] or accumulated technical debt [39]. According to Pirkel-
bauer [33], agile software development methodologies benefit in particular due to
frequent changes. Plenty of research has been conducted in this area already, which
mainly targets refactoring at source code level. Fowler et al. consolidated the field in
their well-known book “Improving the design of Existing Code, more than 70 Patterns
explained” [15]. Dietrich distinguishes code-level from architectural refactoring by
referring to the latter ones as high-impact refactorings [11]. They can be seen as

From Monolith to Microservices 129

architectural activities that remove a particular architectural smell while improving one
or more quality attributes, without changing the system’s scope and functionality [41].
Moreover, it may result in an altered organizational structure [35], which is an inter-
esting aspect: According to Conway’s Law [10], organizations tend to produce system
designs that reflect the organization’s communication structures [23, 38]. Conse-
quently, architecture and organization are interdependent to some degree, which fur-
thermore distinguishes the process from pure code refactoring. Drivers for a refactoring
are feature extensions and design changes [33], but also anti-patterns [8] and code
smells [15], whereas such high-impact refactorings are rather driven by requirements to
run software in the cloud (platform changes, deployment and release cycle changes) as
well as interconnected organizational changes. In contrast to code-level refactoring,
architectural refactoring is common in the context of adopting Microservices.

From a software architects’ perspective, a proper decomposition into services with
the appropriate granularity can be seen as the main challenge in a refactoring process:
In general, one could imagine various ways to split a system into smaller parts.
Amundsen [2] outlines a few of them, e.g. based on implementation technology
(computationally heavy services written in C may be separated from chatty components
using Node.js) or based on geography (also specific legal, commercial or cultural
aspects). Besides them, one could think of even other viewpoints, like the architectural
style, certain non-functional requirements, personal experiences or education. The
characteristics of Microservices promote following the functional decomposition per-
spective [37]. In this context it is referred to as decomposition around business capa-
bilities. Dependencies throughout the technical layers are hereby greatly reduced,
whereas a rather lightweight integration layer on top is a common solution to integrate
the resulting Microservices [26].

So, what are the means to identify business capabilities in a monolith? Lewis and
Fowler [25] bring the notion of a bounded context into effect. It originates from Evans
book Domain-Driven Design [13], which provides the means to identify such contexts
within a complex domain [25]. According to Richardson, bounded contexts can be
separated through decomposing by verbs (use cases) or by nouns (resources) [36].
Newman stresses the term seam from Michael Feathers book “Working Effectively
with Legacy Code” [14]. It similarly describes a way to separate portions of code that
can be treated independently from other parts and hereby obtain “loosely coupled and
strongly cohesive” [29] Microservices. In practice, the lack of a universally valid
algorithm that guides the decomposition process makes it to “somewhat of an art”, as
Richardson points out [74]. Extracting a domain model from an application’s code base
can be a significant challenge. If incorrectly applied, it can lead to architectures that
combine the drawbacks of both styles, Monolith and Microservices.

3 Related Work

Our literature review has revealed a lack of systematic guidance on the refactoring
process for existing monolithic applications. Several publications discussing
Microservices also cover the aspect of migrating monoliths to Microservice-based
architectures to some extent [22, 25, 29, 36], but the topic is still evolving.

130 J. Fritzsch et al.

A systematic mapping study conducted in 2016 identified 3 out of 21 studies dealing
with migration topics [31], while Di Francesco et al. found 16 out of 71 migration-
related studies during their review in 2017 [16]. The papers found were mainly solution
proposals, followed by experience reports and opinion papers. The field is not mature
yet, Microservices migration and architectural refactoring are still referred to as future
trends [31]. The very recent and comprehensive study by Balalaie et al. compiles a set
of empirically identified design patterns for Microservices migration and rearchitecting
[3]. The patterns originate from observations of medium to large-scale industrial pro-
jects. Compared to our work, the concepts are presented on a higher level of abstraction
and do not cover specifics of concrete approaches proposed in literature. Still, the study
complements our work in terms of empirical values. Widening the scope to Service-
based Systems in general, there is a mature state of research regarding Service-Oriented
Architecture (SOA). According to Bogner et al. [6], Microservices and SOA “share a
large set of design-related commonalities”. Klose et al. for instance discuss the iden-
tification of services for SOA development from a business point of view [21].
Although the suitability for Microservices may be limited due to the differences of the
architectural styles, the included comparison of approaches regarding service identi-
fication mark a decent overview at that time. To the best of our knowledge, there is
currently no holistic literature review of refactoring approaches and decomposition
techniques available that facilitates this process. Our study attempts to fill this research
gap.

4 Research Method and Search Strategy

By means of a literature review, existing refactoring techniques in the Microservices
context are identified, investigated, classified and presented in textual and visual form.
Brereton et al. propose a three-step review process that serves as a basic structure for
this review: planning, conducting, and documenting [7]. Fundamental constraints of a
literature review are the databases to query and the search strings to use. For the used
queries, three of the most frequented scientific libraries and indexing systems in
computer science have been selected: ACM Digital Library, IEEE Xplore and Google
Scholar. The choice of these databases and indexing systems is guided by the fact that
they have been proven most relevant for conducting systematic literature reviews in the
software engineering field [32]. Other aspects are their high accessibility and ability to
export search results conveniently. Figure 1 illustrates the basic steps for our literature
search.

Fig. 1. Search strategy used for the review.

From Monolith to Microservices 131

The following search string(s) have been used for querying the databases:

(“microservice” OR “micro-service”) [AND “monolith*”]
[AND (“refactor” OR “transform” OR “migrat*” OR
“decompos*” OR “partition*” OR “granular*”)]

The obtained studies have been filtered according to a set of selection criteria: Only
peer reviewed articles published in English have been included, the abstract had to
clearly show a contribution towards the research question and we expected a docu-
mented validation of proposed approach. Guidelines recommend to use a snowballing
activity applied on the list resulting from the initial selection [40]. The initial search
results yielded by the queries have been enlarged by such a snowballing activity.
Finally, a qualitative assessment of the studies has been performed by focusing on
technical depth, recency and relevance of the content presented.

5 Results

The performed literature review identified a variety of studies with different orientation,
coverage and level of detail. Many of them were tailored to specific scenarios, focusing
on specific requirements or aspects while not discussing the theoretical background.

Table 1. Reviewed publications.

List of Authors and Publications

1 Escobar, D. et al.: Towards the understanding and evolution of monolithic applications as
microservices. In: Proceedings of 42nd Latin American Computing Conference, CLEI.
(2016) [12]

2 Levcovitz, A. et al.: Towards a Technique for Extracting Microservices from Monolithic
Enterprise Systems. In: 3rd Brazilian Workshop on Software Visualization, Evolution and
Maintenance (VEM). pp. 97–104 (2015) [24]

3 Ahmadvand, M., Ibrahim, A.: Requirements reconciliation for scalable and secure
microservice (de)composition. In: Proceedings - 2016 IEEE 24th International
Requirements Engineering Conference Workshops, REW 2016. pp. 68–73 (2016) [1]

4 Baresi, L. et al.: Microservices Identification Through Interface Analysis. In: ESOCC
2017: Service-Oriented and Cloud Computing. pp. 19–33 (2017) [4]

5 Gysel, M. et al.: Service cutter: A systematic approach to service decomposition. In:
Lecture Notes in Computer Science. pp. 185–200 (2016) [17]

6 Mazlami, G. et al.: Extraction of Microservices fromMonolithic Software Architectures. In:
2017 IEEE International Conference on Web Services (ICWS). pp. 524–531 (2017) [27]

7 Mustafa, O., Gómez, J.M.: Optimizing economics of microservices by planning for
granularity level Experience Report. (2017) [28]

8 Hassan, S. et al.: Microservice Ambients: An Architectural Meta-Modelling Approach for
Microservice Granularity. In: Proceedings - 2017 IEEE International Conference on
Software Architecture, ICSA. pp. 1–10 (2017) [18]

9 Klock, S. et al.: Workload-Based Clustering of Coherent Feature Sets in Microservice
Architectures. Proc. - 2017 IEEE Int. Conf. Softw. Archit. ICSA. 11–20 (2017) [20]

10 Procaccianti, G. et al.: Towards a MicroServices Architecture for Clouds. VU University
Amsterdam (2016) [34]

132 J. Fritzsch et al.

Ten approaches provided an adequate level of abstraction and potential for general-
ization according to the underlying strategy used to steers the decomposition (see
Table 1). The work by Chen et al. [9] was published after completion of the review and
thus did not go into the list of selected publications.

5.1 Classification

While analyzing the selected approaches, we identified distinct decomposition strate-
gies. They determine the required artefacts (besides source code) as an input, the
granularity of the resulting services and if the approach can be applied to greenfield-
developments in addition. Out of the reviewed studies, the following categories have
been defined by grouping similar strategies:

• Static Code Analysis aided approaches require the application’s source code and
derive a decomposition from it (through possible intermediate stages).

• Meta-Data aided approaches require more abstract input data, like architectural
descriptions in form of UML diagrams, use cases, interfaces or historical VCS data.

• Workload-Data aided approaches aim to find suitable service cuts by measuring the
application’s operational data (e.g. communication, performance) on module or
function level and use this data to determine a fitting decomposition and granularity.

• Dynamic Microservice Composition approaches try to solve the problem more
holistically by describing a Microservices runtime environment. Other than the
above categories, the resulting set of services is permanently changing in each
iteration of re-calculating the best-fitting composition (based on e.g. workload).

Tables 2 and 3 give an overview of the reviewed approaches. The classification
defined above can be found in the Type column. The Applicability column distin-
guishes between approaches that support Microservices greenfield developments and
others that focus on existing monolithic applications. Other constraints like technology-
restrictions are listed in this column as well. Strategy points out the utilized decom-
position strategy. Atomic Unit, Granularity indicates the smallest unit that the approach
is able to handle, which in the end determines the possible range of granularity. Some
approaches automatically calculate the granularity, i.e. number of resulting services,
whereas others leave it up to the user. Input and Output list artefacts needed and
produced by the approach. Some approaches describe metrics for a result evaluation,
which can be found under Result Evaluation. Four of the approaches offer tool-support,
as the respective column shows. Our review revealed a general lack in this area, which
is mandatory to achieve a certain degree of automation. It hinders an empirical eval-
uation and thorough assessment of the approaches. Lastly, the column Validation
shows the kind of method used to validate the approach like experiments, case studies
or proof-of-concepts (Table 4).

From Monolith to Microservices 133

Table 2. Overview of decomposition approaches, part 1.

Approach Authors
(Year)

Type Applicability Strategy Atomic unit,
granularity

1 Towards the
understanding
and evolution of
monolithic
applications as
microservices

Escobar,
et al.
(2016) [12]

SCA, based on
static code
analysis from
Java
annotations

MO, JEE
multi-tier
applications

Calculate clusters
of EJBs that form
a microservice,
identify data types
through Java
annotations

Atomic unit:
EJB, adjustable
granularity
during clustering
threshold
provided by user

2 Towards a
Technique for
extracting micro-
services from
monolithic
enterprise
systems

Levcovitz,
et al.
(2016) [24]

SCA, focusing
on multi-tier
applications

MO, multi-
tier
applications
consisting of
at least 3
tiers

Construct
microservice
candidates based
on dependencies
between facades
and database
tables, bridged by
business functions

Atomic unit: set
of facades,
business
functions,
database table,
granularity as
result

3 Requirements
reconciliation for
scalable and
secure
microservice
(de) composition

Ahmadvand,
et al.
(2016) [1]

MDA,
focusing on
security and
scalability

GR + MO,
application
defined by
use cases
and
requirements

Calculate
microservice
decomposition
based on security
and scalability
requirements

Atomic unit as
defined in use
case diagrams

4 Microservices
identification
through interface
analysis

Baresi, et al.
(2017) [4]

MDA, based
on semantic
similarity of
(Open) API
specification

GR + MO Calculate suitable
service cuts
through clustering
of interface
specifications
according to their
semantic
similarity

Single operation
as provided by
OpenAPI spec.,
granularity
parameterizable

5 Service cutter: a
systematic
approach to
service
decomposition

Gysel, et al.
(2016) [17]

MDA, extracts
coupling
information
from software
engineering
artifacts
(ERM, use
cases)

GR + MO Calculate
clustering of
nanoentities to
form
microservices
based on number
of weighted
properties,
clustering
algorithm
exchangeable

Nanoentity
(data, operation
or artifact),
granularity as
result or input
param,
depending on
algorithm

6 Extraction of
microservices
from monolithic
software
architectures

Mazlami,
et al.
(2017) [27]

MDA, based
on version
control meta
data

MO,
applications
having
meaningful
VCS meta
data

Calculate
decomposition via
graph-based
clustering out of
version history by
either: logical,
Semantic or
Contributor
Coupling

Class as atomic
unit, granularity
as result

(continued)

134 J. Fritzsch et al.

5.2 Decision Guide

Figure 2 illustrates the essentials of the presented approaches in form of a decision
guide. The architect planning to migrate a monolithic application to Microservices can
use this flow chart to quickly find the appropriate approach for a specific scenario.
Starting on top, a set of alternatives will lead to the most appropriate approach first,
symbolized by the number. Should this option not fulfill the architect’s requirements,
the dashed line will lead back to the main thread and propose the next best alternative.
Each approach is labeled with its associated type (symbolized by the orange ellipse),
according to its classification (column Type). Should all approaches be discarded, the
last one proposed will be “Service Cutter” with No. 5, at the bottom right of the flow
chart. It can be seen as a general-purpose approach offering the most mature tool
support as of date of this review. However, the approach requires a comprehensive
specification of the system including coupling criteria, which may not always be
available to such extent [4].

Table 2. (continued)

Approach Authors
(Year)

Type Applicability Strategy Atomic unit,
granularity

7 GranMicro: a
black-box based
approach for
optimizing
microservices
based app’s

Mustafa,
et al.
(2017) [28]

WDA, black
box-based
approach,
considering
non-functional
requirements

MO, web-
applications
generating
expressive
access logs

Utilize web usage
mining techniques
to optimize
service
decomposition
based on non-
functional
requirements

Functional units
that can be
identified
through web
access logs

8 Microservice
Ambients: an
architectural
meta-modelling
approach for
microservice
granularity

Hassan, et al.
(2017) [18]

DMC,
dynamic
composition,
model
granularity at
runtime

GR + MO Define
architectural
elements
(Ambients) with
adaptable
boundaries, use
workload data for
adaptation of
granularity at
runtime

“Unit of
mobility” as
abstract
definition of an
atomic unit

9 Workload-based
clustering of
coherent feature
sets in
microservice
architectures

Klock, et al.
(2017) [20]

DMC,
dynamic
composition
approach for
workload-
optimized
deployment

GR + MO Calculate optimal
deployment and
granularity based
on workload
using a genetic
algorithm

Feature as
atomic unit
(chunk of
functionality that
delivers business
value)

10 Towards a
microservices
architecture for
clouds

Procaccianti,
et al.
(2016) [34]

DMC, MDA,
data-driven,
bottom-up
approach

GR + MO Bottom-up, data-
driven, process-
mining algorithm

Functional
property,
granularity
adapts
dynamically

From Monolith to Microservices 135

Table 3. Overview of decomposition approaches, part 2.

Input Output Result evaluation Tool support Validation

1 Source code
(Java)

Visualization in
four different
diagrams: EJB
data, EJB shared
types, MS, MS
invocation

Metrics based on source
code

n/a JEE
application
with 74.566
LoC, 624
classes and
35993
methods

2 Source code Candidate list of
microservices

n/a n/a Case study on
a 750 KLOC
banking
application

3 Use cases
(UML) with
assessment of
security and
scalability
requirements

Candidate list of
microservices

n/a, announced for future
research

n/a Sample
application

4 OpenAPI
specification of
interface;
reference
vocabulary (as
fitness
function)

Candidate list of
microservices

Qualitative, no metrics Experimental prototype
of decomposition tool
and sample datasets,
https://github.com/
mgarriga/decomposer

452 OpenAPI
specifications,
comparison of
samples with
results from 5
SW-engineers,
comparison
with service
cutter (#4)

5 Domain Model
(ERM) and
User
representations
(use cases,
characteristics
of nano-entities
and roles) in
JSON

Candidate list of
microservices,
export to JSON,
graphical
representation
of service and
dependencies

Qualitative service design
checklist assessing service
cut (excellent, expected,
acceptable, unreasonable)

Service Cutter, open
source prototype
implementing the
approach, https://
github.com/
ServiceCutter/
ServiceCutter

Case studies:
fictitious
trading system
and DDD
sample
application
“Cargo
Tracking”,
performance
tests

6 Source code
and VCS meta
data

Candidate list
of microservices

Quality of service cut using
custom metrics: Team size
reduction (tsr), average
domain redundancy (adr)

POC available as open
source Java project,
https://github.com/
gmazlami/
microserviceExtraction-
backend(and-frontend)

Experiment
using a set of
sample code
bases from
open-source
projects (200
to 25000
commits,
1.000 to
500.000 LOC,
5 to 200
contributors)

7 Web access
logs

Diagram of
service model

Performance metrics
(response time, CPU
utilization)

n/a Sample
e-bookshop
web
application

(continued)

136 J. Fritzsch et al.

https://github.com/mgarriga/decomposer
https://github.com/mgarriga/decomposer
https://github.com/ServiceCutter/ServiceCutter
https://github.com/ServiceCutter/ServiceCutter
https://github.com/ServiceCutter/ServiceCutter
https://github.com/ServiceCutter/ServiceCutter
https://github.com/gmazlami/microserviceExtraction-backend(and-frontend)
https://github.com/gmazlami/microserviceExtraction-backend(and-frontend)
https://github.com/gmazlami/microserviceExtraction-backend(and-frontend)
https://github.com/gmazlami/microserviceExtraction-backend(and-frontend)

Table 3. (continued)

Input Output Result evaluation Tool support Validation

8 Aspect-
oriented
description of
the software
architecture
using the
ambient-
PRISMA
textual
language

Microservice
composition
with dynamic
granularity
adaptation at
runtime, based
on predefined
parameters
indicating QoS

Qualitative evaluation on
effectiveness/expressiveness
of modelling and facilitating
design time and runtime
analysis

n/a Experiment
using a
hypothetical
application for
an online
movie
subscription-
based system

9 Representation
of the
architecture by
a set of
features,
workload
model

Descriptive and
visual output of
suggested
model, resulting
in concrete MS
architectures at
runtime

Performance metrics
measuring the quality of a
deployment

MicADO (Microservice
Architecture
Deployment Optimizer)
URL: see publication

Case study
using ERP
software
“AFAS” (27
features with a
total of 238
properties and
72
dependency
relations
between
features)

10 Properties or
blocks
extracted from
source code,
capabilities
(non-
functional)

Microservice
composition

n/a n/a Proof of
concept:
sample
application for
“synthetic
video
processing”

Table 4. Legend to Tables 2 and 3.

Type
SCA Static code analysis aided (either source code or more abstract artefacts like

architectural UML diagrams or APIs of the applications architecture)
MDA Meta-data aided (version control history data, non-functional requirements)
WDA Workload-data aided (gathered during runtime, like performance data or web-

access logs)
DMC Dynamic microservice composition (approach to model or adapt service

composition/granularity at runtime based on workload data)
Applicability
GR Microservices-greenfield development
MO Monolith-migrations
GR +
MO

Applicable for both scenarios

Approaches treating granularity as a dynamically changing factor are grouped in a
single box and not further differentiated. These approaches describe a Microservices
runtime environment in contrast to a fixed partitioning determined at design-time. As
such environments are not discussed in necessary detail here, the condensed depiction
will account for their complexity.

From Monolith to Microservices 137

Decision Guide
for Decomposi on Approaches of Monolithic Applica ons

Fig. 2. Decision guide for decomposition approaches.

138 J. Fritzsch et al.

6 Conclusion

By means of a literature review we identified and categorized 10 recently proposed
architectural refactoring approaches for transforming monolithic applications into
Microservices. The approaches have been categorized into four groups by the under-
lying strategy used for the decomposition, which can be seen as the most challenging
step from a software architect’s perspective. Thereby we answer our initially phrased
research question.

In general, the findings reveal a shortage of practically applicable approaches that
offer adequate tool support and metrics to verify the results. Almost all of the reviewed
approaches are not universally applicable and require different sets of input data. Thus,
an accompanying decision guide in form of a flow chart has been created to help
readers in quickly identifying the appropriate approach for a certain scenario. The most
structured and universal method has been proposed by Gysel et al. [17], which can be
seen as a solid basis for further research. However, the practical applicability is limited
due to its dependence on a “detailed and exhaustive specification of the system” [4].
Microservices architecture as a field “rooted in practice” [16] is widely discussed in
industry. It can be expected that further research will very likely reveal new approaches
that can be incorporated and thus extend the findings of this study. Potential future
research could focus on testing different approaches using an adequate example or real-
world application. To do so, quality attributes and related metrics to assess the quality
of a decomposition should be defined in a first step.

Several threats to validity have to be mentioned for this research. The conducted
review did not follow the guidelines of a systematic literature review as proposed by
e.g. Kitchenham and Charters [19], which would improve repeatability and repro-
ducibility of the results and thus guarantee appropriate scientific rigor. For the sys-
tematic classification and presentation of the results Petersen et al. [32] provide a set of
guidelines accordingly. The candidates for this review were obtained from only three
academic search engines. Furthermore, the selected refactoring techniques have been
investigated only theoretically. Thus, all results stem from assertions of the authors or
other publications. A thorough investigation and assessment would require to exercise
and test the approaches on the basis of one or more sample applications, better yet, real
world systems. The decision guide has been created to suggest or rule out certain
approaches for specific environments or indicate the limited applicability in this
respect. However, it has neither been systematically constructed nor validated by
architects. Future research on the topic of Microservices migration may consider these
points to achieve more precise results.

Our future work in this field will focus on (1) novel approaches that combine static
code analysis with operations data generated during runtime to achieve an optimally
tailored partitioning, (2) quality attributes and related metrics to quantitatively assess
the result of a decomposition in advance and (3) other means to automate and facilitate
the transformation of monolithic architectures out of large, heterogeneous code bases.

From Monolith to Microservices 139

References

1. Ahmadvand, M., Ibrahim, A.: Requirements reconciliation for scalable and secure
microservice (de)composition. In: Proceedings - 2016 IEEE 24th International Requirements
Engineering Conference Workshops, REW 2016, pp. 68–73 (2016)

2. Amundsen, M., et al.: Microservice Architecture. O’Reilly, California (2016)
3. Balalaie, A., et al.: Microservices migration patterns. Softw. Pract. Exp. 48(11), 2019–2042

(2018)
4. Baresi, L., Garriga, M., De Renzis, A.: Microservices identification through interface

analysis. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017. LNCS, vol.
10465, pp. 19–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67262-5_2

5. Bass, L., et al.: DevOps: A Software Architect’s Perspective. Addison-Wesley, Boston
(2015)

6. Bogner, J., et al.: Analyzing the relevance of SOA patterns for microservice-based systems.
In: Proceedings 10th Central European Workshop on Services and their Composition, March
(2018)

7. Brereton, P., et al.: Lessons from applying the systematic literature review process within the
software engineering domain. J. Syst. Softw. 80(4), 571–583 (2007)

8. Brown, W., et al.: AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis.
Wiley, Hoboken (1998)

9. Chen, R., et al.: From monolith to microservices: a dataflow-driven approach. In:
Proceedings Asia-Pacific Software Engineering Conference APSEC, December 2017,
pp. 466–475 (2018)

10. Conway, M.: Conway’s Law. http://melconway.com/Home/Conways_Law.html. Accessed
01 Oct 2018

11. Dietrich, J., et al.: On the detection of high-impact refactoring opportunities in programs. In:
Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC),
Melbourne (2012)

12. Escobar, D., et al.: Towards the understanding and evolution of monolithic applications as
microservices. In: Proceedings of the 2016 42nd Latin American Computing Conference,
CLEI (2016)

13. Evans, E.J.: Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison
Wesley, Boston (2003)

14. Feathers, M.: Working Effectively with Legacy Code. Prentice Hall, New Jersey (2004)
15. Fowler, M., et al.: Refactoring: Improving the Design of Existing Code. Addison-Wesley

Professional, Boston (1999)
16. Di Francesco, P., et al.: Research on architecting microservices: trends, focus, and potential

for industrial adoption. In: Proceedings - 2017 IEEE International Conference on Software
Architecture, ICSA 2017, pp. 21–30 (2017)

17. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: a systematic
approach to service decomposition. In: Aiello, M., Johnsen, E.B., Dustdar, S., Georgievski,
I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 185–200. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44482-6_12

18. Hassan, S., et al.: Microservice ambients: an architectural meta-modelling approach for
microservice granularity. In: Proceedings - 2017 IEEE International Conference on Software
Architecture, ICSA, pp. 1–10 (2017)

19. Kitchenham, B., Charters, S.: Performing systematic literature reviews in software
engineering (2007)

140 J. Fritzsch et al.

http://dx.doi.org/10.1007/978-3-319-67262-5_2
http://melconway.com/Home/Conways_Law.html
http://dx.doi.org/10.1007/978-3-319-44482-6_12
http://dx.doi.org/10.1007/978-3-319-44482-6_12

20. Klock, S., et al.: Workload-based clustering of coherent feature sets in microservice
architectures. In: Proceedings - 2017 IEEE International Conference on Software Architec-
ture, ICSA, pp. 11–20 (2017)

21. Klose, K., et al.: Identification of services - a stakeholder-based approach to SOA
development and its application in the area of production planning. In: ECIS 2007,
pp. 1802–1814 (2007)

22. Krause, L.: Microservices: Patterns and Applications (2015)
23. Kwan, I., et al.: Conway’s Law Revisited: The Evidence For a Task-based Perspective. IEEE

Softw. 29, 1 (2011)
24. Levcovitz, A., et al.: Towards a technique for extracting microservices from monolithic

enterprise systems. In: 3rd Brazilian Workshop on Software Visualization, Evolution and
Maintenance (VEM), pp. 97–104 (2015)

25. Lewis, J., Fowler, M.: Microservices - a definition of this new architectural term. http://
martinfowler.com/articles/microservices.html. Accessed 01 Oct 2018

26. Lilienthal, C.: Langlebige Software-Architekturen: Technische Schulden Analysieren,
begrenzen und abbauen. dpunkt.verlag (2017)

27. Mazlami, G., et al.: Extraction of microservices from monolithic software architectures. In:
2017 IEEE International Conference on Web Services (ICWS), pp. 524–531 (2017)

28. Mustafa, O., Gómez, J.M.: Optimizing economics of microservices by planning for
granularity level. Experience Report (2017)

29. Newman, S.: Building Microservices. O’Reilly, California (2015)
30. Opdyke, W.F., Johnson, R.E.: Creating abstract superclasses by refactoring of stract classes

finding matrix, February, pp. 66–73 (1993)
31. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: Proceedings of the 6th

International Conference on Cloud Computing and Services Science, pp. 137–146 (2016)
32. Petersen, K., et al.: Guidelines for conducting systematic mapping studies in software

engineering: an update. Inf. Softw. Technol. 64, 1–18 (2015)
33. Pirkelbauer, P., Dechev, D., Stroustrup, B.: Source code rejuvenation is not refactoring. In:

van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010.
LNCS, vol. 5901, pp. 639–650. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11266-9_53

34. Procaccianti, G., et al.: Towards a MicroServices Architecture for Clouds. VU University
Amsterdam (2016)

35. Rademacher, F., et al.: Differences between model-driven development of service-oriented
and microservice architecture (SOA vs. MSA). In: 2017 IEEE International Conference on
Software Architecture Workshops (ICSAW), pp. 38–45 (2017)

36. Richardson, C.: Microservice architecture. http://microservices.io/patterns. Accessed 01 Oct
2018

37. Richardson, C.: Microservice Patterns. Manning, New York (2017)
38. De Santana, A.M., et al.: Relationships between communication structure and software

architecture: an empirical investigation of the Conway’s Law at the Federal University of
Pernambuco. In: Proceedings - 2013 3rd International Work. Replication Empirical Software
Engineering Research, pp. 34–42 (2013)

39. Sneed, H.M., Seidl, R.: Softwareevolution - Erhaltung und Fortschreibung bestehender
Softwaresysteme. dpunkt.verlag (2013)

40. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a replication in
software engineering. In: Proceedings 18th International Conference Evaluation and
Assessment in Software Engineering - EASE 2014, pp. 1–10 (2014)

41. Zimmermann, O.: Architectural refactoring: a task-centric view on software evolution. IEEE
Softw. 32(2), 26–29 (2015)

From Monolith to Microservices 141

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://dx.doi.org/10.1007/978-3-642-11266-9_53
http://dx.doi.org/10.1007/978-3-642-11266-9_53
http://microservices.io/patterns

	From Monolith to Microservices: A Classification of Refactoring Approaches
	Abstract
	1 Introduction
	2 Architectural Refactoring and Decomposition
	3 Related Work
	4 Research Method and Search Strategy
	5 Results
	5.1 Classification
	5.2 Decision Guide

	6 Conclusion
	References

