
Jean-Michel Bruel · Manuel Mazzara
Bertrand Meyer (Eds.)

 123

LN
CS

 1
13

50

First International Workshop, DEVOPS 2018
Chateau de Villebrumier, France, March 5–6, 2018
Revised Selected Papers

Software Engineering Aspects
of Continuous Development
and New Paradigms of Software
Production and Deployment

Lecture Notes in Computer Science 11350

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Jean-Michel Bruel • Manuel Mazzara •

Bertrand Meyer (Eds.)

Software Engineering Aspects
of Continuous Development
and New Paradigms of Software
Production and Deployment
First International Workshop, DEVOPS 2018
Chateau de Villebrumier, France, March 5–6, 2018
Revised Selected Papers

123

Editors
Jean-Michel Bruel
University of Toulouse
Toulouse, France

Manuel Mazzara
Innopolis University
Innopolis, Russia

Bertrand Meyer
Innopolis University
Innopolis, Russia

and

Politecnico di Milano
Milan, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-06018-3 ISBN 978-3-030-06019-0 (eBook)
https://doi.org/10.1007/978-3-030-06019-0

Library of Congress Control Number: 2018967312

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-3653-0148
http://orcid.org/0000-0002-3860-4948
http://orcid.org/0000-0002-5985-7434
https://doi.org/10.1007/978-3-030-06019-0

Preface

The study of software development processes has a long and respectable history as a
subdiscipline of software engineering, so long and venerable indeed that the field
became a bit sleepy and self-complacent when the jolt of agile methods caught it by
surprise in the 2000s. Another incentive to question long-established wisdom was the
spectacular rise of technologies made possible by the World Wide Web, notably cloud
computing and software-as-a-service. No longer could we content ourselves with the
well-honed scheme in which a software system is analyzed, then designed, then pro-
grammed and tested, then released unto the world, then updated at a leisurely pace as
problem reports and requests for new features get filed, weeded out, and patiently
implemented. The pace frantically increases: For idea–development–deployment cycles
that we used to think of as spreading over months, the timeline now is days, hours,
even minutes.

In 2009 Patrick Debois coined the term “Devops” to cover this new framework of
software development. He and his colleague Andrew Shafer understood the need to
combine the skills of software development and system administration, long considered
disjoint. They also realized the critical role of deployment, often considered a sec-
ondary matter as compared with development.

Devops poses endless challenges to experts in software engineering: Which of the
traditional lessons gained over five decades of the discipline’s development stand, and
which ones need to be replaced in the dizzying world of immediate deployment? An
example of a question that takes on a full new life is quality assurance: The stakes are
quite different if you have a V&V (validation and verification) phase of a few weeks to
prepare for the next release, as in the old world (“old” in IT means, like, 15 years ago),
and in the brave new world of deploying this morning’s change in the afternoon for the
millions of users of your Web-based offering.

DEVOPS 2018 (https://www.laser-foundation.org/devops/2018/), held during
March 5–6, 2018, was one of the first scientific events devoted to the software engi-
neering issues raised by the new development models. The event was kicked off by an
outstanding introduction to the field by Professor Elisabetta Di Nitto from Politecnico
di Milano, and featured an invited talk by Professor Benoît Combemale from Toulouse
to start the education panel. The participants came from diverse organizations, with a
strong representation of industry along with academia. This volume gathers their
papers, considerably enhanced thanks to the feedback received during the conference.
This post-conference proceedings format also enabled us to include precious material
that usually does not transpire from conference-based publications: partial transcripts
of the insightful discussions in panels.

The contributions cover a wide range of problems arising from Devops and related
approaches, current tools, rapid development–deployment processes, effects on team
performance, analytics, trustworthiness, microservices and related topics, reflecting the
thriving state of the discipline and, as is to be expected in such a fledgling field, raising

https://www.laser-foundation.org/devops/2018/

new questions when addressing known ones. A significant number of contributions
cover education, as a number of the authors have to teach the new development
paradigms to both university students and developers in companies. These contribu-
tions provide a fascinating insight into the state of the art in this new discipline.

DEVOPS 2018 was one of the first scientific events held at the new LASER center
in Villebrumier near Montauban and Toulouse, France. Inspired by the prestigious
precedent of the Dagstuhl center in Germany (the model for all such ventures), but
adding its own sunny touch of accent du sud-ouest (the songful tones of Southwest
France), the LASER center (http://laser-foundation.org, site of the foundation that also
organizes the LASER summer school in Elba, Italy) provides a venue for high-tech
events of a few days to a week in a beautiful setup in the midst of a region rich with
historical, cultural, and culinary attractions. The proceedings enjoy publication in a
subseries of the Springer Lecture Notes in Computer Science series.

Several events are planned for 2018–2019, including the next DEVOPS: Participants
agreed that the workshop merited another edition, which will take place May 6–8, 2019,
again at the Villebrumier center, by invitation (write to any of us if you would like to be
invited). We hope that you will benefit from the results of DEVOPS 2018 as presented in
the following pages and, who knows, that they might even spur you into participating in
DEVOPS 2019.

October 2018 Jean-Michel Bruel
Manuel Mazzara
Bertrand Meyer

VI Preface

http://laser-foundation.org

Organization

Program Committee

Kiyana Bahadori University of Padova, Italy
Antonio Bucchiarone FBK-IRST, Italy
Alfredo Capozucca University of Luxembourg, Luxembourg
Paolo Ciancarini University of Bologna, Italy
Jürgen Cito MIT, USA
Benoît Combemale University of Toulouse and Inria, France
Nicola Dragoni Technical University of Denmark, Denmark
Schahram Dustdar Vienna University of Technology, Austria
Mohamed Elwakil Northern Arizona University, USA
Harald Gall University of Zurich, Switzerland
Vladimir Ivanov Innopolis University, Russia
Miguel Jiménez University of Victoria, Canada
Christopher Jones Depaul University, USA
Rick Kazman Carnegie-Mellon University and University of Hawaii, USA
Philipp Leitner Chalmers — University of Gothenburg, Sweden
Hernan Melgratti Universidad de Buenos Aires, Argentina
Fabrizio Montesi University of Southern Denmark, Denmark
Sebastien Mosser University of Nice-Sophia Antipolis and I3S laboratory,

France
Manoj Nambiar Tata Consultancy Services, India
Alexandr Naumchev Innopolis University, Russia
Larisa Safina Innopolis University, Russia
Alberto Sillitti Innopolis University, Russia
Giancarlo Succi Innopolis University, Russia
Damian Andrew

Tamburri
Jheronimus Academy of Data Science, TU/e,

The Netherlands
Andre van Hoorn University of Stuttgart, Germany

Contents

Design of a (Yet Another?) DevOps Course . 1
Alfredo Capozucca, Nicolas Guelfi, and Benoît Ries

Stepwise Adoption of Continuous Delivery in Model-Driven Engineering . . . 19
Jokin Garcia and Jordi Cabot

A Proposal for Integrating DevOps into Software Engineering Curricula 33
Christopher Jones

Omniscient DevOps Analytics . 48
Damian Andrew Tamburri, Dario Di Nucci, Lucio Di Giacomo,
and Fabio Palomba

Teaching DevOps at the Graduate Level:
A Report from Polytech Nice Sophia. 60

Benjamin Benni, Philippe Collet, Guilhem Molines,
Sébastien Mosser, and Anne-Marie Pinna-Déry

DevOps Round-Trip Engineering: Traceability from Dev to Ops
and Back Again . 73

Miguel Jiménez, Lorena Castaneda, Norha M. Villegas,
Gabriel Tamura, Hausi A. Müller, and Joe Wigglesworth

DevOps is Simply Interaction Between Development and Operations 89
Floris Erich

Teaching DevOps in Corporate Environments: An Experience Report 100
Manuel Mazzara, Alexandr Naumchev, Larisa Safina, Alberto Sillitti,
and Konstantin Urysov

ENACT: Development, Operation, and Quality Assurance
of Trustworthy Smart IoT Systems . 112

Nicolas Ferry, Arnor Solberg, Hui Song, Stéphane Lavirotte,
Jean-Yves Tigli, Thierry Winter, Victor Muntés-Mulero,
Andreas Metzger, Erkuden Rios Velasco, and Amaia Castelruiz Aguirre

From Monolith to Microservices: A Classification
of Refactoring Approaches . 128

Jonas Fritzsch, Justus Bogner, Alfred Zimmermann, and Stefan Wagner

DevOps Meets Dynamic Orchestration. 142
Kiyana Bahadori and Tullio Vardanega

Using Code Generation to Enforce Uniformity in Software
Delivery Pipelines . 155

Christopher Jones

Effect of Continuous Integration on Build Health in Undergraduate
Team Projects. 169

Suzanne M. Embury and Christopher Page

Feedback from Operations to Software Development—A DevOps
Perspective on Runtime Metrics and Logs . 184

Jürgen Cito, Johannes Wettinger, Lucy Ellen Lwakatare, Markus Borg,
and Fei Li

A Lean and Devops Approach to Teach Lean Software Development 196
Vladimir Ivanov, Dmitry Krasnikhin, Stanislav Litvinov,
Sergey Masyagin, and Giancarlo Succi

DevOps’ Shift-Left in Practice: An Industrial Case of Application. 205
Miguel Jiménez, Luis F. Rivera, Norha M. Villegas, Gabriel Tamura,
Hausi A. Müller, and Pilar Gallego

DevOps’18 Education Panel: Teaching Feedback and Challenges 221
Jean-Michel Bruel and Miguel Jiménez

Author Index . 227

X Contents

Design of a (Yet Another?) DevOps
Course

Alfredo Capozucca(B), Nicolas Guelfi, and Benôıt Ries

Faculty of Science, Technology and Communication, University of Luxembourg,
Maison du Nombre, 6, Avenue de la Fonte, 4364 Esch-sur-Alzette, Luxembourg

{alfredo.capozucca,nicolas.guelfi,benoit.ries}@uni.lu

Abstract. DevOps have received marginal attention inside the higher
education level curricula despite of its boom in the industrial sector.

This paper presents the design of an academic master-level course
aimed at DevOps. The proposed design is based on earlier experiences in
teaching DevOps-related topics. The specification of the course design is
provided using the SWEBOK Guide and Bloom’s taxonomy to enhance
the quality of the course design specification, and ease its assessment
once delivered.

Keywords: Software engineering · Education · Course design

1 Introduction

A recent study about emerging jobs in the U.S. [1] has found out not only that
tech-focused jobs are leading the trend, but also that people holding one of the
top emerging jobs, five years ago they were working as software engineers. This
provides evidence about the key role played by the software engineering area
regarding opportunities in the U.S. labour market.

Actually, this evidence becomes even more important when considering that
some of today’s top emerging jobs did not exist five years ago. Therefore, teaching
software engineering at the higher education level is a must to form people with
a relevant set of skills that would allow them to chase the most exciting job
opportunities (which today, might not yet exist).

In the large spectrum covered by the software engineering field, agile methods
have gained particular attention due to their widespread use on the industrial
sector [2]. Moreover, special emphasis is currently being given to DevOps1 initia-
tives as a means to ease the achievement of certain agile’s principles, in particular
those related to iterative development, testing and team collaboration.

Since there is not official standard definition for DevOps [3], there exist many
of them out there [4]. However, it can be stated with certain level of certainty
that the aim of DevOps is to facilitate the interaction between Development and

1 Abbreviation for the interactions between Dev (Development) and Ops (Operations).

c© Springer Nature Switzerland AG 2019
J.-M. Bruel et al. (Eds.): DEVOPS 2018, LNCS 11350, pp. 1–18, 2019.
https://doi.org/10.1007/978-3-030-06019-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-06019-0_1

2 A. Capozucca et al.

Operations to shrink the time since a modification is made by a developer until
it makes into production without sacrificing quality.

Contrary to agile methods, which have gained their own place inside the
higher education level curricula, DevOps-related subjects have received marginal
attention [5]. Thus, there is a clear need to enhance computer science curricula
with content oriented to DevOps such that graduates can be better prepared to
tackle the industrial sector needs.

The aim of this paper is to present the design of a master-level2 course aimed
at DevOps. The design of this course is based on earlier experiences in teaching
topics associated with DevOps, but from a different viewpoint. This design is
described providing not only the course’s objectives, expected learning outcomes,
and grading system, but also how the scheduled activities allow students to
reach the expected learning outcomes. The expected cognitive level to be reached
by students for each learning outcome is also indicated in the course design
description by means of the well-known Bloom’s taxonomy. Moreover, it is also
indicated the parts of the Guide to the Software Engineering Body of Knowledge
Guide (SWEBOK) [6] that are covered by each of the course’s activities. This
allows the reader to have a vision of the coverage offered by the course regarding
such standard. This way of providing the description of a course may be also
considered as a contribution brought by the paper.

The reader can find information about the SWEBOK and Bloom’s taxonomy
in Sect. 2, where it is also explained the course’s context. Section 3 contains
information about the former version of the course and its origins, whereas Sect. 4
reports the teaching experiences for such a version. The description of the new
course design can be found in Sect. 5. The paper closes with some discussions
about this new proposed design (Sect. 6).

2 Context and Background

2.1 The MiCS

Started in September 2010, the Master in Informatics and Computer Science
(MiCS) [7] is a 2 years full-time programme (120 ECTS3) offered at the Univer-
sity of Luxembourg4 (UL).

The MiCS’s objectives are to introduce students to state-of-the-art comput-
ing knowledge in modern and relevant fields, as well as laying the groundwork
for either working in high-level industry-oriented environment or continuing PhD
studies.

The MiCS courses, which are fully taught in English, are organised in four
semesters (S1, S2, S3 and S4). In S1 courses are common to all students as the
aim is twofold: to provide a solid foundation on computer science and act as

2 In this paper “master-level” and “graduate” terms are used interchangeably.
3 European Credit Transfer and Accumulation System.
4 Created in 2003 and characterised by its multilingual and intercultural environment.

Design of a (Yet Another?) DevOps Course 3

orientation for the courses to pursue in the next semesters. It is in S2 and S3
when students select courses based on available profiles.

Each profile is a set of required and elective courses related to a particular
field. A student accomplishes a profile once he has validated all required courses.
Notice that this distinction between required and elective courses is what allows
students to have the chance of following multiple profiles, if desired. It is neces-
sary (but not sufficient) to accomplish at least one profile to obtain the degree.
Thus, the way the programme is organised lets students decide their own path
through the degree, which is in line with the student-centred education principle
promoted by the Bologna process.

Today, there are five available profiles: Adaptive Computing, Communica-
tion Systems, Information Security, Intelligent Systems, and Reliable Software
Systems. The list of profiles is regularly assessed according to student, professor
or industry needs. The course described in this paper belongs to the Reliable
Software Systems profile and it is taught in S3.

The official MiCS programme description5 states that, regardless the chosen
profile, students who have validated (at least one) profile and collected the 120
ECTS would be able to (sic): master general and specific topics in computer sci-
ence, build bridges between several computer science subjects via different pro-
files, demonstrate a broad understanding of both fundamental and specialised
areas of information technologies, stay abreast of the fast technological changes
in the rapidly evolving IT sector, work effectively in multinational teams being
exposed to the culture diversity of the very international master studies, tackle
complex technical problem in IT by productively using a wide range of tools.
These learning outcomes should be key points to be considered when designing
a MiCS’s course.

2.2 SWEBOK Guide and Bloom’s Levels

Today, there is not (in the scientific community) common agreement about the
definition of DevOps [4] nor acknowledged standard that can be used as funda-
mental building block for clarifying what it means and covers [3].

Despite of this lack of common agreement in the community, it is already
possible to glimpse with an important level of confidence that contributions
brought by DevOps drop into the software engineering field. Therefore, it makes
perfect sense to rely on the Guide to the Software Engineering Body of Knowledge
Guide (SWEBOK) [6] as reference to present the intended knowledge to be
covered by a course that addresses software engineering concerns. After all, it
was one of the objectives for which it was conceived: “to provide a foundation for
curriculum development and for individual certification and licensing material”.
Therefore, the SWEBOK Guide’s content, which is a characterisation of the
generally accepted6 software engineering knowledge, can be used as reference
when designing software engineering-related curricula.
5 See Learning outcomes at [7].
6 “Means the knowledge and practices described are applicable to most projects most

of the time, and there is consensus about their value and usefulness” [6].

4 A. Capozucca et al.

The characterisation provided by the SWEBOK Guide is organised in 15
knowledge areas (KAs), representing each of them a chapter of the Guide. This
structure is aimed to scope and clarify the place of software engineering regarding
other disciplines like Mathematics and Computer Science. Each KA is decom-
posed in topics (TPs), sometimes also named subareas. Since the aim of TPs is
to ease the way readers may find references to the actual body of knowledge,
they are also broken down in sub-topics (STPs). Each STP provides a short
description including one or more references. In total, the SWEBOK Guide has
100 TPs and 395 STPs. For course design purposes, a coverage course descrip-
tion with respect to the SWEBOK Guide could fairly being done relying on TPs,
only. This is exactly the SWEBOK Guide usage intention for the purposes of
this paper.

There are others well known curriculum guidelines which could be used to
assess the knowledge coverage of a course (or even an entire programme). The
closest alternative to the SWEBOK Guide would be the Curriculum Guidelines
for Graduate Degree Programs in Software Engineering [8] as the others target
undergraduate programmes [9,10]. However, one of the main advantages of the
SWEBOK Guide is its periodic updating and revision.

While the SWEBOK Guide (or any other standard curriculum guidelines) can
be used to clearly indicate the knowledge elements to be covered by a particular
course, it is still necessary to specify the expected minimum level of attainment
for these targeted knowledge elements. A widely used classification system for
such a purpose is the Bloom’s taxonomy [11]7 corresponding to the cognitive
domain8. This domain, also known as knowledge-based, is concerned with the
acquired knowledge and how such a knowledge it is acquired by a learner.

In particular, the Bloom’s taxonomy for the cognitive domain was used in
the SWEBOK Guide version 2004 (Appendix D) [13] to determine the levels of
learning a software engineering graduated with four years of experience should
have on each topic. Thus, the widely usage of Bloom’s taxonomy when organising
levels of acquired knowledge along with its use in the Guide (version 2004) justify
the use of such taxonomy in this paper.

For recalling purposes and to make the paper self-contained, a short descrip-
tion of the Bloom’s taxonomy (adapted from [13]) for the cognitive domain is
presented in Table 1.

It is worth mentioning that the levels listed and described in Table 1 are
hierarchical: reaching learning objectives at a higher level depends on having
attained knowledge at the lower levels. For example, a learner aimed at attaining
a level L3 will need first to attain levels L1 and L2, in that order.

In this paper, the SWEBOK Guide and the Bloom’s taxonomy are used to
indicate the KAs/TPs covered by new proposed course’s along with the expected
level of attainment for each course’s learning outcome, respectively.

7 The work has been revised in [12].
8 The other domains are affective and psychomotor.

Design of a (Yet Another?) DevOps Course 5

Table 1. Bloom’s taxonomy for cognitive domain.

Taxonomy level Description of level

(L1) Knowledge Recall data

(L2) Comprehension Basic understanding without knowing its full implications

(L3) Application Use a concept learned in the classroom in a new concrete
situation

(L4) Analysis Structure information such that its organisational structure
may be understood

(L5) Synthesis Rely on previous knowledge to produce new knowledge

(L6) Evaluation Make judgments about ideas using concrete and valid evidence

2.3 Existing DevOps Courses

As mentioned in the introduction, currently DevOps-related courses at the higher
education level are the exception rather the rule. At the moment of writing
this paper, only four courses have been found matching the following criterion9:
course targeting graduate students, delivered by an academic institution in the
context of a programme oriented to either software engineering, computer science
or informatics.

The first of these found courses corresponds to the one delivered by Len
Bass at Carnegie Mellon University (USA) since 2016 [14]. Its title is DevOps:
Modern Deployment, it lasts one semester and counts for 5 ECTS. The course
covers both theoretical and practical aspects: beside regular lectures, students
have to complete assignments. The course is focused on the implementation of
DevOps principles from a software engineering viewpoint, only (i.e. soft-skills are
not considered). The text book of reference is DevOps: A Software Architect’s
Perspective [15]. Major topics covered by the course are: DevOps overview, vir-
tualisation (virtual machines and containers), deployment pipeline (continuous
integration, continuous delivery), microservice-based architecture, the cloud as
platform, basics on security related to networking, and monitoring.

It is at North Carolina State University (USA) where other of the found
courses is being offered. It is delivered by Christopher Parnin since (spring)
2015 [16]. The course’s title is DevOps: Modern Software Engineering Practices,
it lasts one semester, and counts for 5 ECTS. The course combines lectures with
in-class workshops. Students work in teams to accomplish a project aimed at
building a continuous delivery pipeline from scratch. This project is delivered
in several milestones. In-class workshops are meant to ease the achievement of
each project’s milestone. Main topics covered in the course are virtualisation
(virtual machines, provisioning, and infrastructure as code), continuous delivery
(configuration, build, test, and deploy management), monitoring and analysis.
This course is enclosed in graduate programme with professional orientation.

9 Paper’s authors are pretty much sure that more courses would match this criteria
by the time the paper sees the light of day.

6 A. Capozucca et al.

That may explain large number of tools covered through the intensive technical
in-class workshops.

The participation at the DevOps18 workshop [17] allowed knowing two
other courses addressing DevOps-related topics: one delivered at Polytech Nice-
Sophia (France) by Mosser et al. [18], and other at DePaul University (USA) by
Jones [19].

The course at Polytech Nice-Sophia, named Introduction to Software Archi-
tecture & DevOps, is available to students since 2015. It is offered as an optional
full semester course that counts for 5 ECTS. Students work in groups over a
project where they exercise the topics presented during lectures interleaved with
in-class practical work. DevOps-related topics covered by the course are contin-
uous integration, testing frameworks, and containers. The project also requires
students to develop. That means, they face with real interactions problems dur-
ing the execution of the project. This allows students to learn soft-skills to deal
with such as problems.

It has been reported that despite of being offered as an optional course, it is
close to its full capacity since it was started. This is because students are very
aware of the advantages of having DevOps-related skills when applying for a job.

The course delivered at DePaul University, named Continuous Delivery and
Devops, is a full semester course being offered since (spring) 2015. The course
forms part of a programme designed to let students attend the courses while
working. It counts for 5 ECTS10 and the main topics covered are: virtualisa-
tion, cloud technologies, and deployment pipeline (i.e. continuous integration,
building, deploy, and testing), and configuration management. Beside the tech-
nical topics, the course also covers non-technical aspects related to organisational
transformation and economics of DevOps, team organisation, collaboration, and
software development practices. The course uses as book of reference Continu-
ous Delivery: Reliable Software Releases Through Build, Test, and Deployment
Automation [20].

3 The Course

3.1 Origins

In early 2012 the paper’s authors started a research project in the domain of
software engineering. More precisely, the project’s goal was to provide a soft-
ware engineering methodology oriented to students aimed at learning software
engineering. Such methodology, was supposed to come along a tool aimed at pro-
viding direct support to ease the implementation of such methodology. As result
of this research project, the methodology Messir and the tool Excalibur [21] saw
the light of the day by middle 201411.

10 This information could not be officially confirmed by the instructor at the writing
of the article.

11 Newer versions of the tool were released after this year, as both the methodology
and the tool are under continuous improvement.

Design of a (Yet Another?) DevOps Course 7

The software environment required to manage the Messir requirements elic-
itation process while developing prototypes and beta versions of Excalibur was
evolving proportionally to the visibility and maturity of the expected outcomes.
Thus, the initial software environment made of a simple IDE, some console
applications and intensive use of emails turned into a much more complex envi-
ronment. Figure 1 shows the software environment produced at the moment of
releasing the first official version of Excalibur. It is worth mentioning that such
software environment is still under use and maintenance to handle the delivery
of every new Excalibur release.

Fig. 1. The Excalibur deployment pipeline.

It was in early 2015 when the idea came: teach to students of the MiCS the
problems faced, decisions made and lessons learnt during the process that led
to the Excalibur software development environment. The final objective behind
such idea was that at the end of the course students should be capable to specify,
design and better implement the necessary means for supporting software engi-
neering when either joining to an ongoing project, or starting one from scratch.
The idea became concrete in September of the same year with the implementa-
tion of the course entitled Software Engineering Environments.

3.2 Initial Design

The request to the MiCS programme’s director to deliver such a course ended up
with the assignment of a weekly 1.5 hs course in the second year’s winter semester
(i.e. S3), counting for 4 ECTS and a duration of 14 weeks. It was part of the
initial request to make the course part of the Reliable Software Systems profile.
The course’s ECTS, place into the programme, and schedule were set based on
the MiCS’s curriculum. They are not supposed to change unless the profile is

8 A. Capozucca et al.

modified, or a restructuring of the MiCS programme takes place (something that
has never happened, so far).

The course was designed as a series of lectures and practical sessions. At the
beginning of the course, 2 regular lectures were used to (1) recall the fundamen-
tals of software engineering (e.g. definition, phases of software development life
cycle, etc.), (2) give a panorama about the categories of tools aimed at supporting
the life cycle of a software development project12, and (3) describe the product
quality model introduced in the ISO/IEC 25010:2011 Standard [22] along with
its use when assessing both the software under development and the software
engineering environment that supports its development. Last, but not least (4),
both the Excalibur tool and its associated software development environment
(see Fig. 1) were used to show the role played by each tool regarding the phase
of the software development life cycle and the targeted quality model attributes.

Once presented the theoretical framework, each student was assigned with
an individual project. The project was aimed at enhancing the Excalibur soft-
ware engineering environment regarding one (or more) quality attribute. Thus,
each student had to start analysing the current status of the given software
engineering environment from the targeted quality attribute, and then perform
a market analysis regarding the project’s goals to choose some tools that would
allow such as goals to be reached. Finally, a proof-of-concept implementation
using the selected tools had to be made.

An example of a given project was to explore the use of containers as a mech-
anism to ease the maintenance of the different required environments (develop-
ment, testing, production), while enhancing the performance compared to virtual
machines.

Based on the course’s ECTS, the load for an average student was stipulated in
8 weekly hours. From the third week, and until the end of the course, each student
had a 1 h individual practical work session to present to his project supervisor13

the advances achieved with respect to the objectives set in the previous week,
and the impediments faced (if any). Support to solve the faced impediments
was given by the project supervisor during the practical work session (office
hours were also organised in case of more time was required to deal with the
impediment). After 3 practical work sessions, each student gave a talk (knows as
checkpoint) to the whole class presenting the current status of his project along
with a plan of activities to achieve the remaining project’s objectives. That made
a total of 3 delivered talks for each student.

A report evaluating the work done in the project from a qualitative viewpoint
had to be also delivered along with the project’s technical artifacts. This report
counted for 25% of the final grade, whereas the technical artifacts counted for

12 Tools for supporting any single task of the software development project life cycle,
workbenches which combine in an integrated way two or more tools to cover a sub-
part of the software development project life cycle, and environments which combine
tools and workbenches in order to cover the full software development project life
cycle.

13 One of the teaching staff members.

Design of a (Yet Another?) DevOps Course 9

50%. The 3 interleaved talks counted for 12.5% of the final grade. A final wrap-
up project presentation, delivered for each student during the exam session, was
the last component of the final grade (12.5%). While the report and the project’s
technical artifacts were only evaluated for the project supervisor, the talks and
the final presentation were graded by all teaching staff members14.

At the end of this course students were expected to attain the following
learning outcomes: define the requirements of the software engineering environ-
ment required for a particular software development project (LO1); analyse and
classify tools based on certain quality attributes (LO2); use, integrate and/or
improve existing development tools (LO3); write a report of scientific and tech-
nical quality (LO4); and handle (i.e. plan, coordinate, and report activities) a
project (LO5).

4 Facts, Feedback and Reflections

Three editions of the course were delivered. These editions were delivered by the
same teaching staff composed of one professor and two teaching assistants. The
profile of the students remained the same on each edition of the course: 70% got
their undergraduate (i.e. bachelor) degree one year ago (20% were graduated at
the UL, whereas 80% came from central and east Europe), very few students
had industrial experience, and most of them were not used to doing projects. In
general, they had good technical abilities, but poor scientific skills.

The first edition (i.e. academic year 2015–2016) resulted in 4 students pass-
ing the course, 2 failures and 1 drop out. Students’ feedback collected through
general discussions organised at the end of checkpoint sessions and individual
interviews made during the project follow-up sessions confirmed agreement about
the following facts: “hard time to get into the project’s subject”, “very hard work
to get the project done”, “high effort vs. course ECTS”, and “unbalance between
practical and theoretical work”.

The student’s claims were acknowledged by the teaching staff based on the
many office hours given to students to help them to move the projects ahead. As
reflection of the first edition, the teaching staff concluded that a more detailed
initial project description would be provided to each student, and in particu-
lar a clear description of the technical-related objectives to be met. It was also
added as requirement to provide management-related information (e.g. track
weekly working hours for each working package and report them at each check-
point). Both measures were aimed at decreasing the risk of getting students lost
and/or working overtime on non-relevant tasks. Last, but not least, the teaching
staff reviewed the material of the initial theoretical lectures aimed at clarifying
how concerns like product under development, software engineering environ-
ment, tools, and quality attributes were related to each other, and particularly,
their role on the student’s projects. Obviously, the teaching staff had to invest a

14 Average of the given grades.

10 A. Capozucca et al.

non-negligible time in the preparation of the second edition of the course, in par-
ticular in the project descriptions to achieve a equal level of complexity among
them (very challenging task).

The second edition of the course (i.e. academic year 2016–2017) resulted in
5 students passing the course, 1 failure and 2 drops out. The student’s feedback
again gave as result a high agreement about the claims “very hard work to get the
project done”, and “high effort vs. course ECTS”. Despite some punctual facts
as overtime work and request for office hours (of some students) by the end of the
semester, not real evidence was found by the teaching staff supporting these two
claims. Extra inquires revealed that students’ claims were based on comparing
the requested working load of the course with respect to other programme’s
course with the same ECTS. Thus, the fact the course was actually requesting
the maximum allowed budget for each given ECTS (i.e. 30 h/semester for each
given ECTS), plus the execution of a project as part of the requirements to pass
it, were (from the student viewpoint) valid concerns when choosing and assessing
the course. However, for the teaching staff, both the requested working load and
project-based approach were (and still are) non-negotiable items in the design
and execution of the course.

The same feedback revealed that much less effort was required by students to
get into the project and understand its objectives. Moreover, a better alignment
between practice and theory was achieved by the results presented by students
during their checkpoints and in the final report. Therefore, the investment made
by the teaching staff paid off. However, the time spent by the teaching staff on
the course was over the average mainly due to: tough task of defining equally
complex projects15, and their respective supervision.

The third (and last) edition (i.e. academic year 2017–2018) was a game
changer for the course’s life cycle. The course started with 6 students, but,
after four weeks, only 2 students remained coming to the weekly project follow-
up meetings. Through informal discussions with the “survivor” students it was
confirmed that students quit the course because of its (expected) workload and
evaluation mechanism (continuous project-based assessment). This resulted not
only in a 4-project description effort discarded, but also in a questioning process
about what to do with the course.

It must be mentioned that for one of the two remaining students, the course
was elective as he was formally registered in a different profile. This is an impor-
tant fact to highlight as it shows that (fortunately) there are still motivated
students that decide to attend a course based on the expected learning out-
comes rather its exigencies. Therefore, based on the willingness to contribute in
the development of such kind of students and to continue supporting the MiCS’s
mission, it was decided to keep delivering the course, but only after redesign it.

15 The number of projects was directly proportional to the number of students regis-
tered to the course.

Design of a (Yet Another?) DevOps Course 11

4.1 Objectives for the New Version

The reason for redesigning the course was not only to (1) make its content more
DevOps-oriented, but also to (2) achieve an organisation and execution that were
more independent of the number students. While the first point was motivated
by the need to bring DevOps into the classroom as a first-class subject to better
prepare students to modern software industry, the second one’s was to minimise
the impact of drops out in the course execution, as faced in its last edition. Notice
that achieving a course organisation and execution that is (up to certain level)
independent of the number of participants helps not only when the numbers
decreases, but also increases.

It has to be recognised that the fact of redesigning the course allowed adver-
tising it as a sort of “new course” covering a trending topic as DevOps. This,
may help having more registered students, but definitively not to avoid their
later drop out. Thus, the new version of the course had to be designed to favour
interactivity and student engagement.

The next session describes the new design of the course aimed at attain-
ing the objectives earlier mentioned while coping with the challenges imposed
by the context: students (very often) not motivated, with weak analytical and
technical skills, and not used to doing project-based courses that require regular
continuous work.

5 New Version

5.1 Activities and Organisation

Here it is explained what are the activities to be done by teachers and students
during the course such that the objectives can be reached. Before presenting
these activities along with their respective descriptions, it is worth explaining
that most of the types of such as activities are taken from the course’s initial
design. This is because project-based teaching, blended with traditional lectures
and tutoring sessions has already proved to be successful as knowledge transfer
mechanism.

Project Presentation: activity performed by the teaching staff at the inau-
gural lecture of the course. The project plays a central role in the course as it
is the chosen pedagogical vehicle to let student construct knowledge and skills
based on the tasks required to be performed by themselves in order to reach the
project’s objectives. The success of this pedagogical approach (clearly confirmed
in the course’s previous editions as due reported) depends on the precision and
clarity of the project’s objectives description. Thus, a clear presentation rely-
ing on the Excalibur case study is given to let students understand what is a
deployment pipeline as this is the aim of the project: implement a deployment
pipeline based on open source technologies that work on a unix-based OS. Any
other conditions that may apply over the project (like that the product to pass

12 A. Capozucca et al.

through the pipeline has to be a web app) are also clearly stated. It is empha-
sised that the intention is to achieve a proof-of-concept deployment pipeline, so
aspects like performance or reliability will not be evaluated. That, however, does
not impede students to take into consideration such concerns when developing
the project.

It is not part of the project the development of the product to demonstrate
the working of the pipeline. This means that each group has to pay special
attention when choosing the product: it has to help achieving the project’s goal
rather than adding complexity. The selected product would make each project
unique with respect to each other, regarding the technical solution to be pro-
vided. However, the overall project’s objectives and conditions are the same for
each group, regardless the chosen product (i.e. a common project for all the
groups). The project is done in groups, and students are free to decide about
the group’s composition.

Lecture: activity performed by the teaching staff once the project has been
presented. Lectures are aimed at teaching the relevant concepts associated to
DevOps used in the project. However, it is not the interest of the course’s lec-
tures to teach how a particular tool works, but the concepts associated to the
use of such a tool, in particular highlighting the requirements that such tool
aims to tackle. A total of six lectures are delivered along the semester. The first
three weeks of the course are mainly aimed at lectures. The remaining ones are
separated two/threes weeks each other as other project-related activities start
being interleaved. The initial condensed number of lectures are aimed at present-
ing the DevOps theoretical background that scopes the project. They will later
leave place to sessions oriented to management and follow-up of the project. The
topics covered by the lectures are aligned with the project’s objectives. Thus,
after introduced DevOps to present its definition(s), principles, practices, its role
on the software engineering life cycle, and the different roles and responsibili-
ties (first lecture), the deployment pipeline concept (architecture, environments,
tools and selection criterion) is presented (second lecture). It is also part of this
lecture to introduce the notion of quality16 and how such notion applies both to
the pipeline and the product(s) that will go through it. The remaining lectures
focus on the pipelines concerns, so configuration management (third lecture),
build management (fourth lecture), test management (fifth), and deploy and
release management (sixth lecture) are the covered topics. The project’s objec-
tives (and then, covered topics) were chosen based on the recommendations given
in [5,17], teaching staff’s experience and context’s constraints (i.e. course dura-
tion and assigned workload). The books given as main references to the students
(and required to consult) are [15] and [20]. Other extra relevant references (but
not required during the course) are [23] and [24].

16 It is planned to keep using the ISO/IEC 25010:2011 Standard [22] to introduce the
notion of product quality model.

Design of a (Yet Another?) DevOps Course 13

Short Product Presentation: activity assigned to each group, and performed
by one (or more) member of the group as an informal presentation. This activity
is given as assignment for the second week. Each group has to present a list of
possible products to be used with the deployment pipeline. The presentation’s
form is free, and it is followed by a open discussion. This should help each
group to choose the best product. The main aim of this activity, beside an early
selection of the product, is to foster students interaction and engagement with
the project. It is a non-graded activity.

Project Follow-Up Session: activity performed by students and the teach
staff in joint way. Each group is supervised by a member of the teaching staff
(aka project supervisor). A member of the group chairs the session. The chair
opens the session handling a (free) document that reports the time spent: coding,
designing, using a particular tool, learning about a particular tool, and coordi-
nating with members of the group. These times17 have be detailed for each
group member. The aim of requesting students to track these times is twofold:
detect students’ overtimes/downtime; and assess actual project workload (very
useful for improving future editions of the course). The session continues with
the report of work done, and what to do for the next session. The last part of
the session is used to resolve the encountered impediments, if any. There are five
follow-up sessions scheduled such that there is always one before a checkpoint.
The chairing of the session is a rotating post among group’s students. The super-
visor grades each session based on the quality of the information provided and
formulation of the encounter impediments.

Checkpoint: activity assigned to each student’s group, which consists in pre-
senting the advances of the group’s project. This presentation consists in a 10–
15 min talk where one single member of the group reports the work done by
the group. There are three checkpoints, so each group’s student has to deliver
(at least) one presentation18. The first checkpoint takes place in the fifth week.
There are four weeks between each consecutive checkpoint. In the first check-
point the group is aimed at presenting the product to be used to demonstrate the
functioning of the deployment pipeline. A first design of such pipeline, including
candidate tools and quality attributes to be addressed must also be included.
In the second checkpoint the group should present how virtualisation and pro-
visioning tools are used to setup the different environments. It is also in this
checkpoint that the presence and correct functioning of a continuous integration
server (i.e. commits in a version control system end up in launching a build plan).
The final checkpoint is devoted to present the final version of the deployment
pipeline architecture, selected tools, and quality attributes addressed. A demo
of a feedback loop19 provided by the deployment pipeline is a must in the final

17 Tracking times taken from [14].
18 While the conditions would allow it, groups will be made of up to 3 students.
19 Commit, build, automated test cases execution, deploy (if all test cases have passed).

14 A. Capozucca et al.

checkpoint. Each checkpoint is graded by the teaching staff. The project deliver-
ables (i.e. scripts, source code, test cases, readme file, . . .) have to be submitted
in the morning of the last checkpoint’s day.

Report Writing: activity assigned to each student’s group and expected to be
performed in a collaborative manner by all members of the group. The report has
to describe the objectives of the project executed by the group, requirements,
assumptions, and constraints. Special emphasis has to be given not only in the
description of the proposed solution, but also in the justification of the choices
led to such solution. It is expected that students write the report in a scientific
manner (e.g. precise description of the problem, its context, found evidence, . . .),
but still providing relevant technical information about the developed solution.
The report must contain between 3000 and 4000 words, and have a lesson learnt
section. It has to be submitted two weeks after the official end of course.

Report Reviewing: activity performed both for each teaching staff member
and students. This activity consists in reviewing the report to check the accuracy
of its content from the technical and scientific viewpoint according to the given
report’s objectives. While each teaching staff member has to review every single
report, a student is expected to review only one non-authored report. A report
is reviewed for every teaching member and two students, providing each of them
a grade (that is differently weighted). The report’s grade goes to each of its
authors. Note that this activity introduces peer-assessment. Depending on how
good (or bad) the student performs his review he may gain (loss) extra points
to his individual grade. More details are provided below in the grading section.
Each student has one week to perform the review of the report.

5.2 Grading

Students are evaluated based on the activities they perform. Except for the
assessment of the project report review (where the student is evaluated indi-
vidually), the other evaluations are group-based: i.e. the same grade is given to
every group member. Below, it is detailed how the final grade of a particular
student is computed:

– Project deliverables: 50%
– Report: 25% (includes peer reviewing)
– Checkpoints: 12.5%
– Project management: 12.5% (the capability to report the tracking indicated

times, along with the working plan (done/to-do/impediments)).

The peer-reviewing grading system deserves an explanation in itself. The
assessment of the report, which counts for 25%, is made by the teaching staff
and two non-authored students. Below it is shown how this 25% is decomposed
depending on the person’s profile:

Design of a (Yet Another?) DevOps Course 15

– Average (Teaching staff): 40%
– Student 1: 30%
– Student 2: 30%

The peer-reviewing activity made by a student is “paid” in points for his
grade. Depending on the quality of the performed review, he may either win or
loss points. Thus, a teaching staff member will assess the student’s review to
decide how many points he gets (from −30% to 30% of the report’s grade).

5.3 Learning Outcomes

The execution of the activities described in the previous section would let stu-
dents attain the following learning outcomes: design and implement a deploy-
ment pipeline for a particular software development project (LO1); classify tools
based on certain quality attributes (LO2); use, and integrate existing tools
(LO3); write a report of scientific and technical quality (LO4); and plan, coordi-
nate, and report activities in a multi-participant project (LO5). It is not surpris-
ing that several learning outcomes are the same as in course’s previous edition
since some type of activities were kept in the new course design.

Table 2 shows how each of the activities performed along the course con-
tributes to the achievement of the claimed learning outcomes. Moreover, the
same table describes the covered SWEBOK knowledge by each activity, allow-
ing to get an overall idea of the coverage provided by the course with respect
to such standard. Table 3 complements the mapping activity-learning outcomes
with information about the cognitive level reached by each student passing the
course with regard each of the claimed learning outcomes.

6 Discussion

Making the course oriented to DevOps was not a random or marketing choice.
Former editions of the course have already covered some subjects related to
DevOps like virtualisation, continuous integration and automated testing. The
new version not only better organises these subjects, but also introduces others
to show how they could be efficiently integrated to achieve a pipeline that covers
continuous integration, building, testing, and deployment. Thus, the previous
experiences on teaching and working (i.e. Excalibur case study) with these sub-
jects provides certain guaranties about the mastering level of the subjects to be
taught. Moreover, the topics covered by the course justifies the claimed MiCS’s
learning outcome that students once have completed the programme would “stay
abreast of the fast technological changes in the rapidly evolving IT sector” and
be able to “tackle complex technical problem in IT by productively using a wide
range of tools”.

DevOps is not only about advanced technical aspects related to the software
engineering, but also about culture and organisation [14]. The project-based
pedagogical methodology allows to achieve a holistic approach that encloses the

16 A. Capozucca et al.

Table 2. Mapping between activities, SWEBOK knowledge areas/topics, and
addressed learning outcomes.

Activity SWEBOK coverage Addressed
learning
outcome

Introduction to DevOps (Lecture) KA1: TP1 LO1, LO3

KA8: TP1, TP2

KA11: TP2, TP3

Deployment pipeline (Lecture) KA2: TP3 LO1, LO2,
LO3

KA3: TP1

KA4: TP1, TP2

KA6: TP1

KA10: TP1

Configuration management (Lecture) KA6: TP1, TP2, TP3 LO1, LO3

Build management (Lecture) KA6: TP6 LO1, LO3

Test management (Lecture) KA4 LO1, LO3

Deploy and release management (Lecture) KA6: TP6 LO1, LO3

Short product presentation (Talk) KA1: TP4 LO2, LO5

KA2: TP3

KA3: TP4

KA4: TP1, TP2, TP6

Project follow-up session (Meeting) KA1: TP5, TP6 LO1, LO2,
LO3, LO5

KA11: STP1.9, TP2, TP3

Deployment pipeline implementation (out of
class work)

KA2:TP3 LO1, LO2,
LO3, LO5

KA3: TP3

KA6

KA10

KA15: TP1, TP4

Checkpoint (Talk) KA7: TP2, TP3 LO1, LO2,
LO3, LO5

KA11: TP2, TP3

Report writing (out of class work) KA11: TP2, TP3 LO4, LO5

Report reviewing (out of class work) KA11: TP3 LO4

three dimensions. This teaching approach, already used in the previous edi-
tions of the course, is reinforced in the new edition by requesting students to
work in groups. This decision expects to enhance interaction and recreate social
environments where soft skills can be developed. Due to the multicultural envi-
ronment that characterises the MiCs, team work guarantees the achievement
of the claimed programme’s learning outcome: “students would be able to work
effectively in multinational teams being exposed to the culture diversity”. Notice,
that people with such skill are very valuable in any professional sector.

Design of a (Yet Another?) DevOps Course 17

Table 3. Bloom’s level reached for each learning outcome.

Learning outcome Bloom’s level

LO1 Application (L3)

LO2 Analysis (L4)

LO3 Application (L3)

LO4 Synthesis (L5)

LO5 Application (L3)

Assigning the same project to every group let the teaching staff avoid the
challenge task of producing different projects but with equal complexity. This
choice also helps to ensure consistency when evaluating groups’ work.

Yet another advantage of working on a common project is related to the
organisation and execution of the course as it is not any more dependent on
the number of registered students (what was the case in former editions of the
course). Based on earlier experience, a teaching staff composed of two people20

can handle a class of up to 12 students without quality lost.
A novelty introduced in the new design is peer-assessment. This was decided

to foster the academic dimension of the master programme: reviewing articles
is part of the duties of a researcher. Moreover, it is believed that such activity
may help enhancing student’s motivation and engagement with the course.

The use of the SWEBOK and Bloom’s taxonomy not only bring clarity over
the specification of a course, but also, they can be used later to assess the execu-
tion of the course. Based on the executed activities and student’s performance
(grades, feedback) it can be judged whether the SWEBOK’s TPs were covered
and the learning outcomes attained as expected, respectively.

It is expected that, despite of the context-specific constraints, the design of
the course presented in the paper could be taken as reference by other instructors
when facing with the challenging task of teaching DevOps.

References

1. LinkedIn Economic Graph Team: LinkedIn’s 2017 U.S. Emerging Jobs Report,
December 2017. https://economicgraph.linkedin.com/research/LinkedIns-2017-
US-Emerging-Jobs-Report

2. VersionOne: 11th annual state of agile report (2017). https://explore.versionone.
com/state-of-agile/versionone-11th-annual-state-of-agile-report-2

3. Standard, N.I.: DevOps - standard for building reliable and secure systems includ-
ing application build, package and deployment (2016). https://standards.ieee.org/
develop/project/2675.html

4. Jabbari, R., bin Ali, N., Petersen, K., Tanveer, B.: What is DevOps?: a system-
atic mapping study on definitions and practices. In: Proceedings of the Scientific
Workshop Proceedings of XP 2016. XP 2016 Workshops, pp. 12:1–12:11. ACM,
New York (2016)

20 Teaching staff composition to deliver the new version of the course.

https://economicgraph.linkedin.com/research/LinkedIns-2017-US-Emerging-Jobs-Report
https://economicgraph.linkedin.com/research/LinkedIns-2017-US-Emerging-Jobs-Report
https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-agile-report-2
https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-agile-report-2
https://standards.ieee.org/develop/project/2675.html
https://standards.ieee.org/develop/project/2675.html

18 A. Capozucca et al.

5. DevOps Educator Workshop: First DevOps Educators Workshop, November 2016.
https://github.com/devopseducator/2016workshop

6. Society, I.C., Bourque, P., Fairley, R.E.: Guide to the Software Engineering Body
of Knowledge (SWEBOK(R)): Version 3.0, 3rd edn. IEEE Computer Society Press,
Los Alamitos (2014)

7. MiCS: Master in information and computer sciences (2010). https://mics.uni.lu
8. Pyster, A., et al.: Graduate software engineering 2009 (GSwE2009) curriculum

guidelines for graduate degree programs in software engineering. Stevens Institute
of Technology (2009)

9. Joint Task Force on Computing Curricula, Association for Computing Machinery
(ACM) and IEEE Computer Society: Computer Science Curricula: Curriculum
Guidelines for Undergraduate Degree Programs in Computer Science. ACM, New
York (2013). ACM Order Number: 999133

10. The Joint Task Force on Computing Curricula: Curriculum guidelines for under-
graduate degree programs in software engineering. Technical report, New York,
NY, USA (2015)

11. Bloom, B.: Taxonomy of Educational Objectives: The Classification of Educational
Goals. Mackay, New York (1956)

12. Anderson, L., Krathwohl, D., Bloom, B.: A Taxonomy for Learning, Teaching, and
Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. Longman,
New York (2001)

13. IEEE Computer Society: Guide to the software engineering body of knowledge 2004
version. SWEBOK 2004 Guide to the Software Engineering Body of Knowledge
(2004)

14. Bass, L.: DevOps: Modern Deployment (2017). http://mse.isri.cmu.edu/software-
engineering/Courses/17-611-DevOps-Modern-Deployment.html

15. Bass, L., Weber, I.M., Zhu, L.: DevOps: A Software Architect’s Perspective.
Addison-Wesley Professional, New York (2015)

16. Parnin, C.J.: DevOps: modern software engineering practices, August 2017.
https://wolfware.ncsu.edu/courses/details/?sis id=SIS:2018:1:1:CSC:519:001

17. DEVOPS18: First international workshop on software engineering for continuous
development and new paradigms of software production and deployment (2018).
https://www.laser-foundation.org/devops/2018/

18. Mosser, S., Pinna-Déry, A.-M., Collet, P., Molines, G.: Introduction to software
architecture and DevOps (2017). https://github.com/mosser/isa-devops

19. Jones, C.: Continuous delivery and DevOps (2017). https://www.cdm.depaul.edu/
academics/pages/classinfo.aspx?Term=20182&ClassNbr=21100&fid=258484

20. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation, 1st edn. Addison-Wesley Professional,
New York (2010)

21. Guelfi, N., Capozucca, A., Ries, B.: Website of the Messir Method and the Excal-
ibur Environment (2014). https://messir.uni.lu

22. ISO/IEC: ISO/IEC 25010 - Systems and software engineering - Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) - System and software qual-
ity models. ISO/IEC 13211-1 (2011)

23. Davis, J., Daniels, K.: Effective DevOps: Building a Culture of Collaboration,
Affinity, and Tooling at Scale, 1st edn. O’Reilly Media, Inc., Sebastopol (2016)

24. Httermann, M.: DevOps for Developers, 1st edn. Apress, Berkely (2012)

https://github.com/devopseducator/2016workshop
https://mics.uni.lu
http://mse.isri.cmu.edu/software-engineering/Courses/17-611-DevOps-Modern-Deployment.html
http://mse.isri.cmu.edu/software-engineering/Courses/17-611-DevOps-Modern-Deployment.html
https://wolfware.ncsu.edu/courses/details/?sis_id=SIS:2018:1:1:CSC:519:001
https://www.laser-foundation.org/devops/2018/
https://github.com/mosser/isa-devops
https://www.cdm.depaul.edu/academics/pages/classinfo.aspx?Term=20182&ClassNbr=21100&fid=258484
https://www.cdm.depaul.edu/academics/pages/classinfo.aspx?Term=20182&ClassNbr=21100&fid=258484
https://messir.uni.lu

Stepwise Adoption of Continuous
Delivery in Model-Driven Engineering

Jokin Garcia1(B) and Jordi Cabot2(B)

1 IK4-IKERLAN, Arrasate, Spain
jgarcia@ikerlan.es

2 ICREA-UOC, Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. Continuous Delivery (CD) and, in general, Continuous Soft-
ware Engineering (CSE) is becoming the norm. Still, current practices
and available integration platforms are too code-oriented. They are not
well adapted to work with other, non text-based, software artifacts typ-
ically produced during early phases of the software engineering life-
cycle. This is especially problematic for teams adopting a Model-Driven
Engineering (MDE) approach to software development where several
(meta)models (and model transformations) are built and executed as
part of the development process. Typically, (part of) the code is auto-
matically generated from such models. Therefore, in a complete CD pro-
cess, changes in a model should trigger changes on the generated code
when appropriate.

A step further would be to apply CD practices to the development of
modeling artefacts themselves. Analogously to “traditional” CD, where
the goal is to have the mainline codebase always in a deployable state,
the aim would be to have the modeling infrastructure always ready to
be used. Those models could be the final product themselves or an inter-
mediate artifact in a complete CSE process as described above.

Either way, a tighter integration between CD and MDE would benefit
software practitioners by providing them with complete CSE, covering
also analysis and design stages of the process.

Keywords: Continuous Evolution · Continuous Delivery ·
Model-Driven Engineering

1 Introduction

Gone are the days when developing projects required a mere compiler. Nowadays,
software engineering is much more complex and heterogeneous, often involving
several stacks, languages, and frameworks.

Software building tools have evolved accordingly and we have gone from
make to Gradle, passing through Ant and Maven. Besides, agile practices and
specifically Continuous Delivery (CD) has encouraged a more frequent software
integration and testing. This philosophy of faster release cycles has expanded to
c© Springer Nature Switzerland AG 2019
J.-M. Bruel et al. (Eds.): DEVOPS 2018, LNCS 11350, pp. 19–32, 2019.
https://doi.org/10.1007/978-3-030-06019-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-06019-0_2

20 J. Garcia and J. Cabot

the organizational level (e.g. for a rapid time-to-market and quality feedback) in
what it is known as Continuous Software Engineering (CSE).

Unfortunately, so far this trend has left aside another parallel trend in soft-
ware engineering: Model-Driven Engineering (MDE) [5]. MDE advocates for the
rigorous use of models as key artifacts in all software engineering activities.
Though this idea is far from new and we are still learning how to best effectively
apply it in practice, recent studies suggest an increasing uptake of MDE and a
more widespread use than commonly believed [22], specially when taking MDE
on a broad sense (e.g. models beyond code-generation approaches, for instance,
models used for communication purposes or software documentation).

Therefore, it is evident that software models play some role in most software
development projects. Challenges for MDE adoption include social and organi-
zational factors but also tool-related ones [23] such as synchronization problems
between models and code. Clearly, a tighter integration between CD and MDE
would benefit software practitioners by providing them with a more complete
CSE, covering also analysis and design stages of the process. This integration is
what we call Continuous Model-Driven Engineering.

This paper will be looking at this integration at two different levels. First, it
will discuss how to add modeling artifacts as standalone executable components
in a standard CD pipeline aimed at releasing a new software version.

Then, it will cover a more complex scenario where the target of the CD is
a MDE artifact itself built as the result of a collaboration in a MDE ecosystem
(a.k.a. megamodel in literature). Indeed, in many projects, the “modeling side”
is a combination of models (possibly conforming to different metamodels, where
each metamodel defines the possible set of well-formed models to be created
with that language, similar to the relationship between programs and language
grammars), model-to-model and model-to-text transformations (for the former,
input and output are models, for the latter, the output is a text file, e.g. a piece of
code generated from a model). Transformations can also be regarded as models
on their own and conform to specific model transformation languages. As for the
modeling languages, projects usually combine general modeling languages like
UML with several Domain-Specific Languages (DSLs). DSLs can be reused from
other projects or be developed adhoc for the current one, which implies creating
their abstract syntax (grammar) and concrete syntax (notation) as part of the
project itself.

Figure 1 tries to sketch how these elements relate to each other. As shown in
Fig. 1, model Ma is transformed into model Mb using a M2M transformation, and
then model Mb is transformed into code through a M2T transformation. As can
be seen from the number of relationships, CD of a MDE artifact is a complex task
where changes on one artifact can trigger changes on several others that need to
co-evolve together. This process requires tools for model comparison, merging,
testing,... that react accordingly to (meta)model changes. While specific couples
of on-demand evolution scenarios have been studied (metamodels-models [8],
metamodels-transformations [12] and metamodels-editors [9]) no holistic and
global approach has been proposed so far.

Stepwise Adoption of Continuous Delivery in Model-Driven Engineering 21

conformsTo

input, output

Legend

uses

Fig. 1. MDE architecture

The remainder of the paper is structured as follows. Section 2 tries to clarify
the glossary of terms that the mixture of Continuous* and Model-Driven domains
entails. In Sect. 3 we analyze how can models can be integrated in CD processes
and tools. Then, in Sect. 4 it is proposed to use CD practices to manage the
evolution of MDE artifacts. Section 5 exposes related work; and finally, in Sect. 6
we conclude with a summary and future challenges.

2 Background

The Agile Manifesto was born in 2001. This manifesto claimed four values and
twelve principles. The values are well-known: individuals and interactions over
processes and tools, working software over comprehensive documentation, cus-
tomer collaboration over contract negotiation and responding to change over
following a plan. The principles are as well described in the manifesto [4].

In this agile context, and opposite to what it could be thought, teams are
more likely to model than in traditional methodologies [23], as modeling supports
many of their principles, as communication, rapid feedback or quality. MDE is a
paradigm that uses models to develop software. Models conform to metamodels,
and are transformed to other models or to code, building an ecosystem of related
artifacts (Fig. 1). These models can be used in workflows where they can be: val-
idated, merged, compared, transformed, etc. [18]. These tasks are not in solitary
confinement: they need to be integrated in heterogeneous projects managed with
CD methodologies.

Rooted in the spirit of the manifesto, the Agile Model Driven Development
(AMDD) method was conceived to ensure the emergence of effective architec-
tures, requirements and designs. As the name suggests, AMDD is an agile version

22 J. Garcia and J. Cabot

of MDD where the created models are not extensive, just good enough for the
development cycle at hand. In opposition to the waterfall methodology where
the modeling is done only in the beginning, in the agile software development
lifecycle there are many cycles and in each of them modeling is present at the
beginning [2].

The last step is introducing as well agility in the release step. Continuous
Delivery is a subset of agile that emphasizes the need for software to be always
ready for release. Contrary to the waterfall model that releases the software once
all the functionality is developed, agile releases partial functionality throughout
the development. In order to achieve this always-ready release philosophy, some
techniques (e.g. test automation) and tools (e.g. Jenkins) are used.

To clarify these acronyms, we will adhere to the following reference termi-
nology [15]: Continuous Integration (CI) is the frequent integration of code by
all the members of a project. Build and tests are accomplished automatically in
order to detect integration errors as soon as possible. Continuous Delivery (CD)
is an extension of CI where it is guaranteed that the mainline is always in a
deployable state, and that this deployment can be done in “one click”. Opposed
to CD where the deployment is manual, in Continuous Deployment, every time
there is a commit, the software is automatically deployed to production. Contin-
uous Software Engineering (CSE) is the organizational and cultural attempt to
connect development with business strategy. All these practices are encompassed
in what is known as Continuous*. In this paper we are going to use the term
Continuous Delivery (CD), as it is closest to our proposal of always keeping the
MDE infrastructure ready to be executed.

In order to achieve this automatic deployment, these techniques are based
on the automation of the build. Specifically, a deployment pipeline divides and
executes automatically different stages of the build; which are generally compi-
lation, tests and deployment. This stages are, as well, broken up into jobs. This
pipeline provides visibility of the whole process.

3 Integration of MDE Tools in CD

In most software development projects, there is some degree of model use [22].
MDE components must collaborate with each other but also interface with other
non-MDE tools, including CD servers [19], in a global CSE context.

This section looks at whether this integration is possible, focusing on the
basic scenario of individual MDE artifacts used as part of a larger software
development CD scenario. The key requirement of CD servers like Jenkins1 is
that an IDE cannot be used to build the software, as it does not guarantee a
repeatable build. To be part of a CD pipeline, MDE tools must be able to be
wrapped as jobs to be executed standalone, i.e. without human intervention,
when called by the CD server.

Therefore, at its simplest level, integration of MDE in CD will be possible
if we find at least one MDE tool, for each major MDE activity, offering some
1 https://jenkins-ci.org/.

https://jenkins-ci.org/

Stepwise Adoption of Continuous Delivery in Model-Driven Engineering 23

kind of external interface (via API or shell access) that allows its integration in
CD pipeline. And indeed, we do. Table 1 lists examples of such tools for each
activity.

Table 1. Example of available tools for each modeling task

Modeling task Tool example

Modeling framework EMFa

Model to model transformation ATL, Epsilon ETL, QVT

Model to text transformation Acceleo, Epsilon EGL, Xpand

Model comparison EMFCompare, Epsilon ECL

Model weaving/composition/merge AMW, Epsilon EML

Model injection/extraction Xtext, EMFText

Model validation EMFtoCSP, Epsilon EVL
aOne difference of running EMF standalone is that the application is
unaware of plug-ins, so registrations have to be done now in the code

This alone is powerful enough to build CD pipelines for (model-based) devel-
opment projects.

Illustrating Example

As an example of MDE infrastructure, we are going to use a very common
Forward Engineering (FE) process, where models are used to design a solution
that is later automatically transformed into a CRUD-based web application.
This scenario is illustrated in Fig. 2:

1. The left-bottom part shows a UML class diagram depicting the need to store
information about books and bookshops.

2. A transformation uses this schema definition to generate a navigation model
[6] with the usual CRUD pages as default website structure.

3. A final model-to-text transformation generates the code corresponding to the
forms, pages and tables for the example.

The class diagram conforms to the UML language while the navigation model
is represented as an object diagram conforming to a small DSL called sWML
(Simple Web Modeling Language [5], inspired in IFML [6]). The transformation
is written in ATL and describes how to generate sWML models from UML ones.
The upper rule bootstraps the sWML model while the lower one iterates through
the UML model and, for each class it founds, it creates the corresponding CRUD
pages. More details on this example can be found in [1].

This transformation chain (from UML to sWML and from sWML to code)
is implemented in the CD server (Jenkins) by creating two new jobs, one per
transformation (see the last two jobs in Fig. 3). This way we enable: the chaining

24 J. Garcia and J. Cabot

Fig. 2. Example of a model-based software process

of modeling tasks (M2T is automatically executed when M2M finalizes), visual-
ization of their status (if there is any error in the execution or resulting model or
code) and the immediate re-execution of the process when a model is updated
(either at the UML or sWML levels). Reactivity is achieved thanks to a hook
between the SCM and Jenkins2, that allows the execution of jobs as triggers
after an update in the software repository.

Still, this integration is straightforward but quite dumb in the sense that the
CD server sees models as pure text/XML artifacts and therefore is unable to use
the model semantics to better manage the pipeline, for instance by preventing
triggering the transformations when the model update does not have any real
impact in the rest of the chain. We discuss a more advanced integration in the
next section.

4 Continuous Evolution of MDE Infrastructure

All MDE elements in the previous example are a software product on its own
that have followed as well a build and deploy process, and therefore may benefit

2 https://wiki.jenkins-ci.org/display/JENKINS/Git+Plugin.

https://wiki.jenkins-ci.org/display/JENKINS/Git+Plugin

Stepwise Adoption of Continuous Delivery in Model-Driven Engineering 25

Fig. 3. Jenkins pipeline of the co-evolution process

from being the target of a CD process themselves to bring all CD benefits to the
MDE domain (or to best exploit them when part of a more global CD process).
These benefits include:

– Reactivity: The co-evolution process does not have to be launched by the
developer manually anymore. Everytime a new change is committed in the
repository, the process will be triggered automatically.

– Parallelization: Different co-evolution solutions are given depending on the
affected artifacts. Instead of applying them one by one, a CD server allows
to execute in the same time all of them.

– Visibility: of the process and its state.
– Time saving: Co-evolution and testing is only executed if the impact analysis

determines that it is actually needed.
– Flexibility: We may not need the modeling expert. The domain expert can

execute the whole process alone.

Due to the complex and non-linear nature of MDE ecosystems, we must deal
with changes at two different levels: the model level but also the metamodel
one, not usually the case when developing more traditional software products
where the grammars and libraries imported in the project hardly ever change
during the development; instead in MDE, the DSLs change much more often.

26 J. Garcia and J. Cabot

Covering this scenario is important to ensure the long-term maintainability of
the MDE artifacts (and therefore of the software depending on them) as part of
a Continuous Evolution [11] effort.

When co-evolving a MDE ecosystem, we must take into account the coupling
between each single pair of artifacts. Dependencies between different artifacts in
a MDE ecosystem can be seen in Fig. 1. These are the most common coupling
cases, that happen when the metamodel, which is the cornerstone of the ecosys-
tem, evolves:

– Metamodel - model: When a metamodel evolves, instances of that metamodel
have to be adapted to changes [8].

– Metamodel - transformation: Transformations are defined between meta-
model elements, so when any of the metamodels of the transformation (source
or target) evolves, it has to be adapted to that evolution as well [12].

– Metamodel - editors: When the metamodel defining the abstract syntax of
an editor changes, the rest of the editor artifacts are affected [9].

4.1 Evolution Scenario: An Example Implementation

Coming back to our example of Fig. 2, we propose a simple evolution scenario:
the sWML metamodel evolves, renaming the name of the type HypertextLayer
to NavigationLayer. This change forces us to change the references to that type
in the transformations using it as input/output element and update all model
elements that instantiate that type to reclassify them. We can see these impacts
as dotted arrows in the figure.

In a naive MDE - CD integration (as the one sketched in the previous section),
any change on a MDE artifact will trigger an update on all the depending ele-
ments which in turn could fire further changes down the lane. Ideally, the CD
server should be smarter than that and be able to understand enough the MDE
artifacts it manages in order to optimally coevolve them.

Figure 3 shows how our CRUD-based example has been implemented as a
fully automated pipeline in a CD server (Jenkins). For clarity, jobs have been
divided into phases:

1. Change detection: analyzing and classifying the kind of changes that have
occurred after every update by comparing the two versions of the artifact.
When the new version of the metamodel is committed, the process is trig-
gered. Both metamodel versions will be compared by calling the tool EMF-
Compare in charge of generating a difference model that represents the differ-
ences between the two versions of the metamodel. In this case, it will result in
a Rename Class type of change. Notice that in this step, a textual comparison
tool is not enough: a tool that deals with model semantics is needed.

2. Impact analysis: it is assessed what parts of the system are likely to be
affected by a change on the related artifacts running an impact analysis algo-
rithm. It decides, for each depending artifact, whether the changes should be
classified into:

Stepwise Adoption of Continuous Delivery in Model-Driven Engineering 27

– Non Breaking Changes (NBC): changes that do not have any impact.
– Breaking and Resolvable Changes (BRC) changes that have an impact

but that can be resolved automatically.
– and Breaking and Unresolvable Changes (BUC) changes that have an

impact that requires human intervention.
As we can see in Fig. 3, there is one job for detecting breaking changes and
another for unresolvable changes. The impact analysis has been implemented
as an ATL transformation wrapped in Java. The Rename Class would be
classified as a BRC type.

3. Synchronization: Once we know the affected artifacts (and the kind of
changes relevant to them), they are synchronized: for NBCs, the CD server
should not propagate anything, for BRCs it should evolve the depending ele-
ment automatically and for BUCs mark it as in an erroneous state for manual
reviewing. This step is implemented via an ATL transformation wrapped in
Java. In the example, as it is a BRC, the co-evolution jobs will adapt both the
models conforming to the sWML metamodel and the model to model trans-
formation. In the case of models, HypertextLayer elements will be renamed;
and in the ATL transformation, elements of type OclModelElement will be
renamed as well. This is because there is a coupling between EClass element
in Ecore and OclModelElement in ATL metamodel. As we can see in the
pipeline, there is one job for coevolving models and another one for coevolv-
ing transformations.

4. Testing the results. Conformance verifications have been implemented using
EMF default checking mechanisms. In the pipeline, there are several testing
jobs, one per artifacts: model, metamodel and transformation.

The corresponding jobs have been linked using the post-build section mech-
anism provided by Jenkins, where all elements are tested after any change and
feedback is provided if any error is detected (see [1] for the full details).

As we can see, this smarter integration would save a lot of time and, poten-
tially, many unnecessary redeployments in any non-trivial system. In the case of
Forward Engineering scenarios where code is generated, we avoid all the gener-
ation and testing of code.

Nevertheless, from the naive to the smart integration approaches we have
a full range of intermediate solutions depending on the characteristics of the
project and the availability of the model-based components required for each of
the four previous tasks in the specific project context.

4.2 Adoption Levels

Therefore, a step-wise adoption of Continuous MDE for software companies
could follow the phases described next, which progressively raise the level of
adoption:

Using Generic Support. Without any specific model support, the CD server
treats models as plain text and is not aware of their structure at all. Dependencies

28 J. Garcia and J. Cabot

Fig. 4. Conditional and parallel execution of coevolution jobs

between jobs have to be manually added and co-evolution is limited to alerting
developers when an element needs to be manually reviewed. Any new model
version triggers all depending jobs.

With Co-evolution Support. We can add co-evolution support for coupled
MDE artifacts. As described in the evolution scenario and (see also the generic
process described the Fig. 4), a model comparison job is triggered to interpret
model changes for a given artifact when a new version of the model is saved in
the repository.

– If there are breaking changes, co-evolution jobs (one for each coupled element
type) take care of processing those changes and determining whether the
depending elements need to be resynchronised. Those jobs are parallelizable.

Stepwise Adoption of Continuous Delivery in Model-Driven Engineering 29

Fig. 5. Extraction of transformation execution configurations

Then, if there was any unresolvable change, developers will be notified to do
a manual co-evolution. After that, tests will be executed in parallel.

– If there are not breaking changes, tests are executed directly, without passing
through the co-evolution step.

This conditional and parallel execution shortens the deployment time. The lim-
itation of this approach is that jobs are still manually added as part of the
pipeline definition phase but the pipeline is automatically executed (except for
BUCs) afterwards.

Automatizing the Process. As a final step in the integration between MDE
and Continuous Delivery, we could automate the definition of the pipeline itself.
The initial configuration of the CD server can be generated programmatically.
For instance, the pipeline feature in Jenkins 2.0 (or Job DSL plugin3 in previous
3 https://wiki.jenkins-ci.org/display/JENKINS/Job+DSL+Plugin.

https://wiki.jenkins-ci.org/display/JENKINS/Job+DSL+Plugin

30 J. Garcia and J. Cabot

versions of Jenkins) allows to build Jenkins jobs using a simple DSL on top of
Groovy, which can be integrated in version control systems. This script, in turn,
could be generated based on the analysis of the (implicit or explicit) dependen-
cies between artifacts like a transformations configuration launch with specific
reference to the input/output metamodels. In Fig. 5 we can see the implicit pro-
cess information in the m2t and m2m transformations regarding the relation
between transformation, metamodels and models. We could take advantage of
this information for the impact analysis and co-evolution phases, where it is
needed to know the coupling between artifacts. In this scenario, both the defini-
tion and execution of the pipeline are fully automated. Implementing this part
is left as future work.

5 Related Work

Co-evolution of artifacts in the MDE ecosystem has been tackled in several
works, where specific solutions have been proposed depending on the type of
artifact to be co-evolved. It has been studied the impact of metamodel evolution
on models [8], transformations [12] and editors [9]. But, as far as we know, there
are not works with an holistic and automatized view of the evolution. They are
limited to an on-demand and manual co-evolution between pairs of artifacts.
Using those evolution tools as building blocks, we are proposing a more ambi-
tious approach where the co-evolution is reactive, automatic and parallelizable.
Moreover, the process can be implemented with existing tools, integrating all
the modeling tasks that are standalone.

The most basic premise in order to apply any kind of Continuous* practice is
that all the artifact versions are committed to a Version Control System. VCSs
[7,14,16], comparison [21] and merge tools [17] for models have been proposed.

There are also methodologies based on Ant to chain MDE operations [18]
but they have not been proposed as part of a CD process.

Papers studying the synergies between CD and MDE for specific domains
have also been presented. In [3], authors provide a model-based approach to
generate TOSCA blueprints (that supports the definition of deployments as
code), allowing the quick (re) deployments of cloud applications. Also in the
domain of cloud computing, [20] proposes a model-driven approach to abstract
and automate a continuous delivery process of cloud resources. This is done with
a tool that uses a Domain Specific Language (DSL) to model the cloud infras-
tructure and a transformation that from that model creates scripts to manage
different Configuration Management Tools. Similarly, in [10], a developer team
can specify a model of the deployment of its application and automatically enact
it in a test environment. Finally, in [13], authors present a prototype that uses
a model-driven generator combined with CI server. They report on an empiri-
cal evaluation that shows the benefits of using MDE in combination with a CI
server.

Complementary to these approaches, our work provides a more generic solu-
tion and studies the benefits of using CD processes and tools in the maintain-
ability of MDE infrastructures themselves.

Stepwise Adoption of Continuous Delivery in Model-Driven Engineering 31

6 Conclusions and Future Research Directions

We have sketched the integration of MDE artifacts as first-class citizens in con-
tinuous software engineering, ranging from a direct use of current integration
platforms to advanced coevolution scenarios, depending on the needs of the
project and the role MDE plays in it. This benefits developers of both software
artifacts (that can benefit from MDE) and MDE artifacts (that can benefit from
CSE in their work).

Nevertheless, to achieve a complete and smooth support for MDE in CSE, we
need to extend the state of the art in several directions. First, MDE technologies
themselves need to become more mature. While some (e.g. model transforma-
tions) are reliable and ready-to-use in complex industrial scenarios, others (e.g.
model merging) require more work to provide automatic solutions and/or profes-
sional tools. Secondly, CI components should be model-aware, providing default
support for some model management operations (like model comparison for well-
known types of models, e.g. UML class diagrams) or at least standard extension
points to provide that. Finally, brand new research proposals should target some
of the co-evolution scenarios and smarter dependency and impact analysis algo-
rithms that have not been addressed so far and that would enable a better CSE
automation for MDE projects.

We hope to see progress in these directions in the coming years.

References

1. https://github.com/jokingarcia/ContinuousEvolution. Accessed 9 July 2018
2. Ambler, S.W.: Agile software development. In: Encyclopedia of Software Engineer-

ing, pp. 29–46. Taylor & Francis (2010)
3. Artač, M., Borovšak, T., Di Nitto, E., Guerriero, M., Tamburri, D.A.: Model-driven

continuous deployment for quality DevOps. In: Proceedings of the 2nd Interna-
tional Workshop on Quality-Aware DevOps (2016)

4. Beck, K., et al.: Manifesto for Agile Software Development (2001)
5. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in

Practice. Morgan & Claypool Publishers (2012)
6. Brambilla, M., Fraternali, P.: Interaction Flow Modeling Language. Morgan Kauf-

mann, Burlington (2015)
7. Brosch, P., et al.: Adaptable model versioning in action. In: Modellierung (2010)
8. Demuth, A., Riedl-Ehrenleitner, M., Lopez-Herrejon, R.E., Egyed, A.: Co-

evolution of metamodels and models through consistent change propagation. J.
Syst. Softw. 111, 281–297 (2016)

9. Di Ruscio, D., Lämmel, R., Pierantonio, A.: Automated co-evolution of GMF editor
models. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS,
vol. 6563, pp. 143–162. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19440-5 9

10. Ferry, N., Solberg, A.: Models@Runtime for continuous design and deployment.
In: Di Nitto, E., Matthews, P., Petcu, D., Solberg, A. (eds.) Model-Driven Devel-
opment and Operation of Multi-Cloud Applications. SAST, pp. 81–94. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-46031-4 9

https://github.com/jokingarcia/ContinuousEvolution
https://doi.org/10.1007/978-3-642-19440-5_9
https://doi.org/10.1007/978-3-642-19440-5_9
https://doi.org/10.1007/978-3-319-46031-4_9

32 J. Garcia and J. Cabot

11. Fitzgerald, B., Stol, K.-J.: Continuous software engineering: a roadmap and agenda.
J. Syst. Softw. 123, 1–14 (2015)

12. Garćıa, J., Diaz, O., Azanza, M.: Model transformation co-evolution: a semi-
automatic approach. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol.
7745, pp. 144–163. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36089-3 9

13. Garćıa-Dı́az, V., Espada, J.P., Núñez-Valdéz, E.R., Garćıa-Bustelo, B.C.P., Cueva
Lovelle, J.M.: Combining the continuous integration practice and the model-driven
engineering approach. Comput. Inf. 35, 299–337 (2016)

14. Holmes, T., Zdun, U., Dustdar, S.: MORSE: a model-aware service environment.
In: 4th IEEE Asia-Pacific Services Computing Conference (2009)

15. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Pearson Education, London (2010)

16. Koegel, M., Helming, J.: EMFStore: a model repository for EMF models. In: Inter-
national Conference on Software Engineering (2010)

17. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Merging models with the epsilon
merging language (EML). In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G.
(eds.) MODELS 2006. LNCS, vol. 4199, pp. 215–229. Springer, Heidelberg (2006).
https://doi.org/10.1007/11880240 16

18. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: A framework for composing modular
and interoperable model management tasks. In: MDTPI Workshop (2008)

19. Paige, R.F., Matragkas, N., Rose, L.M.: Evolving models in model-driven engineer-
ing: state-of-the-art and future challenges. J. Syst. Softw. 111, 272–280 (2016)

20. Sandobalin, J., Insfrán, E., Abrahão, S.: An infrastructure modelling tool for cloud
provisioning. In: International Conference on Services Computing, pp. 354–361
(2017)

21. Toulmé, A.: Presentation of EMF compare utility. In: Eclipse Modeling Symposium
(2006)

22. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven
engineering. IEEE Softw. 31, 79–85 (2014)

23. Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., Heldal, R.: Industrial
adoption of model-driven engineering: are the tools really the problem? In: Moreira,
A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS,
vol. 8107, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-41533-3 1

https://doi.org/10.1007/978-3-642-36089-3_9
https://doi.org/10.1007/978-3-642-36089-3_9
https://doi.org/10.1007/11880240_16
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1007/978-3-642-41533-3_1

A Proposal for Integrating DevOps into
Software Engineering Curricula

Christopher Jones(B)

School of Computing, DePaul University,
243 S. Wabash Avenue, Chicago, IL, USA

christopher.jones@depaul.edu

Abstract. The “2017 State of DevOps Report” asserts that 27% of its
respondents work on devops teams, an increase of almost 23% from 2016
and almost 69% from the 2015. Devops practices are intended to improve
an organization’s software development throughput by reducing the cycle
time needed for a software change to reach its users. Although the skills
needed for effective devops are in demand, it is challenging to integrate
it into a academic curriculum for several reasons. First, software devel-
opment curricula often only take students through the delivery stage of
software development and do not spend meaningful time on operational
activities, making it difficult to recruit faculty with the requisite IT oper-
ations experience. Second, many of the applications and their environ-
ments that can most benefit from devops are extremely complex, making
it difficult to provide an appropriate learning environment. Third, many
requirements for successful devops are not technical but instead empha-
size the human and organizational aspects of our craft. Fourth, for many
students, the problems addressed by devops are abstract. In this paper we
look at these challenges in more detail and review one proposal for inte-
grating devops into existing curricula in light of current devops maturity
models, disciplines, and industry trends.

1 Introduction

The “2017 State of DevOps Report” [1], jointly produced by PuppetLabs and
DevOps Research and Assessment (DORA), reports that 27% of its respondents
currently work for a devops team. This is almost a 23% increase from the 2016
and nearly a 69% increase from the 2015 editions of the same report. The-
ses findings are supported when we look at the number of Google searches for
“devops” over the last 5 years, shown in Fig. 1. Devops jobs are also on the rise.
One SDTimes article found that, based on data from Indeed.com, there was a
225% increase in the number of job postings for the role of “DevOps Engineer”
between January, 2015 and April, 2016 [2]. Based on these observations, as well
the volume of devops-related subjects at industry conferences, and the number
of devops-related books, it is clear that the subject of devops is important to
the software development community. The very creation of this workshop is a
further testament to devops’ influence on software development.
c© Springer Nature Switzerland AG 2019
J.-M. Bruel et al. (Eds.): DEVOPS 2018, LNCS 11350, pp. 33–47, 2019.
https://doi.org/10.1007/978-3-030-06019-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_3&domain=pdf
http://indeed.com/
https://doi.org/10.1007/978-3-030-06019-0_3

34 C. Jones

Fig. 1. Monthly Google searches for “devops” (2012-JAN-01 through 2017-DEC-31)

1.1 Challenges of Devops Education

Devops education is challenging for several reasons. First, much of the devops
literature emphasizes the development and quality assurance (QA) aspects of
the software delivery lifecycle but does not address many of the concerns of
IT operations, especially those that occur beyond the software deployment and
release stages of the SDLC. This can make it difficult to find faculty with rele-
vant IT operations experience. This makes intuitive sense: since it is difficult to
teach the operational aspects of software, that subject may be omitted from aca-
demic curricula, thus making it unnecessary to attract faculty with the relevant
background in IT operations, thus perpetuating the cycle.

Second, any application and its associated runtime environments that could
benefit from devops is typically much more complex than those demanded for
most courses. Applications used in academic courses are often designed to be
relatively limited in scope and to emphasize particular topic or technique in
comparative isolation. In contrast, many of the challenges addressed by devops
practices are only visible when the complexity of an application and its runtime
environments reach a certain scale. This is particularly true of modern micro-
service based applications in which multiple services must collaborate to realize
more complex business processes. Such architectures can be complex not only
in terms of their technical stack, but also their ownership, their evolution, and
their deployment models. This complexity is rarely if ever visible in traditional
classroom applications.

Third, many of the existing devops offerings focus primarily on the technical
aspects of the art. While these are practical to study in the classroom, they
are often not the most critical elements of devops success. The most beneficial

A Proposal for Integrating DevOps into Software Engineering Curricula 35

aspects of devops such as culture, organizational change, and collaboration, are
much more difficult for students to practice. These may also prove to be the
least interesting subjects to students who may be much more excited about
working with interesting (and marketable) technologies rather than in learning
how to communicate and work with business people, operators, or infrastructure
specialists, individuals with whom they commonly have little interaction.

Finally, many of the problems addressed by devops can be difficult for stu-
dents to understand without related experience. For example, it is easy to under-
stand continuous integration in principle, but it is much harder to truly grasp
its benefits unless one has worked on complex integrations spanning hours, days,
or even weeks. Similarly, it can be difficult to learn about organizational trans-
formation when one is comparatively new to one’s career and lacks the insight
and influence to help effect change, assuming there is recognition that change is
necessary at all and what that change should be.

1.2 Scope of Devops Education

In this paper we treat devops as the most comprehensive set of processes within
the SDLC, which means that when we discuss devops we can also discuss sup-
porting processes such as agile development, continuous integration, continuous
delivery, and release engineering. The mapping of these processes onto a basic
SDLC is shown in Fig. 2. Devops has traditionally been regarded as the inter-
section of the three independent yet related disciplines shown in Fig. 3: devel-
opment, IT operations, and quality assurance. Security is beginning to mature
as a fourth discipline, although we do not consider it here. Informal definitions
for each of these disciplines are provided below, but each discipline plays essen-
tially the same role under devops that it played pre-devops. However, under a
devops mindset these roles are neither independent nor isolated, but are instead
interdependent and mutually reinforcing.

Development Plans, architects, designs, and constructs software such that
it is ready to be handed over to the Quality Assurance (QA)
team for testing. Under devops, development teams may take
on the role of QA by adopting automated testing.

QA Confirms that the software is fit for use and fit for purpose.
QA not only locates functional discrepancies, but also iden-
tifies possible problems in the software’s ability to meet its
service-level objectives. QA under devops often becomes less
about running tests and more about mentoring the develop-
ment team in testing practices.

IT Operations Operates the software within its runtime environment. IT
operations often performs activities such as provisioning
new hardware, managing the environment’s configuration,
enables business continuity like backups and disaster recov-
ery, and assisting in resolving unplanned events such as
outages.

36 C. Jones

In their 2016 book, “Effective DevOps”, [3] Davis and Daniels argue that
collaboration and affinity are “pillars” of devops just as much as tools and tech-
nology. We see a similar emphasis in other literature. For example, in “Continu-
ous Delivery and DevOps: A Quickstart Guide” [4], Swartout dedicates several
chapters to organizational change, measurements, metrics, culture, and behav-
ior. Of its seven chapters, only one is dedicated to tools and technology. This is a
significant departure from prior works where the constructive use of technology
as a devops enabler was often the central focus. This invites us to consider that
effective devops has a much broader impact than the traditional three dimen-
sions of Fig. 3. One way to gauge this scope of impact is to identify industry
perception of the most important devops disciplines. We thus turn our attention
to some of the influences on devopscurricula.

2 Influences on Devops Curricula

Many factors can influence which topics of devops should be incorporated into a
curriculum and how they are introduced. In this paper we consider only three:
industry maturity models, technical foundations, and IT operations foundations.

2.1 Maturity Models

Several devops maturity models have been proposed. Forrester Research [5]
defined a maturity model that incorporated common devops practices into
CMMI [6]. 2013 and 2014 whitepapers from InfoQ [7] and IBM [8] respectively,
define five continuous delivery maturity levels, which are different from those of
CMMI, but which serve the same basic purpose. In contrast, a 2013 IBM DevOps
maturity model [9] defines only four maturity levels emphasizing the adherence
to standards, the use of automation, and the documentation of practices. The
maturity levels themselves are not of primary interest to us here. Instead, we
focus on the dimensions of devops evaluated by those maturity levels and how
they contribute to a foundation suitable for defining the devops practices and
principles that we wish our curricula to address.

Some standards bodies are currently attempting to define standards
around devops practices. For example, IEEE project 2675 seeks to

Fig. 2. Devops evolution mapped onto a basic software development lifecycle

A Proposal for Integrating DevOps into Software Engineering Curricula 37

Development

IT
Operations

QA

DevOps

Fig. 3. Devops forces the convergence of traditionally separate disciplines

“...specify required practices for operations, development and other key stake-
holders to collaborate and communicate to deploy systems and applications in a
secure and reliable way” [10]. However, most devops maturity models are being
drafted by industry groups. One continuous delivery maturity model [8] consid-
ers the following areas to be of interest in assessing devops maturity: building,
deploying, testing, and reporting. InfoQ [7] instead assesses: culture and orga-
nization; design and architecture; build and deploy; test and verification; and
information and reporting. Because these were maturity models for continuous
delivery only, any reference to the maturity of operational practices is notably
absent. This reflects a tendency of maturity model authors to emphasize the soft-
ware delivery facets of devops rather than addressing the complete SDLC. For
example, IBM’s devops maturity model [9] has “Monitor/Optimize” as one of
their model’s capabilities, and yet monitoring and optimization are only a small
fraction of the operational activities with which an organization must contend.
Disaster recovery, notification and escalation, and incident and event manage-
ment are all essential operational practices that must be considered.

There are also maturity models that address IT infrastructure and opera-
tions (I&O). One model from Gartner [11], the ITScore for Infrastructure and
Operations (ITSIO), suggests that I&O maturity be assessed against five lev-
els based on the management of: processes; people; technology; and business.
The CERT Resilience Management Model (CERT-RMM) [12] looks at oper-
ational resilience based on the management dimensions of: engineering; oper-
ations; enterprise; and process. These dimensions overlap with Gartner’s pro-
posed ITScore model. While not a true maturity model, the IT Infrastructure
Library (ITIL) [13] defines core areas: service strategy, service design, service
transition, service operation, and continual service improvement. Taken together
these areas capture most of the same disciplines of maturity as the other models

38 C. Jones

examined previously. Some maturity models have even been developed for ITIL
such as [14] and [15]. The implication is that maturity in the broader ITIL
practices will necessarily make an organization more mature in terms of devops
practices since devops practices are subsumed within the broader ITIL practices.

Thus from a devops education perspective, the guidance provided by these
various maturity models suggests that we should address: business; process; tech-
nology; measurements and metrics; and continuous improvement. We will see
these subjects again in Sect. 3.

2.2 Technical Foundations

Technical considerations are often the most obvious ones when discussing devops,
especially in the area of traditional software development. The challenges of
defining software delivery pipelines that can take, in their most comprehensive
form, each code commit and deploy the resulting artifacts with zero downtime
deployments, is an enticing technical problem with compelling organizational
benefits. In their seminal work, “Continuous Delivery”, Humble and Farley [16]
take up much of the book with purely technical topics like continuous inte-
gration, test data management, and build and deployment scripting. In fact,
technology is such an important element of all devops efforts, that the company,
XebiaLabs, provides their “Periodic Table of DevOps Tools1, showing dozens
of tools spanning a variety of subject areas, each of which can contribute to
the smooth operation of a devops initiative. Figure 4 shows one generation of
their periodic table. This table defines 15 categories of tools across five different
licensing models from open source through enterprise.

Because schools of computing are adept at teaching development, these foun-
dations are in many ways the easiest to build. Easy access to virtualization
and cloud resources makes it comparatively simple to define a software delivery
pipeline that exhibits continuous integration, delivery, and deployment, address-
ing at least the Development and QA disciplines from Fig. 3. Existing approaches
to devops education such as DevOpsEnvy [17] provide support through the prac-
tice of continuous deployment. However, such approaches ignore the operational
aspect of devops education instead focusing almost exclusively on the software
delivery aspects. Additionally, placing too much emphasis on technology can
actually undermine the efforts at adopting devops practices. While it is undeni-
able that technology is a significant devops enabler, it is a mistake to think it
the most important one. If devops was nothing more than a series of technical
challenges, then its education would be, if not straightforward, at least amenable
to traditional teaching methods and programs. However, the non-technical chal-
lenges of devops are significant enough that the 2016 and 2017 “State of DevOps
Reports” [1,18] have focused on non-technical aspects of devops such as trans-
formational leadership and the return on investment of devops adoption.

1 https://xebialabs.com/periodic-table-of-devops-tools/.

https://xebialabs.com/periodic-table-of-devops-tools/

A Proposal for Integrating DevOps into Software Engineering Curricula 39

Fig. 4. XebiaLabs’ periodic table of DevOps tools

2.3 IT Operations Foundations

One complexity of devops education is the fact that many IT Operations activ-
ities can only be examined once the software has been deployed and is in opera-
tion, sometimes for an extended period of time. Most software engineering cur-
ricula only take software through the “deploy” phase of the Fig. 2 model. While
this assuredly involves some aspects of IT Operations, those activities are hardly
representative of the breadth of responsibilities that such teams generally wield.
Similarly, the teaching of “infrastructure as code” often requires a sound knowl-
edge of infrastructural elements including networking, computing, and storage.
Added to these basic components are larger and larger SaaS offerings from cloud
providers such as Amazon Web Services (AWS) and Microsoft. While these offer-
ings are undoubtedly useful, they require expertise to setup and configure in a
cost-efficient way. They also require expertise to architect the software to take
advantage of those offerings. The technical and operational complexity is often
significant enough that most major cloud providers define some kind of certi-
fication process so that individuals can demonstrate a degree of competency
with the provider’s services and capabilities. For example, Amazon defines cer-
tifications such as the AWS Certified Solutions Architect and AWS Certified
SysOps Administrator (emphasizing the development and IT operations disci-
plines respectively). Microsoft and Google both offer similar certifications for its
cloud platforms.

Major cloud providers like AWS do not themselves take on the burden of
common operational tasks such as defining monitors and their thresholds, speci-
fying the notification structure for the team that is ultimately responsible for the
availability of the service, and defining, codifying, and exercising major activities
such as disaster recovery. Yet the livelihoods of many businesses may depend on

40 C. Jones

these activities being performed consistently and well. This suggests that the
study of IT operations, alongside development and QA, should be a major con-
sideration in all devops education.

3 A Framework for DevOps Education

One significant challenge to devops education is that devops impacts many dis-
parate disciplines, something many students, even after years of experience, will
simply not have. This is not inherently a problem – full lifecycle software deliv-
ery is, of necessity, a collaborative effort. Filling this experience gap is the role
of education, but that comes in a variety of forms including both professional
and academic models.

Professional education is common and often considered more cost-effective
by organizations because of the comparatively short time frames to complete
the training as well as a perception that the training might be more “practical”
rather than “academic”. There are many options for professional devops training
such as the “DevOps Foundation” certification from the DevOps Institute2 or
the “DevOps Certification Training” from online provider Linux Academy3. Sev-
eral publicly available devops courses are offered by providers such as OSU [19]
or Coursera. Some firms that consult in the field of devops also offer some kind
of devops training. As with the rest of devops however, there is often little agree-
ment on exactly what to teach. Some vendors may choose to adopt a technical
approach that emphasizes the tools with which they themselves are most famil-
iar or the vendors with whom they have strategic partnerships. While there is
nothing wrong with this per se, we believe it is important to differentiate devops
training from technical training. Technical training can be comparatively focused
and discrete but because of its much broader scope, we believe that devops edu-
cation must be more expansive and holistic, highlighting the interdependencies
between its constituent disciplines.

To fully understand the interdependencies between the various devops disci-
plines in an academic setting, a devops curriculum might benefit from following
the same educational model used for many Management in Business Adminis-
tration (MBA) programs. For example, the 2016 Association of MBAs (AMBA)
MBA Accreditation [20] advises that students should gain an understanding of
several key areas of business knowledge including:

– Accounting
– Finance
– Marketing
– Micro- and macro-economics
– Operations
– Organizational theory

2 https://devopsinstitute.com/certifications/devops-foundation/.
3 https://linuxacademy.com/devops/courses.

https://devopsinstitute.com/certifications/devops-foundation/
https://linuxacademy.com/devops/courses

A Proposal for Integrating DevOps into Software Engineering Curricula 41

In addition to these foundational areas, MBA students are typically free to
choose an area of concentration, which might introduce more advanced studies
in the aforementioned topics or additional topics that are more specialized than
the above general business knowledge. This model, when combined with the
discussion in Sect. 2.1, suggests that a devops education should consider the
following disciplines:

– Agile Development Frameworks
– Architecting for Devops
– Infrastructure and Automation
– Configuration Management
– IT Operations
– IT Security
– Organizational Transformation
– Software Delivery Automation
– Software Economics
– Software Testing

Each of these topics is large and this list is clearly not inclusive since it
assumes that prerequisite topics such as programming, data structures, and com-
puter organization are covered elsewhere. One of the most import aspects of these
disciplines is that they reinforce one another.

Agile
Development
Frameworks

Agile development frameworks allow for new capabilities to
be rapidly incorporated into software or its environments.
Such changes are carefully prioritized and planned. Because
of the comparatively rapid pace of delivery, “Configuration
Management” is a critical supporting subject. Agile devel-
opment emphasizes common techniques such as unit testing
and continuous integration, which are necessary to realize
more advanced forms of release such as continuous delivery
and continuous deployment.

Architecting for
Devops

Devops is intended to support the rapid delivery of work-
ing software without compromising on software quality [21].
However, applications must be architected to support those
goals. The involvement of both the IT operations and QA
disciplines may in fact result in architectural changes that
will better support those disciplines [22]. Architecting appli-
cations that enable devops requires an understanding of
nearly every other topic in this list.

Infrastructure
and Automation

Understanding the major infrastructural elements of com-
pute, memory, and networking is critical in understand-
ing how to effectively evaluate and select amongst alter-
native application architectures. Understanding how data
centers function is critical to architecting effective solu-
tions that lend themselves to devops adoption as well as
in making decisions about the utility and appropriateness

42 C. Jones

of cloud providers. Knowing how cloud providers mone-
tize their offerings is critical for understanding the eco-
nomics of cloud-based software and the architectures used
for them. Practitioners must understand the shared secu-
rity models between the cloud provider and the cloud con-
sumer. devops has a goal of treating infrastructure as code.
A study of automation techniques and technologies is essen-
tial to reaching that goal.

Configuration
Management

A key principle of devops is that almost everything
should be stored in source code. This is the premise of
infrastructure-as-code, but it can be expanded to include
other things such as code delivery pipelines [23]. Further-
more, the techniques used for configuration management
such as trunk based development [24] or feature toggles [25]
can impact our ability to deliver software rapidly and reli-
ably.

IT Operations The use of cloud infrastructure does not obviate the need
for sound operational activities including: monitoring, noti-
fication, escalation, and disaster recovery. Moreover, such
concerns can radically impact an application’s architecture.
Designing the process that allow an application to honor its
recovery time and recovery point objectives can be essen-
tial to avoiding violations of the service-level agreements
generally defined as part of all software service contracts.

IT Security Devops has been slowly evolving to include security, result-
ing an a broader topic known as “devsecops”. While secu-
rity has been an important topic for years, the adoption
of devops practices makes it even more critical. As product
development teams are given more control and responsibil-
ity for provisioning and managing their own infrastructure,
knowledge of security considerations will directly impact
their ability to meet compliance, regulatory, and auditing
requirements imposed by clients and governmental regula-
tory agencies.

Organizational
Transformation

The adoption of devops requires significant organizational
change. This is especially true in organizations where tech-
nology teams wield little authority or where the applica-
tions or their technologies are considered “legacy”. The use
of software economics can be used to create a business case
for the gradual adoption of devops practices from the other
subjects. What sets this subject apart from the others is a
focus on people and soft skills such as: listening, negotia-
tion, business communication, persuasion, and patience.

Software
Delivery
Automation

Successful devops typically requires significant automation
across the major processes. Such automation enables the
rapid delivery of working software and can be integrated

A Proposal for Integrating DevOps into Software Engineering Curricula 43

with the automation required to provision and configure
cloud hardware such that the software and its assorted run-
time environments can all be treated as code.

Software
Economics

Each devops decision is subject to economic realities. The
study of software economics ensures that the adoption
of devops solutions balance the economic costs of violat-
ing availability, recovery time, or recovery point objectives
with the economic gains of mitigating those same risks.

Software Testing Testing corresponds to the QA discipline of devops. Soft-
ware delivery pipelines require different kinds of tests to
ensure that the various functional, capacity, and acceptance
criteria have been met. In this case it does not include
activities such as penetration or fuzz testing although if
this model was extended to include DevSecOps, then it
undoubtedly would.

While a comprehensive university program comparison is beyond the scope
of this paper, we can say that we see elements of these subjects in existing uni-
versity devops programs such as “DevOps: Modern Deployment” from Carnegie
Mellon University [26], “Continuous Delivery and DevOps” at DePaul Univer-
sity [27], and “DevOps Software Development” from Johns Hopkins Univer-
sity [28]. Letterkenny Institute of Technology offers an MS degree in DevOps [29].
These programs address some common elements including virtualization, con-
tainerization, software delivery pipelines, basic cloud technologies, and certain
operational activities like monitoring. There are also areas of divergence. For
example, [26] spends additional time on security and architecture, whereas [27]
addresses topics like devops economics, build automation, and the use of auto-
mated testing frameworks within the software delivery pipeline. Because devops
covers a large number of topics, any one-semester class will likely be deficient in
some aspect of the subject, either because there is simply not time or because
the topic is covered in other courses. Obviously of those other courses are not
taken, then students of a single devops course will necessarily have corresponding
gaps in their education. This reinforces our belief the devops requires a holistic
curriculum rather than only a single course.

4 Discussion

The ACM 2014 Curricula Recommendations for Software Engineering [30] men-
tions many, although not all, of the subjects we identified in Sect. 3 along
with proposed hours of instruction. As shown in Table 1, the guidelines do not
directly reference anything to do with IT operations. Similarly, architecture is
defined loosely and doesn’t directly address operational concerns although it does
address common concerns associated with deploying code to cloud environments.

Based on these estimates, and to say nothing of whether or not the amount
of time is actually sufficient to the need, we see that the ACM guidelines suggest
almost 180 h of instruction across these topics, which do not even address all of

44 C. Jones

Table 1. ACM suggested instruction hours by devops discipline

Hours Discipline

24 Agile Development Frameworks
Process implementation, process evolution, and planning and tracking

51 Infrastructure and Automation
Systems engineering and architecture and the evaluation of the design.
Computer architectures, operating systems, and network protocols

6 Configuration Management
Release management, revision control, software deployment, and software
configuration management processes. Some elements of these guidelines
address Software Delivery Automation

0 IT Operations
This discipline is not significantly addressed by the ACM guidelines

20 IT Security
Security fundamentals, encryption and cryptography, social engineering,
computer and network security, developing secure software

23 Organizational Transformation
Group dynamics, stakeholder interaction, communication skills, team and
group communication, and presentation skills

0 Software Delivery Automation
Parts of this discipline are addressed as part of Software Configuration
Management, but do not address concepts like infrastructure automation

8 Software Economics
The economics of software development and delivery

47 Software Testing
Software verification, validation, and quality. This does not directly
address the verification or validation of the runtime environment

179 Total Suggested Instructional Hours

the subjects in our proposed list. For example, we include course on computer
organization, operating systems, and networking within the “Infrastructure and
Automation” category. While these topics are important, they do not generally
suffice to teach “IT Operations”, which is more concerned with developing pro-
cesses and practices to eekp an operating environment stable. This provides a
strong indication that a single devops course is unlikely to meet all of the needs
of a holistic devops education.

Christenson [31] describes an approach by which many aspects of devops are
taught within a single 7-week course, “Cloud Computing and Architecture.” Dur-
ing the course, students focus on the practical implementation of common devops
disciplines that cover many of the subject areas mentioned above including:
Agile Development; and Cloud Infrastructure and Automation. The course also
exhibits some elements of Operations. It is an architecture course and emphasizes
architecting for the cloud although it is not clear whether it emphasizes archi-
tecting for devops. Similarly, while testing is undoubtedly an element of this

A Proposal for Integrating DevOps into Software Engineering Curricula 45

class, it is unclear what kinds of testing are emphasized. Christenson’s course
also benefits from the rapid feedback from trained assistants using appropriate
automation as needed to simulate a variety of failure modes.

Other approaches attempt to ease the burden of devops education both on the
student and the instructor. DevOpsEnvy [17], a devops education support system
mentioned above, does this through the use of Docker containers of common open
source tools commonly used by organizations that embrace devops. The system
also provides instructors will common metrics to assist their student evaluations.
As mentioned before, however, this approach does not address other aspects
of devops such as IT operations. Neither does it address the human factors that
are necessary for adoption to succeed. Approaches such as DevOpsEnvy are
necessary for devops education, but they are not sufficient.

5 Conclusion

Devops is exciting. The IT industry is embracing its practices in an effort to
optimize their software delivery models. There is a lack of sound and impar-
tial devops education that roots its practices firmly in the existing disciplines
of computer science and software engineering, while also teaching our students
how those practices can be adapted to support the increased agility and speed
desired by software providers.

We have looked at some approaches to teaching devops. While there are
many industry-driven devops training programs, academic institutions have been
slower to provide devops education. Some of the reasons for that include the need
for a breadth of skills not always available to faculty, especially those who have
not worked in an operations capacity; the need for realistic runtime environments
with which to teach the operational aspects of devops; the fact that devops
requires many non-technical skills for successful adoption; and the fact that
many of the problems solved by devops may be fairly abstract to students who
have not worked on a project of meaningful size and complexity.

We have revisited devops as the intersection of the traditional three dis-
ciplines of development, QA, and operations and discussed why this view is
too limited. Various devops maturity models can be used to provide insight
into the various disciplines that the industry at large perceives to be important
to devops practice. Based on such models, we propose one set of disciplines that
make devops holistic: agile development frameworks, architecting for devops,
cloud infrastructure and automation, configuration management, IT operations,
IT security, organizational transformation, software delivery automation, soft-
ware economics, and software testing. Based on industry trends and the demand
for skilled devops practitioners, we have made the case that the breadth of mate-
rial warrants a complete curriculum for devops rather than simply a course.

We have seen the emergence of different devops classes, some from academia,
but even more from industry. We have made that case that while these programs
are a reasonable starting point the devops mindset must ultimately be interwoven
throughout a computing curriculum if devops practitioners are ultimately going
to be able to effectively apply its principles, practices, and techniques.

46 C. Jones

References

1. Forsgren, N., Kim, G., Humble, J., Brown, A., Kersten, N.: 2017 state of devops
report. Technical report, PuppetLabs and DORA (DevOps Research and Assess-
ment) (2017)

2. Moore, M.: Report: software architect, devops engineer among top paying jobs
in industry, April 2016. https://sdtimes.com/report-software-architect-devops-
engineer-among-top-paying-jobs-industry/

3. Jennifer Davis, K.D.: Effective DevOps. O’Reilly UK Ltd., Farnham (2016)
4. Swartout, P.: Continuous Delivery and DevOps: A Quickstart Guide. Packt Pub-

lishing, Birmingham (2012)
5. Forrester Consulting, Inc.: Continuous delivery: a maturity assessment model.

Technical report, Forrester Consulting, Inc. (2013)
6. CMMI Institute: What is capability maturity model integration (CMMI) R©?

January 2018. http://cmmiinstitute.com/capability-maturity-model-integration
7. Rehn, A., Palmborg, T., Boström, P.: The continuous delivery maturity model,

February 2013. https://www.infoq.com/articles/Continuous-Delivery-Maturity-
Model

8. Minick, E.: Continuous delivery maturity model, February 2014. https://developer.
ibm.com/urbancode/docs/continuous-delivery-maturity-model/

9. Bahrs, P.: Adopting the IBM DevOps approach for continuous software delivery,
October 2013. https://www.ibm.com/developerworks/library/d-adoption-paths/
index.html

10. Aiello, R.: Devops - standard for building reliable and secure systems including
application build, package and deployment, August 2016. https://standards.ieee.
org/develop/project/2675.html

11. Holub, E.: ITScore for Infrastructure and Operations. Tech Report, Gartner Inc.,
October 2016

12. Caralli, R., Allen, J., White, D.: CERT Resilience Management Model: A Maturity
Model for Managing Operational Resilience. Addison-Wesley Professional, Boston
(2010)

13. Axelos: What is ITIL R© best practice? https://www.axelos.com/best-practice-
solutions/itil/what-is-itil

14. Axelos Limited: ITIL Maturity Model, October 2013. https://www.axelos.com/
Corporate/media/Files/Misc%20Qualification%20Docs/ITIL-Maturity-Model.
pdf

15. Orbus Software: Measuring maturity: The ITIL Maturity Model, July
2015. https://www.orbussoftware.com/resources/downloads/measuring-maturity-
the-itil-maturity-model/

16. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. The Addison-Wesley Signature Series.
Addison Wesley (2011)

17. Rong, G., Gu, S., Zhang, H., Shao, D.: DevOpsEnvy: an education support system
for DevOps. In: 30th IEEE Conference on Software Engineering Education and
Training, CSEE&T 2017, Savannah, GA, USA, 7–9 November 2017, pp. 37–46
(2017)

18. Brown, A., Forsgren, N., Humble, J., Kersten, N., Kim, G.: 2016 state of DevOps
report. Technical report, PuppetLabs and DORA (DevOps Research and Assess-
ment) (2016)

https://sdtimes.com/report-software-architect-devops-engineer-among-top-paying-jobs-industry/
https://sdtimes.com/report-software-architect-devops-engineer-among-top-paying-jobs-industry/
http://cmmiinstitute.com/capability-maturity-model-integration
https://www.infoq.com/articles/Continuous-Delivery-Maturity-Model
https://www.infoq.com/articles/Continuous-Delivery-Maturity-Model
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://www.ibm.com/developerworks/library/d-adoption-paths/index.html
https://www.ibm.com/developerworks/library/d-adoption-paths/index.html
https://standards.ieee.org/develop/project/2675.html
https://standards.ieee.org/develop/project/2675.html
https://www.axelos.com/best-practice-solutions/itil/what-is-itil
https://www.axelos.com/best-practice-solutions/itil/what-is-itil
https://www.axelos.com/Corporate/media/Files/Misc%20Qualification%20Docs/ITIL-Maturity-Model.pdf
https://www.axelos.com/Corporate/media/Files/Misc%20Qualification%20Docs/ITIL-Maturity-Model.pdf
https://www.axelos.com/Corporate/media/Files/Misc%20Qualification%20Docs/ITIL-Maturity-Model.pdf
https://www.orbussoftware.com/resources/downloads/measuring-maturity-the-itil-maturity-model/
https://www.orbussoftware.com/resources/downloads/measuring-maturity-the-itil-maturity-model/

A Proposal for Integrating DevOps into Software Engineering Curricula 47

19. Oregon State University Open Source Lab: DevOps Bootcamp (2017). https://
devopsbootcamp.osuosl.org/

20. Association of MBAs: MBA Accreditation Criteria (2016). https://www.mbaworld.
com/-/media/files/accreditation/mba-criteria-for-accreditation.ashx?la=en

21. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. SEI
Series in Software Engineering. Addison Wesley (2015)

22. Shahin, M., Babar, M.A., Zhu, L.: The intersection of continuous deployment
and architecting process: practitioners’ perspectives. In: Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM 2016, pp. 44:1–44:10. ACM, New York (2016)

23. Jenkins: Pipeline as code with jenkins, July 2018. https://jenkins.io/solutions/
pipeline/

24. Hammant, P., Smith, S., et al.: Trunk based development: Introduction (2017).
https://trunkbaseddevelopment.com/

25. Tiwari, A.: Decoupling deployment and release- feature toggles, October 2013.
https://abhishek-tiwari.com/decoupling-deployment-and-release-feature-toggles/

26. Carnegie Mellon University, School of Computer Science, Institute for Soft-
ware Research: 17–611 DevOps: Modern Deployment. http://mse.isri.cmu.edu/
software-engineering/Courses/17-611-DevOps-Modern-Deployment.html

27. DePaul University, School of Computer Science, College of Computing and Digital
Media: SE-441 Continuous Delivery and DevOps. http://www.cdm.depaul.edu/
academics/pages/courseinfo.aspx?CrseId=014273

28. Johns Hopkins University, Whiting School of Engineering: 605.409 DevOps Soft-
ware Development. https://ep.jhu.edu/programs-and-courses/605.409-devops-
software-development

29. Letterkenny Institute of Technologys: Master of science devops, July 2018. https://
www.lyit.ie/CourseDetails/D202/LY KDVOP M/DevOps

30. Association of Computing Machinery: Software engineering 2014. Technical report,
Association for Computing Machinery, February 2015

31. Christensen, H.B.: Teaching devops and cloud computing using a cognitive appren-
ticeship and story-telling approach. In: Proceedings of the 2016 ACM Conference
on Innovation and Technology in Computer Science Education, ITiCSE 2016, pp.
174–179. ACM, New York (2016)

https://devopsbootcamp.osuosl.org/
https://devopsbootcamp.osuosl.org/
https://www.mbaworld.com/-/media/files/accreditation/mba-criteria-for-accreditation.ashx?la=en
https://www.mbaworld.com/-/media/files/accreditation/mba-criteria-for-accreditation.ashx?la=en
https://jenkins.io/solutions/pipeline/
https://jenkins.io/solutions/pipeline/
https://trunkbaseddevelopment.com/
https://abhishek-tiwari.com/decoupling-deployment-and-release-feature-toggles/
http://mse.isri.cmu.edu/software-engineering/Courses/17-611-DevOps-Modern-Deployment.html
http://mse.isri.cmu.edu/software-engineering/Courses/17-611-DevOps-Modern-Deployment.html
http://www.cdm.depaul.edu/academics/pages/courseinfo.aspx?CrseId=014273
http://www.cdm.depaul.edu/academics/pages/courseinfo.aspx?CrseId=014273
https://ep.jhu.edu/programs-and-courses/605.409-devops-software-development
https://ep.jhu.edu/programs-and-courses/605.409-devops-software-development
https://www.lyit.ie/CourseDetails/D202/LY_KDVOP_M/DevOps
https://www.lyit.ie/CourseDetails/D202/LY_KDVOP_M/DevOps

Omniscient DevOps Analytics

Damian Andrew Tamburri1(B), Dario Di Nucci2, Lucio Di Giacomo3,
and Fabio Palomba4

1 TU/e - JADS, ’s-Hertogenbosch, The Netherlands
d.a.tamburri@tue.nl

2 Vrije Universiteit Brussel, Brussels, Belgium
3 Guardia di Finanza di Trento, Trento, Italy
4 University of Zurich, Zürich, Switzerland

Abstract. DevOps predicates the continuity between Development and
Operations teams at an unprecedented scale. Also, the continuity does
not stop at tools, or processes but goes beyond into organizational prac-
tices, collaboration, co-located and coordinated effort. We conjecture
that this unprecedented scale of continuity requires predictive analytics
which are omniscient, that is (i) transversal to the technical, organiza-
tional, and social stratification in software processes and (ii) correlate all
strata to provide a live and holistic snapshot of software development, its
operations, and organization. Elaborating this conjecture, we illustrate a
set of metrics to be used in the DevOps scenario and overview challenges
and future research directions.

Keywords: Predictive analytics · DevOps quality ·
Organizational and technical aspects

1 Introduction

Omniscient - [om-nish-uh nt], adjective—“having complete or unlimited knowledge,

awareness, or understanding; perceiving all things.”—[Cit. Oxford Dictionary]

DevOps is a set of practices aimed at accelerating the lead-time between a
change and its operational availability to end-users [1]. On one hand, since its
early inception, DevOps has radically shifted the way of conceiving software pro-
cesses as well as the production of software artifacts; sample DevOps practices
include the incremental or radical intermix of Dev- and -Ops professionals in
the same team, using application lifecycle automation tools to enable continu-
ous delivery, or designing failure-first software architectures to learn a “proper”
architecture from runtime operations monitoring. On the other hand, tracking
and evaluating the effective monetary, technical, organizational, and social gains
connected to any single DevOps practice over others, or compared to the pre-
vious way of working is still a challenge for several reasons. For example, there
is still no definite way to shift from classical software engineering practices to

c© Springer Nature Switzerland AG 2019
J.-M. Bruel et al. (Eds.): DEVOPS 2018, LNCS 11350, pp. 48–59, 2019.
https://doi.org/10.1007/978-3-030-06019-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-06019-0_4

Omniscient DevOps Analytics 49

DevOps lest by incurring in great costs1 that cannot be estimated up-front.
Moreover, there is still a lack of actionable metrics to measure the impact, risks,
and gains connected to every single practice let alone any of their combinations.
Conversely, a proliferation of ad-hoc measurement and monitoring solutions exist
mainly configured to sustain each organizational scenario in each company.

We argue that, given the scope of its proclaimed shifts, DevOps also deserves
a radical shift in the means and mechanisms that software people need to employ
in tracking DevOps pains and gains. In fact, we observe the following. First,
DevOps practices altogether aim at improving all aspects of software produc-
tion, operation, and evolution, with small, and steadfast devices of technical (e.g.,
tools), organizational (e.g., co-operation practices), and social (communication
practices) nature. Second, achieving DevOps involves a shift of culture towards
failure—products should fail fast, fail observably, fail quantifiably, fail safely, and
more. In summary, we observe that DevOps: (a) entails changes along all possi-
ble activities in all possible layers around software (see Fig. 1), and (b) focuses
on failure. From this observation we conclude that DevOps requires measur-
able, fine-grained, complete, constant awareness over everything and everyone,
to achieve an understanding of what dimension (social, organizational, or other-
wise) is influencing what else, for the purpose of constant, continuous improve-
ment.

Organisational
Layer

Social
Layer

Technical
Layer

Increasing
Informality

-OPS DEV-

Social
Interaction

Community
Interaction

Organizational
Agreement

Service-Level
Agreement

LEGENDA

Fig. 1. Omniscient DevOps analytics, an overview - a social layer accounts for the
people and communities to be monitored; an organizational layer accounts for the
organizational agreements and protocols to be tracked; a technical layer accounts for
the product variables to be observed

We refer to the above awareness condition with the term omniscience and
argue that omniscience can be achieved via specific predictive analytics [2] frame-
works that: (i) are able to constantly analyze sensory data over all contracts,
agreements, and measurable quantities from layers in Fig. 1; (ii) constantly and
statistically relate the elicited analyses at multiple levels of granularity (e.g.,
person vs. team vs. unit vs. organization) and transversally to all layers.

The ultimate goal of such omniscient DevOps analytics toolkits shall be to
sustain the perpetual improvement cycles at the basis of the DevOps philosophy,

1 https://jaxenter.com/true-cost-devops-adoption-138287.html.

https://jaxenter.com/true-cost-devops-adoption-138287.html

50 D. A. Tamburri et al.

offering at every step, a clear overview over what needs to be improved along
which measurable improvement dimension, and in which layer.

Structure of the Paper. Section 2 presents the background. Section 3 describes
DevOps Omniscient Analytics with a scenario-based example, while Sect. 4 pro-
vides a set of organizational- and technical-related metrics tailored for DevOps
Omniscient Analytics. Section 5 overviews a set of challenges and future research
directions. Finally, Sect. 6 concludes the paper.

2 Background

The concept of omniscience in the context of DevOps refers to being able to
monitor, track, and receive feedback from the three layers of complexity along
which software development and operations are carried out, namely, social, orga-
nizational, and technical.

On the one hand, from a social and organizational perspective there exists no
standard and well-known/evaluated framework to account for community qual-
ity—intended as the fitness for purpose of an organizational structure to its
intended organizational goal or software mission [3]. Although several attempts
were made (e.g., consider the emerging CHAOSS initiative from the open-source
software foundation2), no definitive solution has been evaluated to date. Our
work has the main goal of providing a holistic view of the quality of software
projects, which takes into account all the aspects that play a role in the devel-
opment. To this aim, we plan to provide a set of metrics and methodologies able
to characterize the three aforementioned complexity layers.

On the one hand, from a technical perspective several software quality frame-
works [4,5] were proposed since before the 90’s [6], and at various abstraction
levels (Architectural, modularization, class, method-level, etc.). For instance,
Crispin [5] investigated whether and the extent to which test-driven development
influences the quality of source code, while other researchers (i) studied how and
why source code quality degrades over time [7–16] and (ii) devised methods and
tools to improve source code quality in the context of software maintenance
and evolution [17–27]. Despite the notable advances of the recent years, we can
notice that most of the work done so far only considers the technical aspects of
a software system independently from the surrounding environment, i.e., with-
out considering the additional social and organizational complexities emerging
in the context of DevOps. On this front, we believe that further research is
strictly needed in order to enable a proper management of the whole devel-
opment DevOps process: for this reason, we propose a omniscient view that,
through software analytics, puts together the three main layers composing the
typical development in a DevOps context.

2 https://chaoss.community/.

https://chaoss.community/

Omniscient DevOps Analytics 51

1. Architectural Design:
++Code Smells

2. V&V:
--Code Smells

--Socio.Tech. Congruence

4. CI/CD:
--Socio.Tech. Congruence

++Community Smells
--Code Smells

3. Continuous Evolution:
++Community Smells

++Code Smells

5. Continuous
Improvement:

Fig. 2. Omniscient DevOps analytics explained - a ‘++’ sign means that the dimension
or factor may be improving while a ‘−’ sign means the dimension or factor is worsening;
specific analytics for the factors in the figure (e.g., Socio-Technical Congruence) are
omitted for the sake of brevity.

3 DevOps Omniscient Analytics

To flesh out what we mean with Omniscient DevOps analytics we employ a
simple and intuitive scenario-based counter-example, tailored from of a real-life
industrial situation. The scenario in question is recapped in Fig. 2 and illustrates
a pre-DevOps situation in which a classical hand-off between development and
operations teams takes place, consequently causing a series of events that, in the
context of DevOps can and must be tracked for continuous improvement over
the entire cycle. More specifically, the scenario illustrates the following.

1. During Architectural Design [28] software designers and developers sit
together to create a first rough image of the architecture and start drafting
prototypical code, employing design patterns as they see fit; the first ver-
sion of the application prototype normally contains a number of code smells
[29]. The underlying assumption behind this quick and dirty version of the
working application is that, during 2. Verification and Validation, code smells
are discovered and removed appropriately, to keep technical debt [30] at an
acceptable maximum.

2. During Verification & Validation, code smells are removed by refactoring the
architectural design and severely changing the modularization structure—the
changes in the structure change also the way in which people in the develop-
ment (and hence, operations) teams also communicate and collaborate—as a
consequence, community smells [3] emerge.

52 D. A. Tamburri et al.

3. In a classical Continuous Evolution loop, an incremental and iterative main-
tenance and evolution phase is bootstrapped which essentially reiterates on
items 1 and 2 above: this is where omniscient DevOps analytics come in.

4. To break the classical cycle, continuous evolution is instrumented with appro-
priate automations to form a CI/CD phase which creates synergy between
development and operations teams following the guidelines and tactics part
of the DevOps menu [1]—as part of this phase, however, the organization is
studied jointly with the architectural structure such that, for example, low
levels of socio-technical congruence (see previous section) can be detected,
community smells can be addressed, and technical as well as social debt [3]
can be managed.

5. Finally, a Continuous Improvement phase enacts all of the above points con-
tinuously for the purpose of improving the product, the organizational struc-
ture [31] around it, as well as its technical baselines.

We argue that a set of Omniscient DevOps Analytics might support the
overall activities carried out to develop a software system in a DevOps scenario.

4 Omniscient DevOps Metrics

In the following we provide a non-exhaustive list of metrics that were explored in
the state of the art which could be considered as fitting the purpose of tracking
the quality of organizational and technical structures for DevOps omniscience.
The list in question serves as a sample starting list to outline and flesh out
DevOps omniscient analytics. In particular, we suggest some organizational- and
technical-related metrics in the scope of DevOps, considering that these families
of metrics are complementary [32].

4.1 Organizational-Related Metrics

Several metrics have been proposed to assess the quality of the organization
behind a software system. The most investigated and most considered ones are
reported and discussed below:

– Truck-Factor. Originally formulated as “The number of people on your team
who have to be hit with a truck before the project is in serious trouble”3 and
established in software engineering literature as well [33–35]. We operational-
ize truck-factor based on core and peripheral community structures identified
by CodeFace, as the degree of ability of the community to remain connected
without its core part. Further details on how core and periphery members are
determined can be found in the work of Joblin [36].

– Socio-Technical Congruence. Paraphrased from previous work [37] as “the
state in which a software development organization harbors sufficient coordi-
nation capabilities to meet the coordination demands of the technical prod-
ucts under development” and operationalized in this study as the number of

3 http://www.agileadvice.com/2005/05/15/agilemanagement/truck-factor/.

http://www.agileadvice.com/2005/05/15/agilemanagement/truck-factor/

Omniscient DevOps Analytics 53

development collaborations that do communicate over the total number of
collaboration links present in the collaboration network.

– Core-Periphery Ratio. This ratio has been confirmed to regulate commu-
nities [36]. We operationalize it as the ratio between the median centrality
of periphery members and the median centrality of the core members. In
other words, we considered the importance of core developers with respect to
periphery ones.

– Community Member Turnover. This quantity reflects the amount of
people who migrate from the community across subsequent 3-month time-
windows of our analysis [38–40]:

TO(CommNet, CollNet) =
Leaving

(Populus + Size)/2
∗ 100%

where, CommNet and CollNet are conjuncted using a 1-Elementary Sym-
metric Sum between adjacency matrices [41], i.e., (Vm ∪ Vc, Em ∪ Ec) in the
notation above. Variables in the formula above are as follows: (i) Leaving is
the number of members who left the project in the analysed window; (ii) Pop-
ulus is the total number of members who populated the community in the
previous analysis window; (iii) Size is the total number of members populat-
ing the community in the currently analyzed window. Similar formulations of
turnover exist [42,43] but we chose the formulation above since it matches the
definition of turnover and, by the way in which CodeFace computes the for-
mula variables, our formulation accounts for both core and periphery member
turnover; this differentiation is previously absent in literature and the easi-
est to operationalise with our available tooling, e.g., CodeFace determines
Populus for both core and periphery communities, combining both into one
after a normalization based on amount of contribution.

– Smelly-Quitters. This ratio reflects the amount of people P who were part
of a community smell CX (that is, a reportedly harmful anti-pattern found
in the community structure [3]) for two subsequent time windows T1 and T2

but then left the community for the remaining time windows (T2+y where
Y> 0) in the available range of data for the total set of community smells
found, i.e., C. More formally:

P =
∑

P (CX)
C

The quantity in question is tailored from the social-networks analysis metrics
also used for Social Network Disorder measurement [44,45].

4.2 Technical-Related Metrics

While the organization view reports important information on how community
members work and collaborate with each other, the technical properties of soft-
ware systems represent the core of the development and, therefore, deserve the
investigation of how well-known and less-known metrics relate to the organiza-
tional aspects. In the following, we report and discuss some of those metrics.

54 D. A. Tamburri et al.

– Lines of Code. LOC of a class is widely recognized as a relevant factor to
study the quality of a technical component, as it represents a proxy metric to
assess quality-related aspects such as, for instance, software cohesion [46,47].
We believe that this metric can strongly impact the DevOps style develop-
ment, as less cohesive classes might require more organizational efforts for
developers.

– Coupling Between Object Classes. The number of external dependencies
of a class might represent an important factor that influences the maintain-
ability of software systems [48]. Indeed, the higher the number of relationships
with other classes, the lower the ability of developers to consistently manage
the complexity of a technical product [46]

– Code Change Process. The way a source code component changes over
time might impact its size and complexity [49], thus possibly decreasing the
overall maintainability of a software project as well as increasing the efforts
required at an organizational level. To account for this aspect, some metrics
such as (i) number of lines of code added or modified in the class over dif-
ferent releases of a code component (a.k.a., code churn) and (ii) number of
commits performed on such component over time should be carefully taken
into account.

– Developer-related Factors. Besides structural and process metrics, also
who touches a source code component might influence the management effort
in the context of DevOps applications [50,51]. For instance, the number of
developers who committed changes related to a certain component may reveal
precious information on the organizational effort required to maintain it. At
the same time, experience metrics (e.g., the number of commits performed
by a developer on a codebase) are highly relevant to study the quality of the
overall development process.

– Runtime Maintainability Measures. Previous work showed that code
components affected by problems in the past are more likely to be problem-
atic in the future [52]. Thus, metrics like the presence/persistence of design
issues [53] or the emergence of defects [19] might provide additional useful
information to enable a comprehensive view of the quality of the develop-
ment process.

– Operations Factors. Previous work in operations has focused mostly over
performance, throughput and similar metrics, however, the need emerges cur-
rently for metrics that account for architectural characteristics that make
services more monitorable or observable [54]. Such factors are yet to be fully
explored and evaluated in action.

5 Research Roadmap

In the scope of our future research agenda and while discussing the above con-
cepts and findings with the LASER DevOps community4 in an open focus-group

4 https://www.laser-foundation.org/devops/2018/.

https://www.laser-foundation.org/devops/2018/

Omniscient DevOps Analytics 55

of 92 min, we confirmed the following valuable research directions in pursuit of
Omniscient DevOps analytics.

1. Investigate the Cross-Reference between known software quality indicators and
metrics with respect to known organizational and socio-technical metrics. In
this respect, for example, practitioners as well as academics need to confirm
the validity of metrics currently established for the evaluation of software
development artifacts quality in the context of DevOps pipelines.

2. Investigate the relation between software systems observability [54] and soft-
ware technical, organizational, and socio-technical quality. In this respect, for
example, software practitioners and academics need to evaluate the degree
to which software development as well as software operations artifacts can
in fact be monitored by common monitoring technology or whether specific
technology and metrics must be devised and evaluated.

3. Investigate the relation between macro-phenomena in the organizational struc-
ture and micro-phenomena emerging in the software code. In this respect, for
example, organizational structures research as well as software engineering
research reports on many macro-phenomena occurring at the level of the
organizational structure (e.g., think of Conway’s law [55], or Lehman’s laws
of software evolution [56] or the social reflexivity theory [57–59] and more)
that may influence the software development as well as operations codes

4. Investigate the quality of software-related organizational and socio-technical
decisions, beyond the current level of understanding over software design deci-
sions as well as their decision-making process. In this respect, further research
needs to capture and find ways to measure the cognitive frame in which soft-
ware developers and software operators make and disseminate decisions in
their respective operational areas such that a common knowledge flow and
transfer mechanism can be devised.

5. Investigate ways to concretize and quantify the additional project cost con-
nected to sub-optimal software organizational structures, i.e., social debt [60].
In this respect, with the aim of further improving the organizational and
socio-technical aspects within DevOps pipelines, further research shall con-
centrate on defining formally established and evaluated means to measure
social debt [60] at the same time that technical debt is measured as well.

6. Investigate the quality of software operations artifacts and code as much as
software development artifacts and code have been studied up to this point.
In this respect, it must be noted that we currently know very little in the
ways of measuring and assessing software operations code quality, as well as
any design patterns (or even anti-patterns, for that matter) thereof. Further
research shall concentrate on finding and carefully evaluating, both qualita-
tively and quantitatively, their validity and applicability at large.

7. Evaluate and investigate metrics for the level of continuity between develop-
ment artifacts and people with operations artifacts and people. In this respect,
it should be noted that one of the key drivers and foundations behind the orig-
inal DevOps movement is the creation and maintenance of synergy between
development and operations—maintaining that synergy requires ways to mea-
sure the continuity between Dev and Ops beyond simple speed metrics (e.g.,

56 D. A. Tamburri et al.

release rate, build-success or failure rates, etc.) but rather, metrics that look
more holistically at the entire DevOps pipeline from the 3 perspectives high-
lighted in Fig. 1 need to be devised and evaluated.

6 Conclusions

In this paper, we introduced the concept of Omniscient DevOps Analytics, that
refers to the use of software analytics to support a holistic view of the develop-
ment process that takes into account social, organizational, and technical aspects
of software systems. We illustrate a set of metrics that can be exploited to enable
such a view, also providing a use-case scenario where omniscience can be achieved
and effectively exploited by developers. Finally, we overview a set of challenges
and future research directions that would enable the generation of theory, meth-
ods, and tools for Omniscient DevOps Analytics. Such future directions and open
challenges represent the main points of our research agenda, which is focused on
improve the quality of the whole DevOps development process.

References

1. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. SEI
Series in Software Engineering. Addison-Wesley, New York (2015)

2. Yang, Y., Falessi, D., Menzies, T., Hihn, J.: Actionable analytics for software engi-
neering. IEEE Softw. 35(1), 51–53 (2017)

3. Magnoni, S., Tamburri, D.A., Di Nitto, E., Kazman, R.: Analyzing quality models
for software communities. Communications of the ACM (2017, under review)

4. Software Quality Connection: Software quality connection (2015)
5. Crispin, L.: Driving software quality: how test-driven development impacts software

quality. IEEE Softw. 23(6), 70–71 (2006)
6. Watts, R.: Manufacturing Software Quality. NCC Publications, Manchester (1987)
7. Bavota, G., De Lucia, A., Di Penta, M., Oliveto, R., Palomba, F.: An experimental

investigation on the innate relationship between quality and refactoring. J. Syst.
Softw. 107, 1–14 (2015)

8. Palomba, F., Zaidman, A.: Does refactoring of test smells induce fixing flaky tests?
In: 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 1–12. IEEE (2017)

9. Palomba, F., Zaidman, A., Oliveto, R., De Lucia, A.: An exploratory study on the
relationship between changes and refactoring. In: 2017 IEEE/ACM 25th Interna-
tional Conference on Program Comprehension (ICPC), pp. 176–185. IEEE (2017)

10. Palomba, F., Panichella, A., Zaidman, A., Oliveto, R., De Lucia, A.: The scent
of a smell: an extensive comparison between textual and structural smells. IEEE
Trans. Softw. Eng. 44, 977–1000 (2017)

11. Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R., De Lucia, A.:
On the diffuseness and the impact on maintainability of code smells: a large scale
empirical investigation. Empir. Softw. Eng. 23(3), 1188–1221 (2018)

12. Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R., De Lucia, A.: A
large-scale empirical study on the lifecycle of code smell co-occurrences. Inf. Softw.
Technol. 99, 1–10 (2018)

Omniscient DevOps Analytics 57

13. Tufano, M., et al.: When and why your code starts to smell bad (and whether the
smells go away). IEEE Trans. Softw. Eng. 43(11), 1063–1088 (2017)

14. Tufano, M., et al.: An empirical investigation into the nature of test smells. In: 2016
31st IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 4–15. IEEE (2016)

15. Spadini, D., Palomba, F., Zaidman, A., Bruntink, M., Bacchelli, A.: On the rela-
tion of test smells to software code quality. In: Proceedings of the International
Conference on Software Maintenance and Evolution (ICSME). IEEE (2018)

16. Vassallo, C., Panichella, S., Palomba, F., Proksch, S., Zaidman, A., Gall, H.C.:
Context is king: the developer perspective on the usage of static analysis tools.
In: 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 38–49. IEEE (2018)

17. Catolino, G., Palomba, F., De Lucia, A., Ferrucci, F., Zaidman, A.: Enhancing
change prediction models using developer-related factors. J. Syst. Softw. 143, 14–
28 (2018)

18. Di Nucci, D., Palomba, F., Tamburri, D.A., Serebrenik, A., De Lucia, A.: Detecting
code smells using machine learning techniques: are we there yet? In: 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 612–621. IEEE (2018)

19. Di Nucci, D., Palomba, F., De Rosa, G., Bavota, G., Oliveto, R., De Lucia, A.:
A developer centered bug prediction model. IEEE Trans. Softw. Eng. (2017, to
appear)

20. Di Nucci, D., Panichella, A., Zaidman, A., De Lucia, A.: Hypervolume-based search
for test case prioritization. In: Barros, M., Labiche, Y. (eds.) SSBSE 2015. LNCS,
vol. 9275, pp. 157–172. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
22183-0 11

21. Di Nucci, D., Palomba, F., Oliveto, R., De Lucia, A.: Dynamic selection of clas-
sifiers in bug prediction: an adaptive method. IEEE Trans. Emerg. Top. Comput.
Intell. 1(3), 202–212 (2017)

22. Moha, N., Guéhéneuc, Y.G., Duchien, L., Meur, A.F.L.: DECOR: a method for
the specification and detection of code and design smells. IEEE Trans. Softw. Eng.
36(1), 20–36 (2010)

23. Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., Poshyvanyk, D., De Lucia, A.:
Mining version histories for detecting code smells. IEEE Trans. Softw. Eng. 41(5),
462–489 (2015)

24. Palomba, F., Panichella, A., De Lucia, A., Oliveto, R., Zaidman, A.: A textual-
based technique for smell detection. In: 2016 IEEE 24th International Conference
on Program Comprehension (ICPC), pp. 1–10. IEEE (2016)

25. Palomba, F., Zanoni, M., Fontana, F.A., De Lucia, A., Oliveto, R.: Toward a smell-
aware bug prediction model. IEEE Trans. Softw. Eng. (2017). https://ieeexplore.
ieee.org/document/8097044

26. Palomba, F., Zaidman, A., De Lucia, A.: Automatic test smell detection using
information retrieval techniques. In: International Conference on Software Main-
tenance and Evolution (ICSME). IEEE (2018, to appear)

27. Tsantalis, N., Chatzigeorgiou, A.: Identification of move method refactoring oppor-
tunities. IEEE Trans. Softw. Eng. 35(3), 347–367 (2009)

28. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. SEI Series
in Software Engineering. Addison-Wesley, Boston (2012)

https://doi.org/10.1007/978-3-319-22183-0_11
https://doi.org/10.1007/978-3-319-22183-0_11
https://ieeexplore.ieee.org/document/8097044
https://ieeexplore.ieee.org/document/8097044

58 D. A. Tamburri et al.

29. Palomba, F., Bavota, G., Penta, M.D., Oliveto, R., Lucia, A.D.: Do they really
smell bad? A study on developers’ perception of bad code smells. In: Proceedings
of the International Conference on Software Maintenance and Evolution (ICSME),
pp. 101–110. IEEE Computer Society (2014)

30. Kruchten, P., Nord, R.L., Ozkaya, I., Visser, J.: Technical debt in software devel-
opment: from metaphor to theory report on the third international workshop on
managing technical debt. In: ACM SIGSOFT Software Engineering Notes, vol. 37,
no. 5, pp. 36–38 (2012)

31. Tamburri, D.A., Lago, P., Vliet, H.V.: Organizational social structures for software
engineering. ACM Comput. Surv. 46(1), 3:1–3:35 (2013)

32. Palomba, F., Tamburri, D.A., Serebrenik, A., Zaidman, A., Fontana, F.A., Oliveto,
R.: How do community smells influence code smells? In: Proceedings of the 40th
International Conference on Software Engineering: Companion Proceedings, pp.
240–241. ACM (2018)

33. Williams, L., Kessler, R.R.: Pair Programming Illuminated. Addison Wesley,
Boston (2003)

34. Avelino, G., Passos, L.T., Hora, A.C., Valente, M.T.: A novel approach for estimat-
ing truck factors. In: 24th IEEE International Conference on Program Comprehen-
sion, ICPC 2016, Austin, TX, USA, 16–17 May 2016, pp. 1–10. IEEE Computer
Society (2016)

35. Ferreira, M.M., Valente, M.T., Ferreira, K.A.M.: A comparison of three algorithms
for computing truck factors. In Scanniello, G., Lo, D., Serebrenik, A. (eds.) Pro-
ceedings of the 25th International Conference on Program Comprehension, ICPC
2017, Buenos Aires, Argentina, 22–23 May 2017, pp. 207–217. IEEE Computer
Society (2017)

36. Joblin, M., Mauerer, W., Apel, S., Siegmund, J., Riehle, D.: From developer net-
works to verified communities: a fine-grained approach. In: Bertolino, A., Canfora,
G., Elbaum, S.G. (eds.) Proceedings of International Conference on Software Engi-
neering (ICSE), pp. 563–573. IEEE Computer Society (2015)

37. Valetto, G., Helander, M., Ehrlich, K., Chulani, S., Wegman, M., Williams, C.:
Using software repositories to investigate socio-technical congruence in develop-
ment projects. In: International Workshop on Mining Software Repositories, p.
25 (2007). IEEE Computer Society, Los Alamitos. http://doi.ieeecomputersociety.
org/10.1109/MSR.2007.33

38. Lin, B., Robles, G., Serebrenik, A.: Developer turnover in global, industrial open
source projects: insights from applying survival analysis. In: Proceedings of the
12th International Conference on Global Software Engineering, pp. 66–75. IEEE
Press (2017)

39. Nassif, M., Robillard, M.P.: Revisiting turnover-induced knowledge loss in software
projects. In: 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 261–272. IEEE (2017)

40. Rigby, P.C., Zhu, Y.C., Donadelli, S.M., Mockus, A.: Quantifying and mitigating
turnover-induced knowledge loss: case studies of chrome and a project at Avaya.
In: Proceedings of the 38th International Conference on Software Engineering, pp.
1006–1016. ACM (2016)

41. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford University
Press, Oxford (1998)

42. Vasilescu, B., et al.: Gender and tenure diversity in GitHub teams. In: Begole,
B., Kim, J., Inkpen, K., Woo, W. (eds.) Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, CHI 2015, Seoul, Republic
of Korea, 18–23 April 2015, pp. 3789–3798. ACM (2015)

http://doi.ieeecomputersociety.org/10.1109/MSR.2007.33
http://doi.ieeecomputersociety.org/10.1109/MSR.2007.33

Omniscient DevOps Analytics 59

43. Constantinou, E., Mens, T.: Socio-technical evolution of the ruby ecosystem in
GitHub. In: Pinzger, M., Bavota, G., Marcus, A. (eds.) SANER, pp. 34–44. IEEE
Computer Society, Washington, DC (2017)

44. van den Eijnden, R.J.J.M., Lemmens, J.S., Valkenburg, P.M.: The social media
disorder scale. Comput. Hum. Behav. 61, 478–487 (2016)

45. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Mea-
surement and analysis of online social networks (2007)

46. Kitchenham, B., Pickard, L., Pfleeger, S.L.: Case studies for method and tool
evaluation. IEEE Softw. 12(4), 52–62 (1995)

47. Zhou, Y., Leung, H., Xu, B.: Examining the potentially confounding effect of class
size on the associations between object-oriented metrics and change-proneness.
IEEE Trans. Softw. Eng. 35(5), 607–623 (2009)

48. Moha, N., Gueheneuc, Y.G., Duchien, L., Le Meur, A.F.: DECOR: a method for
the specification and detection of code and design smells. IEEE Trans. Softw. Eng.
36(1), 20–36 (2010)

49. Munson, J.C., Elbaum, S.G.: Code churn: a measure for estimating the impact of
code change. In: 1998 Proceedings of International Conference on Software Main-
tenance, pp. 24–31. IEEE (1998)

50. Di Nucci, D., Palomba, F., De Rosa, G., Bavota, G., Oliveto, R., De Lucia, A.: A
developer centered bug prediction model. IEEE Trans. Softw. Eng. 44, 5–24 (2017)

51. Hassan, A.E.: Predicting faults using the complexity of code changes. In: Proceed-
ings of the 31st International Conference on Software Engineering, pp. 78–88. IEEE
Computer Society (2009)

52. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Predicting the location and number of
faults in large software systems. IEEE Trans. Softw. Eng. 31(4), 340–355 (2005)

53. Palomba, F., Bavota, G., Di Penta, M., et al.: On the diffuseness and the impact on
maintainability of code smells: a large scale empirical investigation. Empir. Softw.
Eng. 23, 1188 (2018). https://doi.org/10.1007/s10664-017-9535-z

54. Tamburri, D.A., Bersani, M.M., Mirandola, R., Pea, G.: DevOps service observabil-
ity by-design: experimenting with model-view-controller. In: Kritikos, K., Plebani,
P., de Paoli, F. (eds.) ESOCC 2018. LNCS, vol. 11116, pp. 49–64. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99819-0 4

55. Conway, M.E.: How do committees invent. Datamation 14(4), 28–31 (1968)
56. Lehman, M.M.: Laws of software evolution revisited. In: Montangero, C. (ed.)

EWSPT 1996. LNCS, vol. 1149, pp. 108–124. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0017737

57. Vass, J., Munson, J.E.: Revisiting the three Rs of social machines: reflexivity,
recognition and responsivity. In: Gangemi, A., Leonardi, S., Panconesi, A. (eds.)
WWW (Companion Volume), pp. 1161–1166. ACM, New York (2015)

58. Coleman, J.S.: Foundations of Social Theory. Harvard University Press, Cam-
bridge, London (1990)

59. Han, S.: Theorizing new media: reflexivity, knowledge, and the Web 2.0. Sociol.
Inq. 80(2), 200–213 (2010)

60. Tamburri, D.A., Kruchten, P., Lago, P., et al.: Social debt in software engineering:
insights from industry. J. Internet Serv. Appl. 6, 10 (2015). https://doi.org/10.
1186/s13174-015-0024-6

https://doi.org/10.1007/s10664-017-9535-z
https://doi.org/10.1007/978-3-319-99819-0_4
https://doi.org/10.1007/BFb0017737
https://doi.org/10.1007/BFb0017737
https://doi.org/10.1186/s13174-015-0024-6
https://doi.org/10.1186/s13174-015-0024-6

Teaching DevOps at the Graduate Level

A Report from Polytech Nice Sophia

Benjamin Benni1(B), Philippe Collet1, Guilhem Molines1,2, Sébastien Mosser1,
and Anne-Marie Pinna-Déry1

1 Université Côte d’Azur, CNRS, I3S, Sophia Antipolis, France
{benni,collet,mosser,pinna}@i3s.unice.fr, guilhem.molines@unice.fr

2 IBM France Lab, Paris, France
guilhem.molines@fr.ibm.com

1 Introduction

The massive evolution of IT development towards new Web architectures, from
service-oriented to micro-services, clouds and containers, call for changes in the
way software is developed, deployed and maintained. DevOps has emerged as a
set of practices bridging software development (Dev) with software operations
(Ops) [1]. DevOps makes up a model in which development, quality assurance,
releasing, deployment, operation with infrastructure management, and mainte-
nance are integrated and automated as much as possible. With automation and
monitoring present at all stages, a DevOps approach is supposed to reduce the
time between a change (e.g., a commit) and its availability in production, while
mastering quality.

From a teaching perspective, hiring companies for software engineering stu-
dents are currently in the middle of a technological transformation to introduce
DevOps pipelines in their organizations, while agile and continuous integration
practices are still in the process of being digested. It is clearly necessary for our
students to be aware of such practices to complement their background in soft-
ware engineering and architecture, and also to make a difference at recruitment
time. At first sight, it seems easy to integrate DevOps principles with software
development projects and other courses dealing with large software systems or
software architectures. Still, different issues arise when materializing the course.
As DevOps mainly deals with a technological pipelines, a trade-off must be found
between using a complete and relevant stack, and understanding the DevOps
principles and its pillars: platform, deployment, testing, and people [2]. Further-
more, using toy examples over the isolated elements of a DevOps pipeline would
transform the course in a set of basic tutorials, missing a comprehensive point
of view of both the principles and the end-to-end technological hands-on.

In this paper, we report on a course dedicated to “N-tiers Architectures and
DevOps”, which aimed at introducing DevOps while tackling these identified
issues. It is taught at the graduate level at Polytech Nice Sophia since 2015. The
target audience is 4th year (graduate) students specialized in software engineer-
ing and architecture. In the remainder of this paper, we discuss the identified
c© Springer Nature Switzerland AG 2019
J.-M. Bruel et al. (Eds.): DEVOPS 2018, LNCS 11350, pp. 60–72, 2019.
https://doi.org/10.1007/978-3-030-06019-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-06019-0_5

Teaching DevOps at the Graduate Level 61

challenges to construct this course, as well as the vision to implement it. We
then give some details on the course content and on the used case studies. We
conclude by summarizing results and discussing future development.

2 Challenges and Vision

We believe that Software Architecture and DevOps are two sides of the same
coin: one needs DevOps concepts to properly implement and deliver complex
architectures, and complex architectures justify such an approach. The course
follows a project-based approach to support both parts and we rely on the devel-
opment dimension of the project to create a continuum between architecture and
operations. When materializing the course, we then identified the following chal-
lenges:

– Even if the technological stack can be hard to apprehend and deploy, tools
are just a means to an end, and the course must focus on the pillars asso-
ciated to DevOps: platform, deployment, testing, and people [2]. As a con-
sequence, the course must focus on the concepts, and use tools only as an
illustration. Moreover, coupling architecture to DevOps is important as both
approaches complement each others, and the course must smoothly merge
these two dimension to support a fully-fledged curriculum.

– We defend that toy examples are not enough, and delivering such a content
using isolated labs cannot lead to the comprehensive point of view we envi-
sioned. It is important to rely on a project-based approach where students will
be confronted to real-life choices, at architectural, development and operation
levels.

As a consequence, the course must provide theoretical concepts for architec-
ture design, software development and operational deployment around a shared
project that will be used as a backbone during lab assignments. To simulate
real-life software engineering, the labs must be defined thanks to an open and
informal specification expressed in business terms, and it will be up to the stu-
dents to design the right architecture, implement it in an iterative way and
support its deployment thanks to a continuous delivery pipeline.

3 Course Content

In the school of engineering, the presented course is taught to 4th year stu-
dents (graduate level) that have chosen a specialization in software engineering
and architecture. It is thus an optional course in the master curriculum with a
capacity of 50 students per year.

62 B. Benni et al.

3.1 Overall Organization

The presented version is the result of merging two course slots, each one over
a half-day along a full semester, so that the course is scheduled on each Friday
for the spring session. It notably enables to easily and dynamically focus a day
or half of it to a specific topic, i.e., a software architecture topic or an element
of the DevOps pipeline, or to give time for the main project development (cf.
Fig. 1).

Fig. 1. 2018 planning of the “N-tiers Architectures and DevOps” course

Prerequisites for the course are the following:

– A strong background in object-oriented programming, with fluency in Java;
– The knowledge of some software engineering principles and tooling, i.e., life-

cycle, code versioning (Git), unit testing (JUnit), automated construction
(Maven);

– Notions of design and UML, mainly to abstract from the associated project
code through component and deployment diagrams.

These prerequisites are all coming for the mandatory courses defined by the
graduate program followed by the attendees.

The teaching team has slightly evolved over time, but it has been constantly
led by a full-time professor and an industrial partner who holds a part-time posi-
tion in the school in addition to his daily job as a software architect. The team
is completed by two other teachers, making a specialized pair for each axis, soft-
ware architecture and DevOps. This enables each pair to easily follow student
project development according to each axis. Students are organized in teams of
four, and the course is known to require a strong investment in software devel-
opment from them. The same case study is addressed under the two different
and complementary axes, and students have to work on the development of a
system that implements the specifications associated to the chosen case study
as lab assignment.

Teaching DevOps at the Graduate Level 63

To support the development of such a system, we implemented a reference
system named The Cookie Factory (TCF) [3] (see Sect. 4.1 for details). In the first
weeks, the course focuses on the concepts associated to n-tiers architectures and
the pre-requisites associated to DevOps, i.e., understanding modularization and
testing. To support this task, students are asked to analyze the implementation of
TCF. They quickly identify that it is implemented as a single monolith that needs
to be modularized at all levels (business implementation, test, and deployment).
This step helps them to get confidence with the project technological stack, as
well as to identify why and how a DevOps approach is a good fit for such class
of systems.

In the following sections, we describe the content of each course axis and show
how the reference case study and developed project help in building a consistent
solution to the identified challenges.

3.2 Software Architecture

For the software architecture part, we focus on the definition of an n-tiers archi-
tecture using software components (implemented as EJBs using the Java EE
framework). A part of the architecture is also developed in .Net, emphasizing
the need to support system interoperability using Web Services. An introductory
course is setting up the work context and the technological stack (cf. Fig. 2), while
the next courses introduce several principles and some associated technologies
using the TCF case study as an illustration:

Fig. 2. Technological stack for the architectural axis

64 B. Benni et al.

– Notions of software architecture, layers, and diagrams to represent them;
– The many architectural viewpoints, with focus on functional (work at the

interface level), development (modularity and dependency management), and
deployment viewpoints;

– Object-relational mapping (ORM) variants, and related architectural pat-
terns;

– Introduction to Enterprise Java Beans (EJBs), with an overview of the bean
types (entity, session, message), their business focus, as well as the principles
of inversion of control and dependency injection;

– A focus on session beans, defining a 3-tiers architectures, and introducing
stateful and stateless principles and impacts on an architecture;

– Introduction to the notion of services (being different from Web Services
technical implementation), contracts and the impact of their different kinds
(no contract, light form, strong contract), discussion on bad practices (e.g.,
REST is different from CRUD);

– Focus on domain-driven design, and its implementation through entity beans,
issues in modeling relationships, lazy loading, query languages in ORMs, etc.

– Architectural MVC pattern with its implementation in JSF over Java EE,
the messaging paradigm and its implementation in JMS, light form of aspect-
orientation and its implementation in Java EE interceptors.

As shown on the planning (Fig. 1), the conduct of the successive lectures
follows the design and development of their own architecture for their project
(Poly’Event project on the planning). Students should propose an initial archi-
tecture with only the introduction, trying to build something consistent with
their own background. Then each new lecture enables to criticize their successive
propositions, using the TCF case study during the lecture (e.g., with architecture
dojos where students and professor co-define an architecture respecting several
properties during the lecture), and on their own project during the labs. This
enables to mix the learning of many technological elements with the different
notions of software architecture, their impacts and the necessary trade-offs a
software architect should master in her day-to-day work. The TCF case study
brings both a starting point for the project and an existing architecture to crit-
icize and evolve as the course progresses.

3.3 DevOps

For the DevOps dimension, the aim is to address the problem of aligning a
development (dev) team with the operational one (ops) to build a given piece of
software. Addressed issues are notably how to slice the code into independent
modules that can be compiled, tested and deployed in a continuous way, and
how to properly test the integration between such loosely coupled components.

This part of the course is organized in a slightly different way. While the
students starts to define their own project architecture, the first part of DevOps
introduces theoretical concepts and aims at applying them in a separate lab on
mutation testing [4]. The organization of this part is as follows:

Teaching DevOps at the Graduate Level 65

– Introduction on software delivery, lifecycle and pipelines;
– Reminder on quality assessments, introduction on the different types of tests,

how to architect and run them;
– Focus on functional and integration testing, and on what should be considered

when running them.

With these lectures, several labs are targeted at building a mutation testing
pipeline over a Java project, using Maven, scripts, and a Java source code trans-
formation library1. The objective is to make concrete the creation of a pipeline
using a software project to build other artifacts, run other tasks (compiling the
mutant projects separately), get results (deciding whether a mutant project is
passing existing tests or not).

The rest of the lectures focus on introducing the principles and technologies
related to the DevOps pillars:

– continuous integration, with build on servers, separated components, their
dependencies, notions of artifacts, and necessary repositories, Jenkins2 and
Artifactory3 being chosen as technological support;

– other subjects related to continuous management, i.e., quality assessment
through static code analysis, code branching for a better organization;

– deployment, with the main differences between testing and production envi-
ronments, as well as test orchestration;

– software containers and virtual machines, focusing on the Docker4 light con-
tainer ecosystem, with its composition and scalability mechanisms.

As this part of the course progresses, the students have to apply the principles
with the proposed technology to their projects. Considering the platform pillar,
the tools selected by the students (e.g., continuous integration server, testing
framework, containers) must be justified and used accurately w.r.t the needs
associated to their own project. At the deployment level, it is up to the students
to mitigate the constraints from the development team, the operational context
and the customer’s expectations to create the right build plan. For the testing
pillar, students know about unit tests and the course introduces integration
and acceptance tests. Students must justify that the built product is rightly
tested at these different levels. Finally, considering the people pillar, they have
to modularize their code (and the associated tests, build plans,. . .) in a way that
fits their development team and their business objectives [5].

This organization enables the DevOps part of the course to provide real
practice of industrial tools applied to a non-toy N-tiers architecture that students
are extending at the same time, and also to focus on application of the different
principles and pillars of DevOps.

1 Spoon, http://spoon.gforge.inria.fr/.
2 Jenkins, https://jenkins.io/.
3 Artifactory, https://jfrog.com/artifactory/.
4 https://www.docker.com/.

http://spoon.gforge.inria.fr/
https://jenkins.io/
https://jfrog.com/artifactory/
https://www.docker.com/

66 B. Benni et al.

3.4 Evaluation

The evaluation of the course is organized around multiple milestones and deliv-
eries:

– after two weeks a first Minimum Viable Product (MVP) architecture should
be provided by the student teams, for feedback only.

– After two other weeks, an architecture-report must be provided. It contains
the following elements: use cases diagrams, business objects definition as class
diagram, associated persistent-schema and object-relational mapping defini-
tion, interfaces pseudo-code definition (e.g., Java like), components described
by a component diagram, deployment of the defined components as a deploy-
ment diagram. Each artifact must be justified with respect to its relevance in
the proposed architecture.

– At the same time, the mutation testing pipeline should be delivered (through
a tagged commit on the provided Git repository). A small report is also
delivered, answering the following questions: what are your directory structure
and language/script choices? How are mutators compiled and applied to your
target project? Which mutations did you write, and why? What issues did you
run into, and how did you solve them? What characterizes good mutators?

– At mid-term, demos of the minimal viable product architecture and its asso-
ciated DevOps tooling are conducted through technical interviews driven by a
team of two teachers, one per axis. At that stage, the key-point in architecture
is to demonstrate a walking skeleton of the technical stack, from the input
entered by the user, sending a request to the Java EE component backend
through a Web Service, with an interaction with a third-party service sim-
ulated in .Net. For DevOps, the focus is on demonstrating that Continuous
Integration (CI) is mastered, compiling the project in a way that respects the
dependencies among modules, relying on an artifact repository to store the
produced binaries. A CI server is expected, so to support the build process
and artifacts storage, through inter-dependent build plans.

– Similar demos are also conducted near the end of the course. Technical inter-
views are conducted by teams, switched from the previous demos. On the
architecture side, students should demonstrate a comprehensive architecture,
going from the persistence layer to the exposition one (i.e., web services, JSF).
They must be able to defend strengths of their architecture, as well as discuss
its limitations and evolution capabilities. For DevOps, the pipeline should
have evolved from a CI system to a fully instrumented Continuous Delivery
(CD) pipeline, ensuring software quality through various levels of testing, and
generating the product deliverables as composable Docker images.

– Codes and reports should be finally delivered before the exams.

The lab and project evaluations are completed by two final exams, one per
axis. Exam subjects mix small targeted questions with a large question on a given
case study, evaluating the students capability to step back on the development
and DevOps practices. Each axis has also its own marking breakdown:

Teaching DevOps at the Graduate Level 67

– Software architecture part: architecture report: 15%; intermediate demon-
stration: 10%; final presentation: 15%; project (code and report): 20%; final
exam: 40%.

– DevOps: mutation testing: 15%; intermediate demonstration: 15%; final pre-
sentation: 15%; project (code and report): 15%; final exam: 40%.

4 Case Studies

We describe here the main reference case study, showing its features, architecture
and the kind of complexity it exhibits to support our teaching approach. We also
give a brief description of the projects submitted to students in the past years.

4.1 Reference Case Study: The Cookie Factory (TCF)

The Cookie Factory5 is an imaginary major bakery brand in the USA, providing
a plausible context to the creation of the software system. The Cookie on Demand
(CoD) system is an innovative service offered by TCF to its valued customers.
They can order cookies online thanks to an application, and select when they
will pick-up their order in a given shop. The CoD system is supposed to ensure
to TCF’s happy customers that they will always retrieve their prepaid warm
cookies on time.

As shown on Fig. 3, the system is defined as layers:

– A remote client, that will run on each customer’s device;
– An EJB kernel, implementing the business logic of the CoD system;
– An external partner (simulating a Bank, implemented in .Net);
– An interoperability layer between the kernel and its partners. Communication

with the client is supported by an RPC (SOAP) service, and communication
with the bank as a REST one.

To deliver the expected features, the CoD system defines the following inter-
nal interfaces (Fig. 4):

– CartModifier: operations to handle a given customer’s cart, like adding or
removing cookies, retrieving the contents of the cart and validating the cart
to process the associated order;

– CustomerFinder: a finder interface to retrieve a customer based on her iden-
tifier (here simplified to her name);

– CustomerRegistration: operations to handle customer’s registration (e.g.,
users profile)

– CatalogueExploration: operations to retrieve recipes available for purchase
in the CoD;

– OrderProcessing: process an order (kitchen order lifecycle management);

5 https://github.com/polytechnice-si/4A ISA TheCookieFactory.

https://github.com/polytechnice-si/4A_ISA_TheCookieFactory

68 B. Benni et al.

Fig. 3. Component diagram of the Cookie on Demand system

– Payment: operations related to the payment of a given cart’s contents;
– Tracker: order tracker to retrieve information about the current status of a

given order.

To ease comprehension by the students, the business objects are simple
(Fig. 5): Cookies are defined as an enumerate, binding a name to a price. An
Item models the elements stored inside a cart, i.e., a given cookie and the quan-
tity to order. A customer makes orders thanks to the CoD system, and an order
stores the set of items effectively ordered by the associated customer (bidirec-
tional association).

The implementation of TCF is made of 102 Java Classes, representing approx-
imatively 3, 000 lines of code. As the focus of the course is an introduction to
software architecture, we made the choice to go as lightweight as possible with
respect to the tooling. We thus decided not to deploy a real set of application
servers and use embedded artifacts instead. This is the very justification of using
TomEE+ as Java EE container (instead of a classical Tomcat or Glassfish con-
tainer) and Mono as .Net implementation (instead of the classical Visual Studio
technological stack). We advocate that the execution details are not important
when compared to the complexity of designing the right system. In addition,
mapping this demonstration to existing application servers is pure engineering,
with no added value.

4.2 Case Studies to be Developed by Students

As previously mentioned, each year, a different product case study is proposed
for the development stage, each being presented like the TCF specification part,

Teaching DevOps at the Graduate Level 69

F
ig
.
4
.
In
te
rf
a
ce

d
et
a
il
s
o
f
th
e
C
o
o
k
ie

o
n
D
em

a
n
d
sy
st
em

70 B. Benni et al.

Fig. 5. Business objects of the Cookie on Demand system

with a product vision, examples, personas and related epics. We give here a brief
description of these projects:

– PolyEvent is an event management system at the scale of an academic cam-
pus, events being internal or external, with booking of premises, possible
catering, etc. The system should be generic enough to target different cam-
puses, and should handle both the planning stages and the event day and six
personas are defined (logistics manager, premises manager, accounting man-
ager, an external event organizer, cleaning company contact, campus event
manager).

– A Disloyalty card is a loyalty card targeting a specific commercial zone instead
of a retail chain, with a sponsoring from the town council of the zone (e.g.,
gifts, parking discount with any purchase) to encourage customers to visit
as many shops as possible in the area. This kind of card boosts local shops
and reward customers who shop in the promoted zone. The developed system
should be deployable in medium to large cities, with few changes between a
deployment to another. The system card can be used as a payment method for
small amounts, and frequent buyers get a VIP status with more advantages.
Personas are different kinds of buyers, e.g., a town employee and a shop
manager.

– Isola 3000 is a ski resort management system for a company owning two
resorts, the main feature being lift tickets selling and automatic access control
to the ski lifts. A ticket is an NFC card and lifts are connected with different
means to the main resort (ethernet, wifi, radio waves, nothing at all). Outdoor
screens show slope availability and are connected in real-time with connected

Teaching DevOps at the Graduate Level 71

lifts and patrolmen. Tickets are sold online or at counters, many pre-built
offer are proposed with different discounts, premium statuses, and specific
durations or area restrictions. As these offer might evolve, statistics over sales
are necessary.

– PolyTweet is a social-network based solution to solve communication prob-
lems between students, faculty members and administrative staff within the
school. The system should foster information sharing, by publishing short
messages to channels, the school exposes several “public” channels available
to external users (for integration purpose with the public website), files can be
attached to messages (e.g., pictures, lab descriptions). Communication chan-
nels can be created as open internal channels, with moderators. To evaluate
the return on investment, metrics over the whole system usage should also be
computed and displayed.

5 Conclusion

Results. The course is close to its full capacity since 2015 (137 students out
of 150 slots on 3 years). It is evaluated by the project delivery (code, report
and oral defense), complemented by two exams (case study, 3 hours). We push
students to stop being consumers of tools, and instead become DevOps archi-
tects able to identify what is necessary and how tools from the state of practice
can be assembled to support a given project. The discussions and interviews
made with partners’ contacts and interns’ tutors are strongly positive on that
point. Recruiters clearly state that such a knowledge makes a strong difference
between candidates at recruitment time (interns or permanent positions). At the
student level, the course received a highly positive feedback in evaluations. Stu-
dent expressed as comments their surprise about the importance of the people
pillar. We also noticed that even students who do not specialize into software
architecture after the course are introducing the DevOps philosophy in their
projects.

From an academic research point of view, building this course also led to
interesting questions about service containerization from a software engineering
point of view that lead to a publication in the domain of software composition [6].

Future Development. In the future, we naturally plan to continue to improve
the content and organization of the course. Next year, we will change the way the
different elements of the pipeline are introduced. The mutation testing pipeline
is not perceived by students as useful as we envisioned, while this organization
pushes the application of advanced concepts as containers to the end of the time-
line. This prevents students from stepping back from their DevOps realization,
and transitively from their software architecture as well. Our plan is then to intro-
duce all principles and pillars of DevOps earlier, together with basic realizations
for each part, i.e. a basic pipeline with deployment and a simple dockerization, so
that they can be applied to the project. Then the advanced concepts, and related
technological elements, will be introduced and applied. By using this course as

72 B. Benni et al.

a prerequisite for some specialization course, we aim to deliver to students spe-
cialized skills (e.g., micro-service development, user experience) while keeping
in mind the close relationship that exists between development and operations,
leveraging our experience in teaching agility and user experience.

References

1. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, Boston (2015)

2. Shaw, J.: The four pillars of DevOps: agility for the enterprise (Agile
Cambridge) (2014). https://www.slideshare.net/johnfcshaw/four-pillars-of-devops-
john-shaw-agile-cambridge-2014. Accessed 01 Oct 2017

3. Mosser, S.: The Cookie Factory (J2E 7 reference implementation), version 2.2
(2017). https://github.com/polytechnice-si/4A ISA TheCookieFactory

4. Woodward, M.R.: Mutation testing-its origin and evolution. Inf. Softw. Technol.
35(3), 163–169 (1993)

5. Evans, E.: Domain-Driven Design: Tacking Complexity In the Heart of Software.
Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

6. Benni, B., Mosser, S., Collet, P., Riveill, M.: Supporting micro-services deployment
in a safer way: a static analysis and automated rewriting approach. In: Symposium
on Applied Computing, Pau, France, April 2018

https://www.slideshare.net/johnfcshaw/four-pillars-of-devops-john-shaw-agile-cambridge-2014
https://www.slideshare.net/johnfcshaw/four-pillars-of-devops-john-shaw-agile-cambridge-2014
https://github.com/polytechnice-si/4A_ISA_TheCookieFactory

DevOps Round-Trip Engineering:
Traceability from Dev to Ops

and Back Again

Miguel Jiménez1(B), Lorena Castaneda1, Norha M. Villegas2,
Gabriel Tamura2, Hausi A. Müller1, and Joe Wigglesworth3

1 University of Victoria, Victoria, BC, Canada
{miguel,lcastane,hausi}@uvic.ca

2 Universidad Icesi, Cali, Valle del Cauca, Colombia
{nvillega,gtamura}@icesi.edu.co

3 IBM Toronto Laboratory, Toronto, Canada
wiggles@ca.ibm.com

Abstract. DevOps engineers follow an iterative and incremental process
to develop Deployment and Configuration (D&C) specifications. Such
a process likely involves manual bug discovery, inspection, and modi-
fications to the running environment. Failing to update the specifica-
tions appropriately leads to technical debt, including configuration drift,
snowflake configurations, and erosion across environments. Despite the
efforts that DevOps teams put into automating operations work, there
is a lack of tools to support the development and maintenance of D&C
specifications. In this paper, we propose Tornado, a two-way Continu-

ous Integration (CI) framework (i.e., Dev
CI−→ Ops and Dev

CI←− Ops) that
automatically updates D&C specifications when the corresponding sys-
tem changes, enabling bi-directional traceability of the modifications.
Tornado extends the concept of CI, integrating operations work into
development by committing code corresponding to manual modifications.
We evaluated Tornado by implementing a proof of concept using Ter-
raform templates, OpenStack and CircleCI, demonstrating its feasibility
and soundness.

Keywords: DevOps · Round-Trip Engineering · Traceability ·
Software deployment · Continuous integration

1 Introduction

Changes in the artefacts used throughout software development and operations
are inherently causally connected to one another. For example, modifying the
deployment specifications will affect the corresponding system and the infras-
tructure it runs on. Analogously, updating the physical infrastructure will cause
updates to the software and networking configuration. Traditionally, this rela-
tionship has been implicit and poorly supported by software development pro-
cesses and tools. DevOps practices have increased its visibility in the context
c© Springer Nature Switzerland AG 2019
J.-M. Bruel et al. (Eds.): DEVOPS 2018, LNCS 11350, pp. 73–88, 2019.
https://doi.org/10.1007/978-3-030-06019-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-06019-0_6

74 M. Jiménez et al.

of a continuous development process [1,2], impacting mostly the forward direc-
tion (i.e., Dev→ Ops). In contrast, there is a lack of standard and technology-
supported processes to bridge explicitly and repeatedly in the backward direction
(i.e., Dev← Ops) [3–6]. This inability hinders the process of keeping operation
and development information consistent with the deployed system.

Many organisations adopt a forward-only development strategy to avoid con-
figuration inconsistency. Any modification to the system or its infrastructure
must be performed in the forward direction, using, for example, infrastructure
as code (IaC). This approach ensures consistency between the running system
and its D&C specifications, and at the same time allows tracing the changes.
However, DevOps engineers and operators still follow a manual bug discovery
and exploratory experimentation process that leads to fixing faults. D&C speci-
fications are the result of an incremental process, in which each step is likely to
involve manual actions and inspection. Therefore, it is still a task of the engi-
neers to capture the drift between an experimental environment and the original
setting, before updating the specifications. Failing to do so leads to configuration
drift, snowflake configurations, erosion across environments, and other forms of
technical debt [7–9]. There is a need to support keeping the D&C specifications
in sync.

Automatically maintaining the consistency between D&C specifications and
a running system is known as automatic Round-Trip Engineering (RTE) [10–
12]. Our contributions are as follows. We introduce Tornado, a framework for
realizing. RTE in DevOps. We demonstrate how the concept of continuous inte-
gration [13] can be extended from its traditional use to integrate operations work
into development. Tornado is a two-way conTinuOus integRatioN frAmework
for DevOps (i.e., Dev CI−→ Ops and Dev CI←−Ops) that enables bidirectional trace-
ability [14] of changes and transformation between a running system and its
D&C specifications. Our evaluation consists of a proof of concept implemen-
tation based on Terraform templates1 and OpenStack.2 This implementation
allows us to demonstrate the feasibility and soundness of Tornado.

This paper is structured as follows. Section 2 presents our motivation.
Section 3 introduces fundamental concepts used in the description of our proposal
and discusses related work. Section 4 presents Tornado. Section 5 presents our
evaluation. Finally, Sect. 6 concludes the paper and outlines future work.

2 Motivation

In this section, we describe the motivation for Tornado, by highlighting relevant
concerns about consistency and quality of D&C specifications.

Experimentation on production-like environments enables DevOps engineers
and operators to develop new features and fix faults by performing ad-hoc mod-
ifications. There are D&C specifications, such as Terraform templates, that need

1 https://www.terraform.io (accessed Oct, 2018).
2 https://www.openstack.org (accessed Oct, 2018).

https://www.terraform.io
https://www.openstack.org

DevOps Round-Trip Engineering 75

be updated accordingly. These updates range from low-level configurations, such
as opening ports in a firewall, upgrading or downgrading software packages, to
structural changes, such as duplicating services or modifying the scaling poli-
cies of virtual resources. Failing to propagate these changes to the specifications
appropriately leads to configuration inconsistencies.

The state of the practice for D&C testing is based on static analysis and
functional tests [7,15,16]. The former provides quick feedback on minor pro-
gramming mistakes, such as syntax errors. The latter consists of deploying
the infrastructure and execution of unit, integration and system tests to deter-
mine if the deployed resources and their configuration are adequate. Deploying
and re-deploying the system and its infrastructure to sandbox environments
is resource and time consuming. Furthermore, modifying a specification can
adversely impact another. For example, modifying a hostname on a network
configuration file without appropriately replicating the update to other spec-
ifications (e.g., software deployment) will likely cause a connection timeout.
This hinders the experimentation process and requires manual inspection and
debugging. Bugs may not appear prior to deployment because specifications are
not usually connected, unless they are input to a common compiler/interpreter.
Run-time modelling3 seems to be a feasible alternative to capture the nota-
tions’ domain logic and validate them prior to deployment, reducing the cases in
which the infrastructure must be deployed for testing purposes. It also reduces
the developer’s cognitive load, as feedback is provided in a timely fashion.

3 Fundamentals and Related Work

This section introduces fundamental concepts for describing our framework and
presents related research.

3.1 Round-Trip Engineering

Round-Trip Engineering (RTE)4 is the process of ensuring the consistency of
multiple, changing and interconnected software artefacts [10–12,18]. These arte-
facts participate in a source-target relationship, in which a derivation process
creates the target from the source artefact. Target artefacts are usually further
altered due to maintenance work or changing requirements [12]. Therefore, these
artefacts may no longer be the result of the derivation process and, thus, creat-
ing inconsistencies when source artefacts are modified and the derivation process
is applied again. RTE ensures consistency between these artefacts by reflecting
changes to the target artefact back to the source artefacts.

RTE is closely related to Forward and Reverse Engineering (FE and RE,
respectively). FE is the process of deriving one or more target artefacts from one
or more source artefacts. RE is the process of reconstructing these sources from
the target artefacts, recovering any information lost in the derivation process
[10,19].
3 In the literature often referred to as models@run.time [17].
4 Model synchronisation and RTE are often used interchangeably in the literature [12].

76 M. Jiménez et al.

3.2 Continuous Integration

Continuous Integration (CI) is an agile software engineering practice that allows
developers to frequently merge work to a shared mainline multiple times per
day [13,20]. It includes frequent automated building and testing of the software
in response to code modifications. A typical implementation of this practice
includes a CI server that pulls code from a version control repository and exe-
cutes interconnected steps to compile the code, run unit tests, check quality and
build deployable artefacts. Even though automating the integration process is
important for adoption, the relevance of CI lies in the frequency of integration.
It has to be regular enough to provide quick feedback to developers, thereby
improving their productivity and the software quality [20]. CI has the effect of
producing shorter release cycles.

3.3 Infrastructure as Code

Infrastructure as Code (IaC) is an approach to provisioning and managing
dynamic infrastructure resources through machine-readable configuration files
[7,15,16]. It is also referred to as programmable infrastructure in reference to
the adaptation and application of practices and tools from software engineer-
ing on IT infrastructure management. As a result, changes to the computing
infrastructure and/or the execution environment are made in a structured way,
by means of reliable and established processes [7]. The benefits of IaC include
repeatability of creating and configuring execution environments, management
automation, development agility and infrastructure scalability [16].

3.4 Related Work

Software deployment is specified using semi-formal graphical notations, informal
diagrams, scripts, domain-specific languages (DSLs), and modelling languages.

The UML deployment diagram is a well-known notation that provides a
graphical language to describe a static representation of a system’s architecture.
Though it has been refined in several versions of the UML standard, it contin-
ues to be one of the least adopted diagrams among UML users [21] and within
the model-driven engineering (MDE) community [22]. This diagram allows to
specify only a portion of the required system elements (e.g., infrastructure pro-
visioning, network configuration and elasticity requirements [23,24]). UML lacks
the semantics for translating deployment diagrams into code, therefore exist-
ing transformation approaches limit the diagram semantics and the supported
technologies.

Wettinger et al. [25] propose (i) a methodology to implement the DevOps
paradigm in practice with a high degree of automation; and (ii) DevOpslang,
a DSL to deploy cloud applications. The purpose of DevOpslang is to bridge
the gap between developers and operators by supporting the proposed method-
ology. Nevertheless, the automation considered in its design seems incomplete

DevOps Round-Trip Engineering 77

with respect to its motivation: it only considers forward engineering, from devel-
opment to operations, leaving out the continuous cycle as advocated in DevOps.
Thus, offering no support at run-time.

Thiery et al. [26] address the problem of providing testers with an automated
and provider-independent method to deploy and test cloud applications. They
define a DSL that allows testers to describe how an application is deployed, and
which cloud resources are required and available for the deployment. The DSL
generates a set of provider-specific commands based on the providers’ command-
line applications. The authors claim to support a re-deployment scenario in their
evaluation, however, it is rather a deployment to a new cloud platform (i.e., a
new deployment). The proposed DSL does not consider any kind of support once
the application has been deployed.

Glaser [27] proposes a model-driven and topology-based framework that gen-
erates concrete deployment instances compliant with TOSCA. These instances
are derived based on a domain model specification whose parameters change
over time. The proposed framework updates the running infrastructure on user
demand. To achieve this, Glaser proposes a DSL to map domain modelling
parameters to parameters of the cloud infrastructure. The proposed DSL imple-
ments forward engineering only, providing no support on the operations side.

Holmes [28] proposes MING, a model and view based framework for describ-
ing and deploying cloud data centres. MING separates concerns into different
views, namely, inventory, networking and configuration, allowing stakeholders
to relate to concerns that are relevant to them. These views are realized by
an OpenStack-tailored DSL. MING allows to adapt an already deployed data
center, either adding new resources or providing software upgrades. As for the
aforementioned works, MING realizes forward engineering only.

Significant work has been done in automating the processes to integrate devel-
opment and operations better. IaC plays an important role in this effort, as it
enables the application of software engineering practices to infrastructure design
and management. However, there are still many opportunities to strengthen the
linkage between both sides of the DevOps development cycle. Moreover, emerg-
ing practices, such as continuous experimentation and feedback, require standard
and automated processes to integrate run-time data back into development.

4 TORNADO: A Framework for RTE in DevOps

The design-time artefacts supported by Tornado are text-based, structured
specifications. Our framework reconciles these specifications with their corre-
sponding elements from the running environment. To do so, we introduce a run-
time support layer that bridges D&C work from development and operations.
This layer contains models at run-time (MARTs) that represent the elements
from the running environment. These models are eventually transformed into
text to keep the specifications updated. Figure 1 depicts a high-level overview
of our framework. It shows how information flows between design- and run-time
through the run-time support layer.

78 M. Jiménez et al.

Fig. 1. High level overview of Tornado

We adhere to the MART definition proposed by Bencomo et al. [29]:

An MART can be defined as an abstract representation of a system, includ-
ing its structure, behaviour and goals, which exists in tandem with a given
system during the actual execution time of that system [...]

Tornado is based on Castañeda’s operational framework [30]. This frame-
work comprises four main components: a notation-model mapping, a catalogue
of operations to update the model’s instances, the run-time semantics from the
application domain, and causal links. The latter are used to propagate changes
among the models that are connected, as in the example presented in Sect. 2
about a software deployment specification associated with a network configu-
ration file. The models associated with these specifications must be causally
connected as follows: the software model references a host name defined in the
network model; when the latter changes, the change is propagated to the former,
so it is updated accordingly.

Fig. 2. Tornado’s concepts

DevOps Round-Trip Engineering 79

Figure 2 depicts what an MART is in terms of its internal components. In
Tornado, an MART is not only a model instance but a 3-tuple containing
a model instance, a specification instance (i.e., one or more files) and a set of
semantic validation rules. The model and specification instances are kept in sync
automatically. The validation rules check the quality of the model to guarantee
its integrity. For example, a computing resource may be given an IP address
outside its subnet range. A simple validation rule can discover this mistake,
avoiding the deployment of the whole infrastructure, offering quicker feedback
and spending fewer resources. Furthermore, these validations can be delegated to
other software components. In our example, the network configuration verifica-
tion can be delegated to simulation engines or network virtualisation platforms,
which can be run in memory without the need for deploying more resources.

As shown in Fig. 2, an MART is associated with a set of operations. Each
operation contains the run-time semantics to alter the model instance. An oper-
ation is associated with a set of Pre- and Post-validation rules, which check the
state of the model before and after altering it.

The relationship between a specification and an MART is detailed in Fig. 2.
A MART conforms to a domain model, and must be equivalent to a notation.
That is, Tornado expects a one-to-one relationship between the specification
notation and its corresponding model. However, achieving such a relationship
is often difficult; it may be necessary to limit the facts that can be expressed
with the notation to guarantee said equivalence. To map the concepts from
one model to another, the pair model-specification is associated with a set of
transformations. For example, an MART representing the networking domain
can be set up to work with OpenStack HOT5 and/or HCL6 (i.e., Terraform
templates’ notation). Each of these configurations knows how to update the
model instance and the specification file, given a change in either of them.

Next, we describe the arrows A, B, C and D from Fig. 1. These arrows are later
refined in Fig. 3.

A: Specification→MART
This interaction is initiated by a developer. Once she pushes changes to
the version control repository, a CI server temporarily instantiates the cor-
responding MART based on the current version of the specification. If it
passes the quality checks and the MART is already deployed to the run-time
support layer, the existing MART is updated and the CI server proceeds to
apply the changes to the running environment. In case the MART is being
instantiated for the first time, a new instance is deployed.

B: MART→Running Environment
This interaction is not further explored in this paper, given our motivation to
integrate operations work in the opposite direction. Nevertheless, an MART
may update a running environment as part of the change propagation chain
from a causal connection, as described above.

5 https://docs.openstack.org/heat/latest/template guide (accessed Oct, 2018).
6 https://www.terraform.io/docs/configuration/syntax.html (accessed Oct, 2018).

https://docs.openstack.org/heat/latest/template_guide
https://www.terraform.io/docs/configuration/syntax.html

80 M. Jiménez et al.

Fig. 3. Continuous integration loop in Tornado

C: MART←Running Environment
This interaction is initiated by a change in the running environment. A lis-
tener catches an event propagated by the supporting platform and initiates
a procedure to update the MART instance accordingly.

D: Specification←MART
This interaction is initiated when an MART instance is updated by the run-
ning environment it represents. A procedure is triggered to transform the
instance to the corresponding specification notation. The resulting text is
used to update the remote file in the version control repository.

Figure 3 depicts Tornado’s continuous integration loop. This loop extends
the concept of CI to frequently integrate changes into a running environment
into development. D&C specifications are usually treated in the same way as
application code. This traditional use of CI only considers integrating work at
the request of developers. It means that any kind of manual work would require
an operator to remember and translate data from one tool to another, from one
syntax to another, and possibly from one paradigm to another (e.g., imperative
to declarative). The continuous integration loop we propose automates that pro-
cess. Furthermore, DevOps engineers and operators are not the only actors who
modify a running environment. Autonomic managers have already assumed a
significant role in understanding run-time operations. Dynamic scaling policies,
for example, automatically scale computing resources in response to changing
service demand. The actions of these autonomic managers are not generally
reflected in the specifications.

In our proposal, the CI server deploys the model directly to the processing
infrastructure instead of updating an already deployed model one event at a
time.

DevOps Round-Trip Engineering 81

4.1 CI Considerations

This subsection discusses three main CI considerations regarding the implemen-
tation and adoption of Tornado. We outline concerns that could potentially
affect the development workflow, and propose alternative solutions.

C1: Contribution Model. Tornado enables the run-time support layer to
make code contributions. Although CI provides mechanisms to guarantee quality,
unsupervised changes can produce adverse effects. This can happen, for example,
due to an operation mistake or a bug in the run-time semantics associated with a
model. In addition to the committer model, in which the run-time support layer
is added as a collaborator to the repository (i.e., it is granted write access), we
propose the contributor model, in which code modifications are proposed as pull
requests rather than committed directly.

In the case of the committer model, there would be no delay in reflecting the
changes in the specifications. For this reason, this model would likely produce
fewer merge conflicts. However, it does not mitigate the risk of unwanted side-
effects. In the case of the contributor model, the risk is completely avoided. Nev-
ertheless, additional time must be allocated to review the pull requests, delaying
the update and increasing the possibility of merge conflicts. While a pull request
remains open, the MART instance is inconsistent with respect to the specifica-
tion or the running environment.

It is common today that computing platforms and autonomic managers make
decisions to affect a running system. Therefore, it is acceptable, at least in some
cases, to grant commit access to the run-time support layer. We believe that
providing both contribution alternatives is the best option.

C2: Conflict Resolution. Conflict resolution is not a trivial task. It requires
spending time inspecting the code and making informed decisions about the
merging conflict(s). Therefore, automating conflict resolution requires simplify-
ing the problem. We suggest two strategies to do so. First, we propose to avoid
conflicts related to formatting. The transformation from MART to specifica-
tion must follow a standard process, which always generates statements in the
same order, case and format (e.g., spacing and indentation). To facilitate follow-
ing these measures in development, we propose to use a formatting utility before
committing changes. And second, we propose to give priority to one of the actors
(e.g., the run-time support layer). In case of merge conflicts, the run-time sup-
port layer can decide to either drop the local changes or replace the remote ones,
according to its assigned priority level. The former requires to rollback the latest
changes to keep the MART instance consistent with the remote specification.

C3: Quality Assurance. One of the most important parts of CI is the con-
tinuous application of quality control. Tornado re-uses the concept of pre-
and post-validation rules from Castañeda’s operational framework [30] to ensure
quality conditions before and after modifying the model. However, there may be

82 M. Jiménez et al.

concerns regarding the model itself, rather than its state with respect to a cer-
tain operation. For instance, referring to the example above about the IP address
outside of range. The state itself is erroneous, making it necessary to check its
quality before deployment. There are also other kinds of concerns related to
business restrictions; validations on the model instance allows, for example, to
limit what can be deployed by the tenant. These business restrictions can be
implemented as semantic restrictions on the model, as the model itself repre-
sents entities from the rules’ domain.

5 Evaluation

In this section, we present a proof of concept implementation of Tornado.
This implementation covers all the topics discussed in Sect. 4, including the CI
considerations. The source code of this implementation is available in a Github
repository.7

Fig. 4. Evaluation setup

Figure 4 depicts the evaluation setup. We chose the IaC tool Terraform and
the OpenStack platform to realise this proof of concept. Consequently, the nota-
tion specification is HCL (i.e., Terraform templates’ notation) and the running
environment is a virtual infrastructure. Figures 5 and 6 represent the HCL and
virtual infrastructure models, respectively. Notice that these models are limited
with respect to the entities they represent. However, they are complex enough
to demonstrate the usefulness and soundness of this framework.

7 https://github.com/RigiResearch/jachinte-DevOps2018-evaluation.

https://github.com/RigiResearch/jachinte-DevOps2018-evaluation

DevOps Round-Trip Engineering 83

Fig. 5. HCL model

The HCL and infrastructure models were developed using the Eclipse Xcore
project8, and the model transformations using the Xtend language9. The HCL
interpreter was developed using Eclipse Xtext10.

Next we describe the main components of the evaluation setup and describe
the development workflow associated with this implementation.

Infrastructure MART. This MART is composed of a Terraform specification,
an instance of the Infrastructure model and a set of supported operations and
validations on the model instance. The specific operations supported at the time
of writing this paper are: adding a new resource and removing an existing one.
Supporting more operations requires implementing the interface Operation. As
an example, we added one semantic validation that constraints the RAM size of
any virtual machine instance to be launched. Adding more validations is pos-
sible by implementing the interface Rule. The MART ensures that the model
instance and the specification are always in sync, so any modification to one
another causes a synchronization process and a commit if necessary. When the
specification changes, the Terraform state is updated consequently. Before com-
mitting, the MART invokes the Terraform format command. Commit messages
end with “[skip ci]” to avoid unnecessary CI builds. However, CI could be
used to reinforce quality policies on operations (manual) work.

8 https://wiki.eclipse.org/Xcore (accessed Oct 2018).
9 http://www.eclipse.org/xtend (accessed Oct 2018).

10 http://www.eclipse.org/Xtext (accessed Oct 2018).

https://wiki.eclipse.org/Xcore
http://www.eclipse.org/xtend
http://www.eclipse.org/Xtext

84 M. Jiménez et al.

Processing Infrastructure for MARTs. This component offers a service
to register or update an MART and execute operations on it. Registering a
new MART causes the corresponding code repository to be cloned. Updating an
existing MART causes its corresponding repository to be updated accordingly.

CircleCI Container. This component uses the HCL interpreter to create an
Abstract Syntax Tree (AST) out of a Terraform template. It uses the AST to
instantiate the HCL model and then transforms it to an instance of the vir-
tual infrastructure model. Then, it instantiates the Infrastructure MART and
executes the semantic validations associated with it. If the MART passes the
validations, it is deployed to the processing infrastructure for MARTs and the
resources specified in the Terraform template are deployed. If the validations
fail, the developer is notified. This workflow is specified in a YAML11 con-
figuration file containing three jobs: validate terraform, deploy models and
deploy terraform.

Fig. 6. Virtual infrastructure model

11 http://yaml.org (accessed Oct 2018).

http://yaml.org

DevOps Round-Trip Engineering 85

5.1 Development Workflow

The development workflow is as follows. An operator creates a Terraform tem-
plate using OpenStack as cloud provider. When the template is pushed to the
Github repository, the CI server pulls the template and creates a local instance
of the Infrastructure MART based on the template. If the instance passes the
semantic validations (i.e., there are no instances violating the RAM constraint),
the MART is deployed to the processing infrastructure for MARTs. Then, the CI
server deploys the Terraform template, updating the OpenStack resources. The
event listener consumes the events generated by OpenStack but ignores them, as
these changes are authored by a known user name associated with the CI server
and the changes have been already applied to the model. At this point, the tem-
plate and the OpenStack resources are in sync. When the operator modifies the
OpenStack resources (i.e., creates or removes resources using the Horizon dash-
board or the CLI client), the event listener gets a notification. It then executes
the corresponding operation on the MART by means of the processing infras-
tructure for MARTs. The MART adapts accordingly, committing and pushing
any modification to the template to the Github repository.

Fig. 7. Updates to the Terraform template on Github

Figure 7 depicts three screenshots taken from the test Github repository. The
first one displays the initial state of the template, as created by the developer
(i.e., user jachinte). The second and third screenshots display the template after
the processing infrastructure (i.e., PrIMoR on behalf of user miguel) committed
changes. In the last case, a new file is added and referenced from the template.

6 Conclusions and Future Work

There is a lack of standard processes and tools in DevOps to integrate operation
information back into development readily. In this paper, we focused on the lack

86 M. Jiménez et al.

of automation support for updating D&C specifications from manual changes to
experimental setups. DevOps engineers and operators are in charge of keeping
these specifications consistent, remembering every change and translating them
from one syntax and paradigm to another. We presented Tornado, a two-way
CI framework (i.e., Dev CI−→ Ops and Dev CI←−Ops) that keeps D&C specifications
always in sync with the systems they configure and deploy. We evaluated Tor-
nado by implementing a proof of concept based on Terraform templates and
the OpenStack platform, demonstrating its feasibility and soundness.

Although Tornado focuses on RTE for D&C, it potentially enables fur-
ther synchronisation between other design artefacts (e.g., architecture design)
and the D&C specifications, completing the continuous development loop. This
would provide operators and autonomic managers with a standard mechanism
to contribute to the evolution of the system. That is, their actions would directly
affect the development artefacts too.

Acknowledgments. This work was funded in part by the National Sciences and Engi-
neering Research Council (NSERC) of Canada, IBM Canada Ltd. and IBM Advanced
Studies (CAS), the University of Victoria (Canada), and Universidad Icesi (Colombia).

References

1. Sharma, S., Coyne, B.: DevOps for Dummies. Limited IBM Edition (2013)
2. Zhu, L., Bass, L., Champlin-Scharff, G.: DevOps and its practices. IEEE Softw.

33(3), 32–34 (2016)
3. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: Building blocks for continu-

ous experimentation. In: Proceedings of the 1st International Workshop on Rapid
Continuous Software Engineering, RCoSE 2014, pp. 26–35. ACM, New York (2014)

4. Shahin, M., Babar, M.A., Zhu, L.: The intersection of continuous deployment
and architecting process: practitioners’ perspectives. In: Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM 2016, pp. 44:1–44:10. ACM, New York (2016)

5. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The evolution of continuous
experimentation in software product development: from data to a data-driven orga-
nization at scale. In: 2017 IEEE/ACM 39th International Conference on Software
Engineering, ICSE 2017, pp. 770–780 (2017)

6. Schermann, G., Cito, J., Leitner, P.: Continuous experimentation: challenges,
implementation techniques, and current research. IEEE Softw. 35(2), 26–31 (2018)

7. Morris, K.: Infrastructure as Code: Managing Servers in the Cloud, 1st edn.
O’Reilly Media Inc., Sebastopol (2016)

8. Spanoudakis, G., Zisman, A.: Inconsistency management in software engineering:
survey and open research issues, pp. 329–380. World Scientific Publishing Company
(2012)

9. Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt: from metaphor to theory and
practice. IEEE Softw. 29(6), 18–21 (2012)

10. Henriksson, A., Larsson, H.: A definition of round-trip engineering. Technical
report (2003)

11. Sendall, S., Küster, J.: Taming model round-trip engineering. In: Proceedings of
Workshop on Best Practices for Model-Driven Software Development, p. 1 (2004)

DevOps Round-Trip Engineering 87

12. Hettel, T., Lawley, M., Raymond, K.: Model synchronisation: definitions for round-
trip engineering. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008.
LNCS, vol. 5063, pp. 31–45. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-69927-9 3

13. Shahin, M., Babar, M.A., Zhu, L.: Continuous integration, delivery and deploy-
ment: a systematic review on approaches, tools, challenges and practices. IEEE
Access 5, 3909–3943 (2017)

14. ISO/IEC/IEEE, International Standard - Systems and software engineering -
Vocabulary. ISO/IEC/IEEE 24765:2010(E), pp. 1–418 (2010)

15. Hüttermann, M.: Infrastructure as Code, pp. 135–156. Apress (2012)
16. Nelson-Smith, S.: Test-Driven Infrastructure with Chef: Bring Behavior-Driven

Development to Infrastructure as Code. O’Reilly Media Inc., Sebastopol (2013)
17. Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42(10), 22–27

(2009)
18. Rahm, J., Graube, M., Urbas, L.: A proposal for an interactive roundtrip engineer-

ing system. In: 2017 22nd IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA), pp. 1–7, September 2017

19. Tilley, S.R., Wong, K., Storey, M.A.D., Müller, H.A.: Programmable reverse engi-
neering. Int. J. Softw. Eng. Knowl. Eng. 04(04), 501–520 (1994)

20. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda.
J. Syst. Softw. 123, 176–189 (2017)

21. Petre, M.: UML in practice. In: Proceedings 35th International Conference on
Software Engineering, ICSE 2013, pp. 722–731. IEEE Press, Piscataway (2013)

22. Hutchinson, J., Rouncefield, M., Whittle, J.: Model-driven engineering practices in
industry. In: Proceedings 33rd International Conference on Software Engineering,
ICSE 2011, pp. 633–642. ACM, New York (2011)

23. Inzinger, C., Nastic, S., Sehic, S., Vögler, M., Li, F., Dustdar, S.: MADCAT: a
methodology for architecture and deployment of cloud application topologies. In:
Proceedings 8th International Symposium on Service Oriented System Engineer-
ing, SOSE 2014, Oxford, UK, pp. 13–22 (2014)

24. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: SYBL: an extensible language
for controlling elasticity in cloud applications. In: Proceedings 13th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, CCGrid 2013,
pp. 112–119 (2013)

25. Wettinger, J., Breitenbücher, U., Leymann, F.: DevOpSlang – bridging the gap
between development and operations. In: Villari, M., Zimmermann, W., Lau, K.K.
(eds.) ESOCC 2014. LNCS, vol. 8745, pp. 108–122. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44879-3 8

26. Thiery, A., Cerqueus, T., Thorpe, C., Sunyé, G., Murphy, J.: A DSL for deployment
and testing in the cloud. In: Proceedings of the 2014 IEEE International Conference
on Software Testing, Verification, and Validation Workshops, ICSTW 2014, pp.
376–382. IEEE Computer Society (2014)

27. Glaser, F.: Domain model optimized deployment and execution of cloud appli-
cations with TOSCA. In: Grabowski, J., Herbold, S. (eds.) SAM 2016. LNCS,
vol. 9959, pp. 68–83. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46613-2 5

28. Holmes, T.: Ming: model- and view-based deployment and adaptation of cloud
datacenters. In: Helfert, M., Ferguson, D., Méndez Muñoz, V., Cardoso, J. (eds.)
CLOSER 2016. CCIS, vol. 740, pp. 317–338. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-62594-2 16

https://doi.org/10.1007/978-3-540-69927-9_3
https://doi.org/10.1007/978-3-540-69927-9_3
https://doi.org/10.1007/978-3-662-44879-3_8
https://doi.org/10.1007/978-3-319-46613-2_5
https://doi.org/10.1007/978-3-319-46613-2_5
https://doi.org/10.1007/978-3-319-62594-2_16
https://doi.org/10.1007/978-3-319-62594-2_16

88 M. Jiménez et al.

29. Bencomo, N., Bennaceur, A., Grace, P., Blair, G., Issarny, V.: The role of mod-
els@run.time in supporting on-the-fly interoperability. Computing 95(3), 167–190
(2013)

30. Castaneda, L.: Runtime modelling for user-centric smart applications in cyber-
physical-human systems. Ph.D. thesis, Department of Computer Science, Univer-
sity of Victoria (2017)

DevOps is Simply Interaction Between
Development and Operations

Floris Erich(B)

Robot Innovation Research Center,
National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

floris.erich@aist.go.jp

Abstract. Based on a systematic literature review and interviews with
six organizations regarding their use of DevOps, we take a look at a
number of differing perspectives on what DevOps entails. We argue for a
definition of DevOps as simply being “interaction between development
and operations”. This simple definition implies that DevOps is not a
new thing which only certain organizations practice, but rather a fun-
damental characteristic of software and systems engineering that every
organization is confronted with and manages to a certain extent.

Keywords: DevOps · Development · Operations

1 Introduction

Various definitions of DevOps are encountered in the literature and in practice.
DevOps has for example been defined as “a set of practices intended to reduce the
time between committing a change to a system and the change being placed into
normal production, while ensuring high quality” [1]. Meanwhile DevOps has also
been identified as “an organizational approach aimed at creating empathy and
cross-functional collaboration” [5]. Another definition of DevOps is “infrastruc-
ture being governed by the same processes that govern development” [9]. Based
on a Systematic Mapping Study, DevOps has been defined as “A development
methodology aimed at bridging the gap between Development and Operations,
emphasizing communication and collaboration, continuous integration, quality
assurance and delivery with automated deployment utilizing a set of develop-
ment practices” [8]. And DevOps is seen as a “a cultural movement that changes
how individuals think about their work, values the diversity of work done, sup-
ports intentional processes that accelerate the rate by which businesses realize
value, and measures the effect of social and technical change” [3].

Some of these definitions were based on personal opinion, the perspective of a
single organization or on reviews of academic and industrial literature. The goal
of this paper is to study how various organizations practice DevOps and to syn-
thesize a definition of DevOps that covers both the academic and industrial usage
of the term, thus extending one of our earlier publications [6]. The organizations

c© Springer Nature Switzerland AG 2019
J.-M. Bruel et al. (Eds.): DEVOPS 2018, LNCS 11350, pp. 89–99, 2019.
https://doi.org/10.1007/978-3-030-06019-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-06019-0_7

90 F. Erich

that were interviewed have requested for their names not to be mentioned, hence
in this paper we will be calling them FinCom1, FinCom2, SupportCom, Portal-
Com, UtilCom and CommunitySoft. All of these organizations tried to adopt
DevOps into their ways of working.

2 Interviews

The interviews took place in 2014 and 2015, in person, and typically on loca-
tion at the organization which was the subject of the interview. In the case of
PortalCom the interview took place over the phone. In the case of UtilCom a
discussion was held at the institute of the first author at that time (University of
Tsukuba, Japan). In case of CommunitySoft the interview took place via email.

2.1 FinCom1

FinCom1 is a Dutch bank with over 50000 employees, serving both private
and corporate account holders. Before adopting DevOps, FinCom1 had already
started to adopt Scrum, ITIL and CMMI. The interviewee was the manager of
a DevOps team, and was recommended to be interviewed by its CTO.

FinCom1 defines DevOps as being an extension to the adoption of Scrum.
The goals which they wanted to accomplish by adopting DevOps were to (1)

reduce lead time for new projects, (2) improve their problem solving capability,
and (3) to improve the quality and amount of feedback received from users.

Their approach was to (1) introduce DevOps departments organized around
major services, (2) introduce interdisciplinary DevOps teams for components
which together form the services, and (3) create a role of DevOps engineer.

FinCom1 encountered various problems in their adoption of DevOps, such
as (1) personnel not adjusting to the level of openness they considered DevOps
to require, (2) software developers reacting negatively to being on-call and (3)
friction arising from differences in the transformative workflow of development
and the reactive workflow of operations personnel.

Adopting DevOps did have some positive results, at it (1) decreased the lead
time required for new projects to start, from a couple of months to a couple of
weeks, (2) improved communication between personnel, and (3) improved the
software quality.

2.2 FinCom2

FinCom2 is a Dutch insurance firm which also serves both private and corporate
account holders. At the time of the interview it had over 3000 employees and
over 281 million euros net revenue. Similarly to FinCom1 it used Scrum, ITIL
and CMMI before adopting DevOps. The interview was with two employees, a
business analyst and a agile coach/lean business expert.

FinCom2 defines DevOps as “a way of collaboration in which processes are
automated as much as possible” and claims DevOps “breaks down the silos,
burns the walls down, makes everything one integrated whole”.

DevOps is Simply Interaction Between Development and Operations 91

The goals of the DevOps adoption by FinCom2 were to (1) increase agility
and flexibility, and (2) increase the percentage of processes handled without
human intervention (also called the Straight Through Processing grade).

The approach of FinCom2 was firstly to use CAMS (Culture, Automation,
Measurement and Sharing) as a framework for measuring DevOps adoption. One
of the interviewees gave the following description of how they applied CAMS:
“Recently, in a meeting with management we looked at bottlenecks. For each
bottleneck, we assigned a C, A, M or S. About 80% of the bottlenecks received
a C, they are related to culture.” Secondly, FinCom2 introduced DevOps teams.
Thirdly, they adopted Continuous Deployment and Continuous Delivery, refer-
ring to Humble and Farley’s book as inspiration [7]. One of the interviewees
commented that implementing DevOps can often be “as simple as getting the
right people together” and “literally bringing the people in a room and then
sitting with each other for an hour”.

Problems with adopting DevOps at FinCom2 where (1) developers forgetting
to use feature switches, causing the wrong code to be made available in produc-
tion, (2) difficulty in getting employees to spend time on process improvement, as
employees were focusing too much on improving the product itself, and (3) skep-
ticism from management personnel which were unconvinced about the merits of
DevOps as they saw it as “yet another approach to creating software”.

At the time of the interview FinCom2 had only accomplished minor results
from adopting DevOps, with one team improving their testing capabilities
according to a model from XebiaLabs [12].

2.3 SupportCom

SupportCom is a small/mid sized Dutch software company (3̃00 employees) that
creates a web application which can be used for providing customer support.
Before adopting DevOps the company had adopted Scrum. The interview was
with a project manager who was also managing a DevOps team.

The interviewee defined DevOps as simply getting development and opera-
tions personnel to work closely together, by sharing the same space and by being
part of the same team.

Their goals of adopting DevOps were to reduce the release time of their
software and to realize a cloud offering of their product. They had started their
cloud offering five years ago, which went well at the start, however, as their
customer base grew their product and development workforce started to face
scaling issues. Another goal of DevOps was to eliminate silos, “not just between
development and operations but also with support, sales and consultancy”.

Their approach was to introduce a single DevOps team working in a single
space. This team was replacing the traditional development team working on
an “operations heavy service”. The division of work of this team was basically
60% sprinting (implementing new features) and 30% fire-fighting (solving pro-
duction issues) This way of dividing work is similar to as advocated by Google’s
site reliability engineering approach [2]. Additionally they adopted Continuous
Deployment and Continuous Delivery.

92 F. Erich

The problems they encountered were (1) skepticism from both development
and management personnel, and (2) that empowering teams to solve problems
internally leads to less documentation of the problems occuring. According to
the interviewee: ‘It all becomes a little bit more ad hoc. If there is a fire which
has to be put out then it becomes like a black box. “I’m not sure what they are
doing, but they are solving it, or something.” In how we deal with that I still
see an challenge.’

SupportCom noticed an increase in speed and effectiveness of problem solv-
ing. The interviewee had this to say when asked what adopting DevOps has
brought them: “Solve problems faster I think, that less escalating has to hap-
pen. [. . .] that there [used to be] escalation via five people or more. And before
you know it you [were] two weeks further”.

2.4 PortalCom

PortalCom is a Dutch subsidiary of a multinational organization which creates
intranet portals. The Dutch subsidiary had around 100 employees, while the
organization as a whole had around 5000 employees. They used Scrum before
adopting DevOps, and the DevOps adoption was an effort local to the Dutch
subsidiary. The interview was with an entrepreneur/DevOps team member.

PortalCom defines DevOps as a culture of understanding between develop-
ment and operations personnel and a movement towards integration of all phases
of the software process. Before adopting DevOps “Dev and Ops did not speak
each other’s language” and that “DevOps is about making the bridge smaller so
that we understand each other”, using the bridge as a metaphore of the divide
between development and operations personnel. The interviewee also explicitly
stated that “DevOps is not something you can be. It is not a function, it is not
a title.” and that DevOps “is a piece of culture, it’s a piece of understanding”.

The goals of adopting DevOps were (1) to support a switch to a cloud com-
puting model of offering their software and (2) to increase software development
capabilities.

As for how the organization implemented DevOps, the interviewee gave an
explanation framed around the development and operations divide: “It is not
just some piece of operations being added to a development department, but
also testing is very important, so is quality assurance. Those are the parties
which in the past, before DevOps was introduced, were separate departments,
divisions or groups. If you introduce DevOps you would expect that those people
would sit together more often, speak their expectations more often, about what
they exactly need to do and what they have to test, what they need to bring
live. So more understanding arises.” Additionally the organization is adopting
Continuous Deployment and Continuous Delivery.

A big problem with adopting DevOps was that it required highly skilled
workers with cross-disciplinary skills. Those kind of people were hard to find due
to many managers desiring them for their teams and a lack of good candidates
for hire.

DevOps is Simply Interaction Between Development and Operations 93

The results of adopting DevOps at PortalCom were an inceased develop-
ment speed, faster release cycles and a higher amount of problems getting solved
directly within the DevOps teams.

2.5 UtilCom

UtilCom is a cloud service provider that operates worldwide, with over a 1000
employees. The company did not adopt any formal software development method
before adopting DevOps, instead allowing each team to pick their own way of
working. This is also the case of DevOps at UtilCom, not every team in the
organization practices, but various teams have decided to do so. The interview
was with a senior software engineer at UtilCom.

UtilCom defines DevOps as “the principles and practices needed to create
scalable service infrastructure”.

While UtilCom leaves it upto the teams to decide to formally practice
DevOps, according to the interview the organization actually saw the practices
growing organically. Many principles and practices which are now considered to
be part of DevOps were independently implemented by UtilCom.

Some of the DevOps practices at UtilCom are:

1. Explicitly recognizing the unique skill set required from server script engineers
performing operations, countering the derogatory term “script junkies”.

2. Teaching software engineering techniques to operations personnel.
3. Having one subteam within a larger team (the larger having around 100 team

members) acting as a DevOps team and specializing in problems spanning
the disciplines of development and operations.

4. Using distributed teams to increase redundancy.
5. Adopting various technical practices: Continuous Deployment, Continuous

Delivery, feature switches, staging areas, upgrade/downgrade testing, Infras-
tructure as Code and Infrastructure as a Service.

6. Differentiating between three kinds of deployments: Deployments with only
production code, deployments with only configuration, and deployments with
a mix of both production code and configuration.

UtilCom encountered that development and operations personnel have con-
flicting ways of measuring progress. The interviewee believes that new perfor-
mance measurements are needed to deal with this.

The adoptation of DevOps principles and practices at UtilCom has resulted in
(1) reduced on-call rotations thanks to infrastructure automation, (2) less false
and duplicate alarms and (3) a decrease in escalations as shown by historical
escalation patterns.

2.6 CommunitySoft

CommunitySoft is an online open source community with around 1800 members
from all over the world, which is registered as a charity in the United Kingdom.

94 F. Erich

Project teams are free to choose the way they want to work, though the use
of agile software development techniques is typical. The interview was with a
co-founder of the organization who also acts as a project manager.

Their definition of DevOps is simply “getting development done and into
operations”.

The goal of adopting DevOps is to get direct feedback from stakeholders by
continuously giving them access to a working version of the system under devel-
opment. Note that this goes a step further than typical agile software develop-
ment projects, in which simply giving a presentation of a product under devel-
opment was often considered a delivery.

CommunitySoft has adopted Continuous Deployment and Continuous Deliv-
ery, as well as adopting a GitHub workflow, automated testing, cloud hosting
(Heroku) as well as having different environments to which their software gets
deployed (development, staging and production).

Problems which CommunitySoft encountered with adopting DevOps are (1)
that it is hard to automate every check and hence still requiring a person to
perform some verification steps, (2) that there are a lot of different opinions
of what DevOps is, and that sometimes teams were spending too much time
discussing this, and (3) that it was hard to find a good balance between feature
development and process improvements.

Thanks to adopting DevOps, the organization is capable of continuously
delivering working software to its stakeholders.

3 Types of Implementation

Our main findings are that DevOps implementations exist at a spectrum ranging
from business-driven top-down implementations and technology-driven bottom-
up implementations. The organizations that we interviewed were located at var-
ious positions in this spectrum.

Both type of implementations have similar goals, such as reducing lead time,
improving problem solving ability, increasing feedback, reducing system down-
time, reducing the workforce size, reducing miscommunication and more frequent
software releases.

In terms of implementation however both type of implementations differ sig-
nificantly.

Business-driven top-down implementations will typically focus on how the
organization is structured. We can consider FinCom1 and FinCom2 to be of this
kind. The decision to adopt DevOps in these organizations came from manage-
ment, and the types of changes made is related to the way the organization is
structured. Organizations might merge seperate departments doing development
and operations into single departments organized by product or service. They
will try to put both development and operations personnel in the same team.
Some organizations go as far as introducing the special title of DevOps engineer
to replace traditional titles such as software engineer and system administra-
tor. They might adopt frameworks and process models such as the Scaled Agile
Framework (SAFe) and Disciplined Agile Delivery (DAD).

DevOps is Simply Interaction Between Development and Operations 95

Technology-driven bottom-up implementations will instead focus on the tools
used by the development and operations personnel. We can consider UtilCom
and CommunitySoft to be of this kind. Traditional tools such as version control
(such as SVN and Git) play a central role in the DevOps tool stack. Develop-
ers write code and commit it to a repository. A continuous integration pipeline
(stored in systems such as Jenkins and Travis) will then take the source code
and perform transformations on it to create derived artifacts such as executables
and documentation. Where DevOps differs from traditional software engineering
is that the artifacts are not only created but also made available to stakehold-
ers who can evaluate the artifacts. Tangentially various DevOps tools focus on
the way these environments are configured, evolving from a collection of ad-
hoc scripts to declarative configuration-as-code approaches using tools such as
CFEngine and Terraform, as well as hosting artifacts in virtualized environments
and containers.

PortalCom and SupportCom fall between these two categories. It seems like
both organizations are experimenting with DevOps at a smaller scale, in each
case for a single product.

Supporting the move the cloud based software is a major goal in many cases
of DevOps adoption. It seems like “traditional” software engineering approaches
such as Agile are ill suited for offering cloud based software, as they do not
formally define how to deal with problems occuring in operations.

In the cases that we studied, DevOps is typically implemented in concert
with Continuous Deployment and Continuous Delivery.

4 DevOps as Interaction Between Development and
Operations

The concept of DevOps first appeared in practice, before empirical software engi-
neering researchers started to look at it. Because of this, there is no clear widely
agreed upon definition of what DevOps actually means. While Bass, Weber and
Zhu give an operational definition of DevOps [1], this definition does not match
how our interviewees see DevOps, and it also begs the question which practices
are part of DevOps. This definition of Dyck matches the spirit of DevOps [5],
however it does not match the more extreme perspectives of DevOps that we
encountered in some organizations, for example DevOps as simply putting devel-
opment and operations personnel in the same room. Meanwhile, the definition
of Loukides is in line with the technology-driven perspective of DevOps [9], but
seems to ignore the business-driven perspective. The definition of Jabbari et
al. [8] gives a definition that seems the match that of most of our interviewees,
but by calling DevOps a methodology and by naming specific practices the defi-
nition becomes too specialized. Daniels and Davis define DevOps to be a cultural
movement [3], which is in line with the definition of a few of our interviewees,
but at the same time does not seem to be an implementable artifact such as
other interviewees see DevOps.

96 F. Erich

One way to solve the problems with defining DevOps is to consider it from a
wider perspective. By considering DevOps to be the interaction between devel-
opment and operations, we can accomodate the multiple perspectives of DevOps
simply as different approaches to improve this interaction. At the same time, we
see the terms development and operations as abstract definitions which need to
be further defined in actual discussions. Development and operations might for
example refer to departments, teams, skills, roles and jobs.

It also implies that DevOps is not an artifact but rather a fundamental
characteristic of software and systems engineering. And it implies that in the
future we should not study DevOps as something which can be obtained, like a
process or tool. Instead we can ask more qualitative questions that try to measure
the satisfaction of the interaction and approaches to improve this interaction.

In the remainder of this discussion we will look at ways in which using the
definition of DevOps being interaction between development and operations can
be applied to existing terminology in practical and academic discussions. Some
of the applications are inspired by the literature, some by the interviews which
we performed, and some will be hypothetical.

4.1 DevOps Departments

A term used by some of our interviewees, but not typically in the literature,
is that of a DevOps department. In the case of the DevOps department, let us
consider three ways of applying the DevOps term. Firstly, a DevOps department
can be a department in which development and operations teams interact with
each other regularly. In practice, for large organizations such as FinCom1 and
FinCom2, the first step of a DevOps transformation is moving from having sep-
arate development and operations departments to having DevOps departments.
Secondly, a DevOps department can be a department in which multiple DevOps
teams interact with each other while working on related parts of a product or
service. In practice, for large organizations such as FinCom1 and FinCom2, this
is often the second step in a DevOps transformation. Thirdly, a DevOps depart-
ment can be a department which takes the place of an operations department,
in which case operations personnel gets trained to use software engineering tech-
niques to solve operational problems. This can actually be considered an anti-
pattern to DevOps as interaction between development and operations, as the
interaction decreases by assigning more responsibilities to a single discipline.

4.2 DevOps Teams

The DevOps team is a term found more commonly than that of a DevOps
department. Let us again consider three ways of applying the DevOps term.
Firstly, a DevOps team can be a team in which development and operations
personnel interact with each other as members of a single team. This was for
example the case at SupportCom, in which a specialized team was created to
work on the cloud offering of their product. Secondly, a DevOps team can be a
team in which multiple DevOps engineers interact with each other as members of

DevOps is Simply Interaction Between Development and Operations 97

a single team. This is the case at FinCom1 and FinCom2, which both introduced
the job title DevOps engineer. Thirdly, a DevOps team can be a team which
acts as a support unit for a DevOps transformation. One of the interviewees at
FinCom2 described himself and the other interviewee as being such a team.

4.3 DevOps Engineers

The job title DevOps engineer is quite controversial. Even though there are
actually many organizations hiring DevOps engineers and there are many people
indentifying themselves as such, some consider the job description to be against
the spirit of DevOps. Let us consider various ways of applying the DevOps
term in the case of the DevOps engineer. Firstly, a DevOps engineer can be an
engineer who realizes the interaction between development and operations, in
which case the DevOps engineer would be similar to a process engineer. This is
a hypothetical definition, however it could be argued that the interviewees at
FinCom2 could describe themselves as this. Secondly, a DevOps engineer can be
an engineer who has a skill set spanning development and operations, in which
case the DevOps engineer is like a hybrid between a software engineer and an
operations engineer. This is how FinCom1 and FinCom2 use the term. Thirdly,
a DevOps engineer can be an engineer specialized in using DevOps tools, in
which case the DevOps engineer is similar to a built or release engineer. This
was the case at UtilCom, in which the DevOps team primarily supported the
development teams by creating and maintaining tools.

4.4 DevOps Tools

Many tools predating the rise of DevOps have relabled themselves as DevOps
tools, and many new tools categorized by their creators as DevOps tools have
been developed. Let us consider some ways in how the DevOps term can be
applied to DevOps tools. Firstly, DevOps tools could be tools which allow
development and operations personnel to interact. Examples of this are project
management systems such as Jira and bug trackers such as Bugzilla. Secondly,
DevOps tools could be tools that bridge the disciplines of development and oper-
ations. Examples of this are CI systems such as Jenkins and Travis, especially if
more advanced pipelines are used to chain different steps in the deployment and
delivery process together. Thirdly, DevOps tools could be tools that automate
the interaction between development and operations personnel. Examples of this
are release automation tools such as Ansible and cloud orchestration engines such
as Kubernetes.

4.5 CA(L)MS

Various categorizations for DevOps principles and practices have been pro-
posed. Damon Edwards and John Willis proposed CAMS [11]: Culture, Automa-
tion, Measurement and Sharing. Jez Humble proposed CALMS [10]: Culture,

98 F. Erich

Automation, Lean, Measurement and Sharing. Chris Jackson proposed CALMS
as [10]: Culture, Automation, Lean, Metrics and Sharing. Other variations on
the acronym exist, such as CALMSS (Culture, Automation, Measurement and
management, Sharing, Sourcing) as proposed by Forrester [4], but we will ignore
these as they are not widely used.

Let us take a quick look at how DevOps as interaction between development
and operations could fit with these categorizations.

Culture DevOps is about creating a culture in which development and opera-
tions personnel interact regularly.

Automation DevOps is about automating steps which typically require inter-
action between development and operations personnel.

Measurement/Metrics DevOps is about implementing measurements that
span the disciplines of development and operations, or DevOps is about
measuring the interaction between development and operations personnel,
or DevOps is about giving development personnel access to measurements
typically used by operations personnel and vice versa.

Lean DevOps is about optimizing the interaction between development and
operations personnel.

Sharing DevOps is about having a shared space in which development and
operations personnel interact, or DevOps is about maintaining the systems
used by development and operations personnel to interact, or DevOps is
about development and operations personel sharing about their involvement
on different parts of the same system.

5 Conclusion

Software has always needed to be both developed and operated in order to
provide value, however a move from mainframe computers to personal computers
moved most of the operational burden to the consumer of software. With a shift
to a cloud computing model of offering software also the operational burden has
shifted back to the organizations developing the software.

What we hoped to convey in this paper is that DevOps is a simple thing with
major implications on each of the aforementioned levels. In fact, we consider the
interaction between development and operations to be the supporting factor
behind many principles and practices which can be considered modern software
engineering. In the cases which we discussed, this interaction took place on var-
ious levels, such as the individual level (the skillset of employees), the team
level (how a team is composed, for example only development personnel, only
operations personnel, a mix of both, or having only multi-disciplinary DevOps
engineers), the tool level (many companies offer tools that can allegedly be used
to implement DevOps), the department level (many organizations reorganized
to have departments in which both development and operations personnel are
located).

What we hope the reader takes away from this paper is that when discussing
DevOps there is a high likelihood that different definitions of DevOps will exist

DevOps is Simply Interaction Between Development and Operations 99

in the mind of the participants of the discussion. Even so, at the core of each
definition of DevOps will be the interaction between development and opera-
tions. Anything added on top of this interaction should be considered to be
implementation details.

Acknowledgements. I would like to thank my master thesis supervisors Maya
Daneva and Chintan Amrit, my PhD supervisor Kenji Suzuki, and my current employer
Japan’s Institute of Advanced Industrial Science and Technology for their continued
support.

References

1. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, Boston (2015). ISBN 978-0-13-404984-7

2. Beyer, B., et al.: Site Reliability Engineering. O’Reilly, Sebastopol (2016)
3. Daniels, R., Davis, J.: Effective DevOps. O’Reilly Media, Sebastopol (2016)
4. DeMartine, A., Oehrlich, E., Doerr, M.: CALMSS: a model for assessing modern

service delivery. Research report, Forrester Research (2015)
5. Dyck, A., Penners, R., Lichter, H.: Towards definitions for release engineering and

DevOps. In: Proceedings of the Third International Workshop on Release Engi-
neering, p. 3. IEEE Press (2015)

6. Erich, F., Amrit, C., Daneva, M.: A qualitative study of DevOps usage in practice.
J. Softw.: Evol. Process 29(6) (2017). https://doi.org/10.1002/smr.1885

7. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation, 1st edn. Addison-Wesley Professional,
Boston (2010). ISBN 0321601912, 9780321601919

8. Jabbari, R., et al.: What is DevOps?: A systematic mapping study on definitions
and practices. In: Scientific Workshop Proceedings of XP2016, Edinburgh, UK, pp.
12:1–12:11. ACM (2016). https://doi.org/10.1145/2962695.2962707, ISBN 978-1-
4503-4134-9

9. Loukides, M.: What is DevOps? O’Reilly Media, Sebastopol (2012). http://radar.
oreilly.com/2012/06/what-is-devops.html

10. Rackspace: Quantifying DevOps capability: it’s important to keep CALMS, August
2014. https://blog.rackspace.com/quantifying-devops-capability-its-important-to-
keep-calms

11. Willis, J.: What DevOps means to me, July 2010. https://blog.chef.io/2010/07/
16/what-devops-means-to-me/

12. XebiaLabs: Whitepaper: introducting continuous delivery in the enterprise (2013).
http://go.xebialabs.com/rs/xebialabs/images/WP 2013-01-XebiaLabs-Continuo
us-Delivery.pdf

https://doi.org/10.1002/smr.1885
https://doi.org/10.1145/2962695.2962707
http://radar.oreilly.com/2012/06/what-is-devops.html
http://radar.oreilly.com/2012/06/what-is-devops.html
https://blog.rackspace.com/quantifying- devops-capability-its-important-to-keep-calms
https://blog.rackspace.com/quantifying- devops-capability-its-important-to-keep-calms
https://blog.chef.io/2010/07/16/what-devops-means-to-me/
https://blog.chef.io/2010/07/16/what-devops-means-to-me/
http://go.xebialabs.com/rs/xebialabs/images/WP_ 2013-01-XebiaLabs-Continuous-Delivery.pdf
http://go.xebialabs.com/rs/xebialabs/images/WP_ 2013-01-XebiaLabs-Continuous-Delivery.pdf

Teaching DevOps in Corporate
Environments

An Experience Report

Manuel Mazzara, Alexandr Naumchev(B), Larisa Safina, Alberto Sillitti,
and Konstantin Urysov

Innopolis University, Innopolis, Russian Federation
{m.mazzara,a.naumchev,l.safina,a.sillitti,k.urysov}@innopolis.ru

Abstract. This paper describes our experience of training a team of
developers of an East-European phone service provider. The training
experience was structured in two sessions of two days each conducted
in different weeks with a gap of about fifteen days. The first session
was dedicated to the Continuous Integration Delivery Pipeline, and the
second on Agile methods. We summarize the activity, its preparation and
delivery and draw some conclusions out of it on our mistakes and how
future session should be addressed.

1 Introduction

Our society is observing a trend of rapid technological development and a global
process of automation. The public often identifies as technological progress a
new release of a telephone or of a new kind of digital device. However, tech-
nological progress is not only about “hard” technologies – tangible products
that can be touched and ultimately purchased. Instead, it is a balanced mixture
of both technical and business innovation, including process innovation. To sur-
vive, companies must fight for every single customer, propose competitive prices,
and optimize their operations [5]. Innovative business models appear everywhere
from the game industry to the mobile application domain, and the borders of
Information Technology become blurred. For example, is Uber a taxi or an IT
company? Is Airbnb a realtor? The separation between Information Technol-
ogy and other businesses is not so neat anymore, so that software development
techniques and operations need to catch up with this trend.

It is obvious when the next release of Windows come, but what about a web
service (e.g., Google, Yandex search)? Agile Methods deal with this problem
only from the software development point of view focusing on customer value,
managing volatile requirements, etc. However, the current needs require much
more than that and involve the entire life cycle of a software system, including
its operation. The DevOps approach [4,11] and microservices architectural style
[8,9] with its domains of interests [5,14,20,21] have the potential of changing
how companies run their systems as Agile have changed how they develop their
software. DevOps is a natural evolution of the Agile approaches from the software
c© Springer Nature Switzerland AG 2019
J.-M. Bruel et al. (Eds.): DEVOPS 2018, LNCS 11350, pp. 100–111, 2019.
https://doi.org/10.1007/978-3-030-06019-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-06019-0_8

Teaching DevOps in Corporate Environments 101

itself to the overall infrastructure and operations that is made possible by the
spread of cloud-based technologies and the everything-as-a-service approaches.
In this context, even the infrastructure is becoming code with all the advantages
and complexity that is well-known in common software development.

However, embracing DevOps is more complex than embracing just Agile [1].
It requires changes at organization level and the development of a new skill
set and approaches that need to be adopted by different teams which could
be (almost) autonomous [6]. Therefore, training is of paramount importance
to establish a common background for all the different groups, including the
management.

Our team is specialized in delivering corporate training for management and
developers. This study describes our experience of training a team of developers
of an East-European phone service provider for several days. The training expe-
rience was structured in two sessions of two days each conducted in different
weeks with a gap of about fifteen days in the middle in order not to disrupt
for too long the working schedule. The first session was dedicated mostly to the
Continuous Integration Delivery Pipeline while the second on Agile methods in
general.

2 Session I: DevOps

The first session was conducted over two full days at the office of our customer.
The training was conducted following a schedule shared in advance. Out target
group was a team of developers reporting to a line manager located in a different
city reachable only by flight. Previous communication with this specific team was
not possible, the only information we had was partial and communicated by the
remote line manager. Therefore, the original agenda had to be adjusted on site.

2.1 Training Process

The training covered the following topics and it was organized in four major
parts, including the discussion of the survey, which appeared in several moments,
although here it is for simplicity reported only at the end. Here we report the
agenda and the key points of each session.

Introduction. The narrative was built as follows:

– Trends in IT and impact on software architectures and development.
– Requirements volatility and Agile development.
– Challenges of distributed development.
– Microservices.

102 M. Mazzara et al.

Key Points. The session emphasized the difference between hard technologies
and soft technologies. On one side there is industrial production of commercial
item of technological nature, on the other there is continuous improvement and
“agilization” of development process. Issue of Requirements volatility and how
this led to agile methods were discussed. Relevance of distributed team develop-
ment in the modern setting was described in detail to conclude the session with
a survey on microservices, which are considered the privilege architecture for
DevOps with their scalability features [9]. The key difference between monolithic
service updates (Fig. 1) and microservice deployment (Fig. 2) was presented to
motivate the need of migration to microservices and why this topic is so closely
related to DevOps. Figure 1 shows that the approach works well with a few
developers and a single language, and that the need for microservices emerges
for large teams and diverse platform components.

Fig. 1. Monolithic service updates

Continuous Integration Delivery Pipeline. Here the full delivery pipeline
was discussed:

– Source code control.
– Build automation.
– Automated testing.
– Static code analysis.
– Integration testing.
– Deployment automation.
– Monitoring.

Teaching DevOps in Corporate Environments 103

Fig. 2. Microservice deployment

Key Points. The overall session worked on the idea that it is desirable that
software in mainline can be rapidly built and deployed to production at any
point. The declared benefits of this approach are:

– Reduction of manual effort.
– Acceleration of release cycles.
– Improvement of release quality.
– Increased collaboration between development, QA, support and operations

teams.
– Reduction in costs for deployment and support.

The fundamental principles of DevOps as generally agreed upon by the most
influential early members of the DevOps community, were summed up in the
acronym “CAMS”: Culture, Automation, Measurement, Sharing.

Tools. We analyzed tools for the following purposes:

– Version control.
– Build automation.
– Testing (including mutation testing [18]).
– Continuous integration.
– Configuration management.
– Continuous monitoring.
– Seamless development ([12,13,15–17,23]).

Key-Points. This part emphasized on the practical aspects showing tools to
support the idea of continuous delivery. During the discussion with teams, we
were asked to speak about the mutation testing, which was out of scope of our

104 M. Mazzara et al.

main topic. However, we found it interesting enough to adapt our initial agenda
and cover it. We have also decided on a little experiment and included the topic
on seamless development, to see how well ideas born in academia can be spread
among the industry.

Discussion of the Survey. The survey data collected before the training was
analyzed question by question to give focused and specific advice to the team,
apart from the generalities discusses in the previous parts.

2.2 Objectives of the Training

The idea of the training was not just to lecture the theory behind DevOps, but
also to address specific software process-related issues preventing the client to
benefit from applying DevOps as much as possible. To figure out these issues, we
had to collect some data about the audience. Due to the high level of corporate
privacy, we could not use internal data of the company. The schedule was tight,
which is why we could not afford negotiating possible non-disclosure agreement
that would let us gain the insights we needed. We decided to develop of a ques-
tionnaire that, in our opinion, would uncover some insights about the team. The
questionnaire consisted of 17 questions related to DevOps practices, and in the
end, coincidentally, we have received 17 responses.

Fig. 3. How much time does it typically take to deploy changes? (Blue for “less than
one hour”, light blue for “don’t know”, red for “less than one day”, yellow for “one
day to one week”, green for “one week to one month”.) (Color figure online)

2.3 Analysis of the Results

Although we were expecting to understand something about the current level
of DevOps practices in the team, the responses to the questionnaire made us
think about communications inside the team. Running the questionnaire and
analyzing the results revealed the following anomalies in the structure of the
responses:

Teaching DevOps in Corporate Environments 105

Fig. 4. Do you automate application testing? (Blue for “yes”, red for “mostly yes”,
yellow for “no”, green for “don’t know”.) (Color figure online)

Fig. 5. Does your team practice retrospective and postmortem meetings? (Blue for
“yes”, red for “only retrospectives”, yellow for “only postmortems”, green for “no”.)
(Color figure online)

– High diversity of opinions for some questions (Fig. 3).
– A lot of “don’t know” replies for some straightforward questions (Fig. 4).
– Contradicting responses for some questions (Fig. 5).

These anomalies raised the following questions to address during the training:

– Does the team consist, in fact, of several sub-teams?
– To what extent are the teams distributed?
– How does the level of DevOps practices’ maturity vary among the teams?
– How should we adjust the contents of the training to meet the identified

variability?
– How should we adjust the questionnaire itself, so that we minimize the like-

lihood of the mentioned anomalies in the future?

106 M. Mazzara et al.

An ideal solution would be to create another questionnaire targeting these
questions. The schedule, however, did not allow us to do so. The only solution
was to figure out the missing information on site, and then adjust the training
on the go, between the two training days. By the end of the first day of the
training, we have revealed the following information, with respect to the above
questions:

– The team consists of 4 sub-teams. Each sub-team has their own goals, prob-
lems, and concerns about the software process.

– The smallest team, consisting of 4 members, is from another city. Some teams
are distributed.

– The smallest team is not even considering applying DevOps because of its size.
One of the sub-teams possesses good understanding of DevOps and applies
it in their daily practices.

– One team’s customer is the head branch of the company.
– Every day the customer tells the team what to deploy during the day.
– Fridays have the largest number of deployments requested.
– Around 80% of releases are tested after deployment.
– Sometimes they work on weekends, which is a natural consequence of the

previous two points.
– The customer does not want the team to use automatic deployments, because

they lack trust to the team.

These important pieces of information have little to do with the questionnaire
that we sent to the trainees. We will use this information when it comes to
composing a questionnaire for another training.

After having the above points figured out during the first day of the training,
we have spent a half of the night before the second day to completely rework
the contents.

3 Session II: Agile

The second session was held for two full days in the same office. At the begin-
ning, the main topic was “Agile software development” and Scrum in particular.
However, the requirements were changed at the last moment, as the customer
asked to pay more attention on Kanban, since they were thinking to use it in the
future. Overall, it was clear that development team was in doubt which process
they need to follow.

3.1 Training Objectives and Process

Gathering More Data. Due to changing requirements from the company
it was clear that one of the most important demand for this training will be
identification of suitable methodology for development teams. To achieve this
goal, we decided to use a framework described in “Choose your weapon wisely”
[19]. It provides information about different trade-offs for popular development
processes:

Teaching DevOps in Corporate Environments 107

– Rational Unified Process (RUP) [3]
– Microsoft’s Sync-and-Stabilize Process (MSS) [7]
– Team Software Process (TSP) [10]
– Extreme Programming (XP) [2]
– Scrum [22]

Fig. 6. Spectrum of processes (from Rookwood [19])

Information about processes was divided in four parts:

1. Overview (short description of the process).
2. Roles (information about positions for the process).
3. Artifacts to produce (including documentation).
4. Tool support (overview of tools available on the market for using the process).

Picking the Right Process. After a brief introduction of all processes, the
development teams were asked to fill out the forms with a set of questions (see
Fig. 7). All the questions were divided on four main groups:

– Team and product size (number of engineers involved in a single development
team and product size in terms of LOC and complexity).

– Developers and organization (number of competent and experienced engi-
neers).

– Product and its types (life critical, embedded, ERP system, etc.).
– Requirements and their stability.

Three teams participated in a survey, as a result it was identified that Agile
methodologies (XP and Scrum) fit better than others for 90% of respondents.
Thus, it was decided to focus on Agile development processes – Scrum, XP and
Kanban.

108 M. Mazzara et al.

Fig. 7. Question tally sheet (from Rookwood [19])

3.2 Analysis of the Results

There is a huge difference in teaching students and mature engineers. The last
ones already have prior knowledge and their own opinion on how things should be
done. There is a common pattern in how teams are changing their development
processes.

Phase One: Waterfall. One of the biggest problems of waterfall, besides those
problems of working with emerging requirements, are “walls” between different
departments inside the organization. The Waterfall model typically does not
imply cross-functional teams, meaning that different teams work independently
from each other on different parts of the project. In such organizations it is typ-
ical to see parts of a deliverable moving between this institutional “walls”, from
department to department. For example, the analytics team collects the require-
ments, provide the specification and then pass it over to developers; developers
code it as fast as possible and pass it to testers, who have most of the problems.
The most obvious drawbacks of this approach is that testers receive one large
piece of functionality without having any strong support from developers.

Teaching DevOps in Corporate Environments 109

Phase Two: Water-Scrum-Fall. After a while the team will identify obvious
problems of waterfall model and will try to change development processes, as
agile methodologies very popular nowadays there is a big chance that the team
will choose it. However, changing the process in big organization is complicated,
and as a first result of that changes we can get water-scrum-fall model, where
the whole team will be split on three parts: managers, development and QA
teams and customer(s). This separation breaks several important rules of agile
approach. For example, estimations quite always produced by managers based
on value and money without interaction with development team, development
team do not have access to the customer, which eventually adds more bugs and
change requests.

Phase Three: Tailored Scrum with Practices from XP and Kanban.
The hardest part of changing development process is a move from second to the
third phase, and the key of success here is a strong leader of development team,
who will manage these changes and will be able to convince all team members
to follow picked processes.

4 Lesson Learned and Conclusions

Our experience thought us a few relevant lessons:

– It is important to get in advance as much information as possible about the
audience the training meant to.

– Talking directly to the relevant people, possibly technical and on-site.
– Be clear on the outcome of the training, be sure that what the audience need

and expect corresponds to what we want to present.

In our case we had limited access to the development team prior to the
training. Previous Skype calls only happened with management residing in a
different city. We were only able to collect information via a generic question-
naire on development practices. We realized that the questionnaire may have
been ambiguous in some parts, and possibly too generic. For example, we were
not prepared for the fact that more than one heterogeneous team would be
participating, which made some questions irrelevant and did not target all the
participants.

Therefore, we had to spend considerable amount of time collecting missing
information on-site about the teams participating and technologies they used. At
the end of the first day we decided to refocus our program, and the second day
was mostly related to QA practices which targeted the investigated problems
better.

This case was a reminder for us of utterly importance of collecting require-
ments and how things can be easily misunderstood or slow down if there are
any obstacles during this process. Both refocusing the topic during the DevOps
session and changing the topic for the following Agile session led us to the con-
clusion that it is not always easy to collect all required information beforehand,

110 M. Mazzara et al.

especially with limited ways and amount of time, and this information may not
always show the real problems teams are struggling with. So, the trainers them-
selves should be ready to step aside from the main topic.

References

1. Agile and DevOps: Friends or foes? https://www.atlassian.com/agile/devops.
Accessed 01 July 2018

2. Extreme programming: a gentle introduction. http://www.extremeprogramming.
org/. Accessed 01 July 2018

3. Rational unified process: overview. http://sce.uhcl.edu/helm/rationalunifiedpro
cess/. Accessed 01 July 2018

4. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective, 1st edn.
Addison-Wesley Professional, Boston (2015)

5. Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S.T., Mazzara, M.: From mono-
lithic to microservices: an experience report from the banking domain. IEEE Softw.
35(3), 50–55 (2018)

6. Bucena, I., Kirikova, M.: Simplifying the DevOps adoption process. In: Joint Pro-
ceedings of the BIR 2017 pre-BIR Forum, Workshops and Doctoral Consortium
co-located with 16th International Conference on Perspectives in Business Infor-
matics Research (BIR 2017), Copenhagen, Denmark, 28–30 August 2017 (2017)

7. Cusumano, M.A., Selby, R.W.: How microsoft builds software. Commun. ACM
40(6), 53–61 (1997)

8. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Mazzara, M.,
Meyer, B. (eds.) Present and Ulterior Software Engineering, pp. 195–216. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67425-4 12

9. Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., Safina, L.:
Microservices: how to make your application scale. In: Petrenko, A.K., Voronkov,
A. (eds.) PSI 2017. LNCS, vol. 10742, pp. 95–104. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-74313-4 8

10. Humphrey, W., Over, J.: Introduction to the Team Software Process (SM), 1st
edn. Addison-Wesley Professional, Boston (1999)

11. Jabbari, R., bin Ali, N., Petersen, K., Tanveer, B.: What is DevOps?: A system-
atic mapping study on definitions and practices. In: Proceedings of the Scientific
Workshop Proceedings of XP2016, XP 2016 Workshops, pp. 12:1–12:11. ACM,
New York (2016)

12. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Inc.,
Upper Saddle River (1997)

13. Meyer, B.: Multirequirements. In: Seyff, N., Koziolek, A. (eds.) Modelling and
Quality in Requirements Engineering (Martin Glinz Festscrhift). MV Wissenschaft
(2013)

14. Nalin, M., Baroni, I., Mazzara, M.: A holistic infrastructure to support elderlies’
independent living. In: Encyclopedia of E-Health and Telemedicine. IGI Global
(2016)

15. Naumchev, A., Meyer, B.: Complete contracts through specification drivers. In:
Proceedings - 10th International Symposium on Theoretical Aspects of Software
Engineering, TASE 2016 (2016)

16. Naumchev, A., Meyer, B.: Seamless requirements. Comput. Lang. Syst. Struct. 49,
119–132 (2017)

https://www.atlassian.com/agile/devops
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/
http://sce.uhcl.edu/helm/rationalunifiedprocess/
http://sce.uhcl.edu/helm/rationalunifiedprocess/
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8

Teaching DevOps in Corporate Environments 111

17. Naumchev, A., Meyer, B., Rivera, V.: Unifying requirements and code: an example.
In: Mazzara, M., Voronkov, A. (eds.) PSI 2015. LNCS, vol. 9609, pp. 233–244.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41579-6 18

18. Reales Mateo, P., Polo, M., Fernández-Alemán, J., Toval, A., Piattini, M.: Muta-
tion testing. IEEE Softw. 31, 30–35 (2014)

19. Rockwood, J.: Choose your weapon wisely. Carnegie Mellon University. http://gsl.
mit.edu/media/programs/mexico-summer-2014/materials/j. rockwood choose
your weapon wisely.pdf

20. Salikhov, D., Khanda, K., Gusmanov, K., Mazzara, M., Mavridis, N.: Jolie good
buildings: internet of things for smart building infrastructure supporting concur-
rent apps utilizing distributed microservices. In: Proceedings of the 1st Interna-
tional Conference on Convergent Cognitive Information Technologies, pp. 48–53
(2016)

21. Salikhov, D., Khanda, K., Gusmanov, K., Mazzara, M., Mavridis, N.: Microservice-
based IoT for smart buildings. In: Proceedings of the 31st International Confer-
ence on Advanced Information Networking and Applications Workshops (WAINA)
(2017)

22. Schwaber, K., Sutherland, J.: The Scrum guide (2001)
23. Waldén, K., Nerson, J.M.: Seamless Object-Oriented Software Architecture.

Prentice-Hall, Upper Saddle River (1995)

https://doi.org/10.1007/978-3-319-41579-6_18
http://gsl.mit.edu/media/programs/mexico-summer-2014/materials/j._rockwood_choose_your_weapon_wisely.pdf
http://gsl.mit.edu/media/programs/mexico-summer-2014/materials/j._rockwood_choose_your_weapon_wisely.pdf
http://gsl.mit.edu/media/programs/mexico-summer-2014/materials/j._rockwood_choose_your_weapon_wisely.pdf

ENACT: Development, Operation, and
Quality Assurance of Trustworthy Smart

IoT Systems

Nicolas Ferry1(B), Arnor Solberg1, Hui Song1, Stéphane Lavirotte2,
Jean-Yves Tigli2, Thierry Winter3, Victor Muntés-Mulero4, Andreas Metzger5,

Erkuden Rios Velasco6, and Amaia Castelruiz Aguirre6

1 SINTEF Digital, Oslo, Norway
{nicolas.ferry,arnor.solberg,hui.song}@sintef.no

2 Université Côte d’Azur, CNRS, I3S, Sophia Antipolis, France
{stephane.lavirotte,jean-yves.tigli}@unice.fr

3 EVIDIAN, Les Clayes-sous-Bois, France
thierry.winter@evidian.com
4 Beawre, Barcelona, Spain
victor.muntes@beawre.com

5 paluno (The Ruhr Institute for Software Technology),
University of Duisburg-Essen, Essen, Germany

andreas.metzger@paluno.uni-due.de
6 Fundación Tecnalia Research & Innovation, Derio, Spain

{erkuden.riosvelasco,amaia.castelruizaguirre}@tecnalia.com

Abstract. To unleash the full potential of IoT and flourishing innova-
tions in application domains such as eHealth or smart city, it is critical
to facilitate the creation and operation of trustworthy Smart IoT Sys-
tems (SIS). Since SIS typically operate in a changing and often unpre-
dictable environment, the ability of these systems to continuously evolve
and adapt to their new environment is decisive to ensure and increase
their trustworthiness, quality and user experience. The DevOps move-
ment advocates a set of software engineering best practices and tools,
to ensure Quality of Service whilst continuously evolving complex sys-
tems. However, there is no complete DevOps support for trustworthy SIS
today. In this paper we present a research roadmap to enable DevOps in
such systems and introduce the ENACT DevOps concepts and Frame-
work.

Keywords: Internet of Things · DevOps · Trustworthiness

1 Introduction

By 2020, Gartner envisions that 21 billion Internet-of-Things (IoT) endpoints
will be in use1, representing great business opportunities. However, complex chal-
lenges remain to be solved to efficiently exploit the full potential of the rapidly
1 http://www.gartner.com/newsroom/id/3598917.

c© Springer Nature Switzerland AG 2019
J.-M. Bruel et al. (Eds.): DEVOPS 2018, LNCS 11350, pp. 112–127, 2019.
https://doi.org/10.1007/978-3-030-06019-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_9&domain=pdf
http://www.gartner.com/newsroom/id/3598917
https://doi.org/10.1007/978-3-030-06019-0_9

ENACT: Development, Operation, and Quality Assurance 113

growing IoT infrastructure. Until now, IoT system innovations have been mainly
concerned with sensors, device management and connectivity, with the mission
to gather data for processing and analysis in the cloud in order to aggregate infor-
mation and knowledge [1]. This approach has conveyed significant added value in
many application domains, however, it does not unleash the full potential of the
IoT2. The next generation IoT systems need to perform distributed processing
and coordinated behaviour across IoT, edge and cloud infrastructures [2], man-
age the closed loop from sensing to actuation, and cope with vast heterogeneity,
scalability and dynamicity of IoT systems and their environments. Moreover, the
functioning and correctness of such systems will be critical, ranging from busi-
ness critical to safety critical. Thus, aspects related to trustworthiness such as
security, privacy, resilience and robustness, are challenging aspects of paramount
importance [1]. Therefore, the next generation of IoT systems needs to be trust-
worthy. In this paper, we will call them trustworthy smart IoT systems, or for
short; trustworthy SIS.

To realize the digital society and to flourish innovations, it is critical to
facilitate the creation and operation of trustworthy SIS. However, developing
and managing the next generation trustworthy SIS that operates in the midst of
the unpredictable physical world represents daunting challenges. For example,
to ensure that such systems always work within safe operational boundaries [3]
(e.g., controlling the impact that actuators have on the physical world) and to
manage conflicting actuation requests. Moreover, the ability of these systems
to continuously evolve and adapt to their changing environments is decisive to
ensure and increase their trustworthiness, quality and user experience.

This is at the core of the DevOps movement, which advocates a set of software
engineering best practices and tools, to ensure Quality of Service whilst contin-
uously evolving complex systems and foster agility, rapid innovation cycles, and
ease of use [4]. Therefore, DevOps has been widely adopted in the software indus-
try. However, there is no complete DevOps support for trustworthy smart IoT
systems today [3,5]. According to [5], a key reason is “because of the extremely
dynamic nature of IoT systems, it poses additional challenges, for instance, con-
tinuous debugging and testing of IoT systems can be very challenging because
of the large number of devices, dynamic topologies, unreliable connectivity, and
heterogeneous and sometimes invisible nature of the devices”. Current DevOps
solutions also lack mechanisms for continuous quality assurance [3], for example,
mechanisms to ensure end-to-end security and privacy as well as mechanisms
able to take into consideration open context and actuation conflicts (e.g., allow-
ing continuous testing of IoT systems within emulated and simulated infras-
tructures). It also remains challenging to perform continuous deployment and
evolution of IoT systems across, IoT, edge, and cloud spaces [3]. These are key
features to provide DevOps for trustworthy SIS.

In this paper we first provide a research roadmap that identifies the critical
challenges to enable DevOps in the realm of trustworthy SIS. We discuss the
related contribution of the ENACT DevOps Framework and introduce an evo-

2 https://ec.europa.eu/digital-single-market/en/internet-of-things.

https://ec.europa.eu/digital-single-market/en/internet-of-things

114 N. Ferry et al.

lution of the DevOps methods and tools to address these challenges. Finally,
we present the initial ENACT DevOps Framework as our current realization of
these methods and tools. The proposed framework will be explored and further
developed in the newly founded ENACT H2020 project that started in January
2018.

The remainder of the paper is organized as follows. Section 2 presents the
research roadmap in terms of technical challenges and state-of-the-art. Section 3
details the overall ENACT approach and illustrates how it will help addressing
these research challenges. Section 4 describes the set of enablers that forms the
core of the ENACT DevOps Framework and Sect. 5 concludes.

2 ENACT Research Roadmap

The key research question is the following: how can we tame the complexity
of developing and operating smart IoT systems, which (i) involve sensors and
actuators and (ii) need to be trustworthy?. Our approach is largely to evolve
DevOps methods and techniques as baseline to address this issue. We thus refine
the research question as follows: how can we apply and evolve the DevOps tools
and methods to facilitate the development and operation of trustworthy smart IoT
systems?. The answer to these questions form the core of the ENACT research
roadmap presented below.

ResearchChallenge 1: Support ContinuousDelivery of Trustworthy SIS

Context: Very little effort has been spent on providing solutions for the delivery
and deployment of application across the whole IoT, edge and cloud space. In
particular, there is a lack of languages and abstractions that can be used to
support the orchestration of software services and their deployment on hetero-
geneous devices [6].

State-of-the-Art: In the past years, multiple tools have emerged to support the
building as well as the automated and continuous deployment of software systems
with a specific focus on cloud infrastructures (e.g., Puppet3, Chef4, Brooklyn5,
TOSCA6, CloudMF [7], etc.). Model-Driven Engineering techniques have also
been investigated to design and reconfigure a network of resource-constrained
devices. One trend is to provide an architecture-based approach to design and
build flexible embedded systems, (e.g., the Koala model [8] and Think [9]).
Kevoree [10] relies on models at run-time to support the dynamic adaptation
of distributed cloud and cyber physical systems supporting hot deployment of
component types. The HEADS FP7 EU project proposes ThingML [6], a lan-
guage that provides a set of compilers to derive source code (e.g., Java, C/C++)
optimised for various IoT platforms.
3 https://puppet.com.
4 https://www.chef.io/.
5 https://brooklyn.apache.org/.
6 https://www.oasis-open.org/committees/tosca.

https://puppet.com
https://www.chef.io/
https://brooklyn.apache.org/
https://www.oasis-open.org/committees/tosca

ENACT: Development, Operation, and Quality Assurance 115

Research Challenge 2: Support the Agile Operation of Trustworthy SIS

Context: The operation of large-scale and highly distributed IoT systems can
easily overwhelm operation teams. Major challenges are then to improve their
efficiency and the collaboration with developer teams for rapid and agile evolu-
tion of the systems. However, there is a lack of mechanisms dedicated to smart
IoT systems able to (i) monitor their status, (ii) indicate when their behaviour
is not as expected, (iii) identify the origin of the problem, and (iv) automate
typical operation activities (See footnote 5). Furthermore, because it is impos-
sible to anticipate all the adaptations a system may face when operating in an
open context, there is an urgent need for mechanisms that will automatically
maintain the adaptation rules of a smart IoT system.

State-of-the-Art: A self-adaptive system modifies its own structure and behaviour
at run-time to respond to its perception of its environment, of itself and of its
requirements [11]. Software developers face two important challenges when build-
ing self-adaptive systems [12]. On the one hand, it is difficult or may even be
infeasible for software developers to exhaustively explore, anticipate or resolve
all possible situations that an adaptive system may encounter during its opera-
tion. On the other hand, it is difficult for software developers to determine how
a modification of the system’s structure or behaviour impacts on the satisfaction
of the system’s requirements. These two challenges make it hard to determine
the required set of system configurations a self-adaptive system needs to imple-
ment. In addition, these challenges make it hard to define which configurations
to choose in response to the anticipated situations. A self-adaptive system thus
may encounter situations that have not been fully understood or anticipated in
the software development process [13]. Should an unanticipated situation occur
at run-time, a self-adaptive system thus may wrongly reconfigure itself, (e.g., the
self-adaptive system may choose a configuration that is not able to address the sit-
uation). To attack the aforementioned problems, researchers have started apply-
ing online learning techniques to improve the way that a self-adaptive system
adapts [14,15]. Online learning means that learning is performed at run-time, tak-
ing into account observations about the actual system execution and system envi-
ronment. Online learning incrementally updates the self-adaptive system’s knowl-
edge base; e.g., its adaptation rules or the models based on which adaptation deci-
sions are made. However, so far, techniques and methodologies for self-adaptive
systems have focused on the system as the entity that may be adapted only. In the
presence of IoT actuation, a new avenue for adaptive behaviour becomes possible
that has not yet been addressed. In addition, existing online learning techniques
for self-adaptive systems do not take into account the impact of system evolu-
tion (i.e., the manual modification of the system by humans [16]). During evolu-
tion, software developers may modify the system, for instance, to correct bugs, to
remove seldom used features, or to introduce new features, thereby also changing
the possible adaptations of the system.

Identifying the root causes of faults or problems is also of major importance.
However, performing root-cause analysis in complex and dynamic IoT environ-

116 N. Ferry et al.

ments is not deeply studied in the literature. Several IoT-related problems have
been detected. For instance, Aggarwal [17] discusses challenges related to incom-
plete data transmission from sensors for Big Data analytics. Failures in fog com-
puting can be localized at sensor, network, service platform or web application
levels [18]. Some other efforts focus on the convergence of Big Data analysis
techniques and Cyber Physical Systems [19], describing a data-driven approach
to building fault tolerant control systems. However, they use highly accurate
mathematical models that do not comply with usual scalability and computa-
tional complexity in large IoT structures. Finally, recent work [20] proposes some
initial techniques to manage scalability issues for root-cause analysis in IoT and
fog environments.

Research Challenge 3: Support Continuous Quality Assurance
Strengthening Trustworthiness of SIS

Context: Ensuring quality of service is a complex task that needs to be considered
throughout the whole life-cycle of a system. This is all the more exacerbated in
the smart IoT system context where it is infeasible for developers and operators
to exhaustively explore, anticipate or resolve all possible context situations that
a system may encounter during its operation. This is due to the open context
in which these systems operate and as a result can hinder their trustworthiness.
This is particularly important when the system can have an impact on the phys-
ical world through actuators. In addition, testing, ensuring end-to-end security
as well as the robustness of such systems is challenging [5]. A major limitation
of classical quality assurance tools when applied in IoT is the lack of mecha-
nisms to include, as part of the tests, constraints related to the distribution and
infrastructure of IoT and edge computing7.

State-of-the-Art: An important aspect of trustworthiness is security and privacy.
Different works identify the diverse security and privacy threats of IoT. One
of the most prominent is the work of Open Web Application Security Project
(OWASP) that identifies the top ten most common vulnerabilities of IoT sys-
tems [21] covering the whole IoT architecture layers (from Insecure Web Interface
to Poor physical security flaws). Authors in [22] exemplify hands on the “most
severe, yet easy to abuse” IoT threats, namely: leakage of the personally identi-
fiable information (PII), leakage of sensitive user information and unauthorized
execution of functions. Cvitic et al. [23] analysed the security aspects for each
layer of the IoT architecture: the biggest security risk is at perception layer of the
IoT architecture due to the specific limitations of devices and the transmission
technology used at this layer, followed by the middleware layer based on cloud
computing and inherited vulnerabilities of that concept.

Test and validation is also an important aspect of trustworthiness. Testing
of IoT Services is currently limited to service functionality by using existing

7 http://events.windriver.com/wrcd01/wrcm/2016/08/WP-devops-in-the-internet-
of-things.pdf.

http://events.windriver.com/wrcd01/wrcm/2016/08/WP-devops-in-the-internet-of-things.pdf
http://events.windriver.com/wrcd01/wrcm/2016/08/WP-devops-in-the-internet-of-things.pdf

ENACT: Development, Operation, and Quality Assurance 117

software testing tools (e.g., Katalon Studio8, HP Unified Functional Testing9 or
CA Technologies Application Test10), which are prepared to verify automatically
that the service provides an expected answer for a set of specified and known sce-
narios as well as testing the communication integrity between different devices.
Nevertheless, IoT deployment is heavily impacted by the underlying hardware
specification, capabilities, availability and changes in the physical environment,
typically not considered by current testing tools. The lack of tools for systemat-
ically testing IoT services in different large-scale, heterogeneous, physical envi-
ronments is a research challenge [24]. Real-Time Operating Systems (RTOS)
provide a virtual environment in which developers can test their solutions and
deploy the software to the physical device which has the same RTOS installed.
Several RTOS are available in the market11, selecting RTOS is largely based
on the set of supported devices. Current combination of RTOS and other IoT
middleware are not capable of scaling up to large-scale deployments due to the
limited computation resources of centralized emulations. In the literature, there
are simulation strategies to approximate IoT behaviour thanks to parallel and
distributed computation [25] and multi-level simulation [26]. Several companies
started offering their own infrastructure of IoT devices to test applications within
a predefined set of popular IoT devices12. Although this partially solves the issue
of obtaining data from the physical world and provides testing on real devices,
availability of these testing services is significantly impacted by the demand for
these services and tests are limited to the currently deployed devices and their
location with no option to scale or make changes on the devices. Recent efforts
focus on producing self-learning IoT virtualizers to facilitate testing in IoT envi-
ronments13.

Research Challenge 4: Leverage the Capabilities of Existing IoT Plat-
forms and Fully Exploit Legacy, Proprietary and Off-the-Shelf Soft-
ware Components and Devices

Context: Real IoT systems are never developed from scratch: they build upon
off-the-shelf components as well as legacy sub-systems and they can rely on the
wide range of IoT platforms that have been developed over the past decade.
The large number of IoT platforms available today is not only accidental, it
reflects that different IoT systems or even different parts of a single IoT system
have different requirements in terms of device management, integration, security,
protocols, analytics, visualisation, etc.

8 https://www.katalon.com.
9 https://saas.hpe.com/en-us/software/uft.

10 https://www.ca.com/us/products/ca-application-test.html.
11 FreeRTOS: http://www.freertos.org/index.html, RIoT OS: https://www.riot-os.

org/, ERIKA Enterprise: http://erika.tuxfamily.org/drupal/.
12 FIT IoT-lab: https://www.iot-lab.info/, IoT lab: http://www.iotinnovationlab.

com/, JOSE: https://www.nict.go.jp/en/nrh/nwgn/jose.html, FIESTA-IoT: http://
fiesta-iot.eu/.

13 https://knowthings.io.

https://www.katalon.com
https://saas.hpe.com/en-us/software/uft
https://www.ca.com/us/products/ca-application-test.html
http://www.freertos.org/index.html
https://www.riot-os.org/
https://www.riot-os.org/
http://erika.tuxfamily.org/drupal/
https://www.iot-lab.info/
http://www.iotinnovationlab.com/
http://www.iotinnovationlab.com/
https://www.nict.go.jp/en/nrh/nwgn/jose.html
http://fiesta-iot.eu/
http://fiesta-iot.eu/
https://knowthings.io

118 N. Ferry et al.

State-of-the-Art: There are hundreds of IoT platforms available14 among which
a vast majority are proprietary and closed solutions. There are also more open
solutions such as the European SOFIA15, FIWARE16 and CRYSTAL17 plat-
forms. The SOFIA open source IoT platform was designed to facilitate systems
interoperability aiming at promoting new services and applications, specially
focusing on smart scenarios. SOFIA is a platform providing physical world infor-
mation to intelligent services, thus, enabling interoperability among distinct sec-
tors, systems and devices. SOFIA is open-source, multi-platform, multi-language
and communication-agnostic. The FIWARE middleware IoT platform is a cloud-
based infrastructure that aims at providing a cost-effective creation and delivery
of Future Internet applications and services using public APIs to facilitate the
application development in many sectors, along with public reference implemen-
tations for each component. FIWARE has a dynamic ecosystem providing assets
such as a public sandbox for testing purposes or a network of hubs. CRYSTAL
defines a Reference Technology Platform that provides a common ground for
integrating lifecycle and engineering tools across different engineering disciplines
and from multiple stakeholders involved in the development of large scale safety-
critical systems. Crystal bases its entire strategy on the use of the emerging open
standard OSLC (Open Services for Lifecycle Collaboration) as a standard for
the Interoperability Specifications (IOS) in order to achieve common tool and
data interoperability in heterogeneous systems engineering development envi-
ronments.

In the following section we details the overall ENACT approach and contri-
butions to support the DevOps for trustworthy SIS.

3 ENACT Approach

The overall ENACT approach is to deliver novel IoT platform enablers to:

1. Enable DevOps in the realm of trustworthy smart IoT systems, and enrich it
with novel concepts for end-to-end security and privacy, resilience and robust-
ness strengthening trustworthiness, taking into account the challenges related
to “collaborative” actuation and actuation conflicts identification and man-
agement.

2. Facilitate the smooth integration of these to leverage DevOps for existing and
new IoT platforms and approaches. The ENACT enablers represent novel
concepts realised as open software engineering methods and tools.

In the following we summarize the key contribution of the ENACT Frame-
work to the research challenges introduced in Sect. 2.

14 https://iot-analytics.com/current-state-of-iot-platforms-2016/.
15 https://about.sofia2.com/category/idiomas/en/page/3/.
16 https://www.fiware.org/about-us/.
17 http://www.crystal-artemis.eu.

https://iot-analytics.com/current-state-of-iot-platforms-2016/
https://about.sofia2.com/category/idiomas/en/page/3/
https://www.fiware.org/about-us/
http://www.crystal-artemis.eu

ENACT: Development, Operation, and Quality Assurance 119

Contribution to Research Challenge 1: To reduce delivery time and to foster con-
tinuous evolution of trustworthy SIS, the ENACT DevOps Framework will pro-
vide automation to close the gap between development and operation activities
following the philosophy of DevOps [4], and foster the continuous creation, evo-
lution, and deployment of trustworthy SIS. In particular, the ENACT DevOps
Framework will deliver enablers to accomplish orchestration of sensors, actua-
tors, software services and topology configurations, and support the automatic
testing and deployment of this orchestration across the IoT, edge and cloud
space.

Contribution to Research Challenge 2: The ENACT DevOps Framework will
facilitate the operations of SIS in a trustworthy and agile fashion. To efficiently
maintain and evolve the system according to system requirements, the ENACT
DevOps Framework will provide and exploit online learning mechanisms (e.g.,
extending the ones proposed in [15]). This will allow dynamic self-improvement
of the adaptation mechanisms of the SIS, thereby taking into account itselfcon-
text changes and behavioural drift. To ensure the trustworthy operation of smart
applications and in particular the proper actuation on the physical environment,
the ENACT DevOps Framework will provide enablers to analyse which actions
are permissible in the given run-time context, thereby avoiding potential con-
flicting actuations and adaptations. Moreover, the ENACT DevOps Framework
will enable root cause analysis and prediction in smart IoT systems with respect
to trustworthiness, QoS requirements and SLAs.

Contribution to Research Challenge 3: To strengthen trustworthiness, the
ENACT DevOps Framework will provide a set of coherent enablers to: (i) con-
tinuously validate and test the proper system design and operation; (ii) control
and adapt the system structure, behavior and infrastructure including operation-
time monitoring of the system and its underlying infrastructure (i.e., nodes,
devices, virtual machines, software stack, location and ownership of nodes, etc.);
(iii) enhance robustness and resilience of smart IoT applications; (iv) provide
new context-aware security and privacy mechanisms for end-to-end security and
privacy across IoT, fog, and cloud infrastructures, integrating not only smart
preventive security mechanisms but also reactive security measures; and (v) a
novel risk-driven management support system that allow identifying threats and
supports humans in the selection of device and service features that are impor-
tant to adhere to specific security, location and QoS requirements. Because smart
applications may involve actuators that can have direct impact on the physical
world, special attention will be given to ensure the consistency of the different
actuation behaviours and the management of intelligent behaviour also at the
edge and IoT end.

Contribution to Research Challenge 4: The ENACT DevOps Framework will
provide the missing links to implement a DevOps software process for IoT sys-
tems. The core of the ENACT enabler will be kept independent from the under-
lying implementation choices (i.e., programming languages, libraries, IoT plat-

120 N. Ferry et al.

Risk-Driven
Design Planning

Language to specify
Devices behavior

& security behavior

Automated deployment
of Smart IoT systems

and security mechanisms

Simulation and Test environment for
Smart IoT applications.

Simulate and test security mechanisms.

Security, robustness and context monitoring
and root-cause analysis

Dynamic adaptation
in open contexts

& actuation conflicts
handling

Secure and context-
aware orchestration
of sensors, actuators

and software services.
Actuation conflict

identification

Fig. 1. ENACT support of DevOps for trustworthy smart IoT systems

form, protocols, devices, etc.). A documented plug-in mechanism will allow to
specialize the ENACT enablers to exploit the underlying platform for the imple-
mentation of continuous integration, deployment, dynamic adaptation, testing,
usage analytics, etc. In the ENACT Framework, plugins for various IoT plat-
forms such as SOFIA, FIWARE and TelluCloud will be developed. Targeting
SOFIA and FIWARE ensures the broad applicability of ENACT. TelluCloud
allow for the validation of the plug-in mechanism on a proprietary platform.
The ENACT approach and enablers have to take advantage of existing compo-
nents as well as allow choosing the best suited IoT platforms for the task. That
includes both platforms available today and future ones.

3.1 DevOps Life-Cycle of SIS

The ENACT DevOps approach is to evolve DevOps methods and techniques to
support the development and operation of smart IoT systems, which (i) involve
sensors and actuators and (ii) need to be trustworthy.

DevOps practices aim to ensure a rapid and efficient value delivery to market.
DevOps ideas promote a tight collaboration between the developers (Dev) and
the teams that deploy and operate the software systems (Ops). DevOps seeks to
decrease the gap between a product design and its operation by introducing soft-
ware design and development practices and approaches to the operation domain
and vice versa. In the core of DevOps there is automation and continuous pro-
cesses supported by different tools at various stages of the product life-cycle.
In particular, the ENACT DevOps Framework will support the DevOps prac-
tices during the development and operation of trustworthy smart IoT systems
and provide innovations and enablers that will feature trustworthy IoT systems
related to seven stages of the process as depicted in Fig. 1.

Plan: The ENACT approach is to support the planning of IoT systems develop-
ment cycles as well as the smooth transition towards the code stage, introducing

ENACT: Development, Operation, and Quality Assurance 121

a new enabler for risk-driven and context-aware selection of the most relevant
and trustworthy devices and services to be used in the future stages. (Research
Challenge 1)

Code: The ENACT approach is to leverage the model-driven engineering app-
roach and in particular evolve recent advances of the ThingML [6] language and
generators to support modelling of system behaviours and automatic derivation
across vastly heterogeneous and distributed devices at the IoT and edge end.
(Research Challenge 1)

Build and Deploy: The ENACT approach is to provide a new deployment
modelling language to specify trustworthy and secure orchestrations of sensors,
actuators and software components, along with the mechanisms to identify and
handle potential actuation conflicts at the model level. The deployment engine
will automatically collect the required software components and integrate the
evolution of the system into the run-time environment across the whole IoT,
edge and cloud space. (Research Challenge 1 & 2)

Test: Targeting the constraints related to the distribution and infrastructure
of IoT systems, ENACT enablers will allow continuous testing of smart IoT
systems in an environment capable of emulating and simulating IoT and edge
infrastructures. This system will also be able to simulate some basic attacks or
security threats. (Research Challenges 1 & 3)

Operate: The ENACT approach is to provide enablers for the automatic adap-
tation of IoT systems based on their run-time context, reinforced by online
learning. Such automatic adaptation will address the issue that the manage-
ment complexity of open-context IoT systems exceeds the capacity of human
operation teams, and by this, improve the trustworthiness of the smart IoT
system execution. (Research Challenge 2)

Monitor: The ENACT approach is to deliver innovative mechanisms to observe
the status and behaviour of the running IoT systems for quality assurance
and root cause analysis, and support the testing of these systems at run-time.
(Research Challenge 2)

In addition to the DevOps related contributions identified above, the ENACT
DevOps Framework will provide specific cross-cutting innovations related to
trustworthiness, which can be seamlessly applied, in particular based on the
following ENACT concepts:

Resilience and Robustness: The ENACT approach is to provide novel solu-
tions to make the smart IoT systems resilient by providing enablers for diver-
sifying IoT service implementations, and deployment topologies (e.g., implying
that instance of a service can have a different implementation and operate differ-
ently, still ensuring consistent and predictable global behavior). This will lower
the risk for privacy and security breaches and significantly reduced impact in
case of cyber-attack infringes. (Research Challenge 3)

Security, Privacy and Identity Management: The ENACT approach is
to provide support to ensure end-to-end security of trustworthy SIS. This does

122 N. Ferry et al.

Fig. 2. The ENACT Framework architecture

not only include smart preventive security mechanisms but also the continuous
monitoring of (i) security metrics and (ii) the context with the objective to
trigger reactive security measures. (Research Challenge 3)

In the following section we present the design of the ENACT DevOps Frame-
work that will support the DevOps life-cycle of trustworthy smart IoT systems.

4 The ENACT DevOps Framework

The current initial ENACT DevOps Framework is designed as depicted in Fig. 2
and consists of some experimental prototypes of the enablers. This section
describes the design of the ENACT DevOps Framework.

The ENACT DevOps Framework is designed as a set of loosely coupled
enablers that can be easily integrated with existing IoT platforms via a plug
in mechanism. The ENACT enablers are categorized in three groups as follows:
(i) the toolkit for the continuous delivery of smart IoT systems, (ii) the toolkit
for the agile operation of smart IoT systems, and (iii) the ENACT facilities for
trustworthiness. The set of enablers can be seamlessly combined and they can
easily integrate with existing IoT platform services and enablers.

4.1 ENACT Continuous Delivery Toolkit

The designed ENACT DevOps Framework includes two enablers that improve
the continuous delivery of smart IoT systems, with a specific focus on (i) agile
and continuous evolution and (ii) early-detection of issues in the software devel-
opment process. A particular concern is to support the testing of smart IoT
systems and the gradual migration from the test to the operation environment.

ENACT: Development, Operation, and Quality Assurance 123

Orchestration and Continuous Deployment Enabler: This ENACT enabler aims
to facilitate the engineering and continuous deployment of smart IoT systems,
allowing decentralized processing across the heterogeneous IoT, edge and cloud
space. Specifically, a domain-specific modelling language facilitates the design
of smart IoT systems by supporting the modelling derivation and orchestration
of trustworthy IoT, edge and cloud services that are enabled for context-aware
and risk-driven assimilation of the most proper mechanisms for trustworthy exe-
cution. The language is designed to come with an execution engine that will
support the automatic deployment of software components over IoT, edge and
cloud resources, building on work providing a multicloud deployment engine [7].
The enabler is designed to leverage recent techniques for ensuring the proper
isolation of each individual service (i.e., containerization using technologies such
as Docker18, rkt19, or Triton20). In addition, it embeds mechanisms to identify
actuation conflicts (i.e., conflicts related to concurrent access to a same actuator
or due to conflicting modifications of the environment - e.g., opening the win-
dows may conflict with the action of turning off the heating system in order to
regulate the temperature) and to generate and deploy the respective controller
(i.e., software components whose role is to manage access to the actuators).

Test, Emulation and Simulation Enabler: IoT systems need to cope with the
uncertainty related to the physical world (e.g., communication links may fail,
nodes may run out of battery, etc.). The delivery model advocated to manage
this uncertainty should provide proper support to assess the system’s behaviour
and trustworthiness early in the life cycle. ENACT will deliver an enabler to
test smart IoT systems that includes simulation and emulation of IoT services
and devices. In particular, a hardware abstraction layer (HAL) will be in charge
of offering physical resources and sensors as software services. In addition, this
enabler may be based on self-learning IoT virtualizers to automatically model
IoT elements and facilitate testing. Finally, this system will also be able to
simulate some basic attacks or security threats.

4.2 ENACT Agile Operation Toolkit

We have designed three innovative enablers to significantly reduce the burden
of managing and maintaining smart IoT systems. Key requirements are (i) to
ensure the trustworthiness of such systems under operation and (ii) to automate
operation activities as much as possible.

Context-Aware Self-adaptation Enabler: Because anticipating all possible con-
text situations that smart IoT systems may encounter during its operation is not
possible, it is difficult for software developers to determine how a run-time adap-
tation of the system may impact the satisfaction of the system behaviour and

18 https://www.docker.com.
19 https://coreos.com/rkt.
20 https://docs.joyent.com/public-cloud.

https://www.docker.com
https://coreos.com/rkt
https://docs.joyent.com/public-cloud

124 N. Ferry et al.

of the interactions with the environment. To address this challenge, this enabler
is designed to apply online learning techniques to improve the way a smart IoT
system adapts during its operation. Online learning means that learning is per-
formed at run-time, taking into account observations about the actual system
execution and system context. Online learning incrementally updates the smart
IoT system’s knowledge base; e.g., its adaptation rules or the models based on
which adaptation decisions are made.

Root Cause Analysis Enabler: This enabler offers a resilient root cause analysis
system, which is designed to leverage edge infrastructures to perform diagnos-
tics on a segregated part of the system without connectivity to a centralized
diagnostic module or service. With the system behaviour models created for this
analysis, this enabler is able to predict future states of the system and provide
warnings and recommendations.

Context Monitoring and Actuation Conflict Management Enabler: Because of
the uncertain, dynamic, and partially known nature of the physical environment,
it is very difficult or even illusory to assess at run- time the conformity of the
effects of actions in this environment with deterministic models. This enabler is
designed to provide a set of observers to monitor the behavioural drift of smart
IoT systems that may arise when operating in such open context. In addition,
it is designed to exploit the computed drift measure to dynamically adjust the
behaviour of the system. This enabler relies on the finite state machines com-
position theory and model checking tools. By means of deterministic models of
the devices, their physical context along with some predefined constraints, a set
of device controllers (i.e., software components whose role is to manage access
to the actuators) will be generated at design-time and deployed to prevent con-
flicting and antagonist actions that may occur at run-time.

4.3 ENACT Trustworthiness Toolkit

The ENACT DevOps Framework will deliver a set of enablers addressing spe-
cific crosscutting trustworthiness concerns such as ensuring proper robustness,
security and privacy of smart IoT systems.

Robustness and Resilience Enabler: Recent multidisciplinary research on soft-
ware engineering and ecology suggests that a promising way to approach
resilience in software systems is to diversify software, and system topology [27],
implying that each instance of a service has a different implementation and
operates differently, still ensuring that its global behaviour is consistent and pre-
dictable. Thus, instead of exposing the very same code and topology in millions
of instances, each individual instance can be unique, making the overall system
more resilient. Currently, the digitalisation is typically based on commonalities
and replications, which can have some severe implications. For example, if a
system can break into one “keyless” car, it allows to steal any car that uses
the same “keyless” system [28]. This ENACT enabler is inspired from nature

ENACT: Development, Operation, and Quality Assurance 125

where diversity has been a key mechanism for resilience for all forms of life, by
enabling them to adapt to changes in the environmental conditions and evolve
immunity to perturbations. This enabler is designed to automate the introduc-
tion and management of diversity in smart IoT systems and builds on recent
research developed in particular [29].

Risk Management Enabler: This enabler is designed to provide a risk-driven
guidance to architects, developers, feasibility study engineers and other poten-
tial stakeholders to design the architecture of their IoT systems and thus support
them in the selection of devices, IoT services and mechanisms to ensure trustwor-
thy execution of IoT systems. This is achieved by detecting potential vulnerabil-
ities affecting one or more devices and analyzing trade-off between security and
trustworthiness level offered by the devices and services, risk and quality impact.
This service can be integrated with the ENACT Continuous Delivery Toolkit, to
allow its exploitation in an iterative design process for rapid software evolution.
The MODAClouds21 and MUSA22 Decision Support Systems will serve as base-
line and be extended in ENACT with specific focus on (i) the IoT domain and
(ii) trustworthiness mechanisms. We will also study the potential impact that
the late detection of these risks may have in the software development process
planning.

Security and Privacy Monitoring and Control Enabler: This enabler will provide
mechanisms to monitor end-to-end the security, privacy of a smart IoT system.
A set of relevant metrics will be defined and notifications will be raised when the
monitored metrics deviated from the normal (i.e., risk under control) behaviour.
This enabler will include mechanisms and tools to support the user data aware-
ness and control in the form of intelligent notification able to provide insights
on what is actually the security issue in the IoT environment. We will leverage
open source solutions, particularly for network and system levels monitoring,
while new innovative solutions will be developed for the application level secu-
rity and privacy assessment. Finally, this enabler will provide mechanisms for
controlling the security, privacy and trustworthiness behaviour of smart IoT sys-
tems. This includes the early reaction models and mechanisms that address the
adaptation and recovery of the IoT application operation in case the monitored
metrics deviated from the expected behaviour. A specific focus will be given to
the confidentiality and integrity of data and services via end-to-end Context-
based Access control and authorization mechanisms for smart IoT systems. This
includes the early reaction models and mechanisms that address the adaptation
and recovery of the IoT application operation on the basis of the application
context. Today, no protocol can deliver dynamic authorization based on con-
text for both IT and OT (operational technologies) domains. This work will
advance state-of-the art mechanisms and leverage on Evidian’s IoT access control
solutions.

21 http://www.modaclouds.eu.
22 http://www.musa-project.eu.

http://www.modaclouds.eu
http://www.musa-project.eu

126 N. Ferry et al.

5 Conclusion

We presented a set of challenges related to the development, operation, and qual-
ity assurance of trustworthy smart IoT systems that need to be distributed across
IoT, edge and cloud infrastructures and involve both sensors and actuators. The
ENACT DevOps Framework will offer a set of novel solutions to address these
challenges. Most of these enablers will be delivered as open source artefacts.

References

1. IEC: IoT 2020: Smart and secure IoT platform. IEC white paper (2016)
2. NESSI: Cyber physical systems: Opportunities and challenges for software, ser-

vices, cloud and data. NESSI white paper (2015)
3. NESSI: SOFTWARE CONTINUUM: Recommendations for ICTWork Programme

2018+. NESSI report (2016)
4. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation. Addison-Wesley Professional, Boston
(2010)

5. Taivalsaari, A., Mikkonen, T.: A roadmap to the programmable world: software
challenges in the IoT era. IEEE Softw. 34(1), 72–80 (2017)

6. Morin, B., Fleurey, F., Husa, K.E., Barais, O.: A generative middleware for het-
erogeneous and distributed services. In: 19th International ACM SIGSOFT Sym-
posium on Component-Based Software Engineering (CBSE), pp. 107–116. IEEE
(2016)

7. Ferry, N., Song, H., Rossini, A., Chauvel, F., Solberg, A.: CloudMF: applying MDE
to tame the complexity of managing multi-cloud applications. In: IEEE/ACM 7th
International Conference on Utility and Cloud Computing (UCC), pp. 269–277.
IEEE (2014)

8. Van Ommering, R., Van Der Linden, F., Kramer, J., Magee, J.: The koala compo-
nent model for consumer electronics software. Computer 33(3), 78–85 (2000)

9. Fassino, J.P., Stefani, J.B., Lawall, J.L., Muller, G.: Think: a software framework
for component-based operating system kernels. In: USENIX Annual Technical Con-
ference, General Track, pp. 73–86 (2002)

10. Fouquet, F., Morin, B., Fleurey, F., Barais, O., Plouzeau, N., Jezequel, J.M.: A
dynamic component model for cyber physical systems. In: Proceedings of the 15th
ACM SIGSOFT Symposium on Component Based Software Engineering, pp. 135–
144. ACM (2012)

11. De Lemos, R., et al.: Software engineering for self-adaptive systems: a second
research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.)
Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 1–32.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5 1

12. Esfahani, N., Kouroshfar, E., Malek, S.: Taming uncertainty in self-adaptive soft-
ware. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th Euro-
pean Conference on Foundations of Software Engineering, pp. 234–244. ACM
(2011)

13. Fredericks, E.M., DeVries, B., Cheng, B.H.: AutoRELAX: automatically RELAX-
ing a goal model to address uncertainty. Empirical Softw. Eng. 19(5), 1466–1501
(2014)

https://doi.org/10.1007/978-3-642-35813-5_1

ENACT: Development, Operation, and Quality Assurance 127

14. Esfahani, N., Elkhodary, A., Malek, S.: A learning-based framework for engineering
feature-oriented self-adaptive software systems. IEEE Trans. Softw. Eng. 39(11),
1467–1493 (2013)

15. Sharifloo, A.M., Metzger, A., Quinton, C., Baresi, L., Pohl, K.: Learning and evo-
lution in dynamic software product lines. In: Proceedings of the 11th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp.
158–164. ACM (2016)

16. Metzger, A., Di Nitto, E.: Addressing highly dynamic changes in service-oriented
systems: towards agile evolution and adaptation. In: Software Design and Devel-
opment: Concepts, Methodologies, Tools, and Applications, p. 164 (2013)

17. Aggarwal, C.C.: Managing and Mining Sensor Data. Springer, New York (2013).
https://doi.org/10.1007/978-1-4614-6309-2

18. Dastjerdi, A.V., Gupta, H., Calheiros, R.N., Ghosh, S.K., Buyya, R.: Fog comput-
ing: principles, architectures, and applications. arXiv preprint arXiv:1601.02752
(2016)

19. Niggemann, O., Biswas, G., Kinnebrew, J.S., Khorasgani, H., Volgmann, S., Bunte,
A.: Data-driven monitoring of cyber-physical systems leveraging on big data and
the internet-of-things for diagnosis and control. In: DX@ Safeprocess, pp. 185–192
(2015)

20. Zasadziński, M., Muntés-Mulero, V., Solé, M., Carrera, D.: Fast root cause analysis
on distributed systems by composing precompiled Bayesian networks. In: Proceed-
ings of World Congress on Engineering and Computer Science, vol. 1, pp. 464–469
(2016)

21. OWASP: Internet of Things Top Ten. Technical report (2014)
22. Kolias, C., Stavrou, A., Voas, J., Bojanova, I., Kuhn, R.: Learning internet-of-

things security “hands-on”. IEEE Secur. Priv. 14(1), 37–46 (2016)
23. Cvitić, I., Vujić, M., Husnjak, S.: Classification of security risks in the IoT envi-

ronment. In: 26th International DAAAM Symposium on Intelligent Manufacturing
and Automation, pp. 731–740 (2016)

24. Kecskemeti, G., Casale, G., Jha, D.N., Lyon, J., Ranjan, R.: Modelling and simu-
lation challenges in internet of things. IEEE Cloud Comput. 4(1), 62–69 (2017)

25. D’Angelo, G., Ferretti, S., Ghini, V.: Simulation of the internet of things. In: 2016
International Conference on High Performance Computing & Simulation (HPCS),
pp. 1–8. IEEE (2016)

26. D’Angelo, G., Ferretti, S., Ghini, V.: Multi-level simulation of internet of things
on smart territories. Simul. Model. Pract. Theory 73, 3–21 (2017)

27. Allier, S., et al.: Multitier diversification in web-based software applications. IEEE
Softw. 32(1), 83–90 (2015)

28. Verdult, R., Garcia, F.D., Ege, B.: Dismantling megamos crypto: wirelessly lock-
picking a vehicle immobilizer. In: USENIX Security Symposium, pp. 703–718
(2013)

29. Baudry, B., Monperrus, M., Mony, C., Chauvel, F., Fleurey, F., Clarke, S.: DIVER-
SIFY: ecology-inspired software evolution for diversity emergence. In: Proceed-
ings of the International Conference on Software Maintenance and Reengineering
(CSMR), Belgium, pp. 444–447 (2014)

https://doi.org/10.1007/978-1-4614-6309-2
http://arxiv.org/abs/1601.02752

From Monolith to Microservices:
A Classification of Refactoring Approaches

Jonas Fritzsch1(&), Justus Bogner2, Alfred Zimmermann2,
and Stefan Wagner1

1 Institute of Software Technology, University of Stuttgart, Stuttgart, Germany
{jonas.fritzsch,

stefan.wagner}@informatik.uni-stuttgart.de
2 Reutlingen University of Applied Sciences, Reutlingen, Germany

{justus.bogner,

alfred.zimmermann}@reutlingen-university.de

Abstract. While the recently emerged Microservices architectural style is
widely discussed in literature, it is difficult to find clear guidance on the process
of refactoring legacy applications. The importance of the topic is underpinned
by high costs and effort of a refactoring process which has several other
implications, e.g. overall processes (DevOps) and team structure. Software
architects facing this challenge are in need of selecting an appropriate strategy
and refactoring technique. One of the most discussed aspects in this context is
finding the right service granularity to fully leverage the advantages of a
Microservices architecture. This study first discusses the notion of architectural
refactoring and subsequently compares 10 existing refactoring approaches
recently proposed in academic literature. The approaches are classified by the
underlying decomposition technique and visually presented in the form of a
decision guide for quick reference. The review yielded a variety of strategies to
break down a monolithic application into independent services. With one
exception, most approaches are only applicable under certain conditions. Further
concerns are the significant amount of input data some approaches require as
well as limited or prototypical tool support.

Keywords: Microservices � Monolith � Modernization � Refactoring �
Cloud � Decomposition � Transformation � Modularization �
Software architecture

1 Introduction

An increased tendency by organizations to move existing enterprise-scale applications
to the cloud can be observed. The reasons to do so are manifold: high availability and
redundancy, automatic scaling, easier infrastructure management and compliance with
latest security standards ensure a more agile and combined flow of development and
operation, also referred to as DevOps [5]. Driven by this new paradigm, the design,
build, deployment and maintenance of business applications has fundamentally chan-
ged. To overcome this gap and make existing monolithic applications “cloud-ready”,

© Springer Nature Switzerland AG 2019
J.-M. Bruel et al. (Eds.): DEVOPS 2018, LNCS 11350, pp. 128–141, 2019.
https://doi.org/10.1007/978-3-030-06019-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-06019-0_10

they need to run as flexible, loosely-coupled compositions of specialized services,
which lately emerged as the Microservices architecture style.

Monolithic applications that have grown over years can become large, complex and
in later stages even fossilize [39], meaning the accumulated technical debt results in
obscure structures that make the product unmaintainable with a reasonable effort. Even
in earlier stages, a single developer or even architect is unable to keep detailed insight
into all components and their interfaces. This makes the monolith hard to maintain and
cumbersome with regards to adapting newer and better technologies. Furthermore, the
effort for changing initial design choices later on requires immense effort. Besides,
monolithic applications are often incapable to scale on the module level, but rather per
duplicating instances of the whole application. This is in most cases an inefficient
approach in responding to quickly changing workloads while maintaining optimal
resource utilization.

A new architectural style, referred to as Microservices, promises to address these
issues. It started as a trend in software engineering industry practice which was first
described in detail by Lewis and Fowler [25]. Contextually related modules have to be
identified and encapsulated into a service, providing high cohesion inwards and loose
coupling outwards. To leverage most from the design, functionality has to be split up
with appropriate granularity. However, building a new application from scratch based
on a Microservices architecture can be a very expensive and time-consuming task. On
the other hand, the process of refactoring a mature monolithic application into
Microservices can be a long-lasting endeavor too, depending on the condition of the
system in place.

This study aims to fill the gap in scientific research by comparing and classifying
refactoring approaches proposed in academic literature. The results can help architects
and developers to gain an overview of currently available refactoring approaches and
hereby facilitate their specific transformation process. Researchers may profit from the
findings through quickly understanding the current state of the field. The key objective
of the study design is formulated as a research question:

RQ: What are existing architectural refactoring approaches in the context of decom-
posing a monolithic application architecture into Microservices and how can they be
classified with regards to the techniques and strategies used?

2 Architectural Refactoring and Decomposition

Refactoring as an activity to extend the lifetime of existing software products is a
behavior preserving code transformation to improve the source code that structurally
deteriorated over time [30] or accumulated technical debt [39]. According to Pirkel-
bauer [33], agile software development methodologies benefit in particular due to
frequent changes. Plenty of research has been conducted in this area already, which
mainly targets refactoring at source code level. Fowler et al. consolidated the field in
their well-known book “Improving the design of Existing Code, more than 70 Patterns
explained” [15]. Dietrich distinguishes code-level from architectural refactoring by
referring to the latter ones as high-impact refactorings [11]. They can be seen as

From Monolith to Microservices 129

architectural activities that remove a particular architectural smell while improving one
or more quality attributes, without changing the system’s scope and functionality [41].
Moreover, it may result in an altered organizational structure [35], which is an inter-
esting aspect: According to Conway’s Law [10], organizations tend to produce system
designs that reflect the organization’s communication structures [23, 38]. Conse-
quently, architecture and organization are interdependent to some degree, which fur-
thermore distinguishes the process from pure code refactoring. Drivers for a refactoring
are feature extensions and design changes [33], but also anti-patterns [8] and code
smells [15], whereas such high-impact refactorings are rather driven by requirements to
run software in the cloud (platform changes, deployment and release cycle changes) as
well as interconnected organizational changes. In contrast to code-level refactoring,
architectural refactoring is common in the context of adopting Microservices.

From a software architects’ perspective, a proper decomposition into services with
the appropriate granularity can be seen as the main challenge in a refactoring process:
In general, one could imagine various ways to split a system into smaller parts.
Amundsen [2] outlines a few of them, e.g. based on implementation technology
(computationally heavy services written in C may be separated from chatty components
using Node.js) or based on geography (also specific legal, commercial or cultural
aspects). Besides them, one could think of even other viewpoints, like the architectural
style, certain non-functional requirements, personal experiences or education. The
characteristics of Microservices promote following the functional decomposition per-
spective [37]. In this context it is referred to as decomposition around business capa-
bilities. Dependencies throughout the technical layers are hereby greatly reduced,
whereas a rather lightweight integration layer on top is a common solution to integrate
the resulting Microservices [26].

So, what are the means to identify business capabilities in a monolith? Lewis and
Fowler [25] bring the notion of a bounded context into effect. It originates from Evans
book Domain-Driven Design [13], which provides the means to identify such contexts
within a complex domain [25]. According to Richardson, bounded contexts can be
separated through decomposing by verbs (use cases) or by nouns (resources) [36].
Newman stresses the term seam from Michael Feathers book “Working Effectively
with Legacy Code” [14]. It similarly describes a way to separate portions of code that
can be treated independently from other parts and hereby obtain “loosely coupled and
strongly cohesive” [29] Microservices. In practice, the lack of a universally valid
algorithm that guides the decomposition process makes it to “somewhat of an art”, as
Richardson points out [74]. Extracting a domain model from an application’s code base
can be a significant challenge. If incorrectly applied, it can lead to architectures that
combine the drawbacks of both styles, Monolith and Microservices.

3 Related Work

Our literature review has revealed a lack of systematic guidance on the refactoring
process for existing monolithic applications. Several publications discussing
Microservices also cover the aspect of migrating monoliths to Microservice-based
architectures to some extent [22, 25, 29, 36], but the topic is still evolving.

130 J. Fritzsch et al.

A systematic mapping study conducted in 2016 identified 3 out of 21 studies dealing
with migration topics [31], while Di Francesco et al. found 16 out of 71 migration-
related studies during their review in 2017 [16]. The papers found were mainly solution
proposals, followed by experience reports and opinion papers. The field is not mature
yet, Microservices migration and architectural refactoring are still referred to as future
trends [31]. The very recent and comprehensive study by Balalaie et al. compiles a set
of empirically identified design patterns for Microservices migration and rearchitecting
[3]. The patterns originate from observations of medium to large-scale industrial pro-
jects. Compared to our work, the concepts are presented on a higher level of abstraction
and do not cover specifics of concrete approaches proposed in literature. Still, the study
complements our work in terms of empirical values. Widening the scope to Service-
based Systems in general, there is a mature state of research regarding Service-Oriented
Architecture (SOA). According to Bogner et al. [6], Microservices and SOA “share a
large set of design-related commonalities”. Klose et al. for instance discuss the iden-
tification of services for SOA development from a business point of view [21].
Although the suitability for Microservices may be limited due to the differences of the
architectural styles, the included comparison of approaches regarding service identi-
fication mark a decent overview at that time. To the best of our knowledge, there is
currently no holistic literature review of refactoring approaches and decomposition
techniques available that facilitates this process. Our study attempts to fill this research
gap.

4 Research Method and Search Strategy

By means of a literature review, existing refactoring techniques in the Microservices
context are identified, investigated, classified and presented in textual and visual form.
Brereton et al. propose a three-step review process that serves as a basic structure for
this review: planning, conducting, and documenting [7]. Fundamental constraints of a
literature review are the databases to query and the search strings to use. For the used
queries, three of the most frequented scientific libraries and indexing systems in
computer science have been selected: ACM Digital Library, IEEE Xplore and Google
Scholar. The choice of these databases and indexing systems is guided by the fact that
they have been proven most relevant for conducting systematic literature reviews in the
software engineering field [32]. Other aspects are their high accessibility and ability to
export search results conveniently. Figure 1 illustrates the basic steps for our literature
search.

Fig. 1. Search strategy used for the review.

From Monolith to Microservices 131

The following search string(s) have been used for querying the databases:

(“microservice” OR “micro-service”) [AND “monolith*”]
[AND (“refactor” OR “transform” OR “migrat*” OR
“decompos*” OR “partition*” OR “granular*”)]

The obtained studies have been filtered according to a set of selection criteria: Only
peer reviewed articles published in English have been included, the abstract had to
clearly show a contribution towards the research question and we expected a docu-
mented validation of proposed approach. Guidelines recommend to use a snowballing
activity applied on the list resulting from the initial selection [40]. The initial search
results yielded by the queries have been enlarged by such a snowballing activity.
Finally, a qualitative assessment of the studies has been performed by focusing on
technical depth, recency and relevance of the content presented.

5 Results

The performed literature review identified a variety of studies with different orientation,
coverage and level of detail. Many of them were tailored to specific scenarios, focusing
on specific requirements or aspects while not discussing the theoretical background.

Table 1. Reviewed publications.

List of Authors and Publications

1 Escobar, D. et al.: Towards the understanding and evolution of monolithic applications as
microservices. In: Proceedings of 42nd Latin American Computing Conference, CLEI.
(2016) [12]

2 Levcovitz, A. et al.: Towards a Technique for Extracting Microservices from Monolithic
Enterprise Systems. In: 3rd Brazilian Workshop on Software Visualization, Evolution and
Maintenance (VEM). pp. 97–104 (2015) [24]

3 Ahmadvand, M., Ibrahim, A.: Requirements reconciliation for scalable and secure
microservice (de)composition. In: Proceedings - 2016 IEEE 24th International
Requirements Engineering Conference Workshops, REW 2016. pp. 68–73 (2016) [1]

4 Baresi, L. et al.: Microservices Identification Through Interface Analysis. In: ESOCC
2017: Service-Oriented and Cloud Computing. pp. 19–33 (2017) [4]

5 Gysel, M. et al.: Service cutter: A systematic approach to service decomposition. In:
Lecture Notes in Computer Science. pp. 185–200 (2016) [17]

6 Mazlami, G. et al.: Extraction of Microservices fromMonolithic Software Architectures. In:
2017 IEEE International Conference on Web Services (ICWS). pp. 524–531 (2017) [27]

7 Mustafa, O., Gómez, J.M.: Optimizing economics of microservices by planning for
granularity level Experience Report. (2017) [28]

8 Hassan, S. et al.: Microservice Ambients: An Architectural Meta-Modelling Approach for
Microservice Granularity. In: Proceedings - 2017 IEEE International Conference on
Software Architecture, ICSA. pp. 1–10 (2017) [18]

9 Klock, S. et al.: Workload-Based Clustering of Coherent Feature Sets in Microservice
Architectures. Proc. - 2017 IEEE Int. Conf. Softw. Archit. ICSA. 11–20 (2017) [20]

10 Procaccianti, G. et al.: Towards a MicroServices Architecture for Clouds. VU University
Amsterdam (2016) [34]

132 J. Fritzsch et al.

Ten approaches provided an adequate level of abstraction and potential for general-
ization according to the underlying strategy used to steers the decomposition (see
Table 1). The work by Chen et al. [9] was published after completion of the review and
thus did not go into the list of selected publications.

5.1 Classification

While analyzing the selected approaches, we identified distinct decomposition strate-
gies. They determine the required artefacts (besides source code) as an input, the
granularity of the resulting services and if the approach can be applied to greenfield-
developments in addition. Out of the reviewed studies, the following categories have
been defined by grouping similar strategies:

• Static Code Analysis aided approaches require the application’s source code and
derive a decomposition from it (through possible intermediate stages).

• Meta-Data aided approaches require more abstract input data, like architectural
descriptions in form of UML diagrams, use cases, interfaces or historical VCS data.

• Workload-Data aided approaches aim to find suitable service cuts by measuring the
application’s operational data (e.g. communication, performance) on module or
function level and use this data to determine a fitting decomposition and granularity.

• Dynamic Microservice Composition approaches try to solve the problem more
holistically by describing a Microservices runtime environment. Other than the
above categories, the resulting set of services is permanently changing in each
iteration of re-calculating the best-fitting composition (based on e.g. workload).

Tables 2 and 3 give an overview of the reviewed approaches. The classification
defined above can be found in the Type column. The Applicability column distin-
guishes between approaches that support Microservices greenfield developments and
others that focus on existing monolithic applications. Other constraints like technology-
restrictions are listed in this column as well. Strategy points out the utilized decom-
position strategy. Atomic Unit, Granularity indicates the smallest unit that the approach
is able to handle, which in the end determines the possible range of granularity. Some
approaches automatically calculate the granularity, i.e. number of resulting services,
whereas others leave it up to the user. Input and Output list artefacts needed and
produced by the approach. Some approaches describe metrics for a result evaluation,
which can be found under Result Evaluation. Four of the approaches offer tool-support,
as the respective column shows. Our review revealed a general lack in this area, which
is mandatory to achieve a certain degree of automation. It hinders an empirical eval-
uation and thorough assessment of the approaches. Lastly, the column Validation
shows the kind of method used to validate the approach like experiments, case studies
or proof-of-concepts (Table 4).

From Monolith to Microservices 133

Table 2. Overview of decomposition approaches, part 1.

Approach Authors
(Year)

Type Applicability Strategy Atomic unit,
granularity

1 Towards the
understanding
and evolution of
monolithic
applications as
microservices

Escobar,
et al.
(2016) [12]

SCA, based on
static code
analysis from
Java
annotations

MO, JEE
multi-tier
applications

Calculate clusters
of EJBs that form
a microservice,
identify data types
through Java
annotations

Atomic unit:
EJB, adjustable
granularity
during clustering
threshold
provided by user

2 Towards a
Technique for
extracting micro-
services from
monolithic
enterprise
systems

Levcovitz,
et al.
(2016) [24]

SCA, focusing
on multi-tier
applications

MO, multi-
tier
applications
consisting of
at least 3
tiers

Construct
microservice
candidates based
on dependencies
between facades
and database
tables, bridged by
business functions

Atomic unit: set
of facades,
business
functions,
database table,
granularity as
result

3 Requirements
reconciliation for
scalable and
secure
microservice
(de) composition

Ahmadvand,
et al.
(2016) [1]

MDA,
focusing on
security and
scalability

GR + MO,
application
defined by
use cases
and
requirements

Calculate
microservice
decomposition
based on security
and scalability
requirements

Atomic unit as
defined in use
case diagrams

4 Microservices
identification
through interface
analysis

Baresi, et al.
(2017) [4]

MDA, based
on semantic
similarity of
(Open) API
specification

GR + MO Calculate suitable
service cuts
through clustering
of interface
specifications
according to their
semantic
similarity

Single operation
as provided by
OpenAPI spec.,
granularity
parameterizable

5 Service cutter: a
systematic
approach to
service
decomposition

Gysel, et al.
(2016) [17]

MDA, extracts
coupling
information
from software
engineering
artifacts
(ERM, use
cases)

GR + MO Calculate
clustering of
nanoentities to
form
microservices
based on number
of weighted
properties,
clustering
algorithm
exchangeable

Nanoentity
(data, operation
or artifact),
granularity as
result or input
param,
depending on
algorithm

6 Extraction of
microservices
from monolithic
software
architectures

Mazlami,
et al.
(2017) [27]

MDA, based
on version
control meta
data

MO,
applications
having
meaningful
VCS meta
data

Calculate
decomposition via
graph-based
clustering out of
version history by
either: logical,
Semantic or
Contributor
Coupling

Class as atomic
unit, granularity
as result

(continued)

134 J. Fritzsch et al.

5.2 Decision Guide

Figure 2 illustrates the essentials of the presented approaches in form of a decision
guide. The architect planning to migrate a monolithic application to Microservices can
use this flow chart to quickly find the appropriate approach for a specific scenario.
Starting on top, a set of alternatives will lead to the most appropriate approach first,
symbolized by the number. Should this option not fulfill the architect’s requirements,
the dashed line will lead back to the main thread and propose the next best alternative.
Each approach is labeled with its associated type (symbolized by the orange ellipse),
according to its classification (column Type). Should all approaches be discarded, the
last one proposed will be “Service Cutter” with No. 5, at the bottom right of the flow
chart. It can be seen as a general-purpose approach offering the most mature tool
support as of date of this review. However, the approach requires a comprehensive
specification of the system including coupling criteria, which may not always be
available to such extent [4].

Table 2. (continued)

Approach Authors
(Year)

Type Applicability Strategy Atomic unit,
granularity

7 GranMicro: a
black-box based
approach for
optimizing
microservices
based app’s

Mustafa,
et al.
(2017) [28]

WDA, black
box-based
approach,
considering
non-functional
requirements

MO, web-
applications
generating
expressive
access logs

Utilize web usage
mining techniques
to optimize
service
decomposition
based on non-
functional
requirements

Functional units
that can be
identified
through web
access logs

8 Microservice
Ambients: an
architectural
meta-modelling
approach for
microservice
granularity

Hassan, et al.
(2017) [18]

DMC,
dynamic
composition,
model
granularity at
runtime

GR + MO Define
architectural
elements
(Ambients) with
adaptable
boundaries, use
workload data for
adaptation of
granularity at
runtime

“Unit of
mobility” as
abstract
definition of an
atomic unit

9 Workload-based
clustering of
coherent feature
sets in
microservice
architectures

Klock, et al.
(2017) [20]

DMC,
dynamic
composition
approach for
workload-
optimized
deployment

GR + MO Calculate optimal
deployment and
granularity based
on workload
using a genetic
algorithm

Feature as
atomic unit
(chunk of
functionality that
delivers business
value)

10 Towards a
microservices
architecture for
clouds

Procaccianti,
et al.
(2016) [34]

DMC, MDA,
data-driven,
bottom-up
approach

GR + MO Bottom-up, data-
driven, process-
mining algorithm

Functional
property,
granularity
adapts
dynamically

From Monolith to Microservices 135

Table 3. Overview of decomposition approaches, part 2.

Input Output Result evaluation Tool support Validation

1 Source code
(Java)

Visualization in
four different
diagrams: EJB
data, EJB shared
types, MS, MS
invocation

Metrics based on source
code

n/a JEE
application
with 74.566
LoC, 624
classes and
35993
methods

2 Source code Candidate list of
microservices

n/a n/a Case study on
a 750 KLOC
banking
application

3 Use cases
(UML) with
assessment of
security and
scalability
requirements

Candidate list of
microservices

n/a, announced for future
research

n/a Sample
application

4 OpenAPI
specification of
interface;
reference
vocabulary (as
fitness
function)

Candidate list of
microservices

Qualitative, no metrics Experimental prototype
of decomposition tool
and sample datasets,
https://github.com/
mgarriga/decomposer

452 OpenAPI
specifications,
comparison of
samples with
results from 5
SW-engineers,
comparison
with service
cutter (#4)

5 Domain Model
(ERM) and
User
representations
(use cases,
characteristics
of nano-entities
and roles) in
JSON

Candidate list of
microservices,
export to JSON,
graphical
representation
of service and
dependencies

Qualitative service design
checklist assessing service
cut (excellent, expected,
acceptable, unreasonable)

Service Cutter, open
source prototype
implementing the
approach, https://
github.com/
ServiceCutter/
ServiceCutter

Case studies:
fictitious
trading system
and DDD
sample
application
“Cargo
Tracking”,
performance
tests

6 Source code
and VCS meta
data

Candidate list
of microservices

Quality of service cut using
custom metrics: Team size
reduction (tsr), average
domain redundancy (adr)

POC available as open
source Java project,
https://github.com/
gmazlami/
microserviceExtraction-
backend(and-frontend)

Experiment
using a set of
sample code
bases from
open-source
projects (200
to 25000
commits,
1.000 to
500.000 LOC,
5 to 200
contributors)

7 Web access
logs

Diagram of
service model

Performance metrics
(response time, CPU
utilization)

n/a Sample
e-bookshop
web
application

(continued)

136 J. Fritzsch et al.

https://github.com/mgarriga/decomposer
https://github.com/mgarriga/decomposer
https://github.com/ServiceCutter/ServiceCutter
https://github.com/ServiceCutter/ServiceCutter
https://github.com/ServiceCutter/ServiceCutter
https://github.com/ServiceCutter/ServiceCutter
https://github.com/gmazlami/microserviceExtraction-backend(and-frontend)
https://github.com/gmazlami/microserviceExtraction-backend(and-frontend)
https://github.com/gmazlami/microserviceExtraction-backend(and-frontend)
https://github.com/gmazlami/microserviceExtraction-backend(and-frontend)

Table 3. (continued)

Input Output Result evaluation Tool support Validation

8 Aspect-
oriented
description of
the software
architecture
using the
ambient-
PRISMA
textual
language

Microservice
composition
with dynamic
granularity
adaptation at
runtime, based
on predefined
parameters
indicating QoS

Qualitative evaluation on
effectiveness/expressiveness
of modelling and facilitating
design time and runtime
analysis

n/a Experiment
using a
hypothetical
application for
an online
movie
subscription-
based system

9 Representation
of the
architecture by
a set of
features,
workload
model

Descriptive and
visual output of
suggested
model, resulting
in concrete MS
architectures at
runtime

Performance metrics
measuring the quality of a
deployment

MicADO (Microservice
Architecture
Deployment Optimizer)
URL: see publication

Case study
using ERP
software
“AFAS” (27
features with a
total of 238
properties and
72
dependency
relations
between
features)

10 Properties or
blocks
extracted from
source code,
capabilities
(non-
functional)

Microservice
composition

n/a n/a Proof of
concept:
sample
application for
“synthetic
video
processing”

Table 4. Legend to Tables 2 and 3.

Type
SCA Static code analysis aided (either source code or more abstract artefacts like

architectural UML diagrams or APIs of the applications architecture)
MDA Meta-data aided (version control history data, non-functional requirements)
WDA Workload-data aided (gathered during runtime, like performance data or web-

access logs)
DMC Dynamic microservice composition (approach to model or adapt service

composition/granularity at runtime based on workload data)
Applicability
GR Microservices-greenfield development
MO Monolith-migrations
GR +
MO

Applicable for both scenarios

Approaches treating granularity as a dynamically changing factor are grouped in a
single box and not further differentiated. These approaches describe a Microservices
runtime environment in contrast to a fixed partitioning determined at design-time. As
such environments are not discussed in necessary detail here, the condensed depiction
will account for their complexity.

From Monolith to Microservices 137

Decision Guide
for Decomposi on Approaches of Monolithic Applica ons

Fig. 2. Decision guide for decomposition approaches.

138 J. Fritzsch et al.

6 Conclusion

By means of a literature review we identified and categorized 10 recently proposed
architectural refactoring approaches for transforming monolithic applications into
Microservices. The approaches have been categorized into four groups by the under-
lying strategy used for the decomposition, which can be seen as the most challenging
step from a software architect’s perspective. Thereby we answer our initially phrased
research question.

In general, the findings reveal a shortage of practically applicable approaches that
offer adequate tool support and metrics to verify the results. Almost all of the reviewed
approaches are not universally applicable and require different sets of input data. Thus,
an accompanying decision guide in form of a flow chart has been created to help
readers in quickly identifying the appropriate approach for a certain scenario. The most
structured and universal method has been proposed by Gysel et al. [17], which can be
seen as a solid basis for further research. However, the practical applicability is limited
due to its dependence on a “detailed and exhaustive specification of the system” [4].
Microservices architecture as a field “rooted in practice” [16] is widely discussed in
industry. It can be expected that further research will very likely reveal new approaches
that can be incorporated and thus extend the findings of this study. Potential future
research could focus on testing different approaches using an adequate example or real-
world application. To do so, quality attributes and related metrics to assess the quality
of a decomposition should be defined in a first step.

Several threats to validity have to be mentioned for this research. The conducted
review did not follow the guidelines of a systematic literature review as proposed by
e.g. Kitchenham and Charters [19], which would improve repeatability and repro-
ducibility of the results and thus guarantee appropriate scientific rigor. For the sys-
tematic classification and presentation of the results Petersen et al. [32] provide a set of
guidelines accordingly. The candidates for this review were obtained from only three
academic search engines. Furthermore, the selected refactoring techniques have been
investigated only theoretically. Thus, all results stem from assertions of the authors or
other publications. A thorough investigation and assessment would require to exercise
and test the approaches on the basis of one or more sample applications, better yet, real
world systems. The decision guide has been created to suggest or rule out certain
approaches for specific environments or indicate the limited applicability in this
respect. However, it has neither been systematically constructed nor validated by
architects. Future research on the topic of Microservices migration may consider these
points to achieve more precise results.

Our future work in this field will focus on (1) novel approaches that combine static
code analysis with operations data generated during runtime to achieve an optimally
tailored partitioning, (2) quality attributes and related metrics to quantitatively assess
the result of a decomposition in advance and (3) other means to automate and facilitate
the transformation of monolithic architectures out of large, heterogeneous code bases.

From Monolith to Microservices 139

References

1. Ahmadvand, M., Ibrahim, A.: Requirements reconciliation for scalable and secure
microservice (de)composition. In: Proceedings - 2016 IEEE 24th International Requirements
Engineering Conference Workshops, REW 2016, pp. 68–73 (2016)

2. Amundsen, M., et al.: Microservice Architecture. O’Reilly, California (2016)
3. Balalaie, A., et al.: Microservices migration patterns. Softw. Pract. Exp. 48(11), 2019–2042

(2018)
4. Baresi, L., Garriga, M., De Renzis, A.: Microservices identification through interface

analysis. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017. LNCS, vol.
10465, pp. 19–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67262-5_2

5. Bass, L., et al.: DevOps: A Software Architect’s Perspective. Addison-Wesley, Boston
(2015)

6. Bogner, J., et al.: Analyzing the relevance of SOA patterns for microservice-based systems.
In: Proceedings 10th Central European Workshop on Services and their Composition, March
(2018)

7. Brereton, P., et al.: Lessons from applying the systematic literature review process within the
software engineering domain. J. Syst. Softw. 80(4), 571–583 (2007)

8. Brown, W., et al.: AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis.
Wiley, Hoboken (1998)

9. Chen, R., et al.: From monolith to microservices: a dataflow-driven approach. In:
Proceedings Asia-Pacific Software Engineering Conference APSEC, December 2017,
pp. 466–475 (2018)

10. Conway, M.: Conway’s Law. http://melconway.com/Home/Conways_Law.html. Accessed
01 Oct 2018

11. Dietrich, J., et al.: On the detection of high-impact refactoring opportunities in programs. In:
Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC),
Melbourne (2012)

12. Escobar, D., et al.: Towards the understanding and evolution of monolithic applications as
microservices. In: Proceedings of the 2016 42nd Latin American Computing Conference,
CLEI (2016)

13. Evans, E.J.: Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison
Wesley, Boston (2003)

14. Feathers, M.: Working Effectively with Legacy Code. Prentice Hall, New Jersey (2004)
15. Fowler, M., et al.: Refactoring: Improving the Design of Existing Code. Addison-Wesley

Professional, Boston (1999)
16. Di Francesco, P., et al.: Research on architecting microservices: trends, focus, and potential

for industrial adoption. In: Proceedings - 2017 IEEE International Conference on Software
Architecture, ICSA 2017, pp. 21–30 (2017)

17. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: a systematic
approach to service decomposition. In: Aiello, M., Johnsen, E.B., Dustdar, S., Georgievski,
I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 185–200. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44482-6_12

18. Hassan, S., et al.: Microservice ambients: an architectural meta-modelling approach for
microservice granularity. In: Proceedings - 2017 IEEE International Conference on Software
Architecture, ICSA, pp. 1–10 (2017)

19. Kitchenham, B., Charters, S.: Performing systematic literature reviews in software
engineering (2007)

140 J. Fritzsch et al.

http://dx.doi.org/10.1007/978-3-319-67262-5_2
http://melconway.com/Home/Conways_Law.html
http://dx.doi.org/10.1007/978-3-319-44482-6_12
http://dx.doi.org/10.1007/978-3-319-44482-6_12

20. Klock, S., et al.: Workload-based clustering of coherent feature sets in microservice
architectures. In: Proceedings - 2017 IEEE International Conference on Software Architec-
ture, ICSA, pp. 11–20 (2017)

21. Klose, K., et al.: Identification of services - a stakeholder-based approach to SOA
development and its application in the area of production planning. In: ECIS 2007,
pp. 1802–1814 (2007)

22. Krause, L.: Microservices: Patterns and Applications (2015)
23. Kwan, I., et al.: Conway’s Law Revisited: The Evidence For a Task-based Perspective. IEEE

Softw. 29, 1 (2011)
24. Levcovitz, A., et al.: Towards a technique for extracting microservices from monolithic

enterprise systems. In: 3rd Brazilian Workshop on Software Visualization, Evolution and
Maintenance (VEM), pp. 97–104 (2015)

25. Lewis, J., Fowler, M.: Microservices - a definition of this new architectural term. http://
martinfowler.com/articles/microservices.html. Accessed 01 Oct 2018

26. Lilienthal, C.: Langlebige Software-Architekturen: Technische Schulden Analysieren,
begrenzen und abbauen. dpunkt.verlag (2017)

27. Mazlami, G., et al.: Extraction of microservices from monolithic software architectures. In:
2017 IEEE International Conference on Web Services (ICWS), pp. 524–531 (2017)

28. Mustafa, O., Gómez, J.M.: Optimizing economics of microservices by planning for
granularity level. Experience Report (2017)

29. Newman, S.: Building Microservices. O’Reilly, California (2015)
30. Opdyke, W.F., Johnson, R.E.: Creating abstract superclasses by refactoring of stract classes

finding matrix, February, pp. 66–73 (1993)
31. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: Proceedings of the 6th

International Conference on Cloud Computing and Services Science, pp. 137–146 (2016)
32. Petersen, K., et al.: Guidelines for conducting systematic mapping studies in software

engineering: an update. Inf. Softw. Technol. 64, 1–18 (2015)
33. Pirkelbauer, P., Dechev, D., Stroustrup, B.: Source code rejuvenation is not refactoring. In:

van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010.
LNCS, vol. 5901, pp. 639–650. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11266-9_53

34. Procaccianti, G., et al.: Towards a MicroServices Architecture for Clouds. VU University
Amsterdam (2016)

35. Rademacher, F., et al.: Differences between model-driven development of service-oriented
and microservice architecture (SOA vs. MSA). In: 2017 IEEE International Conference on
Software Architecture Workshops (ICSAW), pp. 38–45 (2017)

36. Richardson, C.: Microservice architecture. http://microservices.io/patterns. Accessed 01 Oct
2018

37. Richardson, C.: Microservice Patterns. Manning, New York (2017)
38. De Santana, A.M., et al.: Relationships between communication structure and software

architecture: an empirical investigation of the Conway’s Law at the Federal University of
Pernambuco. In: Proceedings - 2013 3rd International Work. Replication Empirical Software
Engineering Research, pp. 34–42 (2013)

39. Sneed, H.M., Seidl, R.: Softwareevolution - Erhaltung und Fortschreibung bestehender
Softwaresysteme. dpunkt.verlag (2013)

40. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a replication in
software engineering. In: Proceedings 18th International Conference Evaluation and
Assessment in Software Engineering - EASE 2014, pp. 1–10 (2014)

41. Zimmermann, O.: Architectural refactoring: a task-centric view on software evolution. IEEE
Softw. 32(2), 26–29 (2015)

From Monolith to Microservices 141

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://dx.doi.org/10.1007/978-3-642-11266-9_53
http://dx.doi.org/10.1007/978-3-642-11266-9_53
http://microservices.io/patterns

DevOps Meets Dynamic Orchestration

Kiyana Bahadori(B) and Tullio Vardanega(B)

University of Padua, Padua, Italy
{bahadori,tullio.vardanega}@math.unipd.it

Abstract. Responding to the rising wave of demands brought forward
by the digital economy requires injecting accelerated agility and speed
into the software development life cycle. To build a technology stack
that helps meet this demand, the DevOps methodology bridges the
gap between software developers and the IT maintenance and operation
professionals, by combining them into a unified team aligned around
shared business goals, based on automation solutions that support rapid
response to user demand while preserving stability and reliability. The
concept of DevOps with its high pressure on automation, extended from
application development to the maintenance and operation infrastruc-
ture, fosters more in-depth attention to the performance of infrastruc-
ture management.

This paper discusses how dynamic orchestration of infrastructure
delivery in Cloud environment accelerates agility in the DevOps process,
by enabling rapid deployment of dynamic workload.

Keywords: DevOps · Infrastructure agility · Dynamic orchestration

1 Introduction

Over the last few years, as innovation accelerates and customer needs rapidly
evolve, agile software evolution has started to place increasing attention on IT
operation, under the heading of DevOps [23], a professional movement that pro-
motes collaborative interplay among people, process and products [9,18].

In the conventional sense, DevOps is the integration of the process practices
and associated tooling that drive continuous integration and delivery of business
software applications [13]. At its core, DevOps fosters deeper orientation toward
performance and results, to decrease IT operational costs while improving soft-
ware quality, reliability and time to market [6,9].

The DevOps concept rests on the adoption of automation solutions to create
and manage tasks (“items” in the Agile TODO list) as dynamic assets in terms
of Infrastructure as Code (IaC) [25,33]. The fundamental shift towards IaC,
which exceeds mere infrastructure automation, placing emphasis on applying
quality-centered software development practices in their production, verification,
and deployment, requires a unified framework concept to assure stability and
performance.

c© Springer Nature Switzerland AG 2019
J.-M. Bruel et al. (Eds.): DEVOPS 2018, LNCS 11350, pp. 142–154, 2019.
https://doi.org/10.1007/978-3-030-06019-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-06019-0_11

DevOps Meets Dynamic Orchestration 143

IaC seeks to afford maximum velocity to the continuous integration and
delivery pipeline, enabling the user to treat the infrastructure management as
an agile discipline, thus helping balance time, resource and quality, which are
the critical assets in any business environment [33]. In fact, adhering to the
IaC principles has rewarded those who practised them with the ability to cre-
ate consistent, cleanly disposable, and reproduceable systems even in the most
demanding circumstances of large-stage high-reliability IT infrastructures, such
as Netflix, Facebook, Google, etc. [25].

Interestingly, adopting the IaC principle for better management of the infras-
tructure marries with the move towards microservices-based architectures [4,35],
especially for more effective design of infrastructure assets.

In the meanwhile, the advent of container-based application deployment has
delineated an attractive solution that improves scalability, and positions the
microservices-architecture as the privileged choice for DevOps [4].

Designing applications as a collection of container-based microservices
implies having multiple independent units, all individual products of autonomous
development lines, collaborate in performing the actions that respond to a user
request, presents coordination and management and optimization challenges on
the infrastructure, which are best captured by the notion of dynamic orchestra-
tion [32].

Dynamic orchestration helps treat the automated tasks entailed by agile
development as orderly chains of actions that begin with a request for virtual
resource provisioning and culminate with continuous integration and delivery.

Realizing software releases in terms of as-a-service offerings, which is natural
for web and Cloud service development, naturally positions their providers as the
early adopters of DevOps principles after the agility and speed that they promise.
In this context, DevOps embraces the operational aspects of defining a service
as a product item that needs to be deployed, scaled, maintained, monitored and
supported through it life cycle.

Not surprisingly, therefore, players such as Amazon [8] provide a DevOps-
focused way of creating and maintaining their infrastructure.

Furthermore, the ability to draw intelligence from the life-cycle behavior of
the system and use it to improve its performance, creates a most attractive, and
still unexplored, link between DevOps and Machine Learning.

This work presents our re-interpretation of the relation between DevOps and
infrastructure management, attended by dynamic orchestration, and illustrates
the experimental results that we have achieved placing focus on infrastructure
management at technology level.

The remainder of this paper is organized as follows: Sect. 2 briefly recaps the
essence of DevOps; Sect. 3 discusses why software development requires infras-
tructure agility; Sect. 4 outlines our solution to catering for dynamic orchestra-
tion as part of an agile infrastructure; Sect. 5 presents some early experimental
results that back our proposal; Sect. 6 concludes the paper drawing some con-
clusions and outlining future work.

144 K. Bahadori and T. Vardanega

2 DevOps: An Essential Brief

2.1 Origin and Motivation

Traditionally, software development has followed a linear Software Development
Life Cycle (SDLC) that traverses planning, analysis, design, coding, and testing
before enabling application deployment onto the production environment. In the
traditional style, post-deployment maintenance of the application was in charge
of the IT/Operation professionals (IT/Ops), whose organization tile had separate
objectives (and distinct key performance indicators) from developers. However,
the dominant focus of agile frameworks such as Scrum leans on development,
less so on the operational aspects of software delivery.

In particular, the development objective is to release application service aug-
mented with new features using agile development practices, whereas the opera-
tion objective during maintenance is to ensure continuous stability and reliability
to the production environment. Over the years, these two teams siloed by their
respective separation of concerns, has created barriers of practices and solutions
to the problem of deploying service updates with new features quickly and fre-
quently, without undermining the reliability and stability [14,21].

Over time, this hiatus broadened to encompass negative effects on the effi-
ciency of the delivery cycle, as well as on the quality of the products and services
provided.

DevOps originated as a natural evolution of the Agile methodology for Soft-
ware Development, integrating traditional SDLC with Operational support into
one single methodology centered on the notion of continuous action [15,23].

Kim et al. [23] articulate five major points to describe the fundamental prin-
ciples of DevOps framewok, summed up in the acronym “CALMS”: Culture,
Automation, Lean, Measurement, Sharing. The core of these authors’ idea rests
on building a culture of collaboration that bridges the gap between Development
(Dev) and Operations (Ops) to design, deliver, manage and improve operational
features (operability) as on the way IT is used within the organization.

DevOps embodies those principles into a continual-improvement process
called Continuous Integration and Continuous Delivery pipeline (CICD) in the
intent to improve stability and performance of the organization’s development
and operation assets [28].

Figure 1 illustrates how the CICD workflow is designed to ensure deployable
and scalable product delivery that can be updated in real time in response to
monitored evidence collected throughout the entire software life cycle.

The Continuous Integration (CI) part of the CICD pipeline with more Dev
focus has as its prime benefit to keep the developers synchronized with each other
frequently. In fact, CI much reduces the delays related to integration issues as
each step of integration involves highly automated test sessions aimed to detect
latent errors as quickly as possible. In that respect, therefore, CI allows the
rapid building of new features in the application while reducing the associated
risks [17].

DevOps Meets Dynamic Orchestration 145

Fig. 1. CI/CD pipeline for software development

The main focus of the DevOps culture is commonly associated with Con-
tinuous Delivery (CD) with a more holistic view, originated from the goal of
acquiring the ability that uses smart automation to create a repeatable and
reliable process for delivering software [19].

The CD practices (cf. the right part of Fig. 1) subject the changes applied a
software part to automated verification tests performed on the so-called deploy-
ment pipeline, in a fashion that gets the application increasingly close to the
eventual production environment [16].

In effect, Continuous Delivery expands the concepts behind Continuous inte-
gration. CI started as a development strategy and expanded to encompass pro-
duction deployments, which meant bringing the operations team closer to devel-
opment. When the principles of DevOps came into play, they placed emphasis
on the operational issues such as deployability, scalability and monitoring.

2.2 Seeking Infrastructure Agility

The DevOps culture required the CICD pipeline to be maximally agile, which
can only be achieved through the assurance of readily available IT infrastructure
as needed to run and test the developed code [25].

For this to truly happen, an automated workflow is needed. In fact, automa-
tion is central to the CICD pipeline [13]. The automation moves the adopting
organization to abandoning error-prone and difficult-to-reproduce manual proce-
dures, which are also intrinsically unable to scale, with a set of automated tasks
that add velocity, scalability, consistency, and feedback to the workflow [23].

Automation is a critical element that relies on the IaC principle, which man-
dates the avoidance of manual configuration, and the adoption of code-based
tools and software development technique to meet the need for dynamic provi-
sioning of infrastructure at scale in response to demand [13,18].

The IaC principle postulates highly customized, machine-readable code that
generates quality service components within a short turn-around time, which
improves the perception and reputation of the IT in an organization, via auto-
mated configuration management or infrastructure provisioning [5].

146 K. Bahadori and T. Vardanega

Owing to this trait, IaC is often described as a programmable infrastruc-
ture that helps IT operations for provisioning and management automatically
through code assets and resources that support the outcome delivery of the
software development process.

Fig. 2. Infrastructure as code workflow

As shown in Fig. 2, the automation of IaC results in a workflow process that
assures that all software assets are portable, reusable, and subject to version
control.

3 Evolution Toward Accelerate Infrastructure Agility

3.1 The Cloud as the Natural Context of Application for DevOps

Cloud computing with its essential traits (on-demand self-service, broad network
access, resource pooling, rapid elasticity, measured service), service models (IaaS,
PaaS, and SaaS), and different deployment models (private, community, public
and hybrid) offers the most natural context to exploit DevOps and enjoy its
benefits [1].

Continuous delivery places strong demands on the automation of deploy-
ment. With the growth in size of the development team and of the product
itself, the (automated) management of the underlying infrastructure became an
increasingly central part of CICD [9,25].

Accordingly, as the primary goal of DevOps is to improve the delivery of
value, Cloud offers DevOps an advantageous infrastructure, which enables an
effective team structure (topology) to be put in place between Dev and Ops
personnel using Infrastructure-as-a-Service as its platform [24]. Figure 3 evokes
this concept pictorially.

Fig. 3. Dev and Ops united in an Infrastructure-as-a-Service (platform) topology

DevOps Meets Dynamic Orchestration 147

In this topology, appropriate IaaS settings provide an elastic infrastructure to
operation, to deploy and run applications on, assuring the low latency required
to meet desired service level agreement (SLA), and facilitating the release of new
software versions.

3.2 Containers and Microservices as Drivers to DevOps
Collaboration

The adoption of Container technology as a lightweight and scalable solution
to deployment challenges, which isolates the application and its dependencies
within self-contained units agnostic of programming language and execution
platforms, removes the need for runtime collaboration between Dev and Ops
[27]. Docker [20], an open-source project supported by the most significant ven-
dors in the IT ecosystem, has become the de-facto technology for automating
the deployment of applications within containers.

Precise allocation of resources for individual containers enables efficient usage
of the underlying infrastructure. However, this practice also adds one level of
abstraction (the container layer itself) to the problem of managing the deploy-
ment infrastructure of applications.

Enjoying the native isolation capabilities of containers, with their lesser over-
head and greater flexibility, has given rise to a novel style of application architec-
ture constituted by a collection of containerized service residing on a container-
centric infrastructure. This organization however requires novel management
solutions.

DevOps encouragement for rapid integration and cross-team communication
motivates abandoning siloed application architectures, and therefore favors the
adoption of microservices, which break down the application into a granular set of
independent units of discrete functions that are built and deployed independently
and communicate via APIs external to their code base and therefore accessible
with technology-neutral solutions [4,11].

Embracing microservice-based applications the developers may build more
robust software and implement the extent of scalability and performance features
that operations personnel much desire [12,31].

The rapid provisioning, isolation, and low overhead typical of containers make
them an ideal compute vehicle to run microservices, while also increasing soft-
ware portability [22]. Taken as part of the automated system, applications real-
ized in terms of containerized microservices increase the agility and scalability
dotation that serves the speed of deployment.

4 Dynamic Orchestration

Aside from the constant demand for infrastructure scaling in the face of ever
larger software applications, the hardest part of the problem is the need to
keep everything (all individual parts, all of their build recipes, and the overall
deployment requirements) under control, topped with the unpredictability of

148 K. Bahadori and T. Vardanega

operational demands and the risk of crossing project boundaries while sharing
operational resources [10].

To get the most value out of the Cloud, containers, and microservices com-
bined, requires innovative solutions for the coordination and management of
infrastructure optimization. As noted in Sect. 1, the umbrella terms that encom-
passes those challenges is dynamic orchestration [32].

Figure 4 shows how dynamic orchestration evolves the concept of organiz-
ing applications and accommodating the need of (automated) coordination and
management of the life cycle of their individual parts and of the whole.

Kubernetes [2], OpenShift [3], and Amazon [8] are the most commonly tech-
nology solutions that provide dynamic orchestration platforms for container-
centric infrastructures.

Fig. 4. Dynamic orchestration

Our contention here is that orchestrating containerized applications dynam-
ically using automation in the faces of the continuous changes in the dynamics
of service workloads, requires Artificial Intelligence techniques to learn, model
and predict changes in system behavior in near-real time.

To explore the viability of this contention we looked at Auto-Regressive Inte-
grated Moving Average (ARIMA) model [7] for forecasting a time series and
Long-Short Term Memory (LSTM) as a special kind of Recurrent Neural Net-
works (RNNs), which is capable of learning features and long-term dependencies
in the modeling of dynamic systems.

The objective of RNNs is to map an input sequence, one step at a time,
into a corresponding output sequence, using integration of information captured
in the hidden layer (recurrent unit) to predict the input sequence ahead, while
optimizing the weight parameters of the network.

RNNs have been widely and successfully applied to many sequential tasks
and time-series analysis [30]. The structure of RNNs is inspired on the biologi-
cal neural network that is the brain. RNNs consist of multiple cascading layers

DevOps Meets Dynamic Orchestration 149

(input, hidden, output) of non-linear artificial neurons that operate as basic cog-
nitive units, and a feedback loop called a recurrent unit that provides persistent
memory over time (through the input sequence) [30]. Most uses of RNNs to
model long-term sequential dependencies in the state of the art report expo-
sure to vanishing or exploding gradient during training [30]. Long-Short Term
Memory (LSTM) [34] has been proposed to overcome those problems.

To this end, the LSTM modifies the layers of the RNN adding an internal
state variable, which keeps track of the already processed inputs and therefore
eases the modeling of long-term sequential time-series data sets without requiring
massive and costly updates to the recurrent unit.

The effectiveness of the prediction algorithm is evaluated by the Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE) metrics, which are
defined as follows:

RMSE =
√
MSE

MSE =
1
n

n∑

i=1

(Yiground
− Yipred)

2

MAE =

n∑
i=1

|Yiground
− Yipred |

n

(1)

where Yiground
is the actual output at time i, Yipred is the predicted output and

n is the number of observations in the dataset. The smaller the RMSE or MAE
values, the better the predictive quality of the model.

5 Experimental Environment

Having explained the context of interest to our work, we can now illustrate the
strategy that we have adopted to embed our proposed method for orchestration
of single-tier web application deployed on Amazon’s Elastic Container Service.

The Elastic Container Service (ECS) of AWS provides a highly scalable con-
tainer management that monitors, schedule and deploys containers across cluster
of nodes corresponding to EC2 instance.

To create a simple, yet representative scenario for our experiments, we
employed a cluster comprised of two EC2 instances of type t2.medium to run a
container service composed of single tier web application (web tier) deployed on
an Apache web server (see Fig. 5).

The implementation uses five parts:

1. Elastic Load Balancer, ELB,
2. Elastic Container Service, ECS,
3. Auto-scaling Group, ASG,
4. CloudWatch, CW, and
5. A Scheduler Module that bridges the ECS cluster with its associated Cloud-

Watch.

150 K. Bahadori and T. Vardanega

Fig. 5. Experimental framework for orchestrated container on AWS

The ELB, ECS, ASG and CW components are standard components of the
AWS offering. The Scheduler Model was our own.

To generate the historical data to train and test the LSTM forecasting model,
we used the AWS server metrics (request per second, CPU utilization) as col-
lected by the AmazonCloudWatch service available with the Numenta Anomaly
Benchmark (NAB) [26].

Subsequently, we generated live workload using Hey (rakyll) [29] with the
same probability distribution as used in the production of the training dataset,
which we jittered with random noise.

During the experiment, we used the CloudWatch service to monitor CPU
utilization of ECS in the two dimensions of service level and cluster level, as
well as the number of requests enqueued at the LB, to feed a prediction model
and translate the output into the required number of containers. As part of
that, we used the AWS API to access the provided key-value store to acquire
the current state on each cluster node and integrated the resulting value in our
custom scheduler.

In that setting, we compared the behavior of our custom model with that of
the default ECS.

Overall, our experiments consisted of the following steps:

1. Designing and implementing automated scaling API for containers, which
observes selected and configurable metrics from ECS;

2. Constructing an application performance model machine learning that pre-
dicts the number of container unit required to handle demand;

3. Periodically predicting future demand using time series and determining the
application resource requirements using the performance model;

4. Automatically allocating resources using the predicted resource requirements;

DevOps Meets Dynamic Orchestration 151

5. Running experiments on real data to determine how fast the system can
respond to emerging application needs.

5.1 Experimental Results

The first goal of our experiment was to compare the prediction of required num-
ber of containers obtained with the ECS default method against ours. Figure 6
shows the results that we obtained, which shows a lower error rate corresponding

Fig. 6. Prediction error.

Fig. 7. Container allocation in response to varying load.

152 K. Bahadori and T. Vardanega

Fig. 8. Variation of service response time under variable user load.

to prediction time in applying the LSTM in comparison to the ARIMA model
to proceed with the next step of the experiment.

Figure 7 plots the results we obtained, which show better performance of our
model, where the service time provided to the user stays quite stable throughout
significant changes in the intensity of user requests.

In the second part of our experiment as shown on Fig. 8, we used response
time as a performance indicator, that is, the time to serve a user request to com-
pletion. Once again, the compared the default auto-scaling mechanism, threshold
based on CPU utilization per node, against our predictive model.

6 Conclusion and Future Work

In this work, we have presented and discussed our view of how the dynamic
orchestration capabilities required for containerized microserviced-based appli-
cations responds to the DevOps demand for increased agility in the whole devel-
opment cycle. We have argued that Machine Learning is a necessary ingredient
to enable the realization of sound and effective automation rules. To prove our
point we presented the results from an experimental implementation of an Elastic
Container Service (ECS) hosted on AWS, augmented with our machine learning
implements, to increase the agility in deployment of containerized application.
We evaluated that prototype against a few experimental scenarios, which showed
the lower latency achieved by our method for application deployment.

In future work, we plan to extend this line of work looking into combined
auto-scaling policies that operate at both container and node level, integrating
business-level and service-level objectives (e.g., performance, cost, etc.) by con-
verting them to utility functions that can be fed as additional input parameters
such as online learning method into our models, so as to facilitate dynamic rule
generation for a container orchestration platform for optimal resource provision-
ing in the Cloud.

Acknowledgments. The authors are grateful to Alessandro Menti and Giacomo
Tirabassi of Kiratech, Italy, for the precious comments they provided on the intent
and contents of this paper.

DevOps Meets Dynamic Orchestration 153

References

1. Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58
(2010)

2. The Kubernetes Authors: Automated container deployment, scaling, and manage-
ment (2018). https://kubernetes.io/

3. Red Hat OpenShift: Automated container deployment, scaling, and management
(2018). https://www.openshift.com/

4. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
devops: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

5. Bang, S.K., Chung, S., Choh, Y., Dupuis, M.: A grounded theory analysis of mod-
ern web applications: knowledge, skills, and abilities for DevOps. In: Proceedings
of the 2nd Annual Conference on Research in Information Technology, pp. 61–62.
ACM (2013)

6. de Bayser, M., Azevedo, L.G., Cerqueira, R.: Researchops: the case for DevOps in
scientific applications. In: 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM), pp. 1398–1404. IEEE (2015)

7. Calheiros, R.N., Masoumi, E., Ranjan, R., Buyya, R.: Workload prediction using
ARIMA model and its impact on cloud applications QoS. IEEE Trans. Cloud
Comput. 3(4), 449–458 (2015)

8. Chapman, D.: Introduction to DevOps on AWS (2014). https://aws.amazon.com/
whitepapers/introduction-to-devops-on-aws/

9. Davis, J., Daniels, R.: Effective DevOps: Building a Culture of Collaboration, Affin-
ity, and Tooling at Scale. O’Reilly Media Inc., Sebastopol (2016)

10. Debois, P.: Agile infrastructure and operations: how infra-gile are you? In: Agile
2008 Conference, pp. 202–207. IEEE (2008)

11. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Mazzara, M.,
Meyer, B. (eds.) Present and Ulterior Software Engineering, pp. 195–216. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67425-4 12

12. Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., Safina, L.:
Microservices: how to make your application scale. In: Petrenko, A.K., Voronkov,
A. (eds.) PSI 2017. LNCS, vol. 10742, pp. 95–104. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-74313-4 8

13. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Softw. 33(3),
94–100 (2016)

14. Erich, F., Amrit, C., Daneva, M.: A mapping study on cooperation between
information system development and operations. In: Jedlitschka, A., Kuvaja, P.,
Kuhrmann, M., Männistö, T., Münch, J., Raatikainen, M. (eds.) PROFES 2014.
LNCS, vol. 8892, pp. 277–280. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-13835-0 21

15. Fitzgerald, B., Stol, K.J.: Continuous software engineering and beyond: trends and
challenges. In: Proceedings of the 1st International Workshop on Rapid Continuous
Software Engineering, pp. 1–9. ACM (2014)

16. Fowler, M.: Continuous delivery (2006). https://martinfowler.com/books/
continuousDelivery.html

17. Fowler, M.: Continuous integration (2006). https://www.martinfowler.com/
articles/continuousIntegration.html

18. Ho, V.: Bringing DevOps to the masses with Microsoft’s Donovan Brown
(2016). https://blogs.microsoft.com/firehose/2016/11/29/bringing-devops-to-the-
masses-with-microsofts-donovan-brown/

https://kubernetes.io/
https://www.openshift.com/
https://aws.amazon.com/whitepapers/introduction-to-devops-on-aws/
https://aws.amazon.com/whitepapers/introduction-to-devops-on-aws/
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-13835-0_21
https://doi.org/10.1007/978-3-319-13835-0_21
https://martinfowler.com/books/continuousDelivery.html
https://martinfowler.com/books/continuousDelivery.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://blogs.microsoft.com/firehose/2016/11/29/bringing-devops-to-the-masses-with-microsofts-donovan-brown/
https://blogs.microsoft.com/firehose/2016/11/29/bringing-devops-to-the-masses-with-microsofts-donovan-brown/

154 K. Bahadori and T. Vardanega

19. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation. Pearson Education, London (2010)

20. Docker Inc.: Docker datacenter enables DevOps (2018). https://www.docker.com/
use-cases/devops

21. Jabbari, R., bin Ali, N., Petersen, K., Tanveer, B.: What is DevOps?: A system-
atic mapping study on definitions and practices. In: Proceedings of the Scientific
Workshop Proceedings of XP2016, p. 12. ACM (2016)

22. Khan, A.: Key characteristics of a container orchestration platform to enable a
modern application. IEEE Cloud Comput. 4(5), 42–48 (2017)

23. Kim, G., Debois, P., Willis, J., Humble, J.: The DevOps Handbook: How to Cre-
ate World-Class Agility, Reliability, and Security in Technology Organizations. IT
Revolution, Portland (2016)

24. Matthew Skelton, M.P.: Devops topologies. https://web.devopstopologies.com/
anti-types

25. Morris, K.: Infrastructure as Code: Managing Servers in the Cloud. O’Reilly Media
Inc., Sebastopol (2016)

26. Numenta: The numenta anomaly benchmark (2018). https://github.com/
numenta/NAB

27. Pahl, C.: Containerization and the PaaS cloud. IEEE Cloud Comput. 2(3), 24–31
(2015)

28. Radcliffe, R.: DevOps today: what does it mean to you (2018). http://schedule.
interop.com/session/devops-today-what-does-it-mean-to-you-/852618

29. rakyll/hey: rakyll/hey (2018). https://github.com/rakyll/hey
30. Salehinejad, H., Baarbe, J., Sankar, S., Barfett, J., Colak, E., Valaee, S.: Recent

advances in recurrent neural networks. arXiv preprint arXiv:1801.01078 (2017)
31. Thönes, J.: Microservices. IEEE Softw. 32(1), 116 (2015)
32. Venugopal, S.: Cloud orchestration technologies, IBM (2016). https://www.ibm.

com/developerworks/cloud/library/cl-cloud-orchestration-technologies-trs/index.
html

33. Virmani, M.: Understanding DevOps & bridging the gap from continuous integra-
tion to continuous delivery. In: 2015 Fifth International Conference on Innovative
Computing Technology (INTECH), pp. 78–82. IEEE (2015)

34. Zhao, Z., Chen, W., Wu, X., Chen, P.C., Liu, J.: LSTM network: a deep learning
approach for short-term traffic forecast. IET Intell. Transport Syst. 11(2), 68–75
(2017)

35. Zhu, L., Bass, L., Champlin-Scharff, G.: DevOps and its practices. IEEE Softw.
33(3), 32–34 (2016)

https://www.docker.com/use-cases/devops
https://www.docker.com/use-cases/devops
https://web.devopstopologies.com/anti-types
https://web.devopstopologies.com/anti-types
https://github.com/numenta/NAB
https://github.com/numenta/NAB
http://schedule.interop.com/session/devops-today-what-does-it-mean-to-you-/852618
http://schedule.interop.com/session/devops-today-what-does-it-mean-to-you-/852618
https://github.com/rakyll/hey
http://arxiv.org/abs/1801.01078
https://www.ibm.com/developerworks/cloud/library/cl-cloud-orchestration-technologies-trs/index.html
https://www.ibm.com/developerworks/cloud/library/cl-cloud-orchestration-technologies-trs/index.html
https://www.ibm.com/developerworks/cloud/library/cl-cloud-orchestration-technologies-trs/index.html

Using Code Generation to Enforce
Uniformity in Software Delivery Pipelines

Christopher Jones(B)

School of Computing, DePaul University, 243 S. Wabash Avenue,
Chicago, IL, USA

christopher.jones@depaul.edu

Abstract. Common approaches to implementing software delivery
pipelines include hand-written scripts, domain-specific languages (DSLs),
and the integration of specialized tools, each of which has been developed
to automate one or more stages of these pipelines. However, each appli-
cation is often treated as a proverbial snowflake – different from all other
applications, even those within the same organization, or those using the
same technology stack. Such pipelines are often technology-specific, mak-
ing them time-consuming to change should the need arise. This paper
describes SPaaS, an extensible DSL- and template-based pipeline gener-
ator, capable of producing software delivery pipelines for Jenkins. This
paper examines how such generated pipelines can embody, facilitate, and
enforce an organization’s technical and governance policies, while also
enabling product teams to inject specialized activities during pipeline
execution. A preliminary proof-of-concept called SPaaS, is described and
the advantages, disadvantages, and some inherent technical challenges of
the overall approach are discussed.

1 Introduction

A software pipeline [1,2] is the process by which code moves from source
code control to deployment and execution in a production environment. It is a
technology-neutral term that encompasses other devops practices including con-
tinuous integration, continuous delivery, and infrastructure-as-code. Approaches
for their implementation range from hand-written scripts to domain-specific lan-
guages (DSLs). Myriad tools exist for the purpose of assisting with the key activ-
ities that need to be performed by the pipeline1. Many organizations cannot or
will not invest in all of the tools required to completely automate an entire
pipeline, leading to pipelines that stitch together the tools that are in place
and provide custom, hand-written scripts to address the activities for which no
such tool is available. Such pipelines can be problematic for several reasons.
First, while the implementation and maintenance of pipelines is important it is
arguably not valuable; the effort would likely be better spent developing solutions
1 For some of the available tools, see the “Periodic Table of DevOps Tools” from

XebiaLabs at https://xebialabs.com/periodic-table-of-devops-tools/.

c© Springer Nature Switzerland AG 2019
J.-M. Bruel et al. (Eds.): DEVOPS 2018, LNCS 11350, pp. 155–168, 2019.
https://doi.org/10.1007/978-3-030-06019-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_12&domain=pdf
https://xebialabs.com/periodic-table-of-devops-tools/
https://doi.org/10.1007/978-3-030-06019-0_12

156 C. Jones

that deliver business value to customers rather than in getting the software built
and deployed. Second, manually written software delivery pipelines encourage
“snowflake” solutions, where each pipeline does things in a different way even if
they are based on identical technical platforms. Third, custom pipeline scripts
are difficult to manage and maintain in the face of shared concerns such as
auditing, compliance, security, reporting, and governance.

There are also operational and financial considerations. Tool sprawl is a com-
mon issue when each team is responsible for its own technology stack. This is
not economical, especially when considering vendor management and overall
tool pricing. As with pipeline development, reducing the number of developers
required to operate and maintain a suite of tools may prove to be an effective
use of an organization’s limited resources. Finally, such approaches can result
in vendor lock-in, something that many organizations are sensitive to, especially
as they migrate their applications to one or more cloud providers, an effort that
often requires invasive changes to their software delivery pipelines.

The author’s employer is in the process of migrating 300 applications to
Amazon Web Services (AWS). While some applications are being “forklifted”,
others involve changes to make them more “cloudy”. Their on-premise software
delivery pipelines use a variety of tools including CloudBees Enterprise Jenkins
Server [3] and IBM UrbanCode Deploy (uDeploy) [4]. As they migrate to AWS,
they are considering replacing their existing tool chain with the AWS Code*
suite [5], thereby permitting teams to implement their pipelines almost entirely
within AWS. The mixture of on-premise and cloud-based tools, combined with a
wide variety of build and deployment approaches across teams and products, and
advised by differing levels of devops experience across their 1,200 technologists,
has resulted in many non-portable pipelines. Furthermore, for historical compli-
ance reasons, these pipelines often require hand-offs between multiple teams, an
anti-pattern to devops adoption. For example, changes to deployment processes
are always handled by the release engineering team, even though the product
team knows precisely what those changes should be.

As they began migrating into AWS, each product team devised new pipelines
to deploy their code, persisting the current snowflake-based model. In an attempt
to gain some economies of scale, and in an effort to avoid snowflake solutions,
the organization decided on a more centralized approach, where the knowledge
gained in deploying one application could easily be applied to others. A small
project was initiated in mid-2017 to provide a proof-of-concept to make this
vision a reality, and the author was selected as the technical and project lead.
The project had several goals. First, to enable product teams to focus only on the
aspects of their software pipeline that were truly unique, delivering any “boiler-
plate” pipeline elements as a service. Second, to use as few tools as practical and
to pull those tools from the organization’s existing tool chain. Third, to encour-
age the teams to increase their devops capabilities. Fourth, to enable upgrades
to the various pipelines to be as painless as possible.

The initial effort was only partially successful. The team was able to develop
proofs-of-concept and some standardized templates for common product deploy-

Using Code Generation to Enforce Uniformity in Software Delivery Pipelines 157

ment models including server-based, container-based, and serverless. However,
the team was often viewed as providing additional staff for the product teams to
get them started with the templates, thus failing in the third goal. Finally, the
overall approach did not lend itself to simple upgrades and improvements, a fail-
ure to address the fourth goal. The partial success of the project was significant
enough that the organization chose to continue the effort and in mid-2018 a new
team was formed within the organization. Named, “cloud services”, the new team
has the responsibility to propose, define, and evangelize solutions around cloud
security, operations, and release engineering. The author was chosen to be the
product owner. In an effort to address the same goals as the 2017 initiative, the
team turned to code generation as an alternative to the original template-based
approach. The approach was called “Software Pipeline as a Service (SPaaS)”.2

2 Generalized Pipeline Development Approach

The approach to pipeline development underwent several evolutions, but each
had to satisfy several goals including:

– Support for a variety of pipeline structures.
– Adherence to the “pipeline-as-code” model, where the code for the pipeline

can be managed by the existing source code management software.
– Enable product teams to easily and rapidly evolve their pipelines to reflect

new industry practices and technologies.
– Enable product teams to focus on the pipeline and not on any of the tech-

nologies required to execute the pipelines.

Initial ideas focused on providing a Center of Excellent (CoE) that could
effectively act as in-house consultants to the product teams to accelerate their
ability to implement their own pipelines. While this idea had merit, it was even-
tually dismissed as insufficient for several reasons. First, there were simply not
enough people available to meet the demand. Second, the product teams wanted
their own pipelines, but they did not want to spend the time required to develop
them especially since that would have required spending time to learn even more
new technologies besides what they were already absorbing by moving to a public
cloud in the first place.

2.1 Pipeline Structure

Because of the number of pipelines within the organization, it would be difficult
if not impossible to provide a single pipeline definition that would meet the
needs of all of the organization’s product teams. Nevertheless, such an effort
was undertaken. A pipeline was produced similar to that described by Humble,
et al. [1]. The stages and activities of that pipeline are shown in Fig. 1.

2 SPaaS is used throughout this paper since that is the product name, even though it
is no longer implemented as a hosted service.

158 C. Jones

Fig. 1. Generalized pipeline process

Each pipeline is comprised of the five phases: commit, functional, capacity,
acceptance, and production. Each stage is comprised of a series of activities. For
example, the commit stage includes the build activity, whereas all stages except
commit include the setup, smoke test, and teardown activities.

The most important aspects of this general pipeline process are that: it is
technology neutral; it does not reference physical or virtual environments; and
the stages and their activities are optional, which allows each product team to
customize the pipeline’s behavior to support their own needs, while still main-
taining the overall pipeline structure.

2.2 Pipeline Generation

SPaaS’ current approach involves a custom pipeline DSL, consumed and parsed
by an open-source framework, with template-driven code generation, orches-
trated using a Gradle [6] plugin. The structure of SPaaS is shown in Fig. 2. It
consumes a pipeline definition language and produces the code for one or more
physical pipeline languages. The pipeline definition language can be extended by
updating the grammar and the various visitors invoked by Antlr-generated [7]
lexing and parsing classes. The generated pipeline code can be changed by manip-
ulating Freemarker [8] templates.

3 A Generalized Pipeline Generator

SPaaS requires five major activities:

1. Pipeline definition. The developers produce a pipeline definition describing
their desired pipeline and a set of scripts implementing their custom logic.
SPaaS’ own pipeline definition is written in this way.

Using Code Generation to Enforce Uniformity in Software Delivery Pipelines 159

Fig. 2. Pipeline generator architecture

2. Plugin configuration. The plugin reads its configuration from a Gradle
build file and configures the pipeline generation process.

3. Definition parsing. The plugin delegates to the Antlr framework, which
parses the pipeline definition and finds syntactic and grammatical errors.

4. Definition translation. The parsed pipeline definition is translated into an
Antlr-independent, internal model.

5. Pipeline generation. The internal model is passed to the Freemarker tem-
plating system which uses elements of the model to generate the final code.

3.1 Pipeline Definition and the Pipeline DSL

Each pipeline requires a definition file, pipeline.dsl, containing pipeline DSL
statements. The definition is comprised of a set of composited pipeline segments:
pipeline, stages, and activities. Each of these segments can be associated with a
variety of decorators: approvals, credentials, artifacts, gates, and properties.

Stages, Activities, and Event Scripts. Each stage in the pipeline is com-
prised of logical activities. The pipeline DSL is opinionated and allows only the
configuration of a fixed set of stages and activities reminiscent of Humble [1].
One important aspect of this definition language is that the stages and activities
are optional. By default an empty file will result in the same pipeline as that
shown in Listing 1, that is, a pipeline with all stages and activities provided,
but that doesn’t perform any real work. By explicitly declaring the stages and
activities, pipeline authors ‘activate’ those activities during pipeline execution.
For example, a pipeline definition with only two activities declared will only
perform those two activities; all of the other activities will be present, but will
be skipped during pipeline execution.

160 C. Jones

The pipeline authors align the physical steps of their pipeline to the logical
stages and activities, shown in Listing 1 using script fragments. Each activity
invokes a corresponding event script. For example, the build activity invokes the
onBuild script, the setup activity invokes the onSetup script and so on. Each
event script is provided the names of the currently running activity and stage.
This allows the pipeline authors to take different actions based on the stage in
which a common activity is performed. For example, the setup activity might
behave differently during the functional, capacity, acceptance, and production
stages. Within the script fragments, developers can perform any required actions,
such as compiling source code and running unit tests. SPaaS combines built-in,
templated code with the script fragments provided by the pipeline author to
produce the finished event scripts.

Listing 1.

Agents and Docker Images. By default, the event scripts are run on Jenkins
agents with a compatible operating system. A definition configured to produce a
Linux-based pipeline generates shell scripts whereas one configured for Windows
produces Powershell scripts. If desired, activities can instead be configured to
run within a Docker container. Listing 2 demonstrates this capability:

In this case, the build activity uses a Gradle docker image to perform its
actions. The pipeline generator assumes that the image is available from Dock-
erHub, but a different registry can be used if required. The options property
allows further customization of the Docker container’s execution.

Using Code Generation to Enforce Uniformity in Software Delivery Pipelines 161

Listing 2.

Properties. Properties are simple name-value pairs. They can be declared at
the pipeline, stage, and activity scopes, as shown in Listing 3.

Listing 3.

In Listing 3 the NAME1 property exists at all three scopes. The pipeline DSL
exhibits the usual name-hiding rules where the value closest in scope to the
activity will be used. Thus the NAME2 property is available to all activities within
the pipeline, the NAME3 property is available to all activities within the commit
stage, and the NAME4 property is only visible to the build activity.

All properties are exposed to their activities as environment variables. Several
implicit properties are always provided to each activity including the current

162 C. Jones

working directory, the current stage, and the current activity. This allows scripts
that are invoked at multiple points in the pipeline (e.g. setup, smokeTest, and
teardown), to determine the stage in which they are currently being invoked.

Gates. Gates are conditions that must be satisfied before an activity will be
performed. If these conditions are not satisfied then the gated activities will be
skipped although the pipeline will continue to execute. the DSL currently sup-
ports two kinds of gates: skip and branch. A skip gate unconditionally bypasses
the gated activity. It is most often used for existing activities that should be
temporarily ignored. An activity with a branch gate will only perform its work if
the source code branch matches that of the gate. This is one way we can support
more complex SCM workflows where one branch is used for feature-based work,
another for release candidates, and a third for production releases. Consider the
DSL snippet shown in Listing 4:

Listing 4.

In this example, there is a skip gate on the package activity of the commit
stage and a branch gate on the entire production stage, which means that the
gate will apply to each activity within that stage. It is possible to apply a gate
at the pipeline scope, but it is rarely useful.

Approvals. Not all pipelines are completely automated. There are occasions
when teams may want to control when activities occur or who performs them.
For example, a project’s QA team may want to restrict who can deploy code to
the QA environment. Various compliance requirements often dictate a separation
of roles between those who produce the software and those who deploy it.

Like properties and gates, approvals can be inherited from the pipeline and
stage scopes down to the activity scope. However, unlike properties and gates,
which are always applied to any activity within their scope, approvals are only

Using Code Generation to Enforce Uniformity in Software Delivery Pipelines 163

applied to activities that explicitly declare that they require approvals. The DSL
currently supports two kinds of approvals: timer and approver. To see how these
types of approvals work, consider Listing 5:

Listing 5.

In this example, we declare a global timer approval, which restricts the
amount of time that the pipeline will wait for approval before failing. When we
look at the production stage’s setup activity we see that there is an approver
approval declared. This means that the activity can only be approved by an
individual with the specified username or who is a member of the specified
group. The timer approval inherited from the pipeline ensures that the setup
approval must be provided within 300 s.

3.2 Plugin Configuration

The actual generation of the pipeline itself is driven by the Gradle plugin. In
order for the plugin to know what kind of pipeline to generate, it must first be
configured. The desired style of the generated pipeline is declared along with any
additional information. The code in Listing 6 is for the plugin itself and declares
that we want a Jenkinsfile-based pipeline that can be executed on a Linux-based
Jenkins agent.

The generation process is initiated by invoking one or more Gradle tasks
such as generateJenkinsfilePipeline. This causes the plugin to parse the pipeline
definition file and perform the associated code generation. The version of the
plugin to be used can also be declared within the Gradle build file. This allows
the product teams to choose when to absorb updates to the code generator so
that such updates can be scheduled and worked into the project plan as practical.

164 C. Jones

Listing 6.

3.3 Definition Parsing and Translation

During definition parsing the Antlr framework consumes the pipeline definition
and constructs a parse tree. The parse tree passes through a series of visitors
that convert it into Groovy objects. This internal model is a complete and inde-
pendent translation of the pipeline definition and is passed to the final phase of
processing. A sensible set of defaults are provided for any stages and activities
that were not specifically included in the pipeline definition. This is part of what
allows the pipeline structure to remain consistent across different product teams
while allowing those teams to perform or ignore whichever activities make sense
for their product.

3.4 Pipeline Generation

Pipeline generation is driven by a set of Freemarker templates and orchestrated
by the Gradle plugin. For Jenkinsfile output, SPaaS uses a set of templates
representing the major sections of the Jenkins Pipeline DSL.

Listing 7.

Listing 7 defines one part of the overall Jenkinsfile template, specifically
the environment clause, where environment variables are defined. When the
generator invokes the template, it consolidates the properties from the pipeline,
stage, and activity and exposes them as environment variables to the activity,
where they can be consumed by the associated event scripts.

Using Code Generation to Enforce Uniformity in Software Delivery Pipelines 165

4 Discussion

This approach to pipeline generation itself is not entirely new. Domain-specific
languages [9] and code generation for specific domains such as mobile applica-
tions [10,11], have been available for years. We can bundle common configura-
tion into a Jenkins shared libraries [12], which was the implementation of an
earlier evolutions of SPaaS. SPaaS is now completely independent of Jenkins
and makes the pipeline definition language a first-class citizen. The approach is
flexible enough that it can generate other pipelines beyond Jenkins, and, in fact,
work is underway to extend SPaaS to produce AWS Code* [5] templates using
CloudFormation [13] and Terraform [14].

SPaaS was influenced both by Jenkins shared libraries and the AWS Code*
tool chain [5] including CodeBuild, CodeDeploy, and CodePipeline. Both Code-
Build and CodeDeploy use a scripted model where developers provide custom
scripts that are invoked during pipeline execution. However, AWS CodePipeline
does not readily lend itself to reuse and there is no easy way to enforce com-
mon practices or governance policies. SPaaS combines the Jenkins-based and
script-based models into a single approach.

SPaaS can use a variety of tools for the orchestration of its pipelines
when those individual tools by themselves are too limited. For example, tools
that enable “infrastructure-as-code (IaC)” such as CloudFormation [13] or Ter-
raform [14] make up only a tiny portion of an overall software delivery pipeline,
though that portion is unarguably important. Configuration management tools
such as Chef [15], Puppet [16], or Ansible [17] again make up an important part of
the pipeline, but are insufficient for representing the pipeline as a while. SPaaS’
strength is that it can unify all of these tools, and any others for which there is
a command-line interface or API, into a single pipeline. Spinnaker [18] provides
the foundation for complete pipelines, but hides those pipelines behind a UI.
Furthermore, while its pipeline definitions can be exported and stored within
source code control, this is not its normal behavior, which makes it challenging
to keep the pipeline definition in sync with the code that traverses that pipeline.

SPaaS provides many benefits centering on abstracting away common and
challenging issues associated with developing pipelines across disparate technol-
ogy platforms. For example, some teams have compliance requirements that each
production deployment must be tied to an open, approved release request. While
it is certainly possible for each product team to implement this logic in each of
their pipelines, doing so takes time and resources. In contrast this logic can be
included within the pipeline generator templates once and then an updated ver-
sion of the generator published. As the product teams are ready to absorb the
changes they simply re-generate their pipeline using the latest version of the gen-
erator plugin. Every impacted team will thus handle this aspect of the approval
process the same way. Because the code is generated, it requires little effort to
make the change, which allows it to be rolled out much more quickly.

166 C. Jones

SPaaS was only recently released3 but its concepts have been greeted with
enthusiasm and its implementation with a healthy degree of skepticism. SPaaS
was submitted to and accepted for presentation at two regional conferences: AWS
Chicago Summit [19] and the AWS Community Day Midwest [20]. We do not
yet have sufficient hard evidence to draw reasonable conclusions, but anecdotal
evidence suggests that savings numbering in person days of effort are likely.

While we believe SPaaS to be promising, there remain challenges. One obvi-
ous and significant example is that arbitrary scripts are being invoked during
pipeline execution. If those scripts are executed with elevated privilege it opens
the door to abuse. Proper approvals such as pull requests can help manage that
risk as can regular security scanning of the code repositories.

Another challenge is one of pipeline evolution. One significant difference
between the current implementation of SPaaS and its first evolutions is that
the pipeline generation is now controlled by the product teams. Because the
generated pipelines are now considered first-class assets of the project, the prod-
uct teams can track changes to their pipelines in the same way as other source
code. However, this also means that there is no way to ensure that changes to
governance or standard practices incorporated into later versions of the pipeline
generator are automatically incorporated into the pipelines themselves. Each
time the pipeline logic changes, the product teams must regenerate their pipeline
code. While the goal is that the product teams need not modify the generated
pipeline code, it is not possible to prevent them from making such changes.
Teams that make significant modifications to the generated code, will be hesi-
tant to regenerate their pipeline.

A third challenge to this approach concerns ownership of the pipeline gener-
ator. For SPaaS to remain relevant, it must belong to a team that is vested in
keeping it up to date, improving its efficiency, and addressing defects. Without
a team to own it, SPaaS will rapidly begin to stagnate and it’s capabilities will
not keep pace with the needs of its users who will gradually find it simpler to
build and manage their own pipelines, which regresses the organization back
to a point when each product spent time on pipeline-related activities rather
than capitalizing on economies of scale and centralized, shared logic. To address
this concern, a new team was formed to own the pipeline generator and provide
regular releases, bug fixes, and support.

Another challenge lies in maintaining the separation between the gen-
eral pipeline definition exposed by SPaaS and the technology-specific elements
required by the actual pipelines themselves. The needs of a Jenkinsfile-based
pipeline are necessarily different than those required by AWS Code* because
the implementations of those two technologies are very different. As such it can
be difficult to take a generalized pipeline and provide the pipeline authors with
the ability to represent these divergent technologies without building knowledge
of those technologies into the DSL itself.

3 The author is actively working with his employer to make SPaaS available as open-
source.

Using Code Generation to Enforce Uniformity in Software Delivery Pipelines 167

A fifth challenge concerns testing the generated pipelines. Pipeline testing
is difficult, both from a generator and a generated standpoint. We make use
of the Jenkins Pipeline Unit Testing Framework [21] for testing the generated
pipeline structures, however, we have observed some differences between the
behavior within the unit test framework, and that from running within the actual
CloudBees Jenkins environment, especially around the availability of and access
to shared libraries. Products like Puppet and Chef can make the provisioning
and testing processes simpler with associated tools like rspec-puppet [22] and
Test Kitchen [23], which can also take advantage of rspec [24], respectively.

5 Conclusion

SPaaS is a pipeline generator that offers an opinionated view of what a software
delivery pipeline should be. It exposes a set of predefined pipeline segments in
the form of pipelines, stages, and activities. Each segment can be decorated with
a collection of properties, approvals, and gates. SPaaS consumes this pipeline
definition and generates a Jenkins-based pipeline. Pipeline authors can script
and test their individual instructions for inclusion in the pipeline during key
events by providing custom scripts that are incorporated into the final pipeline
during the code generation process.

The use of code generation in software delivery pipelines can provide signifi-
cant benefits to an organization. First, it helps ensure consistency in operation.
Second, it helps provide a consistent structure, which facilitates measurement
and continuous improvement. Third, it ensures that overarching governance and
security practices are applied consistently. Fourth, it allows product developers
to focus on those aspects of the pipeline that are unique rather than on those
aspect that are common to most, if not all, such pipelines.

By ensuring consistency in structure, operation, and governance, we gain a
degree of certainty that critical steps are not missing or bypassed. New capabil-
ities can be added to the pipeline in a way that is comparatively transparent to
the teams that use that pipeline. By generating the pipeline during execution, it
is possible to incorporate structural changes to the generated pipelines each time
they are executed. This in turn provides a means of measuring overall pipeline
operation and reporting on its efficiency so that improvements can be identified
and incorporated back into the pipeline, thus providing a valuable feedback loop
against which an organization can gauge improvements to their processes. These
factors encourage cross-team comparisons of pipeline activities to identify best
practices and improvements, yielding cross-team efficiencies as an organization
moves closer to continuous delivery and continuous deployment.

168 C. Jones

References

1. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation. The Addison-Wesley Signature Series.
Addison Wesley, Boston (2011)

2. Kim, G., Willis, J., Debois, P., Humble, J.: The DevOps Handbook. IT Revolution
Press, Portland (2016)

3. CloudBees, Inc.: Jenkins and CloudBees (2018). https://www.cloudbees.com/
jenkins/jenkins-cloudbees

4. IBM: Urbancode deploy - deployment automation, July 2018. https://developer.
ibm.com/urbancode/products/urbancode-deploy/

5. Amazon Web Services: AWS developer tools, July 2018. https://aws.amazon.com/
products/developer-tools/

6. Dockter, H.: Gradle, June 2012. http://gradle.org/
7. Parr, T.: ANTLR, July 2018. http://www.antlr.org/
8. The Apache Group: What is apache freemarker? July 2018. https://freemarker.

apache.org/index.html
9. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated

bibliography. SIGPLAN Not. 35, 26–36 (2000)
10. Jones, C., Jia, X.: Using a domain specific language for lightweight model-driven

development. In: Maciaszek, L.A., Filipe, J. (eds.) ENASE 2014. CCIS, vol. 551,
pp. 46–62. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27218-4 4

11. Miravet, P., Maŕın, I., Ort́ın, F., Rionda, A.: DIMAG: a framework for automatic
generation of mobile applications for multiple platforms. In: Proceedings of the
6th International Conference on Mobile Technology, Application & #38; Systems.
Mobility 2009, pp. 23:1–23:8. ACM, New York (2009)

12. Alonso, J.: Centralise jenkins pipelines configuration using shared libraries, May
2017. https://dev.to/jalogut/centralise-jenkins-pipelines-configuration-using-shar
ed-libraries

13. Amazon Web Services: AWS CloudFormation, October 2018. https://aws.amazon.
com/cloudformation/

14. HashiCorp: Terraform, October 2018. https://www.terraform.io/
15. Chef: Chef, October 2018. https://www.chef.io/
16. Puppet: Puppet, October 2018. https://puppet.com/
17. Ansible: Ansible, October 2018. https://www.ansible.com/
18. Spinnaker: Spinnaker, October 2018. https://www.spinnaker.io/
19. Jones, C.A.: Software pipelines as a service. AWS Summit Chicago, August 2018
20. Jones, C.A.: Easing cloud migrations with software pipelines as a service. AWS

Community Day Midwest, June 2018
21. Günalp, O.: Jenkins pipeline unit testing framework, July 2018. https://github.

com/jenkinsci/JenkinsPipelineUnit
22. Sharpe, T.: RSpec test framework for your Puppet manifests (2017). http://rspec-

puppet.com/
23. Chef: Kitchen (2017). https://docs.chef.io/kitchen.html
24. Baker, S., et al.: Behaviour driven development for ruby, July 2018. http://rspec.

info/

https://www.cloudbees.com/jenkins/jenkins-cloudbees
https://www.cloudbees.com/jenkins/jenkins-cloudbees
https://developer.ibm.com/urbancode/products/urbancode-deploy/
https://developer.ibm.com/urbancode/products/urbancode-deploy/
https://aws.amazon.com/products/developer-tools/
https://aws.amazon.com/products/developer-tools/
http://gradle.org/
http://www.antlr.org/
https://freemarker.apache.org/index.html
https://freemarker.apache.org/index.html
https://doi.org/10.1007/978-3-319-27218-4_4
https://dev.to/jalogut/centralise-jenkins-pipelines-configuration-using-shared-libraries
https://dev.to/jalogut/centralise-jenkins-pipelines-configuration-using-shared-libraries
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://www.terraform.io/
https://www.chef.io/
https://puppet.com/
https://www.ansible.com/
https://www.spinnaker.io/
https://github.com/jenkinsci/JenkinsPipelineUnit
https://github.com/jenkinsci/JenkinsPipelineUnit
http://rspec-puppet.com/
http://rspec-puppet.com/
https://docs.chef.io/kitchen.html
http://rspec.info/
http://rspec.info/

Effect of Continuous Integration on Build
Health in Undergraduate Team Projects

Suzanne M. Embury(B) and Christopher Page

School of Computer Science, University of Manchester,
Manchester M13 9PL, UK

Suzanne.M.Embury@manchester.ac.uk

Abstract. We present the results of an analysis of the changing pat-
terns of build health across three cohorts of undergraduate students, in
a compulsory software engineering course unit. In the course unit, stu-
dent teams were asked to make changes to a large open source software
system, and to maintain clean release builds as they did so. Release build
health (in terms of compiling code and passing unit tests) was explicitly
included in the marking scheme for the coursework. We set up a contin-
uous integration server to keep track of student build health. Initially,
this was used only by TAs in marking student work, but for later cohorts
we provided access to continuous integration results to all students from
the early stages of each exercise. This has provided us with data on the
changing patterns of student build health, with differing access to the
CI server, giving an insight into how students learn to manage build
health and the effects of allowing them access to CI results. We found
evidence of a clear improvement in ability to manage build health when
CI facilities are made available, but that some student teams were not
making use of the facilities to much effect. The improvement effect was
strongest on the build health of release builds, corresponding to the area
of greatest marks in the marking scheme. The CI results also proved to
be very valuable for academic staff, in making the problems with student
builds visible.

Keywords: Continuous integration · Build health · Release quality ·
Software engineering education

1 Introduction

In recent years, the School of Computer Science at the University of Manchester
has undertaken an extensive revision of software engineering teaching at under-
graduate level. The focus was the level two compulsory course units in software
engineering, taken by between 200 and 270 students each academic year. The
course team for these units has a challenging goal. Some of our students have
had little or no programming experience before joining us in their first year.
Yet, after completing the second year, many will go on to undertake a year-long

c© Springer Nature Switzerland AG 2019
J.-M. Bruel et al. (Eds.): DEVOPS 2018, LNCS 11350, pp. 169–183, 2019.
https://doi.org/10.1007/978-3-030-06019-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-06019-0_13

170 S. M. Embury and C. Page

internship in industry, acting as professional software engineers and often work-
ing on mission critical developments. The software engineering course unit must
somehow bridge this gap, in just four contact hours per week.

To meet this goal, we designed a syllabus based on the use of an indus-
trial strength toolkit, focussed on the kinds of brown-field software development
tasks that form the bedrock of much software engineering practice. Turning
our back on the more traditional document-oriented build-a-project-from-scratch
approach, we asked our students to work with a large open source software sys-
tem consisting of thousands of classes and many thousands of files. Students are
asked to fix bugs, add features and refactor code to meet new non-functional
requirements, while managing the quality of the code using an extensive test
suite, code review, automated build tools and a continuous integration server.

The use of a continuous integration (CI) server has proven to be a key element
of this approach. As well as providing students with experience of CI, the build
health information provided by the CI server has given us an insight into how
students learn about managing the quality of their builds, and the effects of
introducing these tools on learning. In this paper, we describe how we have
gathered data on build health from student coding teams across three cohorts,
covering the work of around 700 students and around 10,000 builds. We use the
data to compare how teams with access to continuous integration tools differ in
their ability to release clean code (and to keep their development branch clean)
with teams with reduced or no access to CI build results. The results indicate
that embedding build health into marking schemes is not enough in itself to
encourage students to maintain clean builds, even on key deliverables such as
released code. However, our results suggest that CI facilities can help students to
understand the importance of ensuring that code committed to team repositories
compiles and passes all automated tests. The results had the additional benefit
of providing a useful diagnostic tool for staff, in understanding how much ground
we had to make up in our courses to help students develop the discipline and
habits needed to deliver clean code in a professional manner.

The remainder of this paper is organised as follows. In Sect. 2, we examine
how CI tools have been used in undergraduate teaching, as reported in the
research literature. We then describe how we have used CI at the University of
Manchester to support our undergraduate course units in software engineering
(Sect. 3). The experimental design is outlined (Sect. 4) along with details of the
data gathering pipeline we used to infer build health for cohorts where CI was
not in place at the time of teaching (Sect. 5). The results of our analysis are
presented (Sect. 6) and threats to validity are discussed (Sect. 7). Finally, we
conclude and suggest some directions for future work (Sect. 8).

2 Literature Survey

With the increase in the use of CI (and related technologies such as continuous
delivery) in industrial practice, there have been corresponding attempts by aca-
demic faculty to include CI within relevant course units. A common approach is

Effect of CI on Build Health in Undergraduate Team Projects 171

to embed CI tools within a software engineering project, with the aim of giving
students experience of working with this important class of software engineering
tool [Wil01,LD11,MTU17]. Significantly, Süß and Billingsley demonstrated the
ability of CI tooling to allow a small number of academic staff and teaching
assistants to teach a project-oriented software engineering course for far more
students than would have been practicable without it [SB12].

Others have set up CI infrastructure for use across multiple courses or
projects. The work of Pedrazzini is an example [Ped10], in which the Team-
City1 CI tool is configured by staff for use by students, who then tailor the build
script to suit the specific project being worked on. Pedrazzini notes the learning
benefits obtained, including subject specific learning outcomes (such as increased
understanding of release management, and of the value of regression testing) and
transferable knowledge (such as the ability to track personal improvement over
time using the CI reports).

Some proposals for the introduction of CI tools into undergraduate curricula
have been motivated additionally by their potential to facilitate the automa-
tion of assessment. Heckman and King report on the Canary Framework, an
infrastructure based on Eclipse, GitHub and Jenkins for automatically assessing
software development exercises [HK18]. They found scaling benefits (particu-
larly significant decreases in the time needed to mark work), and also note that
the combination of software tools used in their project provides the opportu-
nity to carry out learner analytics. For example, they looked at the relationship
between submission times, submission frequency and grades, and found useful
correlations. They mention requiring students to keep the release branch clean,
though details of how this is converted into marks or assessment are not given.

Academics are increasingly turning their attention to approaches to teach-
ing DevOps and related concepts [Chr16]. Eddy et al. proposed a pipeline using
Jenkins and Docker to teach the concepts of continuous integration and continu-
ous delivery [EWC+17]. They evaluated the resulting teaching materials with a
cohort of 16 senior students, by taking them through an example set of exercises,
and asking them to complete a survey afterwards. The results showed that the
students appreciated the additional concepts they were able to learn through the
approach, but also pointed to some areas for improvement.

We were able to find very few attempts to assess the effects of providing
CI tools to undergraduates in terms of learning outcomes or skills gained. Most
reports of courses using CI do not attempt to evaluate the usefulness of what
was done, or else they rely on collating the results of surveys of learners, shortly
after being exposed to the technology. Some attempts to be more systematic
exist, such as the work of Billingsley and Steel, who compared two successive
cohorts of a course unit, when improvements were made for the teaching of the
second cohort [BS13]. Amongst the metrics compared between the cohorts are:
number of commits made per week, and number of comments per issue tracker
ticket. Bowyer and Hughes used a CI server as the basis for a course teaching
test-driven development [Bec03]. They extracted a number of metrics from the

1 http://www.jetbrains.com/teamcity/.

http://www.jetbrains.com/teamcity/

172 S. M. Embury and C. Page

CI system: proportion of time with a failed build and number of overnight failing
builds are two that are mentioned explicitly. However, these metrics are extracted
for the purposes of assessing students in their proposal, and not to evaluate the
usefulness of the course. Another very interesting proposal is the Prof. CI system,
by Matthies et al. [MTU17], in which CI tools replace the more usual browser-
based coding environments. Prof. CI is intended primarily to teach TDD, and
while the authors have compared data from two cohorts in order to understand
the strengths and weaknesses of the approach, they focussed on metrics relating
to the number and quality of tests written, rather than on build health.

To the best of our knowledge, no work has yet attempted to assess students’
ability to manage their build health, with and without the use of CI tools.

3 Continuous Integration at Manchester

Our first-semester second year software engineering course unit asks students to
make multiple changes to a large open-source code base, using a number of best
practice tools and techniques to ensure the code that is released has no obvious
flaws. After consultation with the members of our School’s Industry Club2, we
selected the following toolset, to be used by students during the course unit:

– A distributed version control system (Git, git-scm.com)
– An issue tracker (GitLab issue tracker, gitlab.com)
– An automated test tool (JUnit, junit.org)
– A code coverage tool (JaCoCo, jacoco.org)
– A code review tool (GitLab, gitlab.com)
– An automated build tool (Ant, chosen because the OSS we are using is based

on it, ant.apache.org)
– A continuous integration server (Jenkins, jenkins.io)

In order to manage the risks inherent in introducing so many new technologies for
use by large numbers of students, we elected to bring in the CI system gradually,
across three consecutive cohorts. This gave us time to discover security and other
set up problems before giving full access to students. Introduction of the CI tools
into the coursework took place as follows:

– Cohort 1: for the first cohort, we set up CI builds for each student team, but
did not make these visible to the undergraduates. They were used only by
the course staff and teaching assistants, to help them assign marks to teams
for their build health, and to provide feedback on build health problems.

– Cohort 2a: for the next cohort of students covered by this study, we set up the
same pattern of build jobs for each student team, and allowed them to view
the results just before the deadlines. This gave teams the option of making
final changes to fix major build health problems before marking. These builds
were also used by teaching assistants during the marking process.

2 http://www.cs.manchester.ac.uk/employability/industry-club/.

https://git-scm.com/
https://about.gitlab.com/
https://junit.org/junit5/
https://www.jacoco.org/
https://about.gitlab.com/
http://ant.apache.org/
https://jenkins.io/
http://www.cs.manchester.ac.uk/employability/industry-club/

Effect of CI on Build Health in Undergraduate Team Projects 173

– Cohort 3a: for the final cohort included in this study, we provided access to
the CI build job results to all teams, from early in each coursework exercise.
Most of the builds we provided are performing a continuous build and test
function, but for this cohort we also provided true continuous integration, by
setting up builds that merged feature branches with the development branch
and reported on the result.

For each team and for each coursework exercise, we set up a number of builds:

– A build of a tag which marks the starting commit for an exercise. This helps
teams to see if there are problems with the build at the start of the exercise
that they should fix before beginning work on the exercise itself. (Otherwise,
problems from earlier exercises can leach through to the current exercise, and
cause problems for the final release build.)

– A build of the release tag for the exercise. Students were asked to make sure
this build was compiled cleanly and passed all tests. Marks were lost if this
was not the case.

– A build of the development branch. Students were asked to keep this build
compiling cleanly and passing the tests, as far as possible but, since (for many
of our students) this was the first time they were required to consider build
health, they were not penalised for falling short of this provided release build
health was not impacted.

– A build of each feature branch. Students were asked to make sure feature
branches compiled cleanly and passed all the tests, but were only penalised
for falling short of this in terms of marks at the point where feature branches
were merged into the development branch.

We use the Jenkins continuous integration server in our course units3. Figure 1
shows an example of the build jobs that are set up for an exercise4. Figure 2
shows an example of the feature branch builds for an exercise with defined feature
branches. Later exercises ask students to manage their own feature branches; in
this case, a single build job is created that builds on any push to any feature
branch with a prefix set by the exercise.

The icons to the left of the build jobs in this figure show the status of the
most recent build. The exclamation-mark-in-a-circle icon indicates a failed build.
This means that some error prevented the build job from even creating any exe-
cutable code. Compilation errors are the most common cause of this type of build
status amongst our students. The exclamation-mark-in-a-triangle icon indicates
an unstable build. Executable code was created and executed, but some quality
indicator has flagged up a problem. For our students, this quality indicator is
failure of one or more of the automated tests. Finally, the tick-in-a-circle icon
indicates a successful build; an executable could be created and all tests and
quality checks passed when run against it.

3 jenkins.io.
4 The Issue Revealing Builds folder contains builds set up to check that students are

working test-first. They are not relevant to the experiment carried out in this paper.

https://jenkins.io/

174 S. M. Embury and C. Page

Fig. 1. Example build jobs set up for an exercise

Fig. 2. Example feature branch build jobs

4 Experiment Design

It will be seen that the incremental introduction of CI tools into our course
unit provides the set up for a natural experiment into the effects of giving CI
facilities to UG students. In all three cohorts, release build health was factored
into the marking scheme for the exercise (counting for around 10% of the marks
for each of the three exercises). Build health of the development branch and
feature branches at the point of merging was also included, though to a lesser
degree. Student teams therefore already had a strong reason for doing their
best to manage the health of their builds. However, teams in the earlier cohorts
had to do this by remembering to check their code health by running the build
script and tests on their own local repository before committing code to their
Git repository. Students were asked to use an IDE for managing their code, and
therefore should have had automatically generated warnings about compilation
errors in their code, but other build errors and failing tests could only be found if
students remembered to run the (simple to use and fully configured) automated
build script before committing code to Git.

Effect of CI on Build Health in Undergraduate Team Projects 175

Fig. 3. The data extraction pipeline used to extract build health results from all
cohorts.

In the latest cohort of the three covered by this paper, our CI server was set
up to check build health on every push to the remote repository, and to provide
student teams with a clear report on their build health at each stage. These
students had to remember to log in and check the CI server results after pushing
code, but had the advantage that build results from pushes by all individuals
were visible to the whole team. Only one team member had to remember to check
the results regularly for the whole team to have early warning of problems. The
second cohort had access to the CI reports just before their deadline, giving
them a final opportunity to manage the health of their release builds only.

By examining the different build health patterns across these cohorts, we
hoped to be able to see correlations between the degree of access to CI build
reports, and to understand whether the (not insignificant) effort involved in
configuring and running the CI server for classes of more than 200 students was
delivering useful educational benefits or not.

5 Data Gathering Pipeline

To understand the effects of introducing CI facilities for our students, we had to
be able to compare the detailed build health records of cohorts that had access
to CI with those that did not. Accessing the build health of teams in the third
cohort was straightforward. The CI server we were using provided an easy-to-use
API from which we could extract information about build jobs and their statuses
programmatically. But for the cohorts that did not have CI in place throughout,

176 S. M. Embury and C. Page

we needed a way to reconstruct the build health reports these teams would have
seen if CI had been running for their teams from the beginning.

Figure 3 shows the sequence of steps involved in extracting the build results
for analysis. We first work out which commits would have been built by the CI
server, if it had been set up at the time. These are the commits at the tip of each
branch that was pushed to the remote Git repository by any team member. For
some of our cohorts, we were able to extract this information from the activity
logs maintained automatically by our School’s GitLab5 server. These logs record
details of all the major operations performed on project managed by the server,
including giving details of pushes to the repository. The activity log includes
a time stamp for the push and the HEAD commit for the branch immediately
after the push. But for some of the older cohorts, these logs were lost, as a result
of a major system upgrade. By chance, the activity logs for the second cohort
had been cached by the software we use for automatically marking part of the
students’ work. For the first cohort, we were able to reconstruct the pushes using
timestamps on the objects in the Git database.

Having identified the pushed commits for all cohorts, we used a back-end
script to create tags at each such commit. We used tags with the general form
“SELA/<commit SHA>” to uniquely identify the point of each push. (SELA,
here, stands for “Software Engineering Learner Analytics”). When the tags were
created, we used a second script to read each repository, searching for the tags,
and to create a script for each one using the Jenkins Job DSL6. This provides
a means of creating a large number of Jenkins build jobs automatically, using
a configuration-as-code approach. The Jenkins Job DSL script we generated
created one build job for each commit across all cohorts with a tag with the
“SELA/” prefix.

Since there were many builds to run (more than 20,000 in total, including
builds for some cohorts not mentioned in this paper, due to space limitations),
we ran the builds in stages. Once the builds for a cohort were complete, we ran a
further script to extract the build results from the CI server (using the provided
API) and load them into a spreadsheet for analysis.

6 Results

6.1 Ability to Manage Overall Build Health

We first examined the results to see how well teams in each cohort were able
to manage the health of their builds overall. Figure 4 shows the total number of
builds created by teams in each cohort, for each exercise. Builds are separated out
into the various possible build results: primarily, failed builds, unstable builds
and successful builds7.
5 gitlab.cs.man.ac.uk.
6 jenkinsci.github.io/job-dsl-plugin.
7 The small number of aborted builds in the final exercise for cohort 3 result from a

feature of the exercise set, which caused GUI code which passed the tests successfully
on a desktop machine to fail them when run on the headless server running Jenkins.

https://gitlab.cs.man.ac.uk/
http://jenkinsci.github.io/job-dsl-plugin/

Effect of CI on Build Health in Undergraduate Team Projects 177

Fig. 4. Total number of builds of each build status, grouped by exercise, for the main
cohorts.

Looking across the three cohorts, we can see several trends:

– The number of pushes being made increases across the semester, for all
cohorts. This is most likely a factor of the exercises being attempted. In
the first exercise, teams are asked to fix a number of small bugs, while in the
second exercise they add small but complete features to the code base. In the
final exercise, they re-factor a significant section of the code base. That is,
the scale of the exercise set increases across the semester, leading naturally
to increased commits and pushes. Increased student confidence with the use
of Git for team coding could also be a factor.

– The proportion of successful builds increases throughout the semester in all
cohorts, but the effect is most noticeable in the cohorts with at least some
access to CI, and is most pronounced for the cohort with access to CI through-
out. This is significant because students must manage the build health before
seeing the results from the CI builds. Build health was increasing because
students were learning to manage it better, and not just because they were
reactively fixing problems reported by the CI server.

– A significant number of failed and unstable builds remain, even in the final
exercises and in cohorts will full access to CI. This makes sense because CI
tools can only detect failing builds when they have reached the remote Git
repository. They make detecting such builds quick and easy, but they don’t
prevent them in the first place. And students have to remember and choose

178 S. M. Embury and C. Page

Fig. 5. Percentage of unsuccessful builds, grouped by exercise, for the main cohorts.

to access the CI build system reports. For the final cohort, we offered to set
up e-mail notification for teams on unsuccessful builds, but only a handful of
teams took us up on this.

6.2 Spread of Ability to Manage Overall Build Health

The figures for the total builds made of each status, given in Fig. 4, give
an overview of how the cohorts were managing their build health across the
semester. What they don’t show is the spread of abilities across the cohort. Some
teams may be managing their build health well, while others may be doing a
much poorer job. We wanted to understand the spread of ability in this respect
across our cohorts, to compare how the average teams were performing against
the best teams, and against those teams that were struggling the most.

To understand this, we created the charts in Fig. 5. These show, for each
cohort, information about the percentage of builds created by individual teams
that were unsuccessful. Here, we define unsuccessful as meaning any aborted,
failed or unstable build. The middle, orange, line in the charts shows the average
percentage of unsuccessful builds across all the teams in a cohort. So, for cohort
1, in exercise 1, on average, around 80% of builds were unsuccessful. By exercise
3, this had dropped to approximately 60% of builds being unsuccessful.

The green line at the bottom shows the percentage of unsuccessful builds for
the team that was managing their build health the best, and the red line at the
top shows the percentage of unsuccessful builds for the team that was faring the
worst in this respect. It will be noted that in all three cohorts, some teams made
only unsuccessful builds.

Looking at the trends visible across the three cohorts, we can see an improve-
ment for each cohort as the semester progresses: the average percentage of unsuc-
cessful builds drops as the exercises progress, and students get more used to
managing their build health (with or without CI). There is an improvement in
the cohorts that had access to CI, but perhaps not as much as we had hoped.
The average number of unsuccessful builds is around 50% or lower for cohort 3,

Effect of CI on Build Health in Undergraduate Team Projects 179

Fig. 6. Total release builds for each build status, grouped by exercise, for the main
cohorts.

across all exercises, but that is still a lot of broken builds. And the best team is
arguably not doing much better than the best team in cohort 1.

So, these figures show a small improvement in the ability to manage build
health, but not the revolution in practice that we might have expected from the
introduction of full CI.

6.3 Ability to Manage Release Build Health

The results presented so far show a somewhat mixed picture. CI tools seem to
be helping our students to manage their build health, but there are still many
unsuccessful builds being created. When we confine our attention to the health
of the code released by students at the end of each exercise, however, the picture
is somewhat clearer. The results in Fig. 6 show the total number of release builds
for each build status, per exercise, per cohort. So, for example, for exercise 1,
6 cohort 1 teams released code that failed to compile, while 12 cohort 1 teams
released code that failed some tests and 14 teams managed to release code that
compiled and passed the quality checks.

When comparing across the cohorts in this case, we can see a marked improve-
ment when CI facilities are made available compared with when they are not.
While all cohorts included some teams that released broken code, the proportion
of teams that were able to release a clean code base by the end of the semester
was markedly improved when CI was available. For the third cohort, this was

180 S. M. Embury and C. Page

the case even from the first coursework exercise, while second cohort teams (who
had access to CI only at the end of each exercise) appear to have taken longer
to learn about the need to manage release code quality, and how the CI server
can assist with this. However, by the end of the semester for the second cohort,
the majority of teams have learnt how to release compiling code that passes all
the tests8.

7 Threats to Validity

This paper describes an opportunistic attempt to extract lessons from the data
sets that happened to be available, rather than a properly designed controlled
study. The difficulties of running such studies in an educational context are well
known. As Holmboe, McIver and George have stated:

“[...] there are obvious difficulties in empirically evaluating [teaching inno-
vations] – aside from the expense of running two concurrent courses and
comparing results, such techniques would be ethically dubious, potentially
disadvantaging students in one course or the other. Where comparisons can
be done across different years, the number of changes between the courses
makes it difficult, if not impossible, to evaluate the effect of individual
changes.” ([HMG01], p. 4)

Many such differences occurred between the cohorts examined in this study, of
which the most significant are probably:

– Differences in cohort sizes (ranging from 200 to 270), which go some way
towards explaining the differences in number of pushes between cohorts.

– Differences in the exercises set. Since the use of Git means that any student
can take and share a full copy of their team’s solution to the exercise, we have
assigned a different set of bugs to be fixed and features to be shared in each
academic year the course unit is taught. A different aspect of the code was
also chosen to be refactored. While we attempted to set work of a similar size
aim each academic year, these differences could explain the differences in the
number of pushes and the difficulty of making tests pass. (It was certainly a
factor in affecting the number of aborted builds.)

– Differences in the open source code base used as the basis for the exercise.
Since we aim to give students experience of working on a live code base, we
update the open source code base used for our exercises every year. This
means that each year we teach on a slightly larger and more complex code
base, with new features added that are likely to be a little unstable in ways
that are hard for us to predict. (Indeed, we exploit this feature in order to

8 As part of the assessment process, we monitored whether teams disabled or deleted
test cases, and found no teams that were doing this in an obviously fraudulent way.
The builds released genuinely did pass the 1800 plus unit tests describing the required
behaviour of the system.

Effect of CI on Build Health in Undergraduate Team Projects 181

find the bugs that the teams will fix.) Significantly for our analysis, each year
the set of automated tests is slightly different, with different fragilities and
defect finding powers. The high number of students releasing unstable builds
in cohort 2a, for example, may have been affected by a particularly erratic
test behaviour that was present in the code base used for that year.

– Differences in teaching approaches used. We learnt a lot about how to teach
the use of these and related tools over the course of the three academic sessions
covered by this paper, and have made significant changes to (and hopefully
improvement of) our teaching materials and approaches. This could have
affected our students’ confidence with using Git as a tool for team coding.
This could certainly be a partial explanation for the disproportionate increase
in the number of pushes being made by later cohorts. How far students’
increasing confidence and familiarity with the CI tools is a factor in this
confidence with Git is hard to untangle with any precision.

8 Conclusions and Future Work

In this paper, we have examined data gathered on the health of builds produced
by software teams, working to make changes to a large open source code base.
For all cohorts, build health was a significant part of the marking scheme for the
exercises the students undertook. We compared the statuses of builds produced
by teams with no access to CI, limited access to CI and full access to CI. We
were able to observe an improvement in the overall ability manage build health
when CI facilities are provided, though the effect was only strongly visible in the
release builds for the cohorts.

A significant unexpected benefit of introducing CI facilities into our course
unit was that it raised the visibility of the fact that our students were struggling
to form the habits needed to regularly commit clean code. For example, we
had one team that never made a single clean build across the whole semester,
and which pushed code 22 times for their solution to one exercise without ever
pushing code that compiled. While not quite at this level, a significant number
of other teams were discovered to be having difficulty in controlling the quality
of the code they committed to their repository. This issue was formerly invisible
to our students and (more importantly) to the teaching team. Now that we are
aware of the issue, we can work on developing our teaching approaches to help
guide students into better habits in this respect.

There are a number of further analyses we could carry out with the data we
have collected from the cohorts in this study. We have been making use of the
Jenkins Build Failure Analyser plug-in9 to provide a more detailed characteri-
sation of the causes of failing builds. This plug-in scans the console log for each
build and classifies the build according to the types of failure it finds matches
for in the log. It can therefore distinguish, for example, a failed build caused by
a compilation error in code from a failed build caused by a run-time exception,
from a failed build caused by a missing file. Using the data gathered by this
9 https://github.com/jenkinsci/build-failure-analyzer-plugin.

https://github.com/jenkinsci/build-failure-analyzer-plugin

182 S. M. Embury and C. Page

plug-in, we will be able to perform intra- and inter-cohort analyses of the errors
being made that lead to failing builds, and can design teaching materials that
guide students to be aware of these common pitfalls.

We are also exploring ways in which we have configure our CI server to
give students better tools for recovering from failed builds, and for preventing
them in the first place. We will experiment with setting up e-mail notification
of unsuccessful builds to all teams, rather than only for those that request it,
as at present. The effect of this must be carefully monitored, however, as we
would not want students to be deterred from pushing code because they are
afraid of their errors being broadcast to their team. Other options are to design
a GitLab sandbox, in which individual team members can apply their local
commits to the team remote repository hypothetically, to examine their effects,
before pushing them to the team repository. This would also allow CI to be
applied to the hypothetical commits and merges, before any poor quality code
reaches the other members of the team.

Acknowledgements. We are grateful to all the University of Manchester students
who have taken the course units on which the work in this paper was based, for their
willingness to engage with new approaches to teaching and for their (sometimes robust)
feedback on our course units. We also thank the other members of the academic teach-
ing teams we work with for their help in designing and running these course units.

References

[Bec03] Beck, K.: Test-Driven Development: By Example. Addison-Wesley Profes-
sional, Reading (2003)

[BS13] Billingsley, W., Steel, J.: A comparison of two iterations of a software studio
course based on continuous integration. In: Proceedings of the 18th ACM
Conference on Innovation and Technology in Computer Science Education,
pp. 213–218. ACM (2013)

[Chr16] Christensen, H.B.: Teaching DevOps and cloud computing using a cogni-
tive apprenticeship and story-telling approach. In: Proceedings of the 2016
ACM Conference on Innovation and Technology in Computer Science Edu-
cation, pp. 174–179. ACM (2016)

[EWC+17] Eddy, B.P., et al.: A pilot study on introducing continuous integration and
delivery into undergraduate software engineering courses. In: Proceedings
of 30th IEEE Conference on Software Engineering Education and Training
(CSEE&T), pp. 47–56. IEEE (2017)

[HK18] Heckman, S., King, J.: Developing software engineering skills using real
tools for automated grading. In: Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, pp. 794–799. ACM (2018)

[HMG01] Holmboe, C., McIver, L., George, C.E.: Research agenda for computer
science education. In: Proceedings of 13th Annual Workshop of the Psy-
chology of Programming Interest Group (PPIG-13), vol. 13 (2001)

[LD11] Baochuan, L., DeClue, T.: Teaching agile methodology in a software engi-
neering capstone course. J. Comput. Sci. Coll. 26(5), 293–299 (2011)

[MTU17] Matthies, C., Treffer, A., Uflacker, M.: Prof. CI: employing continuous inte-
gration services and Github workflows to teach test-driven development.
In: Frontiers in Education Conference (FIE), pp. 1–8. IEEE (2017)

Effect of CI on Build Health in Undergraduate Team Projects 183

[Ped10] Pedrazzini, S.: Exploiting the advantages of continuous integration in soft-
ware engineering learning projects. In: Koli Calling, p. 35 (2010)

[SB12] Süβ, J.G., Billingsley, W.: Using continuous integration of code and content
to teach software engineering with limited resources. In: Proceedings of the
34th International Conference on Software Engineering, pp. 1175–1184.
IEEE Press (2012)

[Wil01] Wilson, D.: Teaching XP: a case study. In: XP Universe (2001)

Feedback from Operations to Software
Development—A DevOps Perspective

on Runtime Metrics and Logs

Jürgen Cito1(B), Johannes Wettinger2, Lucy Ellen Lwakatare3,
Markus Borg4, and Fei Li5

1 University of Zurich, Zürich, Switzerland
cito@ifi.uzh.ch

2 University of Stuttgart, Stuttgart, Germany
johannes.wettinger@iaas.uni-stuttgart.de

3 University of Oulu, Oulu, Finland
lucy.lwakatare@oulu.fi

4 RISE SICS AB, Kista, Sweden
markus.borg@ri.se

5 Siemens AG, Vienna, Austria
lifei@siemens.com

Abstract. DevOps achieve synergy between software development and
operations engineers. This synergy can only happen if the right culture is
in place to foster communication between these roles. We investigate the
relationship between runtime data generated during production and how
this data can be used as feedback in the software development process.
For that, we want to discuss case study organizations that have different
needs on their operations-to-development feedback pipeline, from which
we abstract and propose a more general, higher-level feedback process.
Given such a process, we discuss a technical environment required to
support this process. We sketch out different scenarios in which feedback
is useful in different phases of the software development life-cycle.

Keywords: Software engineering · DevOps · Feedback

1 Introduction

A convenient perspective of software development is to view it solely as the prac-
tice of writing program code, in isolation from the reality of deploying the pro-
gram to production systems. The DevOps movement challenges this perspective
and aims on promoting cross-functional synergies between software development
and operations activities [3]. One way to promote these synergies is to facilitate
better communication between operations and development. When software is
operated in production, it produces a plethora of data that ranges from log
messages emitted by the developer from within the code to performance met-
rics observed by monitoring tools. All this data gathered at runtime serves as
valuable feedback [1,5,8].
c© Springer Nature Switzerland AG 2019
J.-M. Bruel et al. (Eds.): DEVOPS 2018, LNCS 11350, pp. 184–195, 2019.
https://doi.org/10.1007/978-3-030-06019-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-06019-0_14

Feedback from Operations to Software Development 185

Feedback from operations can serve as the basis of decisions made by vari-
ous stakeholders to improve the software itself and the process overall: Product
owners can prioritize bugs and features based on usage. Software developers use
stack traces to localize faults. Performance engineers use latency metrics to pin-
point slow execution and optimize performance. These stakeholders use feedback
in different phases of the software development life-cycle, be it in system design,
development, test or validation. Feedback from operations is an important vehicle
in modern software development and vital to drive informed decisions. Modern
software development approaches such as continuous deployment entail the capa-
bility of delivering new software updates continuously and in fast cycles as soon
as code changes have been committed and successfully passed automated tests
[9]. However, there are some challenges that organizations face when attempting
to facilitate proper feedback channels between operations and the rest of the
software development life-cycle. We argue that the challenges depend on the fol-
lowing key variation points: organizational size, nature of business, presentation
of feedback, and case-specific technical challenges.

Organization Size. The challenges in feeding operations data back to devel-
opment vary from organization to organization, and size is often an important
contextual factor [7]. Smaller organizations (e.g. startups) can apply ad-hoc feed-
back processes simply because employees are located in the same site and know
each other. However, global enterprises need more sophisticated feedback pro-
cesses to effectively communicate across large geographical areas, organizational
boundaries – and perhaps even with external business partners.

Nature of Software Business. The nature of business of an organization also has
strong influence on the feedback mechanisms that can be implemented. The well-
known Internet companies with established cloud infrastructure and a culture of
extremely fast delivery life-cycles [14] are inherently more effective on communi-
cating feedback. However, companies in traditional business, e.g. infrastructure
management, utilities and factory automation, are strictly bound by regulations
with regard to safety, industrial processes, certifications and data security [1,8].
In some cases, the feedback needs to be passed between different companies. For
these organizations, feedback from operations to development has to take into
account legal issues and business interests.

Presentation of Feedback. The wide availability of operational data in various
formats challenges us to not only identify relevant data but how that data can be
presented to the different stakeholders such that they are able to make decisions
fast as required in a DevOps world. In addition, several challenges limit (or
hinder) the availability of operational data to development organizations. Finally,
for the operational data to have value, the feedback must be delivered with a
user interface that can support the developers’ decision making [12].

Technical Challenges. Regardless which type of organizations that are adopting
DevOps practices, they face the same technical challenges in presenting oper-
ations data effectively to developers. Feedback coming from operations in raw

186 J. Cito et al.

format is often not actionable for many stakeholders. Different stakeholders, e.g.
developers and product managers, need different views on collected feedback at
different abstraction levels, presentation formats and tools. Well-designed visu-
alizations of operations data, as a form of software visualization [11], can enable
visual analytics, i.e. “analytical reasoning facilitated by interactive visual inter-
faces” [10].

To address these concerns, we recognize three important topics that are of
interest both for research and industry, that we discuss in the following:

1. There is a need to model feedback processes that is somewhat representative
across the different organizations. We present three case studies of companies
in need of a process to facilitate feedback from operations to development.
We abstract from their needs and present a possible feedback process that
covers the concerns and needs of these organizations.

2. Given a more abstract, higher-level feedback process, there is a need to estab-
lish an organizational and technical environment where the process can be
carried out. We present a suitable environment and tooling to enable the
process.

3. We discuss feedback phases to capture a mapping of software development
life-cycle phases to operations data. This helps to demonstrate what data
and from what operations sources can be gathered and provided as feedback
in suitable format to developers.

We conclude with a summary to our discussion and formulate questions for
future work.

2 Case Studies

We characterize the feedback needs for three distinct company types to serve
as case studies for further discussion of establishing a feedback process in our
paper. This is by no means an exhaustive list and merely servers illustration
purposes.

Startup/Small Company, Public Cloud. The startup is a B2C online platform
that handles most of its transactions over its website that is operated in multiple
geographical zones in a public cloud. Besides a frontend for their customers, it
also offers additional online services for its partners, which are also hosted by the
same public cloud provider. Generally, all engineers in the company (software
and operations) are allowed to access any kind of data generated in production
when they need it to solve design time problems. However, the partner services
are perceived as more sensitive and production data is only given out after a
screening step. The process is rather ad-hoc and decisions on the legitimacy of
feedback requests are made on impromptu basis.

Feedback from Operations to Software Development 187

SME, Private Cloud/Data Center. The SME offers logistics and purchasing
decision support system for retailers. The software is either deployed on a private
cloud, for small to medium sized clients, or to a different data center location, for
enterprise clients. Access to production data is only allowed for some operations
engineers in the company. Especially for services hosted in the data centers,
compliance is a very crucial topic. Engineers, data scientists, and product owners
have to create a ticket in an issue tracking system to retrieve any kind of feedback
from production systems.

Large Corporation, On-Premise. The large corporation offers factory automa-
tion solutions. A large portion of its software is deployed on the factory floor and
control center on the client’s plant. The software is often dependent on a specific
hardware platform or connected to specific equipment. The whole system is ver-
tically integrated to suite the needs of the factory in its specific industry, such as
car production. Typically the client manages their own IT infrastructure behind
a firewall, or even runs the factory automation solution in physically isolated
networks. In this business context, solution providers and software providers are
strictly excluded from accessing production data, which also includes software
performance measures during production. Feedback is passed through business
boundaries on the basis of legally binding agreements that require the processing
and approval of multiple departments and multiple management levels in both
parties.

Looking at the case studies, we can see that there is not one definite feedback
process to rule them all. For companies doing most of their business online, both
the development and operations are typically managed within the same com-
pany. However, for many large organizations the feedback from operations to
development introduces cross-company concerns regarding data ownership and
transactions. A common development context consists of three key activities:
product development, solution development, and operations. While development
mainly is managed with internal resources, tailoring a solution for a particular
customer often requires external consultants to provide domain knowledge. Fur-
thermore, the customer is typically responsible for the operations, i.e. it belongs
to another company.

In a cross-company setting, several questions regarding feedback from oper-
ations to development arise. Who owns the operations data? How should it be
made available to product development? Should solution architects, that act as
mediators, have access to the same feedback? These issues are quite explicitly
visible when it comes to cross-company boundaries in terms of operations feed-
back. It is more difficult to pinpoint these boundaries when they manifest in
more implicit ways. In the case of the startup and SME in our case studies,
operations feedback is, in theory, accessible within the same company or even
division. However, in practice, the same questions of ownership and access of
operations feedback arise. It is just that there is more potential for misuse and
non-compliance when multiple companies are involved.

A feedback process is needed, along with legal requirements, to enable feed-
back loops in each of these contexts. There is a need for the customer on the

188 J. Cito et al.

operations side to have some form of feedback control (i.e. a filter) to explicitly
toggle what kind of (operations data) logs, metrics, and usage data to expose to
product development.

In Fig. 1, we attempt to model a feedback process that abstracts over the
needs on a feedback pipeline that we extracted from our case studies. In the
following, we briefly discuss the interactions in the process.

3 Feedback Process

Deployment. The process is initially kicked-off with deployment of software.
Deployment can range from an automated, continuous delivery/deployment pro-
cess to releasing a software unit that requires more complex (often manual)
processes to roll out. In the former case, the process stays within a company’s
own organizational boundaries (public/private cloud or data center). Product
development together with DevOps/operations engineers from the same orga-
nization (and often from the same team) are responsible for the operability. In
the latter case, the process is delivered through consultants/solution architects
as on-premise software (sometimes to multiple, geographically distributed client
sites).

Fig. 1. Feedback process involving multiple stakeholders and organization boundaries.

Feedback Governance. In any grade between on-premise to full on cloud deploy-
ment, there needs to be control over which kind of operations feedback is avail-
able to which kind of stakeholder. This kind of governance should explicitly
provide high-level rules on how data is handled either in organizations or as
a cross-organizational concern. These rules are then implemented and enforced
by the DevOps/operations engineers by filtering and controlling runtime data.
The consequence of this part of the process is that privacy is being enforced and
product development only has access to data that exhibits no threat of violations
or non-compliance.

Feedback from Operations to Software Development 189

Decision-Making in Product Development. Once operations data passes through
governance, it becomes valuable feedback to stakeholders in product develop-
ment. Figure 1 illustrates two examples. Product/project managers can use run-
time feedback to better plan their features and optimize their project plan.
Software developers and DevOps engineers have a full picture of how users
experience their software (e.g. performance metrics, usage counters) and can
tweak program and infrastructure code to improve the overall experience. Here,
the feedback loop starts again with deploying changes to software that were
informed by better decisions through runtime feedback.

Fig. 2. (Technical) environment to facilitate feedback from operations to development.

4 Environment and Tooling

To enable efficient and fast feedback from operations to developers, a corre-
sponding environment is required that follows the previously outlined feedback
process. Figure 2 provides a high-level overview of how such an environment
could be structured.

On the operations side, which may be in-house or part of another organiza-
tion, the application itself produces diverse logs and metrics. These are filtered
and preprocessed using a Feedback Control mechanism, e.g. to enable an exter-
nal customer to define which logs and metrics are eventually stored inside the
Feedback Datastore. This mechanism allows for fine-grained privacy control,
i.e. deciding which data potentially leave the operations boundaries. The Feed-
back Datastore provides the foundation for a comprehensive interface exposed
to developers and further stakeholders (project managers, product owners, etc.)
that require feedback from operations. However, this datastore predominantly

190 J. Cito et al.

contains filtered raw data. To make this data useful, corresponding processing
and analytics steps have to be performed to eventually present actionable infor-
mation to the stakeholders such as developers. Such information can be delivered
to the stakeholders in various ways, such as dashboards, context information in
IDEs, or alerts such as e-mail notifications – as is discussed in research on rec-
ommendation systems for software engineering [12].

Various tooling options are available to implement such an environment. For
example, an ELK stack (Elasticsearch1 + Logstash2 + Kibana3) could provide
the technical foundation. Logstash is utilized to collect logs, events, and metrics
from running applications. Additional tooling or custom extensions are required
to implement the filtering as part of the Feedback Control. The Feedback Datas-
tore could be provided by Elasticsearch, a distributed document store and search
engine that exposes a RESTful API in conjunction with a powerful query DSL.
Further data processing and analytics could be implemented using Kibana, which
directly integrates with Elasticsearch. Of course, Kibana could be extended or
complemented by further tooling to perform even more sophisticated analytics
and data processing if needed. In addition to its analytics features, Kibana pro-
vides a dashboard that can be made available to stakeholders of the feedback
such as developers, operations personnel, project managers, and product owners.

The previously outlined tooling based on an ELK stack is just one exam-
ple of how the required feedback environment could be realized. For example,
fluentd is an alternative to Logstash. Fluentd integrates with other database
solutions, such as MongoDB, which could be used as an alternative to Elas-
ticsearch. Finally, data processing and analytics could be performed based on
MapReduce jobs running on an Hadoop infrastructure.

5 Feedback Phases

Feedback from operations data comes in different flavors and can be leveraged for
different purposes. To make operations feedback actionable, it has to be viewed
in the right context in the respective phase of development. Table 1 provides an
overview of examples of how such a mapping of different kinds of metric/message
types map to a phase in the software development life-cycle, with a purpose, and
what possible ways there are to present the metric to a given stakeholder. In the
following, we provide a brief overview of different relevant development phases
and map the several kinds of operations data that might be relevant. Note that,
neither the overview in the table nor the following text claim any completeness
and are simply stated to illustrate the idea of feedback phases.

Operations data can be broadly categorized in three different categories:

1. System Metrics (e.g. CPU utilization, IOPS, memory consumption, process
information)

1 https://github.com/elastic/elasticsearch.
2 https://github.com/elastic/logstash.
3 https://github.com/elastic/kibana.

https://github.com/elastic/elasticsearch
https://github.com/elastic/logstash
https://github.com/elastic/kibana

Feedback from Operations to Software Development 191

2. Application Metrics (e.g. exceptions, logs/events, usage)
3. Application System Metrics (e.g. method-level response time, load, garbage

collection metrics).

Table 1. An exemplified list of runtime metrics that benefit different phases of the
software development life-cycle.

Metric/messages Phase Purpose/stakeholder

(examples)

Presentation

Metrics from

instrumentation, Log

message frequency

In-development Informed refactoring/software

developer

IDE, dashboard

System metrics Post-CI, canary

deployment

Non-functional and

performance testing/DevOps

or performance engineer

Reports, dashboards

Application (system)

metrics

Post-deployment, Canary

deployment

User behavior, Integration

test in production/product

owner, DevOps or

performance engineer

Alerts, reports,

dashboards

By metrics, we mean to cover any kind of messages (numerical or non-
numerical) that represent the state of an application. These are created by either
observing the system or by analyzing produced log messages. This list is not
exhaustive and is only supposed to illustrate the categories. Next we discuss
four phases in the development stage where feedback from operations are valu-
able: during software development, Post-CI (Continuous Integration), Canary
Deployment, and Post-deployment.

5.1 In-Development

Application system metrics (response times and load) integrated into the IDE
give developers an intuition about runtime specifics of their methods and identi-
fies hotspots in context, i.e. when developers work with a particular set of code
artifacts. This mapping from runtime metrics to code in the IDE has been ini-
tially explored in [6]. Further, we envision to map exceptions and application
specific messages (logs) with their distribution at runtime to give an indication
of number of exceptions and events in production.

5.2 Post-CI

After CI (Continuous Integration), applications can request feedback that might
take longer to obtain, and thus is not justified to interrupt the software devel-
opment flow. A good example of such feedback is performance testing. System
metrics can serve as parameters to the testing approach or serve as a baseline
to compare the performance results.

5.3 Canary Deployment

To reduce the risk of a change in production, a canary release only rolls out
changes to a subset of users [15]. Application and system metrics are essential to

192 J. Cito et al.

detect deviations from the baseline and other forms of anomalies. Here, the pri-
mary purpose of operations feedback is to discover any mishaps and potentially
roll-back or roll-forward with a fix.

5.4 Post-deployment

Similarly to canary deployments, in the post-deployment stage we observe appli-
cation and system metrics. However, different stakeholders are involved in the
analysis for different purposes that tend to be tied for more long-term goals.
For instance, an operations engineer observes workload patterns to tune their
self-adaptive controllers (e.g. load balancers), or a product owner investigates
usage to plan upcoming releases and prioritize features.

6 Related Work

The topic under discussion is multidisciplinary covering activities in software
engineering, software performance engineering and application performance
management in particular. Achieving an holistic view of the activities, e.g. by
integrating operations data, supports DevOps. This section briefly presents a
few studies that have discussed feedback from operations to development in the
context of modern software development specifically continuous deployment and
DevOps contexts.

According to Bass et al. [2] there are other well known sources, namely stan-
dards, organizational process descriptions, and academic literature, that devel-
opers can use from an operational consideration to support them with activi-
ties such as deployment and designing of applications that are operations pro-
cess aware. The latter facilitates the ability to determine additional application
requirements and their verification in improving operations process. Their work
provides complementary sources of feedback to developers in DevOps.

Several studies [1,4,6] acknowledge great value in giving timely feedback
to developers from operations data to guide application design decisions. For
instance, Brunnert et al. [4] point out the possibility of deriving performance
models from IT operations for existing applications to enable architects and
developers to optimize the application for different design purposes, e.g. per-
formance and reliability. This is in addition to giving developers the ability
to communicate performance metrics with operations whilst also ensuring cer-
tain level of application performance across the different development phases.
However, some of these studies also note that gaining insights of the applica-
tion performance (or operations data in general) by developers can be difficult.
Brunnert et al. [4] mention several reasons including: complex system architec-
tures (implying geographical, cultural, organizational, and technical variety); con-
tinuous iteration between system life cycle phases (which means constant change
in performance models); lack of access to monitoring data and developers’ lack of
knowledge in performance engineering. To tackle the challenges, different auto-
mated approaches to support developers with performance awareness were pro-
posed most of which relate to our work. For instance, as suggested by [4], during

Feedback from Operations to Software Development 193

development, specifically unit testing, performance data of tests can be collected
and integrated with performance regression root cause analysis into a developer’s
IDE. We add to this work by abstracting and modeling the feedback process and
technical environment that is somewhat representative to different organizations.

Research on Recommendation Systems in Software Engineering (RSSE) [13]
acknowledges the value of providing information, but also stresses that the abun-
dance of information available is a serious threat to productivity – a typical
developer is likely to experience information overload. To mitigate this problem,
a well-designed system should deliver recommendations to developers in a timely
fashion, i.e. when the information is actually useful. Murphy-Hill and Murphy
[12] recommend information to be delivered with a user interface that (1) makes
the user aware of the availability of a recommendation, (2) lets the user assess
if the recommendation is useful, and (3) helps the user act on recommendations
that is valuable. All three aspects are important also when delivering feedback
from operations to developers. Five critical factors to be considered are suggested
by the authors as: understandability, transparency, assessability, trust and dis-
tractions. These aspects give useful information that is to be considered when
selecting presentation formats as well as the types of feedback. For instance, for
DevOps feedback, rich information from the operational environment should be
provided, letting the user explore it further if needed.

7 Summary and Discussion

We see DevOps as the cross-functional synergy between the software develop-
ment organization and operations engineers. This synergy can only happen if
the right culture is in place to foster communication between these roles. We
investigate the relation between operations data produced or observed when the
software is running in production and how this data can be used as feedback in
the software development process. For that, we present three case study orga-
nizations that have different needs on their operations to development feedback
pipeline, from which we abstract away and propose a more general, higher-
level feedback process. Given such a process, we discuss a technical environment
required to support this process. We sketch out different scenarios in which feed-
back is useful in different phases of the software development life-cycle. Finally,
we set our work in contrast with related literature on the topic of feedback and
recommendations in software engineering.

In future work, we plan to explore the following remaining issues in realizing
a feedback process and pipeline:

– Degree of Feedback in On-Premise Deployments: We attempt to include sce-
narios of on-premise deployments in our discussion of feedback processes. The
question is to what degree is such a feedback process doable? What are the
constraints? Is “DevOps” possible in such a scenario?

– Feedback delivery : A DevOps approach opens up for numerous opportunities
to aggregate data from operations to inform the development. However, a

194 J. Cito et al.

developer cannot possiblly digest all available information – flooding devel-
opers with operations data would inevitably result in information overload.
Rather, we stress on the need to customize the feedback delivery, considering
both what feedback should be presented to whom as well as when it should be
presented and how (i.e. in what format). This argumentation is in line with
the research on how to develop recommendation systems for developers [12].
Thus, we see feedback delivery as highly contextual, depending on the task
a developer has at hand. Future decision-support tools based on operations
data should be designed accordingly.

– Fast cycles in DevOps: We observe challenges on how to determine a normal
operative environment for detecting anomalies during software development
phases such as testing. Additionally, the technical environment of the software
development needs to be highly automated and integrated in order to supply
timely feedback. How can we best design such an environment?

– Process-clutter in large organizations: Many challenges in implementing a
feedback process might result from the size of an organization. Smaller compa-
nies can implement ad-hoc feedback processes to satisfy their feedback needs,
whereas more sophisticated feedback processes need to be implemented for
cross-organizational environments as they typically occur in the context of
large companies. How can we overcome the bureaucracy of large organiza-
tions to implement an effective feedback process in a DevOps context?

Acknowledgment. This paper resulted from initial discussions at the GI-sDagstuhl
Seminar: “Software Performance Engineering in the DevOps World” (seminar number
16394).

References

1. Barik, T., DeLine, R., Drucker, S., Fisher, D.: The bones of the system: a case study
of logging and telemetry at Microsoft. In: Proceedings of the 38th International
Conference on Software Engineering Companion, pp. 92–101 (2016)

2. Bass, L., Jeffery, R., Wada, H., Weber, I., Zhu, L.: Eliciting operations requirements
for applications. In: Proceedings of the 1st International Workshop on Release
Engineering, pp. 5–8 (2013)

3. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, Boston (2015)

4. Brunnert, A., et al.: Performance-oriented DevOps: a research agenda. arXiv
preprint arXiv:1508.04752 (2015)

5. Cito, J., Leitner, P., Fritz, T., Gall, H.C.: The making of cloud applications: an
empirical study on software development for the cloud. In: Proceedings of the 10th
Joint Meeting on Foundations of Software Engineering, pp. 393–403 (2015)

6. Cito, J., Leitner, P., Gall, H.C., Dadashi, A., Keller, A., Roth, A.: Runtime metric
meets developer: building better cloud applications using feedback. In: Proceed-
ings of the ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Onward!), pp. 14–27 (2015)

http://arxiv.org/abs/1508.04752

Feedback from Operations to Software Development 195

7. Dyb̊a, T., Sjøberg, D., Cruzes, D.: What works for whom, where, when, and why?
On the role of context in empirical software engineering. In: Proceedings of the
ACM-IEEE International Symposium on Empirical Software Engineering and Mea-
surement, pp. 19–28 (2012)

8. Olsson, H.H., Bosch, J.: Post-deployment data collection in software-intensive
embedded products. In: Bosch, J. (ed.) Continuous Software Engineering, pp. 143–
154. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11283-1 12

9. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation. Addison-Wesley Professional, Boston
(2010)

10. Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., Melançon,
G.: Visual analytics: definition, process, and challenges. In: Kerren, A., Stasko,
J.T., Fekete, J.-D., North, C. (eds.) Information Visualization: Human-Centered
Issues and Perspectives. LNCS, vol. 4950, pp. 154–175. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70956-5 7

11. Koschke, R.: Software visualization in software maintenance, reverse engineering,
and re-engineering: a research survey. J. Softw. Maint. Evol.: Res. Pract. 15(2),
87–109 (2003)

12. Murphy-Hill, E., Murphy, G.C.: Recommendation delivery. In: Robillard, M.P.,
Maalej, W., Walker, R.J., Zimmermann, T. (eds.) Recommendation Systems in
Software Engineering, pp. 223–242. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-45135-5 9

13. Robillard, M.P., Walker, R.J.: An introduction to recommendation systems in soft-
ware engineering. In: Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann, T.
(eds.) Recommendation Systems in Software Engineering, pp. 1–11. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-642-45135-5 1

14. Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K., Stumm, M.: Contin-
uous deployment at Facebook and OANDA. In: Proceedings of the International
Conference on Software Engineering Companion, pp. 21–30 (2016)

15. Schermann, G., Cito, J., Leitner, P., Zdun, U., Gall, H.C.: We’re doing it live: a
multi-method empirical study on continuous experimentation. Inf. Softw. Technol.
99, 41–57 (2018)

https://doi.org/10.1007/978-3-319-11283-1_12
https://doi.org/10.1007/978-3-540-70956-5_7
https://doi.org/10.1007/978-3-642-45135-5_9
https://doi.org/10.1007/978-3-642-45135-5_9
https://doi.org/10.1007/978-3-642-45135-5_1

A Lean and Devops Approach to Teach
Lean Software Development

Vladimir Ivanov(B), Dmitry Krasnikhin, Stanislav Litvinov,
Sergey Masyagin, and Giancarlo Succi

Innopolis University, Innopolis, Russia
v.ivanov@innopolis.ru

Abstract. This paper describes application of lean methodology in IT
education in a context of an undergraduate course on “Lean Software
Development” with a full devops pragmatics in mind. Strong connection
between software development and delivery processes can be build on
top of established lean practices. Which means that implementation of
end-to-end automation by devops approach needs good understanding
of lean principles and mindset. The course exposes students to the core
concepts underneath lean development in software engineering, beyond
myths and legends, emphasizing how it relates to the general principles
of Lean Development.

The principles behind Lean Management are crucial for the students,
but often even among senior managers lean is confused with the applica-
tion of some lean practices, which actually can be applied in any context
even if they have been conceived inside a lean organization. So the goal
of course is to understand the core of lean to the point of being able to
understand its applicability in new software development environment.
To achieve this goal, our paramount idea has been to get the students to
“feel” what a lean approach is, therefore, we have decided to articulate
the class in a series of activities that aim at bringing lean into the class.

1 Introduction

This paper describes application of agile and lean methodology in IT education
in a context of an undergraduate course on “Lean Software Development” with
a full devops pragmatics in mind. The course exposes students to the core con-
cepts underneath lean development in software engineering, beyond myths and
legends, emphasizing how it relates to the general principles of Lean Develop-
ment. It discusses the different possible software processes, how they can be tai-
lored, enacted, and measured. Strong connection between software development
and delivery processes can be build on top of established lean practices. Which
means that implementation of end-to-end automation by devops approach needs
good understanding of lean principles and mindset [1].

Understanding how the principles behind Lean Management is crucial for
the students – too often even among senior managers lean is confused with the
application of some lean practices, which actually can be applied in any context
c© Springer Nature Switzerland AG 2019
J.-M. Bruel et al. (Eds.): DEVOPS 2018, LNCS 11350, pp. 196–204, 2019.
https://doi.org/10.1007/978-3-030-06019-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_15&domain=pdf
https://doi.org/10.1007/978-3-030-06019-0_15

A Lean and Devops Approach to Teach Lean Software Development 197

even if they have been conceived inside a lean organization. We have recently
conducted a survey in the Innopolis Special Economic Zone, Russia, and we
have found that about 40% of the companies who claim to be lean, are actually
companies who have a traditional process in place, or even no process, and
that have institutionalized or just planned to implement some specific practices
usually present in lean environments.

So the goal of course is to understand the core of lean to the point of being
able to understand its applicability in new software development environment.

To achieve this goal, our paramount idea has been to get the students to
“feel” what a lean approach is, therefore, we have decided to articulate the class
in a series of activities that aim at bringing lean into the class.

In the course we emphase two reference principles of Lean Management intro-
duced by Ohno [3] and widely described by Womack (alone and with co-authors)
in his various books (1991, 1996, 1997) [4–6]:

(i) Elimination of waste;
(ii) Autonomation.

Elimination of waste refers to the careful analysis of all activities surround-
ing the production or the delivery of the service under the analysis and the
determination whether:

1. They contribute to the goal, or
2. They are required by the environment for norms, regulations.

If an activity would not satisfy one of these two criteria, it would be eliminated,
if needed, restructuring the remaining tasks.

Autonomation refers to the situation when the regulations (nomos in Greek
are the regulations) are applied automatically, without any specific action or
control to start them; it is what Janes and Succi (2014) [2] call “endogenous
control.”

Altogether, we have decided to articulate the course in a series of activities
that try to be lean in themselves, such as:

– Paramount individual “grand challenges”
– Standard frontal lectures based on the textbook [2]
– Individual briefings
– Skype meetings with experts
– Immediate grading
– Frequent, formalized students feedback
– Meeting with students to assess the evolution of the course.

In this chapter, after some remarks on the overall architecture of the course
(Sect. 2) we cover such activities. In Sects. 3, 4, 5, 6 and 7 we present methods
applied in the course and discuss corresponding activities, from lecturing to
learning by giving a talk and from immediate correcting and grading of student
works to participation in Skype meetings with experts. The description of each

198 V. Ivanov et al.

part of the course is supplemented with an emphasis on our idea of using lean
to explain lean concepts. Sample exercises are provided in Appendix. In Sect. 9
we summarize our approach, the outcomes of the course, and we draw the lines
for our future research.

2 General Approach for the Course

As mentioned, the idea of the course is to teach students Lean Software Develop-
ment using also a Lean approach, so to give them an even deeper understanding
of the subject, which often get overseen, as it is evident in a research recently
performed by the authors. In fact, our recent research in software companies has
identified such discrepancies in software industry. A significant fraction of soft-
ware companies claims that they are using Agile methodology while they do not
implement it – we call them Quasi Agile. In practice, such companies become
indistinguishable from those implementing “Waterfall” model.

Indeed, to know what is Lean and to apply it are two different things. Thus,
in the course we teach students that following Lean approach implies ubiquitous
application of core principles. The expected outcome of the course is getting
students to think and act in a Lean manner. In our opinion, this outcome can
be achieved by doing things according to Lean approach, rather just listening
or reading about Lean. For instance, when students are applying Lean approach
in various domains during the course, the organization and form of their learn-
ing activities in such exercises should be aligned with Lean as well. Otherwise,
not only a significant number of students find many contradictions between the
subject and the way of teaching, but the students might just miss the core idea
of the course – a risk that is well evident also by simply analysing the status of
the industry.

We have already mentioned that our two core reference principles that we
wanted to apply to the class are:

(i) Elimination of waste;
(ii) Autonomation.

We have now to understand what they mean in an educational context.
The elimination of waste appears the easier principle to implement, which

taken individually may look trivial, but properly contextualized and rationalized
may help students perceiving the deepness of the issue. Referring to elimination
of waste, we can consider a simple set of concepts and example that can help
the students to perceive the matter at stake:

– Make the best possible use of the time in class;
– Develop and give assignments in the most productive way;
– Eliminate useless administrative burdens on the side of both students and

instructor.

Autonomation has a broader and deeper implication. In a sense it should
be the core of any educational endavour, because we would like every student

A Lean and Devops Approach to Teach Lean Software Development 199

to understand her/himself the progress s/he is making in her/his education,
moreover, we would like any student to be the main actor of the education
endeavour, the real protagonist of it. This may translate in the following course
of action:

– Providing immediately the grading, even exposing to the risk of some lack of
precision, but so there is the possibility of an immediate feedback

– Sharing assignments, so students can compare their solutions and grading
with someone elses’.

These two concepts together lead to the development of the reference educa-
tional activities that have guided the development of the course, namely:

– Reading and watching (if video) home assignments regularly, to reason on
the content of the course.

– Grand challenges reports and presentations, to empirically focus on
the application of lean approaches to non traditional organisational context
in a “pair study work”, and report to the rest of the class in oral and written
forms.

– Briefings reports, in which students study a new subject in software engi-
neering, reviewing an assigned paper, preparing a presentation on it, then
giving a presentation to the class.

– Class participation and tests, to enrich the discussion with of insights,
relevant experiences, critical questions, and analysis of the material.

Students need minimal background to follow the course. The course can be
delivered even to the first-year students with minimum knowledge of program-
ming. In the following sections we present how the principles work in the context
of concrete elements of the course.

3 Frontal Lectures

Frontal lectures are guided by the course instructor and in most cases the lec-
tures are highly informal and experimental. Students are asked to participate
intensively, give their presentations, and also, sometimes, take a leading role in
the discussion, applying the ideas and explaining each other the subject, rather
than by listening to a frontal explanation.

The topics of the frontal lectures included:

– Software metrics and non invasive measurement
– Taylorism, Fordism, and Lean Thinking
– Lean in Software Engineering
– Agile Methods
– Issues in Agile, the dark side of agile
– Toward Lean Software Development
– GQM+ and Experience Factory.

200 V. Ivanov et al.

In general, the classes are organised as follows:

– The first 75 min are cross-reviews of previous lectures and presentations by
the instructor;

– The second 75 min are composed by:
• A quiz taken online and graded as a component of the final grade (see

Sect. 4);
• A presentation by a guest lecturer or from online videos (see Sects. 5

and 6);
• A personal review of the progress of the grand challenges (see Sect. 7);
• A final reflection on what has been learnt in the class.

Needless to mention, any distraction is eliminated from the lecture, so cell
phones are not allowed in any open place in the class for everyone, including the
instructor, and laptops are used exclusively when there is an activity requiring
them.

Already here we notice the presence of autonomation and of elimination of
waste:

(i) Elimination of waste: by the elimination of distraction of cell phones and
laptop, by the elimination of wait for grading and feedback

(ii) Autonomation: by the oral recap of the lecturer at the beginning of the
class, the automatically graded quiz, also at the beginning of the class, by
the personal review of the grand challenges, and by the final reflection at
the end of the class.

4 Immediate Collecting Corrections and Grading

The key point of any efficient learning activity is an immediate feedback. In
courses such Lean Software Development this is of high demand, because many
parts of the course could be considered as “fuzzy”.

In such situation students may be confused about what is correct and what
is not. Thus, activity related to assignments immediate corrections and grading
are crucial. During each class assignment of the course students use Learning
management system (Moodle) to upload their solutions. After that the instructor
immediately started grading and the results of the grading were immediately
available to students during the same class.

However, this is not the main reason to perform immediate grading. Rather,
not letting any useless time to pass between the submission of an assignment or
the performance of a task and its grading relates to the concept of elimination
of waste and the positive impact it has on the overall organization. So, while we
perform grading immediately, we encourage students to appreciate its value, the
one discussed at the beginning of this paragraph, and then we clarify how we
see it connected to the paramount principle of elimination of waste, along the
line of the principles that are inspiring this course.

A Lean and Devops Approach to Teach Lean Software Development 201

5 Briefings

Briefings are intended to broad the understanding of the subject, reading and
presenting work related to lean software development. Particular emphasis is on
empirical research, which is also one of the key tenet of lean, and on historical
work that show the roots of existing technologies, explaining how they came into
existence, and the reasons for specific constraints on them. During the briefings
students:

– Study a new subject by reviewing an assigned paper,
– Prepare a 5 min short presentation on it,
– Give this presentation to the class, with 5 min of follow-up questions and

answers.

Explicit requirement for each briefing was linking it to what has already been
explained in class, to the overall theory of software development.

The deliverable of each briefing includes:

– A one page abstract of a presentation,
– At most 5 slides for a presentation.

The page limit of abstract and presentation is hard. Students were not allowed
to overcome it lowering the standard font size, putting too much text in one
slide, enlarging the standard paper size, etc. This requirement helped students
to focus on value first, and to distinguish value of the deliverable from the size
of the deliverable’s text.

Grading criteria for the briefings include:

– Quality of the submitted documents and of the presentation,
– Originality of the understanding,
– Depth of the analysis and of the findings.

(i) Elimination of waste: short presentations and reviews are very useful for
extraction of only significant ideas and concepts. As we want students to
focus only on key points, it is unnecessary to ask them provide a compre-
hensive review and long talk. In these activities students can clearly see that
very little time is needed to extract and to deeply understand main content.

(ii) Autonomation: endogenous control is enabled with 5 min of follow-up ques-
tions and answers. This activity is a natural conclusion for the presentation
or talk. The Q/A session reveals the level of the analysis, and helps students
learn which parts can be improved.

6 Skype Meetings with Experts

Each Skype meeting with expert was prepared in the following way. Students
were asked to collect materials about an expert, find videos, papers, etc. Then
a week before the meeting students were collectively collecting questions to

202 V. Ivanov et al.

the expert. This activity was done online in a shared document, edited by all
students. The questions and topics of interest were available to an expert before
the meeting. During the meeting an expert may answer questions from the very
beginning, sometimes an expert made a short introductory talk. The list of
experts includes: Dave Thomas, Alistair Cockburn, Ron Jeffrey, Kent Beck, Jim
Highsmith, Robert Martin and others. The discussion between students and an
expert was moderated by the course instructor. Each student was able to send
a message with a question to instructor and then ask the question to an expert
upon instructors request.

This type of eduction activity again reveal our two main points:

(i) Elimination of waste: topics and questions were collected and discussed
before a meeting, thus eliminating of waste of time; collective editing reduces
duplication, which is clearly leads to wastes in such activity;

(ii) Autonomation: sessions were guided by a primary instructor who properly
structured a discussion and helped students to focus on interaction with an
expert and his answers rather than selecting which question should be the
next.

7 Grand Challenges

Grand challenges consist in applying the concept of lean software development
to other knowledge intensive industry fields and to report the results in class.
Their purpose is to determine:

– Goals of the industry under study,
– Specific measurement criteria to determine the satisfaction of a goal,
– Elaboration of strategies of such field,
– Identification of what “lean” would mean for such industry,
– Comparison with the techniques related to (lean) software development,
– Identification of what:

• The industry under study could learn from (lean) software development,
• (Lean) software development could learn from the industry under study.

Each grand challenge is undertaken by pairs or triples of students. The assign-
ment of a grand challenge is in pull-style: students can create a group and pull
assignment from the list of available grand challenges. To this end we use wiki as
a platform for group edit and a FIFO policy for assigns. After a certain deadline
grand challenges were assigned by instructor. Elimination of waste is clear here
and it was appreciated by students.

Each grand challenge required a review of the existing material (books, sci-
entific papers, articles in press, websites, news, etc.) with all such material duly
collected, analysed and cited. At the next step a grand challenge required an
empirical investigation also involving interviews with key experts of the field, if
needed.

A Lean and Devops Approach to Teach Lean Software Development 203

The outcome of grand challenge is a deliverable, which need to be supplied
through the wiki as well as a comprehensive report of the grand challenge of at
most 10 pages, and a presentation of at most 10 slides.

Grading criteria for the grand challenges were clearly stated:

– Quality of the submitted documents,
– Originality of the findings,
– Breadth of the sources used to perform the analysis,
– Depth of the analysis and of the findings,
– Clear evidence of the rational deduction of the findings from the (empirical)

analysis.

However, students were also informed that to get the best grade they were
expected to apply the principles discussed in this course about handling uncer-
tainty, irreversibility, wicked projects, etc.

8 Connection Between the Lean Approach and the
Devops Approach

It was mentioned in Sect. 1 that implementation of end-to-end automation by
devops approach needs good understanding of lean principles and mindset. Here
we show the relations and differences between Lean and Devops approaches.
Clearly, application of devops approach needs autonomation, which is one of two
pillars of the Lean approach. Indeed, autonomation leads to automatic applica-
tion of the regulations, when they needed, without any specific action or control.
For instance, live grading strongly connects two processes: (i) development of the
solution (by a student) and (ii) testing and accepting of the solution (with pos-
sibility of discussing and improving the solution). Thus, it shows to students
a clear example of connection between development and operations (grading)
as two stages of the same (learning) process. In this sense, the Lean approach
provides a key to understand main idea behind the Devops approach.

9 Discussion

In this paper we have discussed the principles that have inspired our approach
to teach lean software development, which are centered on the idea of having
student experiencing a lean organization while learning lean software produc-
tion. We have aimed at providing ways to help students to define a suitable lean
process for a new organization, a process to introduce and institutionalize it,
and an approach to measure the outcome of such introduction and institution-
alization. Moreover, we have put a significant effort in teaching students how to
identify what “lean” would mean for a given organization, with specific attention
to software development.

This work it is at start, we are now progressing our experimentation and we
hope to find other institutions interested in replicating our approach. We are
ready to share our entire experience to any interested instructor.

204 V. Ivanov et al.

Acknowledgments. We thank Innopolis University for supporting our activities and
for letting us experimenting fully our lean approaches to teaching.

Appendix

Sample Assignments of the Lean Software Development Course

Sample Assignment
Part 1: In at most 100 words describe a wicked project in which you got involved
during your life (it does not need to be in software engineering) and explain in
details why it is wicked.

Part 2: In at most 100 words describe on aspect of uncertainty discussed in the
paper you read that struck you attention and explain why it got you interested.

Sample Assignment
Describe in at most 50 worlds a key concept of this courses that you have learnt
so far, that you have never heard before the beginning of this course, and that
has struck your attention. Explain the reason for your choice in at most 50 words.

References

1. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: Devops. IEEE Softw. 33(3),
94–100 (2016)

2. Janes, A., Succi, G.: Lean Software Development in Action. Springer, Heidelberg,
Germany (2014). https://doi.org/10.1007/978-3-642-00503-9 11

3. Ohno, T.: Toyota Production System: Beyond Large-scale Production. CRC Press,
Boca Raton (1988)

4. Womack, J.P.: Lean Thinking. Simon & Schuster Limited, New York City (1997)
5. Womack, J.P., Jones, D.T.: Lean Thinking: Banish Waste and Create Wealth in

Your Corporation. Lean Enterprise Institute, Simon & Schuster (1996)
6. Womack, J.P., Jones, D.T., Roos, D.: The Machine That Changed the World: The

Story of Lean Production Harper Perennial Modern Classics. HarperCollins, New
York City (1991)

https://doi.org/10.1007/978-3-642-00503-9_11

DevOps’ Shift-Left in Practice:
An Industrial Case of Application

Miguel Jiménez1(B), Luis F. Rivera2, Norha M. Villegas2, Gabriel Tamura2,
Hausi A. Müller1, and Pilar Gallego3

1 University of Victoria, Victoria, British Columbia, Canada
{miguel,hausi}@uvic.ca

2 Universidad Icesi, Cali, Valle del Cauca, Colombia
{lfrivera,nvillega,gtamura}@icesi.edu.co

3 Carvajal Organization, Cali, Valle del Cauca, Colombia
pilar.gallego@carvajal.com

Abstract. DevOps aims at unifying software development and oper-
ations to improve products and deliver value to customers. However,
many organizations adopt DevOps mainly from a traditional perspec-
tive, that is, going forward from development to operations. In this paper
we present a case of study that illustrates how Carvajal Technology and
Services, a software development organization, improved the design of a
family of its software products by exploiting operations data. This case of
application constitutes a first incursion of the organization into DevOps,
exemplifying how the community and companies in industry can also
go backwards from operations to development and design, thus realiz-
ing the DevOps shift-left concept. The main contributions of this paper
are: (i) the analysis of the industrial DevOps application, for which the
deployment automation mechanism is crucial to realize the shift-left con-
cept effectively; and (ii) Amelia, the DSL we developed for deploying
the different (re)designs to put into operation and gather feedback data
rapidly. To evaluate the approach, the organization analyzed this incur-
sion in both directions: from development to operations, on the benefits
of deployment automation; and from operations back to development,
by improving the throughput of the original design by a factor of five.

Keywords: DevOps · Shift-left in DevOps · Software deployment ·
Deployment automation

1 Introduction

In recent years, the need for delivering added value to end-users as soon and
as frequently as possible, even due to small changes, has increased the adoption
of DevOps and continuous delivery processes [1]. Several frameworks and tools
have been proposed to address this urgency of faster and more frequent software
releases. In general, these frameworks recognize the deployment as an indepen-
dent phase in the software development life cycle. Given its crucial importance
c© Springer Nature Switzerland AG 2019
J.-M. Bruel et al. (Eds.): DEVOPS 2018, LNCS 11350, pp. 205–220, 2019.
https://doi.org/10.1007/978-3-030-06019-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_16&domain=pdf
https://doi.org/10.1007/978-3-030-06019-0_16

206 M. Jiménez et al.

for achieving continuous software delivery, there is a need for a better under-
standing of the various deployment uses and roles it can adopt for realizing the
versatile DevOps principles in both, the forward and backward directions.

On the one hand, many organizations adopt DevOps from a traditional point
of view, that is, focusing on deployment as a checkpoint going forward from devel-
opment to operations, considering it as an end for that purpose. On the other
hand, from a wider DevOps perspective, automated deployment is a crucial phase
for instance to explore, in the operations setting, different design implementa-
tions, enabling the collection of data efficiently. This data, used backwards, is key
to improving development, and in this process, deployment serves as a medium
rather than as an end. Achieving DevOps requires to find ways of traversing
development and operations processes in both directions, and the shift-left con-
cept enforces especially its backward application.

The goal of this paper is to present an industrial application that uses auto-
mated deployment as a fundamental mechanism to enable the organization to
systematically conduct experiments to collect data from the software opera-
tions and improve the design of its reference architecture. This is an example
of how organizations can realize the backward application of DevOps, centered
on automating the deployment phase. We developed this application in the con-
text of an industrial-academic partnership between Carvajal Technology and
Services, and Icesi University. Carvajal is a multinational organization with IT
and software development as one of its business units and over 1,200 software
developers.

Concretely, for the experiments conducted, we employed and combined dif-
ferent design patterns to produce several architectural configurations. However,
the number of configurations to be deployed and executed raised several chal-
lenges, such as the repeated deployment and re-deployment of the resulting con-
figurations instantiations, which requires its automation to enable the efficient
gathering of performance measurements. We addressed these challenges follow-
ing the DevOps principles. Solving them required the development of Amelia, a
domain-specific language (DSL) for automating deployments. The analysis and
evaluation results confirmed the critical role of Amelia for achieving the dual-
direction of the DevOps application—especially the shift-left concept.

This paper is structured as follows. Section 2 presents the background and
relevant DevOps concepts for this work. Section 3 presents Amelia, our language
for deployment automation. Section 4 presents the methodology used to apply
and evaluate Amelia in a dual deployment strategy to address this industry
application, and discusses the evaluation results. Finally, Sect. 5 concludes the
paper.

2 Background

This section introduces DevOps principles and relevant concepts of continu-
ous delivery upon which the subject application is built, and where automated
deployment is crucial.

DevOps’ Shift-Left in Practice: An Industrial Case of Application 207

2.1 DevOps Adoption Paths and Principles

IBM proposed four paths and respective foci of concerns for adopting DevOps:
(i) steer continuous business planning; (ii) develop/test continuous integration
and testing; (iii) deploy continuous release and deployment; and (iv) operate
continuous monitoring [2]. We follow the deploy adoption path, on which most
of the DevOps inherent concepts and capabilities were originated, including the
definition of the delivery pipeline. This pipeline enforces continuous deployment
of software to quality assurance and then to production, efficiently and in an
automated way.

Similarly, IBM consolidated the main principles developed in the evolution of
the DevOps movement [2]. Humble et al. played an influential role in advocating
the practices supporting these principles [1,3–5]. These principles are: (i) develop
and test against production-like systems, the main premise of the shift-left con-
cept moving operations toward development; (ii) deploy with repeatable and
reliable processes, for which automation is essential; (iii) monitor and validate
operational quality, based on functional and non-functional software character-
istics; (iv) amplify feedback loops, reacting and producing changes more rapidly.
For the development of our industrial case study, we followed these principles in
the context of the deployment adoption path.

2.2 Continuous Delivery

Continuous delivery is a software engineering approach—aligned with the Devops
principles and the deployment adoption path—that promotes to deliver added
value to end-users as soon and as frequently as possible, by deploying successful
releases of a subject software system [1]. The major benefits of this approach
are the empowerment of teamwork between development and operations, the
injection of fewer bugs (therefore reducing costs and risks), generation of less
pre-release team stress, and a more flexible deployment process. To achieve these
benefits, a software provider must promote a culture of collaboration between all
teams involved in the delivery process, the sharing of knowledge and tools among
participants, the establishment of measurement metrics, and the gathering of
regular feedback for continuous improvement. That is, software providers must
subscribe to DevOps principles to acquire continuous delivery benefits [4] and
guarantee a repeatable and reliable process for releasing software, the automa-
tion of deployment and operation activities, the automation of integration, test-
ing, and release processes, and the definition of an effective quality assurance
process [1].

2.3 The Deployment Life Cycle

Deployment has been characterized by the Object Management Group (OMG)
and others as “the process composed of interrelated and evolving activities that
comprise the lifecycle of a particular system to be brought into—and out of—
service” [6–9] as depicted in Fig. 1.

208 M. Jiménez et al.

Fig. 1. Deployment process adapted from Carzaniga et al. [7]

We now describe the main activities of the deployment lifecycle as outlined in
Fig. 1. release is the bridge between development and deployment. It comprises
all necessary tasks to prepare, package, and provide (e.g., via its publication) a
software product for deployment into consumer sites. Installation encompasses
all configuration operations and assembly of the resources to prepare the soft-
ware system for activation. Installation involves the transfer of the software
components from the producer site to the consumer sites. Activation allows the
consumer to actually use the software. It is usually realized through the creation
of a command for executing a binary component of the application. In the case
of complex software, it involves several components that must be executed in
a particular sequence. Deactivation means to stop any running component of
the software system. Update is a special case of installation triggered by the
release of a new version of the product or of any of its components. However, it
may require the deactivation of the software (or the component to be updated)
before executing any operation. Adaptation is similar to the update activity, in
the sense that both modify a previously installed software system. However, an
adaptation is triggered by context changes with the goal of assuring the accom-
plishment of properties or requirements in the deployed system. An adaptation
may be performed autonomously in the form of self-adaptation while the subject
system is running. Deinstallation is the activity performed when the deployed
software system is no longer required at the consumer site. Derelease (retire-
ment) is the process of finishing the support for a software system or a given
configuration of a software system. Retiring a system makes it unavailable for
future deployments.

3 Shifting Operations Left by Automating Deployment

This section presents our subject application and addressed challenges, and
illustrates how we realized the shift-left conceptual movement of operations
toward development. For this realization, the key enabler for exploiting opera-
tions results back into design, effectively, was the automation of the deployment
phase. We performed this automation with Amelia, a domain-specific language
(DSL) we developed for expressly this purpose.

DevOps’ Shift-Left in Practice: An Industrial Case of Application 209

3.1 The Industrial Case of Application

The case of application mainly answers the question of how to satisfy the perfor-
mance requirements of the core engine of a software product family that processes
large XML files for different application domains, established as a product’s qual-
ity attribute by a set of corporate clients. Of course, this is a problem of design,
critical for a reference architecture that affects an entire family of products.
Nonetheless, despite a design problem, its effective solution requires to move
operations toward development.

Post-deployment tests on the infrastructure showed serious performance lim-
itations. At this point, the organization decided to look for alternatives, and our
research group at Icesi University joined Carvajal for their first incursion into
DevOps.

As an exemplar of the product family, we selected a concrete product that
Carvajal developed for the Colombian National Agency for Overcoming Extreme
Poverty (ANSPE—initials corresponding to the Spanish name1) to allow census
workers to collect demographic data in mobile devices offline (i.e., in regions
with no access to telecommunications). After days or weeks, hundred of workers
synchronize the collected census data with a centralized server, from around the
whole country. This synchronization suffered from severe delays and timeout
errors, due to the large number of requests overloading the central server.

3.2 Addressed Challenges

Processing XML files is a common, IO-intensive task that supports core busi-
ness processes in different domains, ranging from plain data transmission and
transformation to full data interoperability, for all of which there are several
existing libraries and processing strategies. However, it is non trivial to decide
which strategy and libraries to select in a large-scale solution design space, whose
primary requirement is performance, given the combined implications they have
on this quality attribute. Moreover, these decisions must be considered in dis-
tributed processing scenarios, such as the one illustrated in Fig. 2. As a result,
most of the challenges we addressed are referred to as deployment issues, as
follows:

Variability in Architectural Configurations and Instantiations. In addi-
tion to the number of XML processing strategies and libraries, there are also a
number of domain-specific design patterns to consider among those for improv-
ing performance, such as Producer/Consumer, Master/Worker, Reactor, among
others. These design patterns’ components, along with the application’s software
components can be deployed in different processing nodes (cf. Fig. 2 for exam-
ple), yielding several architectural configurations and variations. That is, for
each architectural configuration, several instantiations are possible (e.g., vary-
ing the number of slave processing nodes). Each of these instantiations implies

1 Agencia Nacional para la Superación de la Pobreza Extrema.

210 M. Jiménez et al.

Fig. 2. Possible deployment diagram for the ANSPE application

a corresponding deployment and execution process to test on operations, whose
variations are intricate and their combinations large in number.

Dependency Management. Dependencies exist in all of the deployment vari-
ations, and along all the deployment process phases, both among software com-
ponents, and among software and hardware components.

Coordination Control. The execution of the deployment tasks and phases,
not only within a particular processing node but also among all of them, must
be coordinated and controlled along all consumer sites, especially in the case of
distributed software systems such as the ANSPE. This coordination and control
must observe the deployment dependencies of each particular application.

Modularity and Composability. Deployment tasks and phases should be
specifiable in independent but composable modules. Specification encapsulation
and modularity should allow abstraction scalability and factoring out common

DevOps’ Shift-Left in Practice: An Industrial Case of Application 211

and repeatable deployment tasks in separate modules, each having well defined
interfaces and internal specifications, and enabling the integration of other spec-
ifications. However, composability increases the complexity of dependency man-
agement through the entire deployment life cycle.

Reusability. Deployment specifications should be reusable in different deploy-
ment workflows. These specifications could be provided as part of a catalogue
to facilitate deployment design and specification. Reusability also increases the
complexity of dependency management.

Extensibility. Refers to the functional ability to easily override or extend the
behaviour of an existing deployment specification. Without adequate extensi-
bility capabilities, a deployment specification must be either modified in place
or duplicated to adapt it to be used in a different deployment context, which
reduces reusability.

3.3 The AMELIA DSL for Automating Deployment

Automatically deploying, configuring and executing scalable software-intensive
systems, whose components are distributed in several processing nodes and fea-
ture runtime dependencies among them, is not a trivial task. For instance, even
in systems such as Docker [10], the way to resolve runtime dependencies in a dis-
tributed software deployment and execution scenario is left to the developer—
checking for them in the application’s subsystems source code, which is not
appropriate nor possible in all scenarios. Therefore, we adopt the following lean
strategy for automating deployment. Instead of using heavy-weight and multi-
function systems like Kubernetes [11] and Apache Mesos [12], which were origi-
nally invented for cluster management (i.e., not exactly focused on deployment
automation), we designed and developed Amelia, a compact DSL tailored for
specifying and executing deployment workflows for distributed software systems.
Amelia contains both declarative and imperative statements that facilitate coor-
dinated control of the overall deployment process, and at the same time, offer
granular control over all of the executed operations. Amelia is fully integrated
with the Java type system. This integration allows not only to reuse existing
Java code, but also to extend the Java’s base library.

An Amelia file specification can be written as either a subsystem descrip-
tion or a deployment strategy. The first one is a modular unit representing the
overall structure of the (sub)system to deploy and corresponding deployment
operations; a subsystem description is composed of, and dependent on, other
subsystems, thus supporting modularity, dependency management, composabil-
ity and reusability. The latter is an execution flow specification that dictates
how to perform the deployment operations, thus supporting coordination and
control. For example, Amelia allows to retry tasks upon encountering a fail-
ure, or systematically repeat the same deployment procedure, which is useful
for instance to “warm up” a system before running performance tests. The cur-
rent implementation of Amelia can be used as a standalone compiler or as an

212 M. Jiménez et al.

Eclipse plug-in. From a specification file, the compiler generates an executable
Java application that automatically resolves the subsystem dependencies and
(sub)module inclusions while logging the results of deployment task execution.

Language Structure and Concepts. Listing 1.1 is an example of a system
description for the deployment of the ANSPE Monitor subsystem.2 An Amelia
specification is comprised of a package declaration section, an optional Java
import section, an optional extension section, and a type declaration section (cf.
respective highlighted regions 1 , 2 , 3 , 4 in the listing). The characteristics of
each section are as follows.

Subsystems. A subsystem collects and encapsulates the sets of variables,
parameters, and execution rules for a software subsystem to be deployed. Local
variables within a subsystem may control the execution flow (e.g., variable
compileMonitor in Listing 1.1). Parameters are used to configure a subsys-
tem according to a deployment strategy. They are included in the subsystem’s
constructor in the same order they are defined. In Listing 1.1, the (implicit)
constructor of the Monitor subsystem includes the given name for the monitor,
the communication protocol, and the target architecture. Execution rules group
commands that describe the deployment lifecycle of a subsystem; that is, they
represent the various phases of a subsystem’s deployment. The deployment of
the Monitor subsystem is described as follows: initialization checks whether the
monitor’s source code must be compiled; compilation generates an executable
artifact by compiling the monitor’s source code; and activation executes such
artefact passing the corresponding arguments.

There is no main entry point or main function in a subsystem specification
where the deployment execution starts. Instead, the execution flow is expressed
and controlled by rules and their dependencies. Thus, any rule not depending on
any other rule is triggered immediately upon deployment execution. For example,
in Listing 1.1, the compilation rule depends on the local rule initialization;
that means that the first command from the former will be executed after the
last command from the latter. A group of commands within an execution rule
is executed sequentially. A rule (i.e., its commands) is executed on at least
one host and may depend on a Boolean expression (e.g., line 44 in Listing 1.1).
Conditional expressions may be placed next to the host(s) to guard the execution
of a set of rules on a host. In case the Boolean expression is false, the set of rules
is not executed and the dependent rules are released from the dependency.

Amelia has built-in support for five commands: transfer files, change the
working directory, compile FraSCAti [13] components, run FraSCAti com-
ponents, and execute other commands (e.g., line 41 in Listing 1.1).

2 The complete versions of all examples discussed in this paper are available in
the Amelia evaluation repository https://github.com/unicesi/amelia-evaluation.

https://github.com/unicesi/amelia-evaluation

DevOps’ Shift-Left in Practice: An Industrial Case of Application 213

214 M. Jiménez et al.

The extension section of a subsystem allows expressing subsystem dependen-
cies and inclusions. In the former case, the execution of all the subsystem’s rules
depends on the successful execution of the rules defined within the subsystem’s
dependencies. In the latter case, both parameters and execution rules from the
included subsystems are made part of the including subsystem. This means that
its constructor is modified to accept the included parameters, and that included
rules are dependent on local rules. In Listing 1.1, CommonSpecification.host
refers to a parameter defined in subsystem CommonSpecification. In the same
way, the local rule initialization depends on the changeDirectory rule
defined in subsystem CommonSpecification. In this case, the dependency uses
the rule’s qualified name to avoid a name collision with a local rule.

Deployment Strategies. Deployment strategies are simpler than subsystems
and their purpose is twofold: (i) to configure subsystem instances; and (ii) to
determine how many times, and including which subsystems, must the system
be deployed.

Listing 1.2 presents the monitoring deployment strategy in detail. Line 18
shows how to instantiate the subsystem Monitor. To make a subsystem available
for deployment, the subsystem must be included in the extension section.

An invocation to the static method start initiates the deployment execu-
tion. Notice that it can be invoked more than once, always blocking until the
deployment finishes. Line 21 features a utility class that invokes a lambda func-
tion as many times as specified if its execution throws an error. In this case, if
the deployment fails this helper will retry exactly one time.

DevOps’ Shift-Left in Practice: An Industrial Case of Application 215

Extensions. Amelia supports two Java-based extension mechanisms. The first
one allows creating new commands by instantiating a CommandDescriptor—a
Java class defined in the Java runtime library. The second mechanism allows
augmenting a command by extending its behaviour. For example, fetch (cf.
line 42 in Listing 1.1) is an extension that implicitly imports a static method
that returns a new command; that is, a CommandDescriptor instance wraps
another CommandDescriptor. Thus, the extension retrieves the output from the
input command and passes it to a lambda function. Extensions can be chained
together.

3.4 Automated Deployment Execution

Performing the deployment of the various architecture configurations and vari-
ants is a demanding task, even with automated tools. It requires specifying the
deployment of each architectural configuration, whose variants and instantiations
requires repeating the same portions of the specifications. Amelia addresses
this problem by allowing parameterised and reusable modules and procedures
to specify different configuration instantiations. Each specification comprises the
deployment and configuration operations required to deploy and execute each of
the software components. Of course, some of these specifications are reusable to
the extent to which the deployment language or mechanism supports modularity
and encapsulation. For example, the Master/Worker design pattern is deployed
by creating two types of specification, a master and a worker component, whose
computing node is a parameter. Encapsulation is critical to avoid side effects. In
Amelia, these specifications are subsystems, which define explicit instantiation
parameters and a clear interface based on the deployment operations.

Furthermore, systematic deployment execution can be further exploited in
Amelia. Each execution cycle may comprise from configuration and deployment
to measurement gathering and metrics storing. In fact, new deployments can be
stopped when a previous instance already presents better metrics. Amelia’s
deployment strategies allow this by providing granular control over the deploy-
ment start and end, tight integration with the Java programming language,
and control over first-class deployment concepts, such as subsystems and their
parameters.

4 Evaluation

This section presents the analysis and evaluation of the subject industrial appli-
cation, aimed at demonstrating how to exploit automated deployment in the
DevOps process chain, not only in the forward (i.e., traditional), but also in the
backward direction.

4.1 Qualitative Analysis

In the forward direction, going from development to operations, we performed
a qualitative evaluation of the language effectiveness for specifying the deploy-
ment of different architectural configurations of the ANSPE software system.

216 M. Jiménez et al.

For this evaluation, we designed an evaluation protocol that was applied by six
Masters students, some of them members of the Carvajal engineering staff. They
developed several Amelia specifications from UML deployment diagrams rep-
resenting some ANSPE architecture configuration variants. These were variants
of two design patterns: Producer/Consumer and Reactor; all variants used RMI
as the communication protocol and executed on the same middleware. The first
configuration required four processing nodes, while the second required twelve;
in both cases, only one Consumer component was deployed on each processing
node. Then, the participants completed a questionnaire regarding their expe-
rience. Based on their answers, we evaluated the language effectiveness using
FQAD, a Framework for the Qualitative Assessment of DSLs [14], which refines
a subset of quality characteristics defined in the ISO/IEC 25010:2011 standard.
Carvajal participated in the selection of the quality characteristics to evaluate:
functional suitability, usability, reliability, productivity, and expressiveness, as
defined in the standard.

In summary, Amelia as a DSL for deployment automation was evaluated
having either “full support” or “strong support” in all of these characteristics.
Given the space restrictions in this paper, we omit the details of the evaluation
protocol and its execution. Nonetheless, the evaluation files are available in the
Amelia evaluation github repository.3 This repository also contains a compari-
son of Amelia with alternatives from the state of the art and practice. Among
the characteristics, functional suitability (i.e., the degree to which the DSL sup-
ports completely and appropriately the specification of scripts to automate the
deployment of distributed software) along with productivity and reliability, are
most important in gathering evidence to demonstrate deployment automation
benefits for the organization.

4.2 Quantitative Analysis

This section presents the quantitative evaluation of Amelia as the vehicle that
enables the shift-left realization (i.e., the backward direction of the DevOps
application). For this evaluation, we took advantage of the qualitative evaluation
results, that is, by directing the Masters students to refine and complete the
deployment scripts specified for that evaluation, and executing them to finally
obtain a design that satisfies the performance requirements.

The quantitative evaluation follows a four-step experimental design approach.
First, we started by selecting a set of domain-specific design patterns for improv-
ing performance, suitable for our case. Second, we defined several architectural
configurations, variations and corresponding instantiations that result from the
incorporation of the selected design patterns to the ANSPE’s reference archi-
tecture, and finally adapted and completed the corresponding Amelia deploy-
ment scripts. Third, we prepared a hardware infrastructure as close as possible
to the organization’s one, with controlled conditions, and executed the experi-
ments by running the deployment scripts for each of the architectural instantia-

3 https://github.com/unicesi/amelia-evaluation.

https://github.com/unicesi/amelia-evaluation

DevOps’ Shift-Left in Practice: An Industrial Case of Application 217

tions. From these executions, the metrics of system performance were collected.
Finally, we compared the performance metrics to arrive at the best architectural
configuration.

In the following sections, we explain the experimental design, its execution
and the analysis of the results.

Experimental Design. The experimental design involved the generation of
combinatorial instantiations of architectural configurations and factors, where
the objective was to measure the performance of these configurations instatia-
tions. The experimental unit encompassed the different system architectural con-
figurations systematically. The response variable under study was performance
(throughput) in the number of XML files processed per minute. The control-
lable input factors included (i) the set of XML files with CRUD operations to
update the census and demographic status of families; (ii) the design patterns
relevant for distributed processing (e.g., Producer/Consumer (P/C) and Reac-
tor); (iii) the communications protocol used; and (iv) the number of working
components that were deployed on each slave processing node (i.e., consumers
in P/C, controllers in Reactor). The uncontrollable input factors comprised the
clock synchronization issues among the processing nodes,4 and the indispens-
able operating system processes. Table 1 summarizes and abstracts the experi-
ment design,5 for XML files of 1 Mb of application operations, and 12 processing
nodes (i.e., computers with 1 quadcore CPU).

Table 1. Factors instantiated for the experimental design

Design pattern Communications protocol No. consumers/controllers

P/C RMI 12

P/C RMI 48

P/C RMI 96

P/C Ice 12

P/C Ice 96

Reactor RMI 12

Reactor Ice 12

Experiments Execution. The experiments were executed in an infrastructure
equipped with 22 computers configured with one CPU Intel i7 quadcore, and 16
GB of RAM running Linux Fedora 25, although not all computers were used at

4 We used the Precision Time Protocol (PTP, IEEE 1588).
5 The complete version of the experiment design comprises a set of 324 configurations

resulting from the following number of instantiations: 4 patterns× 3 numbers of con-
sumers/controllers× 3 numbers of processing nodes× 3 communication protocols× 3
sizes of input files. We present a subset because of space restrictions.

218 M. Jiménez et al.

the same time in any of the experiments. As part of the configuration process
in the deployment specification, all useless and non-critical operating system
services were stopped before executing the experiments.

The steps for performing the deployment of the architectural configuration
instantiations included an important point in the pre-requisites of execution:
the database required to be restored with data backed-up exactly to replicate
the XML files to be synchronized. This implied that, previous to executing any
experiment, restoring the database was necessary.

The deployment and execution of each of the configurations of the experi-
mental design was repeated at least three times, and the performance metrics
averaged. This means that a total of 21 deployments and executions were per-
formed for the subset of the experiments outlined in Table 1. The role played
by Amelia for developing and executing these experiments was really critical,6

especially because Amelia’s reuse features allowed sharing code among all archi-
tecture variants.

Analysis of Results. The reference throughput baseline given was of 1 XML
file every 32 s (that is, 1.87 XML files per minute). Thus, we present the quan-
titative results of the experiments in Table 2 in this form.

Table 2. Execution results of the experiment

Experiment configuration Throughput

P/C, RMI, 12 components 1 file/11.35 s

P/C, RMI, 48 components 1 file/6.9 s

P/C, RMI, 96 components 1 file/6.7 s

P/C, Ice, 12 components 1 file/11.51 s

P/C, Ice, 96 components 1 file/6.1 s

Reactor, RMI, 12 components 1 file/21.95 s

Reactor, Ice, 12 components 1 file/20.51 s

According to these results, the best architectural configuration uses the Pro-
ducer/Consumer design pattern with Ice as communication protocol, distribut-
ing 96 consumers in 12 processing nodes, for a throughput of 1 file every 6.1 s,
around five times better than the reference baseline.7

In addition, it is worth noting two other points: first, that Producer/Con-
sumer is consistently and significantly better than Reactor, and second, that even
though Ice is in general better than RMI, the difference is not that significant.

6 In the complete experiments set, a total of 972 deployments and respective executions
were performed.

7 In fact, this configuration was the best among the 324 in the complete experiment.

DevOps’ Shift-Left in Practice: An Industrial Case of Application 219

5 Conclusions

Conveying good design practices into actual architectural configurations with the
purpose of guaranteeing specific quality metrics can be performed more effec-
tively when having access to gathered evidence from experimentation with sys-
tems in operation. Automated deployment is crucial for performing this exper-
imentation for an architect to select, for instance, the most appropriate design
pattern. Thus, we believe that, in the context of DevOps, realizing automated
deployment as presented in this paper, is important to make informed decisions
in the development process based on factual data gathered from operations.

In this paper, we reported on an industrial case study regarding the dual
use of automated deployment in the both directions of a DevOps setting: from
development to operations and also in the inverse direction, effectively realizing
the shift-left concept. To this end, we illustrated how our Amelia DSL facilitates
the automation of the deployment process for various architecture variants and
configurations, following the DevOps principles and the deployment adoption
path.

We applied FQAD to evaluate five quality characteristics in Amelia, con-
firming its effectiveness for deployment automation. For the quantitative eval-
uation, we used Amelia to specify and deploy 324 architectural configurations
and variations in a set of experiments. We used the experiments results to re-
design the reference architecture of our industrial subject system and improve
its throughput by a factor of five. One of our findings in this case study is that
the Producer/Consumer design pattern is consistently better than Reactor with
respect to throughput.

Acknowledgments. This work was funded in part by the National Sciences and
Engineering Research Council (NSERC) of Canada, IBM Canada Ltd. and IBM Centre
for Advanced Studies (CAS), the University of Victoria, Universidad Icesi (Colombia),
and Organización Carvajal SA (Colombia).

References

1. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation. Addison-Wesley (2011)

2. Sharma, S., Coyne, B.: DevOps for Dummies. 3rd Limited IBM edn. John Wiley
& Sons (2017)

3. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation, 1st edn. Addison-Wesley Professional
(2010)

4. Humble, J., Molesky, J.: Why enterprises must adopt devops to enable continuous
delivery. Cutter IT J. 24(8), 6–12 (2011)

5. Kim, G., Debois, P., Willis, J., Humble, J.: The DevOps Handbook: How to Cre-
ate World-class Agility, Reliability, and Security in Technology Organizations. IT
Revolution (2016)

6. OMG, Deployment: Configuration of component-based distributed applications
specification–version 4.0. Object Management Group (2006)

220 M. Jiménez et al.

7. Carzaniga, A., Fuggetta, A., Hall, R.S., Heimbigner, D., Van Der Hoek, A., Wolf,
A.L.: A characterization framework for software deployment technologies. Techni-
cal report, DTIC Document (1998)

8. Hall, R.S., Heimbigner, D., Wolf, A.L.: A cooperative approach to support soft-
ware deployment using the software dock. In: Proceedings of the 21st International
Conference on Software Engineering, ICSE 1999, pp. 174–183. ACM (1999)

9. Dearle, A.: Software deployment, past, present and future. In: 2007 Future of Soft-
ware Engineering, FOSE 2007, pp. 269–284. IEEE Computer Society (2007)

10. Willis, J.: Docker and the three ways of DevOps. Technical report, Docker Inc.
(2017)

11. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, omega, and
kubernetes. Commun. ACM 59(5), 50–57 (2016)

12. Hindman, B., et al.: Mesos: a platform for fine-grained resource sharing in the data
center. In: NSDI, vol. 11, p. 22 (2011)

13. Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.B.: A
component-based middleware platform for reconfigurable service-oriented architec-
tures. Softw.: Pract. Exp. 42(5), 559–583 (2012)

14. Kahraman, G., Bilgen, S.: A framework for qualitative assessment of domain-
specific languages. Softw. Syst. Model. 14(4), 1505–1526 (2015)

DevOps’18 Education Panel

Teaching Feedback and Challenges

Jean-Michel Bruel1(B) and Miguel Jiménez2

1 University of Toulouse, IRIT, Toulouse, France
bruel@irit.fr

2 University of Victoria, Victoria, Canada

Abstract. DevOps is increasingly becoming a de facto standard in the
industry. Every year, more and more software companies report improve-
ments on their development process and ability to deliver value-added
services. The role of Software Engineering professors, teaching boards,
and program committees is to take a step back and think over about the
skills requirements in the industry and strategies to teach these skills.
As a first exercise to discuss DevOps as part of the university curricu-
lum, the DevOps’2018 workshop organized an educational session and a
discussion panel. This paper presents the organization of this panel and
the discussions that occurred there.

Keywords: Education · DevOps

1 Organization

For this panel, we put on stage the presenters of the workshop who addressed
educational issues: Alfredo Capozucca, Christopher Jones, Manuel Mazzara and
Sebastien Mosser. Besides, we decided to invite Benoit Combemale, Professor at
the University of Toulouse. He has been kind enough to come earlier than just
the panel to participate and to attend the presentations that the panelists did
earlier in the afternoon (cf. the teaching session in the proceedings). The panel
was animated by Jean-Michel Bruel, and this report was written together with
Miguel Jiménez. As Combemale had no occasion to talk or present anything, he
was the only panelist allowed to give a short presentation1.

This report is organized as follows. Section 2 introduces and describes the pre-
liminary questions planned for the panel. Section 3 summarizes and comments
Combemale’s invited talk. Section 4 summarizes and comments the various dis-
cussions held around the prepared questions. Section 5 concludes this paper.

1 The slides of this presentation are available here: https://smart-researchteam.github.
io/slides/2018-03-06-DevOps-combemale.pdf.

c© Springer Nature Switzerland AG 2019
J.-M. Bruel et al. (Eds.): DEVOPS 2018, LNCS 11350, pp. 221–226, 2019.
https://doi.org/10.1007/978-3-030-06019-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06019-0_17&domain=pdf
https://smart-researchteam.github.io/slides/2018-03-06-DevOps-combemale.pdf
https://smart-researchteam.github.io/slides/2018-03-06-DevOps-combemale.pdf
https://doi.org/10.1007/978-3-030-06019-0_17

222 J.-M. Bruel and M. Jiménez

2 Expected Outcomes

Like the other panels and discussions in this workshop, we adopted a dynamic
and agile organization.2 The moderator had prepared a few questions for the
panelists to start the discussion and attract more questions from the attendees.
The moderator presented those questions at the beginning of the panel, right
before the invited talk. Next, we list and describe the preliminary questions.

Q1. How would you define DevOps?
We found out during the previous sessions of the workshop that there was
no consensus on the definition of DevOps. To avoid the trap of spending too
much time defining what DevOps is, the expected answer was not a typical
book definition, but the one the panelists explain to their students.

Q2. Could you share some tips on teaching DevOps?
Panelists were asked to share some tips or nice, short stories of either good
or bad teaching experiences. Something they would like to share with other
teachers. For example, during the Education session, one of the presenters
recommended not to grade commits because there may be unexpected side
effects.

Q3. What do you think about the prerequisite skills to learn DevOps?
Curriculum often talks about the expected skills the students will acquire and
prerequisite courses, but not that often in terms of competencies.

3 Invited Talk by Benoit Combemale

After the usual acknowledgments for the invitation, Benoit Combemale started
his invited talk by reinforcing that he was previously a professor of Software
Engineering (SE). He also made emphasis on the fact that his experience is
on the Dev part rather than the Ops part, as already mentioned during the
workshop. Combemale provided his understanding of the state of the practice in
DevOps. He highlighted the differences between the current practices, both in
teaching and also with all of his industrial partners. According to Benoit, what
is called DevOps is mostly the automation of what was done by hand previously
regarding build, deployment, test, monitoring and so on. In other words, it is
mostly about tools for an automation approach.

In his view, DevOps is the future of the development process as a whole. His
practice, in terms of DevOps, is usually divided into two parts. The first one,
which takes almost half of the time of the course, is a regular literature survey.
Most of our students are undergrads, which means that they may need more
internships in the industry to fully understand why DevOps is so important
for the IT industry, said Combemale and continued: so, starting by looking
at current and practical articles from the web, is really a way to show them
the scalability that is needed in a real-world environment. The second part is
addressed throughout actual code development. This part is driven by projects,
2 In potentially both classical meanings of agile: very smart or very messy.

DevOps’18 Education Panel 223

which means that the lectures are not given per se but are raised by the need
during the organization of each project.

In his course, Combemale relates to many topics he has seen in previous
courses, including programming, testing, configuring, and deploying software,
and also courses related to system configuration and visualization. His observa-
tion is that the requirements for the students are similar: to have good skills
in software development (e.g., design, programming, testing, among others). A
question then arises: is DevOps something that leverages on previous skills that
are coming from software development or can DevOps help us to learn how
to program efficiently in the modern world? Rephrasing this question, an open
issue towards teaching DevOps is whether or not it should be taught by itself
or integrated into a larger SE course. His opinion is that DevOps should be a
proper course in the curriculum. Benoit also underlined the benefit, as a teacher,
of using tools that students can access anywhere (e.g., school, home or even at
work). This benefit makes DevOps courses pretty fun for the students, as stated
by Combemale.

Of course, some teaching challenges remain. He chose to insist on the lack of
a proper and sound theory of DevOps. For example, for the composability of the
different artifacts or the different pipelines that are defined, what is the correct-
ness or how to validate these pipelines? Or even, how to orchestrate correctly
these pipelines? The scientific community should work about it in the future,
said Combemale.

Another teaching challenge is the number of tools, techniques, and languages
that are used, implying a tooling overhead and unsupported heterogeneity. It
is very difficult to ensure interoperability, synchronization, and other properties
among the different artifacts.

To conclude, Combemale shared two main observations. The first one is that
he is convinced that DevOps needs to be taught with practical labs as confirmed
by the afternoon session talks. The difficulty is to find realistic enough projects
that students can still handle. These projects are necessary to illustrate the need
for DevOps. The second observation is that, even if the course is project-driven,
students need personal assistance.

4 Discussions

The panel discussion started with the question raised by Combemale: should
DevOps be taught as a course by itself or as part of a regular SE class? In other
words, and in order to relate this question to the one about DevOps’ definition
(cf. Q1 in Sect. 2): can we define DevOps as something that needs to be mastered
as a specific course or is it only a set of assembling techniques that are already
there?

To start discussing this point, Manuel Mazzara made the parallel with how
programming was taught at the beginning in universities as part of mathematics
or physics curriculum. At some point, someone must have started such a course
as an elective one, maybe in the last year of the mathematics or physics program.

224 J.-M. Bruel and M. Jiménez

Then programming became fully part of the curriculum until finally program-
ming was an important part of a dedicated Computer Science curriculum. For
those who advocate that DevOps be a dedicated course, they might hence need
to be patient, even to simply avoid useless tensions with the teaching board.

Sebastien Mosser discussed two options that, in his opinion, need be
addressed: First, either DevOps is not a course, which implies that it does not
deserve a particular focus, but raises the question of where it should be taught
to students (i.e., as part of which course or courses). Second, it does require a
course by itself, which raises two more questions then: who should attend such
a course, and what should be the focus, Dev for Ops or the contrary? Mosser is
convinced that he cannot answer the question without having matured those two
questions. One of the attendees made a parallel with object-orientation, which
was at some point important enough to have its own dedicated course, but is
nowadays commonly included in introduction to programming courses. Another
argument for having a dedicated course on DevOps is that it helps students to
make the connection among other fundamental courses, such as programming
and systems administration.

Christopher Jones mentioned that DevOps is a very specific label that prac-
titioners attach to process improvement, within the context of software develop-
ment. Nevertheless, according to him, nothing is inherently new about DevOps,
it is simply recognizing that there are sources of friction in the development pro-
cess, and finding ways of alleviating those sources within a particular context.

For Alfredo Capozucca, DevOps comes from Software Engineering. In his
University, it is introduced in the context of methodology processes. According
to Capozucca, the marketing name today is DevOps but why not calling it
“Software Engineering 2.0?”

Switching to the question about prerequisites for attendees of a DevOps
course (cf. Q3 in Sect. 2), a first discussion starts based on some outputs from
the afternoon Education session: the interest of a holistic mindset for students,
the importance of communication skills, and the ability to work on development
projects.

Benoit Combemale’s DevOps course takes place at the end of the curriculum.
The course’s requirements for the students are: to be good in coding, with some
skills in databases and other complementary technologies. Combemale wondered
whether DevOps could also be used for teaching how to code and, therefore,
taught a lot earlier. Capozucca added that it would be good if more courses
were based on project-based learning; from the viewpoint of both the students
and teachers. Students will be ready for the DevOps course by the time they
take it. Teachers would share experiences, frameworks, and other means.

An attendee mentioned that we cannot talk about students requirements for
a course without defining the associated teaching methodology. Indeed, DevOps
is the ideal candidate for non-traditional ways of teaching, such as peer instruc-
tions, flipped classroom, problem-based learning, among others.

Another attendee pointed out that the discussions from the panel had been
focused on the Dev part of DevOps, and the Ops part was slightly touched. How

DevOps’18 Education Panel 225

does a practitioner become part of the operations staff? University programs, in
general, do not teach this specifically. We can even wonder whether any opera-
tions people come from University programs. An important question to address
would be: what are the teaching requirements for an operator (e.g., a systems
administrator) to become more DevOps akin?

The discussion then turned around the Ops people. An attendee mentioned,
based on his own experience at one of the GAFAM company, that the com-
pany’s “site reliability engineers” are, basically, the programmers who did not
make it as programmers. Joke apart, operations people often have skills, such as
problem-solving, and knowledge developers do not have. Thereby, in this transi-
tional period, where DevOps is still new, it is normal to have dedicated DevOps
courses. In the long term though, a good reason for not having a dedicated course
is that if DevOps is important, it should be included in courses teaching funda-
mental concepts. As such, in an SE course, DevOps could be addressed through
two forms: the first form is treating DevOps as a different kind of development
(i.e., with continuous integration and other agile practices). This form could
happen early in the course, where almost no additional background is required.
The second form emphasizes the Ops part, which is not typically addressed by
SE teachers. And so, in terms of prerequisites, this is what SE teachers could
improve in themselves. Most of SE teachers, at least before venturing into teach-
ing DevOps, do not know much about that part. This is really something that
SE teachers need to learn in order to be able to teach it to students.

On the question of sharing good experiences (cf. Q2 in Sect. 2), apart from
the already mentioned project-based approach, numerous people pointed out
that students’ motivation is crucial for a successful DevOps course. One way to
achieve this is by making the course optional so that students who register in the
course are truly motivated. Another good practice that was mentioned several
times turns around “small steps”. Most reported courses started, basically, with
a little, easy to achieve step (e.g., a small task where students do not start from
scratch), and then make things complicated.

Another good advice is to try, as much as possible, to bring industry partners
into the course. It can be through the presentation of their own DevOps context,
or through support on the Ops part, especially on the activities related to the
computing infrastructure. One attendee shared about the homework he assigns
to his students: they have to find an organization that claims to be successful
in practicing DevOps or one that tried and failed. Then, the students have a
big round table at the end of the term to identify common characteristics and
things that proved to work or fail.

5 Conclusion

As usual, the panel brought more questions than answers. Some of the raised
points and good practices were not specific to DevOps of course, and the main
challenge, especially from the very software-oriented audience, was to find ways

226 J.-M. Bruel and M. Jiménez

of emphasizing the Ops part of the approach. It seems that we are starting to
have some feedback on the beginning of teaching DevOps and that the future
will bring more insights very soon.

Acknowledgements. The authors would like to thank the panelists and the
DEVOPS’2018 workshop attendees for their valuable contributions.

Author Index

Bahadori, Kiyana 142
Benni, Benjamin 60
Bogner, Justus 128
Borg, Markus 184
Bruel, Jean-Michel 221

Cabot, Jordi 19
Capozucca, Alfredo 1
Castaneda, Lorena 73
Castelruiz Aguirre, Amaia 112
Cito, Jürgen 184
Collet, Philippe 60

Di Giacomo, Lucio 48
Di Nucci, Dario 48

Embury, Suzanne M. 169
Erich, Floris 89

Ferry, Nicolas 112
Fritzsch, Jonas 128

Gallego, Pilar 205
Garcia, Jokin 19
Guelfi, Nicolas 1

Ivanov, Vladimir 196

Jiménez, Miguel 73, 205, 221
Jones, Christopher 33, 155

Krasnikhin, Dmitry 196

Lavirotte, Stéphane 112
Li, Fei 184
Litvinov, Stanislav 196
Lwakatare, Lucy Ellen 184

Masyagin, Sergey 196
Mazzara, Manuel 100
Metzger, Andreas 112
Molines, Guilhem 60
Mosser, Sébastien 60
Müller, Hausi A. 73, 205
Muntés-Mulero, Victor 112

Naumchev, Alexandr 100

Page, Christopher 169
Palomba, Fabio 48
Pinna-Déry, Anne-Marie 60

Ries, Benoît 1
Rios Velasco, Erkuden 112
Rivera, Luis F. 205

Safina, Larisa 100
Sillitti, Alberto 100
Solberg, Arnor 112
Song, Hui 112
Succi, Giancarlo 196

Tamburri, Damian Andrew 48
Tamura, Gabriel 73, 205
Tigli, Jean-Yves 112

Urysov, Konstantin 100

Vardanega, Tullio 142
Villegas, Norha M. 73, 205

Wagner, Stefan 128
Wettinger, Johannes 184
Wigglesworth, Joe 73
Winter, Thierry 112

Zimmermann, Alfred 128

	Preface
	Organization
	Contents
	Design of a (Yet Another?) DevOps Course
	1 Introduction
	2 Context and Background
	2.1 The MiCS
	2.2 SWEBOK Guide and Bloom's Levels
	2.3 Existing DevOps Courses

	3 The Course
	3.1 Origins
	3.2 Initial Design

	4 Facts, Feedback and Reflections
	4.1 Objectives for the New Version

	5 New Version
	5.1 Activities and Organisation
	5.2 Grading
	5.3 Learning Outcomes

	6 Discussion
	References

	Stepwise Adoption of Continuous Delivery in Model-Driven Engineering
	1 Introduction
	2 Background
	3 Integration of MDE Tools in CD
	4 Continuous Evolution of MDE Infrastructure
	4.1 Evolution Scenario: An Example Implementation
	4.2 Adoption Levels

	5 Related Work
	6 Conclusions and Future Research Directions
	References

	A Proposal for Integrating DevOps into Software Engineering Curricula
	1 Introduction
	1.1 Challenges of Devops Education
	1.2 Scope of Devops Education

	2 Influences on Devops Curricula
	2.1 Maturity Models
	2.2 Technical Foundations
	2.3 IT Operations Foundations

	3 A Framework for DevOps Education
	4 Discussion
	5 Conclusion
	References

	Omniscient DevOps Analytics
	1 Introduction
	2 Background
	3 DevOps Omniscient Analytics
	4 Omniscient DevOps Metrics
	4.1 Organizational-Related Metrics
	4.2 Technical-Related Metrics

	5 Research Roadmap
	6 Conclusions
	References

	Teaching DevOps at the Graduate Level
	1 Introduction
	2 Challenges and Vision
	3 Course Content
	3.1 Overall Organization
	3.2 Software Architecture
	3.3 DevOps
	3.4 Evaluation

	4 Case Studies
	4.1 Reference Case Study: The Cookie Factory (TCF)
	4.2 Case Studies to be Developed by Students

	5 Conclusion
	References

	DevOps Round-Trip Engineering: Traceability from Dev to Ops and Back Again
	1 Introduction
	2 Motivation
	3 Fundamentals and Related Work
	3.1 Round-Trip Engineering
	3.2 Continuous Integration
	3.3 Infrastructure as Code
	3.4 Related Work

	4 TORNADO: A Framework for RTE in DevOps
	4.1 CI Considerations

	5 Evaluation
	5.1 Development Workflow

	6 Conclusions and Future Work
	References

	DevOps is Simply Interaction Between Development and Operations
	1 Introduction
	2 Interviews
	2.1 FinCom1
	2.2 FinCom2
	2.3 SupportCom
	2.4 PortalCom
	2.5 UtilCom
	2.6 CommunitySoft

	3 Types of Implementation
	4 DevOps as Interaction Between Development and Operations
	4.1 DevOps Departments
	4.2 DevOps Teams
	4.3 DevOps Engineers
	4.4 DevOps Tools
	4.5 CA(L)MS

	5 Conclusion
	References

	Teaching DevOps in Corporate Environments
	1 Introduction
	2 Session I: DevOps
	2.1 Training Process
	2.2 Objectives of the Training
	2.3 Analysis of the Results

	3 Session II: Agile
	3.1 Training Objectives and Process
	3.2 Analysis of the Results

	4 Lesson Learned and Conclusions
	References

	ENACT: Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems
	1 Introduction
	2 ENACT Research Roadmap
	3 ENACT Approach
	3.1 DevOps Life-Cycle of SIS

	4 The ENACT DevOps Framework
	4.1 ENACT Continuous Delivery Toolkit
	4.2 ENACT Agile Operation Toolkit
	4.3 ENACT Trustworthiness Toolkit

	5 Conclusion
	References

	From Monolith to Microservices: A Classification of Refactoring Approaches
	Abstract
	1 Introduction
	2 Architectural Refactoring and Decomposition
	3 Related Work
	4 Research Method and Search Strategy
	5 Results
	5.1 Classification
	5.2 Decision Guide

	6 Conclusion
	References

	DevOps Meets Dynamic Orchestration
	1 Introduction
	2 DevOps: An Essential Brief
	2.1 Origin and Motivation
	2.2 Seeking Infrastructure Agility

	3 Evolution Toward Accelerate Infrastructure Agility
	3.1 The Cloud as the Natural Context of Application for DevOps
	3.2 Containers and Microservices as Drivers to DevOps Collaboration

	4 Dynamic Orchestration
	5 Experimental Environment
	5.1 Experimental Results

	6 Conclusion and Future Work
	References

	Using Code Generation to Enforce Uniformity in Software Delivery Pipelines
	1 Introduction
	2 Generalized Pipeline Development Approach
	2.1 Pipeline Structure
	2.2 Pipeline Generation

	3 A Generalized Pipeline Generator
	3.1 Pipeline Definition and the Pipeline DSL
	3.2 Plugin Configuration
	3.3 Definition Parsing and Translation
	3.4 Pipeline Generation

	4 Discussion
	5 Conclusion
	References

	Effect of Continuous Integration on Build Health in Undergraduate Team Projects
	1 Introduction
	2 Literature Survey
	3 Continuous Integration at Manchester
	4 Experiment Design
	5 Data Gathering Pipeline
	6 Results
	6.1 Ability to Manage Overall Build Health
	6.2 Spread of Ability to Manage Overall Build Health
	6.3 Ability to Manage Release Build Health

	7 Threats to Validity
	8 Conclusions and Future Work
	References

	Feedback from Operations to Software Development—A DevOps Perspective on Runtime Metrics and Logs
	1 Introduction
	2 Case Studies
	3 Feedback Process
	4 Environment and Tooling
	5 Feedback Phases
	5.1 In-Development
	5.2 Post-CI
	5.3 Canary Deployment
	5.4 Post-deployment

	6 Related Work
	7 Summary and Discussion
	References

	A Lean and Devops Approach to Teach Lean Software Development
	1 Introduction
	2 General Approach for the Course
	3 Frontal Lectures
	4 Immediate Collecting Corrections and Grading
	5 Briefings
	6 Skype Meetings with Experts
	7 Grand Challenges
	8 Connection Between the Lean Approach and the Devops Approach
	9 Discussion
	References

	DevOps' Shift-Left in Practice: An Industrial Case of Application
	1 Introduction
	2 Background
	2.1 DevOps Adoption Paths and Principles
	2.2 Continuous Delivery
	2.3 The Deployment Life Cycle

	3 Shifting Operations Left by Automating Deployment
	3.1 The Industrial Case of Application
	3.2 Addressed Challenges
	3.3 The AMELIA DSL for Automating Deployment
	3.4 Automated Deployment Execution

	4 Evaluation
	4.1 Qualitative Analysis
	4.2 Quantitative Analysis

	5 Conclusions
	References

	DevOps'18 Education Panel
	1 Organization
	2 Expected Outcomes
	3 Invited Talk by Benoit Combemale
	4 Discussions
	5 Conclusion

	Author Index

