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Preface

This volume comprises the proceedings of the 13th International Conference on Data
Integration in the Life Sciences (DILS 2018), held in Hannover (Germany) during
November 20–21, 2018. DILS 2018 was hosted by TIB Leibniz Information Centre for
Science and Technology, L3S Research Center at Leibniz University of Hannover, the
Information Centre for Life Sciences (ZB MED) and the Hannover Medical School
(MHH).

The articles included in this volume went through a peer-review process where each
submission was reviewed by at least three reviewers and one senior program chair. The
submissions were evaluated in terms of relevance, novelty, significance, soundness,
and quality of the presentation. Three types of submissions were received: (1) full
papers describing solid and complete research contributions; (2) short papers presenting
results of on-going research work; and (3) poster and demonstration papers. We
accepted five full papers; eight short papers; four poster papers; and four demo papers.
Our sincere thanks go to the Program Committee members and external reviewers for
their valuable input, and for accepting our invitation to contribute to the review process.

The DILS 2018 submissions cover a wide variety of topics related to data man-
agement in the life sciences. The articles tackle open problems and technical solutions
for data integration, query processing, and analytics on big life science data coming
from diverse data sources, e.g., genomic data collections, biomedical literature, or
clinical records, and in the challenges of transforming big data into actionable insights.

We composed an exciting program that included four research sessions: (1) Big
Biomedical Data Integration and Management; (2) Data Exploration in the Life Sci-
ences; (3) Biomedical Data Analytics; and (4) Big Biomedical Applications. Addi-
tionally, the program included two invited talks; the first invited talk was on “Matching
Biomedical Ontologies for Semantic Data Integration” by Dr. Catia Pesquita, and the
second invited talk was on “The de.NBI network–A Bioinformatics Infrastructure in
Germany for Handling Big Data in Life Sciences” by Prof. Alfred Pühler. Posters and
demos were presented in a plenary session where the authors and attendees had the
opportunity to interact in an informal environment.

November 2018 Sören Auer
Maria-Esther Vidal
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Do Scaling Algorithms Preserve Word2Vec
Semantics? A Case Study for Medical Entities

Janus Wawrzinek(&) , José María González Pinto ,
Philipp Markiewka , and Wolf-Tilo Balke

IFIS TU-Braunschweig, Mühlenpfordstrasse 23, 38106 Brunswick, Germany
{wawrzinek,pinto,balke}@ifis.cs.tu-bs.de,

p.markiewka@tu-braunschweig.de

Abstract. The exponential increase of scientific publications in the bio-medical
field challenges access to scientific information, which primarily is encoded by
semantic relationships between medical entities, such as active ingredients,
diseases, or genes. Neural language models, such as Word2Vec, offer new ways
of automatically learning semantically meaningful entity relationships even from
large text corpora. They offer high scalability and deliver better accuracy than
comparable approaches. Still, first the models have to be tuned by testing dif-
ferent training parameters. Arguably, the most critical parameter is the number
of training dimensions for the neural network training and testing individually
different numbers of dimensions is time-consuming. It usually takes hours or
even days per training iteration on large corpora. In this paper we show a more
efficient way to determine the optimal number of dimensions concerning quality
measures such as precision/recall. We show that the quality of results gained
using simpler and easier to compute scaling approaches like MDS or PCA
correlates strongly with the expected quality when using the same number of
Word2Vec training dimensions. This has even more impact if after initial
Word2Vec training only a limited number of entities and their respective rela-
tions are of interest.

Keywords: Information extraction � Neural language models
Scaling approaches

1 Introduction

The current exponential growth of scientific publications in the medical field requires
innovative methods to structure the information space for important medical entities,
such as active ingredients, diseases, genes, and their relationships to each other. For
instance, a term-based search for a common disease such as diabetes in the medical
digital library PubMed leads to a search result of over 600,000 publications. Here the
automated extraction of high-quality relationships between entities contained in med-
ical literature would provide a useful tool to facilitate an exploration of large datasets.
Moreover, such an extraction could serve as a basis for numerous innovative medical
applications such as Drug Repurposing [2, 6], the discovery of drug-drug interactions
[3], the creation of biomedical databases [4], and many more. Previous work has

© Springer Nature Switzerland AG 2019
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recognized this and proposed several methods to calculate similarities between entities
to infer their relationships. These include popular approaches such as the computation
of chemical (sub-)structure similarity based on bit-fingerprints [7] or methods relying
on entity networks [5]. Recent approaches even try to calculate similarity based on
word contexts using distributional semantic models (DSMs) [1, 3, 8, 9]: here, a similar
word context points to an implicitly expressed relationship. This property is often
transferred to entities: two entities in similar linguistic contexts point to an intrinsic
relationship between these entities and possibly also to similar entity properties.
According to Baroni et al. [10], DSMs can generally be divided into count-models and
predictive models. For count-models, first word-context matrices are generated from a
text corpus, followed by matrix optimization steps such as re-weighting and dimen-
sional scaling [10]. In contrast, predictive models (also known as embedding models or
neural language models) try to predict an expected context based on numerous training
examples. Studies show that state-of-the-art predictive models, such as Word2Vec,
outperform count models in performance and scalability, in particular in semantics and
analogy tasks [10, 11].

Recently researchers [26–28] have tried to uncover the theoretical principles of
Word2Vec to reveal what is behind the embedding vectors’ semantics. In particular, the
work of [28] has demonstrated that a reformulation of the objective of the skip-gram
negative sampling implementation (SGNS) of Word2Vec leads to a mathematical
demonstration that SGNS is, in fact, an explicit matrix factorization, where the matrix
to be factorized is the co-occurrence matrix. However, little is known about the effect
of scaling algorithms on Word2Vec: do we lose its appealing semantics, or do we filter
out noise [17]? Among the popular scaling algorithms that exist, which one can pre-
serve the original semantics better? Does it make a difference which scaling algorithm
is chosen? Answering these questions can help researchers to find the optimal number
of dimensions of semantic spaces efficiently. In fact, the usually accepted ‘200–400
dimensions’ chosen when training Word2Vec (see e.g., [11, 12]) has yet to spark a
more in-depth investigation.

In this paper, we pragmatically investigate these questions to provide first insights
into the fundamental issues. We focus on a case study for medical entities motivated by
our findings in previous work. In [1] we investigated the semantic properties of
Word2Vec for pharmaceutical entity-relations and subsequently utilized them as an
alternative access path for the pharmaceutical digital library PubPharm1. In brief, we
found that semantically meaningful drug-to-drug relations are indeed reflected in the
high-dimensional word embeddings. Here, we aim to identify the effect of scaling
methods such as Multidimensional Scaling (MDS) and Principal Component Analysis
(PCA) on active substance embeddings learned by Word2Vec.

In the following, we show that scaling has a high correlation with the number of
Word2Vec training dimensions. This finding means that by using scaling, we can find
where the optimal number of training dimensions regarding purity, precision, and recall
is located. Our results can be of interest for all approaches in which Word-Embedding

1 https://www.pubpharm.de/vufind/.
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training has to be applied to massive amounts of data (Big Data) and thus exploring
different numbers of dimensions with re-training is not a practical option.

The paper is organized as follows: Sect. 2 revisits related work accompanied by our
extensive investigation of scaling approaches to embedded drug-clusters in Sect. 3. We
close with conclusions in Sect. 4.

2 Related Work

Neural Language Model Representation of Words. Semantic embeddings of words in
vector spaces have sparked interest, especially Word2Vec [11, 12] and related methods
[13–16]. Researchers have demonstrated that words with similar meanings are embedded
nearby, and even ‘word arithmetic’ can be convincingly applied. For example, the cal-
culated difference in the embedding vector space between ‘Berlin’ and ‘Germany’ is
similar to the one obtained between ‘Paris’ and ‘France’. Word2Vec representations are
learned in an unsupervisedmanner from large corpora and are not explicitly constrained to
abide by such regularities. In a nutshell, Word2Vec is a technique for building a neural
network that maps words to real number vectors. What is unique about these number
vectors is that words with similar meaning will map to similar vectors. At its core,
Word2Vec constructs a log-linear classification network. More specifically, in [11, 12]
researchers proposed two such networks: the Skip-gram and the Continuous Bag-of-
Words (CBoW). In our experiments we used the Skip-gram architecture, which is con-
sidered preferable according to the experiments reported by [12].

Multidimensional Scaling (MDS). Multidimensional Scaling [17] deals with the
problem of representing a set of n objects in a low-dimensional space in which the
distances respect the distances in the original high-dimensional space. In its classical
formalization MDS takes as input a dissimilarity matrix between pairs of objects and
outputs a coordinate matrix whose configuration minimizes a loss function called stress
or strain [17]. In our experimental setting, given a matrix of the Euclidean distances
between entities represented by Word2Vec vectors, M ¼ edi;j

� �
where edi;j is the

distance between the pair of entities i; j. MDS uses eigenvalue decomposition on the
matrix M using double centering [18]. In our experiments we used the Scikit-Learn
Python implementation [19] with default parameters except for the number of
dimensions that we exhaustively tested.

Principal Component Analysis (PCA). Principal Component Analysis is a popular data
mining technique for dimensionality reduction [25]. Given a set of data points on n
dimensions, PCA aims to find a linear subspace of dimension d lower than n such that
the data points lie mainly on this linear subspace. In our case we take the matrix Me of
Word2Vec vectors where the rows represent medical entities and columns to the
dimensions of the Word2Vec semantic space. The idea of PCA then is to treat the set of
tuples in this matrix and find the eigenvectors for MeMT

e . When you apply this
transformation to the original data, the axis corresponding to the principal eigenvector
is the one along which the points are most spread out. In other words, this axis is the
one along which the variance of the data is maximized. Thus, the original data is

Do Scaling Algorithms Preserve Word2Vec Semantics? 5



approximated by data that has many fewer dimensions and that summarizes well the
original data.

Orthogonal Procrustes. We use Orthogonal Procrustes [23] – also known as rotational
alignment – to evaluate the relative quality of two different scaling approaches. The
general idea here is to evaluate two scaling techniques without considering any specific
metric related to the clustering task. Instead it is assessed by measuring pointwise
differences, which of the two scaling approaches can better approximate the original
Word2Vec space. Orthogonal Procrustes was used before to align word embeddings
created at different time periods, i.e., to analyze semantic changes of words in dia-
chronic embeddings [21].

3 Investigation of Effect of the Dimensionality Reduction

First, we describe the methodology for generating our ground truth dataset. After this,
we describe our ground truth evaluation corpus followed by experimental set-up and
implementation decisions. Then we examine with the help of our ground truth dataset
whether the number of Word2Vec training dimensions and the number of scaling
dimensions correlate with purity, precision, recall, and F-Score. We will then perform a
mathematical analysis between MDS, PCA, and Word2Vec results based on statistical
t-test and matrix approximation methods. Afterwards we compare the runtime of MDS,
PCA and the training with different Word2Vec dimensions. Since our current study is
based on the dataset of our previous work [1], we use almost the same methodology,
evaluation corpus, implementation, and set-up decisions:

Methodology for Building our Ground-Truth Dataset
After the initial crawling step the following process can be roughly divided into four
sub-steps:

1. Preprocessing of crawled documents. After the relevant documents were crawled,
classical IR-style text pre-processing is needed, i.e., stop-word removal and stem-
ming. The pre-processing helps mainly to reduce vocabulary size, which leads to
improved performance, as well as improved accuracy. Due to their low discrimi-
nating power, all words occurring in more than 50% of the documents are removed.
Primarily, these are often used words in general texts such as ‘the’ or ‘and’, as well
as terms frequently used within a domain (as expressed by the document base), e.g.,
‘experiment’, ‘molecule’, or ‘cell’ in biology. Stemming further reduces the
vocabulary size by unifying all flections of terms. A variety of stemmers for dif-
ferent applications is readily available.

2. Creating word embeddings for entity contextualization. Currently, word embed-
dings [10] are the state-of-the-art neural language model technique to map terms
into a multi-dimensional space (usually about 200-400 dimensions are created),
such that terms sharing the same context are grouped more closely. According to
the distributional hypothesis, terms which often share the same context in larger
samples of language data, in general also share similar semantics (i.e., have a
similar meaning). In this sense, word embeddings group entities sharing the same

6 J. Wawrzinek et al.



context and thus collecting the nearest embeddings of some search entity leads to a
group of entities sharing similar semantics.

3. Filtering according to entity types. The computed word embeddings comprise at
this point a significant portion of the corpus vocabulary. For each vocabulary term
there is precisely one-word vector representation as the output of the previous
step. Each vector representation starts with the term followed by individual values
for each dimension. In contrast, classical facets only display information of the
same type, such as publication venues, (co-)authors, or related entities like genes or
enzymes. Thus, for the actual building of facets, we need only vector representa-
tions of the same entity type. Here, dictionaries are needed to sort through the
vocabulary for each type of entity separately. The dictionaries either can be directly
gained from domain ontologies, like, e.g., MeSH for illnesses, can be identified by
named entity recognizers, like e.g., the Open Source Chemistry Analysis Routines
(OSCAR, see [24]) for chemical entities, or can be extracted from open collections
in the domain, like the DrugBank for drugs.

4. Clustering entity vector representations. The last step is preparing the actual
grouping of entities closely related to each other. To do this, we apply a k-means
clustering technique on all embedded drug representations and decide for optimal
cluster sizes: in our approach optimal cluster sizes are decided according to the
Anatomical Therapeutic Chemical (ATC) Classification System2. Here ATC sub-
divides drugs according to their anatomical properties, therapeutic uses, and
chemical features.

Experimental Ground-Truth Dataset Setup
Evaluation corpus. With more than 27 million document citations, PubMed3 is the
largest and most comprehensive digital library in the bio-medical field. However, since
many documents citations do not feature full texts, we relied solely on abstracts for
learning purposes. As an intuition, the number of abstracts matching each pharma-
ceutical entity under consideration should be ‘high enough’ because with more training
data, more accurate contexts can be learned, yet the computational complexity grows.
Thus, we decided to use the 1000 most relevant abstracts for each entity according to
the relevance weighting of PubMed’s search engine [29].

Query Entities. As query entities for the evaluation, we randomly selected 275 drugs4

from the DrugBank5 collection. We ensured that each selected drug featured at least
one class label in ATC and occurred in at least 1000 abstracts on PubMed. Thus, our
final document set for evaluation contained 275,000 abstracts. Therefore, these drugs
usually have a one-word name, which makes it straightforward to filter them out after a
Word2Vec training iteration. However, besides our specific case, pharmaceutical
entities often consist of several words (e.g., diabetes mellitus) and can also have many
synonyms (e.g., aspirin/acetylsalicylic acid). Phrases and synonyms are a general

2 https://www.whocc.no/atc_ddd_index/.
3 https://www.ncbi.nlm.nih.gov/pubmed/.
4 The complete list can be downloaded under: http://www.ifis.cs.tu-bs.de/webfm_send/2295.
5 https://www.drugbank.ca/.
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problem for word embedding algorithms because they are usually trained on single
words, resulting in one vector per word and not per entity. A possible solution for such
cases is (1) applying named entity recognition in documents and (2) placing a unique
identifier at the entity’s position in the text. Here, entity recognition can be done using
PubTator6, which is a tool that can recognize pharmaceutical entities as well as their
position in text and that returns a unique MeSH-Id for each of them.

As ground truth, all class labels were crawled from DrugBank. Since the ATC
classification system shows a fine-grained hierarchical structure, we remove all finer
levels before assigning the respective class label to each drug. For example, one of the
ATC classes for the drug ‘Acyclovir’ is ‘D06BB53’. The first letter indicates the main
anatomical group, where ‘D’ stands for ‘dermatological’. The next level consists of two
digits ‘06’ expressing the therapeutic subgroup ‘antibiotics and chemotherapeutics for
dermatological use’. Each further level classifies the object even more precisely, until
the finest level usually uniquely identifies a drug. In our active ingredient collection
there are 13 different ATC class labels of the highest level. We use these 13 different
labels to divide the 275 active ingredients into 13 (ground truth) clusters.

Ground Truth Dataset Implementation and Parameter Settings

1. Text Preprocessing: Stemming and stop-word removal were performed using a
Lucene7 index. For stemming we used Lucene’s Porter Stemmer implementation.

2. Word Embeddings: After preprocessing, word embeddings were created with
Gensims’s Word2Vec8 implementation. To train the neural network, we used a
minimum word frequency of 5 occurrences. We set the word window size to 20 and
the initial layer size to 275 features per word. Training iterations were set to 4.

3. Entity filtering. While Word2Vec generated a comprehensive list of word vector
representations, we subsequently filtered out all vectors not related to any Drug-
Bank entity (resulting in 275 entity-vectors).

4. Clustering vector representations. In this step we clustered the 275 entity vector
representations obtained in the previous filtering step in 13 clusters. For the clus-
tering step we used Python [19] Multi-KMean ++ implementation.

3.1 Experimental Investigation

First, we need to clarify how a correlation between the different approaches can be
measured. We also need to determine whether the scaling approaches are faster. In this
context, the following quality criteria should be fulfilled:

• Empirical Correlation Accuracy: The result of a scaling approach should be
comparable to the result of a Word2Vec training for a fixed number of training
dimensions. Therefore, we will always determine the ‘semantic quality’ of a
semantic space by evaluating purity, F-Score, precision, and recall against the
ground truth expressed by the ATC classification. After scaling down the original

6 https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator/.
7 https://lucene.apache.org/.
8 https://radimrehurek.com/gensim/models/word2vec.html.
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Word2Vec space trained on 275 dimensions to n dimensions (where n < 275) the
semantic quality of this space needs to be compared to the respective quality of a
Word2Vec space directly trained using only n dimensions. Are the respective
qualities correlated for different values of n?

• Mathematical Accuracy: The result of a scaling should resemble the vectors of a
Word2Vec training. A similarity between the vectors would underpin the results of
our empirical study as well as help us to find possible differences between PCA and
MDS. To test our hypothesis, we perform a mathematical analysis based on sta-
tistical t-test and matrix approximation using orthogonal Procrustes.

• Scaling Performance: Performing a scaling iteration for some number of dimensions
should on average be significantly faster than training a Word2Vec model using the
same number of dimensions.

3.2 Empirical Correlation Accuracy

In our first experiment we investigate if scaling with MDS and PCA correlates with the
number of Word2Vec training dimensions regarding the following quality measures: F-
Score, precision, recall, and purity. We determine the quality measures for our clusters
using the method described in Manning et al. [20]. Initially we train Word2Vec using
275 dimensions, and we choose the maximum of 275 dimensions because of the
technical implication for calculating PCA. Technically speaking there exist a Principal
Component for each variable in the data set. However, if there are fewer samples than
variables, then the number of samples puts an upper bound on the number of Principal
Components with eigenvalues greater than zero [25]. Therefore, for this experiment, we
perform the following steps for each number of dimensions n (where n < 275):

• Scaling Step: First we scale the initially trained and filtered 275 active substance
Word2Vec vectors with dimensions n using MDS and PCA. Also, we train
Word2Vec with n dimensions on the evaluation corpus and then filter out the 275
active substance vectors.

• Clustering Step: For each of the three results from the previous step, we assign each
active ingredient to one of the possible 13 ATC class labels. Then we perform
clustering with k = 13 and a total of 50 iterations. In each clustering iteration we
calculate the quality measures mentioned above and calculate the mean values for
purity, precision, recall, and F-Score.

Figure 1 shows the respective mean values regarding each quality measure for the
different choices of dimensions. Table 1 lists the correlation (Pearson correlation
coefficient) values between the different methods. The mean values of the individual
dimensions were used for the correlation calculation. As can be seen, there is a strong
correlation for all values, whereby the values for MDS correlate best with the
Word2Vec result. Thus, scaling approaches indeed lead to similar results as Word2Vec
training.

Can the optimal training dimension be determined using a scaling method? As can
be seen, the highest mean values (Fig. 1) of the different methods are almost precisely
in the same dimension range (e.g., precision). This observation allows us to predict the
optimum number of training dimensions quite accurately using scaling approaches. Is

Do Scaling Algorithms Preserve Word2Vec Semantics? 9



the quality comparable? Surprisingly, a Word2Vec training does not always lead to the
best result. For example, we can observe that scaling for most dimensions (*200)
leads to a better result. In particular, we achieve the best purity-value with PCA. In
short, it probably pays off to use a scaling approach. The differences for the other
quality measures are rather small. For example, MDS can only achieve a *2% worse
precision result, but on the other hand, MDS scaling alone can increase the precision

Fig. 1. Precision, recall, F1, and purity mean values for PCA, MDS, and Word2Vec.

Fig. 2. Disparity comparison (lower values are better) between Word2Vec-PCA and
Word2Vec-MDS using procrustes analysis.

Table 1. Correlation (Pearson correlation coefficient) values between the different approaches.
Where PCC is the correlation coefficient between precision values, RCC between recall values,
F1CC between F1-Values, and PuCC is the correlation coefficient between purity values.

Correlation between PCC RCC F1CC PuCC

MDS-W2V 0.90 0.80 0.85 0.87
PCA-W2V 0.85 0.78 0.81 0.69
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values by up to *60%, and F1-Values up to 20%. What we can also see is that our
optimum for all quality measures lies at about 25 dimensions. This value, in turn,
deviates quite far from the recommended 200–400 dimensions for a Word2Vec
training. Our finding indicates that for a particular problem domain, as in our case, a
standard choice of dimensions for a Word2Vec training can be a disadvantage.

3.3 Mathematical Accuracy

We performed two evaluations to assess the quality of the scaling approaches that we
compared with Word2Vec. The first evaluation corresponds to what we called metric-
based analysis because specific metrics that depend on the task at hands such as
precision, recall, and F1 are needed. In contrast, non-metric based evaluation considers
only the approximation quality of the scaling algorithms regarding the original
Word2Vec space.

Metric-Based Analysis. In this first evaluation we used precision, recall, and F-Score to
perform a pair-wise t-test comparison. With a 95% confidence interval the differences
between PCA and MDS are not statistically significant for precision and F-Score.
However, in recall, the differences between PCA and MDS are statistically significant.

To provide the reader with a visual interpretation of the results found in the recall t-
test, we show in Figs. 3, 4, and 5 the Bland-Altman Plots [22] that compares MDS with
PCA, MDS with Word2Vec, and PCA with Word2Vec, respectively. Bland-Altman
plots compare in a simple plot two measurements to ascertain if indeed differences exist
between them. In the x-axis the graph shows the mean of the measurements and on the
y-axis their differences. Thus, if there are no differences, we should observe on the y-
axis that most of the values are near zero. This type of plot makes it easier to see if there
are magnitude effects, for example when small values of x and y are more similar than
large values of x and y. We can observe in that differences between PCA and
Word2Vec are negligible regarding recall values. Moreover, we can observe that the
higher the values of recall, the better PCA is in approximating Word2Vec. In summary,
the plot (Fig. 5) shows that PCA leads to a slightly better approximation of recall
values than MDS.

Non-Metric Based Analysis. Finally to evaluate the differences between MDS and
PCA, we decided to assess the approximation power of the two methods using Pro-
crustes analysis. This analysis complements our previous metric-based analysis by
introducing an evaluation of the MDS and PCA spaces regarding how good each of
them can approximate the original Word2Vec space. What we mean here by Procrustes
analysis is the following: given two identical sized matrices, Procrustes tries to apply
transformations (scaling, rotation and reflection) on the second matrix to minimize the
sum of squares of the pointwise differences between the two matrices (disparity
hereafter). Put another way, Procrustes tries to find out what transformation of the
second matrix can better approximate the first matrix. The output of the algorithm is not
only the transformation of the second matrix that best approximates matrix one but also
the disparity between them.

Do Scaling Algorithms Preserve Word2Vec Semantics? 11



Fig. 3. Bland-Altman plot using recall measures PCA vs MDS.

Fig. 4. Bland-Altman plot using recall measures MDS vsWord2Vec.

Fig. 5. Bland-Altman plot using recall measures PCA vs Word2Vec.
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We use the disparity value in our analysis to determine which of the scaling
algorithms can better approximate Word2Vec original space. Low disparity values are
better by definition. In Fig. 2 we plot the disparity values using dimensions up to 275
which is the maximum number that we can use because we have only 275 active
substances as our input matrix. To generate the plot, we train Word2Vec for dimen-
sions two up to 275. We used the original space of 275 dimensions from Word2Vec to
apply MDS and PCA using dimension from 2 up to 275. Thus, each point in the plot
shows the disparity value between the corresponding scaling algorithm and Word2Vec.
We can see that PCA outperforms MDS because it shows lower disparity values for
each of the dimensions calculated. In other words, PCA preserves the quality of the
semantics of the original Word2Vec space better than MDS.

3.4 Scaling Performance

After having shown that there is both a strong empirical as well as a robust mathe-
matical correlation between scaling approaches and a Word2Vec training using the
same number of dimensions, we then compare the runtime performance of the different
approaches. Here, we first train Word2Vec on our ground truth corpus with 275
dimensions and extract the 275 active substances vectors again. Then we scale the
result with PCA and MDS to dimensions n (where n < 275), after which we measure
the cumulative time which was required for scaling to all number of dimensions. Also,
we train Word2Vec with the different number of dimensions n (n < 275) and measure
the cumulative training time for comparison with the scaling approaches. This kind of
Word2Vec training corresponds to the usual procedure to determine an optimal result
(e.g., regarding F-Score). All three calculations are performed one after the other on the
same computer with the following characteristics: 16 Xeon E5/Core i7 Processors with
377 GB of RAM. The results of our experiments are shown in Table 2:

As can be seen in Table 2, scaling approaches need significantly less time on our
active substance dataset. Here, a runtime reduction of up to 99% can be achieved. PCA
was much faster in scaling compared to MDS. Given the observed runtime reduction, it
pays off to use scaling approaches when training on a large corpus.

Table 2. Runtime (seconds): Sum of the runtimes of the different approaches in seconds.
Runtime reduction: Reduction in % of run times compared to a Word2Vec (W2V) training

Approach Runtime (seconds) Runtime reduction

PCA 17 99.83%
MDS 1162 88.22%
W2V 9865 -
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4 Conclusions

We have conducted an experimental analysis of scaling algorithms applied over a set of
entities using neural language models for clustering purposes. Indeed, one of the most
critical parameters of implementations such as Word2 Vec is the number of training
dimensions for the neural network. Because different testing numbers are time-
consuming and thus can take hours or even days per training iteration on large text
corpora, we have investigated an alternative using scaling approaches. In particular, we
used the implementation provided by Word2 Vec and contrasted Multidimensional
Scaling and Principal Component Analysis quality. We conclude here by summarizing
our main findings for researchers and practitioners looking to use Word2 Vec in similar
problems.

Our experiments indicate that there exists a strong correlation (up to 90%)
regarding purity, F1, as well as precision and recall. We have shown that for a par-
ticular problem domain, as in our active substance case, a standard choice of dimen-
sions for a Word2 Vec training can be a disadvantage. Moreover, by mathematical
analysis we have shown that the spaces after scaling strongly resemble the original
Word2Vec semantic spaces. Indeed, the quality of the scaling approaches is quite
comparable to the original Word2Vec space: they achieve almost the same precision,
recall, and F1 measures.

As a performance bonus, we have shown that performance of scaling approaches
regarding execution times is several orders of magnitude superior to Word2Vec
training. For instance, we obtained more than 99% of time-saving when computing
PCA instead of Word2Vec training. Researchers could thus rely on initial Word2Vec
training or pre-trained (Big Data) models such as those available for the PubMed9

corpus or Google News10 with high numbers of dimensions and afterward apply
scaling approaches to quickly find the optimal number of dimensions for any task at
hand.
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Abstract. The use of similarity measures in various domains is corner-
stone for different tasks ranging from ontology alignment to information
retrieval. To this end, existing metrics can be classified into several cate-
gories among which lexical and semantic families of similarity measures
predominate but have rarely been combined to complete the aforemen-
tioned tasks. In this paper, we propose an original approach combining
lexical and ontology-based semantic similarity measures to improve the
evaluation of terms relatedness. We validate our approach through a set
of experiments based on a corpus of reference constructed by domain
experts of the medical field and further evaluate the impact of ontology
evolution on the used semantic similarity measures.

Keywords: Similarity measures · Ontology evolution
Semantic Web · Medical terminologies

1 Introduction

Measuring the similarity between terms is at the heart of many research inves-
tigations. In ontology matching, similarity measures are used to evaluate the
relatedness between concepts from different ontologies [9]. The outcomes are the
mappings between the ontologies, increasing the coverage of domain knowledge
and optimize semantic interoperability between information systems. In informa-
tion retrieval, similarity measures are used to evaluate the relatedness between
units of language (e.g., words, sentences, documents) to optimize search [39].
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The literature of this domain reveals that several families of similarity measures
can be distinguished [14,16] such as string-based, corpus-based, knowledge-based
metrics, etc. Lexical Similarity Measures (LSM) regroups the similarity families
that rely on syntactic or lexical aspects of the units of languages [29]. Such
metrics are efficient to compare strings such as “Failure of the kidney” with
“Kidney failure”. However, they do not capture very well the semantic simi-
larity. For instance, “Cancer” and “malignancy” can be totally disjointed from
the lexical point of view despite their closely related semantics. To overcome
this barrier, Semantic Similarity Measures (SSM) have been introduced. They
exploit meaning of terms to evaluate their similarity. This is done using two
broad types of semantic proxies: corpora of texts and ontologies.

The corpora proxy uses Information Content (IC-based) to observe the usage
of terms and determine the similarity based on the distribution of the words or
the co-occurrence of terms [25,26]. The ontology proxy uses the intrinsic Infor-
mation Content (iIC-based) [16], where the structure of the ontology allows
calculating some semantic similarities [6]. Both proxies have been use in several
domains, but we are working mainly with ontologies and we focus our analysis on
SSM that are iIC-based. Although single similarity measures have been success-
fully used in many works, their combination remains under explored, especially
the couple LSM/iIC-based SSM. The goal of this work is not to propose another
similarity measure, but to demonstrate that weighted combination of existing
ones can improve the outcomes.

Our motivation for this work came from the observations, in our previous
work on semantic annotations and mappings adaptation [2,3,11], that few infor-
mation is made available to understand how mappings and semantic annotations
were generated and how they are maintained over time. In order to propose an
automatic maintenance method for mappings and annotations [4], we search for
patterns that allow reasonable explanations for the selection of terms and their
relations. The similarity metrics became an essential tool for our approach. We
deal with datasets of mapping and annotations that were generated based on very
different methods (automatically and/or manually). We are interested on find-
ing a combination of methods that can better explain the reasoning behind the
generation/maintenance of mappings or annotations. The single method (LSM
or SSM) that we evaluated did not represent well the patterns that we are look-
ing for. Thus, we empirically evaluated the SSM×LSM combination and we are
presenting the outcomes of our research in this paper. Differently from other
comparative approaches that look for unifying methods or automatically select
the best single method for a specific task, the goal of our research was to look
for combinations of methods. Our ultimate goal is to define a procedure to ana-
lyze the evolution of ontologies and collect relevant information to be used to
preserve the validity of annotations and mappings.

In this paper, we present a weighting method that combines LSM and
ontology-based SSM to evaluate the relatedness between terms (word or multi-
token terms) in order to improve the characterization of changes occurring in the
ontology at evolution time. We based our solution on existing well known similar-
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ity measures and evaluate it using a Gold standard corpus. Our iterative method
allows to find the best weights to associate to LSM and SSM respectively. In our
experiments we used datasets constructed by experts from the medical domain
[32]. It gathers scores given by domain experts on the relatedness between terms.
We proved the validity of our measure by first showing the correlation between
the obtained values and the scores given by domain experts on the data of the
reference corpus using the Spearman’s rank correlation metric. We then use the
Fisher’s Z-Transformation to evaluate the added value of our metric with respect
to state-of-the-art similarity measures. Through this work, we are able to show:

– The added value of combining LSM and ontology-based SSM for measuring
term relatedness.

– The validity of the combination SSM×LSM with respect to experts score.
– The impact of the evolution of ontologies on the used SSM.
– The most suitable metrics and weights for SNOMED CT and MeSH.

The remainder of this article is structured as follows. Section 2 introduces the
various concepts needed to understand our approach. This includes the definition
of existing lexical and semantic similarity measures as well as the methods we
have followed to evaluate our work. Section 3 presents the related work. Section 4
describes our approach for combining lexical and semantic similarity measures
as well as our evaluation methodology while results are presented in Sect. 5.
Section 6 discuss the results. Finally, Sect. 7 wraps up with concluding remarks
and outlines future work.

2 Background

In this section, we provide the necessary background information to under-
stand the notion tackled in this paper. We start by listing the studied LSM
and SSM. We then explain the Spearman’s rank correlation and the Fisher’s
Z-transformation formulas we have used in our experiments.

2.1 Lexical Similarity Measures

In our work, we introduced lexical similarity measures through various string-
based approaches. It consists in the analysis of the composition of two strings
to determine their similarity. Two types of approach can be distinguished:
character-based and term-based. The former denotes the comparison of two
strings and the quantification of the identified differences. The latter compares
the differences between words composing the string. In our experiments, we
have used the 12 following LSM: Levenshtein, Smith-Waterman, Jaccard, Cosine,
Block Distance, Euclidean Distance, Longest Common Substring, Jaro-Winkler,
LACP, TF/IDF, AnnoMap [5] and Bigram.
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2.2 Semantic Similarity Measures

Semantic similarity measures denote a family of metrics that rely on external
knowledge to evaluate the distance between terms from their meaning point of
view. It encompasses corpus-based metrics and ontology-based which [15]. In
this work, we put the stress on ontology-based approaches (iIC-based). We have
retained 11 SSMs following a deep literature survey. Table 1 hereafter contains
the various semantic similarity measures that have been tested in our work.
Table 2 refers to iIC-based methods. Note that the SSMs methods from Table 1
use as input the outcomes of iIC-based methods. Thus, when presenting the
results we indicate the name of the SSM method as well as the iIC-based method
used as input.

Table 1. Used semantic similarity measures

SSM Description

Jiang Conrath [19] Similar to Resnik, it uses a corpus of documents in addition to
an ontology

Feature Tversky
Ratio Model [40]

Considers the features of label to compute similarity between
different concepts, but the position of the concept in the
ontology is ignored. Common features tend to increase the
similarity and other features tend to decrease the similarity

Tversky iIC Ratio
Model [8]

Lin [21] Similar to Resnik’s measure but uses a ratio instead of a
difference

Lin GraSM [7]

Mazandu [23] Combination of node and edge properties of Gene Ontology
terms

Jaccard iIC [17] It consists in the ratio between the intersection of two sets of
feature and the union of the same two sets

Jaccard 3W iIC [27]

Resnik GraSM [35] See Table 2

Resnik [35]

Sim iIC [20] Exploits iIC of the Most Informative Common Ancestor of the
concepts to evaluate

2.3 Spearman’s Rank Correlation

One of the objectives of this work is to experimentally show the complementarity
of LSM and ontology-based SSM to better evaluate the relatedness between
terms. Since we compared the results obtained experimentally with the score
assigned by domain experts, we need a method to evaluate their correlation.
Spearman’s Rank Correlation (cf. Eq. 1) is a statistical method that measures
the coefficient strength of a linear relationship between paired data [34]. In other
words, its verifies whether the values produced by automatic similarity measures
and scores given by domain specialists are correlated.
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Table 2. Information Content based measures

iIC-based metrics Description

Resnik (normalized) [12] Based on the lowest common ancestor

Sanchez [36] iIC of a concept is directly proportional to its number
of taxonomical subsumers and inversely proportional to
the amount of leaves of its hyponym treeSanchez adapted [36]

Seco [38] iIC is computed based on the number of hyponyms a
concept has in WordNet. This metric does not rely on
corpus

Zhou [41] iIC considers not only the hyponyms of each word sense
in WordNet but also its depth in the hierarchy

Harispe [17] Modification of [36] in order to authorize various non
uniformity of iICs among the leafs

Max depth non linear [17] iIC of a concept is directly computed based on the
depth of the concept

Max depth linear [17]

Ancestors Norm [17] iIC of a concept is computed based on the number of
ancestors of the concept

rs = 1 − 6
∑

i di
n(n2 − 1)

(1)

In Eq. 1, di is the difference between the two ranks of each observation and
n is the number of observations.

2.4 Fisher’s Z-Transformation

Fisher’s Z-Transformation is a statistic method that allows us to verify whether
two nonzero’s Spearman’s rank coefficients are statistically different [34]. The
corresponding formula is:

z =
1
2

ln
(

1 + rs
1 − rs

)

(2)

Through this normalization of Spearman’s rank coefficient we can assure
whether rs from an automatic similarity method Xi is better than a r′

s from a
method Yi.

In order to compare various correlations, we have to apply the following
three-steps method:

– Conversion of rs and r′
s to z1 and z2 by applying Eq. 2.

– Compute the probability value ρ ∈ 0 ≤ ρ ≤ 1 through Eq. 3, where N1

and N2 are the number of elements in our dataset and erfc denotes the
complementary error function.
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– Test the null assumption H0 : rs = r′
s case ρ > 0.05 and vice versa. Never-

theless, it only can be performed when N , i.e., the number of paired data is
moderately large (N ≥ 10) to assure the statistical significance.

ρ = erfc

⎛

⎝ |z1 − z2|√
2
√

1
N1−3 + 1

N2−3

⎞

⎠ (3)

In consequence, a value smaller than 0.05 indicates that the two evaluated
measures are statistically different.

3 Related Work

SSM and LSM have been widely used in order to evaluate the relatedness between
terms specially in the biomedical domain. However, the combination of LSM
and ontology-based SSM has rarely been investigated. Relevant initiatives were
proposed in [22,32] where authors have adapted WordNet based similarity mea-
sures to the biomedical domain. Lord et al. [22] have focused on Gene Ontology,
a domain specific ontology, while Pedersen et al. [32] decided to be more generic
and have grounded their work on SNOMED CT and reinforce their metrics with
information derived from text corpora.

In the same line, the authors of [18] present a method for measuring the
semantic similarity of texts combining a corpus-based measure of semantic word
similarity and a normalized and modified version of the longest common sub-
sequence string matching algorithm. They further evaluate the proposed metric
on two well-accepted general corpus of text and show the added value of the
combination with respect to comparable existing similarity measures.

In [17], the authors have investigated a broad range of semantic similarity
measures to identify the core elements of the existing metrics with a particular
focus on ontology-based measures. They further came up with a framework aim-
ing at unifying the studied metrics and show the usability of the framework on
the same corpus that is used in the work of Petersen et al. [32].

Aouicha and Taieb [1] exploit the structure of an ontology to achieve a better
semantic understanding of a concept. Their Information Content-based seman-
tic similarity measure consists in expressing the IC by weighting each concept
pertaining to the ancestors’ subgraph modeling the semantics of a biomedical
concept. They validated the added value of their work on three datasets including
the one we are using in this work [32].

The work presented in [37] classifies ontology-based semantic similarity
measures. They distinguish between edge-counting approaches, Feature-based
approaches and intrinsic content ones. Moreover, they defined another ontology-
based measure. Their metric considers as features the hierarchy of concepts struc-
turing the ontology in order to evaluate the amount of dissimilarity between
concepts. In other words, they assume that a term can be semantically different
from other ones by comparing the set of concepts that subsume it.
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Oliva et al. [29] have defined the SyMSS method consisting in assessing the
influence of the syntactic aspect of two sentences in calculating the similarity.
Sentences are expressed as a tree of syntactic dependences. It relies on the obser-
vation that a sentence is made up of the meaning of the words that compose
it as well as the syntactic links among them. The semantics of these words is
evaluated on WordNet that may be problematic for the biomedical domain since
WordNet does not contain specific medical terms.

Ferreira et al. [13] defined a measure to evaluate the similarity between sen-
tences taking into account syntactic, lexical and semantic aspects of the sentence
and of the words composing it. In their work the semantics of words is obtained
by querying the FrameNet database and not via ontologies.

Similarity measures have also been used for ontology matching. In [28], the
authors have combined three kinds of different similarity measures: lexical-based,
structure-based, and semantic-based techniques as well as information in ontolo-
gies including names, labels, comments, relations and positions of concepts in
the hierarchy and integrating WordNet dictionary to align ontologies.

As shown in this section, existing work rarely consider the couple
LSM/ontology-based SSM to measure similarity between terms. Moreover, the
only combination that we have found exploit very specific or highly generic
ontologies like GO and WordNet which are not tailored to evaluate medical
terms. In this work we are proposing a combination of LSM/ontology-based SSM
with ontology representing the medical domain at the right level of abstraction.

4 A New Metric for Measuring Medical Term Similarity

In this section, we introduce the approach we propose to combine LSM and SSM
in order to measure the similarity between medical terms. We continue with the
description of the experimental setup we have defined to assess the added value
of the proposed combination.

4.1 Combining Lexical and Semantic Similarity Measures

As illustrated in Sect. 3, ontology-based SSM and LSM have rarely been com-
bined to measure the similarity between medical terms. To this end, we propose
a new metric that combines ontology-based SSM and LSM as a weighted arith-
metic mean, see Eq. 4. It determines the similarity between labels of two concept
ci and cj by applying the mentioned similarity measures over two respective con-
cepts, e.g., C0035078:Renal failure ↔ C0035078:Kidney failure and attributing
weights to each similarity.

In Eq. 4, the values LSMscore and SSMscore represent the normalized sim-
ilarity scores given by metrics like Levenshtein and Resnik 1995 GraSM. The
variables α and τ are the weights, varying in the interval of [0.1, 1] with an
incremental step of 0.1. It allows to change the contribution of each measure to
calculate the final similarity. For instance, the configuration α = 0.8 and τ = 0.3
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describe a situation where the semantic metrics are more precise than the Lexical
one, but the Lexical one also contributes to the final similarity value.

simi(ci, cj) =
(SSMscore(ci, cj) ∗ α) + (LSMscore(ci, cj) ∗ τ)

α + τ
(4)

4.2 Experimental Assessment

To conduct an experimental evaluation of our new metric, we have designed a
method that is based on the use of standard terminologies and existing bench-
marks in order to compare our results with those generated using related work.

Terminologies

In our experiments, we have used Medical Subject Headings (MeSH) and Sys-
tematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) to test
the SSM. These terminologies were extracted from the UMLS. Our experiments
have been done using the versions 2009AA to 2014AA (excluding the AB ver-
sions). In contrast to existing comparable approaches, we consider the evolution
of concepts.

Benchmarks

We have used the three datasets suggested by [24] to evaluate our approach.
We first used MayoSRS [31]. It contains 101 pairs of concept labels together
with a score assigned to each pair denoting their relatedness. The value of the
score, ranging from 0 to 10, is determined by domain experts. 0 represents a low
correlation while 10 denotes a strong one.

The second dataset we have used is a subset of MayoSRS [31] made up of 30
pairs of concept labels. For this dataset, a distinction is made between the two
categories of experts: coders and physicians and the values of the relatedness
score is ranging from 1 (unrelated) to 4 (almost synonymous).

The third dataset is the UMNSRS described in [30]. Bigger than the two
previous ones, it is composed of 725 concept label pairs whose similarity was
evaluated by four medical experts. The similarity score of each pair was given
experimentally by users based on a continuous scale ranging from 0 to 1500.

Experimental Configuration

Our aims are twofold. First, to evaluate the capacity of our approach to improve
the similarity between pairs of concepts and second assess the stability of SSMs
over time (with respect to the evolution of implemented ontologies). In conse-
quence, we defined the three different configurations described hereafter:
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– Setup 1 aims at verifying the stability of semantic measures over time. To
do so, we follow 3 steps: (i) we prepared the gold standard and semantic
measures to be used for our experiments, e.g., dataset: MiniMayoSRS, SSM:
Jiang Conrath and iIC: Sanchez (ii) we compute the similarity results using
consecutive versions of MeSH and SNOMED CT and, (iii) We computed
and compared Fisher’s Z-Transformation to verify if the obtained results are
statistically different.

– Setup 2 verifies the number of combinations (LSM × SSM) that outperforms
the single use of LSM and SSM by making α and τ vary. For this configuration
we fixed the ontologies and then we grouped the results from all datasets to
verify how many combinations outperformed the single measures. This setup
(dataset × ontology version × measures) has produced 25920 combinations.
For the sake of readability, we only highlight the overall results and the top-10
cases in the following sections.

– Setup 3 aims at pointing out the best combinations of metrics over the three
datasets. To do so, we have tested two possibilities (i) ranking with respect
to the ontology. In this case, we fixed the ontology and then we analyzed
the performance from all combined measures across the datasets. Here we
combined all results and rank them1. (ii) Overall ranking regardless of the
ontology and datasets. In this step we combined the previous rank and verified
what measures have higher rank with lowest standard deviation.

5 Results

The results regarding the influence of ontology evolution on SSMs i.e., setup
1, can be observed in Table 3. For this experiments we only used the UMNSRS
dataset because, among all the datasets, UMNSRS was the only one to have
at least one Z-Fisher transformation value ρ ≤ 0.05, which is our threshold for
considering statistical difference between the SSMs over time. The first column
represent the iIC/SSM combination, the third column shows the versions of the
ontology that have been tested. To build this column, we have considered all
possible values of the set

{(i, j)|i, j ∈ {2009, 2010, 2011, 2012, 2013, 2014}, i < j}

The last column contains the Z-fisher transformation values obtained by com-
paring the computed iIC/SSMs and the similarity score between two terms given
by domain experts.

For a sake of readability we only show in the table the combinations for which
we obtained the highest Z-Fisher values (in green) as well as the lowest ones (in
red). As we never obtain a value below the 0.05 threshold, we can conclude that
there is no statistical difference between the value generated by any of the com-
bination which, in turn, demonstrate a stability of Eq. 4 with respect to the used

1 https://pandas.pydata.org/pandas-docs/version/0.21/generated/pandas.Series.
rank.html.

https://pandas.pydata.org/pandas-docs/version/0.21/generated/pandas.Series.rank.html
https://pandas.pydata.org/pandas-docs/version/0.21/generated/pandas.Series.rank.html
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Table 3. Stability of iIC/SSMs over time using UMNSRS dataset. We are considering
the ρ < 0.05 as statistical significance. The red color indicates the lowest Z-Fisher
values obtained in our experiments and the green indicates the highest ones.

iIC / SSM measures Years Z-fisher

Seco/Jiang Conrath 2009–2010 0.519871

Seco/Jiang Conrath 2010–2011 0.880821

Seco/Jiang Conrath 2010–2014 0.277042

Seco/Jiang Conrath 2011–2012 0.991348

Seco/Jiang Conrath 2012–2013 0.991341

Seco/Jiang Conrath 2013–2014 0.356598

Ancestors Norm/Resnik GraSM 2009–2010 0.69417

Ancestors Norm/Resnik GraSM 2010–2011 0.832429

Ancestors Norm/Resnik GraSM 2011–2012 1.0

Ancestors Norm/Resnik GraSM 2012–2013 1.0

Ancestors Norm/Resnik GraSM 2013–2014 0.793019

ontology versions. In consequence, we can conclude that SSMs are not impacted
by the evolution of the underlying ontology.

Regarding setup 2, i.e., the percentage of combinations that outperformed
the single SSMs, we observed that 5939 combinations from the 25920 possi-
bilities (23%) outperformed the single SSMs using SNOMED CT as ontology.
Concerning MeSH, only 5280 combinations from the 25920 possibilities (20%)
are better. For this set of experiments, we have used the three datasets as
well as all the mentioned ontology versions. This reveals a relatively low added
value of the random combination of LSM and SSM with respect to the single
SSM. However, when we analyzed the metrics separately, as depicted in Table 4,
we can observe that for few specific combinations, the results clearly outper-
form the single use of SSM. This is for instance the case for the combination
AnnoMap × Zhou/ResnikGraSM that is better in 91.667% of the case show-
ing a clear added value of combining LSM and SSM. Our experiments also show
that AnnoMap was the most frequent LSM that appears in the most valuable
combination. The similarity computed by AnnoMap [5], see Eq. 5, is based on
the combined similarity score from different string similarity functions, in par-
ticular TF/IDF, Trigram and LCS (longest common substring). The definition
of AnnoMap can explain our observations.

simAnnoMap = MAX(TF/IDF, TriGram,LCS) (5)

Table 5 shows combinations that do not improve the single use of SSMs at all.
We observed these poor results when we combined techniques that are not com-
plementary. For instance, Block distance, Jaccard and TF/IDF consider strings
as orthogonal spaces. When combined with iIC measures focused only in the
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Table 4. Percentage of combinations that outperforms the classic SSMs

LSM iIC/SSM %

AnnoMap Zhou/Resnik GraSM 91.6667

Resnik (Normalized)/Tversky iIC Ratio Model 91.6667

Seco/Tversky iIC Ratio Model 91.6667

Resnik (Normalized)/Resnik GraSM 87.5

Sanchez (Normalized)/Resnik 87.5

Seco/Resnik 87.5

Harispe/Jiang Conrath 87.5

Zhou/Resnik 87.5

Seco/Resnik GraSM 87.5

Sanchez (Normalized)/Resnik GraSM 87.5

Longest common
substring

Sanchez (Normalized)/Tversky iIC Ratio Model 87.5

AnnoMap Resnik (Normalized)/Resnik 87.5

Longest common
substring

Harispe/Jiang Conrath 83.3333

LACP Sanchez/Jian Conrath 83.3333

positioning of concepts in an ontology, the results are not improved (compared
with SSMs). Note that we are not pointing good or bad techniques, but we are
looking for good combination. A typical example is Sanchez (Normalized) that
is present in both Tables 4 and 5, showing that, for instance, Block distance and
Lin do not improve the outcomes, but AnnoMap and Resnik do.

Regarding setup 3, i.e., the overall rank for the best combinations, we exper-
imentally verified that our approach performed better than the single SSMs
regardless of the ontologies (here MeSH and SNOMED CT). We verified that
the best performing combination for MeSH is (AnnoMap × Seco/Jiang Conrath)
with α ∈ {0.8, 1} and τ ∈ {0.4, 0.5}. We also observed that this combination is
ranked in the top 3 best combinations but with different values for α and τ . For
SNOMED CT, another combination is ranked as the most performing one. In
the results the combination: (AnnoMap × Sanchez (Normalized)/Jiang Conrath)
with α = 1 and τ = 0.9 was ranked first. The same behavior was observed for
MeSH, where the top measure (AnnoMap × Seco/Jiang Conrath) with α = 0.8
and τ = 0.5 also appears in the top results.

The good performance of our approach is also observed when we combine all
the ontologies and dataset to produce the overall rank. The final rank remains
the same as we aimed at minimizing sum, average and standard deviation. In
our results, we observed that (AnnoMap × Seco/Jiang Conrath) with α = 0.8
and τ = 0.5 is ranked in the top-8 in MeSH. In our experiments, the combination
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Table 5. Combined measures that failed to outperform the classic ones

LSM iIC/SSM

Block distance Resnik (Normalized)/Sim iIC

Sanchez (Normalized)/Lin

Levenshtein Max Linear/Mazandu

Bigram Ancestors Norm/Resnik

TF/IDF Ancestors Norm/Resnik GraSM

AnnoMap Ancestors Norm/Jiang Conrath

Jaccard Sanchez/Jiang Conrath

Harispe/Mazandu

Longest Common Substring Ancestors Norm/Tversky iIC Ratio Norm

JaroWinkler Ancestors Norm/Resnik GraSM

LACP Ancestors Norm/Sim iIC

(AnnoMap × Seco/Jiang Conrath) with α = 0.8 and τ = 0.5 is therefore the
best one.

The main difference we have observed is regarding the UMNSRS dataset,
when we applied the combination (AnnoMap × Seco/Jiang Conrath) with α =
0.8 and τ = 0.5, the obtained similarity values were not greater than the single
SSMs. It is due to the low Spearman’s coefficient value obtained from the lexical
measure [−0.140, −0.113]. We observed that combinations using other measures,
for example, (LACP × Ancestors Norm/Lin GraSM) with α = 0.8 and τ = 0.1
show a Spearman’s score of 0.462, and performs better than the single best SSM
(0.456).

6 Discussion

The results of our experimental framework presented in Sect. 5 demonstrated
that the combination of similarity measures, LSM × SSM formalized in Eq. 4,
allows a better evaluation of medical terms relatedness. As explained in Sect. 3,
very few existing work proposed to combine LSM and ontology-based SSM.
In this paper, we bridge this gap by showing experimentally that the couple
LSM/ontology-based SSM is of added value for measuring the similarity of med-
ical terms. Our proposal even allow to tune the importance of both measures
(LSM and SSM) with the α and τ parameters depending on the context or on the
used ontologies. As a result, when calculated using single SSMs, the relatedness
between Pain and Morphine (CUIs: C0030193 and C0026549) we obtain a sim-
ilarity score of 0.27 but with our approach the similarity score increases to 0.56
which better correspond to the score given by domain specialists in UMNSRS
dataset.

Regarding the ratio of combinations that outperformed the single SSMs, we
verified that when utilizing LSMs which compare strings as a orthogonal plane,
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like TF/IDF, Jaccard or Block distance; the Spearman’s Rank Correlation is
low. We believe that the reason for this lies in the loss of information contained
in the prefixed term, e.g.,“Renal failure” ↔ “Kidney failure”. When we verified
the scores obtained for the MiniMayoSRS dataset, i.e., (4.0), these terms were
classified as strongly related. Therefore, similarity measures should compute a
higher score for this pair. However, the mentioned methods only hits a maximum
similarity of 0.5 for Cosine and 0.33 for Jaccard. On the other hand, methods
like LACP, provides a similarity of 0.77 that matches the scores given by the
domain specialists and increases the Spearman’s Rank Correlation value. Similar
behavior was observed when using Ancestors Norm as iIC. It computes scores
according to the number of ancestors from a concept divided by the total number
of concepts of an ontology, i.e., iIC = nbAncestors(v)/nbConceptInOnto. Thus,
concepts with the same number of ancestors, but in different ontology regions will
have the same iIC. This limitation can be overcome if such metrics also consider
sibling concepts. It plays a key role to determine the region of a concept in
an ontology and is widely utilized in other domains, e.g., ontology prediction,
mapping alignment as demonstrated in [10,33].

Regarding the overall rank, we observed a significant difference in the rank
of the top measures for both ontologies. When we changed the dataset, the top
measures substantially dropped their rank from a dataset to another. Since we
verified that the three datasets do not contain many concepts having the same
label, UMNSRS is the one which has the most divergence between our scores
and those given by domain experts. We explain our observations as following: (i)
the amount of cases to match with the domain specialties scores, around 175 in
UMNSRS and 30 in the others dataset; (ii) as discussed in [30] and also verified
in our experiments, the relation similarity → relatedness is directional, i.e., the
terms that are similar are also related but not the opposite, e.g., the semantic
similarity of Sinemet↔Sinemet CUIs: C0023570 and C0006982 is 0.93, while
Pain↔Morphine CUIs: C0030193 and C0026549 is 0.27.

Finally, we verified that the used SSMs are not significantly impacted by the
evolution of underlying ontologies over time. However, the size of the datasets
and the number of impacted concepts they contain may moderate our conclusion.
We have seen that the percentage of impacted concepts in the dataset is 2.8%,
while the percentage of impacted concepts in an ontology region, i.e., subClass,
superClass and Siblings is 5.53%. Furthermore, the top-k combinations in our
overall rank, implement the measures most impacted by the ontology evolution
in setup 1. This result highlights that the evolution of the ontologies has a
role during the process of calculating the SSMs similarity. Thus, future work
on semantic similarity between ontology terms has to include other pairs of
impacted concepts in their dataset to verify if the stability of these measures
and the obtained rank will remain the same.

7 Conclusion

In this paper, we have introduced a method that combine lexical and ontology-
based semantic similarity measures to better evaluate medical terms relatedness.
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We have evaluated it on three different and well-known datasets and have shown
that it outperformed single use of semantic similarity measure and contribute
to state-of-the-art as one of the first attempt to combine lexical and ontology-
based semantic similarity measures. We also demonstrated that our proposal is
not significantly affected by the evolution of underlying ontologies. In our future
work, we will further evaluate our approach using larger datasets and put this
metric in situation for maintaining semantic annotation impacted by ontology
evolution valid over time.
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Abstract. Genome analysis is a major precondition for future advances
in the life sciences. The complex organization of genome data and the
interactions between genomic components can often be modeled and
visualized in graph structures. In this paper we propose the integra-
tion of several data sets into a graph database. We study the aptness of
the database system in terms of analysis and visualization of a genome
regulatory network (GRN) by running a benchmark on it. Major advan-
tages of using a database system are the modifiability of the data set,
the immediate visualization of query results as well as built-in indexing
and caching features.

1 Introduction

Genome analysis is a specific use case in the life sciences that has to handle
large amounts of data that expose complex relationships. The size and number
of genome data sets is increasing at a rapid pace [35]. Visualization of large scale
data sets for exploration of various biological processes is essential to understand,
e.g., the complex interplay between (bio-)chemical components or the molecular
basis of relations among genes and transcription factors in regulatory networks
[23]. Therefore, visualizing biological data is increasingly becoming a vital factor
in the life sciences. On the one hand, it facilitates the explanation of the potential
biological functions of processes in a cell-type, or the discovery of patterns as
well as trends in the datasets [25]. On the other hand, visualization approaches
can help researchers to generate new hypotheses to extend their knowledge based
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on current informative experimental datasets and support the identification of
new targets for future work [21].

Over the last decade, large efforts have been put into the visualization of
biological data. For this purpose, several groups have published studies on a
variety of methods and tools for e.g., statistical analysis, good layout algorithms,
searching of clusters as well as data integration with well-known public reposi-
tories [1,3,8,15,18,27,28,32] (for details see review [14]). Recently, by reviewing
146 state-of-the-art visualization techniques Kerren et al. [13] have published
a comprehensive interactive online visualization tool, namely BioVis Explorer,
which highlights for each technique the data specific type and its characteristic
analysis function within systems biology.

A fundamental research aspect of systems biology is the inference of gene reg-
ulatory networks (GRN) from experimental data to discover dynamics of disease
mechanisms and to understand complex genetic programs [26]. For this aim, var-
ious tools (e.g., GENeVis [3], FastMEDUSA [4], SynTReN [5], STARNET2 [10],
ARACNe [19], GeneNetWeaver [27], Cytoscape [28], NetBioV [31], LegumeGRN
[32]) for the reconstruction and visualization of GRNs have been developed over
the past years and those tools are widely used by system and computational
biologists. A comprehensive review about (dis-)advantages of these tools can be
found in [14]. Kharumnuid et al. [14] have also discussed in their review that the
large majority of these tools are implemented in Java and only a few of them have
been written using PHP, R, PERL, Matlab or C++, indicating that the analysis
of GRNs with those tools, in most cases, needs a two-stage process: In the first
stage, experimental or publicly available data from databases such as FANTOM
[17], Expression Atlas [24], RNA Seq Atlas [16], or The Cancer Genome Atlas
(https://www.cancer.gov/), have to be prepared; in the second stage, network
analysis and visualization with GRN tools can be performed. This second stage
possibly involves different tools for analysis and for visualization. This requires
both time and detailed knowledge of tools and databases.

To overcome this limitation of existing tools as well as to simplify the con-
struction of GRNs, we propose in this study the usage of an integrated tool,
namely Neo4J, that offers both analysis as well as visualization functionality.
Neo4J which is implemented in Java is a very fast, scalable graph database
platform which is particularly devised for the revelation of hidden interactions
within highly connected data, like complex interplay within biological systems.
Further, Neo4J provides the possibility to construct dynamic GRNs that can be
constructed and modified at runtime by insertion or deletion of nodes/edges in
a stepwise progression. We demonstrate in this study that the usage of a graph
database could be favourable for analysis and visualization of biological data.
Especially, focusing on the construction of GRNs, it has the following advan-
tages:

– No two-stage process consisting of a data preparation phase and a subsequent
analysis and visualization phase

– Built-in disk-memory communication to load only the data relevant for pro-
cessing into main memory

https://www.cancer.gov/
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– Reliability of the database system with respect to long-term storage of the
data (as opposed to the management of CSV files in a file system)

– Advanced indexing and caching support by the database system to speed up
data processing

– Immediate visualization of analysis results even under modifications of the
data set.

The article is organized as follows. Section 2 provides the necessary back-
ground on genome regulatory networks and the selection of data sets that we
integrated in our study. Section 3 introduces the notion of graphs and properties
of the applied graph database. Section 4 reports on the experiments with several
workload queries that are applied for enhancer-promoter Interaction. Section 5
concludes this article with a discussion.

2 Data Integration

To demonstrate the usability of the Neo4J graph database for analysis and visual-
ization of biological data in the field of life sciences, we construct GRNs based on
known enhancer-promoter interactions (EPIs) and their shared regulatory pro-
cesses by focusing on cooperative transcription factors (TFs). For this purpose,
we first obtained biological data from different sources (FANTOM [17], UCSC
genome browser [11] and PC-TraFF analysis server [21]) and then performed a
mapping-based data integration process based on the following phases:

Phase 1: The information about pre-defined enhancer-promoter interactions
(EPI) is obtained from the FANTOM database. FANTOM is the international
research consortium for “Functional Annotation of the Mammalian Genome”
that stores sets of biological data for mammalian primary cell types accord-
ing to their active transcripts, transcription factors, promoters and enhancers.
Using the Human Transcribed Enhancer Atlas in this database, we collected our
benchmark data.

Phase 2: Using the UCSC genome browser, which stores a large collection
of genome assemblies and annotation data, we obtained for each enhancer and
promoter region (defined in Phase 1) the corresponding DNA sequences individ-
ually. It is important to note that while the sequences of enhancers are directly
extracted based on their pre-defined regions, we used the annotated transcrip-
tion start sites (TSS) of genes for the determination of promoter regions and
extraction of their corresponding sequences (−300 base pairs to +100 base pairs
relative to the TSS).

Phase 3: Applying the PC-TraFF analysis server to the sequences from Phase
2, we identified for each sequence a list of significant cooperative TF pairs. The
PC-TraFF analysis server also provides for each TF cooperations:

– a significance score (z-score), which presents the strength of cooperation
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– an annotation about the cooperativity of TFs—more precisely whether their
physical interaction was experimentally confirmed or not. The information
about their experimental validation has been obtained from TransCompel
(release 2014.2) [12] and the BioGRID interaction database [6].

The data integration process for the combination of data from different
sources is necessary to construct highly informative GRNs, which include com-
plex interactions between the components of biological systems. One of the key
players of these systems are the TFs which often have to form cooperative dimers
in higher organisms for the effective regulation of gene expression and orches-
tration of distinct regulatory programs such as cell cycle, development or speci-
ficity [21,29,33]. The binding of TFs occurs in a specific combination within
enhancer- and promoter regions and plays an important role in the mediation
of chromatin looping, which enables enhancer-promoter interactions despite the
long distances between them [2,20,22]. Today, it is well known that enhancers
and promoters interact with each other in a highly selective manner through
long-distance chromatin interactions to ensure coordinated cellular processes as
well as cell type-specific gene expression [2,20,22]. However, it is still challeng-
ing for life scientists to understand how enhancers precisely select their target
promoter(s) and which TFs facilitate such selection processes as well as inter-
actions. To highlight such complex interactions between the elements of GRNs
in a stepwise progression, Neo4J provides very effective graph database based
solutions for the biological research community.

3 The Graph Database Neo4J

For datasets that lack a clear tabular structure and are of large size, data man-
agement in NoSQL databases might be more appropriate than mapping these
datasets to a relational tabular format and managing them in a SQL database.
Several non-relational data models and NoSQL databases—including graph data
management—are surveyed in [34]. Graphs are a very versatile data model when
links between entities are important. In this sense, a graph structure is also the
most natural representation of a GRN.

Mathematically, a directed graph consists of a set V of nodes (or vertices)
and a set E of edges. For any two nodes v1 and v2, a directed edge between
these nodes is written as (v1, v2) where v1 is the source node and v2 is the target
node. Graph databases often apply the so-called property graph data model. The
property graph data model extends the notion of a directed graph by allowing
key-value pairs (called “properties”) to store information in the nodes and along
the edges. Graph databases have been applied to several biomedical use cases in
other studies: Previous versions of Neo4J have been used in a benchmark with
just three queries by Have and Jensen [9] while Fiannaca et al. [7] present their
BioGraphDB integration platform which is based on the OrientDB framework.

Neo4J (https://neo4j.com/) is one of the most widely used open source graph
databases and has a profound community support. In Neo4J each edge has a
unique type (denoting the semantics of the edge relationship between the two

https://neo4j.com/
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attached nodes); each node can have one or more labels (denoting the type or
types of the node in the data model). Neo4J offers a SQL-like query language
called Cypher. Cypher provides “declarative” syntax that is easy to read. It has
an ASCII art syntax visually representing nodes and relationships in the graph
structure. Thus, the query pattern for “Find all the genes g to which at least
one TFPair t binds” is MATCH (g:Gene)<-[:binds]-(t:TFPair) RETURN g,t.
Here, Gene and TFPair are the two types for nodes and the query identifies the
relationships labeled binds connecting any nodes of type Gene and TFPair. The
resulting nodes and their relationships are immediately visualized in the Neo4J
browser. A snippet of the result visualization is shown in Fig. 1.

Fig. 1. A snippet of the result visualization of the sample query

Neo4j employs various caching mechanisms; as a result, once the query has
been executed the following executions will use the nodes/relationships cache.
The Neo4J page cache maintains data blocks in RAM for faster traversal by
avoiding disk access. Moreover, the query plan cache helps reducing the com-
puting time for parametrized queries that have already been executed before.

4 Benchmark

The benchmark was executed on a Linux PC running Ubuntu 16.04 LTS with
the following specifications: an Intel CPU with 3.40 GHz and eight cores as well
as 15.6 GB RAM. For our benchmark, we used Neo4J 3.4.3 Enterprise. We tested
the analysis of our GRN data on a small data set and a larger data set.

4.1 Datasets

The input is provided as files in comma separated values (CSV) format. The files
representing the genes (corresponding to the promoters), enhancers and pairs of



38 L. Wiese et al.

transcription factors were parsed into Neo4j first. We generated three distinct
types of nodes (namely, Gene, Enhancer, and TFPair) from them. Each Gene
node has its genename as a property, while each Enhancer node contains a prop-
erty called enhancerID ; each TFPair has several properties: pwm1, pwm2 (which
denote the two cooperative transcription factors), the name (as a concatenation
of the two represented transcription factors), as well as KnownCompelPair and
KnownBioGridPair as properties (as described in Sect. 2, Phase 3).

Next, we created two types of relationships: EPI and binds. We extracted
the EPI relationship between an enhancer and a promoter (located upstream
of the specified gene); the EPI relationship represents the known interaction
between an enhancer and promoter (as described in Sect. 2, Phase 1). The binds
relationship links either a TFPair and an enhancer or a TFPair and a promoter.
The relationship binds represents the fact that the pair binds to the promoter or
enhancer in the order specified in the properties pwm1 and pwm2. Moreover, each
binds relationship also has a property called zscore that denotes the strength of
the binding (as described in Sect. 2, Phase 3).

The size of the small dataset in CSV format was 97.6 kB containing 1422 lines
of text. The generated nodes included 11 genes, 619 TFPairs, and 15 enhancers;
there were 19 EPI relationships and 757 binds relationships. We also tested a
larger dataset of size 873 kB (with 16559 lines of text). There were 314 gene
nodes, 3983 TFPair nodes, and 132 enhancer nodes. Furthermore, the numbers
of relationships increased to 375 EPI relationships and 11747 binds relationships.

The datasets analyzed in this study and the cypher-commands used to load
and analyze them with Neo4J are available under [30].

4.2 Queries

For both benchmark datasets, small and large, the same queries were run. The
tests comprised two settings in order to consider the effects of the Neo4J cache:

– one test was conducted on cold boot and executed only once to avoid caching
of the dataset;

– the other test was conducted after warming up the cache; in order to test for
the real-world scenario, the queries have been run twenty times; then, their
average was calculated to find the representative execution time.

The execution time represents not only the query run time on the database
but includes the entire round-trip latency for visualizing the results and deseri-
alization (streaming) of the result objects. We used the following test cases:

– Bulk data insertion
• i1-3: Loading the CSV files (genes, enhancers, TFPairs)
• c1-3: Assigning a uniqueness constraints to nodes
• i4-6: Loading relationship data from CSV files (EPI and binds)

– Path queries
• Q1a: For a given genename, find all enhancers interacting with that gene.
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• Q1b: For a genename set, find all enhancers interacting with the genes.
• Q2a: For a given genename, find all TFPairs bound to that gene.
• Q2b: Restrict to the known TFPairs with AND operator.
• Q2c: Restrict to the known TFPairs with AND and OR operator
• Q2d: Find the TFPairs of an enhancer that interact with a certain gene.
• Q2e: Restrict to z-score larger than 4.
• Q3a: For all genenames find all other genenames that are bound by at

least one common TFPair.
• Q3b: For a specific gene find all other genenames that are bound by at

least one common TFPair.
• Q3c: For a specific enhancerID find all other enhancerIDs that are bound

by at least one common TFPair.
• Q3d: For a specific enhancerID find genenames that are bound by at least

one common TFPair.
• Q4a: For a given enhancer ID (or a prefix of the ID), find all the TFPairs

bound to the enhancer.
• Q5a: For a given enhancerID, find all genes interacting with the enhancer.
• Q6a: For a given genename, find all TFPairs bound to the gene.
• Q6b: For a given genename, find all TFPairs bound to the gene restricting

to those bindings with a high zscore.
• Q7a: For a given TF find all TFPairs that contain the TF.
• Q7b: For a given TF find the names of the two transcription factors in

the TFPairs that contain the transcription factor.
– Statistical queries

• G1a: Count the total number of TFPairs that one enhancer has in com-
mon with any other.

• G1b: Count the TFPairs that two specific enhancers have in common.

4.3 Runtime Results

We analyzed the runtime results to assess the impact of dataset size and cache
warming on our sample queries. Bulk loading data from CSV files into Neo4J
is taking more time than performing any other queries as shown in Fig. 2. The
increased amount of nodes in the larger benchmark (insertion steps i1, i2 and i3)
did not impact the runtime substantially. In contrast, the increased amount of
relationships (insertion steps i4, i5 and i6) led to a significant runtime overhead.

The next executions that cover the cold-boot tests (without cache warming)
are depicted in Fig. 3. In this case, the runtime for Q2b, Q3c, Q3d, and Q5a was
the same for both the small and large benchmark. Interestingly, the path queries
Q1a, Q2a, Q2e Q6a, and Q6b, took on average 35% more execution time for
the small benchmark than for the large benchmark which demonstrates a good
off-the-shelf scalability of the graph database. Lastly, all the other queries were
taking more time to execute for the large benchmarks as opposed to the small
one. This overhead can be explained by the fact that the returned amount of
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Fig. 2. Execution time for bulk data insertion steps

Fig. 3. Execution time of path queries on cold boot

result nodes and result relationships is significantly larger for the large bench-
mark. In particular, the unrestricted query Q3a (which does not provide selec-
tion conditions for the queried Genes and TFPairs) could not be executed for
the large dataset because the Neo4J browser crashed after 5 min.

After warming up the cache, the performance improved drastically: the exe-
cution time for processing queries decreased by about 64% on average for both
the small and the large benchmark after warming up the system as compared
to execution time for the cold boot case. Notably, for both datasets the execu-
tion times are nearly similar for most of the queries, which demonstrates the
positive effect of cache warming. The unrestricted query Q3a remains the excep-
tional case where the database is not able to finish the execution on the large
data set. For some queries, in particular Q3b, Q4a, Q7a and Q7b (taking more
time to execute in the large benchmark than in small benchmark) the impact
of the larger result sets in the large dataset remains noticeable even after cache
warming (Fig. 4).

Lastly, we tested the two COUNT queries G1a and G1b as sample queries
for statistical analysis of the data sets. Here we observed a significant over-
head for the larger benchmark: the first query—counting TFPairs only for each
enhancer—took roughly 12 times longer for the larger benchmark (22.4 ms) than
for the small benchmark (1.9 ms); more notably, the second query—counting
TFPairs for each pair of enhancers—took roughly 19 times longer for the larger
benchmark (37.7 ms) than for the small benchmark (1.95 ms).
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Fig. 4. Execution of path queries after cache warming

5 Conclusion

In this paper we demonstrated that several advantages can be achieved for our
use case of GRN analysis by loading our data into the Neo4J graph database and
expressing our analysis queries in the human-readable query language Cypher.
We presented our approach for integration of biological data from different
sources. We proved scalability of query execution in the graph database by bench-
marking the Neo4J graph database on a query workload using a small and a large
data set and investigating the effect of cache warming on the performance.

The growing importance of visualization techniques is reflected in the still
growing number of corresponding publications that are registered in the Pubmed
database. In 2017 the proportion of visualization related articles has increased by
a factor of 17 with respect to the average from the period of 1945 to 1974. This
demonstrates the drastically increasing importance of visualization techniques
“in the life sciences”. Up until just a few years ago publications involving the
keyword visualization were typically dealing with topics related to imaging tech-
niques in the medical sciences. Only from the year 2012 on, a substantial number
of publications that deal with visualization of big data has been published.

Making big data sets accessible to interpretation is one of the main challenges
in Life science now and in the next years. Graph databases (in particular Neo4J)
can be a powerful tool to aid researchers with the storage, the integration as well
the analysis and visualization of biological, medical and healthcare data.
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Abstract. Big biomedical data has grown exponentially during the last
decades, as well as the applications that demand the understanding and
discovery of the knowledge encoded in available big data. In order to
address these requirements while scaling up to the dominant dimensions
of big biomedical data –volume, variety, and veracity– novel data integra-
tion techniques need to be defined. In this paper, we devise a knowledge-
driven approach that relies on Semantic Web technologies such as ontolo-
gies, mapping languages, linked data, to generate a knowledge graph
that integrates big data. Furthermore, query processing and knowledge
discovery methods are implemented on top of the knowledge graph for
enabling exploration and pattern uncovering. We report on the results
of applying the proposed knowledge-driven approach in the EU funded
project iASiS (http://project-iasis.eu/). in order to transform big data
into actionable knowledge, paying thus the way for precision medicine
and health policy making.

1 Introduction

Big data plays an important role in promoting sustained economic growth of
countries and companies through industrial digitization, and emerging scien-
tific and interdisciplinary research. Specifically, significant contributions have
been achieved by conducting big data-driven studies over clinical and genomic
data with the aim of supporting precision medicine [11]. Exemplary contribu-
tions include big data analytics over Electronic Health Records (EHRs) of nearly
three million people and trillions of pieces of medical data for identifying associ-
ations between the use of proton-pump inhibitors and the likelihood of incurring
a heart attack [12]. Despite the significant impact of big data, we are entering
into a new era where domains like genomic, are projected to grow very rapidly
in the next decade, reaching more than one Zetta bytes of heterogeneous data
per year by 2025 [14]. In this next era, transforming big data into actionable
big knowledge will require novel and scalable tools for enabling not only big
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data ingestion and curation, but also for efficient large-scale knowledge extrac-
tion, integration, exploration, and discovery. In this poster paper, we describe a
knowledge-driven pipeline devised with the aim of addressing these challenges.
The pipeline resorts to text mining, image processing methods, and ontologies to
extract knowledge encoded in unstructured Big data and to describe extracted
knowledge with terms from ontologies. Then, extracted knowledge is integrated
into a knowledge graph. A unified schema is used to describe and structure
the extracted in the knowledge graph. Annotations from ontologies provide the
basis for data integration and for linking integrated data with equivalent con-
cepts in existing knowledge graphs. Finally, knowledge discovery is performed by
exploring and analyzing the knowledge graph. The proposed knowledge-driven
approach is being utilized to integrate biomedical data, e.g., drugs, genes, muta-
tions, side effects, with clinical records, medical images, and geneomic data. As
a result, a knowledge graph with more than 250 million RDF triples has been
created. Albeit initial, this knowledge graph enables the discovery of patterns
that could not be found in raw data. Patterns include mutations that impact on
the effectiveness of a drug, side-effects of a drug, and drug-target interactions.

Fig. 1. A Knowledge-Driven Pipeline. Heterogeneous data sources are received as
input, and a knowledge graph and unknown patterns and relations are output. The
knowledge graph is linked to related knowledge graphs; federated query processing
and knowledge discovery techniques enable knowledge exploration and discovery. Data
privacy and access regulations imposed by data providers are enforced.

2 A Knowledge-Driven Pipeline

Our knowledge-driven pipeline receives big data sources in different formats,
e.g., clinical notes, images, scientific publications, and structured data. It gener-
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ates a knowledge graph from which unknown patterns and relationships can be
discovered; Fig. 1 depicts the following main components of the pipeline:

EHR Text Analysis: Semi-automatic data curation techniques are utilized
for data quality assurance, e.g., removing duplicates, solving ambiguities, and
completing missing attributes. Natural Language Processing (NLP) techniques
are applied to extract relevant entities from unstructured fields, i.e., clinical notes
or lab test results. NLP techniques rely on medical vocabularies, e.g., Unified
Medical Language System (UMLS)1 or Human Phenotype Ontology (HPO)2,
NLP corpuses and tools, e.g., lemmatization or Named Entity Recognition, to
annotate concepts with terms from medical vocabularies.

Genomic Analysis: Data mining tools, e.g., catRapid [7], are applied to iden-
tify protein-RNA associations with high accuracy. Publicly available datasets,
e.g., data from GTEx, GEO, and ArrayExpress, are used for the integration
with transcriptomic data. Finally, this component relies on the Gene Ontology
to determine key genes for lung cancer and interactions between these genes.
Furthermore, genes are annotated with identifiers from different databases, e.g.,
HUGO or Uniprot/SwissProt, as well as Human Phenotype Ontology (HPO).

Image Analysis: Machine learning algorithms are employed to learn predictive
models able to classified medical images and detect lung tumors.

Open Data Analysis: NLP and network analysis methods enable the semantic
annotation of entities from biomedical data sources using biomedical ontologies
and medical vocabularies, e.g., UMLS or HPO. Data sources include PubMed3,
COSMIC4, DrugBank5, and STITCH6. Annotated datasets comprise entities
like mutations, genes, scientific publications, biomarkers, side effects, transcripts,
proteins, and drugs, as well as relations between these entities.

A knowledge graph is created by semantically describing entities using a uni-
fied schema. Annotations are exploited by semantic similarity measures [10] with
the aim of determining relatedness between the entities included in the knowl-
edge graph, as well as for duplicate and inconsistency detection. Related entities
are integrated into the knowledge graph following different fusion policies [3].
Fusion policies resemble flexible filters tailored for specific tasks, e.g., keep all
literals with different language tags or retain an authoritative value; replace one
attribute with another; merge all the attributes of an entity in the knowledge
graph; etc. Ontological axioms of the dataset annotations are fired for resolving
conflicts and inequalities during the evaluation of the fusion policies. Entities
in the knowledge graph are linked to equivalent entities in knowledge graphs in
the Linked Open Data Cloud. Linking techniques resort to semantic similarity
metrics and the semantic encoded in the ontologies of the different knowledge
1 https://www.nlm.nih.gov/research/umls/.
2 https://hpo.jax.org/app/.
3 https://www.ncbi.nlm.nih.gov/pubmed/.
4 https://cancer.sanger.ac.uk/cosmic.
5 https://www.drugbank.ca/.
6 http://stitch.embl.de/.
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graphs, for determining when entities in different knowledge graphs, e.g., muta-
tions and genes in TCGA-A7. Knowledge represented in the knowledge graph
and links to other knowledge graphs, is explored by a federated query processing
engine, and knowledge discovery methods are used to uncover patterns in the
knowledge graphs. Finally, data privacy and access controlled regulations are
enforced during the execution of the tasks of the pipeline [4].

Fig. 2. Connectivity of IASIS-KG. Graph representing the connectivity of the RDF
classes in IASIS-KG, and DBpedia and Bio2RDF. All the RDF classes are connected.

3 Initial Results

Following the proposed knowledge-driven pipeline, data from twelve datasets has
been integrated. A unified schema allows for data description in a knowledge
graph; it includes 49 classes, 56 ObjectProperty, and 74 DatatypeProperty.
The number of properties per class in the unified schema ranges from five to
80; the majority of the classes have less than 10 properties, and classes with
a higher number of properties correspond to superclasses which inherit all the
properties of their subclasses. The process of graph creation enables the creation
of a knowledge graph with 236,512,819 RDF triples, 26 RDF classes, and in
average, 6.98 properties per entity; it is named as IASIS-KG. In average there
are 86,934.00 entities per RDF class, some RDF classes may have up to 20
million entities. Figure 2 shows the connectivity between the RDF classes in
IASIS-KG; there are 35 nodes in the graph, while 58 edges represent links among
RDF classes. Also, it can be observed that all the RDF classes are connected
to at least one RDF class, i.e., there are no isolated classes. These statistics
facilitate the understanding of the amount of represented knowledge, as well as
the opportunities offered by IASIS-KG for knowledge exploration and discovery.
7 http://tcga.deri.ie/.
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4 Related Work

Biomedical datasets are characterized by the “Vs” challenges of big data, i.e.,
volume, velocity, variety, veracity, value, and variability [13]. To address the
data complexity issues imposed by these challenges, novel paradigms and tech-
nologies have been proposed in the last years. Exemplary platforms include the
BigDataEurope platform [1], an easy-to-deploy architecture that combines tech-
nologies to process large and heterogeneous sources. An extensive literature anal-
ysis on big data methods [13]indicates that the state of the art focuses on specific
dimensions of data complexity, whereas isolated solutions are not sufficient to
meet the demands imposed by the transformation of big data into actionable
knowledge [15]. In order to represent the meaning of biomedical entities sev-
eral ontologies and controlled vocabularies have been defined, e.g., HPO and
UMLS. These ontologies are commonly utilized to provide a unique represen-
tation of concepts extracted from unstructured or structured datasets [9]. Like-
wise, knowledge graphs are especially important in knowledge representation,
because they provide a common knowledge structure to integrate and semanti-
cally describe the meaning of entities from diverse domains. Generic knowledge
graphs like DBpedia [6] and Yago [8], or) describe generic facts, e.g., persons,
organizations, or cities, while more specific knowledge graphs like KnowLife [5]
and Bio2RDF [2] exploit domain specific vocabularies like UMLS to integrate
biomedical data items like publications, genes, mutations, drugs, and diseases.
Similarly, the proposed knowledge-driven approach relies on semantic annota-
tions from ontologies, e.g., HPO and UMLS. However, in contrast to existing
approaches, these annotations are used as building blocks for the semantic inte-
gration process and well as curation. Thus, this solution is able to scale up to the
veracity and variety characteristics of the collected heterogeneous biomedical.

5 Conclusions

A knowledge-driven pipeline for transforming Big data into a knowledge graph is
presented; it comprises components that enable knowledge extraction, a knowl-
edge graph creation, and knowledge management and discovery. As a proof of
concept, the proposed pipeline has been applied in the context of the European
Union Horizon 2020 funded project iASiS. As a result, a knowledge graph with
more than 230 million RDF triples have been created. This knowledge graph
includes mutations that impact on the effectiveness of a drug, side-effects of a
drug, and drug-target interactions, and represents a building block for the explo-
ration and discovery of potential novel patterns. Furthermore, initial results illus-
trate the feasibility of the approach, as well as the relevant role of Semantic Web
technologies and ontologies in the process of data integration. In the future, this
pipeline will be used in other biomedical use cases, and novel machine learning
approaches over the knowledge graph will be implemented.
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Abstract. Data in healthcare and routine medical treatment is growing fast.
Therefore and because of its variety, possible correlation within these are
becoming even more complex. Popular tools for facilitating the daily routine for
the clinical researchers are more often based on machine learning (ML) algo-
rithms. Those tools might facilitate data management, data integration or even
content classification. Besides commercial functionalities, there are many
solutions which are developed by the user himself for his own, specific question
of research or task. One of these tasks is described within this work: qualifying
the Weber fracture, an ankle joint fracture, from radiological findings with the
help of supervised machine learning algorithms. To do so, the findings were
firstly processed with common natural language processing (NLP) methods. For
the classifying part, we used the bags-of-words-approach to bring together the
medical findings on the one hand, and the metadata of the findings on the other
hand, and compared several common classifier to have the best results. In order
to conduct this study, we used the data and the technology of the Enterprise
Clinical Research Data Warehouse (ECRDW) from Hannover Medical School.
This paper shows the implementation of machine learning and NLP techniques
into the data warehouse integration process in order to provide consolidated,
processed and qualified data to be queried for teaching and research purposes.

Keywords: Clinical Research Data Warehouse � Machine learning
Text mining � Data science � Unstructured data � Secondary use
Radiology � NLP

1 Introduction

Medical records, pathology and radiology findings or medication are often available in
an unstructured form. Relevant information is therefore not always described in con-
crete fields, but mostly in free text form. Drawing inferences on disease progressions,
processes or statistics for quality assurance are difficult to extract from this information.
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The structure of the texts differs within departments and partly between findings.
Machine Learning (ML) methods can be used to solve this problem. Frequent data
mining tasks in radiology include [1]:

– Automated derivation of numbers for defined instances or from finding results
(feature extraction) from the unstructured text [2]

– Information enrichment of structured data by feature extraction
– Text analysis using controlled terminologies, in radiology (mainly the terminology

RadLex [1, 3])
– Classification and clustering, e.g. to identify patient cohorts (selection of patients

with similar clinical pictures) [4]

At the Hannover Medical School (MHH) the radiological findings are captured in
the Radiology Information System (RIS) in free text form but are divided into indi-
vidual, predefined sections.

In this study, we used these semi-structured findings data integrated into the MHH
Enterprise Clinical Research Data Warehouse (ECRDW). The ECRDW of the MHH is
an interdisciplinary data integration and analysis platform for research-relevant issues.
In the clinical-university sector, a data warehouse based technology, serves to con-
solidate data routinely generated in health care for secondary use purposes [5, 6]. The
typical use cases of a clinical data warehouse (CDW) include:

– Patient screening for clinical trials
– Epidemiological estimations
– Validation of data in research databases and their data enrichment with the aim of

quality improvement in research tasks
– Development of decision support approaches for specific research questions

In order to make these findings available for queries, a method for data cleansing
and data processing is to be developed and implemented within the standard ETL
(Extraction, Transformation, and Loading) process of the ECRDW.

Our research question is to locate radiology findings that refer to the so-called
Weber fracture, an ankle fracture, in order to be able to analyze the corresponding X-
ray images or to make them available for teaching courses. To do so, the findings are to
be preprocessed in a structured manner with the aid of natural language processing
(NLP) methods and to classify the records with ML algorithms. We decided to use ML
methods because the diagnosis often is not exactly named in the text. Thus, a simple
full text search will not find all relevant results or will also find negating results.
Additionally search for possible synonyms is required. By using ML techniques, we
also included some report metadata as features, such as radiology service group and
department.

This paper is divided into the typical sections Materials and methods, results, and
discussion and conclusion. In Materials and methods the necessary steps for the pre-
processing of the relevant data and the structure of the ML pipeline are described. In
the section results the particularities of the original data set are first summarized and
then the resulting selection of a suitable algorithm for ML with corresponding metrics
explained. Subsequently, the result of the prediction of the Weber fracture and the
implementation of the process into the ETL process are outlined.
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2 Materials and Methods

2.1 Accessing the Data via a Data Warehouse Plattform

In order to develop appropriate methods for information retrieval technology and data
of the MHH ECRDW was used. The ECRDW is based on the Microsoft (MS) SQL
Server Stack. The basis for the machine learning are radiological findings (with
additional metadata), which were joined with ICD10-GM1 diagnosis codes. The
metadata and diagnosis codes were used to select necessary features and annotate the
training data on the one hand and to access the medical records for prediction on the
other. A total of 2,000 medical findings were identified for training and 17,354 medical
findings were predicted on the basis of the following diagnosis codes:

– S82 as fracture of the lower leg, including the upper ankle joint
– S82.5 as fracture of the inner ankle
– S82.6 as fracture of the outer ankle
– S92 as fracture of the foot (except upper ankle)

The findings from the RIS were integrated into the ECRDW via HL7 by using the
MS integration services. By doing so, the whole semi-structured finding text is inte-
grated as a full text, while the findings are split into four separated fields: “Klinische
Angaben” (engl. “clinical data”), “Fragestellung” (engl. “clinical situation”), “Befund”
(engl. “finding”), “Beurteilung” (engl. “assessment”). Within this text the headings are
displayed by pseudo-html tags like /.br.//. For re-separating the fields, we developed a
regular expression (regex) term addressing these tags. By doing so, this regex also may
search for further headings which might be feasible for integrating in clinical routine.
Thus, the final regex is:

The regex and the NLP pipeline was implemented by using the natural language
toolkit Python NLTK for general text processing [7, 8].

The NLP pipeline for splitting the text into their pre-defined sections includes
several steps such as:

– Loading the data
– Hard-coded misspelling-cleansing
– Extracting the headings with the regex and export the top 10-headings
– Splitting the text according to their predefined headings into predefined fields.

2.2 Machine Learning Pipeline for Classification

The ML training data consists of 2,000 randomly selected radiology findings. The
potential radiology findings have already been selected by ICD codes (range of lower
leg injuries). To create a binary classification, the full text of the ICD diagnosis was

1 ICD-GM: “International Classification of Diseases, German Modification” is the official classifica-
tion for diagnoses in outpatient and inpatient health care in Germany.
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searched for the keyword “Weber”. In addition, the service type “ankle joint”, which
was documented in the metadata of the radiological findings, served as a further
criterion to create the positive class. The negative class was created by using radio-
logical findings not having these specific attributes.

The findings then were prepared in a machine learning pipeline, consisting of a text
preprocessing part and a classification part. The text preprocessing steps for both the
training data and the data to be classified were carried out with the Python NLTK
packages as well. These included tokenizing, removing stopwords, transformation into
bags of words and converting the bags of words into a Python Pandas DataFrame.

For dimension reduction within the bags of words, we inserted the following steps
and compared the results:

– Filtering dates and times using the RegexpTokenizer (optional step)
– Only the twenty-most often tokens where represented in the bags of words, using

the built-in Counter function.

Afterwards, we joined the bags-of-words dataframe with metadata features: service
group, service type, analysis device, operating department. The prepared training data
was used for classifier training. Various ML classifier were selected for comparision:
Naive Bayes Classifier, Support Vector Machines, Decision Trees and Random Forest
and Logistic Regression algorithms and accessed them via the Python scikit-learn
package. We chose a 10-fold cross-validation with 70/30 training/test split.

Additionally, selected algorithms were judged according their confusion matrices
while predicting test data. “Unknown” medical records for prediction where read
directly from the ECRDW once they are in the same ICD range as selected above.

Prediction was conducted on the medical record as well as on the section “Befund”
(“medical indication”) only. In Table 1, the process of prediction is outlined.

Table 1. Steps in machine learning pipeline from loading and preparing the data to prediction
and analysis.

Step Description

1 Selecting and annotating training data
2 Feature selection
3 Loading unknown data for prediction
4 NLP pipeline
5 Reduction of bags-of-words dimensions of the “unknown” data down to the

dimensions of the training data set
6 Training of the algorithm, 10-fold cross-validation (70/30 split)
7 Prediction on test data with confusion matrix
8 Classification of unknown medical records
9 Embedding the prediction results to the data
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3 Results

3.1 Finding Patterns and Separating the Text

As expected, the headings of the predefined fields were found most often, but not all of
them actually were filled (Fig. 1). Additionally to the predefined headings, the regex
found some potential new headings, for example “Methodik” (“methods”), which is
named in about 5% of all findings. The other headings found by the regex are mainly
indicating anatomical issues. By these results, one can recommend to add the “meth-
ods” as an additional section within the radiological findings.

3.2 Finding the Appropriate Machine Learning Algorithm

After comparing the accuracies in 10-fold cross-validation of all algorithms and
hyperparameter modes (Table 2), we selected two algorithms for classification of
unknown findings: the standard Decision Tree and the standard Support Vector
Machine (SVM) algorithm.

Additionally, we decided to add the RegExpTokenizer for dimension reduction.
Although there was only minor effect in the accuracies whether the additional tokenizer
was conducted or not, it helped to reduce feature dimensions drastically.

After selecting the algorithms, they were chosen to predict test data within a
confusion matrix. As shown in Fig. 2, both prediction results vary seriously from each
other. As expected, the Decision Tree algorithm performs slightly better than the SVM
algorithm: While the correct-positive rate and the correct-negative rate of the Decision
Tree is quite high (171:174), the SVM predicts a high rate of correct-positive records
but a very high false-positive class (197:140).

Fig. 1. Left side: the 10 most-often headings extracted from medical record texts, plotted
according their occurrences. Right side: filled section quantity by their pre-defined headings.
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3.3 Predicting the Weber Fracture in Medical Records

As described above, two different classification approaches were taken to predict
unknown radiological findings. Figure 3 shows the prediction results exemplarily,
plotted for the radiological service types.

The most often positively-predicted records were in service group “NERMRTCRC”
(neurological MRT) and “NERANGIO” (neurological angiography), which implies
quite bad prediction rates for the classifiers.

Table 2. Results of comparing several classification algorithms accuracies in 10-fold cross-
validation, 70/30 split mode. As there 1,000 positive and 1,000 negative training data, the
baseline indicator is set to 50%.

Modus Without
RegexpTokenizer

With
RegexpTokenizer

Standard SVM 54.00% (+/− 0.08) 54.00% (+/− 0.08)
SVM (kernel = “linear”, C = 0.025) 54.00% (+/− 0.08) 54.00% (+/− 0.08)
SVM (gamma = 2, C = 1) 58.00% (+/− 0.04) 58.00% (+/− 0.04)
Standard Decision Tree 70.00% (+/− 0.08) 70.00% (+/− 0.08)
Decision Tree (max_depth = 5) 58.00% (+/− 0.08) 59.00% (+/− 0.07)
Standard Random Forest 70.00% (+/− 0.09) 70.00% (+/− 0.09)
Random Forest (max_depth = 5,
n_estimators = 10, max_features = 2)

50.00% (+/− 0.04) 51.00% (+/− 0.02)

Naive Bayes_Gaussian 54.00% (+/− 0.07) 54.00% (+/− 0.07)
Naive Bayes_BernoulliNB 50.00% (+/− 0.03) 50.00% (+/− 0.03)
Naive Bayes_MultinomialNB 55.00% (+/− 0.08) 55.00% (+/− 0.08)
Standard Logistic Regression 54.00% (+/− 0.09) 54.00% (+/− 0.09)

Fig. 2. Confusion matrices: comparison of decision tree and support vector machine (SVM)
algorithms for predicting test data. 0 – negative class, 1 – positive class, horizontal axis: predicted
class, vertical axis: Real class. Thus, the upper left box is the correct-negative, the lower right box
the correct-positive rate.
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3.4 Implementation into the ETL Process

We implemented the developed pipeline as a script component within the data inte-
gration task that loads the HL7 messages from the RIS. The result of the script com-
ponent enriches the ECRDW core repository by splitting the findings in defined
columns and by creating further information from the classification task that can be
used as additional features when it comes to querying the data for Weber fracture.

4 Discussion and Conclusion

In this work the Weber fracture was to be identified in radiological medical findings.
We used a dataset containing pseudonymised master data of a patient, ICD10-GM
diagnosis code, as well as the free text, localisation, and certainty of every diagnosis
captured during the hospital stay. The dataset also contains the radiological finding, that
was split into the four fields, and additional metadata from the RIS (e.g. service group,
service type text, analysis device, operating department, observation time). Various ML
techniques were applied and compared with each other with regard to their suitability,
accuracy and specificity. The results described in this paper show the basically feasi-
bility of classifying texts using ML techniques. However, the results differ considerably
depending on the chosen method.

The pre-selection of possible algorithms was based on algorithms that were used in
the literature for similar questions: Naive Bayesian classifiers are used in many works
when it comes to text classifications and sentiment analyses. The advantage of decision
trees is their simple application and comprehensible interpretation [8]. SVM have been
used in a number of studies, as soon as there were high dimensional vector spaces [9].
SVMs are used in a variety of problems, such as clustering, regression or classifica-
tions. The invaluable advantage of SVMs is that they work even if the features differ in
test and training data sets. SVMs generate a higher dimensional vector space based on
similar words by embedding the unknown tokens. Although the present paper does not

Fig. 3. Classification results: absolute occurrences of medical records predicted as “Weber”-
positive according to the algorithm (Proba_tree: decision tree; Proba_SVM: support vector
machine) in radiological service groups at the MHH.
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use other features in the unknown data set for classification than in training, this
approach could be tested in a further study.

The use of a regular expression for additional filtering of date and time information
was not sensitive enough. As a result, dimensions were created in both the training and
prediction datasets that might have been superfluous. Nevertheless, the use of a regular
expression tokenizer showed a significant reduction of the dimensions. In a direct
comparison of the classifiers, in which the dimensions were created with or without
RegexpTokenizers, a clear change up to doubling of the accuracy was shown in some
individual experiments.

In addition, an overfitting of the models must be considered: the training data set
was created from findings texts of the radiology department of the MHH. Accordingly,
it can be assumed that the models cannot easily be applied to applications at other
universities or even other departments.

Classifications of medical texts, such as findings or doctor’s letters, have become
increasingly important in recent years, especially since they are increasingly digital and
therefore available in machine-readable form [10].

No synonyms were considered in selecting the training data. Thus, we expected to
have a positive prediction by only having the token “Weber” within the data. Sur-
prisingly, this was not the case: records without “Weber” were also classified positively
and vice versa. Based on the occurrences in the full-text search, we expect the SVM
algorithm to be more accurate in its prediction, which is quite the opposite of what we
expected from the 10-fold cross-validation and confusion matrix. To have this
hypothesis confirmed, a domain expert has to validate the results, which we will do so
in our next steps. Additionally, further work will include a self-generating dictionary of
synonyms by implementing word embeddings to increase the recall.

Another promising approach would be to use a semi-supervised learning method:
first training would be performed by using a little fraction of the whole data and would
then be post-trained continuously by various prediction and validation rounds on real
data. It would be promissing to combine the semi-supervised techniques with a word
embedding.

In summary, we have shown that implementing a NLP approach into a data
warehouse ETL pipeline with Python is feasible. The developed pipeline provides more
flexibility for data pre-processing and data cleansing of unstructured or semi-structured
information than we would have had by using the standard data integration services of
MS SQL Server. Additionally, adding a data mining pipeline for a specific research
question upon this data is applicable, but its power definitively relies on validated gold
standard training data and the validation of the predictions provided by a clinical
expert, which will be our next step. Further limitations are due to the chosen dataset: As
a medical record may have more than one medical diagnosis (e.g. differences in entry
diagnosis and in release diagnosis), it may be rated as well as positive or as negative.

Nevertheless, this study proves the possibility of combining ETL processes with
machine learning techniques. For one’s own attempt of implementing, the pipeline has
to be adapted to one’s own IT infrastructure, since every hospital has its own,
heterogeneous infrastructure and conditions.
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Abstract. Scientific information communicated in scholarly literature
remains largely inaccessible to machines. The global scientific knowledge
base is little more than a collection of (digital) documents. The main
reason is in the fact that the document is the principal form of communi-
cation and—since underlying data, software and other materials mostly
remain unpublished—the fact that the scholarly article is, essentially,
the only form used to communicate scientific information. Based on a
use case in life sciences, we argue that virtual research environments and
semantic technologies are transforming the capability of research infras-
tructures to systematically acquire and curate machine readable scientific
information communicated in scholarly literature.
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Knowledge infrastructures

1 Introduction

The critique is not new and the quest remains: Despite advances in informa-
tion technology and systems, the format of the scholarly article has largely
remained unchanged [16,17,32]. The wealth of scientific information conveyed
by the steadily increasing number of published articles [9,27,43] continues to be
confined to the document, seemingly inseparable from the medium as hieroglyphs
carved in stone.
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Document centric scholarly communication has its challenges. Most obvi-
ously, machine processing of the information communicated in scholarly articles
is very limited. While words can be indexed and searched, the semantics of num-
bers, text, figures, symbols, etc. are hardly accessible to computers and modern
exploration, retrieval, question answering and visualization thus not applicable.
Such limited machine support hinders the efficient processing of literature since
relevant information is “buried” in documents and finding information relies
on sifting through documents. Given the growing scientific output, processing
literature ties up increasing resources.

To be sure, important advances have been made. The interlinking of arti-
cles with related entities is a notable recent development. Aided by interop-
erable information infrastructures—such as DataCite, Crossref, literature and
data publishers—articles are increasingly linked to related persistently identified
datasets, audio/video, samples, instruments, software, people, institutions. The
Scholix framework for scholarly link exchange [10] is a project that focuses on
interoperability of information about the links between scholarly literature and
data. Related advancements can be noticed also in systems that are well-known
to researchers. Taking the link between articles and citations as an example,
ResearchGate now shows citations “in context” by pointing readers directly to
the relevant position in articles. Other related projects include Research Graph
[3], RMap [25], and Research Objects [8]. The resulting graphs enable new forms
of information publication, search, navigation and discovery. However, it is not
scientific information communicated in scholarly literature that these graphs
capture but information (i.e., metadata) about the digital objects used in com-
munication and their relationships to contextual entities.

Another notable development is in technologies and vocabularies for machine
readable representations of scientific information authors communicate in schol-
arly literature. Indeed, representing scientific knowledge claims has been explored
for at least a decade. With the HypER approach, de Waard et al. [18] proposed
to extract knowledge from articles “to allow the construction of a system where
a specific scientific claim is connected, through trails of meaningful relation-
ships, to experimental evidence.” Garćıa-Castro et al. [22] proposed an exten-
sion to the Annotation Ontology [15] that enables the modelling of concepts and
relations of scholarly articles, such as ‘claim’, ‘hypothesis’ or ‘contradicts’ and
‘proves’. Nanopublications [23,31] is a concept and model designed to represent,
in machine readable form, scientific statements. The OBO Foundry [34] pub-
lishes ontologies that include numerous relevant concepts e.g., for the machine
readable representation of statistical hypothesis tests or average values. As a
result, it is now possible to describe scientific information authors communicate
in scholarly literature in machine readable form and thus have infrastructures
curate, process, and publish such information as distinct information objects.

A third important advancement is in virtual research environments (VREs)
[2,12] (also known as virtual laboratories and science gateways) that enable the
execution of data analysis on interoperable infrastructure. Since VREs can be
extended in functionality and engineered to meet advanced requirements, the
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p-value resulting in a statistical hypothesis test is no longer a mere number (as
is generally the case in local computational environments) but can be an infor-
mation object relating the p-value to the kind of statistical test performed, the
involved continuous variables and values, and even data provenance in labora-
tory experiments. In other words a machine readable description of the performed
statistical hypothesis test.

Based on a use case in life sciences, we argue that key technologies needed for
research infrastructures to acquire and curate more of the scientific information
communicated in scholarly literature as machine readable interlinked yet distinct
information objects are in place. While certainly challenging, technological inte-
gration seems to be on the horizon. Here, we depict such an integration in the
context of an open project1 recently initiated by the TIB Leibniz Information
Centre for Science and Technology which aims to develop infrastructure that
acquires, curates, and processes scientific information communicated in schol-
arly literature [5]. In addition to technical considerations elucidated on the use
case, we discuss possible pathways through which machine readable scientific
information may be systematically acquired by the prospective infrastructure.
We also present recent developments and some near-future plans of the project.

2 Use Case

We aim to reproduce and represent, in machine readable form, the statistical
hypothesis test supporting the scientific statement that “IRE binding activity
was significantly reduced in failing hearts” as published by Haddad et al. [24, p.
364] in their article entitled Iron-regulatory proteins secure iron availability in
cardiomyocytes to prevent heart failure recently published by European Heart
Journal.

Iron-responsive elements (IREs) are conserved nucleotide sequences located
in uncoded regions of iron-related transcripts (mRNA). These elements can be
bound by iron-regulatory proteins (IRPs) in order to regulate the iron home-
ostasis in cells, which is essential for cell survival since iron is a key co-factor
for many enzymes involved in numerous biological processes, ranging from DNA
synthesis to energy metabolism. In iron-depleted cells, IRP activity increases in
order to secure the iron availability [26]. According to Haddad et al., patients
with heart failure (a condition whereby the heart is unable to pump sufficiently)
show reduced IRP activity and iron content in heart cells, leading to impaired
heart function.

The statement by Haddad et al. is based on data reported in the plot shown
in their Fig. 1B, specifically for non-failing hearts (NF) and patients with failing
heart (F). The data reported in the plot are themselves sourced in the elec-
trophoretic mobility shift assay shown as image in Fig. 1B. The quantification of
the image is done using ImageJ [33], an image processing and analysis software.

Given the data, Haddad et al. use Prism (GraphPad Software) to perform a
Student’s t-test and find the reported statistical difference (P < 0.001) in mean
1 Open Research Knowledge Graph: http://orkg.org (Accessed: October 16, 2018).

http://orkg.org
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IRE binding activity between the two groups (NF and F). Hence the author’s
statement that “IRE binding activity was significantly reduced in failing hearts.”
Prism is also used to create the plot shown in Fig. 1B.

Fig. 1. Overview of the main aspects of the conventional and proposed approaches.

3 Architecture

Figure 1 contrasts the main aspects of the conventional approach just described
with those of the proposed one. In the conventional approach, the proposed one
adopts a system architecture with technical and social subsystems, and sociotech-
nical subsystem integration. However, subsystems differ in details.

In the proposed approach, the technical subsystem consists of a digital infras-
tructure that operates a semantically enhanced Virtual Research Environment
(VRE). While VREs typically support numerous features e.g., cataloguing and
communication, of primary concern here is a component for data analysis. It
is this VRE component that we suggest to semantically enhance. The technical
subsystem also consists of a component capable of storing and retrieving infor-
mation objects. The social subsystem consists of individual researchers, mem-
bers of research communities. Among other activities, researchers are the agents
that perform data analysis. The proposed approach also relies on sociotechnical
integration. Indeed, researchers are required to move data analysis from local
computing environments into the VRE. This is to ensure that the data derived
in analysis conform with the representational requirements of the system.
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Data analysis is the key activity that evolves uninterpreted data to scien-
tific information, ultimately published in scholarly literature. We borrow the
notion of data interpretation from the unified definitional model of data, infor-
mation, and knowledge proposed by Aamodt and Nyg̊ard [1]. According to the
model, data are uninterpreted symbols with “no meaning for the system con-
cerned” and are input to an interpretation process. Information is interpreted
data i.e., data with meaning and the output from data interpretation. Interpreta-
tion occurs “within a real-world context and for a particular purpose.” Aamodt
and Nyg̊ard’s model also defines knowledge as learned information. As the out-
put of learning processes, “knowledge is information incorporated in an agent’s
reasoning resources.”

Floridi [21] further elaborates the definition of information. Building on a
widely adopted General Definition of Information (GDI), he develops a definition
of semantic information. GDI defines information in terms of “data + meaning.”
Floridi proposes a more precise formulation that borrows the term infon [7,19],
a discrete item of information. The infon σ is an instance of information, under-
stood as semantic content, if and only if σ consists of n data, n ≥ 1; the data
are well formed; and the well-formed data are meaningful (i.e., of significance to
some person, situation or machine). Of specific interest here is factual semantic
content i.e., semantic content about a situation or fact that can be qualified
as either true or false. Only semantic content that is true is informative. Thus,
Floridi suggests that p qualifies as factual semantic information if and only if
p is well-formed, meaningful, and truthful data. Furthermore, Floridi proposes
a classification of types of data, of which two are of importance here. Primary
data are the principal data stored, for example in a database while derivative
data are data that “can be extracted from some data whenever the latter are
used as indirect sources in search of patterns, clues or inferential evidence about
things other than those directly addressed by the data themselves.”

Fig. 2. From uninterpreted data to scientific information in the research lifecycle.
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Listing 1. Python implementation of the statistical hypothesis test.

import numpy as np

import pandas as pd

from scipy.stats import ttest_ind

labels = [’non -failing heart (NF)’, ’failing heart (F)’]

data = [(99, 52), (96, 40), (100, 38), (105, 18),

(np.nan , 11), (np.nan , 5), (np.nan , 42),

(np.nan , 55), (np.nan , 53), (np.nan , 39),

(np.nan , 42), (np.nan , 50)]

df = pd.DataFrame.from_records(data , columns=labels)

tt = ttest_ind(df[’non -failing heart (NF)’],

df[’failing heart (F)’],

equal_var=False , nan_policy=’omit ’)

tt.pvalue

Figure 2 places these concepts in the context of the research lifecycle. Unin-
terpreted, primary data resulting in observation, experimentation, or simulation
activities enter the research data lifecycle by data acquisition. Primary data
may be processed in activities other than data interpretation (e.g., aggregation or
interpolation). In such activities, derived data remain uninterpreted and without
meaning for the system concerned. It is in data analysis that data are interpreted
and derived data are information, meaningful and—following Floridi—truthful
data for the system concerned. Along research data lifecycles, data may be pro-
cessed and analysed repeatedly resulting in secondary, tertiary, quaternary, etc.
data and, if data are meaningful and truthful for the system concerned primary,
secondary, etc. information.

Factual semantic information is a fundamental unit in scholarly communi-
cation. Figure 2 suggests that information is learned, incorporated in an agent’s
(researcher, primarily) “reasoning resources” (knowledge base). Through learn-
ing processes, in scholarly communication information thus evolves to knowledge,
specifically learned scientific or scholarly information.

Instances of factual semantic information and learned scientific information
communicated in scholarly literature are the objects which the proposed archi-
tecture aims to represent, acquire, curate, and publish for further reuse. Their
representation is machine readable. Critically, not just the data that constitute
information are machine readable: Meaning is machine readable, too. Hence, not
only is the value 0.013 machine readable but so is its meaning as a e.g., p-value.
We now present the implementation of the use case following this architecture
and conceptual framework.
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4 Implementation

We implement the statistical hypothesis test using Jupyter [29] in Python, specif-
ically Jupyter Lab, the next-generation web-based interface for Project Jupyter.
Jupyter Lab acts as VRE component that provides services for data analy-
sis among the range of services typically provided by a full-fledged VRE e.g.,
D4Science VREs [11].

The complete Jupyter notebook is published [38]. We limit the presentation
here to the key elements. Given the experimental data, the statistical hypothesis
test can be easily implemented using SciPy [28]. Listing 1 shows the implemen-
tation in detail. The last line returns the computed p-value i.e., 0.0000000131.
This merely reproduces in Jupyter Lab some of the output researchers obtain
using Prism.

More interesting is the possibility to describe, in machine readable form, the
performed statistical hypothesis test. Since our Jupyter Lab based VRE com-
ponent can be extended with novel functionality, we implement a function that
returns a description of the test in RDF (Resource Description Framework) [30].
Listing 2 displays the core of the description (prefixes are omitted). The numeric
p-value is described as the output of a two sample t-test with unequal vari-
ance (STATO 0000304). The test description also specifies iron-responsive element
binding (GO 0030350) as the study design dependent variable (OBI 0000751), a
specified input of the statistical hypothesis test. Omitted here for the sake of
brevity, the description also includes the continuous variables (STATO 0000251)
as specified input. The input data are scalar measurement data (IAO 0000032)
that are part of (BFO 0000051) the continuous variables.

Hence, rather than merely representing the numerical p-value, the approach
pursued here describes the performed statistical hypothesis test in a comprehen-
sive and semantic manner, including meaningfully described test input and out-
put. Furthermore, the resulting description is machine readable. The description
is an instance of machine readable factual semantic information communicated
in scholarly literature.

Given such machine readable descriptions of statistical hypothesis tests e.g.,
the others included in the paper by Haddad et al. and potentially the many
more found in the scientific literature, it is trivial to formulate queries only for
statistically significant (specifically, P < 0.005 or P < 0.001) tests (of a spe-
cific kind) involving a particular dependent variable and continuous variables
with at least N measurement data. The scientific information communicated in
scholarly literature—here the statement that “IRE binding activity was signif-
icantly reduced in failing hearts,” or more accurately the statistical hypothesis
test underlying this statement, with the supporting figures and data in Fig. 1B—
is thus not just reported in a form suitable for human experts but also available
in machine readable form for automated processing.

Technically, the machine readable description of the statistical hypothesis
test is a (small) RDF graph, consisting of a set of RDF triples (109 in our
example). Various kinds of databases can be used to persist such triples. The
most obvious kind is one of the many available triple stores. However, we are
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Listing 2. Machine readable description of the performed statistical hypothesis test,
in RDF Turtle syntax. For the sake of brevity, we omit prefixes but include human
readable comments to guide readers through the non-semantic names of OBO Foundry
ontology concepts and relations.

# a two sample t-test with unequal variance

[] a obo:STATO_0000304 ;

# that has specified input

obo:OBI_0000293 [

# a study design dependent variable

a obo:OBI_0000751 ,

# specifically , iron -responsive element binding

obo:GO_0030350

] ;

# and has specified output

obo:OBI_0000299 [

# a p-value

a obo:OBI_0000175 ;

# that has value specification

obo:OBI_0001938 [

# a scalar value specification

a obo:OBI_0001931 ;

# that has specified numeric value

obo:OBI_0001937 1.311125e-08

]

] .

currently experimenting with a more general purpose graph database, specifically
Neo4j (neo4j.com). The primary motivation for this choice is the possibility, in
Neo4j, to attach arbitrary attributes to graph nodes and edges. We plan to make
use of this feature to e.g., timestamp data and support versioning.

Aligned with RDF, at the core of our data model is the statement i.e., a
structure of three elements (subject, predicate, object) whereby the subject is
a resource and the object is either a resource or a literal (predicate is an addi-
tional type). Statements, resources, and predicates are identified by means of an
internal identifier. With RDF data, URIs are thus mapped to internal identifiers
and are, in our data model, the labels of resources or predicates.

A REST API enables interaction with the graph database. Of primary focus
here, the API supports the creation and lookup of resources, predicates and
statements. Given the RDF triples for the machine readable description of the
statistical hypothesis test (Listing 2), we thus implement the storing of triples as
statements. Contrary to conventional triple stores, we first need to resolve URIs
in triple subject, predicate, and object positions to internal identifiers. Hence,
before a statement is stored we perform lookups and create new resources and
a predicate in case the corresponding URIs cannot be found (for more detail,
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see [38]). Given internal identifiers for subject, predicate and resource object we
then store the statement. Literal objects are unidentified values.

5 Discussion

As suggested by Mons and Velterop for their paper [31], also this paper may
appear paradoxical since “it is a paper in classical format that seems to make a
plea for the ending of precisely such textual classical publication.” Except that
this paper is no plea for the ending of classical publication. Rather, we argue that
with relatively minor changes to current research infrastructures we may achieve
the co-existence of classical publication with machine readable representations
of (some of) the information communicated in classical publication.

We suggest that a key element is the prospective (a priori) systematic acqui-
sition of machine readable scientific information communicated in scholarly lit-
erature i.e., acquisition while researchers perform data analysis and develop the
results that build the foundation for the prospective article. This stands in con-
trast with the (complementary) approach whereby machine readable scientific
information is extracted retrospectively (a posteriori) from published articles,
principally using text mining, possibly combined with human curation.

As shown with our use case, the prospective approach has the potential to
capture scientific information at the granularity of individual statements or even
numbers reported in tables and figures. We argue that, with current technologies,
such granularity cannot be achieved by the retrospective approach, using text
mining.

However, the prospective approach relies on changes to the research infras-
tructure used for data analysis. The challenges are both technical and social.
The technical infrastructure needs to be advanced so that the output of compu-
tational environments are no longer mere numbers. Rather, numbers need to be
information objects with machine readable serialization that captures meaning.
Furthermore, the technical infrastructure needs to automatically track relations
between entities e.g., to record provenance.

Infrastructure is invisible [35] and this is precisely how the additional func-
tionality delineated here should appear to researchers: invisible. However, some
changes in practice are difficult to avoid. Moving data analysis from local com-
puting environments onto interoperable infrastructure e.g., into VREs that inter-
operate with data and computing resources, is a major change to how data anal-
ysis is currently performed, by many if not most researchers and especially those
working with little data. Data analysis on local computing environments (e.g.,
the researcher’s workstation) is a key reason for the staggering syntactic and
semantic heterogeneity of derivative data generated by researchers in data anal-
ysis. In such environments it is hard to harmonize data representation, introduce
novel approaches and promote interoperability. Furthermore, the infrastructural
discontinuity between local computing environments and engineered research
infrastructures makes it difficult or impossible for the latter to monitor work-
flows and thus track executed activities, retain information about the involved
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primary and derivative data, as well as to systematically acquire derivative data.
Indeed, the download of data from research infrastructures e.g., data reposito-
ries is “considered harmful” in most cases [4]. Implications in disciplines with
sensitive, personal data such as life sciences need to be considered.

While moving data analysis onto interoperable infrastructure is surely a
major social challenge for many research groups and communities, the prospect
of performing more of data analysis in well-engineered VREs has great potential
as an approach to start addressing the issues discussed here. Naturally, “big sci-
ence” and “big data” research communities have taken steps into such direction.
For example, with CERN Analysis Preservation [14] the High-Energy Physics
community is systematically preserving research objects (e.g., data, software)
created in analysis. However, the long tail of research with “small data” has
arguably been left behind.

The proposed approach can be discussed from the perspective of the FAIR
principles for scientific data management and stewardship [44]. The content of
Listing 2 is of course data. As they encode scientific information communicated
in scholarly literature, the data in Listing 2 are, however, of a kind different
from observational data (e.g., sensor network sourced), experimental data (e.g.,
assay sourced) or computational data (e.g., simulation sourced). In contrast to
the form in the article by Haddad et al. (in Fig. 1B and in the main text of the
article) the data in Listing 2 are clearly more (machine) interoperable. Indeed,
the data meet the three requirements for interoperability suggested by the FAIR
principles. Specifically, in the proposed form the data are more interoperable
because they “use a formal, accessible, shared, and broadly applicable language
for knowledge representation”; they “use vocabularies that follow FAIR princi-
ples”; and they “include qualified references to other (meta)data.” With system-
atic acquisition in research infrastructures, the proposed approach also supports
the findability, accessibility and reusability of scientific information published
in scholarly literature, and hence improves on the other elements of the FAIR
principles.

The reference to concepts e.g., two sample t-test with unequal variance
(STATO 0000304) and their formal semantics by means of global and unambigu-
ous identifiers is a key aspect of the FAIR principles. In the proposed approach,
infrastructure adopts identified concepts of existing ontologies. The semantics
of the resulting data (Listing 2) are thus accessible to machines. This stands
in contrast with the natural language text of the original study in which the
authors did not make use of ontology concepts.

We implement the proposed approach in Python. With the rdflib2 library,
the language has good support for RDF. It is thus straightforward to implement
the proposed features in Python. Jupyter supports numerous languages, includ-
ing R which is another language popular in data science. The effort required
to implement the proposed approach in Jupyter but for another language thus
depends primarily on whether or not there exists a corresponding RDF library.
More flexible approaches may be engineered.

2 https://rdflib.readthedocs.io/ (Accessed: October 16, 2018).

https://rdflib.readthedocs.io/
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Listing 2 only shows iron-responsive element binding (GO 0030350) and the p-
value as statistical hypothesis test input and output, respectively. The published
Jupyter notebook [38] also includes the data as specified test input. In principle,
this description can be extended with further attributes. However, such extension
relies on additional vocabulary, likely of a different ontology. For instance, it
may be interesting for applications to explicitly capture data summaries e.g.,
the sample size or the share of NaN values. Such indicators are important in data
and statistical test quality assessment. Furthermore, we may capture additional
medical context (e.g., ICD-11 codes). To be useful, it is essential for descriptions
to adequately capture context. So far, we have given this aspect only limited
attention.

6 Future Work

Though some of the foundations for the infrastructure depicted here have been
laid in other disciplinary contexts, specifically the earth and environmental sci-
ences [36,37,39–42], the presented work remains in an embryonic stage. Most
of the work required to make the vision [5,6,20] reality surely lays ahead. We
present here a few avenues for future work.

The application of the approaches originally developed in use cases in earth
and environmental sciences to life sciences is important and we are committed
to build on the results reported here and develop a compelling use case together
with Hannover Medical School as a research infrastructure in life sciences. Such
collaboration is essential to determine the requirements for a viable infrastruc-
ture.

There exist numerous pathways along which machine readable scientific infor-
mation can be acquired. In this paper, our focus is on the prospective pathway
with data analysis. Also in the category of prospective pathways, we will explore
the possibility of acquiring machine readable scientific information at the time
of writing the article. Here, it is possible to link existing information objects
created e.g., during data analysis with the article. We will explore collaboration
with projects such as Dokieli [13] and other document authoring systems.

The retrospective pathways form a further category. They assume one or
more written articles, extract scientific information from them, and represent
information in machine readable form. In addition to text mining articles, it is
interesting to explore the acquisition of machine readable scientific information
at the time of article submission. This could be achieved in collaboration with
submission systems, such as EasyChair. In addition to metadata about the arti-
cle, such systems increasingly capture other information e.g., ORCID iDs and
funding data. While it is of course untenable to expect a complete “semantifi-
cation” of the article by the researcher at this point, it is arguably possible to
present researchers with a form that captures the key aspects of the research
contribution. Text mining could support researchers with suggestions.

As an open project, TIB encourages active stakeholder participation. The
project’s workshop series is a key instrument to this effect. We invite domain
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scientists to contribute requirements, use cases and domain expertise; repre-
sentatives of related projects such as FREYA, OpenAIRE, Research Graph to
explore synergies among infrastructures; representatives of the publishing sector
(articles, data and other artefacts) for their related work and possible future
integrations.

7 Conclusion

For a use case in life sciences, we have demonstrated how research infrastruc-
tures can systematically acquire machine readable scientific information commu-
nicated in scholarly literature. We argue that this possibility is enabled by the
technological integration of VREs (in particular components for data analysis)
and semantic technologies. While technical challenges do exist, we argue that
the greater challenges are social, specifically the required changes in research
practices. Indeed, data analysis currently performed on local computing envi-
ronments needs to move into VREs. Such environments can be engineered to
include novel functionality that enables the systematic acquisition of scientific
information so that information is also represented in machine readable form
using technologies that not only represent data but also their meanings.

Acknowledgements. We thank the TIB Leibniz Information Centre for Science and
Technology for supporting this project and our colleagues and the participants of the
project’s workshop series for their contributions.
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Abstract. Recent publications have shown that the majority of stud-
ies cannot be adequately reproduced. The underlying causes seem to be
diverse. Usage of the wrong statistical tools can lead to the reporting of
dubious correlations as significant results. Missing information from lab
protocols or other metadata can make verification impossible. Especially
with the advent of Big Data in the life sciences and the hereby-involved
measurement of thousands of multi-omics samples, researchers depend
more than ever on adequate metadata annotation. In recent years, the
scientific community has created multiple experimental design standards,
which try to define the minimum information necessary to make exper-
iments reproducible. Tools help with creation or analysis of this abun-
dance of metadata, but are often still based on spreadsheet formats and
lack intuitive visualizations. We present an interactive graph visualiza-
tion tailored to experiments using a factorial experimental design. Our
solution summarizes sample sources and extracted samples based on sim-
ilarity of independent variables, enabling a quick grasp of the scientific
question at the core of the experiment even for large studies. We support
the ISA-Tab standard, enabling visualization of diverse omics experi-
ments. As part of our platform for data-driven biomedical research, our
implementation offers additional features to detect the status of data
generation and more.

Keywords: Experimental design · Aggregation graph · Metadata
Portal · Reproducibility

1 Introduction

The reproducibility crisis has revealed obvious shortcomings of modern biomed-
ical experimental techniques. While outright fraud seems to be the exception,
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recent publications pinpoint many of the problems as based on missing statistical
understanding when planning or performing scientific studies [4]. Even if enough
data is available to draw significant conclusions, the interaction between different
variables has to be reflected in the experimental design. Independent variables
are usually the focus of a study and are controlled by the experimenter. However,
it is rare that a variable like a disease state depends on only one single variable:
regulatory networks commonly include proteins that act together to create a
phenotype [12]. It is thus sensible to study multiple independent variables in a
factorial experimental design. The concept of factorial experimental designs was
popularized in crop research [5,6] and allows experimenters to detect interac-
tions, something not possible in one-factor-at-a-time (OFAAT) experiments.

The advancement of Big Data assists to conduct sophisticated experiments
benefiting from these study designs. Yet, even well-designed studies can often not
be reproduced, because crucial metadata is missing [23]. Convenient interfaces
between experimenters’ notes and online database systems are often missing.
Excel spreadsheets are still the most widely used tool for research notes pertain-
ing to assays and samples [16]: early efforts to standardize scientific reporting
lead to formalized spreadsheet formats specifying the minimum required infor-
mation to reproduce an experiment. MIAME, the Minimum Information About
a Microarray Experiment [2,3] standard and the microarray gene expression
markup language MAGE-ML [20] aim at annotating experiments so they can be
independently verified. Similarly, MIAPE, a standard describing the Minimum
Information About a Proteomics Experiment, tries to specify the needed infor-
mation to interpret analyses performed on proteins [21]. ISA-Tab combines these
earlier approaches into an interoperable spreadsheet format relating information
about research aims, other related studies and their associated assays [18,19].
Different efforts have been undertaken to provide users with tools based on the
ISA standard [9,10]. linkedISA leverages the data provided to create a semantic,
interoperable presentation and shows how implicitly defined study groups can
be extracted from ISA-Tab. These groups are summarized and listed in Bio-
GraphIIn, a graph-based repository for biological experimental data [8]. With
the growing complexity of biological experiments and especially the communica-
tion thereof, efficient visualization are indispensable. However, most of the work
has been focused on connecting experiments to ontology frameworks and mak-
ing it machine-readable. While Bio-GraphIIn presents a list of study groups, this
type of presentation can become difficult to grasp for huge experiments involving
many experimental factors and other metadata. More information can only be
obtained by displaying huge tables of samples.

The need to use computer-aided experimental design for large studies was
previously discussed in early factorial design approaches in behavioral research,
such as the online tool WEXTOR [17]. Here, the combination of every possi-
ble factor level pertaining to participants can be used to create specific web-
pages that guide the corresponding subjects to their questions or tests. In high-
throughput biomedical science, analysis tools that make use of experimental
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design information are often limited to custom formats: MaxQuant allows users
to edit an Experimental Design template to relate files with sample fractions [22].

Here, we build on our intuitive interface for experiment creation leverag-
ing proven experimental design concepts like full-factorial study design [7]. To
connect experimental designs with data integration, we provide an interactive
visualization tool that can summarize complex study designs based on involved
species, tissues, analytes and experimental factors into an intuitive experiment
graph. In an effort to comply with existing standards while allowing easy options
to manage high-throughput experiments, we provide interoperability with the
ISA-Tab format, and suggest a format for simplified experiment creation. The
highly modular structure makes our tool a good starting point for further devel-
opments in the area of quality control and statistical power estimation.

2 Methods

2.1 Factorial Experimental Designs

In a factorial design the influences of all independent experimental variables on
the response are investigated. A factor of an experimental design is defined as
one such variable that is being studied. A level is one possible variation of a
factor. The number of levels denotes the total number of different variations for
a single factor that was used in an experiment. Factorial designs are called full-
factorial designs, if every possible combination of levels is tested. A full-factorial
experiment with n factors and k levels for each factor is called a k × n factorial
design and consists of kn sub-experiments, as exemplified in Table 1. Each of
these cases can then have multiple biological or technical replicates.

Table 1. Example of a 3 × 2 full-factorial experimental design. Two variables x1 and
x2 containing three levels each are tested, leading to nine different experiments.

Variables Experiment no.

1 2 3 4 5 6 7 8 9

x1 − − − + + + 0 0 0

x2 − + 0 − + 0 − + 0

2.2 Aggregation Graph

The hierarchical way in which omics experiments are typically performed leads
to an intuitive sample graph connecting patient/model organism entities to
those denoting tissue/cell extract and measured analyte entities as previously
described [7,14]. The example in Fig. 1 visualizes experiments on six mice. In
each case a liver sample was taken and proteins prepared for mass spectrometry
analysis.
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Fig. 1. Sample hierarchy of six sources with attached samples and measurements.

Let G = (VG, EG) be a sample graph with vertices v ∈ VG denoting each of
these entities in an experiment and edges (v, w) ∈ EG denoting the extraction
of entity w from entity v in an experimental step.

Let further f1 . . . fn be a set of experimental factors on a subset of these
entities with factor level fiv for factor fi of vertex v and a similarity function on
factor levels s(fiv, fiw) = {0, 1}.

We define a set of aggregation graphs H1 . . . Hn, one for each factor fi:

Hi = (VH , EH)

∀ v ∈ VG :
∑

w∈VH

s(fiv, fiw) = 0 → v ∈ VH

∀ (v, w) ∈ EG : v ∈ VH ∧ w ∈ VH → (v, w) ∈ EH

(1)

Each graph H aggregates all entities of G with a similar factor level into a
single vertex, while preserving connections between the hierarchy levels of the
experiment. For nominal factors, similarity is best defined as the perfect match
of both levels, while quantitative variables can be summarized using intervals.

2.3 Implementation

We use the Open Source Biology Information System (openBIS) to store datasets
and annotating metadata. Our experimental design is represented both by inter-
connected entities denoting source organisms and samples as well as metadata
properties of these entities. Experimental factors and other properties of sample
source entities and samples are stored in a intermediary XML format in openBIS
that is validated by an XML schema. This schema includes quantitative vari-
ables with or without units as well as variables on a nominal scale, for example
different disease states. Metadata is read from and written to the system using
a web portlet running on a Liferay portal.
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Fig. 2. Schematic diagram of our implementation: Existing experimental designs and
their metadata stored in openBIS can be visualized in qPortal using our Java-based
experimental design libraries. Users can import and view experiments using different
formats, ISA-Tab being supported through isatools. A JavaFX implementation inde-
pendent of portal or data source is available on Github.

The schematic integration of our experimental design visualization into the
portal can be seen in Fig. 2. Users can create experiments using a wizard process
or file import and browse information about existing experiments [7,14]. Both
imported and existing experiments can be translated into the aggregation graph
and displayed using Javascript libraries [1,15]. For existing experiments, meta
information about attached datasets is leveraged from the data store. When
importing ISA-Tab investigations, the open-source framework isatools is used
in the translation process, using source and sample identifiers of the ISA study
format as well as all defined experimental factors. The Javascript libraries dagre
and Data-Driven Documents (D3) are then used to compute graph coordinates
and draw the the selected graph. A stand-alone version implemented in JavaFX
can be used independently of the portal or openBIS.

3 Results

To compare our implementation to the usual, complete sample graph of a project,
we demonstrate both visualizations on a simple proteomics experiment. 24 mice
were anesthetized for different periods of time, liver tissue was extracted and pro-
teins from those tissue samples were measured using mass spectrometry. Figure 1
shows a subset of the full sample graph. In contrast, the summarized experimen-
tal design graph of the same experiment seen in Fig. 3 gives a quick, condensed
overview of the experiment hierarchy, if no factor is chosen. Metadata like sam-
ple identifiers can be shown by clicking on nodes of the graph. When the factor
anaesthesia duration is selected, our algorithm splits the graph into three groups
of mice and descendant samples according to the three levels of this factor. Colors
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Fig. 3. Experimental design graphs of the same experiment as seen in qPortal. Numbers
denote the amount of summarized samples for each factor and hierarchy level. Left: no
experimental factor chosen. Right: nodes denoting mice and child nodes in the graph
are split by experimental factor anesthesia duration.

and legend are entirely dependent on the graph and inform users about species,
tissues, analytes and different factor values. Furthermore, the green outline of
the protein nodes show that data generation has been completed for all samples.

We evaluate our stand-alone implementation using a recent lipidomics study
on the progression to islet autoimmunity and type 1 diabetes taken from the
MetaboLights database for metabolomics experiments [11,13]. Our application
shows a description of the imported ISA-study and lists every experimental factor
that the authors have annotated in a drop-down menu. Selecting disease status
as seen in Fig. 4 shows that data generated from the blood plasma samples of
40 patients of a control group were compared to those of 40 type 1 diabetes
(T1D) cases, as well as 40 cases of autoimmunity against islet cells, that had not
yet progressed to diabetes. Selecting the age factor reveals that this is a time
series study, where blood was taken at different ages of patients. In this case the
authors failed to include units in their metadata, so it is only clear from their
publication that the ages are measured in months (Fig. 5).

Our implementation is not limited to single-omics experiments. Figure 6
shows a complex multi-omics study imported via the ISA-tab format. Since
the experimental factor levels only differ between cell cultures, the graph stays
connected on the species level. For studies of this complexity, zoom functionality
can be used to show details.
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Fig. 4. View of the stand-alone application after importing an ISA-Tab folder and
selecting a study as well as the experimental factor disease status. Information about
the selected study is displayed. Users can change experimental factors from a drop-
down menu. Our aggregation graph shows extraction of blood plasma from 120 patients
belonging to the three groups control, type 1 diabetes (T1D) and seropositivity (for
islet cell autoantibodies). The metabolome of those samples was measured.

3.1 Availability and License

The study aggregation graph is available through qPortal:
https://portal.qbic.uni-tuebingen.de/portal/web/qbic/software
A stand-alone JavaFX implementation and example studies are available on
Github under the MIT license:
https://github.com/qbicsoftware/experiment-graph-gui
ISA-Tab files of the type 1 diabetes study are available on MetaboLights:
https://www.ebi.ac.uk/metabolights/MTBLS620

https://portal.qbic.uni-tuebingen.de/portal/web/qbic/software
https://github.com/qbicsoftware/experiment-graph-gui
https://www.ebi.ac.uk/metabolights/MTBLS620
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Fig. 5. View of the stand-alone application after selection of the experimental factor
age. The levels of this factor show that blood plasma samples were taken at different
ages of the same patients, since the experimental levels are defined at the second level.

Fig. 6. Aggregation graph of one study of an imported ISA-tab investigation. Yeast
cultures are grown lacking different nutrients and proteome, transcriptome and
metabolome are measured.

4 Discussion

We present tools to visualize large biomedical studies by their most important
experimental aspects. Building on our graphical interface for the creation of
factorial experimental designs and our hierarchical data model, we create graphs
summarizing complex hierarchies of experimental variables, allowing users to
quickly familiarize themselves with the important aspects of a study. When used
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in a platform integrating experiment data and metadata, like qPortal, additional
information about datasets can be leveraged, marking missing data or the status
of a project. Our aggregation graph gives a concise and intuitive overview in
cases where representation of experiments was previously only possible using
large tables.

The lack of statistical power and sound experimental design has lead to the
so-called reproducibility crisis. Extensive work has been done to standardize
metadata annotation and storage, leading to multi-omics standards like ISA-
Tab, which not only stores metadata, but also provides a foundation to search,
display and use these annotations. These methods are clearly required due to the
size of modern biomedical experiments and their metadata: a simple overview
a of study often leads to huge tables or cluttered graphs. Some approaches are
examples of successful, interactive uses of study design visualization, yet they
address very specific questions. Bio-GraphIIn [8] focuses on listing the replicates
of each study group. By contrast, our approach supports the ISA-Tab format,
provides an interactive visualization of a large number of experiments and is able
to summarize replicates (with respect to one factor) into a single node to display
a concise representation with which users can interact to control the displayed
level of detail.

We have shown that our approach can display current studies including sev-
eral hundred entities. Since ISA-Tab is not a minimum information standard, the
amount of actual information beyond the sample hierarchy that can be drawn
from its format depends on the annotations provided by researchers, as our
example shows. We have taken the first steps towards a fully modular solution
that will allow integration of our tool, enforcing standards that fit with their
experimental data model.

Experimental factors are one of the most important type of study annotation,
since they are at the core of the question scientists want to answer. However,
our concept is not necessarily bound to the aggregation of different factor levels.
Any property that can split subjects or samples in different groups, can be
useful to find out more about a study. In large studies involving multiple groups,
sharing information about the status of the project and data generation is often
important. Provided this information is available, future work could include a
time-component, displaying the history of a study.
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Abstract. Linked open data movements have been followed successfully
in different domains; thus, the number of publicly available RDF datasets
and linked data based applications have increased considerably during
the last decade. Particularly in Life Sciences, RDF datasets are utilized
to represent diverse concepts, e.g., proteins, genes, mutations, diseases,
drugs, and side effects. Albeit publicly accessible, the exploration of these
RDF datasets requires the understanding of their main characteristics,
e.g., their vocabularies and the connections among them. To tackle these
issues, we present and demonstrate FedSDM, a semantic data manager
for federations of RDF datasets. Attendees will be able to explore the
relationships among the RDF datasets in a federation, as well as the
characteristics of the RDF classes included in each RDF dataset (https://
github.com/SDM-TIB/FedSDM).

1 Introduction

As the RDF data model continues gaining popularity, publicly available RDF
datasets are growing in terms of number and size [2,6]. One of the challenges
emerging from this trend is how to efficiently and effectively execute queries
over a set of autonomous RDF datasets, i.e., a federation of RDF datasets.
RDF datasets in a federation are accessible via web services, e.g., SPARQL end-
points, and a federated query processing engine enables the execution of queries
over these web services. Federated query engines are responsible of selecting the
relevant sources of a query, as well as of the tasks of query planning and execu-
tion, both required to collect the data from the selected sources and to answer
the query [9]. Existing federated SPARQL query engines include MULDER [5],
ANAPSID [1], FedX [8], SPLENDID [7], and SemaGrow [3]. Albeit effective, a
federated query engine requires user queries which should be expressed in terms
of the vocabularies used in the sources of a federation, as well as respecting
connections among them. Consider the SPARQL query in Listing 1, that col-
lects the mutations of the type ’confirmed somatic variant’ located in
transcripts which are translated as proteins that are transporters of the drug
Docetaxel. To answer this query, a federated query engine should select two
data sources, IASIS-KG and DrugBank. But for someone who does not have
knowledge about the RDF vocabularies of these RDF datasets, writing this query
c© Springer Nature Switzerland AG 2019
S. Auer and M.-E. Vidal (Eds.): DILS 2018, LNBI 11371, pp. 85–90, 2019.
https://doi.org/10.1007/978-3-030-06016-9_8
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may require a great effort. We tackle the problem of exploring RDF datasets in
a federation, and present and demonstrate FedSDM, a semantic data manager
for federations of RDF datasets. FedSDM relies on RDF Molecule Templates
(RDF-MTs) [5], abstract representations of RDF classes in the RDF datasets of
a federation, and their connections. FedSDM enables the exploration of RDF-
MTs; during the demonstration, attendees will observe how an RDF-MT based
analysis allows for the understanding of the concepts represented in a federation,
as well as the main characteristics of a federation RDF datasets.

Listing 1.1. SPARQL Query

SELECT DISTINCT ?mutation ? t r a n s c r i p t

WHERE {?mutation rdf : type i a s i s : Mutation .

?mutation i a s i s : mutat i on somat i c s ta tus ’ Confirmed somatic var i ant ’ .

?mutation i a s i s : muta t i on i sLoca t ed In t r an s c r i p t ? t r a n s c r i p t .

? t r a n s c r i p t i a s i s : t r a n s l a t e s a s ? p ro t e in .

?drug i a s i s : d rug in t e ra c t sWi th pro t e in ? p ro t e in .

? p ro t e in i a s i s : l a b e l ?proteinName .

?drug i a s i s : l a b e l ’ doce taxe l ’ .

? drug i a s i s : exte rna lL ink ?drug1 .

?drug1 drugbank : t r an spo r t e r ? t r an spo r t e r .

? t r an spo r t e r drugbank : gene−name ?proteinName .}

2 The FedSDM Architecture

The FedSDM architecture includes four basic components: Metadata Manager,
Metadata Explorer, Graph Analyzer, and Federated Query Engine.

Metadata Manager: is responsible for creating and managing RDF-MTs in a
federation. Given a set of RDF data sources, the metadata manager creates RDF-
MTs for each data source. An RDF-MT rm is described in terms of: the RDF
class of rm, cardinality, set of predicates and the cardinality of each predicate,
and the links to other RDF-MTs in the federation or in the same RDF dataset.
The set of predicates and the links will be used to either analyze the federation
or to formulate a federated query. Intra-dataset links (i.e., links between RDF-
MTs within the same data source) and inter-dataset links (i.e., links between
RDF-MTs from different data sources) in a federation will be exploited by other
components, such as a graph analyzer to compute the graph properties of an
RDF-MT network, and the federated query engine for decomposition, source
selection, and planning of a federated query. Metadata Explorer: uses RDF-
MTs created by the metadata manager to generate different visualizations. For
instance, it analyzes RDF-MT links to visualize the connectivity among datasets.
In addition, it acts as a gateway to access the metadata stored for further analysis
of the data sources, e.g., cardinality and predicates. Graph Analyzer: performs
graph analysis of a graph created by using intra- and inter-dataset links among
RDF-MTs. Properties such as graph density, number of connected components,
transitivity, and clustering coefficient of an RDF-MT graph are generated using
networkx1 python library. Federated Query Engine: provides a unified view
1 https://networkx.github.io/.

https://networkx.github.io/
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Fig. 1. FedSDM architecture. Given a set of data source endpoints by the user, the
metadata manager creates the RDF-MTs from each endpoint and store it to a triple
store. Metadata Explorer and Graph Analyzer issues a SPARQL query to collect basic
information about RDF-MTs in the federation to perform analysis and present to user
via UI component. Finally, given a SPARQL query the Federated Query Engine selects
relevant data sources in the federation and execute a federated query then predent the
results to the user via the UI.

of the data sources in the federation. This component exploits the metadata
collected from the RDF datasets in a federation for decomposition and source
selection. In FedSDM, MULDER [5] is integrated as the federated query engine
(Fig. 1).

3 Demonstrating Use Cases

We created a federation composed of five data sources; DBpedia (3.5.1), Drug-
Bank (Bio2RDF), PharmGKB (Bio2RDF), Sider (Bio2RDF), and the IASIS-
KG. Attendees will be able to explore the RDF-MTs of these RDF datasets
and their connections. Specifically, we will demonstrate the following use cases
(Table 1):

Analysis of Datasets in a Federation. We will present analysis of datasets
in the federation in terms of RDF-MT connectivity within a dataset and with
other data sources in the federation. First, we will show the RDF-MT composi-
tion in different levels, per data source, e.g., Figs. 2a, b, c, d and e show concepts
in IASIS-KG, DBpedia (3.5.1), Drugbank (Bio2RDF), Sider and PharmGKB,
respectively. In addition, the federation in terms of RDF-MTs is depicted in
Fig. 2f. This gives the idea on how many concepts represented in a dataset and
the number of unique entities per concept. Then, we will show the connectiv-
ity among sources via RDF-MTs as a force graph (e.g., Fig. 3) and circular
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Fig. 2. RDF-MT composition of data sources. Each colored portions represents an
RDF-MT proportional to total distinct molecules in them.

Table 1. Graph metrics

Num of nodes 767

Num of edges 8698

Graph density 0.0296

Avg. num neighbors 22.6805

Connected components 67

Transitivity 0.0585

Clustering coefficient 0.0811
Fig. 3. Source links Fig. 4. Links

(e.g., Fig. 4), demonstrating the connectivity among the RDF-MTs in the feder-
ation. Finally, we will show the graph properties, in numbers, of each data source
and overall federation. Table 2 shows graph property values, such as density, con-
nected components, transitivity, and average clustering coefficient, for each data
sources and the overall federation. Average clustering coefficient assigns higher
scores to low degree nodes, while the transitivity ratio places more weight on
the high degree nodes.

Exploratory Metadata Analysis. In this use case, the attendee will explore
the metadata of the federation to understand the characteristics of an RDF-MT,
as in Fig. 5, and formulate a federated query, e.g., Fig. 6. After formulating the
federated query by exploring RDF-MT properties, the query will be executed by
a federated query processing engine integrated in FedSDM and results will be
displayed, Fig. 7. Results can be exported as CSV, TSV, Excel, or PDF formats.
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Table 2. IASIS-federation RDF-MTs graph properties. C.C - Connected Components,
Avg. C - Average Clustering

Data source Nodes Links Density C.C Avg. clus Transitivity Avg. neighbours

IASIS-KG 31 36 0.07741 5 0.18817 0.265822 2.3225

DBpedia 467 8124 0.07466 20 0.12097 0.05968 34.79229

DrugBank 207 353 0.01655 22 0 0 3.4106

PharmaGKB 181 273 0.01675 39 0 0 3.01657

SIDER 27 43 0.12250 5 0 0 3.18518

ALL(Fed) 767 8698 0.0296 67 0.0811 0.0585 22.6805

Fig. 5. dbo:Drug predicates & links

Fig. 6. SPARQL query based on the
dbo:Drug metadata

Fig. 7. dbo:Drug query results (tabular)

4 Conclusions and Future Work

We present FedSDM, a semantic data manager for data federation and analysis.
FedSDM provides a visual analysis of data sources and a federation by using RDF
Molecule Templates. FedSDM provides an exploratory analysis on the metadata
of the federation sources. In addition, FedSDM able to generate basic graph
properties of RDF-MT graph. For future work, we plan to extend FedSDM to
support domain specific visualization of SPARQL query results and analysis
of data sources via sampling. Furthermore, FedSDM will be equipped with a
component to define privacy and access control rules that must be enforced
during federated query processing [4].
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Abstract. In recent years, following FAIR and open data principles,
the number of available big data including biomedical data has been
increased exponentially. In order to extract knowledge, these data should
be curated, integrated, and semantically described. Accordingly, several
semantic integration techniques have been developed; albeit effective,
they may suffer from scalability in terms of different properties of big
data. Even scaled-up approaches may be highly costly due to perform-
ing tasks of semantification, curation, and integration independently. To
overcome these issues, we devise ConMap, a semantic integration app-
roach which exploits knowledge encoded in ontologies to describe map-
ping rules in a way that performs all these tasks at the same time. The
empirical evaluation of ConMap performed on different data sets shows
that ConMap can significantly reduce the time required for knowledge
graph creation by up to 70% of the time that is consumed following a
traditional approach. Accordingly, the experimental results suggest that
ConMap can be a semantic data integration solution that embody FAIR
principles specifically in terms of interoperability.

1 Introduction

With the rapid advances in different techniques in the biomedical domain such
as Next Generation Sequencing [9], which allow for producing massive amounts
of data in acceptable time, and access policies such as FAIR [10] and open data
principles, big data has become a quotidian occurrence. However, knowledge
discovery from big data, as the criteria to make decisions and take actions,
is still a challenging problem. In order to extract knowledge, data residing in
different sources should be curated, integrated, and semantically described.

In recent years, the development of Semantic Web technologies with the
main purpose of describing the meaning of data in a machine readable fashion,
c© Springer Nature Switzerland AG 2019
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Fig. 1. The ConMap approach. ConMap receives structured data sets from heteroge-
neous sources as input, and produces a knowledge graph. It relies on conceptual or
class-based mapping approach in performing all tasks of semantic enrichment, inte-
gration, and transformation i.e. both semantification and integration are performed
during class-based mapping and afterwards, based on generated mapping rules, nor-
malized data is transformed as RDF model into the knowledge graph.

has facilitated the implementation of various semantic integration applications.
Existing semantic data integration approaches rely on a common framework that
allows for the transformation of data in various raw formats into a common data
model, e.g., RDF [8]. The mapping rules for data transformation are expressed
using mapping languages such as RML [1]. Accordingly, several semantic data
integration approaches and tools have been introduced following these technolo-
gies such as Karma1, MINTE [2], SILK [4], and Sieve [7]. Albeit effective, existing
semantic data integration tools may suffer from scalability in terms of the dom-
inant dimensions of big data, i.e., volume, variety, veracity, velocity, and value.
In fact, even scaled-up approaches are mainly a trade-off between mentioned
aspects of big data since it would be highly costly to scale up all the tasks of
semantification and integration in terms of more than one dimension, particu-
larly, while being performed independently. More precisely, performing the tasks
sequentially results in going through the same procedure of cleaning, semantify-
ing, curating, and transforming for each single data set while their data overlap
partially. Moreover, during each mentioned step, the volume of data may be
grown and consequently the computational complexity of the next task in the
queue, and eventually integration as the last step, will be considerably increased.
To overcome drawbacks of existing approaches, we introduce ConMap, a seman-
tic integration approach for big data.

ConMap exploits knowledge encoded in a global schema to perform all the
mentioned tasks, i.e., semantification, integration, and transformation in one sin-
gle step. Therefore, ConMap can be considered as a scalable solution for semantic
integration of big data. We have performed an initial experiment study over data
sets of various sizes. The observed results suggest that ConMap reduces RDFiza-
tion time [5] i.e., the time required for transforming heterogeneous structured
data sets into RDF.

The rest of the paper is structured as follows: in Sect. 2 the general idea of
ConMap is presented as well as detailed explanation of ConMap architecture and

1 http://usc-isi-i2.github.io/karma/.

http://usc-isi-i2.github.io/karma/
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components. In Sect. 3, the experiments that are performed between ConMap
and the attribute-based mapping approach are described and the results are
evaluated in terms of time complexity. Finally, Sect. 4 represents our conclusions.

2 The ConMap Approach

ConMap is a semantic data integration approach able to use mapping rules not
only for data semantification, but also for curation and integration. ConMap
implements a class-based mapping paradigm that resembles the Global-As-View
[3] approach of data integration systems [6]; it enables the definition of the map-
ping, curation, and integration rules per each class in the global schema. Thus,
ConMap executes all the tasks, i.e., semantification, curation, and integration at
the same time by evaluating these class-based rules. Figure 1 devises the Con-
Map architecture. ConMap receives real-world data source(s) that represent the
same concepts in the global schema but in different formats; it outputs a knowl-
edge graph where input data is integrated and described in a structured way.
Data related to each class is extracted from different data sources which are nor-
malized in advance to reduce data redundancies. Afterwards, normalized data is
semantified in order to describe and integrate this data in the knowledge graph.
The components of ConMap can be summarized as below:

– Normalization: To overcome interoperability issues, all data sets are nor-
malized considering the real world concepts. Since each concept may be repre-
sented by more than one data source and each data source may involve more
than one concept, the process of normalization is based on the decomposition
of each data set in terms of the global schema classes.

– Semantic Enrichment: Since the mapping process enables semantification
and curation of data, the approach that is applied for mapping plays a signif-
icant role both on computational complexity and the quality of semantified
data. The attribute-based mapping approach is source-oriented which means
it semantifies the concepts that are presented in each source based on the
attributes that are available in the same data source. In contrast, the class-
based mapping approach is concept-oriented; it defines semantic descriptions
of each concept according to the attributes that are determined by a global
schema and expressed by variant data sources either equally or differentially.

– Integration: To integrate data residing at heterogeneous sources, they all
required to be transformed into a unified representation. Since in ConMap
approach, in order to decrease the cost of data comparison, data integra-
tion precedes data transformation, semantic descriptions provided during the
generation of mapping rules are employed to translate different representa-
tions of data into a unified one. Furthermore, semantic descriptions provide
actionable information for data fusion in case of inconsistency of data values
between different sources.

– RDFization: The last component to be executed in ConMap is RDFization.
It is important to note that despite being the last step, the performance of
previous steps can be also observed through the outcome of this component
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Fig. 2. Experimental results. (a) The required time for RDFization of one class includ-
ing five attributes from three different sized data sets. (b) The required time for
RDFization of one class including twelve attributes from three different sized data
sets.

which evaluates class-based mapping rules for transforming normalized and
semantified data sets into the knowledge graph.

3 Experimental Study

In this paper, the performance of two mapping paradigms are compared: the
class-based mapping approach provided by ConMap, and an attribute-based
approach which is commonly followed by existing tools, e.g., Karma. We address
two research questions: (RQ1) Does ConMap reduce the time complexity of
RDFization? (RQ2) How influential a mapping approach can be in terms of
execution time when the complexity of the class increases?

Benchmark: In this study, a data set with overall size of 169.8 MB is extracted
from COSMIC2, an online database of somatic mutations that are found in
human cancer. The data set is in tab separated format comprising 557,162
records of lung cancer related coding point mutations that are derived from
targeted and genome wide screens.

Metrics: The behavior of the studied mapping approaches is evaluated by mea-
suring the execution time in seconds for transforming a data set into RDF apply-
ing that approach.

Implementation: The mapping rules3 are expressed in the RML mapping lan-
guage. The RDFization is implemented in Python 3.6. The experiment was exe-
cuted on a Ubuntu 17.10 (64 bits) machine with Intel W-2133, CPU 3.6 GHz, 1
physical processor; 6 cores; 12 threads, and 64 GB RAM.
2 https://cancer.sanger.ac.uk/cosmic.
3 https://github.com/samiscoding/DILS.

https://cancer.sanger.ac.uk/cosmic
https://github.com/samiscoding/DILS
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Experimental Setup: Two experiments are set up in this study: (E1) In order
to better understand the influence of mapping approach on time complexity of
RDFization, the experiment is run on three different sized data sets: the first one
is the preprocessed data set derived from the original mutation data set that is
extracted from COSMIC without any decrease regarding its size while the two
other data sets are extracted from the first one. The records that are included
in two latest data sets are 50% and 25% randomly selected records of the first
data set. The result of this experiment is shown in Fig. 2(a). (E2) To study how
time complexity of each mapping approach fluctuated with the increase in the
number of attributes for a class, for each mapping approach two separated sets
of mapping rules are defined; one mapping rule set for an RDF class with twelve
attributes and the other one including five attributes. The experimental results
can be seen in Fig. 2(b). Based on the results of explained experiments that are
illustrated in Fig. 2, the execution time increases in case of using the attribute-
based mapping rules for transformation of data in both sets including different
numbers of attributes which positively answers the RQ1. Moreover, the observed
results lead to answer RQ2 as follows: in attribute-based mapping approach, the
required execution time for transforming one class of data will grow when the
number of its attributes increases, however, in class-based mapping the time
complexity is not a function of class complexity.

3.1 Discussion

The evaluation results can be simply explained according to the fact that the
attribute-based mapping approach performs the same procedure of creating
subject-predicate-object triple for every single attribute of a class. In contrast,
the class-based mapping approach transforms each concept or class including all
its attributes to one RDF class in a single run. Therefore, class-based mapping
approach can be considered as a fundamental procedure for transforming raw
data into RDF model in an integrated non-redundant way.

4 Conclusions and Future Work

We introduced ConMap, a semantic integration approach that deploys the knowl-
edge encoded in an ontology to perform semantification and integration during
transformation, in a way that a big data scalability can be acquired. We empiri-
cally showed that ConMap can reduce the execution time of semantic integration
of structured data sets into a knowledge graph. Although experimental results
demonstrated in this paper were derived by all components of ConMap, there is
still room to illustrate the power of this approach in terms of integration. There
exist open problems regarding different dimensions of big data that can be tack-
led during the integration process in ConMap; they include veracity which refers
to noise, abnormality and inconsistency of available data. In our future work we
will more focus on improving ConMap from data fusion perspective.
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Rüdiger Busche1(B) , Henning Dannheim2, and Dietmar Schomburg2

1 Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany
rbusche@uos.de

2 Department for Bioinformatics and Biochemistry,
Technische Universität Braunschweig, Braunschweig, Germany

{h.dannheimm,d.schomburg}@tu-braunschweig.de

Abstract. Systems biology aims at understanding an organism in its
entirety. This objective can only be achieved with the joint effort of
specialized work groups. These collaborating groups need a centralized
platform for data exchange. Instead data is often uncoordinatedly man-
aged using heterogeneous data formats. Such circumstances present a
major hindrance to gaining a global understanding of the data and to
automating analysis routines.

DISBi is a framework for creating an integrated online environment
that solves these problems. It enables researchers to filter, integrate and
analyze data directly in the browser. A DISBi application dynamically
adapts to its data model. Thus DISBi offers a solution for a wide range
of systems biology projects.

An example installation is available at disbi.org. Source code and doc-
umentation are available from https://github.com/DISBi/django-disbi.

Keywords: Systems biology · Data integration · Data exchange

1 Introduction

In systems biology, researchers try to gain a system-level understanding of an
entire organism. This objective requires investigating organisms from different
perspectives involving diverse experimental and computational approaches [6].
As the different approaches usually require specialization, work groups bundle
their efforts in consortia, each work group investigating a different level of biolog-
ical information. The huge amounts of data generated in different experimental
and simulation approaches need to be integrated to reveal the underlying pat-
terns. While data exchange is a crucial aspect of this effort, it is often hindered
by a lack of standardized data formats and a centralized data storage. Though
different standards exist [10], they are often not used consistently throughout
the project due to inflexibility of the formats or diverging preferences of differ-
ent work groups [7]. These circumstances greatly hinder the progress towards

c© Springer Nature Switzerland AG 2019
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system-level understanding, as complete data are seldomly available and often
need to be integrated manually.

With DISBi, we present a framework to easily construct an online envi-
ronment for Data Integration in Systems Biology. It enables users to manage,
organize and integrate heterogeneous data generated in systems biology projects.
Existing systems like Aureolib [3] rely on fixed data models, which makes the
applications useful only for a narrow range of projects. Often these applications
are limited to manage only data from a single organism or a single experimental
method. Instead, DISBi’s approach is to generalize the problem of data integra-
tion in systems biology. Thus DISBi is a framework rather than an application
that allows users to set up a web app customized for the data of a particular
project. Programmers can focus on the logic relevant for the project, rather than
implementing details. Researchers profit from the availability of integrated data
throughout the course of a project.

Fig. 1. Exemplary layout of the abstract data model. A possible data model for inte-
grating proteome, flux balance analysis and metabolome data. Reactions are grouped
in pathways and metabolites in biochemical classes by utilizing meta models. Every
measurement model has a non-optional relation to one Experiment and one biological
model. Note that this is only one possible data model for a DISBi application. The
abstract data model can accommodate varying numbers biological and measurement
models with more complex relationships.

2 Data Model

When setting up a new instance of a DISBi application for a systems biology
project, only a new data model has to be defined. This data model should cap-
ture all information relevant to the project. The defined data model needs to
adhere to DISBi’s abstract data model, which is a relational data model with
additional constraints. These constraints serve the purpose of imposing some
structure on the data model that can be exploited by the framework, while giv-
ing the developer the greatest possible freedom in modeling the domain of the
project. In the abstract data model, data is split into three categories: biological
models, measurement models, meta models (Fig. 1). While these are abstract cat-
egories a concrete Experiment model is necessarily part of the data model as well.
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Every data source (simulation or wet-lab experiment) is stored in the Experi-
ment model. The Experiment model should include all meaningful experimental
parameters, but can also accommodate free input labels. What exactly these
parameters need to be ultimately depends on the design of the investigation. We
find it useful to include only experimental parameters that were varied across
the investigation, e.g. carbon source, and meta data such as the experimental
method used to generate the data.

Measurement models store data points generated in an experiments, such as
the response from a mass spectrometer. Biological models store the biological
entities the data points map to, such as proteins or metabolites. Meta models
store information about these biological entities, such as pathways or functional
groups. The data model needs to be designed such that each instance of a mea-
surement model can uniquely be identified by its relation to an experiment and
a biological object. Thus it is representing data about a certain biological object
measured in a certain experiment. The biological models can be related in arbi-
trary ways, but must not create cyclic relations. For example a protein maps to
a reaction that maps to a metabolite. These relations define an implicit relation
between proteins and metabolites, but an additional explicit relation between a
reaction and a metabolite would introduce the possibility of inconsistency and
is therefore forbidden by the abstract data model.

3 Data Integration

Data of biological models and their relations have to be determined and uploaded
to the system before it is used for integrating experimental data. These data form
the backbone of the data integration process and can be conveniently uploaded
through the admin interface in tabular formats. Relations of the biological mod-
els are included in the tabular data by including columns of unique identifiers
of related biological objects. The naming and relations of the biological objects
should be agreed upon by all partners in the project as it is only possible to
upload measurements that map to biological objects that are included in the
system. Thus the biological objects serve as a kind of controlled vocabulary.
Adapting the data model during the project can be achieved by using Django’s
built-in migration framework.

Data integration is done based on the relations of the biological models by
combining the results from all matched experiments in a dynamic table. The
relations between the models are dynamically inspected at runtime. Data points
from different experiments that map to the same biological object as well as
data points that map to related biological entities are combined in one row. For
example, transcriptome and proteome data will be presented together, if the
respective protein derives from the respective gene. This format makes it easy
to analyze the data for correlations between related biological entities and to
test predictions from simulations. Meta models play no role in data integration,
but simply function as a container for data that cannot be put on the biological
models due to normalization constraints. That means that while the information
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from meta models is included in the dynamic table, biological objects are not
joined together based on information in the meta models.

4 Usage

A DISBi application is split into two main interfaces. The Filter View provides
the user with a tool to find experiments of interest based on experimental param-
eters. It is automatically constructed from the underlying data model. The user
is shown a preview of the matched experiments, which allows for interactive
exploration of available experiments. Once a set of experiments of interest is
determined, the user is taken to the Data View. In this view, the integrated
experimental data is presented in a table and can be further filtered, exported
and analysed. The analysis capabilities include calculating fold changes, plotting
distributions of single columns and comparing two experiments in a scatter plot.
These functionalities provide the users with a tool to quickly get an overview of
the datasets and determine which data are worthwhile for in-depth analysis.

The DISBi framework supports an easy to use, customizable admin interface
that facilitates uploads of large datasets from common file formats such as Excel,
CSV or JSON.

Extended version of Django model classes are used to define the data model.
This provides a high-level interface for specifying the data base scheme that does
not require a deep understanding of the underlying database structures and can
be accomplished by everyone with basic Python proficiency. As the abstract data
model puts no constraint on the number of models or fields, it can accommodate
a great variety of different project outlines.

5 Experiences

DISBi was successfully applied to internal projects in the Department for Bioin-
formatics and Biochemistry at the Technische Universität Braunschweig for
integrating data from the organisms Chlostridium difficile, Aromatoleum aro-
maticum EbN1 and Dinoroseobacter shibae as well as for public data from Sul-
folobus solfataricus [12]. The integrated data sources include transcriptome, pro-
teome, metabolome and predicted metabolic flux data. The integrated methods
range from RNA sequencing and mass spectrometry to microarray data and
simulations. This demonstrates the applicability of DISBi to a wide range of
different data.

6 Implementation

The DISBi framework is designed with Python 3.6 (python.org) as back-
end language based on the Django web development framework (v1.11
djangoproject.com). PostgreSQL (postgresql.org) is used as database back-
end. Interactive data visualization is implemented with NumPy [11] and mat-
plotlib [4].

https://www.python.org/
https://www.djangoproject.com/
https://www.postgresql.org/
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The jQuery (jquery.com) JavaScript library and SASS (sass-lang.com) pre-
processor are used to provide a responsive user interface with a consistent visual
appearance.

By using only open source technologies, we ensure that the DISBi framework
is freely available and extendable. Moreover, by using Python future developers
of DISBi will have access to the vast ecosystem of scientific software available in
Python [5] for extending DISBi with new features.

7 Related Work

Many systems exist that tackle integrating heterogenous data in multi work
group system biology projects [14]. The most prominent systems are DERIVA [2],
openBIS [1] and the SEEK platform [13] together with the ISA toolchain [8].
These platforms are well established and go far beyond the current scope of
DISBi. They offer functionality for automatically uploading data to the system
when they are produced at the measurement device and ultimately enable the
user to deploy integrated data in public repositories. In contrast to DISBi they
focus on asset management, i.e. attaching meta data to arbitrary data sources
and storing these data sources in a unified fashion. DISBi is more focused on
establishing correspondences between single data points. Hence, larger systems
such as DERIVA can accommodate more heterogeneous data and are therefore
applicable to very large projects, while DISBi is restricted to tabular data.

DISBi should therefore be seen as a lightweight complementary approach
that can be used to integrate managed assets in a more fine-grained manner.

The importance of having the system dynamically adapt to its data model
is highlighted in the design of DERIVA [9]. This ensures that the system is
applicable to a wide variety of different projects. DISBi follows the same design
philosophy.

8 Conclusion

With DISBi, we present a powerful framework for the construction of custom
data integration platforms for systems biology projects. Its flexibility and cus-
tomizability render it an applicable solution for managing data in small to mid-
sized projects and making data publicly available. The source code is freely avail-
able under terms of the MIT license, which allows other developers to modify
and evolve the software. We will continue to explore possible ways of automating
data integration and analysis based on the abstract data model.
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Abstract. Gene expression profiles help to capture the functional state
in the body and to determine dysfunctional conditions in individuals.
In principle, respiratory and other viral infections can be judged from
blood samples; however, it has not yet been determined which genetic
expression levels are predictive, in particular for the early transition
states of the disease onset. For these reasons, we analyse the expres-
sion levels of infected and non-infected individuals to determine genes
(potential biomarkers) which are active during the progression of the
disease. We use machine learning (ML) classification algorithms to deter-
mine the state of respiratory viral infections in humans exploiting time-
dependent gene expression measurements; the study comprises four res-
piratory viruses (H1N1, H3N2, RSV, and HRV), seven distinct clini-
cal studies and 104 healthy test candidates involved overall. From the
overall set of 12,023 genes, we identified the 10 top-ranked genes which
proved to be most discriminatory with regards to prediction of the infec-
tion state. Our two models focus on the time stamp nearest to t = 48
hours and nearest to t = “Onset Time” denoting the symptom onset
(at different time points) according to the candidate’s specific immune
system response to the viral infection. We evaluated algorithms includ-
ing k-Nearest Neighbour (k-NN), Random Forest, linear Support Vector
Machine (SVM), and SVM with radial basis function (RBF) kernel, in
order to classify whether the gene expression sample collected at early
time point t is infected or not infected. The “Onset Time” appears to
play a vital role in prediction and identification of ten most discrimina-
tory genes.
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1 Introduction

Respiratory viral infections are common diseases which are caused by a wide
range of viruses, e.g., H1N1, H3N2, RSV and HRV, affecting the respiratory
tract. While patients usually recover in a short period of time without any treat-
ment, respiratory viral infections can lead to severe outcomes among individuals
with other aggravating primary diseases, in particular, when these are deleteri-
ous to the function of the respiratory system. Such severe cases may increase the
likelihood of death in elderly or immuno-compromised individuals [14]. Moreover,
each influenza epidemic leads to an increase in healthcare costs through excessive
hospitalizations apart from the need for substantial amounts of vaccines, and the
spread of respiratory virus diseases affect all age groups and thus can lead to
periodic epidemics [25]. Overall, the early identification of respiratory viral infec-
tions could be useful as a means to reduce large-scale outbreaks and periodic
epidemics as well as achieving early intervention for individual patients [13].

In this paper, we investigated the changes in gene expression distinguish-
ing infected individuals from non-infected ones. We use different ML methods
to determine the most predictive changes comparing samples from healthy and
infected individuals, using public data collected in seven different studies involv-
ing healthy individuals before and after inoculation of the viruses. This data
(gene expression only) – generated from these seven challenge studies – has been
released in 2016 and is available on Gene Expression Omnibus (GEO). In 2017,
the label information (non-infected vs. infected) associated with this dataset also
had been made available for open access to all. We use this label information
as a ground-truth for labeling the whole data. ML solutions form a vital role
in the identification of specific patterns, and subsequent functional annotation
of the identified genes can explain the causality behind the exposed patterns.
Gene expression changes often happen due to some regulatory markers, while
other genes behave as housekeeping genes. Therefore, identification of relevant
patterns and responsible regulatory markers at consistent time points should
yields credible biomarkers in such cases. In this work we identify top ten such
biomarkers which are found to be highly contributing in progression of respira-
tory viral infections at an early stage. The labeled data with code and build ML
models are available here: https://github.com/GhanshyamVerma/DILS 2018.

2 The Respiratory Viral Data Sets

We conducted ML experiments on the data collected from 7 Respiratory Viral
Challenge studies which is available for open access on GEO (accession number
GSE73072)1. These respiratory viral challenge studies consist of a total of 151
human volunteers, each of whom was exposed to one of 4 viruses, summarised
in Table 1 [12].

In Table 1, the first column represents the sub-study designation, the sec-
ond column denotes the type of virus used in the challenge, the third and the
1 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73072.

https://github.com/GhanshyamVerma/DILS_2018
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73072


Using Machine Learning to Distinguish Infected from Non-infected Subjects 107

Table 1. Details of the data collected in the seven respiratory virus challenge stud-
ies [12]

Challenge Virus Year Location IRB Protocol Duration (hrs) #Subjects #Time-

points

DEE1 RSV 2008 Retroscreen Pro00002796 166 20 21

DEE2 H3N2 2009 Retroscreen Pro00006750 166 17 21

DEE3 H1N1 2009 Retroscreen Pro00018132 166 24 20

DEE4 H1N1 2010 Retroscreen Pro00019238 166 19 21

DEE5 H3N2 2011 Retroscreen Pro00029521 680 21 23

HRV UVA HRV 2008 UoVirginia Pro00003477 120 20 15

HRV Duke HRV 2010 Duke Univ. Pro00022448 136 30 19

fourth columns represent the year and the location of the conducted sub-study,
respectively, the fifth column represents the DUHS IRB protocol number, the
sixth column represents the duration of the sub-study in hours and the last two
columns denote the number of subjects and the number of time-points collected
per subject, respectively [12].

All the participants were healthy when they enrolled for the study. After
enrolment in the study, all subjects were inoculated with one of the 4 viruses
(H1N1, H3N2, HRV, RSV). Their blood samples were taken at different pre-
defined time-points, thus delivering samples from non-infected individuals as well
as from infected ones. The samples from non-infected individuals were taken at
two time-points before the inoculation of the virus, as shown in Fig. 1 (inspired by
a figure by Liu et al. [12]). All the subjects were exposed to the virus immediately

Fig. 1. Layout describing characteristics of the data. Every cell depicting blood sample
taken at some point of time during the whole study and contains gene expression values
of 12,023 human genes.
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after taking the healthy blood sample (at time-point 0). During each study, blood
samples were taken for twice before the inoculation of virus and at various time
stamps after the inoculation of virus. The whole blood gene expression data was
obtained using Affymetrix Human U133A 2.0 GeneChips. Additional details can
be found on GEO (accession number GSE73072).

From the start, 151 subjects were enrolled in the 7 challenge studies, how-
ever, we had to exclude 47 subjects from the study. Among those 47 subjects, 44
subjects had inconsistencies between their declared symptomatic status and the
measured shedding status (see Table 2). These 44 clinically ambiguous subjects
were at some time either acutely infected but remained asymptomatic or were
not infected but did turn acutely symptomatic [12], therefore, we must conclude
that these 44 subjects data is inconsistent (faulty). We cannot draw any con-
clusions from faulty data. Moreover, faulty data can be misleading and harmful
while model building. Apart from these 44 subjects, three more subjects have
been excluded because there is no Affymetrix data available for them (subjects
6, 9 and 21 from the HRV Duke university sub study). We have identified those
47 ambiguous subjects whose data is faulty, removed them and the unambigu-
ous labeled data with code and build ML models can be accessed using a link
provided in the Introduction section.

Table 2. Detail of the ambiguous subjects those excluded due to inconsistencies
between their declared symptomatic status and measured shedding status.

Sr. No. Challenge Subject IDs (Ambiguous subjects) Total (Ambiguous
subjects)

1 DEE1 13, 15, 16 3

2 DEE2 2, 4 2

3 DEE3 1, 2, 5, 7, 11, 15, 18, 21, 23 9

4 DEE4 5, 7, 8, 9, 10, 11, 12, 13, 17, 19 10

5 DEE5 3, 7, 15, 16, 17 5

6 UoVirginia 1, 10, 12, 17 4

7 Duke Univ. 3, 10, 11, 15, 18, 20, 25, 27, 28, 29, 30 11

44

3 Experimental Design

The overall goal of our study is to analyze the ability of different ML algorithms
to predict the state of health and disease soon after the disease onset time. As
we do not have always data for each subject exactly the times we are interested
in, we have taken nearest available time-point. We make the assumption that
at t = 0, just before the inoculation, all the candidates are not sick and at
t = 48h (approximately) or at the onset time, the effect of virus inoculation
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should be visible, and thus exposed in the gene expression data. After first
mining for expression patterns, we are also interested in finding the important
genes/biomarkers which are highly likely to contribute to the progression of the
respiratory viral infection.

After excluding the 47 ambiguous candidates, we were left with total 104
candidates, all of whom were healthy at t = 0. Out of these 104 healthy subjects,
64 became sick at some point of time after inoculation of the virus and the other
40 remained healthy during the whole study. There is no onset time for these
40 non-infected subjects, therefore, we took the average for the available onset
values, which was 55.01 h after inoculation.

Our main focus is on the gene expression levels when comparing the 40
subjects who did not become infected after inoculation with the 64 who did. We
designed 4 different experiments: for each experiment we made different use of
the number of subjects that got infected after inoculation and of the time-points
(48 h vs. onset time).

Fig. 2. Experimental design for distinguishing infected subjects form non-infected sub-
jects by exploiting ML algorithm’s ability to learn pattern.

We believe that our experiments play a useful role in determining the involve-
ment of particular genes in the states of infection at the early stage of the disease.
We took the data of all the unambiguous subjects and divided it into four sub-
sets as shown in Fig. 2. The details of the four experiments designed using these
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Fig. 3. A view of 4 experiments that comprises significant part of the overall experi-
mental design.

four subsets of data can be seen in Figs. 3 and 4. For each of the four subsets of
the data, we partitioned the data into training and test sets, and then applied
four well established ML approaches. The random sampling is done with pre-
serving the class distribution to partition the whole data into training and test.
In order to reduce the risk of overfitting we have applied 10-fold cross validation,
repeated 3 times. The build model were then used to predict the state of infec-
tion for the kept test data. Finally, the performance evaluation and important
gene identification steps have been carried out.

Table 3. Detail of the experiments designed by combining two or more states of sub-
ject’s status of gene expression profile.

Experiment no. States Description

1 (A+B) 64 subjects data collected at 0 and nearest to 48 h

2 (A+D) 64 subjects data collected at 0 and nearest to onset
time

3 (A+B +B′ + C) 104 subjects data collected at 0 and nearest to 48 h

4 (A+ C +D +D′) 104 subjects data collected at 0 and nearest to onset
or average onset time.

We identified 6 sets of data denoting different states, and labelled them State
A,B,B′, C,D,D′ (see Fig. 3). State A contains the gene expression profile of all
the 64 subjects which are healthy at time-point 0: these 64 subjects showed clear
signs of infection at some point of time after the inoculation of the virus. States
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B and D determine the gene expression profiles of the same 64 subjects at the
time-point nearest to 48 h or nearest to onset time, respectively. State C shows
the gene expression profile of 40 subjects at 0 timestamp: these 40 subjects never
get infected throughout the duration of the study. States B′ and D′ show the
gene expression profiles of the same 40 subjects at nearest to 48 h or at nearest
to average onset time, respectively.

We carried out four experiments by combining two or more of the above states
based on the number of infected and non-infected subjects and timestamps at
which their blood samples are collected. These experiments are designed in such
a way so that we can analyse the differences in disease prediction at two different
early stages and find the most important Differentially Expressed Genes (DEG)
across the different timestamps. The details of these experiments are shown
in Table 3. The numbers of positive and negative samples for each designed
experiment at different time point are shown in Fig. 4.

Fig. 4. Positive and negative sample counts for each experiment at different time
points. Here P denotes positive samples (infected) and N denotes negative samples
(non-infected).

4 Methodology

In this section we briefly explain the methodology used for classifying the state
of health of any individual at any given time point t. It is well-known that no
single ML algorithm is best for all kind of datasets, so we tested a selection of
different ML approaches. In all experiments, 78% of the data is used for training
the classifiers and the remaining 22% is kept as a hold-out test set. The stratified
sampling is used to partition the whole data into training and test. To build the
ML model for each algorithm we estimated model parameters over the training
data using 10-fold cross validation, repeated 3 times.
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First, we used the very simple baseline algorithm, k-NN which does not
have any in-build capability to deal with high dimensional data [4], however, it
can be used to set a base to compare the results and to see the improvements
yielded by more complex algorithms. We also used the Random Forest algorithm
which is an ensemble technique and has proven to be an efficient approach for
the classification of microarray data as well as for gene selection [5]. We then
employed both linear SVM [2] and SVM with RBF kernel which has inbuilt
capability to learn pattern from high dimensional data [17]. We have used R
programming language version 3.4.1 for coding [15].

4.1 k-Nearest Neighbour (k-NN)

k-NN has two stages, the first stage is the determination of the nearest neigh-
bours i.e. the value of k and the second is the prediction of the class label using
those neighbours. The “k” nearest neighbours are selected using a distance met-
ric [4]. We have used Euclidean distance for our experiments. This distance met-
ric is then used to determine the number of neighbours. There are various ways
to use this distance metric to determine the class of the test sample. The most
straightforward way is to assign the class that majority of k-nearest neighbours
has. In the present work, the optimum value of k is searched over the range of
k = 1 to 50. The best value of the parameter k obtained for each experiment
can be found in Sect. 5.

4.2 Random Forest

Random Forest is often well-suited for microarray data. It can cope with noisy
data and can be used when the number of samples is much smaller than the num-
ber of features. Furthermore, it can determine the relevance of variables in the
decision process, which can be used for selecting the most relevant genes [5]. It is
based on the ensemble of many classification trees [11,18]. Each classification tree
is created by selecting a bootstrap sample from the whole training data and a ran-
dom subset of variables with size denoted as mtry are selected at each split. We
have used the recommended value of mtry : (mtry =

√
(number of genes)) [5].

The number of trees in the ensemble is denoted as ntree. We have used
(ntree) = 10, 001 so that each variable can reach a sufficiently large likelihood
to participate in forest building as well as in variable importance computations.

4.3 Support Vector Machine (SVM)

Assume that we have given a training set of instance-label pairs (xi, yi);∀i ∈
{1, 2, . . . , l} where xi ∈ R

n and y ∈ {1,−1}l, then the SVM [2,7,8] can be
formulated and solved by the following optimization problem:

min
w ,b,ξi

1
2wT w + C

l∑

i=1

ξi,

subject to yi

(
wT φ (xi) + b

) ≥ 1 − ξi,
ξi ≥ 0.
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Here the parameter C > 0 is the penalty parameter of the error term [8] and
ξi∀i ∈ {1, 2, . . . , l} are positive slack variables [2]. For linear SVM, we did a search
for best value of parameter C for a range of values

(
C = 2−5, 2−3, . . . , 215

)
and

the one with the best 10-fold cross validation accuracy has finally been chosen.
We also used SVM with RBF kernel which is a non-linear kernel. There

are four basic kernels that are frequently used: linear, polynomial, sigmoid, and
RBF. We picked the RBF kernel, as recommended by Hsu et al. [8]. It has the
following form:

K (xi,xj) = exp
(−‖xi−xj‖2

2σ2

)
; 1
2σ2 > 0.

We performed a grid-search over the values of C and σ using 10-fold cross
validation. The different pairs of (C, σ) values are tried in the range of (C =
2−5, 2−3, . . . , 215;σ = 2−25, 2−13, . . . , 23) and the values with the best 10-fold
cross validation accuracy are picked for the final model building (see Sect. 5).

5 Results

We experimentally obtained the 10-fold cross validation accuracy and hold-out
test set accuracy using four algorithms including k-NN, Random Forest, linear
SVM, and SVM with RBF Kernel. Based on the results obtained on the hold-out
test set for all the four experiments, it can be concluded that the Random Forest
model performs better than the rest of the algorithms (see Tables 4, 5, 6 and 7).
Random Forest gives the most stable and consistently highest accuracy on the
hold-out test set. Moreover, the Random Forest has the additional capability to
assign a relevance score to the variables (genes), hence, we have selected random
forest for the determination of the genes playing the most important role in the
development of the infection.

Table 4. Results on 64 infected subjects data at 0 and nearest to 48 h (Experiment 1).

Sr. No. Algorithm Model parameters Accuracy (10-fold CV) Accuracy (hold-out)

1 k-NN k = 23 67.66% 53.57%

2 Random forest mtry =109, ntree=10001 75.33% 64.29%

3 Linear SVM C = 0.03125 68.33% 64.29%

4 SVM with RBF kernel C = 5, σ = 3.051758 × 10−5 73% 64.29%

When the 10-fold cross-validation accuracy is considered, none of the algo-
rithms uniformly outperform the others. The SVM with RBF Kernel is able to
achieve highest 10-fold cross-validation accuracy for the last 3 experiments, how-
ever, the random forest also has similar performance for these last 3 experiments
and is even better for the first experiment.

Overall, the results are best when “Onset Time” is considered for all 104
subjects (experiment 4) in comparison to the rest of the experiments. This is
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Table 5. Results on 64 infected subjects data at 0 and nearest to the onset time
(Experiment 2).

Sr. No. Algorithm Model parameters Accuracy (10-fold CV) Accuracy (hold-out)

1 k-NN k = 24 67.33% 53.57%

2 Random forest mtry =109, ntree=10001 73.33% 82.14%

3 Linear SVM C = 1 75.33% 67.86%

4 SVM with RBF kernel C = 128, σ = 1.907349 × 10−5 76% 71.43%

Table 6. Results on 104 subjects data at 0 and nearest to 48 h (Experiment 3).

Sr. No. Algorithm Model parameters Accuracy (10-fold CV) Accuracy (hold-out)

1 k-NN k = 3 78.79% 77.78%

2 Random forest mtry =109, ntree=10001 81.99% 80%

3 Linear SVM C = 1 77.39% 80%

4 SVM with RBF kernel C = 3, σ = 3.051758 × 10−5 82.83% 77.78%

Table 7. Results on 104 subjects data at 0 and nearest to onset or average onset time
(Experiment 4).

Sr. No. Algorithm Model parameters Accuracy (10-fold CV) Accuracy (hold-out)

1 k-NN k = 4 78.1% 77.78%

2 Random forest mtry =109, ntree=10001 84.26% 77.78%

3 Linear SVM C = 1 81.77% 75.56%

4 SVM with RBF kernel C = 8, σ = 3.051758 × 10−5 85.45% 75.56%

due to the significance of the “Onset Time” which shows that the blood samples
collected at nearest to“Onset Time” is playing important role in discrimination
of the infected samples from non-infected samples.

The highest accuracy obtained at nearest to 48 h is 82.83% and at nearest to
“Onset Time” is 85.45% which gives a positive sign that the prediction of res-
piratory viral infection at the early stage is possible with considerable accuracy.

6 Biomarker Identification

In this section, we show the top 10 important genes which are experimentally
found to be the most important ones for the progression of respiratory viral
infection and play an important role in the discrimination of infected samples
from non-infected ones (see Table 8).

Random Forest also calculates the overall importance score for every feature.
We used the caret package which calculates the overall importance score and
scales it in a range from 0 to 100 [10]. We extracted the 109 genes which have
highest overall importance score (100 to 15.97 in descending order) and plotted
them to find the cut-off threshold to come up with 10 most important genes
which contribute significantly in the progression of the disease (see Fig. 5).

Moreover, we compared top 109 genes selected using random forest at nearest
to 48 h with top 109 genes selected at nearest to onset time and we found that
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Table 8. The 10 most important genes with their overall importance score.

Sr. No. Probe IDs Gene symbol Overall importance score

1 3434 at IFIT1 100

2 23586 at DDX58 92.9190292

3 5359 at PLSCR1 77.908644

4 51056 at LAP3 76.5473908

5 9111 at NMI 74.5011703

6 23424 at TDRD7 67.0779044

7 8743 at TNFSF10 60.7319657

8 2633 at GBP1 58.8176266

9 24138 at IFIT5 53.9912712

10 4599 at MX1 53.3913318

these top 10 genes shown in Fig. 5 are common in both categories which shows
that these top 10 genes are significantly important at both the early timestamps,
i.e., nearest to 48 h and nearest to onset time.

The Five-number summary of gene expression of input data for the identified
top 10 genes at different timestamps can be seen in the form of boxplots shown
in Fig. 6. The boxplots of the top 10 genes at timestamp 0, 48 and “Onset
Time” support our findings. First, the boxplots support our claim that the top
10 genes reported by us are differentially expressed genes and contributing in

Fig. 5. Plot of overall importance score. 10 genes are above the cut-off threshold which
are significantly the most important ones.
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Fig. 6. Boxplots of the identified top 10 genes at 0 h, 48 h and “Onset Time”.
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progression of respiratory viral infection as their median value of gene expression
at 0 hours and at“Onset Time” has a significant difference. Second, the boxplots
also support the importance of genes, for example, gene IFIT1 has the highest
importance score which can be seen in boxplot in terms of the highest difference
in median gene expression values. Third, these plots also support our finding
that the “Onset Time” is a better choice for learning the predictive models.

7 Discussion

We have identified 10 top genes from a set of 12,023 genes. To understand
the mechanism associated with these genes we performed Gene Set Enrichment
Analysis (GSEA) of these genes [19]. To further understand the association of
retrieved disease mechanisms we performed Transcription Factor (TF) analy-
sis [21]. During TF analysis we integrated TRANSFAC [24], BioGPS [26] and
JASPER database [16] and ran GSEA. The GSEA yielded the 441 associations
against ten input genes. To understand the process associated with retrieved TFs
and ten seed genes we performed functional annotation considering neighbouring
genes (Table 9) and later without considering neighbouring genes (Table 10).

Table 9. Functional annotation and Disease enrichment analysis (DEA) with neigh-
bour genes using Gene Set Enrichment Analysis (GSEA).

Gene symbol p-value Geneset friends Total friends GO annotation

IFIT1 1.32 × 10−18 10 721 Interferon-induced protein with

tetratricopeptide repeats 1

DDX58 4.24 × 10−17 10 1020 DEAD(Asp-Glu-Ala-Asp) box

polypeptide 58

IFIT5 1.89 × 10−15 10 1491 Interferon-induced protein with

tetratricopeptide repeats 5

GBP1 1.89 × 10−15 10 1491 Guanylate binding protein 1,

interferon-inducible

MX1 1.52 × 10−14 10 1837 Myxovirus (influenza virus)

resistance 1, interferon-inducible

protein p78 (mouse)

PLSCR1 1.99 × 10−14 10 1837 Phospholipid scramblase 1

TNFSF10 3.99 × 10−13 10 2547 Tumour necrosis factor (ligand)

superfamily, member 10

LAP3 5.67 × 10−11 9 2505 Leucine aminopeptidase 3

NMI 9.54 × 10−11 9 2655 N-myc (and STAT) interactor

TDRD7 7.75 × 10−10 8 2018 Tumour domain containing 7

Here Geneset friends column explain how many genes contributed from the
seed gene to establish the outcome. The MX1 gene has been known for its rele-
vance to the intervention in the influenza virus infectious disease and it is known
as the antiviral protein 1 [1,22]. IFIT1, IFIT5 have interferon-induced protein
with tetratricopeptide repeats 1 as annotation which indicates it’s role in viral
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pathogenesis [6]. DDX58 is cytoplasmic viral RNA receptor, that is also known
as DDX58 (DExD/H-box helicase 58). GBP1 induces infectious virus production
in primary human macrophages [9,27]. PLSCR1 are responsible for Hepatitis B
virus replication with in-vitro and in-vivo both. LAP3 has already been pre-
dicted as principal viral response factor for all samples in H3N2 [3]. NMI has
been reported as viral infection with Respiratory Syncytial Virus (RSV) infec-
tion and neuromuscular impairment (NMI) [23]. TDRD7 is known as interferon’s
antiviral action and responsible for paramyxovirus replication [20].

To explore the effect of captured mechanism further we conducted a DEA
using GSEA outcomes and as a result, most of the genes appear to be aligned
against response to virus (83), immune response (467), innate immune response
(105). GSEA, a measure to define the inhibition of a gene alongside its nearest
neighbours and known interactions not only helped to understand the virology
aspect of ten seed genes but also associated factors and genes. As we can observe
from Table 10 most of the genes are involved in antiviral infection and their
extended neighbours are against the response to the virus or process related to
immune the body against the virus attack.

Table 10. Functional annotation without neighbour genes using Gene Set Enrichment
Analysis (GSEA).

GO biological process p-value GSEA enriched GENES

GO:0009615: response

to virus (83)

e−48.85 IRF7; PLSCR1; MX2; MX1; EIF2AK2; STAT1; BST2;

IFIH1; TRIM22; IRF9; IFI35; DDX58; ISG15; RSAD2

GO:0006955: immune

response (467)

e−42.41 IFITM2; TAP1; IFITM3; IFI35; TNFSF10; GBP1; IFI6;

CXCL10; IFI44L; OASL; OAS3; TRIM22; OAS2; PSMB9;

OAS1; CXCL11; DDX58; IFIH1; SP110; PLSCR1

GO:0045087: innate

immune response (105)

e−11.45 IFIH1; DDX58; MX1; MX2; SP110

This provides a strong domain associated validation for these genes where
core gene works as antiviral, and neighbour and interaction genes are immune
and protective markers. This etiological discriminant prediction model and iden-
tified predictors is a potentially useful tool in epidemiological studies and viral
infections.

8 Future Work

We will be extending this work to establish identified genes for pathogen related
infection. Findings could have diagnostic and prognostic implications by inform-
ing patient management and treatment choice at the point of care. Thus, further
our efforts in this direction will establish the power of non-linear mathemati-
cal models to analyze complex biomedical datasets and highlight key pathways
involved in pathogen-specific immune responses. The implemented classification
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methodology will support future database updates or largely integrated knowl-
edge graphs to include new viral infection database to establish diagnostically
strong biomarker with phenotype data, which will enrich the classifiers. The
sets of identified genes can potentiate the improvement of the selectivity of non-
invasive infection diagnostics. Currently, any type of viral data with labelled
samples (i.e. case/control) can be used to discover small sets of biomarkers. In
future we will also be focusing on the following aspects:

– Predictive performance assessed with an n-fold cross-validation scheme and
simulation of a validation with unseen samples of multiple databases having
integrated knowledge graphs (i.e. external validation).

– Biomarker extraction and inference of the predictive model by incorporating
time series analysis performed on the data that includes all the different time-
points.

– Permutation test to statistically validate the predictive performance of the
model. On this point, currently we have already achieved the following:

• The variable importance represents the contribution of each biomarker at
an early stage within the predictive model.

• The variable direction indicates how the change in values affect the overall
prediction (e.g. probability of the disease to occur).

9 Conclusions

In this work, we aim to use a hybrid approach that harnesses the power of both
ML and database integration to provide new insights and improve understand-
ing of viral etiology, particularly related to the mechanism of viral diseases. To
achieve this we conducted four different experiments to assess the capability of
ML algorithms to predict the state of disease at the early stage by analyzing gene
expression data. We establish that the prediction at an early stage is possible
with considerable accuracy, 82.83% accuracy at nearest to 48 h and 85.45% accu-
racy at nearest to onset time using 10-fold cross-validation, and accuracies of 80%
and 82.14%, respectively on the hold-out test set. We got highest 10-fold cross-
validation accuracy when all 104 subjects data are collected at 0 and nearest to
onset or average onset time. This shows that for these kinds of studies if “Onset
Time” is considered for learning the model then one can achieve considerably
high accuracy in discrimination of infected from non-infected samples, however,
it is observed that the accuracy on the hold-out test set is sometimes lower and
sometimes higher than the 10-fold cross-validation accuracy, which means that
the data has high variability and further analysis to capture this variability can
improve the accuracy of prediction. The experiments indicate that the k-NN and
linear SVM are not an ideal choice for these kinds of high dimensional datasets.
By considering the fact that the Random Forest gives more stable and highest
accuracy on unseen data (hold-out test set) for all the 4 experiments and due to
its capability to assign importance score to variables, it is reasonable to choose
Random Forest rather than the others. Moreover, we have identified top 10 most
important genes which are having the maximum contribution in the progression
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of the respiratory viral infection at the early stage. The diagnosis and preven-
tion of the respiratory viral infection at the early stage by targeting these genes
can potentially improve the results than targeting the genes affected at the later
stage of the infection.
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Abstract. The extraction of codes from Electronic Health Records (EHR) data
is an important task because extracted codes can be used for different purposes
such as billing and reimbursement, quality control, epidemiological studies, and
cohort identification for clinical trials. The codes are based on standardized
vocabularies. Diagnostics, for example, are frequently coded using the Inter-
national Classification of Diseases (ICD), which is a taxonomy of diagnosis
codes organized in a hierarchical structure. Extracting codes from free-text
medical notes in EHR such as the discharge summary requires the review of
patient data searching for information that can be coded in a standardized
manner. The manual human coding assignment is a complex and time-
consuming process. The use of machine learning and natural language pro-
cessing approaches have been receiving an increasing attention to automate the
process of ICD coding. In this article, we investigate the use of Support Vector
Machines (SVM) and the binary relevance method for multi-label classification
in the task of automatic ICD coding from free-text discharge summaries. In
particular, we explored the role of SVM parameters optimization and class
weighting for addressing imbalanced class. Experiments conducted with the
Medical Information Mart for Intensive Care III (MIMIC III) database reached
49.86% of f1-macro for the 100 most frequent diagnostics. Our findings indi-
cated that optimization of SVM parameters and the use of class weighting can
improve the effectiveness of the classifier.

Keywords: Automated ICD coding � Multi-label classification
Imbalanced classes

1 Introduction

The Electronic Health Records (EHRs) are becoming widely adopted in the healthcare
industry [1]. EHR is a software solution used to register health information about
patients, as well as to manage health organizations activities for medical billing and
even population health management. The data entered in the EHR usually contain both
structured data (patient demographics, laboratory results, vital signs, etc.) and
unstructured data (free-text notes).

Most of the records in an EHR are textual documents such as progress notes and
discharge summaries entered by health professionals who attended the patient.
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Discharge summary is a free-text document that is recorded in the moment of patient
discharge. It describes the main health information about a patient during his/her visit
to a hospital and provides final diagnosis, main exams, medication, treatments, etc.
These unstructured data inserted as free text have the advantage of giving greater
autonomy to health professionals for registering clinical information, but it entails
issues for automatic data analysis [2].

In this scenario, extracting codes from EHR based on terminologies and standard
medical classifications is an important task because the codes can be used for different
purposes such as billing and reimbursement, quality control, epidemiological studies,
and cohort identification for clinical trials [3]. Diagnosis coding, for example, is used
not only for reporting and reimbursement purposes (in US, for example), but for
research applications such as tracking patients with sepsis [4].

Usually, several EHR records are encoded in a standardized way by terminologies
such as the International Classification of Diseases (ICD)1 which is a taxonomy of
diagnostic codes organized in a hierarchical structure. ICD codes are organized in a
rooted tree structure, with edges representing is-a relationships between parents and
children codes. More specifically, the ICD-9 contains more than 14 thousand classi-
fication codes for diseases. Codes contain three to five digits, where the first three digits
represent disease category and the remaining digits represent subdivisions. For
example, the disease category “essential hypertension” has the code 401, while its
subdivisions are 401.0 - Malignant essential hypertension, 401.1 - Benign essential
hypertension, and 401.9 - Unspecified essential hypertension.

Extracting codes from EHR textual documents requires the review of patient data
searching for information that can be coded in a standardized manner. For example,
evaluate discharge summary to assign ICD codes. Trained professional coders review
the information in the patient discharge summary and manually assign a set of ICD
codes according to the patient conditions described in the document [5]. However,
assigning diagnosis codes performed by human coders is a complex and time-
consuming process. In practical settings, there are many patients and the insertion of
data and coding process require software support to be further effective.

Several proposals have been conducted to attempt automating the ICD coding
process (e.g., [3, 6, 7]). A study conducted by Dougherty et al. showed that an ICD
coding process assisted by an auto-coding improved coder productivity by over 20%
on inpatient documentation [8]. Therefore, an automated system can help medical
coders in the task of ICD coding and, consequently, reduce costs. However, this task
has been shown to be a very challenging problem, especially because of the large
number of ICD codes and the complexity of medical free-text [9].

According to our literature review, several research challenges remain opened in
this direction. Medical free-text is difficult to be handled by machine learning
approaches because misspellings and not unstandardized abbreviations often compro-
mise their quality [10]. Besides, automated ICD coding is characterized to present
aspects that negatively affect effectiveness such as large labels set, class imbalance,
inter-class correlations, and large feature sets [7]. Despite these challenges, machine

1 http://www.who.int/classifications/icd/en/.
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learning approaches for automated coding are very promising because the model is
automatically created from training data, without the need of human intervention.

In this paper, we aim to construct a model based on machine learning approaches
for automatic ICD coding from free-text discharge summaries. In particular, we
investigate the role of SVM parameters optimization and class weighting for imbal-
anced class addressing. In a machine learning perspective, a free-text sample could be
considered as an instance in which one or more ICD codes can be assigned. It means
that ICD codes (labels) are not exclusive and, therefore, a discharge summary can be
labeled as belonging to multiple disease classes. That scenario is known as a multi-
label classification task. In this work, we address multi-label classification problems
into several multi-class, where each sample belongs to a single class. The results
presented in our experimental study have shown that considering parameter values
searching and the use of class weighting can bring improvements to the automatic
coding task.

This article is organized as follows: Sect. 2 presents the related work. Section 3
introduces our experimental design. Then, Sect. 4 reports on our obtained results and
discusses the findings. Section 5 presents the final considerations.

2 Related Work

Two approaches are usually explored in automated coding task of medical text:
(i) Information Retrieval (IR) of codes from a dictionary; and (ii) machine learning or
rule-based Text Classification (TC). In the first approach, an IR system is used to allow
professional coders to search for a set of one or more terms in a dictionary [11]. TC
approaches have been receiving an increasing attention in the task of medical text
coding.

Several studies have proposed models for ICD coding and their methods ranged
from manual rules to online learning. The best results for classification accuracy have
been achieved by rules-based systems [12] in which hand-crafted expert rules are
created. Nevertheless, these methods may be very time-consuming due to the necessity
of creating hand-craft expert rules for all ICD codes.

Machine learning approaches are very promising because the model is automati-
cally created from training data, without the need of human intervention. A literature
review conducted by Stanfill et al. [13] concluded that most of studies presenting
reliable results are inserted in controlled settings, often using normalized data and
keeping a limited scope. For example, Zhang et al. [14] used SVMs and achieved a F1
score of 86.6%. However, they used only radiology reports with limited ICD-9 codes.

Perotte et al. [5] proposed the use of a hierarchy-based Support Vector Machines
(SVM) model in the task of automated diagnosis code classification. The tests were
conducted over the Medical Information Mart for Intensive Care (MIMIC II) dataset.
The authors considered two different approaches for predicting ICD-9 codes: Flat SVM
and hierarchy-based SVM. The flat SVM treated each ICD-9 code independently of
each other whereas hierarchy-based SVM leveraged the hierarchical nature of ICD-9
codes into its modeling. The best results achieved a F1 score of 39.5% with the
hierarchy-based SVM.
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Several theoretical studies on multi-label classification have indicated that effec-
tively exploiting correlations between labels can benefit the multi-label classification
effectiveness [10]. Subotin et al. [15] proposed a method in which a previous model is
trained to estimate the conditional probability of one code being assigned to a docu-
ment, given that it is known that another code has been assigned to the same document.
After, an algorithm applies this model to the output of an existing statistical auto-coder
to modify the confidence scores of the codes. They tested their model for ICD-10
procedure codes.

Kavuluro et al. [7] conducted experiments to evaluate supervised learning
approaches to automatically assign ICD-9 codes in three different datasets. They used
different problem transformation approaches with different feature selection, training
data selection, classifier chaining, and label calibration approaches. For the larger
dataset, they achieved F1-score of 0.57 for codes with at least 2% of representation
(diagnostics that were present in at least 2% of the records). Over all codes (1231
codes), they obtained a F1-score of 0.47, even with 80% of these codes having less than
0.5% of representation. They concluded that datasets with different characteristics and
different scale (size of the texts, number of distinct codes, etc.) warrant different
learning approaches.

Scheurwegs et al. explored a distributional semantic model using word2vec skip-
gram model to generalize over concepts and retrieve relations between them. Their
approach automatically searched concepts on Unified Medical Language System
(UMLS) Metathesaurus2, an integration of biomedical terminologies, using the Meta-
Map3 tool to extract named entities and semantic predications from free text. The
datasets they used are in Dutch and are derived from the clinical data warehouse at the
Antwerp University Hospital. They concluded that concepts derived from raw clinical
texts outperform a bag-of-words approach for ICD coding.

Berndorfer and Henriksson [16] explored various text representations and classi-
fication models for assigning ICD-9 codes to discharge summaries in Medical Infor-
mation Mart for Intensive Care III (MIMIC III)4 database. For text representation, they
compared two approaches: shallow and deep. The shallow representation describes
each document as a bag-of-words using Term Frequency - Inverse Document Fre-
quency (TF-IDF), while the deep representation describes the documents as a TF-IDF-
weighted sum of semantic vectors that were learned using Word2Vec. The author still
tested a combination strategy, in which features from the two representations are
concatenated. For classification models, Berndorfer and Henriksson explored the
Flat SVM and hierarchical SVM. They concluded that the best results, with F1-score of
39.25%, was obtained by combining models built using different representations.

Shi et al. [17] used deep learning approaches to automatically assign ICD-9 codes
to discharge summaries from MIMIC-III database. They achieved a F1-score of 53%.
Their results were obtained by not using the entire discharge summary; their experi-
ments only considered the sections of ‘discharge diagnosis’ and ‘final diagnosis’,

2 https://www.nlm.nih.gov/research/umls/about_umls.html.
3 https://metamap.nlm.nih.gov/.
4 https://mimic.physionet.org/.
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where the description of patient diagnoses is found. Therefore, such approach was very
dependent on the specificities of the database and presents difficulties to be generalized.

To the best of our knowledge based on the literature review, most of studies did not
perform optimization of machine learning parameters. The studies have chosen the
parameter values of the algorithms arbitrarily according to our interpretation. In
addition, most of studies did not use approaches to address the problem of imbalanced
class.

3 Materials and Methods

In this section, we present the materials and methods we used in the development of
this work. We present the database used for testing and the procedure performed for
model construction.

3.1 Dataset

The dataset used to extract the corpus of discharge summaries and respective ICD
codes was MIMIC III. The discharge summaries correspond to 53.423 hospital
admissions for adult patients between 2001 and 2012. ICD-9 was used to assign
diagnosis codes to discharge diagnoses.

MIMIC III repository contains 55.177 discharge summaries and 6.985 different
diagnosis codes. Only the 100 most frequent diagnostics were considered in this work.
Therefore, we selected discharge summaries that had at least one of the 100 most
frequent codes, resulting in 53.018 discharge summaries.

The distribution of labels among the samples is strongly imbalanced. The top three
ICD-9 codes are:

• Unspecified essential hypertension (401.9) – present in 37.5% of the records
• Congestive heart failure, unspecified (428.0) – present in 23.8% of the records
• Atrial fibrillation (427.31) – present in 23.4% of the records

The hundredth most frequent ICD-9 code is “personal history of malignant neo-
plasm of prostate” (V10.46), which is presented in only 2% of the discharge
summaries.

3.2 Procedure

We defined a pipeline to perform the classification task aiming to detect the ICD codes
from the discharge summaries. Figure 1 presents the involved stages: pre-processing,
dataset splitting, feature extraction, parameter search, and creation of prediction model.
The following subsection describe details of the conducted procedure.

Data Handling. We constructed our dataset extracting all discharge summaries and
respective diagnosis list from MIMIC III database. Therefore, each record in the dataset
consists in a discharge summary and its respective ICD-9 codes list, which is repre-
sented by a vector of 100 dimensions in which each dimension corresponds to an
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ICD-9 code. For a specific label in the record, if the corresponding ICD-9 code appears
in the discharge summary diagnoses list, then its value in the vector is one, otherwise is
zero.

For illustration purpose, Table 1 presents a sample of a record from the database.
The first column represents the free-text of a discharge summary. The remaining
columns represent each diagnosis code (class), where the column value is 1 or 0,
depending whether the respective diagnosis was encoded for that discharge summary or
not.

Dataset Splitting, Pre-processing, and Feature Extraction. Out of 53.018 discharge
summaries, 80% were used for training and 20% for testing. The definition of the sets
was performed in a stratified manner to maintain the proportion of classes in both sets.
The training set was then used to define a vocabulary of tokens. Before tokenization,
we implemented pre-processing actions expecting to improve the quality of classifi-
cation and to reduce the index size of the training set. The following pre-processing
tasks were performed: stop word removal, lemmatization, number removal, and special
characters removal.

In stop word removal task, words that occur commonly across all the documents in
the corpus are removed instead of being considered as a token. Generally, articles and
pronouns are considered as stop words because they are not very discriminative.
lemmatization which consists in a linguistic normalization. The variant forms of a term
are reduced to a common form (lemma). The lemmatization process acts removing
prefixes or suffixes of a term, or even transforming a verb to its infinitive form [18]. For
stop word removal, we used the stop word removal function of the feature extraction

Fig. 1. Pipeline performed to construct the model for automated ICD coding
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module of the scikit-learn5 library. For lemmatization, we used the class
WordNetLemmatizer from Natural Language Toolkit (NLTK)6 library.

The processed discharge summaries were then tokenized using unigram and bigram
with TF-IDF weighting as features. The tokens with a document frequency strictly
higher than 70% or lower than 1% were ignored resulting in 12.703 tokens. In this
sense, we took the decision that the vocabulary as features does not contain too-
frequent or too-rare unigrams and bigrams.

Parameters Searching and Prediction Model Creation. In this study, the classifi-
cation task consisted in a multi-label classification in which one or more labels are
assigned to a given record from the dataset. We used the Binary Relevance method to
transform the multi-label problem into several binary classification problems. There-
fore, we created one classifier per ICD-9 code.

Table 1. Sample of a record in the dataset

Discharge Summary Text
4019

(class 1)
4280

(class 2)
…

E8782
(class 90)

V1046 
(class 
100)

[...]
Allergies:

Amlodipine

Attending:[**First  (LF) 
898**]
Chief Complaint:

COPD exacerbation /
Shortness of Breath

Major Surgical or Invasive 
Procedure:

Intubation
arterial line placement
PICC line placement
Esophagogastroduodenos-

copy

History of Present Illness:
87 yo F with h/o CHF, COPD 
on 5 L oxygen at baseline, 
tracheobronchomalacia s/p 
stent, presents with acute 
dyspnea over several days, 
and lethargy. [...]

1 0 … 0 0

5 http://scikit-learn.org/stable/.
6 https://www.nltk.org/.
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We explored the SVM algorithm. SVM has important parameters like kernel, C,
and gamma, which values have to be chosen for the training task. The majority of the
studies found in literature for the code assignment problem, according to our knowl-
edge, select parameters values arbitrarily. We assume that this decision might decrease
the algorithm effectiveness. In this work, we performed a parameter search step, in
which the training process was performed for each possible combination of predefined
parameter values. The range of values for each parameter was defined as follows:

• Parameter kernel: [Linear, Radial Basis Function (RBF)]
• Parameter C: [0.02, 0.2, 1.0, 2.0, 4.0]
• Parameter gamma: [0.02, 0.2, 1.0, 2.0, 4.0]. Applicable only to the RBF kernel.

The parameter kernel specifies whether the SVM will perform a linear or a non-
linear classification. To perform a linear classification, the kernel should be ‘linear’
while performing a non-linear classification requires a non-linear kernel, such as RBF
[19]. The parameter C is related to the size of the margin of the SVM hyperplane,
where low values of C will result in a large margin and high values of C result in a
small margin. The size of the margin is strongly related to misclassification, because
the smaller the margin, the smaller the misclassification [19]. However, lower mis-
classification on training set does not implicate in lower misclassification on testing set.
Therefore, a larger margin may result in a more generalized classifier. Gamma is a free
parameter of the Gaussian function of the RBF kernel.

Due to the unbalance of classes, another important parameter we considered was
class weight. With this parameter, it was possible to penalize mistakes on the minority
class proportionally to how under-represented it is. The initial weight for a class was
computed as N/(2 � M), in which N is the number of records and M refers to the
number of records in the respective class. This formula is widely used to deal with
imbalanced classes in classification problems, because the lower the number of samples
in a particular class, the higher is the initial weight.

The initial weight might be not enough to obtain a good effectiveness for too
imbalanced classes. Therefore, besides using the initial weight value, we also used two
higher values. We used the following range for class weight parameter: [None, initial
weight, initial weight + 2, initial weight + 4].

According to the number of parameters and respective range of values, it was
necessary to perform 90 SVM trainings (15 for linear kernel and 75 for RBF kernel).
Due to computational power limitations, the parameter searching was performed in a
subset corresponding to 30% of samples of the training set (12.724 samples). That
subset was split in a second training set (80%) and validation (20%) set. Figure 2
illustrates the dataset splitting process.

A SVM model was created for each parameter combination using the second
training set. The analysis of the model was tested in the validation set through the
calculation of f1-score. The parameter combination values with best results were then
selected as parameter values in the creation of the prediction model. Once one model is
created for each class, such values can be different for distinct classes.

After the study concerning the parameters, the creation of prediction model (for
each class) was performed using the training set with 42414 records (80% of the 53018
discharge summaries). The effectiveness of the method was evaluated in the test set
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with 10.604 records. To this end, we explored the following evaluation metrics: recall,
precision, and f1-score.

4 Results and Discussion

In this section, we present the results obtained with the construction of the classification
model for ICD coding task. We highlight the influence of parameters optimization and
the use of class weighting in the model construction.

4.1 Influence of Parameters and Class Weighting

After performing the searching for best combination of parameter values, we found that
such values widely vary along the classes. The parameter ‘C’ varied between the
following values: 1.0 (37 classes), 2.0 (31 classes), 0.2 (17 classes) and 4.0 (15 clas-
ses). For the ‘gamma’ parameter (applicable only to the RBF kernel), most classes
presented the best results with the value 0.2 (52 classes), whereas five classes presented
a value of 1.0 and three classes presented a value of 0.02.

For the ‘kernel’ parameter, 40 classes presented best results with a linear kernel,
whereas 60 classes achieved better results with the RBF kernel. These results indicated
the relevance of considering the RBF kernel. Usually, most studies in literature for ICD
coding has approached the problem only using the linear kernel.

We addressed the problem of imbalanced classes with the use of class weighting.
From 100 class in total, only two classes performed better without the need of using
class weighting. These classes correspond to the diagnostics 276.8 – “Hypopotasse-
mia” and 769 – “Respiratory distress syndrome in newborn” in ICD-9. The remaining
98 classes presented best results with the use of class weighting, highlighting the

Fig. 2. Dataset splitting process
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relevance of considering the class weighting as an approach to address the imbalanced
class problem. According to the authors’ knowledge, no other study has used this
approach in literature for the studied problem.

4.2 Classifier Effectiveness

As previously mentioned, we tested the effectiveness of each model using the testing
set. Table 2 summarizes the obtained results. We reached 49.86% for the f1-macro
metric, which represents the mean of f1-score for all classes. The mean for recall score
was 68.61% and the mean for precision score was 41.94%.

Table 3 presents the five classes with worst f1-score whereas Table 4 presents the
five classes with best f1-score. The column “frequency index” in Tables 3 and 4
represents the position of the diagnosis in the database. For example, the diagnosis
42731 – “Atrial fibrillation” is the third most frequent diagnosis, whereas 99591 –

“Sepsis” is the 92nd most frequent diagnosis. The higher the frequency index value, the
lower the frequency of this diagnosis and, therefore, the more imbalanced is the
respective class.

Results indicated that the classes presenting the worst effectiveness correspond to
the most imbalanced classes. This suggests that the more diagnoses we consider, the
lower the effectiveness of the model (cf. Fig. 3). For example, if we consider only the
first 20 most frequent diagnostics, we obtain 65.43% of f1-macro against 49.86% if we
consider the 100 most frequent diagnostics.

Table 2. Results summary

Precision Recall F1-macro

Value 41.94% 68.61% 49.86%
Standard deviation 19.94% 14.67% 18.64%

Table 3. Five worst results and their respective classes

Diagnosis Frequency
index

Precision Recall F1-
macro

E8788 - Other specified surgical
operations and procedures causing
abnormal patient reaction, or later
complication, without mention of
misadventure at time of operation

84 8.23% 76.40% 14.86%

27652 - Hypovolemia 81 9.91% 56.55% 16.87%
E8798 - Other specified procedures as the
cause of abnormal reaction of patient, or
of later complication, without mention of
misadventure at time of procedure

69 13.22% 42.22% 20.14%

99591 - Sepsis 92 12.41% 68.85% 21.03%
2930 - Delirium due to conditions
classified elsewhere

73 13.73% 65.14% 22.68%
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5 Conclusion

In this work, we constructed a model based on machine learning approaches for the
task of automated ICD coding from free-text discharge summaries. The results we
obtained highlight the importance of optimization of parameter as well as the use of
class weighting approach to deal with imbalanced class problem.

We also highlight some limitations of this work. The computational power
restrictions limited the range of parameters values to test as well as the number of
samples in the second training set used for parameter optimization. We considered only

Table 4. Five best results and their respective classes

Diagnosis Frequency
index

Precision Recall F1-
macro

42731 - Atrial fibrillation 3 84.49% 88.86% 86.62%
V3000 - Single liveborn, born in hospital,
delivered without mention of cesarean
section

24 83.94% 89.26% 85.52%

7742 - Neonatal jaundice associated with
preterm delivery

48 76.17% 97.98% 85.71%

V3001 - Single liveborn, born in hospital,
delivered by cesarean section

36 81.05% 90.31% 85.43%

V290 - Observation for suspected
infectious condition

13 76.33% 93.80% 84.17%

Fig. 3. Variation of f1-macro in relation to the number of classes
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the 100 most frequent diagnostics out of 6,985 diagnostics present in the database.
Therefore, the most imbalanced classes (the less frequent diagnosis) were not con-
sidered. However, it is important to note that 96.6% of the diagnostics were assigned to
only 1% or less of the discharge summaries.

Another important limitation is related specifically to the database characteristics.
Most of the free-text discharge summaries present misspelling and abbreviations,
which may have impaired the model effectiveness. In addition, the process of manually
coding itself may have errors, which may have led to incorrect or incomplete list of
diagnostics.
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Abstract. There exist many tools to annotate mentions of medical enti-
ties in documents with concepts from biomedical ontologies. To improve
the overall quality of the annotation process, we propose the use of
machine learning to combine the results of different annotation tools.
We comparatively evaluate the results of the machine-learning based
approach with the results of the single tools and a simpler set-based
result combination.

Keywords: Biomedical annotation · Annotation tool
Machine learning

1 Introduction

The annotation of entities with concepts from standardized terminologies and
ontologies is of high importance in the life sciences to enhance semantic interop-
erability and data analysis. For instance, exchanging and analyzing the results
from different clinical trials can lead to new insights for diagnosis or treatment
of diseases. In the healthcare sector there is an increasing number of documents
such as electronic health records (EHRs), case report forms (CRFs) and scientific
publications, for which a semantic annotation is helpful to achieve an improved
retrieval of relevant observations and findings [1,2].

Unfortunately, most medical documents are not yet annotated, e.g., as
reported in [9] for CRFs, despite the existence of several tools to semi-
automatically determine annotations. This is because annotating medical docu-
ments is highly challenging since documents may contain mentions of numerous
medical entities that are described in typically large ontologies such as the Uni-
fied Medical Language System (UMLS) Metathesaurus. The mentions may also
be ambiguous and incomplete and thus difficult to find within the ontologies. The
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tools thus typically can find only a fraction of correct annotations and may also
propose wrong annotations. Furthermore, the tools typically come with many
configuration parameters making it difficult to use them in the best way.

Given the limitations of individual tools it is promising to apply several tools
and to combine their results to improve overall annotation quality. In our previ-
ous work [11], we investigated already simple approaches to combine the results
of three annotation tools based on set operations such as union, intersection
and majority consensus. In this short paper, we propose and evaluate a machine
learning (ML) approach for combining several annotation results.

Specifically, we make the following contributions:

– We propose a ML approach for combining the results of different annotation
tools in order to improve overall annotation quality. It utilizes training data
in the form of a so-called annotation vectors summarizing the scores of the
considered tools for selected annotation candidates.

– We evaluate the new approach with different parameter and training settings
and compare it with the results of single tools and the previously proposed
combinations using set operations.

We first discuss related work on finding annotations and combining differ-
ent annotation results. In Sect. 3, we propose the ML-based method. We then
describe the evaluation methodology and analyze the results in Sect. 4. Finally,
we conclude.

2 Related Work

Many annotation tools utilize a dictionary to store the concepts of the ontologies
of interest (e.g., UMLS) to speedup the search for the most similar concepts for
certain words of a document to annotate. Such dictionary-based tools include
MetaMap, NCBO Annotator [8], IndexFinder [15], ConceptMapper [13], NOBLE
Coder [14] cTAKES [12] and our own AnnoMap approach [7] that combines sev-
eral string similarities and applies a post-processing to select the most promising
annotations. There have also been annotation approaches using machine learn-
ing [4]. They can achieve good results but incur a substantial effort to provide
suitable training data.

In our previous work [11], we combined annotation results for CRFs deter-
mined by the tools MetaMap, cTAKES and AnnoMap using the set-based
approaches union, intersection and majority. The union approach includes the
annotations from any tool to improve recall while intersection only preserves
annotations found by all tools for improved precision. The majority approach
includes the annotations found by a majority of tools, e.g., by at least two of
three tools. Overall the set-based approach could significantly improve annota-
tion quality, in particular for intersection and majority.

Though ML approaches have been used for annotating entities, so far they
have rarely been applied for combining annotation results as we propose in this
paper. Campos et al. utilized Conditional Random Fields model to recognize
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named entities of gene/protein terms using the results from three dictionary-
based systems and one machine learning approach [5]. The learned combination
could outperform combinations based on union or intersection. Our ML-based
combination approach is inspired by methods proposed in record-linkage domain
where the goal is to identify record pairs representing the same real-world entity
[10]. Instead of a manually configured combination of different similarity values
for different record attributes the ML approaches learn a classification model
(e.g., using decision tree or SVM learning) based on a training set of matches
and non-matches. The learned models automatically combine the individual sim-
ilarities to derive at a match or non-match decision for every pair of records.

3 Machine Learning-Based Combination Approach

The task of annotation has as input a set of documents D = {d1, d2, . . . , dn} to
annotate, e.g., EHRs, CRFs or publications, as well as the ontology ON from
which the concepts for annotation are to be found. The goal is to determine for
each document fragment df (e.g., sentences) the set of its most precisely describ-
ing ontology concepts. The annotation result includes all associations between a
document fragment dfj and its annotating concepts from ON . The problem we
address is the combination of multiple annotation results for documents D and
ontology ON that are determined by different tools. The tool-specific annota-
tion results are obtained with a specific parameter configuration selected from
a typically large number of possible parameter settings. The goal is to utilize
complementary knowledge represented in the different input results to improve
the overall annotation result, i.e., to find more correct annotations (better recall)
and to reduce the number of wrongly proposed annotations (better precision).

The main idea of the proposed ML-based method is to train a classification
model that determines whether an annotation candidate (dfj , c) between a doc-
ument fragment dfj and a possibly annotating concept c is correct or not. The
classification model is learned based on a set of positive and negative annota-
tion examples for each tool (configuration). For each training example (dfj , c) we
maintain a so-called annotation vector # »av with n+1 elements, namely a quality
score for each of the n annotation tools plus a so-called basic score. The basic
score is a similarity between dfj and c that is independently computed from
the annotation tools, e.g., based on a common string similarity function such as
soft-TF/IDF or q-gram similarity. The use of the basic similarity is motivated
by the observation that many concepts may be determined by only one or few
tools leading to sparsely filled annotation vectors and thus little input for train-
ing the classification model. The learned classification model receives as input
annotation vectors of candidate annotations and determines a decision whether
the annotation is considered correct or not.

Figure 1 shows sample annotation vectors for three tools and the annotation
of document fragment df1. The table on the left shows the annotations found by
the tools together with their scores (normalized to a value between 0 and 1). In
total, the tools identify five different concepts resulting into the five annotation
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Fig. 1. Sample annotations and corresponding annotation vectors

vectors shown on the right of Fig. 1. For example, the annotation of df1 with
concept C478762 has the annotation vector # »av(df1,C478762) of (1, 0, 0, 0.7) since
tool 1 identified this annotation with a score of 1, tools 2 and 3 did not determine
this annotation (indicated by score 0), and the basic score is 0.7.

We use three classifiers: decision tree, random forest and support vector
machines (SVM), to train classification models. A decision tree consists of nodes
and each node represents a binary decision function based on a score threshold
of a tool, e.g. scoreMetaMap > 0.7. When an annotation vector # »av is input into a
decision tree, decisions are made from the root node to the leaf node according
to the values of # »av. As output, # »av is classified as a correct or incorrect anno-
tation. Random forest [3] utilizes an ensemble of decision trees and derives the
classification decision from the most voted class of the individual decision trees.
To determine a random forest classification model, each decision tree is trained
by different samples of the training dataset. The goal of an SVM is to compute
a hyperplane that separates the correct annotation vectors (represents a true
annotation) from the incorrect ones. To separate vectors that are not linearly
separable, SVM utilizes a kernel function to map the original vectors to a higher
dimension so that the vectors can be separated.

A key step for the ML-based combination approach is the provision of suit-
able training data of a certain size. For this purpose, we determine annotation
results with different tools and a specific configuration for a set of training doc-
uments. From the results we randomly select a subset of n annotations and
generate the corresponding annotation vectors AVtrain and label them as either
correct or incorrect annotations. Providing a sufficient number of positive and
negative training examples is of high importance to determine a classification
model with enough discriminative power to correctly classify annotation candi-
dates. To control the ratio between these two kinds of annotations we follow the
approach of [10] and use a parameter tpRatio (true positive ratio). For instance,
tpRatio = 0.4 means 40% of all annotations in AVtrain are correct. In our eval-
uation, we will consider the influence of both the training size n and tpRatio.

4 Evaluation and Results

We now evaluate our ML-based combination approach and compare it with the
simpler set-based combination of annotation results. After the description of the
experimental setup we analyze the influence of different training configurations
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and learners. In Sect. 4.3, we compare the results of the ML approach with the
single tools and set-based combination. The evaluation focuses on the standard
metrics recall, precision and their harmonic mean F-measure as the main indi-
cator for annotation quality.

4.1 Experimental Setup

We use two datasets with medical forms (CRFs) for which a reference map-
ping exists: a dataset with forms on eligibility criteria (EC) and a dataset with
quality assurance (QA) forms. The EC dataset contains 25 forms with 310 man-
ually annotated questions. The QA dataset has 24 standardized forms with 543
annotated questions used in cardio-vascular procedures. The number of annota-
tions in the reference mappings is 541 for EC and 589 for QA. These datasets
have also been used in previous annotation evaluations [6,7] and turned out to be
very challenging. For annotation we use five UMLS ontologies of version 2014AB:
UMLS Metathesaurus, NCI Thesaurus, MedDRA, OAC-CHV, and SNOMED-
CT US. Since we use different subsets of UMLS in this paper and in the previous
studies [7], the results are not directly comparable.

As in our previous study [11] we combine annotation results of the tools
MetaMap, cTAKES and AnnoMap and apply the same set of configurations. In
the annotation vectors, we use the normalized scores of the tools and determine
the basic score by using soft-TF/IDF. For the classifiers (decision tree, random
forest, SVM) we apply Weka as machine learning library. We generate training
data of sizes 50, 100 or 200 selected from the union of the three tools. A tpRatio
∈ {0.2, 0.3, 0.4, 0.5} is applied for each sample generation. For each ML test con-
figuration (i.e., choice of classifier, sample size, tpRatio and tool configuration)
we produce three randomly selected training sets and use each to generate a clas-
sifier model so that our results are not biased by just one sample. For each test
configuration we measure average precision, average recall and macro F-measure
that is based on the average precision and the average recall.

Fig. 2. Precision/recall results for different tpRatio values and training sizes n (dataset
EC, random forest learning)
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4.2 Machine Learning-Based Combination of Annotation Tools

For the analysis of our ML-based combination approach we first focus on the
impact of parameter tpRatio and the size of the training sets. We then com-
pare the three classifiers decision tree, random forest and SVM. Due to space
restrictions we present only a representative subset of the results.

Figure 2 shows the annotation quality for dataset EC using random forest
learning for different tpRatios (0.2 to 0.5) and three different training sizes (50,
100 and 200). Each data point represents the classification quality according to a
certain tpRatio with a certain configuration of the considered tools. We observe
that data points with the same tpRatios are mostly grouped together indicat-
ing that this parameter is more significant than other configuration details. We
further observe for all training sizes that models trained with a larger tpRatios
of 0.5 or 0.4 tend to reach a higher recall (but lower precision) than for smaller
tpRatios values. Apparently low tpRatio values provide too few correct anno-
tations so that the learned models are not sufficiently able to classify correct
annotations as correct. By contrast, higher tpRatio values can lead to models
that classify more incorrect annotations as a correct thereby reducing precision.
For random forest, a tpRatio of 0.4 is generally a good compromise setting.

Figure 2 also shows that larger training sizes tend to improve F-measure since
the data points for the right-most figure (training size n = 200) are mostly above
the F-measure line of 50% while this is not the case for the left-most figure
(n = 50). Figure 3 reveals the influence of the training size in more detail by
showing the macro-average precision, recall and F-measure obtained by random
forest using different training sizes. For both datasets, EC and QA, we observe
that larger training sizes help to improve both precision and recall and thus F-
measure. Hence, average F-measure improved from 40.1% to 42.5% for dataset
EC and even from 52.0% to 56.9% for QA when the training size increases from
50 to 200 annotation samples.

Figure 4 depicts the macro-average precision, recall and F-measure over dif-
ferent tpRatios, sample sizes and configurations. For both datasets, random
forest obtains the best recall values (EC: 40.0%, QA: 46.8%) while decision tree

Fig. 3. Impact of training sizes on annotation quality for datasets EC and QA
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Fig. 4. Average annotation quality for random forest, SVM and decision tree.

achieves the best precision (EC: 52.9%, QA: 66.4%). In terms of average F-
measure the three learning approaches are relatively close together, although
random forest (42.4%) outperforms SVM and decision tree by 1.4% resp. 2.5%
for EC. For the QA dataset, random forest (54.3%) outperforms decision tree and
SVM by 0.3% resp. 2.2%. Moreover, we experimentally tested our approach with
or without using the basic scores in addition to the tool results. We observed
that using the basic score improves F-Measure by 1.6% (EC) and 1% (QA),
indicating that it is valuable to improve annotation results.

Fig. 5. Summarizing F-measure results for cTAKES and MetaMap and the set-based
and ML-based result combinations for the EC and QA datasets.

4.3 Comparison with Set-Based Combination Approaches

We finally compare the annotation quality for the ML-based combinations with
that of the individual tools cTAKES and MetaMap as well as with the results
for the set-based combinations proposed in [11]. Figure 5 summarizes the best
F-measure results for both datasets. We observe that the F-measure of the indi-
vidual tools is substantially improved by both the set-based and ML-based com-
bination approaches, especially for cTAKES (by about a factor 3–4.5). The ML-
based combination outperforms the set-based combinations for both datasets.
Consequently, the best results can be improved for EC (from 44.3% to 47.5%)
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and QA (from 56.1% to 59.1%) by using a sample size of 200. This underlines
the effectiveness of the proposed ML-based combination approach.

5 Conclusions

The annotation of documents in healthcare such as medical forms or EHRs with
ontology concepts is of high benefit but challenging. We proposed and evaluated
a machine learning approach to combine the annotation results of several tools.
Our evaluation showed that the ML-based approach can dramatically improve
the annotation quality of individual tools and that it also outperforms simpler
set-based combination approaches. The evaluation showed that the improve-
ments are already possible for small training sizes (50–200 positive and nega-
tive annotation examples) and that random forest performs slightly better than
decision tree or SVM learning. In future work, we plan to apply the ML-based
combination strategy to annotate further kinds of documents and to use machine
learning also in the generation of annotation candidates.
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Abstract. The polypharmacy side effect prediction problem considers
cases in which two drugs taken individually do not result in a partic-
ular side effect; however, when the two drugs are taken in combina-
tion, the side effect manifests. In this work, we demonstrate that multi-
relational knowledge graph completion achieves state-of-the-art results
on the polypharmacy side effect prediction problem. Empirical results
show that our approach is particularly effective when the protein targets
of the drugs are well-characterized. In contrast to prior work, our app-
roach provides more interpretable predictions and hypotheses for wet lab
validation.

Keywords: Knowledge graph · Embedding · Side effect prediction

1 Introduction

Disease and other health-related problems are often treated with medication.
In many cases, though, multiple medications may be given to treat either a
single condition or to account for co-morbidities. However, such combinations
significantly increase the risk of unintended side effects due to unknown drug-
drug interactions.

In this work, we show that multi-relational knowledge graph (KG) completion
gives state-of-the-art performance in predicting these unknown drug-drug inter-
actions. The KGs are multi-relational in the sense that they contain edges with
different types. We formulate the problem as a multi-relational link prediction
problem in a KG and adapt existing graph embedding strategies to predict the
interactions. In contrast to prior approaches for the polypharmacy side effect
problem, we incorporate interpretable features; thus, our approach naturally
yields explainable predictions and suggests hypotheses for wet lab validation.
Further, while we focus on the side effect prediction problem, our approach is
general and can be applied to any multi-relational link prediction problem.

Much recent work has considered the problem of predicting drug-drug
interactions (e.g. [2,13] and probabilistic approaches like [9]). However, these
approaches only consider whether an interaction occurs; they do not consider
the type of interaction as we do here. Thus, these methods are not directly
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Table 1. Size statistics of the graph

Count

Proteins 19 089

Drugs 645

Protein-protein interactions 715 612

Drug-drug interactions 4 649 441

Drug-protein target relationships 11 501

Mono side effects 174 977

Distinct mono side effects 10 184

Distinct polypharmacy side effects 963

Fig. 1. Types of relational features.

comparable. The recently-proposed Decagon approach [14] is most similar to
ours; they also predict types of drug-drug interactions. However, they use a
complicated combination of a graph convolutional network and a tensor fac-
torization. In contrast, we use a neural KG embedding method in combination
with a method to incorporate rule-based features. Hence, our method explicitly
captures meaningful relational features. Empirically, we demonstrate that our
method outperforms Decagon in Sect. 4.

2 Datasets

We use the publicly-available, preprocessed version of the dataset used in [14].1

It consists of a multi-relational knowledge graph with two main components: a
protein-protein and a drug-drug interaction network. Known drug-protein tar-
get relationships connect these different components. The protein-protein inter-
actions are derived from several existing sources; it is filtered to include only
experimentally-validated physical interactions in human. The drug-drug inter-
actions are extracted from the TWOSIDES database [11]. The drug-protein tar-
get relationships are experimentally-verified interactions from the STITCH [10]
database. Finally, the SIDER [6] and OFFSIDES [11] databases were used to
identify mono side effects of each drug. Please see Table 1 for detailed statistics
of the size and density of each part of the graph. For more details, please see [14].
Each drug-drug link corresponds to a particular polypharmacy side effect. Our
goal will be to predict missing drug-drug links.

3 Methods

KG embedding methods learn vector representations for entities and rela-
tion types of a KG [1]. We investigate the performance of DistMult [12], a
commonly-used KG embedding method whose symmetry assumption is well-
suited to this problem due to the symmetric nature of the drug-drug (polyphar-
macy side effect) relation type. The advantage of KG embedding methods are
1 Available at http://snap.stanford.edu/decagon.

http://snap.stanford.edu/decagon
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their efficiency and their ability to learn fine-grained entity types suitable for
downstream tasks without hand-crafted rules. These embedding methods, how-
ever, are less interpretable than rule-based approaches and cannot incorporate
domain knowledge.

A relational feature is a logical rule which is evaluated in the KG to deter-
mine its truth value. For instance, the formula (drug1, hasTarget, protein1) ∧
(drug2, hasTarget, protein1) corresponds to a binary feature which has value
1 if both drug1 and drug2 have protein1 as a target, and 0 otherwise. In
this work, we leverage relational features modeling drug targets with the rela-
tion type hasTarget and protein-protein interactions with the relation type
interactsWith. Figure 1 depicts the two features types we use in our polyphar-
macy model. For a pair of entities (h, t), the relational feature vector is denoted
by r(h,t). Relational features capture concrete relationships between entities;
thus, as shown in Sect. 4, they offer explanations for our predictions.

KBlrn is a recently proposed framework for end-to-end learning of knowl-
edge graph representations [4]. It learns a product of experts (PoE) [5] where
each expert is responsible for one feature type. In the context of KG represen-
tation learning, the goal is to train a PoE that assigns high probability to true
triples and low probabilities to triples assumed to be false. Let d = (h, r, t) be a
triple. The specific experts we use are defined as

f(r,L)(d | θ(r,L)) =
{

exp((eh ∗ et) · wr)
1 for all r′ �= r

and f(r,R)(d | θ(r,R)) =
{

exp
(
r(h,t) · wr

rel

)
1 for all r′ �= r

where ∗ is the element-wise product, · is the dot product, eh and et are the
embedding of the head and tail entity, respectively, and wr,wr

rel are the param-
eter vectors for the embedding and relational features for relation type r. The
probability of triple d = (h, r, t) is now

p(d | θ) =
f(r,L)(d | θ(r,L)) f(r,R)(d | θ(r,R))∑
c f(r,L)(c | θ(r,L)) f(r,R)(c | θ(r,R))

,

where c indexes all possible triples. As proposed in previous work, we approxi-
mate the gradient of the log-likelihood by performing negative sampling [4].

4 Experimental Results

We now empirically evaluate our proposed approach based on multi-relational
knowledge graph completion to predict polypharmacy side effects.

Dataset Construction. We follow the common experimental design previously
used [14] to construct our dataset. The knowledge graph only contains “positive”
examples for which polypharmacy side effects exist. Thus, we create a set of
negative examples by randomly selecting a pair of drugs and a polypharmacy
side effect which does not exist in the knowledge graph. We ensure that the
number of positive and negative examples of each polypharmacy side effect are
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equal. We then use stratified sampling to split the records in training, validation
and testing sets.

We use an instance of the relational feature types depicted in Fig. 1 if it
occurs at least 10 times in the KG. We choose these relational feature types
because they offer a biological explanation for polypharmacy side effects; namely,
a polypharmacy side effect may manifest due to unexpected combinations or
interactions on the drug targets.

Baselines. We first compare our proposed approach to Decagon [14]. Second,
we consider each drug as a binary vector of indicators for each mono side effect
and gene target. We construct training, validation and testing sets by concate-
nating the vectors of the pairs of drugs described above. We predict the likelihood
of each polypharmacy side effect given the concatenated vectors.

Complete DecagonDataset. We first consider the same setting considered pre-
viously [14]. As shown in Table 2(top), our simple baseline, DistMult, and
KBlrn all outperform Decagon.

Drug-Drug Interactions Only. Next, we evaluate polypharmacy side effect pre-
diction based solely on the pattern of other polypharmacy side effects. Specifi-
cally, we completely remove the drug-protein targets and protein-protein inter-
actions from the KG; thus, we use only the drug-drug polypharmacy side effects
in the training set for learning. We focus on DistMult and KBlrn since they
outperformed the other methods in the first setting.

Surprisingly, the results in Table 2(middle) show that both DistMult and
KBlrn perform roughly the same (or even improve slightly) in this setting,
despite discarding presumably-valuable drug target information. However, as
shown in Table 1, few drugs have annotated protein targets. Thus, we hypothesize
that the learning algorithms ignore this information due to its sparsity.

Drugs with Protein Targets Only. To test this hypothesis, we remove all drugs
which do not have any annotated protein targets from the KG (and the associ-
ated triples from the dataset). That is, the drug target information is no longer
“sparse”, in that all drugs in the resulting KG have protein targets.

The results in Table 2(bottom) paint a very different picture than before;
KBlrn significantly outperforms DistMult. These results show that the com-
bination of learned (or embedding) features and relational features can signifi-
cantly improve performance when the relational features are present in the KG.

Explanations and Hypothesis Generation. The relational features allow us to
explain predictions and generate new hypotheses for wet lab validation. We
chose one of our high-likelihood predictions and “validated” it via literature evi-
dence. In particular, the ranking of the drug combination CID115237 (paliperi-
done) and CID271 (calcium) for the side effect “pain” increased from 24 223
when using only the embedding features (of 58 029 pairs of drugs for which
“pain” is not a known side effect) to a top-ranked pair when also using the rela-
tional features. Inspection of the relational features shows that the interaction
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Table 2. The performance of each approach on the pre-defined test set. The measures
are: area under the receiver operating characteristic curve (AuROC), area under the
precision-recall curve (AuPR), and the average precision for the top 50 predictions for
each polypharmacy side effect (AP@50). The best result within each group is in bold.

Method AuROC AuPR AP@50

Baseline 0.896 0.859 0.812

Decagon (values reported in [14]) 0.872 0.832 0.803

DistMult 0.923 0.898 0.899

KBlrn 0.899 0.878 0.857

DistMult (drug-drug interactions only) 0.931 0.909 0.919

KBlrn (drug-drug interactions only) 0.894 0.886 0.892

DistMult (drugs with protein targets only) 0.534 0.545 0.394

KBlrn (drugs with protein targets only) 0.829 0.797 0.774

between lysophosphatidic acid receptor 1 (LPAR1) and matrix metallopepti-
dase 2 (MMP2) is particularly important for this prediction. The MMP family
is known to be associated with inflammation (pain) [7]. Independently, calcium
already upregulates MMP2 [8]. Paliperidone upregulates LPAR1, which in turn
has been shown to promote MMP activiation [3]. Thus, palperidone indirectly
exacerbates the up-regulation of MMP2 already caused by calcium; this, then,
leads to increased pain. Hence, the literature confirms our prediction discovered
due to the relational features.

5 Discussion

We have shown that multi-relational knowledge graph completion can achieve
state-of-the-art performance on the polypharmacy side effect prediction problem.
Further, relational features offer explanations for our predictions; they can then
be validated via the literature or wetlab. In the future, we plan to extend this
work by considering additional features of nodes in the graph, such as Gene
Ontology annotations for the proteins and chemical structure of the drugs.
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Abstract. Recent rapid increase in the generation of clinical data and rapid
development of computational science make us able to extract new insights from
massive datasets in healthcare industry. Oncological Electronic Health Records
(EHRs) are creating rich databases for documenting patient’s history and they
potentially contain a lot of patterns that can help in better management of the
disease. However, these patterns are locked within free text (unstructured)
portions of EHRs and consequence in limiting health professionals to extract
useful information from them and to finally perform Query and Answering
(Q&A) process in an accurate way. The Information Extraction (IE) process
requires Natural Language Processing (NLP) techniques to assign semantics to
these patterns. Therefore, in this paper, we analyze the design of annotators for
specific lung cancer concepts that can be integrated over Apache Unstructured
Information Management Architecture (UIMA) framework. In addition, we
explain the details of generation and storage of annotation outcomes.

Keywords: Electronic health record � Natural language processing
Named entity recognition � Lung cancer

1 Introduction

Cancer is still one of the major public health issues, ranked with the second leading
cause of death globally [1]. Across the Europe, lung cancer was estimated with 20.8%
(over 266,000 persons) of all cancer deaths in 2011 [2] and the highest economic cost
of 15% (18.8 billion) of overall cancer cost in 2009 [3]. Early diagnoses of cancer
decreases its mortality rate [4]. Hence, a great attention on diagnoses is a key factor for
both the effective control of the disease as well as the design of treatment plans.

Classically, the treatment decisions on lung cancer patients have been based upon
histology of the tumor. According to World Health Organization (WHO), there are two
broad histological subtypes of lung cancer: (1) Small Cell Lung Cancer (SCLC); and
(2) Non-Small Cell Lung Cancer (NSCLC) [5]. NSCLC can be further defined at the
molecular level by recurrent driver mutations [6] where mutations refer to any changes
in the DNA sequence of a cell [7]. Tumor Mutations can occur in multiple oncogenes,
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including in: Epidermal Growth Factor Receptor (EGFR), Anaplastic Lymphoma
Kinase (ALK), and Ros1 proto-oncogene receptor tyrosine kinase [8]. These oncogenes
are Receptor Tyrosine Kinases, which can activate pathways associated with cell
growth and proliferation [9–11].

One of the preliminary diagnoses factor of a cancer is its tumor stage. This factor
plays a significant role on making decisions for developing treatment plans. The
American Joint Committee on Cancer (AJCC) manual [13] specifies two standard
systems for measuring the cancer stage [14]: (1) stage grouping and (2) TNM. The
stage grouping system encodes the tumor stages using roman numerals, whereas the
TNM system makes use of three parameters: (1) the size of tumor (T); (2) the number
of lymph nodes (N); and (3) the presence of Metastasis (M).

According to International Consortium for Health Outcomes Measurement
(ICHOM), Performance Status (PS) is a strong individual predictor of survival in lung
cancer. The ICHOMworking group recommendedmeasuring PS as part of diagnoses per
the Eastern Cooperative OncologyGroup (ECOG) [14]. In addition to ECOG,Karnofsky
is another scale formeasuring PS [15]. These scales are used by doctors and researchers to
assess the progress of a patient’s disease, the effects of the disease on daily and living
abilities of a patient and to determine appropriate treatment and prognosis [16].

Towards the digitization of medical data, these data have been stored in comput-
erized medical records, named EHRs. EHRs are rich clinical documents containing
information about diagnoses, treatments, laboratory results, discharge summaries, to
name a few, which can be used to support clinical decision support systems and allow
clinical and translational research.

EHRs are mainly written mainly in textual format. They lack structure or have a
structure depending on the hospital, service or even the physician generated them. They
contain abbreviations and metrics and are written in the language of the country. Due to
unstructured nature of information locked in EHRs, detection and extraction of useful
information is still a challenge and consequences in difficulty of performing Q&A
process [17].

To encode, structure and extract information from EHRs, an NLP system for which
the Named Entity Recognition (NER) process is its paramount task, is required. Rule-
based approaches for performing NER process through means of knowledge engineering
are very accurate since they are based on physician’s knowledge and experience [18].

The NER process intrinsically relies on ontologies, taxonomies and controlled
vocabularies. Examples of such vocabularies are Systematized Nomenclature of
Medicine (SNOMED) [19] and Unified Medical Language System (UMLS) [20].
The UMLS integrates and distributes key terminology, classification and coding
standards. Even though that the translations of these vocabularies to different languages
are available, they do not always provide the entire terminologies that are used in very
specific domains (e.g., lung cancer). In addition, several medical metrics are not
covered or fully provided by them. Furthermore, symbols such as “+” and “−”, which
are commonly being used with medical metrics (e.g., EGFR+) to determine their
positivity or negativity, are not supported by them. Also, it is a common practice by
physicians to use symbols such as “.”, “_”, “-”, etc. for writing metrics (e.g., cancer
stage I-A1). Such metrics are not supported by these ontologies as well.
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Although, several NLP systems have been developed to extract information from
clinical text such as Apache cTAKES [21], MEDLEE [22], MedTAS/P [23], HITEx
[24], MetaMap [25], to name a few. However, despite of the fact that Spanish language
has occupied the second position in the world ranking of number of speakers with more
than 572 million speakers [26], these systems are mainly being used for English. One of
the NLP systems that has been developed to perform IE on Spanish clinical text, is C-
liKES (Clinical Knowledge Extraction System) [27]. C-liKES is a framework that has
been developed on top of Apache UIMA, which has been based on a legacy system,
named H2A [28].

To the best of our knowledge, there is no open NLP pipeline from which we can
extract information related to lung cancer mutation status, tumor stage and PS, written
in Spanish clinical narratives. Thus, the main contribution of this paper is to discuss the
design, development and the implementation of annotators, capable of detecting clinical
information from EHRs, using UIMA framework. Furthermore, we present the anno-
tation results, extracted by means of running these annotators. The rest of paper is
organized as follows: in Sect. 2, concept annotation for mutation status, stage and PS in
lung cancer domain along with annotation output generation is presented; and in Sect. 3
the achievements gained so far are explained and the outlook of the future develop-
ments is provided.

2 Solution

We have developed a set of semantic rule-based NLP modules, named Annotators,
using Apache UIMA framework. These annotators were developed to identify NEs
(Named Entities) from clinical narratives. They contain regular expressions, using
which, they can search for specific patterns through the clinical text.

The Pseudocode of algorithms implemented by these annotators is provided in
Listing. 1.
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The algorithm defines the search pattern using regular expressions and accept EHR
plain text as input. Then, for each individual sentence in the text, the algorithm checks
if the search pattern can be matched with the tokens. Once, a matched token is found,
the algorithm assigns the semantical meaning corresponding to the token and produces
the output by adding annotation to the token indexes.

To process a clinical narrative using these developed annotators, we have imple-
mented them under a single pipeline. Once, the pipeline is executed, the output of
annotations will be generated.

The outcomes of annotation processes are formatted as a set of XML Metadata
Interchange (XMI) files and are also inserted into a relational database from which
Q&A process can be followed. The details of lung cancer developed annotators and the
output generation process are provided below.

2.1 Mutation Status

Physicians makes use of EGFR, ALK and ROS1 metrics for mentioning the tumor
mutation status in clinical narratives. However, in case of EGFR, they can provide
more detailed information about the mutation related to the exon (18–21), type of exon
(deletion or insertion) and the mutation point (G719X, T790 M, L858R, L861Q).

For determining the positivity or negativity of mutation metrics, physicians do not
follow any standard systems. For example, in case of EGFR positive, they can write:
“EGFR: positive”, “EGFR+”, “has detected with mutation in EGFR”, “presence of
mutation in EGFR”, “with insertion mutation in Exon 19”, “EGFR mutated”, etc.
Therefore, the need of annotators for detecting tumor mutation status from clinical text,
comes to the picture. For this purpose, three annotators, named EGFR Annotator, ALK
Annotator and ROS1 Annotator were developed using UIMA framework.

The EGFR annotator is capable of detecting the mutation status, exon, type of exon
and the mutation point from the clinical text by incorporating four internal annotators
that were developed for this purpose. Whereas the ALK and ROS1 annotators can only
find the concepts that are related to the mutation status.

For example, in the following clinical text: “EGFR + (del exon 19), no se detecta
traslocación de ALK y ROS1 no traslocado.” while EGFR mutation status is positive in
exon 19, no translocation is detected for ALK and ROS1. Once, we process this clinical
text using the developed annotators for tumor mutation status on UIMA CAS Visual
Debugger (CVD), this information is extracted from the text (Fig. 1).

The CVD output representation is largely divided into two sections:

• Analysis Results: is composed of two subsections: (1) upper division: contains CAS
Index Repository. AnnotationIndex represents the list of annotators executed for
processing the text, which shows DocumentAnnotation objects, with one specific
object for each specific annotation (ALK, EGFR, Exon, …). To see the annotation
results of a specific annotator, the user should click on the designated one in here;
and (2) lower division: includes AnnotationIndex. When the user clicks on the
index of an annotation (in the Fig. 1, -ALK-) the information such as begin, end and
semantic categories of the found NE will be represented.
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• Text: accepts the clinical text as input from the user, which is in here “EGFR +
(del exon 19), no se detecta traslocación de ALK y ROS1 no traslocado.”. The input
text will be highlighted corresponding to the begin and end of annotation provided
in the AnnotationIndex of the lower division sub-section of the Analysis Results
section. The highlighted text is “no se detecta traslocación de ALK”.

2.2 Stage

Stage grouping and TNM are the two main standard cancer staging systems, introduced
by AJCC manual [29]. The lung cancer stage classification, which is provided by the
International Association for the Study of Lung Cancer (IASLC), is based on advanced
statistical analysis of international database with more than 100,000 patients. This
analysis specifically addressed the stage groups, T, N and M components (Fig. 2). It is
notable that for TNM system, the three attributes, i.e. T, N and M can be modulated by
prefixes (e.g., pT1aN0M0). Such prefixes are: “c” (clinical), “p” (pathologic), “yc” or
“yp” (post therapy), “r” (retreatment) and “a” (autopsy). Physicians normally use
symbols such as “.”, “_”, “-”, “()”, etc. combined with TNM and stages metrics in the
clinical text. For example, in case of stage IA1, they can write: I-A1, I.A1, I_A_1, I(A1),
etc.

Fig. 1. EGFR, ALK and ROS1 annotation results on CVD
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Using 8th edition of this manuals, we have developed two pattern-based extraction
annotators, named Stage Annotator and TNM Annotator, for finding the cancer stages
and the TNMs, appeared in the clinical narratives, respectively.

For example, the clinical text “Adenocarcinoma de pulmón, pT1aN0M0 (mi-
cronódulos pulmonares bilaterales, linfangitis carcinomatosa, derrame pleural),
estadio I_A1.”, explains that the patient is having lung cancer (Adenocarcinoma de
pulmón) with pT1aN0M0 value for TNM and stage IA1. By processing this text using
the Stage and TNM annotator, the information related to these two metrics has been
annotated (Fig. 3).

Fig. 2. AJCC 8th edition - lung cancer stage grouping and TNM system [29]

Fig. 3. Stage and TNM annotation results on CVD
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2.3 PS

PS scale is mentioned using ECOG and Karnofsky measures in the clinical narratives.
The ECOG measure ranges from 0 to 5, where 0 is the most ideal case for carrying on
all pre-disease performance without any restrictions. On the other hand, the Karnofsky
measure ranges from 0% to 100%, where 100% is the most ideal case.

ECOG and Karnfosky scales can appear with symbols such as “.”, “_”, “-”, “()”,
etc. in clinical text. For example, ECOG 0 can be written as: “ECOG_PS: 0”, “ECOG-
0”, “ECOG is measured with 0”, “ECOG (0)”, etc.

Hence, to annotate concepts related to ECOG and Karnofsky scales form clinical
narratives, two annotators, named ECOG Annotator and Karnofsky Annotator were
developed, respectively.

For example, “ECOG-PS 0. Regular estado general. Disnea de reposo/mínimos
esfuerzos. Karnofsky: 100%.”, indicates that the patient PS is measured with ECOG: 0
and Karnofsky: 100%. The results of annotation processes implemented by the ECOG
and Karnofsky annotators on this clinical text, are shown in Fig. 4.

2.4 Output Generation

For generating outcomes, an execution flow (Fig. 5) is followed by using a main
process, called “Processing Engine”. This process accepts plain text files as input.
Example of plain text documents are EHRs, clinical notes, radiology reports, and any
kind of medical textual document generated.

Fig. 4. ECOG and Karnofsky annotation results on CVD
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The input is passed to the Processing Engine, which contains the pipeline of
developed annotators. When the Processing Engine is executed, two resources are
generated as output:

• XMI: UIMA annotators process plain text documents and generate one XMI file for
each of them. These files encompass all the existing annotations i.e. they contain
structured data of the relevant unstructured data in the EHR. Figure 6 presents the
results of annotations, stored in an XMI file, using UIMA Annotation Viewer.
The UIMA annotation viewer is divided into three sections: (1) upper left division:
contains plain clinical text. Highlighted tokens correspond to the annotated

Fig. 5. Processing engine architecture

Fig. 6. XMI annotation results using UIMA annotation viewer
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concepts, which are in here “ECOG 3”, “estadio IV”, “EGFR”, “no mutatdo” and
“ALK no traslocado”; (2) Annotation Type: provides the list of annotation tags
from which the user can select the annotation results to be highlighted in the upper
left division section. In here such tags are ALK, ECOG, EGFR, and etc.; and
(3) Click In Text to See Annotation detail: by clicking on the highlighted tokens in
the upper left division, the user can see the details of annotated concepts in this
section. Such details are begin, end and semantic categories of the concept.

• Structured relational database: A MySQL database, which contains the information
of the annotations. The database allows to perform analysis on the structured data
with more flexibility than XMI files.

3 Conclusion and Future Work

The vast amount of clinical data generated and the adaption of IT in health care
industry, have motivated the development of NLP systems in clinical domain. For an
NLP system to achieve a broad use, it must be capable of covering comprehensive
clinical information and demonstrating effectiveness for a practical application. Thus,
in this paper, we have described the development of specific case annotators for lung
cancer domain, using UMIA framework. These annotators can detect information about
tumor mutation status, stage of cancer and the PS from clinical text. Although, these
annotators have been developed general enough so that they can be used in other
oncological domains but for them to be usable in other languages, the translation of the
annotator’s pattern to the language is required.

This work is an on-going research, which needs further validations and develop-
ments. Such validations will go into assessment of annotation accuracy for already
developed annotators whereas the developments will involve the semantic enrichment
process for annotated medical concepts related to the lung cancer domain. Although,
the recognition of medical concepts at NE level is one of the fundamental tasks of NLP
but the judgment of clinical data cannot be understood solely at NE level. For example,
clinicians can mention EGFR metric in the text for two reasons: (1) requesting for an
EGFR test or (2) diagnoses of the cancer mutation status. To extract the patient’s
diagnosed mutation tumor status from clinical text, we need to have more semantic
than NE level. Therefore, semantic enrichment process needs a great attention.
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Abstract. Visualization of Gene Expression (GE) is a challenging task
since the number of genes and their associations are difficult to predict in
various set of biological studies. GE could be used to understand tissue-
gene-protein relationships. Currently, Heatmaps is the standard visual-
ization technique to depict GE data. However, Heatmaps only covers
the cluster of highly dense regions. It does not provide the Interaction,
Functional Annotation and pooled understanding from higher to lower
expression. In the present paper, we propose a graph-based technique -
based on color encoding from higher to lower expression map, along with
the functional annotation. This visualization technique is highly interac-
tive (HeatMaps are mainly static maps). The visualization system here
explains the association between overlapping genes with and without tis-
sues types. Traditional visualization techniques (viz-Heatmaps) generally
explain each of the association in distinct maps. For example, overlap-
ping genes and their interactions, based on co-expression and expression
cut off are three distinct Heatmaps. We demonstrate the usability using
ortholog study of GE and visualize GE using GExpressionMap. We fur-
ther compare and benchmark our approach with the existing visualiza-
tion techniques. It also reduces the task to cluster the expressed gene net-
works further to understand the over/under expression. Further, it pro-
vides the interaction based on co-expression network which itself creates
co-expression clusters. GExpressionMap provides a unique graph-based
visualization for GE data with their functional annotation and associated
interaction among the DEGs (Differentially Expressed Genes).

1 Introduction

RNA seq and microarray data generate DEGs with their associated expres-
sion value as RPKM counts. GE is primarily responsible for gene silencing and
enhancing control by transcription initiation [5]. These genes need to be inves-
tigated to dissect the role of GE in cancer, through the networks based on their
involvement. Understanding of genes could be achieved by the integration of GE
c© Springer Nature Switzerland AG 2019
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and network data to prioritize disease-associated genes [24]. GE data is crucial
to visualize, since the overall data is pattern driven where over/under expres-
sion drives the function of a gene. These functions could be understood provided
associated functional annotation and GO terms could be displayed along with
visualization. Secondly, most of the methods use Heatmaps to visualize GE, as
a static representation where each information, such as Gene-Gene association,
regulation and co-expression requires distinct visualization. To obtain interfer-
ence for concluding the overall process of a gene, manual interpretation of the
gene using distinct visualization becomes essential. Further, this retrieved knowl-
edge required to be annotated for understanding the mechanism and associated
cell cycle processes. We have demonstrated a graph-based method to visual-
ize GE data. Graph-based methods have an added advantage over Heatmaps
based visualization regarding GE, such as the basics of Heatmaps visualization
is to define the similarity among the group of genes to build a co-expression
network [15]. This tool also kept the basic requirement intact by keeping the
color annotation based expression visualization as in the case of Heatmaps. Here
reduction from darker to lighter color representation explains the higher to lower
expression of the genes. Along with this it also generates intermediate interac-
tion graph among transcripts or genes. The key advantage of such a mechanism
is to understand the gene association, cluster with a maximum number of dis-
ease association and identify the group of critical transcripts associated with the
disease or normal condition. One potential advantage could be in knockdown
studies where genes group based on expression level could be used for experi-
mental validation to understand the oncogenic properties of the gene. Another
advantage could be understood by the use-case presented in this paper where we
have demonstrated the relationship between the expression data of human and
mouse.

2 Background

Visualization of GE is key due to its functional relevance in cancer research
and other diseases. However, the development of visualization and providing
a scientific source such as a mathematical model, functional annotation and
associated biological process will make the task of data analytics more struc-
tured. The functional annotation will also help to map down other associated
biological events like gene fusion, CNV, Methylation to develop scientifically.
Since the GExpressionMap approach is mathematical model driven, integration
of these concepts to build data-driven discovery will be less cumbersome. The
current approaches in GE are Principle Component Analysis (PCA) plot and
Box plot in general. As demonstrated in Fig. 1 which explains the pros and cons
with three existing methods for GE visualization. The first method is the PCA
method where principal component analysis has to be performed on the list of
genes or transcripts. The outcome is usually being presented using M-A plot
[27]. Such plots are primarily useful when working on a limited set of genes,
as this approach radically decreases the density of visualization. Further, this
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visualization is chunky and adding a reference line could be challenging. When
working on the RNA seq data where each experiment returns approximately
50000 transcripts and in this case reduction of dimensionality becomes essen-
tial. Sometimes due to biased analysis, there are many more “variables” than
“observations”. Along with this, these types of diagrams are generated either
by using ‘R’ or ‘MATLAB’ which works great with smaller data sets. However,
with high throughput data, it creates several issues. Further, the key to any
biological outcome its functional annotation and understanding the pattern of
the outcome. It is tough to accommodate functional annotation with PCA plot
since data points are not so well distinguished. PCA plot is mostly static and
supports limited clustering. However, it does not support the functional cluster-
ing of genes and is tough to identify sharp data points. Sometimes it is tough
to distinguish two distinct clusters if they have a higher amount of overlaps.
As demonstrated in Fig. 1, another method associated with GE visualization is
Heatmaps based visualization. Heatmaps are called as intensity plot or matrix
plot, which includes dendrogram and extended Heatmaps as well [1]. As Fig. 1
explains, it is a tabular view of a collection of data points, where rows represent
genes, columns represent array experiments, and cells represent the measured
intensity value or ratio. In GE visualization, Heatmaps provide multi-hue color
maps for up- and down-regulation in combination with clustering to place similar
profiles next to each other. Other extended versions of these Heatmaps are den-
drogram, hierarchical clustering of genes or experiments, often combined with
Heatmaps to provide more information about the cluster structures. The criti-
cal issue with Heatmaps for GE are, though it provides cluster structure, it is
still far from the functional grouping of these clusters due to lack of integrated
annotation and GO terms. It also has issues, such as it only supports qualita-
tive interpretation possible due to color coding. It grows vertically with every
additional profile and grows horizontally with every additional sample. These
problems make the knowledge mining difficult for large-scale data sets, such as
RNA-seq GE data. Crucial third method to visualize GE data, as shown in
Fig. 1, is a one-dimensional box plot approach. Essentially this method is used
for a summary of distribution, comparison of several distributions and to see
the result of normalization in differentially expressed genes. This visualization
is vital to understand the sample-wise or gene-wise distribution. However, due
to its 1-D nature, it does not support the multiple data types represented on a
single plot. For example, for a single queried gene box can plot the cut-off for the
expression. However, it will not provide the entities associated with it, such as
overexpressed, underexpressed and not expressed genes. This type of plots are
mainly static and as explained in Fig. 1 any overlay-ed information, in this case,
mutated genes for EGFR. The data points are rich even for the normalized data
that it becomes tough to identify the participating entities with each gene.

3 Related Work

There are rich set of tools and web applications to visualize GE data and its
biological and functional associations. The most related tools for GE visual-
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Fig. 1. Motivational scenario to develop GExpressionMap for breast cancer data from
E-GEOD-29431 (Color figure online)

ization are M-A plot, Heatmaps, Scree Plot, Box Plot, Scatter Plot, Wiggle
Plot, Profile Plot (also known as Parallel Coordinate Plot), VA Enhanced Pro-
file Plots and Dendrogram. In general, Mayday [6], ClustVis [17], GENE-E1,
MISO [13] are some of the most commonly used tools which covers these plots
for GE. BiCluster [8] represents GE data by the hybrid approach of Heatmaps
and Parallel Coordinate Plots. These plots are interactive, and GE annotations
have been formalized with proper color annotations. However, this tool works on
Heatmaps, and with massive data points, clusters generated by this tool can only
help to infer the functionally enriched region. However, the role of each partic-
ipating member and their co-expressed expressions cannot be determined. The
unavailability of functional annotation and GO terms make it difficult to under-
stand the biological processed involved with each cluster thus the pattern of the
expression. INVEX [25] is again a Heatmaps based tool which deals with GE
and metabolomics datasets generated from clinical samples and associated meta-
data, such as phenotype, donor, gender, etc. It is a web-based tool where data
size has certain limitations. However, it has built-in support for gene/metabolite
annotation along with Heatmaps builder. The Heatmaps builder primarily works
on ‘R’ APIs. Though these tools have great potential due to inbuilt functional
annotation, lack of clustering, interactive selection of gene entities and support
for large-scale datasets provides further room for improvement. GeneXPress [20]
has been developed to improve the functional annotation to reduce the task of
post-processing after the obtained list of DEGs. It also contains an integrated
clustering algorithm to explore the various binding sites from DEGs. Multi-view
representation, which includes graph based interaction map for selected genes
and Heatmaps based visualization with functional annotation, makes it a most

1 http://www.broadinstitute.org/cancer/software/GENE-E/index.html.

http://www.broadinstitute.org/cancer/software/GENE-E/index.html
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relevant tool for GE based biological discovery with an integrated motif discov-
ery environment. However, a single source of functional annotation raises the
requirement for linked functional annotation. Again the graph visualization is
limited to selected genes wherein Heatmaps identification of exact data point
is a cumbersome task. GEPAT [23] is also a gene expression visualization tool
developed over the Heatmaps and focused on visualization of pathway associated
gene expression data. Integrated GO terms enrichment environment makes the
tool unique regarding understanding the mechanism of differentially expressed
genes. However, the functional annotation is mostly performed manually to have
the exact mapping of each transcript involved with a certain loop of biological
processed. Integrated cluster maker provides substantial support to the idea
of GExpressionMap. ArrayCluster [28] is a tool developed from GE datasets,
keeping in mind to resolve analytical and statistical problems associated with
data. The ideal co-expression based clustering method and functional annota-
tion of each cluster make it unique and provide a ground for GExpressionMap to
include co-expression based clustering of DEGs. However, it has limited support
to microarray data and makes it difficult to apply on larger gene sets gener-
ated from RNA Seq. Also, it is a Heatmaps based plotting, which makes data
point selection difficult. J-Express2 is again GE data analysis tool which contains
almost every type of plot. The inclusion of various plots makes visual analytics
from this tool robust. However, most of the plots generated from J-Express are
static, thus lacks the key feature to understand the in-depth analysis of each tool.
Integrated Gene set enrichment analysis (GSEA), Chromosome (DNA sequence)
mapping and analysis, Gaussian kernels and Cross-data class prediction are some
of the critical features, which makes this tool unique among others. Tang et al.
presented [22] is one of the most earlier interactive visualization tool developed
on the concept of ROI (Region of Interest) accommodated using scattered map.
Visualization is widely supported with mathematical modeling of GE data for
limited data points. This tool provides a strong foundation for GExpressionMap
where we have mathematically modeled gene expression for dense and large data
sets of transcripts.

4 Mathematical Model of GE and Visualization

It is essential to know the spectrum of visualization and behavior of visualizing
events. Mathematical modeling of both provides a stable visualization system.
Few attempts have been made earlier to model gene expression. Here we have
modeled GE based on our requirement where we have identified the up-regulated,
down-regulated and not expressed states for the genes and we have used it to
identify meaningful data points in the cluster have an accurate co-expression net-
work generated from GE data. GE data are a linear transcription model follows
a system of differential equations [3]. The basic understanding of the terms are
as follows; Gene Expression: Combination of genes code for proteins that are

2 http://jexpress.bioinfo.no/site/JexpressMain.php.

http://jexpress.bioinfo.no/site/JexpressMain.php
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essential for the development and functioning of a cell or organism. Transcript-
based co-expression network: Set of genes, proteins, small molecules, and
their mutual regulatory interactions.

The modeling could be understood by Fig. 2. As per the figure, the system
could be realized as

∂r

∂t
= f(p) − V r,

∂p

∂t
= Lr − Up (1)

where V,U = relativedegradation, L = Translation, r = concentration of
gene, p = concentration of protein.

To define the over, under and no expression, and stability of cluster based
on interaction network, let’s assume that, at given time point t, if the concen-
tration of mRNA is x1 and concentration of protein is p = x2, then this can be
generalized as a continuous function.

xi(t) ∈ R≥0 (2)

ẋi(t) = fi(x), 1 ≤ i ≤ n

Say x1 = mRNA concentration,

p = x2 = protein concentration

(3)

ẋ1 = κ1f(x2) − γ1x1, ẋ2 = κ2x1 − γ2x2

κ1, κ2 > 0 production rate, γ1, γ2 > 0 degradation rate
(4)

f(x2) = f(p) =
θn

θn + xn
2

f(p) =
θn

θn + pn

if θ > 0 explains genes are under expressed

else genes are over expressed

(5)

Assume ẋ = 0

ẋ1 = 0 : x1 =
κ1

γ1
f(x2) =

κ1

γ1
f(p)

same as

ẋ2 = 0 : x1 =
γ2
κ2

x2

x1 =
γ2
κ2

p

for x1 and x2 > 0, genes will not show expression

(6)

Another key extension of this model will be to understand the interaction
model from these under/over/non expressed genes. Lets assume that these inter-
action networks are continuous function and cluster building follows rate law,
then Eq. 1 can be generalized as;

xi = fi(x), where 1 ≤ i ≤ n

wherefi(x) = rate law for each interaction
(7)
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Fig. 2. Mathematical model to understand GE and gene interaction based clustering.

If translation happens with this gene then each cluster will follow a model
to take part in post translational modification (PTM)s, that can be understood
by,

pi = fi(p), where 1 ≤ i ≤ n (8)

∂r

∂t
= fi(p) − V r

Equation for rate of

change in interaction for mRNA

(9)

∂[fi(p)]
∂t

= Lr − Ufi(p)∫
Lr.dt = fi(p) −

∫
Ufi(p).dt

(10)

This equation explains the relevance of GE based clustering and the effect of
rate of change in expression. All the data points within this range of equation
will have an easy to manageable knowledge mining. This will help to define the
boundary and interpretation module from visualization.

5 Cancer Decision Networks: Integration, Model and
Query Processing

Visualization is working as a presentation model with a structured and dis-
tributed model underneath for processing, filtering and querying the data. In can-
cer genomics, if one gene regulated by more than one events, such as gene expres-
sion, CNV, and methylation, it is unlikely that retrieved regulation occurred by
chance. To realize the aspect of the multi-genomic event-based model, we have
constructed a knowledge graph called “Decision Networks (DN).” The DN
works on two-layer integration, where at first layer, we identify the linking param-
eters, such as Gene Symbol, CG IDs and Chr: Start-End. The detailed linked
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scenario is shown in Fig. 2 of [11]. However, at this level integration behaved more
like an enriched dataset. Instead of building a single integrated graph, we built
a virtually integrated Knowledge graph for DNs. We achieved this by federated
SPARQL query as mentioned in Listing 7 of our earlier work [11]. The second
layer of integration is essential regarding defining the rules to extract the bio-
logical insights from multi-omics integrated DNs. Some of the conventional rules
of filtering genes without significance to make visualization clinically actionable
are as follows.

(i) Gene Expression and Methylation are reciprocal to each other. Which means
if the gene is hyper-methylated it should be down-regulated.

(ii) A gene cannot be up- and down-regulated at the same time.
(iii) Functional annotation follows the central dogma of disease evolution where

expression is captured first and then mutation, CNV, and Methylation,
respectively.

(iv) Cancer is a heterogeneous disease, and any change in one genomic event is
not sufficient to understand the mechanism.

(v) Beta-value in Methylation data where negative value represents Hypo- and
a positive value represents Hyper- Methylation, respectively.

(vi) The CNV, the germline DNA for a given gene, can only be risk associated
it falls outside the range of USCS defined gene length.

(vii) CNV for each cancer type changes based on two parameters, namely cancer
are rare frequency and potentially confer high penetrance called as odds
ratios.

(vii) Any pathways represented by the change in CNV, GE and Methylation will
always be given a priority in studies and thus in visualization.

After filtering the data based on rules (i–viii), as mentioned above, the sys-
tems pre-process the data as shown in Fig. 3. Figure 3 shows the key instances of
input data, such as Gene Symbol, Chr, start, end. The Decision Network layer we
perform the integration and then visualize the filtered data. The result queried,
and the filtered result can also be exported for further analysis. The use case
was taken from E-GEOD-29431 - Identifying breast cancer biomarkers3. We have
used the same genes for visualization and in Fig. 1. Figure 1 shows the data types
used in the study on visualization with various techniques. Whereas Fig. 8 shows
the solution on same gene as Fig. 1.

6 Functional Annotation

Integrated functional annotation is one of the key advantages associated with
visual mining of GE data sets. We have used a semantic web approach to link
distinct data sets from COSMIC, TCGA and ICGC. In comparison with existing
data linking methods, our approach has linked data sets based on the semantics
within the data. For example, we have extracted CNV, GE, Mutation and DNA

3 https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-29431/samples/.

https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-29431/samples/
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Fig. 3. Data input output model for visualization

Methylation data from TCGA, COSMIC, and ICGC and linked them to have
enriched semantics, which in turn leads to having an improved coverage of the
genome for each genomics profile. Each of these genomic signatures has its dedi-
cated SPARQL endpoints. These SPARQL endpoints will be iteratively enriched
with other associated similar data types to have maximum coverage of genome
for each genomic profile. In the present paper, all differentially expressed genes
from use case annotated using GE data from our Linked functional annotation
platform [10].

Table 1. Genomics data statistics

No. Data Triples Subjects Predicates Objects Size (MB)

1 COSMIC GE 1184971624148121454 18 148240680 10000

2 COSMIC GM 83275111 3620658 23 9004153 1400

3 COSMIC CNV 8633104 863332 10 921690 122

4 COSMIC Methylation 170300300 8292057 22 603135 2800

5 TCGA-OV 81188714 10974200 15 4774584 3774

6 TCGA-CESC 3763470 627652 43 481227 49557

7 TCGA-UCEC 553271744 19233824 91 68370614 84687

8 TCGA-UCS 1120873 183602 36 188970 10018

9 KEGG 50197150 6533307 141 6792319 4302

10 REACTOME 12471494 2465218 237 4218300 957

11 GOA 28058541 5950074 36 6575678 5858

12 ICGC 577 M −− −− −− 39000

13 CNVD 1,552,025 194, 590 9 512, 307 71

Table 1 shows the overall statistics of RDFization of COSMIC, TCGA and
CNVD data and external (RDF) datasets used: rows 1–4 represent the number
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of triples and its size for COSMIC gene expression, gene mutation, CNV and
Methylation data sets, respectively. Rows 5–8 represent the number of triples,
and it is size for TCGA-OV, TCGA-CESC, TCGA-UCEC and TCGA-UCS
data, respectively. The RDFization statistics for CNVD data are shown in row
13. Rows 9–12 represents the statistics of external datasets (available in RDF
format), namely KEGG, REACTOME, GOA, and ICGC. To query data, we
have used an adapted version of SAFE [14], a federation engine to query data
from multiple endpoints in a policy-driven approach which may be a key element
from the user while the user is selecting his/her hypothesis from visualization
and unique functional annotation module based on the distributed concept in
genomics.

7 GExpressionMap

GExpressionMap has been built over a robust mathematical model of gene
expression which defines that GE is linear and having a graph-based visualization
for linear model provides the better visual representation of the events. In addi-
tion to visualization, we have built linked data based decision networks where
we have contributed TCGA-OV, TCGA-UCS, TCGA-UCSC and TCGA-CESC
(Methylation, CNV, Gene expression, and Complete Mutation) data along with
COSMIC (GE, CNV, GM, and Methylation) and CNVD extending our earlier
work [10–12]. These datasets will provide a platform for link identification and
federation and addition to Linked Open Data.

Fig. 4. The GExpressionMap main view where the left side represents the lower and
right side represents the higher gene expression (Color figure online)

GExpressionMap has been divided into four modules to identify critical chal-
lenges associated with GE data sets in biology. The first mode called as Expres-
sion mode talk about the conditional expression and track the changes in the
property of transcripts or genes based on the changes in the expression level and
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identify the role on non-expressed genes in various cell cycle processes. Another
mode called knockdown mode identifies the changes in various clusters repre-
senting a group or a biological process. This mode will also help to understand
the effect from a knockdown to knockout. Knockdown studies are essential to
solve various biological problems, such as a natural mechanism for silencing gene
expression, specific inhibition of the function of any chosen target gene to under-
stand the role in cancer and other diseases. Tracking these changes in the graph-
based on motif building or destructing and cluster changes provides a visual
impact to this biological discovery [18]. Another critical challenge while dealing
with the group of genes or transcripts is to understand the pattern or bias of the
network/data to understand the mechanism of the experiment. GExpression-
Map provides an integrated annotated genes with their functional annotation
and further cluster them based on their RPKM values means their expression
pattern. By this way, the experimenter will conclude that how reliable is a cleave
from a cluster what functional processes they are involved in and what can be
cumulative effect reported from validated and patient data sources based on
the linked functional annotation and GO annotations. This dimension of work is
called Annotation, Clustering and GO processes mode. It is always crucial
to find the strongest and weakest cluster based on matrices, such as the number
of overexpressed genes connected with a cluster, number of underexpressed genes
connected with a cluster or participation of individual gene in a cluster. On the
other hand, if critical genes, such as TP53, EGFR, BRCA, and other biomarker
is associated with large no of network or clusters can drive the progression in
the disease like cancer. However, the number of over and under-expressed genes
with this network will explain the functioning. This is how Interaction and
co-expression mode have revealed the crux of the network. The aerial view
of the expression map is depicted in Fig. 4. Details of each mode explained in
following subsections.

7.1 Expression Mode

Expression mode overlays the GE data either from microarray or RNA seq based
on RPKM count from lower to the higher expression. As explained in Fig. 4 red
color bar demonstrated the gene with lower expression value whereas the white
expression bar explains the value with higher expression value. The list of bubbles
is the genes are either highly or lowest expressed based on their expression value.
The expression scale in the bottom is the log scale which explains the range of
expression considered maximum to minimum as RPKM/FPKM values. As it can
be observed from Fig. 6 that bottom expression line annotated as D is being used
in such a way to have two-way side slider pointer. The major use of this approach
is to identify the most significant genes since the expression value from RNA seq
has a broader range mostly. The Value as mentioned in A explains about two
types of values annotated as OE -Overexpressed and UE-Under-expressed. The
value is constantly displayed as per the change from slider annotated on Fig. 6 as
B. The example of this has been shown as C where the for value 49848 expressed
of PSMD9 having been displayed. The overall impact of this mode would be to
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retain the ease of expression scale as in the case of Heatmaps, however covering
the broad spectrum of the gene with added functionalities.

7.2 Knockdown Mode

Knock-down studies play a key role in biological experiments to understand the
overall impact of a gene or mRNA. For example in cancer networks where if we
consider one GE network contains the expression interaction from normal and
adjacent normal called as normal sample expression network. Another network
could be the expression network obtained from cancer tissues. Now to understand
the behavior is important to understand the knockdown effect of most affected
genes. As GExpressionMap also provides bottleneck genes based on cluster bind-
ing and a number of the associated cluster with that gene, the strength of the
cluster. If a single gene has different expression level in both normal and cancer
network, it would be key to understand the impact of losing that gene and then
understand the overall pattern of the network. Especially cancer network can
get distorted after losing these bottleneck gene or highly expressed genes. A key
observation such as the presence of certain genes with higher cluster binding in
normal network however absence in cancer network can lead to key outcomes
in cancer studies. Figure 5 provides a snippet of one such case. As explained in
the figure knockdown of PSMD9 will affect two genes from higher expression
pole and two genes from a lower expression pole. Further, the cluster associated
with it and having lower expression will have loss of connectivity and will cause
insatiability in the network. This is a typical example of cancer progression and
loss of connectivity in the cancer networks.

Fig. 5. A bottleneck view to understanding the effect of expression change and associ-
ations

7.3 Interaction and Co-expression Mode

Dynamic changing property from normal to cancer networks reveals common
system-level properties and molecular properties of prognostic genes across can-
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cer types [26]. However current methods to generate co-expression network are
basically for microarray data since they have been defined based on probe ids.
This types of the network will not be able to cope-up to identify the changes
in the broader level in co-expression networks [9]. This paper builds the co-
expression network based on raw RPKM/FPKM values, or it can also accom-
modate expression value as log2 fold change values [16]. One of the key impacts
of building a co-expression network using these expression counts is to bring
similar associations or cell functions together after clustering. Usually in can-
cer networks, one of the major issues is to identify missing links and predict
the fill-ins for the missing links. Since the RPKM values are experiment spe-
cific becomes essential to track the change and loss of expression for same tissue
across different experiments. Building a co-expression network by this approach
will automatically define the causality of the network if changes are abrupt. If
a certain transcript is not at all expressed or lost the connectivity due to some
treatment in any of the control would be easy to track. Apart from this dif-
ferentially expressed genes could be easily extended to differentially expressed
pathways based on co-expression network. This could be one of the potential out-
comes. Figure 6 provides a glimpse of a co-expression network. One of the key
points in this visualization is that it highlights the high expression network and
keeps the less expressed network in light color annotations. Figure 6 clearly indi-
cates that cluster A is highly expressed than B,C,D among these co-expressed
networks.

Fig. 6. GExpressionMap leveling and interacting partner association to visually mine
functional annotations. (Color figure online)

7.4 Annotation, Clustering and GO Processes Mode

This mode of GExpressionMap involves the key features such as retrieval of
GO:ID for a bottleneck gene identified based on clustering. To reduce the com-
plexity in the visualization GExpressionMap have placed annotation based on
user request. As depicted in Fig. 6 where C indicates the bottleneck since holding
three expression cluster. Now if the user is interested in functional annotation of
this gene, they need to retrieve GO biological process and as mentioned in Fig. 4
as G clicking on this would provide a to an interface to obtain annotations as
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displayed in Fig. 7. As we click on G of Fig. 6 it takes to the a of Fig. 7 and user
need to enter the bottleneck gene obtained. Then interface queried a flat file for
annotations [4]. This will display Go Ids and other Ids associated with the input
query gene represented as b in Fig. 7. Once we have obtained the GO Ids we
have used gene ontology search engine obtained from4 and embedded with our
system. Then we query for obtained GO Id and outcome of some can be rep-
resented as d and e in Fig. 7. This way we have contributed a web application
with visualization to annotated the gene with associated expression visualization
and identification of bottleneck gene or protein. Another key is to identification
and understanding of clusters. One of such cluster based on our use case having
been shown in Fig. 8. The details of these clusters and associated methods will
be discussed in the Result section.

Fig. 7. The Go ontology and functional annotation for the human-mouse model use
case.

8 Case Study, Results and Discussion

To demonstrate the feasibility of the proposed approach in biology, we have
demonstrated a use-case from Monaco et al. [19]. This paper represents the com-
parative GE data between human and mouse. We have used GExpressedMap to
visualize this data and draw some of the key conclusions using visual represen-
tation. Based on the steps mentioned earlier, we have developed an expression
map where Fig. 8 represents one of the key clusters from this expression map.
As we can observe from the diagram, human genes A2M have a close expres-
sion concerning mouse genes such as Aanat, Aadac, Amap, Abat, Abca1, and
Aars. Here, the key observation is that this cluster also holds other clusters and
4 https://github.com/zweiein/pyGOsite.

https://github.com/zweiein/pyGOsite
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becomes bottleneck genes in human-mouse expression network. On the other
hand, the only A2M human gene is underexpressed, and has a strong correla-
tion with underexpressed genes in mouse (such as Aanat, Aadac, Amap, Abat,
Abca1 ) as well as an overexpressed gene in mouse (such as Aars). One of the key
outcomes of this cluster could be to identify detectable expression differences
between species or individuals. The expression could logically divided into selec-
tively neutral (or nearly neutral) differences and those underlying observable
phenotypic [7]. To dig in further to identify the fact we have extracted the GO
ids for each of the genes involved in the cluster. Where A2M highly associated
with GO terms such as GO:0003824, GO:0004867, GO:0010951 and GO:0070062.
Where, GO:0003824 is responsible for catalytic activity and has close corre-
lation with GO:0003674, GO:0004867 associated with serine-type endopepti-
dase inhibitor activity and has close association with GO:0004866:endopeptidase
inhibitor activity, whereas GO:0010951 and GO:0070062 are associated with
negative regulation of endopeptidase activity and extracellular exosome respec-
tively. To establish an association between human-mouse cluster, we have used
the MGD [2] database, as the current version of GExpressionMap only sup-
ports homospaiens. The annotations for Aanat, Aadac, Amap, Abat, Abca1 are
a protein-coding gene which has the relation of A2M. These genes Aanat(cellular
response to cAMP circadian rhythm, melatonin biosynthetic process, N-terminal
protein amino acid acetylation), Aadac (carboxylic ester hydrolase activity,
deacetylase activity, endoplasmic reticulum, endoplasmic reticulum membrane),
Amap, Abat (aging, behavioral response to cocaine, catalytic activity, copu-
lation), Abca1 (anion transmembrane transporter activity, apolipoprotein A-
I binding, apolipoprotein A-I-mediated signaling pathway, apolipoprotein A-I
receptor activity). Where the only highly expressed gene in mouse Aars(alanine-
tRNA ligase activity, cellular response to unfolded protein, skin development,
tRNA modification) having relation with A2M. Based on the biological pro-
cess, this cluster represents Membranoproliferative Glomerulonephritis, X-Linked
Tangier Disease; TGD and A2M are also involved with X-Linked Tangier Dis-
ease. In Summary, the visual identification of cluster, mapping of GE for each
associated gene with the cluster, identification of expression level and functional
annotation provides a key solution to how orthologs data with GExpressionMap
have helped to mine the gene association to predict possible disease based on
expression data. The proposed case study and results have just provided initial
insight into a hidden treasure that can dig down visually using GExpression-
Map. The expression extended for time series co-expression data where expres-
sion change happens on a certain time interval. For instance effect of ZIKA virus
[21] where expression of top genes visualized for 12, 48 and 96 h.
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Fig. 8. Cluster representing diseasome for human-mouse

9 Conclusions

GExpressionMap is a key mechanism developed for visualization of gene expres-
sion data which is highly user-friendly, interactive, modular and visually infor-
mative. Integrated functional annotation, clustering, and co-expression network
based on scientifically selected color annotations make it highly informative,
usable and associative towards biological discovery based on genes expression.
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comparison of human and mouse gene co-expression networks reveals conservation
and divergence at the tissue, pathway and disease levels. BMC Evol. Biol. 15(1),
259 (2015)

20. Segal, E., et al.: GeneXPress: a visualization and statistical analysis tool for gene
expression and sequence data. In: Proceedings of the 11th International Conference
on Intelligent Systems for Molecular Biology (ISMB), vol. 18 (2004)

21. Singh, P.K., et al.: Determination of system level alterations in host transcriptome
due to Zika virus (ZIKV) Infection in retinal pigment epithelium. Sci. Rep. 8(1),
11209 (2018)

22. Tang, C., Zhang, L., Zhang, A.: Interactive visualization and analysis for gene
expression data. In: Proceedings of the 35th Annual Hawaii International Confer-
ence on System Sciences, HICSS 2002, p. 9-pp. IEEE (2002)

23. Weniger, M., Engelmann, J.C., Schultz, J.: Genome Expression Pathway Analysis
Tool-analysis and visualization of microarray gene expression data under genomic,
proteomic and metabolic context. BMC Bioinform. 8(1), 179 (2007)

24. Wu, C., Zhu, J., Zhang, X.: Integrating gene expression and protein-protein inter-
action network to prioritize cancer-associated genes. BMC Bioinform. 13(1), 182
(2012)

25. Xia, J., Lyle, N.H., Mayer, M.L., Pena, O.M., Hancock, R.E.: INVEX-a web-based
tool for integrative visualization of expression data. Bioinformatics 29(24), 3232–
3234 (2013)

https://doi.org/10.1007/978-3-319-57741-8_6


Linked Data Based Multi-omics Integration and Visualization 181

26. Yang, Y., Han, L., Yuan, Y., Li, J., Hei, N., Liang, H.: Gene co-expression network
analysis reveals common system-level properties of prognostic genes across cancer
types. Nat. Commun. 5, 3231 (2014)

27. Yeung, K.Y., Ruzzo, W.L.: Principal component analysis for clustering gene expres-
sion data. Bioinformatics 17(9), 763–774 (2001)

28. Yoshida, R., Higuchi, T., Imoto, S., Miyano, S.: ArrayCluster: an analytic tool
for clustering, data visualization and module finder on gene expression profiles.
Bioinformatics 22(12), 1538–1539 (2006)



The Hannover Medical School Enterprise
Clinical Research Data Warehouse:

5 Years of Experience

Svetlana Gerbel1(&) , Hans Laser1 , Norman Schönfeld1 ,
and Tobias Rassmann2

1 Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
gerbel.svetlana@mh-hannover.de

2 Volkswagen Financial Services AG,
Gifhorner Straße 57, 38112 Brunswick, Germany

Abstract. The reuse of routine healthcare data for research purposes is chal-
lenging not only because of the volume of the data but also because of the
variety of clinical information systems. A data warehouse based approach
enables researchers to use heterogeneous data sets by consolidating and
aggregating data from various sources. This paper presents the Enterprise
Clinical Research Data Warehouse (ECRDW) of the Hannover Medical School
(MHH). ECRDW has been developed since 2011 using the Microsoft SQL
Server Data Warehouse and Business Intelligence technology and operates since
2013 as an interdisciplinary platform for research relevant questions at the
MHH. ECRDW incrementally integrates heterogeneous data sources and cur-
rently contains (as of 8/2018) data of more than 2,1 million distinct patients with
more than 500 million single data points (diagnoses, lab results, vital signs,
medical records, as well as metadata to linked data, e.g. biospecimen or images).

Keywords: Clinical Research Data Warehouse � Secondary use of clinical data
Data integration � BI � Data and process quality � Text mining
KDD � System architecture

1 Introduction

1.1 Data Warehouse and Secondary Use of Clinical Data

The secondary use of information means using the information outside the original
purpose of use, e.g. using routine health care data for quality assurance or scientific
purposes. The reuse of electronic health record (EHR) data for research purposes has
become an important issue in the national debate [1, 2].

A typical large university hospital is characterized by a heterogeneous IT system
landscape with clinical, laboratory and radiology information systems and further
specialized information systems [3]. The IT system landscape of an university hospital
usually includes systems for documentation and processing of data that are generated
during the provision of health services (e.g. diagnostics and clinical findings) or the
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administration of patient data (e.g. master data). The totality of these systems is referred
to as the Hospital Information System (HIS).

The Hannover Medical School (Medizinische Hochschule Hannover, MHH) is no
exception in this context. In addition to the clinical and laboratory information system
(HIS and LIS), the range of IT solutions used at the MHH also includes a number of
individual solutions in the field of clinical research based on a wide variety of widely
used database management systems (from Oracle, Microsoft, FileMaker etc.) as well as
an unmanageable number of table-based documentation systems.

A universal approach for central data integration and standardization within an
organization with heterogeneous databases is to build a data warehouse system based
on database component consisting of consolidated and aggregated data from different
sources. Data warehouse technology allows users to run queries, compile reports,
generate analysis, retrieve data in a consistent format and reduce the load on the
operative systems.

Already Teasdale et al. [4] and later Bonney [5] made clear that the reuse of clinical
(primary) data is facilitated by Business Intelligence on the basis of a so-called
“Research Patient Data Repository” or Clinical Data Warehouse. The use of Business
Intelligence creates the basis for further extraction of empirical relationships and
knowledge discovery in databases (KDD), like in the field of data science.

The relief of operative data processing and application systems is another central
argument for the use of data warehouse technology. This makes it possible to execute
requests for clinical data on a dedicated repository rather than at the expense of the
operative systems [6].

In the clinical-university sector in Germany, there is a series of established data
warehouse solutions for secondary data use. They are commonly described as Clinical
Data Warehouses (CDW) [2]. In the IT environment of a hospital, the response times of
operative systems (e.g. clinical workplace applications) are a particularly critical factor.
Accessing the operational systems with real-time queries would increase the likelihood
of non-availability. In addition to these drivers, the following typical application sce-
narios for secondary use [2, 3, 7, 8] have formed:

– Patient screening for clinical trials based on inclusion and exclusion criteria
– Decision support through comparison of diagnosis, therapy and prognosis of similar

patients
– Epidemiological evaluations by examining the development of frequencies of

clinical parameters (e.g. risk factors, diagnoses, demographic data)
– Validation of data in registers and research databases and their data enrichment with

the aim of quality improvement

In the review of Strasser [3] from 2010, the IT systems of 32 German university
hospitals were evaluated with regard to the components of the HIS and the available
data warehouse solutions for consolidating routine clinical data for secondary use of
data. The results of this survey correspond to a survey conducted by the CIO-UK
(Chief Information Officers - University hospitals) in 2011 in order to identify existing
IT infrastructures and technology stacks in Germany that solve the challenges of data
integration and data management for secondary data use with regard to Clinical Data
Warehouse technology. The CIO-UK represents interests from the 35 university
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hospitals in Germany. In summary, it can be said that there is no universal solution to
implement a data warehouse technology for secondary use in Germany. There are
numerous different implementations of CDWs in the community that use open source
based frameworks such as i2b21 (incl. tranSMART) or proprietary development
solutions with popular DBMSs (for example, Microsoft SQL Server, Oracle and
PostgreSQL) [8, 9]. Generally speaking, currently i2b2 and OMOP2-based approaches
appear to be the most widely used worldwide [10].

1.2 Background

MHH is one of the most efficient medical higher education institutions in Germany. As
an university hospital for supramaximal care with 1,520 beds, the MHH treats patients
who are severely ill. They benefit from the fact that the medical progress developed at
the university is quickly available to the patients. Every year more than 60,000 people
are treated in more than 70 clinics, institutes and research facilities; in the outpatient
area there are around 450,000 treatment contacts per year [11].

Centralisation of the operational systems at the MHH is ensured by the Centre for
Information Management (ZIMt). The ZIMt is responsible for the provision of the
operational systems and ensures maintenance, support as well as the adaptation of the
IT systems to the needs of the MHH. The ZIMt operates a class TIER 3 computer
centre [12] at the MHH, i.e. a primary system availability of 99.982%. In addition, the
MHH departments are certified according to DIN EN ISO 9001:2015. Thus, the highest
demands are placed on the processes (SOPs) and offer patients as well as employees the
assurance that they can rely on compliance with defined quality standards.

The Enterprise Clinical Research Data Warehouse (ECRDW) is an interdisciplinary
data integration and analysis platform for research-relevant issues that has been
available enterprise-wide since July 2013 [7]. The provision and support of the
ECRDW as a central service at the MHH is carried out by the Division for Educational
and Scientific IT systems of the ZIMt.

2 Materials and Methods

2.1 Data Sources and Interfaces

The HIS of the MHH is operated by the ZIMt and consists of more than 50 sub-
components (e.g. Electronic Medical Record System (EMS), Laboratory Information
Systems (LIS) and Radiology Information Systems (RIS)), which exchange EHR data
via a communication server. The ECRDW integrates the EHR data of the HIS via
existing HL7 interfaces, which are provided via a communication server, as well as via
separate communication paths for systems that are not or no longer connected to the
communication server (legacy systems).

1 https://www.i2b2.org/, https://www.i2b2.org/webclient/
2 https://www.ohdsi.org/data-standardization/
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2.2 Selection Process and Evaluation of an Appropriate Data Warehouse
Development Platform

The selection of a data warehouse technology was carried out between 2010 and 2011
by a working group of ZIMt and 12 other MHH departments (a total of 24 participants
from the fields of IT, clinical, biometrics and clinical trial). The multi-stage selection
process was divided into: product presentations, software implementations, workshops
with suppliers, (weighted) evaluation of the tools by the working group members using
the developed catalogue of requirements. The decisive selection criteria (inclusion and
exclusion criteria) were as follows:

– Complete solution (data integration and analysis tools)
– Independence from the product vendor (autonomous development possible)
– Powerful data integration tool (ETL)
– Active community (knowledge bases, know how, support)
– Suitable license model

A total of five software vendors were evaluated. At the end of a 10-month selection
process, the working group opted for Microsoft SQL Server BI data warehouse tech-
nology based on the selection criteria. The trend described in the Magic Quadrant of
Business Intelligence Platforms 2011 by the Gartner Group market research report
complemented our evaluation [13].

2.3 Development Architecture and Data Warehouse Approach

The development in the ECRDW is based on a three-tier-deployment-architecture:
development, test and production environment (Fig. 1). The development environment
consists of a database server and a dedicated server for version control in order to
develop ETL processes and store the development artifacts in a version-secured
manner. Systems of the development and test environment are virtualized to more
dynamically distribute and economize resources. The test environment reflects the
structure of the production environment in a virtual environment and is thus divided
into a database server, analysis server and reporting server. Development statuses are
first delivered and tested in the test environment. After successful test runs, the
development artifacts (releases) are rolled out to the production environment (rollout)
and tested again. The production environment therefore consists of a database server,
analysis server, and reporting server. For performance reasons, the database server in
the production environment is not virtualized.

The ECRDW is based on the Microsoft SQL Server architecture. The SQL Server
serves as database management system and core data warehouse repository. The
additional service SQL Server Integration Services (SSIS) is used for data integration
via the ETL (Extract, Transform, Load) process and for developing and providing
Business Intelligence (BI) solutions SQL Server Analysis Services (SSAS). The data
modelling is done in concepts in a relational data model and is based on the Inmon
architecture [14]. This means that data is first merged into a consolidated layer, which
forms the basis for departmental views of the data sets (known as data marts). This
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approach makes it possible to create a comprehensive respective global scheme for the
data captured at the MHH.

Since the primary data is collected for clinical purposes and for billing, a pre-
processing is necessary, e.g. to reduce the heterogeneity of the system-specific data
models and to check data integrity and consistency. In addition, clinical data in a HIS is
exchanged typically among the primary systems via HL7. Logically, this leads to
redundant storage of information. Thus, master data transmitted via the HL7 message
type ADT (Admission, Discharge, Transmission) to each primary system is duplicated.
For each single fact from the clinical documentation there is a primary leading oper-
ative system at the MHH. To avoid possible ambiguities or redundancies (requirement
for entity matching) in data integration, the leading operative system is identified in
each integration project. Information from other primary systems of the HIS that
consume the primary data of another system is not integrated. If two primary systems
represent a similar concept (e.g. laboratory findings), the semantic integration of both
systems into the same concept of the ECRDW takes place. If duplicates of the infor-
mation are produced, the primary operative system for this information is identified
again. Deduplication thus takes place within the ETL process. Primary data from the
various data sets of the operative systems are incrementally integrated into a central
repository using data warehouse technology. Depending on the possibilities of the HIS
subsystem, this process takes place daily or weekly in an incremental loading process
via ETL into the ECRDW core repository. After consolidation and standardization in
modelled standard concepts (e.g. historized master data), central use cases can be
served by providing targeted data selections.

2.4 Methods to Ensure Data Protection

In Germany, the evaluation of primary data arising in the context of treatment is
regulated by aspects of data protection at EU, federal and state level. In addition there
are the legal regulations (SGB V, SGB X, infection protection, cancer early detection
and cancer register, hospital laws etc.). This special feature is reflected in the possi-
bilities of using these data for research purposes (secondary data use) and inevitably

Fig. 1. The ECRDW three-tier-deployment-architecture
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leads to a limitation of the use cases for such data. In secondary data analysis, the right
to informational self-determination of the individual must always be protected and
weighed against the right to freedom of science and research [15].

With the entry into force of the EU Basic Data Protection Regulation (GDPR) (EU
2016/679) on 25 May 2018, the processing of genetic, biometric and health data is
prohibited under Article 9(1) of the GDPR, unless the person has explicitly consented
to the use of the data. The current Lower Saxony Data Protection Act (§ 13 NDSG)
states that a person must have given consent to the use of personal data for scientific
purposes. A data protection and access concept must therefore be defined in order to
comply with data protection regulations. The implementation is described in 3.4.

2.5 ECRDW Use Cases

Typical application scenarios of a clinical data warehouse [2, 7, 8] were implemented at
the MHH in three central application cases.

Screening: By means of a so-called anonymous cohort identification, researchers have
the possibility to define a cohort via a data warehouse on the basis of inclusion and
exclusion criteria. The criteria are used to calculate quantities for e.g. patients, cases
and laboratory values on the basis of the EHR data and to be able to provide a
statement on the feasibility of the research question. A screening for clinical studies is
possible analogously and can contribute to the reduction of the sometimes time-
consuming research on EHR data [16–19].

Epidemiological Study: Similar to screening in a clinical study, data collection can also
be very time-consuming when performing a retrospective data analysis (epidemiological
study). Medical findings are sometimes only available as PDF documents in the central
archive for patient files after completion of treatment. Through the use of a data ware-
house, a wealth of information about the entirety of the patients of a hospital, the clinical
pictures and the context-specific final results of the therapy (e.g. condition at discharge)
can be provided, which are available in the various application systems of a HIS.

Validation and Data Enrichment: Research and registry databases often suffer from
manual data entry (so-called “media discontinuity”). As a result, errors, typos,
incomplete or erroneous data collection are a challenge that many such data collections
have to overcome [1]. The use of data warehouse technology can make a decisive
contribution to correcting errors in existing information. In addition, data from a reg-
ister can be completed by adding additional data from the database of a data warehouse
(e.g. risk factors from EHR data) [20].

2.6 Information Quality Scheme: Process Chain, Artefact, Relativity
(PAR)

In order to improve the information quality in the analysis of large amounts of data, the
criteria for mapping the information quality of Wang and Strong [21] were examined
and modified for transferability to a clinical research data warehouse.
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The result was a modified three-dimensional information quality scheme (Process
chain, Artefact, Relativity, PAR) with a total of 26 criteria. During the development of
the ECRDW, a subset of information quality criteria of the PAR scheme which are
assigned to the sub-process of processing in the process chain dimension and by the
definition of templates has been implemented. The aspect of reuse was the key point of
the process chain dimension. These are 12 information quality criteria: standardization,
source traceability, loading process traceability, processing status, reference integrity,
uniform presentation, data cleansing scope, degree of historization, no-redundancy,
performance and restartability [22].

3 Results

3.1 Content of the ECRDW

The MHH ECRDW has been continuously integrating data from MHH’s primary
systems into a relational, error-corrected and plausibility-tested data model since it
went live in 2013 (see Table 1).

As of July 2018, the ECRDW repository contains data from more than 2 million
patients, more than 11 million diagnoses and more than 6 million cases with approx-
imately 500 million data points.

The ECRDW currently collects administrative information such as demographic
data, movement data, visit data, diagnoses (ICD-10GM), risk factors and severity of the
disease from the SAP i.s.h. system. The EMS (SAP i.s.h.med) is used to load reports,
findings and discharge letters. Metadata for biosamples is provided from the
MySamples and CentraXX systems. Intensive care data originates from a legacy sys-
tem (COPRA) as well as from the operative ICU system (m.life). The ECRDW
receives information on findings from the laboratory via LIS (OPUS::L). Metadata on
radiological examinations (including findings) are provided via a RIS (GE Centricity).
Cardiovascular data, findings and values of cardiological echocardiographies as well as
cardiac catheter examinations originate from another RIS (IntelliSpace CardioVascu-
lar). Depending on the source system, different times are therefore possible for the start
of digital recording. The earliest capture times are shown in Table 2 analog to Table 1.

Table 1. Content of the ECRDW (as of July 2018)

Domains (millions) 07/2013 07/2014 07/2015 07/2016 07/2017 07/2018

Biospecimen – – – – 0,01 0,04
Demographic data 1,97 2,12 2,28 2,47 2,64 2,93
ICD diagnosis – 6,65 7,75 8,92 9,88 11,92
Intensive care – – – – – 228,23
Laboratory findings – 167,50 186,96 208,42 236,24 287,56
Movement data – – – – 14,89 16,98
Radiological findings – – – – – 0,97
Risk factors – – – – 0,03 0,05
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3.2 Projects Implemented with ECRDW

The ECRDW of the MHH is productive since 07/2013 and provides data on research-
relevant issues. In the period from 07/2013 to 07/2018, 48 project inquiries from 39
departments of the MHH were registered. Three project requests are annually recurring
data deliveries (e.g. register implementation). Table 3 shows an overview of the reg-
istered projects in the period from 2013 to 2018 for the three central use cases
(screening, epidemiological study, validation and data enrichment).

In some projects, text analysis methods were used to obtain additional features from
full-text documents, such as radiological findings and discharge letters, and to make
them available with data from the ECRDW’s structured databases.

Researchers are able to use innovative methods, such as medical data mining, to
identify new hypotheses about the amount of data due to the very large amount of data
per project.

From a total of 33 MHH clinics, 16 clinics (48%) submitted an evaluation request
to the ECRDW in 2018 (by July). In some projects, in addition to providing data, a
screening was carried out in advance to check the feasibility of the project request. In
relation to the provision of data for epidemiological study requests (31 projects) and
data enrichment (16 projects), however, only in 9 projects a screening for patient data
has been carried out.

Table 2. Earliest time of recording for each domain

Domains Minimal date (month/year)

Biospecimen 10/2012
Demographic data 09/1986
ICD diagnosis 01/2007
Intensive care 05/2005
Laboratory findings 06/2000
Movement data 04/2008
Radiological findings 12/2013
Risk factors 07/2007

Table 3. Number and nature of ECRDW-based research projects (2014–2018)

Year #
Projects

#
Departments

Screening Epidemiological
study

Validation and data
enrichment

2014 4 4 3 1
2015 4 4 1 3
2016 13 9 2 8 5
2017 8 6 2 6 2
2018 19 16 5 13 5
Total 48 39 9 31 16
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3.3 Data and Process Quality

In order to ensure data and process quality, the process chain dimension “processing”
from the developed PAR scheme was completely implemented in the ECRDW. The
following criteria, among others, were taken into account:

Traceability of the Data Origin (Data Linage/Data Provenance): Additional columns
(load date and update date) in the tables as reference to the source system of every
record were added.

Traceability of the Loading Process: Errors that occur during load jobs can be
assigned to an unique error table referencing additional tables providing information
about job definition and run. Incorrect records remain in a staging table for each entity
and are deleted only after successful loading in the core data warehouse.

Restart Capability: Integration jobs can be repeated at any time, since the data is only
deleted from the staging area when the record is successful load in the data warehouse
and the update of the data warehouse only takes place when the ETL process is
complete and the temporary target tables are merged into the real tables.

Standardization of the Development of ETL Pipelines and Modeling: For the data
integration we use three templates (Staging, Historization and Update) for the ETL
processes, which are already predefined and only need to be adapted.

Referential Integrity: The artificially generated primary and foreign keys are based on
adequate hash function.

Redundancy-Free: Duplicates are recognized between loading processes and within a
loading process using a hash value. The script for managing duplicates is integrated
into the standardized templates.

Performance: To optimize performance, lookup tables are created before the start of
the loading processes (using the hash function for reference checks) and then truncated
again.

Data Cleansing Scope: An own developed model for error codes is used which
classifies errors at attribute level (or finer) and monitors them in an error reporting
system for each subject area.

Time Variance: The changes of data over time (historization) are tracked via the
concept of a temporal database.

Standardized reports generated on the basis of the error records are held in the
staging area. These are automatically distributed to the ECRDW team from the source
system (BI) so that the cause of the errors can be identified and eliminated. For the
long-term analysis, the errors are classified as persistent and BI procedures are applied
to these error tables to identify error constellations and proactively avoid them in the
sense of datamining.
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3.4 Data Protection and Security

In coordination with the data protection officer of the MHH, a data protection concept
was developed that defines processes for data use and access. The data protection
concept provides the storage of health data in pseudonymised form. The
pseudonymisation of health data is a necessary step towards compliance with data
protection in order to protect patients from the identification of their person. Instead of
patient identifying data (IDAT/PID), pseudonyms (surrogate keys) are used. The
pseudonyms are administered and assigned in the ECRDW.

The patient’s consent to the use of his/her data for scientific purposes is registered
with the MHH treatment contract when the patient is admitted. The current data pro-
tection concept stipulates that the patient’s consent must be given for any data pro-
cessing for scientific purposes. This is taken into account in every step of a data
provision process.

To ensure data security, all ECRDW systems are backed up daily via a central
backup concept. Security authentication and authentisation of ECRDW users takes
place via the central MHH Active Directory. A transaction log archives all queries and
executing users.

4 Discussion and Conclusion

The use of a data warehouse technology as the basis for the implementation of mul-
tidisciplinary data integration and analysis platform results in some significant
advantages for clinical research, among others:

– Relief for the operative health care systems
– Support in the planning and implementation of studies
– Data enrichment of research databases with quality-assured information from cen-

tral systems (e.g. laboratory systems, administrative systems, OR systems)
– Integration and storage of historic data repositories which are not usable for IT

(legacy systems)

In addition, the research repository with consolidated data from different domains
(HIS and research systems), offers a more complete data set and thus a basis for
investigating relationships and potential patterns between disease progression and
measures. The using of medical data mining methods based on the extensive and
retrospective data of an ECRDW can serve as a valuable resource for the generation of
innovative knowledge in all areas of medicine [23].

The development of a translational data integration and analysis platform is how-
ever a long-term process. Although the MHH ECRDW project was initiated in 2010
(by a core development team of two persons), it was made available for all health
researchers in June 2013. The selection of the appropriate data warehouse development
platform, data modelling, a development of an integration strategy, data protection,
security and use and access concepts and finally testing, validation and maintenance
phases are the time consuming but needed phases of an iterative development process.
Another very important issue is the involvement of experts from different fields
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(computer scientists, physicians, statisticians, privacy protect officer, management etc.)
in different phases of development.

Semantic modelling of clinical concepts as well as analysis of unstructured data and
OMICs are further key issue. At the MHH, additional tools for text analysis based on
Natural Language Processing are currently being developed for the scientific use of
findings that are only available in (semi-)structured form (such as medical letters and
findings).

The FAIR Data Principles published in 2016 [24] define fundamentals that research
data and research data infrastructures must meet in order to ensure sustainability and
reusability. As part of a research infrastructure, the ECRDW has been respecting these
principles in some aspects since 2013:

– Findable: data and metadata machine-readable and searchable through central
database management system

– Accessible: use and access concept; data provision in standard formats or standard
interfaces (CSV, ODBC, HTTPS)

– Interoperable: structuring of data by standard vocabularies, classification systems
(ICD, LOINC, OPS, etc.); metadata on semantics between data sets

– Reusable: metadata can be exported machine-readable

Due to the actuality of the FAIR Data Principles, the future development of the
ECRDW should also take into account these principles. The developed PAR scheme
complements this approach.

Even in the age of knowledge graphs, data integration remains amajor challenge [25].
With the increasing number of source systems, complexity has always increased. Chal-
lenges in data preparation and harmonization still apply to new big data technologies as
well. We expect that the use of a data warehouse-based solution as an already consoli-
dated and plausibility checked source will probably lead to a simplification by merging
with further data sources (e.g. when consolidating with web sources) [26].

Intense exchange and collaborations within the national projects and facilities is
required to take advantage of synergy effects. The involvement of ECRDW is an
important factor of the sustainability concept within the Data Integration Centres of the
Medical Informatics Initiative [27] and further national and international projects (e.g.
German Biobank Alliance [28] and EHR4CR [29]).
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Abstract. Nowadays personalized medicine is of increasing importance,
especially in the field of cancer therapy. More and more hospitals are
conducting molecular tumor boards (MTBs) bringing together experts
from various fields with different expertise to discuss patient cases taking
into account genetic information from sequencing data. Yet, there is still
a lack of tools to support collaborative exploration and decision making.
To fill this gap, we developed a novel user interface to support MTBs. A
task analysis of MTBs currently held at German hospitals showed, that
there is less collaborative exploration during the meeting as expected,
with a large part of the information search being done during the MTB
preparation. Thus we designed our interface to support both situations,
a single user preparing the MTB and the presentation of information and
group discussion during the meeting.

Keywords: Personalized Medicine · Cancer therapy · Multitouch
Multiuser

1 Introduction

Personalized Medicine is a rapidly growing area in healthcare which fundamen-
tally changes the way patients are treated. This is especially true for cancer ther-
apy where more and more hospitals conduct molecular tumor boards (MTBs)
bringing together experts from various clinical fields to jointly discuss individ-
ual patient cases [1]. Yet the exploration and discussion of the relevant data
and information poses a tremendous challenge in this setting: Because of the
experts’ distinct background expertise and time constraints, all data and infor-
mation need to be presented in a concise form that is easy to grasp and supports
the consensual elaboration of sound treatment recommendations.

We approach this need by developing a software solution which focuses
on a novel, intuitive graphical user interface that integrates and visualizes
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patient data from several clinical information, laboratory and imaging systems,
etc., together with additional external information from cancer-research sys-
tems (e.g. cBioPortal), genomic and pathway databases (e.g. KEGG), as well as
(bio)medical literature (e.g. PubMed). A task analysis of MTBs was conducted
and clinical experts were repeatedly shown a current version of a prototypical
interface to integrate their feedback into the development process.

2 Methods

To detect the actual needs towards such a software, we initially visited five Ger-
man MTBs where we used a questionnaire and interviews to gather information
about specific requirements of each MTB, management and workflows, perceived
weaknesses and room for improvements, as well as ideas on what functionalities
an ideal software tool should provide (for comparison see [2]).

The interviews were conducted with the MTB organizers to gain insight
into their workflow during preparation of the board, the resources they use for
research and the overall procedure of the meeting itself. In the questionnaires1

we first asked about personal information, like the participant’s role in the MTB
or his/her expertise and then about the procedure of the MTB and included
questions, like whether therapy successes/failures and comparable cases are dis-
cussed or if there is a demand for online research during the MTB. Participants
could answer on a scale ranging from not at all or never to yes or always.

The resulting requirement analysis formed the basis of our development pro-
cess which is now accompanied by regular visits to our local MTB to discuss
whether our software indeed reflects the experts’ specific needs and wishes. This
allowed us to evaluate our interface design from the very beginning of the devel-
opment and to adjust it to the actual needs of the MTB.

Our initial (naive) belief at project start was that during the MTB a group
of experts would come together to jointly discuss and evaluate and data patient
cases in depth on the spot. Hence our first prototype employed a large (84 inches)
multi-touch screen table allowing the MTB participants to collaboratively and
interactively explore all information sources and arrange the different kinds of
documents, like clinical/patient data, radiologic images, research papers, etc. on
the screen [3,4]. Our initial thought was that such a table would greatly improve
collaborative decision making and reduce the cognitive load for the participants.

We implemented an initial prototype prior to completing the task analysis
to show the capabilities of such an interface to some clinical experts. This was
important, as based on their daily routine using standard clinical software solu-
tions, they might lack the knowledge about the possibilities of novel multi-user
interfaces. This also gave us important feedback of the actual needs for a MTB
application. It is important to note, that clinical experts who were given the
questionnaire were not shown the prototype prior to answering the questions.

1 Questionnaire: https://bit.ly/persons-questionnaire.

https://bit.ly/persons-questionnaire
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3 Results

The interviews and our participation in the MTBs revealed that the given time
constraints only allow for a relatively short discussion of the individual patient
cases. As a consequence, there is no room for any interactive, collaborative
research or data exploration and so basically all research needs to be done before.

We collected questionnaires from 23 participants. Although this seems a
rather small number, it is important to note that at the time of our analysis
only 5 hospitals in Germany were conducting MTBs with 15 to 25 participants
per MTB. Thus our questionnaire was handed out to about 100 MTB partici-
pants making up for a feedback of almost 25%. After assigning each verbal scale
numerical values from 1 = never/not at all to 4 = yes/always, our results showed
that participants see only little demand for online research during the MTB (µ
= 2.304) which is mostly due to the mentioned time constraints. Also therapy
successes/failures (µ = 2.047) or comparable cases (µ = 2.273) are rather seldom
discussed yet participants mentioned this as highly desirable (µ = 3.667).

Based on these findings, i.e. time constraints during the MTB and large
amount of work to be done in the preparation, we changed our initial idea of
having one tool, that only supports the group situation in the MTB and we
thus divided the interface into two parts: One for the clinical experts to use on
their usual computers to perform their explorative research when preparing a
MTB and for the MTB moderator to then integrate and (visually) condense the
results into a succinct presentation, and the second one to provide the means to
present this during the MTB on any touch-enabled screen dynamically.

The user interface focuses on the presentation layer, performs no data pro-
cessing at all and is realized in HTML and JavaScript using Electron. The advan-
tage of electron is not only its platform independence and high portability, it also
features a very important element: webviews. One of the key aspects of our inter-
face, as described in detail below, is the possibility to display different sources
of information (webpages, documents, visualizations) for free arrangement and
comparison, in a single- or multi-user scenario. While this is not achievable with
pure HTML and javascript using iframes, electron webviews offer all the func-
tionality needed for such an interface.

The interface is then securely connected by an encrypted REST interface with
the back-end services located within the secured hospital network. Those services
– implemented in Java with Spring Boot and its sub-frameworks – perform the
actual data fetching, processing and integration from the source systems and
provide further means for data protection and pseudonymization.

Figure 1 shows an example screenshot of the whole interface together with
close-ups of the important elements. The development of the layout was guided
by the following design principles derived from our task analysis: (1) Minimize
the number of actions and interface elements to improve speed and simplicity
of the workflow, (2) support memory offloading and information interpretation
(e.g., by free arrangements and annotations of resources, simultaneous visibility
of all information, near-hand processing of information [5]), and (3) use space in
an optimal way to leave as much space as possible for visual data exploration.
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Fig. 1. Example screenshots of the prototypical interface: (a) complete interface, (b)
collection of saved layout configurations with respective date, (c) webview containing
multiple resources for comparison, (d) close-up of the gene sequencing data visualization
(with activating and inactivating variants depicted in green and red respectively). For
a more detailed overview of the interface (see footnote 4)

When opening a new case for the first time the user is shown a summary of
the patient’s clinical history including diagnosis, previous therapy, questions for
the MTB and the potentially therapy relevant genetic variants. This summary is
generated automatically and replaces the PowerPoint slides that were manually
created by the MTB organizer in a time consuming process of copying text from
the clinical information system or typing in by hand.

The interface itself is divided into three different areas. In the first area on
the right side there is an overview of the therapy relevant variants (Fig. 1d), that
can be filtered by allele frequency and sorted by various criteria. A color code
indicates activating or inactivating variants. To get information for each variant,
the current workflow requires the user to open up multiple browser tabs and
manually search within the respective databases. To compare different sources
of information for a single variant or even between multiple variants the user has
to constantly switch between different tabs or applications. Our interface allows
to open multiple sources of information (Fig. 1c) for one variant with a single
click in the second area of the interface, the large exploration area that takes
up most of the screen-space (Fig. 1a). From this overview single information
sources can be opened in separate floating windows and which can be arranged
and resized freely for exploration and comparison within that area. The user can
also open information sources for different variants in parallel to compare them.

Creating the presentation for the MTB in the current preparation workflow
requires the user to copy and paste all relevant information manually into a sep-
arate power point slide. In contrast, our interface allows to save an arrangement
of information sources as a fixed layout without having to switch the applica-
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tion. Such a layout can later be restored for presentation during the meeting and
due to the interactive properties of the HTML content these restored informa-
tion sources can be used for further research and exploration as needed. Saved
layouts are shown as thumbnails in a third area at the bottom (Fig. 1b).2

4 Conclusion and Outlook

We analyzed the workflow of MTBs currently held at German hospitals and
developed a novel interface to support the preparation and the presentation for
the meeting. In a next step, this interface will be evaluated in a clinical working
environment and usability studies will be conducted. Also, additional features,
deemed as valuable by clinical experts will be implemented as well, like the
possibility to search for comparable local cases or the possibility for annotating
documents and data to better document the decision making process.
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Abstract. We present a prototype of a semantic version of Morph�D�Base that
is currently in development. It is based on SOCCOMAS, a semantic web
content management system that is controlled by a set of source code ontologies
together with a Java-based middleware and our Semantic Programming
Ontology (SPrO). The middleware interprets the descriptions contained in the
source code ontologies and dynamically decodes and executes them to produce
the prototype. The Morph�D�Base prototype in turn allows the generation of
instance-based semantic morphological descriptions through completing input
forms. User input to these forms generates data in form of semantic graphs. We
show with examples how the prototype has been described in the source code
ontologies using SPrO and demonstrate live how the middleware interprets these
descriptions and dynamically produces the application.

Keywords: Semantic programming � Phenotypic data � Linked open data
Semantic Morph�D�Base � Semantic annotation � Morphological data

1 Introduction

Ontologies are dictionaries that consist of labeled classes with definitions that are
formulated in a highly formalized canonical syntax and standardized format (e.g. Web
Ontology Language, OWL, serialized to the Resource Description Framework, RDF),
with the goal to yield a lexical or taxonomic framework for knowledge representation
[1]. Ontologies are often formulated in OWL and thus can be documented in the form
of class-based semantic graphs1. Ontologies contain commonly accepted domain
knowledge about specific kinds of entities and their properties and relations in form of
classes defined through universal statements [2, 3], with each class possessing its own

1 A semantic graph is a network of RDF/OWL-based triple statements, in which a given Uniform
Resource Identifier (URI) takes the Object position in one triple and the Subject position in another
triple. This way, several triples can be connected to form a semantic graph. Because information
about individuals can be represented as a semantic graph as well, we distinguish class- and instance-
based semantic graphs.
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URI, through which it can be identified and individually referenced. Ontologies in this
sense do not include statements about individual entities. Statements about individual
entities are assertional statements. In an assertional statement individuals can be
referred to through their own URI and their class affiliation can be specified by ref-
erencing this class’ URI. If assertional statements are grounded in empirical knowledge
that is based on observation and experimentation, we refer to them as empirical data.
Empirical data can be formulated in OWL and thus documented in the form of
instance-based semantic graphs. As a consequence, not every OWL file and not every
semantic graph is an ontology—it is an ontology only if it limits itself to express
universal statements about kinds of entities [3]. A knowledge base, in contrast, consists
of a set of ontology classes that are populated with individuals and assertional state-
ments about these individuals [3] (i.e. data). Ontologies do not represent knowledge
bases, but are part of them and provide a means to structure them [4].

By providing a URI for each of their class resources, ontologies can be used to
substantially increase semantic transparency and computer-parsability for all kinds of
information. Respective URIs are commonly used for semantically enriching docu-
ments and annotating database contents to improve integration and interoperability of
data, which is much needed in the age of Big Data, Linked-Open-Data and eScience
[5–7]. Ontologies and their URIs also play an important role in making data maximally
findable, accessible, interoperable and reusable (see FAIR guiding principle [8]) and in
establishing eScience-compliant (meta)data standards [6, 7, 9–12].

An increasing number of organizations and institutions recognize the need to
comply with the FAIR guiding principle and seek for technical solutions for efficiently
managing the accessibility, usability, disseminability, integrity and security of their
data. Content management systems in form of knowledge bases (i.e. Semantic web
content management systems, S-WCMS) have the potential to provide a solution that
meets both the requirements of organizations and institutions as well as of eScience.

Despite the obvious potential of ontologies and semantic technology in data and
knowledge management, their application is usually restricted to annotating existing
data in relational database applications. Although tuple stores that store information as
RDF triple statements are capable of handling large volumes of triples and although
semantic technology facilitates detailed data retrieval of RDF/OWL-based data through
SPARQL [13] endpoints and inferencing over OWL-based data through semantic
reasoners, not many content management systems have implemented ontologies to
their full potential. We believe that this discrepancy can be explained by a lack of
application development frameworks that are well integrated with RDF/OWL.

2 Semantic Programming

2.1 Semantic Programming Ontology (SPrO)

With SPrO [14] we extend the application of ontologies from providing URIs for
annotating (meta)data and documenting data in form of semantic graphs stored and
managed in a S-WCMS to using an ontology for software programming. We use SPrO
like a programming language with which one can control a S-WCMS by describing it
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within a corresponding source code ontology. SPrO defines ontology resources in the
form of classes, individuals and properties that the accompanying Java-based mid-
dleware interprets as a set of commands and variables. The commands are defined as
annotation properties. Specific values and variable-carrying resources are defined as
ontology individuals. Additional object properties are used to specify relations between
resources, and data properties are used for specifying numerical values or literals for
resources that describe the S-WCMS.

SPrO can be used to describe all features, workflows, database processes and
functionalities of a particular S-WCMS, including its graphical user interface (GUI).
The descriptions at their turn are contained in one or several source code ontologies in
form of annotations of ontology classes and ontology individuals. Each annotation
consists of a command followed by a value, index or resource and can be extended by
axiom annotations and, in case of individuals, also property annotations. Contrary to
other development frameworks that utilize ontologies (e.g. [15, 16]), you can use the
resources of SPrO to describe a particular content management application within its
corresponding source code ontology. The application is thus self-describing. The
accompanying Java-based middleware decodes the descriptions as declarative speci-
fications of the content management application, interprets them and dynamically
executes them on the fly. We call this approach semantic programming.

2.2 Semantic Ontology-Controlled Application for
Web Content Management Systems (SOCCOMAS)

SOCCOMAS [17] is a semantic web content management system that utilizes SPrO
and its associated middleware. It consists of a basic source code ontology for SOC-
COMAS itself (SC-Basic), which contains descriptions of features and workflows
typically required by a S-WCMS, such as user administration with login and signup
forms, user registration and login process, session management and user profiles, but
also publication life-cycle processes for data entries (i.e. collections of assertional
statements referring to a particular entity of a specific kind, like for instance a speci-
men) and automatic procedures for tracking user contributions, provenance and logging
change-history for each editing step of any given version of a data entry. All data and
metadata are recorded in RDF following established (meta)data standards using terms
and their corresponding URIs from existing ontologies. Each S-WCMS run by SOC-
COMAS provides human-readable output in form of HTML and CSS for browser
requests and access to a SPARQL endpoint for machine-readable service requests.
Moreover, it assigns a DOI to each published data entry and data entries are published
under a creative commons license. When a data entry is published, it becomes openly
and freely accessible through the Web. Hence, all data published by a S-WCMS run by
SOCCOMAS reaches the five star rank of Tim Berners-Lee’s rating system for Linked
Open Data [18].

The descriptions of the features, processes, data views, HTML templates for input
forms, specifications of input control and overall behavior of each input field of a
particular S-WCMS are contained in its accompanying source code ontology, which is
specifically customized to the needs of that particular S-WCMS. These descriptions
also include specifications of the underlying data scheme that determines how user
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input triggers the generation of data-scheme-compliant triple statements and where
these triples must be saved in the Jena tuple store in terms of named graph2 and
workspace (i.e. directory). For instance the morphological data repository semantic
Morph�D�Base has its own source code ontology for its morphological description
module (SC-MDB-MD [20]) that is specifically customized to the needs of semantic
Morph�D�Base [19] (Fig. 1).

This way, the developers of semantic Morph�D�Base can use the general func-
tionality that comes with SC-Basic and add upon that the features specifically required
for semantic Morph�D�Base by describing them in SC-MDB-MD using the commands,
values and variable-carrying resources from SPrO. After semantic Morph�D�Base goes
online, its developers can still describe new input fields in SC-MDB-MD or new types
of data entries in respective additional source code ontologies and therewith update
semantic Morph�D�Base without having to program in other layers.

The application descriptions contained in SC-Basic and SC-MDB-MD organize the
Jena tuple store into different workspaces, which at their turn are organized into dif-
ferent named graphs, each of which belongs to a particular class of named graphs. This
enables differentially storing data belonging to a specific entry or version of an entry
into different named graphs, which in turn allows for flexible and meaningful frag-
mentation of data and flexible definition of different data views.

2.3 Semantic Morph�D�Base as a Use-Case

Morphological data drive much of the research in life sciences [21, 22], but are usually
still published as morphological descriptions in form of unstructured texts, which are
not machine-parsable and often hidden behind a pay-wall. This not only impedes the
overall findability and accessibility of morphological data. Due to the immanent
semantic ambiguity of morphological terminology, researchers who are not experts of
the described taxon will have substantial problems comprehending and interpreting the
morphological descriptions (see Linguistic Problem of Morphology [23]). This
semantic ambiguity substantially limits the interoperability and reusability of mor-
phological data, with the consequence that morphological data usually do not comply
with the FAIR guiding principles [8].

Semantic Morph�D�Base [19] enables users to generate highly standardized and
formalized morphological descriptions in the form of assertional statements represented
as instance-based semantic graphs. The main organizational backbone of a morpho-
logical description is a partonomy of all the anatomical parts and their sub-parts of the
specimen the user wants to describe. Each such part possesses its own URI and is
indicated to be an instance of a specific ontology class. Semantic Morph�D�Base allows
reference to ontology classes from all anatomy ontologies available at BioPortal [24].
Parts can be further described (i) semantically through defined input forms, often
referencing specific ontology classes from PATO [25], resulting in an instance-based

2 A named graph identifies a set of triple statements by adding the URI of the named graph to each
triple belonging to this named graph, thus turning the triple into a quad. The Jena tuple store can
handle such quadruples. The use of named graphs enables partitioning data in an RDF store.
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semantic graph that we call a Semantic Instance Anatomy [26, 27], (ii) as semantically
enriched free text, and (iii) through images with specified regions of interest which can
be semantically annotated. All this information is stored in the tuple store and can be
accessed through a web-based interface and a SPARQL endpoint. The Semantic
Instance Anatomy graph is meaningfully fragmented into a sophisticated scheme of
named graph resources, which additionally supports subsequent data retrieval and data
analyses.

Because semantic Morph�D�Base is run by SOCCOMAS, all description entries not
only possess their own unique URI, but also receive their own DOI when they are
published and are freely and openly accessible through the Web. All data and metadata
are stored as RDF triples in a Jena tuple store and can be searched using a SPARQL
endpoint. Instances and classes referenced in these triples have their own globally
unique and persistent identifiers and are findable through the endpoint. Both metadata
as well as the descriptions themselves reference resources of well established ontolo-
gies, which substantially increases their interoperability and reusability. As a conse-
quence, data and metadata in semantic Morph�D�Base comply with the FAIR
principles.

Link to a live-demo of semantic Morph�D�Base: https://proto.morphdbase.de/

Fig. 1. Overall workflow of semantic Morph�D�Base [19] run by SOCCOMAS. Left: Jena tuple
store containing the data of semantic Morph�D�Base as well as (i) the Semantic Programming
Ontology (SPrO), which contains the commands, subcommands and variables used for
describing semantic Morph�D�Base, (ii) the source code ontology for SOCCOMAS (SC-Basic),
which contains the descriptions of general workflows and features that can be used by any S-
WCMS, and (iii) the particular source code ontology for the morphological description module of
semantic Morph�D�Base (SC-MDB-MD), which has been individually customized to contain the
description of all features that are special to semantic Morph�D�Base. Middle: the Java-based
middleware. Right: the frontend based on the JavaScript framework AngularJS with HTML and
CSS output for browser requests and access to a SPARQL endpoint for machine requests.
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Abstract. Alzheimer’s disease (AD) pathophysiology is still imperfectly
understood and current paradigms have not led to curative outcome. Omics
technologies offer great promises for improving our understanding and gener-
ating new hypotheses. However, integration and interpretation of such data pose
major challenges, calling for adequate knowledge models. AlzPathway is a
disease map that gives a detailed and broad account of AD pathophysiology.
However, AlzPathway lacks formalism, which can lead to ambiguity and mis-
interpretation. Ontologies are an adequate framework to overcome this limitation,
through their axiomatic definitions and logical reasoning properties. We intro-
duce the AD Map Ontology (ADMO), an ontological upper model based on
systems biology terms. We then propose to convert AlzPathway into an ontology
and to integrate it into ADMO. We demonstrate that it allows one to deal with
issues related to redundancy, naming, consistency, process classification and
pathway relationships. Further, it opens opportunities to expand the model using
elements from other resources, such as generic pathways from Reactome or
clinical features contained in the ADO (AD Ontology). A version of ADMO is
freely available at http://bioportal.bioontology.org/ontologies/ADMO.

Keywords: Alzheimer’s disease � Ontology � Disease map
Model consistency

1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder of the brain that
was first described in 1906. The intense activity of AD research constantly generates
new data and knowledge on AD-specific molecular and cellular processes (a Medline
search for “Alzheimer disease” results in over 135,000 articles, as of June 30, 2018).
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However, the complexity of AD pathophysiology is still imperfectly understood [1].
These 110 years of efforts have essentially resulted in one dominant paradigm to
underline the causes of AD: the amyloid cascade [2]. Therapeutics targeting this
pathway failed to lead to curative outcome for humans, strongly suggesting the need for
alternative hypotheses about AD etiology.

Since the turn of the century, omics technologies lead to a more comprehensive
characterization of biological systems and diseases. The production of omics data in
AD research opens promising perspectives to identify alternatives to the amyloid
cascade paradigm. The current challenge is thus to integrate these data in an appropriate
way, in order to propose new hypotheses and models about AD pathophysiology.

Systems medicine disease maps (DM) provide curated and integrated knowledge on
pathophysiology of disorders at the molecular and phenotypic levels, which is adapted to
the diversity of omics measurements [3, 4, 5]. Based on a systemic approach, they
describe all biological physical entities (i.e. gene, mRNA, protein, metabolite) in their
different states (e.g. phosphorylated protein, molecular complex, degradedmolecule) and
the interactions between them [6]. Their relations are represented as biochemical reac-
tions organized in pathways, which encode the transition between participants’ states as
processes. AlzPathway is a DM developed for AD [3]. It describes 1,347 biological
physical entities, 129 phenotypes, 1,070 biochemical reactions and 26 pathways.

The information contained in DM is stored in syntactic formats developed for
systems biology: the Systems Biology Graphical Notation (SBGN) [7] and the Systems
Biology Markup Language (SBML) [8]. While syntactic formats are able to index
information, they are not expressive enough to define explicit relationships and formal
descriptions, leading to possible ambiguities and misinterpretations. For AlzPathway,
this defect in expressiveness results in the lack of formalism and thus of: (a) hierarchy
and disjunction between species (e.g. between “Protein” and “Truncated Protein” or
between “Protein” and “RNA”, respectively), (b) formal definition of entities (such as
phenotypes), (c) formal relationships between reactions and pathways (that are missing
or are managed as cell compartments), (d) uniformity of entities’ naming (e.g. com-
plexes that are labelled by their molecular components or by a common name) and
(e) consistency between reactions and their participants (e.g. translation of genes
instead of transcripts).

Compared to syntactic formats, the Web Ontology Language (OWL), a semantic
format used in ontologies, has higher expressiveness [9] and was designed to support
integration. It is thus a good candidate to overcome the previous limitations.

An ontology is an explicit specification of a set of concepts and their relationships
represented in a knowledge graph in semantic format. Ontologies provide a formal
naming and definition of the types (i.e. the classes), properties, and interrelationships
between entities that exist for a particular domain. Moreover, knowledge and data
managed by an ontology benefit from its logical semantics and axiomatic properties (e.g.
subsumption, disjunction, cardinality), which supports automatic control of consistency,
automated enrichment of knowledge properties and complex query abilities [10].

The Alzheimer’s Disease Ontology (ADO) [11] is the first ontology specific to the
AD domain. ADO organizes information describing clinical, experimental and
molecular features in OWL format. However, the description of the biological systems
of ADO is less specific than that of AlzPathway.
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Considering that (1) semantic formats can embed syntactic information, (2) DM
provide an integrative view adapted to omics data management and (3) an ontological
model is appropriate to finely manage data, the conversion of AlzPathway into a formal
ontology would bring several assets, including an efficient integration of biomedical
data for AD research, interconnection with ADO and an increased satisfiability of the
resources.

We propose the Alzheimer Disease Map Ontology (ADMO), an ontological upper
model able to embed the AlzPathway DM. Section 2 is devoted to the description of
the ADMO model. In Sect. 3, we describe a method to convert AlzPathway in OWL
and how ADMO can manage the converted AlzPathway and automatically enhance its
formalism. Section 4 presents elements of discussion and perspectives.

2 Ontological Upper Model: Alzheimer Disease Map
Ontology

The initial definition of an ontological model aims to design a knowledge graph that
will drive its content. In a formal ontology, the relationships are not only links between
classes, but also constraints that are inherited by all their descendants (subclasses).
Thus, the choices of axioms that support high level classes and their properties are key
elements for the utility of the model.

The Systems Biology Ontology (SBO) [12] is a terminology that provides a set of
classes commonly used to index information in SBML format. These classes con-
ceptualize biological entities at an adequate level of genericity and accuracy that
supports a wide coverage with few classes and enough discrimination. We selected a
set of 54 SBO terms from “process” or “material entity” for reactions and molecules as
a first resource of subclasses of processes and participants, respectively. The modified
Edinburg Pathway Notation (mEPN) [13] is another syntactic format based on systems
approach. Its components provide a refined set of molecular states that complete the
SBO class set. Following class selection from SBO and mEPN, we designed a class
hierarchy between them. We systematically added disjointness constraints between the
generic sibling subclasses of participants in order to ensure that process participants
belong to only one set (e.g. a gene cannot be a protein and reciprocally). We did not
apply the same rule to the processes’ subclasses as a reaction may refer to different
processes (e.g. a transfer is an addition and a removal).

Properties consistent with a systems approach (i.e. part_of, component_of, com-
ponent_process_of, has_participant, has_input, has_output, has_active_participant,
derives_from and their respective inverse properties) were defined from the upper-level
Relation Ontology (RO) [14]. Then, we formally defined our set of classes with these
properties and cardinalities to link processes and participants with description logic in
SHIQ expressivity (e.g. a transcription has at least one gene as input and has at least
one mRNA as output; a protein complex formation has at least two proteins as input
and has at least one protein complex as output).
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The design of the ADMO upper ontological model based on SBO, mEPN, RO and
personal addition resulted in 140 classes (42 processes’ subclasses and 83 participants
subclasses) and 11 properties formally defined by 188 logical axioms in description
logic (Fig. 1). This model is based on a simple pattern as our knowledge graph
involves only three types of properties: (1) the is_a (subclass_of) standard property,
(2) the has_part standard property and its sub-properties has_component and
has_component_process and (3) the has_participant property and its sub-properties
has_input, has_output and has_active_participant.

3 AlzPathway Conversion and Integration into ADMO

AlzPathway elements were extracted and stored in a structured table using home-made
Python scripts. In this table, each biological entity was indexed by one of the high-level
participants’ subclasses of ADMO and all processes were in correspondence with their
participants. The table also contains class annotations such as the AlzPathway identifier
(ID), and IDs from other knowledge bases such as UniProt [15] for participants and
KEGG [16] for processes. The table is structured to integrate component information
for multiplex entities (e.g. protein complex) and location information for the process
(e.g. cell type or cell part). The table was then manually curated as described below.

Fig. 1. Alzheimer disease map ontology model design. Classes were extracted from the Systems
Biology Ontology (SBO) and the modified Edinburg Pathway Notation (mEPN) into Protégé.
Classes were hierarchized as subclasses of process (A) or participant (B). Using properties from
the Relation Ontology (RO), classes were formally defined in description logic, as illustrated in
the case of transcription (C) and protein complex formation (D) processes.
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In AlzPathway, native and modified proteins (e.g. phosphorylated or activated) may
have the same label and same Id. In order to specify these different states, we added a suffix
to modified protein labels (e.g. “_P” or “_a” for phosphorylated or activated, respectively).

In AlzPathway, phenotypes are participants. But several of them are named with a
process name, pathway label or molecule type (e.g. microglial activation, apoptosis or
cytokines, respectively). In order to deal with these ambiguities, 26 phenotypes were
reclassified as molecules (e.g. cytokine) or cellular components (e.g. membrane) and 14
names that referred to processes or pathways were changed into processes’ participant
names (e.g. apoptosis became apoptotic signal). In addition, 5 phenotypes that were
named with a relevant pathway name (e.g. apoptosis) were added to the initial set of the
26 AlzPathway’s pathways.

AlzPathway only describes a subset of genes, mRNA and proteins. As omics
technology can capture data at the genome, transcriptome or proteome levels, we added
missing information in order to complete some correspondences between genes and
gene products. This resulted in the addition of 406 genes, 415 mRNA and 194 proteins
and protein complex states.

Then, using the ontology editor Protégé, the content of the structured table was
imported into ADMO using the Protégé Cellfie plugin. Entities information were
integrated as subclasses of ADMO participants classes. During the integration, we also
added a new property has_template (sub-property of derives_from) to formally link a
gene to its related mRNA and a mRNA to its related protein. Reactions were integrated
as independent subclasses of the “process” class. Then, automated reasoning was used
to classify them as subclasses of the ADMO upper model process classes depending on
their formal definition (see Fig. 2a*). The 1,065 inferred subclass_of axioms corre-
sponding to this refined classification of processes were then edited. During their
import, process classes from AlzPathway were formally linked to their respective
location through the RO property: occurs_in.

While AlzPathway does not formally link pathways and their related biochemical
reactions, pathways were manually imported. For each pathway, a class “reaction
involved in pathway x” was created and defined both as “reaction that has_participant
the molecules of interest in x” and “component_process_of pathway x”. For example,
the class “reaction involved in WNT signaling pathway” has_participant “WNT” and is
a component_process_of “WNT signaling pathway”. Then, using automated reasoning,
all reactions having participants involved in pathway x were classified as subclasses of
“component_process_of pathway x” classes and were linked to the pathway with the
component_process_of property by subsumption. For example, “SFRP-WNT associa-
tion” is automatically classified as subclass of “reaction involved in WNT signaling
pathway” (see Fig. 2b*) and inherits from its properties component_ process_of “WNT
signaling pathway” (see Fig. 2b**). The 355 inferred subclass_of axioms corresponding
to reactions involved in one of the 22 pathways were then edited.
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As a result, ADMO embeds AlzPathway in a consistent network containing 2,132
classes (2,175 disjoint participants, including 88 phenotypes or signals, 1,038 disjoint
processes and 22 pathways) in relation with 10,964 logical axioms before and 12,373
logical axioms after automated reasoning, respectively. Specific efforts were dedicated
to the design of classes hierarchy and formal definition with description logic axioms,
leading to explicit relations between processes and biological entities. These axioms
were inherited by classes imported from AlzPathway, resulting in the formal and
precise description of the elements of AD pathophysiology. Thus, following automated
reasoning, only 21 out of 643 AlzPathway’s reactions generically classified as “tran-
sition” or “unknown transition” remained unaffected to a specific process of the ADMO
upper model, such as metabolic reaction, phosphorylation or activation. Moreover, mis-
affected processes were consistently affected to a specific process (e.g. translation
instead of transcription). In addition, 355 reactions were formally defined as subprocess
of pathways of interest.

The conversion of AlzPathway also benefits from the ADMO simple pattern of
relationships (Fig. 3) in which new properties were added: the derives_from property
that links a modified protein to its native form, the has_template property that links a
native gene product to its mRNA and gene, and the occurs_in property that links a
process to its cellular location.

Fig. 2. Example of automated reasoning on Protégé. Asserted axioms are in uncoloured lines
and inferred axioms are highlighted in yellow. Following automated reasoning, SFRP-WNT
heterodimer association is classified as subclass of “protein complex formation” (a*) and of
“reaction involved in WNT signaling pathway” classes (b*), thus it inherits of the
component_process_of “WNT_signaling pathway” property (b**).
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4 Discussion

We proposed the ADMO ontological model in order to manage the conversion and
integration of AlzPathway in OWL format. By converting AlzPathway into an OWL
ontology, we increased its formalism. All entities are now formally defined and
interconnected within a consistent network. While AlzPathway contained several
ambiguities, our efforts on formalism at a semantic level for phenotypes and description
logic in ADMO classes allowed us to solve inconsistencies. Moreover, the combination
of SBO and mEPN provided a more precise specification of processes and biological
entity states within the system compared to SBML or SBGN, which was beneficial for
the specification of AlzPathway reactions following its import into ADMO.

Unlike DM, ontologies are not adapted for graphical visualization but present a
higher flexibility to integrate new elements in the knowledge graph, as we did by
adding 865 genes and mRNA. Moreover, during the conversion step, AlzPathway’s
internal IDs were retained as class annotations, allowing interoperability between the
initial and converted AlzPathway. Taking advantage of the knowledge graph and its
semantic links, the ID information are retrievable from a derived molecule to its native
form following the derives_from or has_component properties that link each of these
classes.

Furthermore, the increased formalism requires to assert a participant as subclass of
the most representative class and thus, clarifies the status of the entities. In several

Fig. 3. Alzheimer disease map ontology (ADMO) pattern (A) and application to AlzPathway
(B). AlzPathway classes (B; illustrated for the SFRP-WNT association process ant its
participants) are now subclasses of ADMO classes (A). Each class of AlzPathway may be
instantiated by the corresponding entities as individuals. Then, entities can be related to different
objects in an RDF schema such as patients and experiments, or more specifically to values such
as SNP for genes, relative expression for mRNA, and concentration for proteins.
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standard bioinformatics knowledge resources (e.g. UnitProt [15], KEGG [16]), a same
ID refers to a gene or a protein and in fine to a set of information, such as gene,
interaction, regulation and post translation modification (PTM), which are thus not
specifically discriminated. However, current omics technologies are able to generate
data focused on specific elements of the systems (gene mutation, relative gene
expression, protein concentration…). This is underexploited by standard resources.
Based on DM approaches, we provided an ontology that (a) represents the complexity
of a system such as AD pathophysiology and (b) is designed to specifically integrate
each type of omics data as an instance of the explicit corresponding class.

The next possible step is to instantiate the model with biomedical omics data. To
this end, the Resource Description Framework (RDF) semantic format is appropriate as
it was specifically designed for representing a knowledge graph as a set of triples
containing directed edges (semantic predicates). Different RDF schemas were already
developed in the field of molecular biology (BioPax [17]) or more specifically for AD
biomedical research (neuroRDF [18]). The Global Data Sharing in Alzheimer Disease
Research initiative [19] is also a relevant resource to help find appropriate predicates to
enrich RDF schemas and refine subject information (age, gender, clinical visit…).
Depending on the need of a given study, users may design RDF schemas with their
own predicates of interest. Then, this RDF schema can be integrated in our ontology by
adding data as instances of its corresponding specific classes (Fig. 3B). Therefore,
instantiation opens perspectives for complex querying, both richer and more precise
than indexing.

DM are based on systems biology approaches, allowing one to take each part of the
system into consideration. Our ontology goes one step further by formally defining the
different elements of the system and linking them with the biochemical reaction and
pathway levels. Here, we relied on AlzPathway, but additional resources could be used,
such as Reactome [4] which provides a wide range of generic curated human bio-
chemical reactions and pathways. Our ADMO upper ontological model provides an
interesting framework to embed generic resources and thus harmonize AlzPathway and
those resources. By converting and integrating AlzPathway in OWL format, the
resulting ontology is ready to be connected with ADO and its clinical knowledge
description. Owing to its specificity on biochemical reactions, an interoperable and
formal version of AlzPathway should be a relevant complement to ADO. This offers
new avenues for increasing the scale of representation of AD pathophysiology in our
framework. In the same way, the genericity of processes and participants described in
the ADMO upper model opens the perspective to harmonize specific DM from different
neurodegenerative disorders such as the Parkinson’s disease map [5] and others.
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