
A Combinatorial Testing Framework
for Intuitionistic Propositional

Theorem Provers

Paul Tarau(B)

Department of Computer Science and Engineering,
University of North Texas, Denton, USA

paul.tarau@unt.edu

Abstract. Proving a theorem in intuitionistic propositional logic, with
implication as its single connective, is known as one of the simplest
to state PSPACE-complete problem. At the same time, via the Curry-
Howard isomorphism, it is instrumental to find lambda terms that may
inhabit a given type.

However, as hundreds of papers witness it, all starting with Gentzen’s
LJ calculus, conceptual simplicity has not come in this case with com-
parable computational counterparts. Implementing such theorem provers
faces challenges related not only to soundness and completeness but also
too termination and scalability problems.

In search for an efficient but minimalist theorem prover, on the two
sides of the Curry-Howard isomorphism, we design a combinatorial test-
ing framework using types inferred for lambda terms as well as all-term
and random term generators.

We choose Prolog as our meta-language. Being derived from essen-
tially the same formalisms as those we are covering, it reduces the seman-
tic gap and results in surprisingly concise and efficient declarative imple-
mentations. Our implementation is available at: https://github.com/
ptarau/TypesAndProofs.

Keywords: Curry-Howard isomorphism
Propositional implicational intuitionistic logic
Type inference and type inhabitation
Simply typed lambda terms
Logic programming · Propositional theorem provers
Combinatorial testing algorithms

1 Introduction

The implicational fragment of propositional intuitionistic logic can be defined
by two axiom schemes:

K : A → (B → A)
S : (A → (B → C)) → ((A → B) → (A → C))

c© Springer Nature Switzerland AG 2019
J. J. Alferes and M. Johansson (Eds.): PADL 2019, LNCS 11372, pp. 115–132, 2019.
https://doi.org/10.1007/978-3-030-05998-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05998-9_8&domain=pdf
https://github.com/ptarau/TypesAndProofs
https://github.com/ptarau/TypesAndProofs
https://doi.org/10.1007/978-3-030-05998-9_8

116 P. Tarau

and the modus ponens inference rule:

MP : A, A → B � B.

Our interest in theorem provers for this minimalist logic fragment has been
triggered by its relation, via the Curry-Howard isomorphism, to the inverse prob-
lem, corresponding to inferring types for lambda terms, type inhabitation. In its
simplest form, the Curry-Howard isomorphism [1,2] connects the implicational
fragment of propositional intuitionistic logic and types in the simply typed lambda
calculus. A low polynomial type inference algorithm associates a type (when it
exists) to a lambda term. Harder (PSPACE-complete, see [3]) algorithms asso-
ciate inhabitants to a given type expression with the resulting lambda term
(typically in normal form) serving as a witness for the existence of a proof for
the corresponding tautology in implicational propositional intuitionistic logic.
As a consequence, a theorem prover for implicational propositional intuitionistic
logic can also be seen as a tool for program synthesis, as implemented by code
extraction algorithms in proof assistants like Coq [4].

This provides a simple and effective testing mechanism: by using as input
the type of a lambda term known to have as an inhabitant the term itself. While
only providing “positive examples” - formulas known to be tautologies, this is
becoming increasingly difficult with size, as the asymptotic density of typable
terms in the set of closed lambda terms has been shown to converge to 0 [5].
As a consequence, even our best generators [6], based on Boltzmann samplers,
are limited to lambda terms in normal form of about size 60–70, given the very
large number of retries needed to filter out untypable terms.

Thus, besides generating large simply typed lambda terms, we will need
to devise testing methods also ensuring correct rejection of non-theorems and
termination on arbitrary formulas.

This will lead us to a stepwise refinement from simpler to more efficient equiva-
lent provers.Wewill start fromaknown, proven to be sound and complete prover as
a first step, and use a test-driven approach to improve its performance and scalabil-
ity while having soundness and completeness as invariants. As even small, appar-
ently obvious changes in sound and complete provers can often break these prop-
erties, one must chose between writing a formal proof for each variant or setting
up an extensive combinatorial and random testing framework, able to ensure cor-
rectness, with astronomically low chance of error, “at the push of a button”.

We chose the second approach. Besides the ability to also evaluate scalability
and performance of our provers, our combinatorial generation library, released
as open source software, has good chances to be reused as a testing harness for
other propositional solvers, (e.g., SAT, ASP or SMT solvers) with structurally
similar formulas.

Our combinatorial testing framework comprises generators for

– simply typed lambda terms (in normal form) and their types
– formulas of the implicational subset of propositional calculus, requiring

• generation of binary trees with internal nodes labeled with ‘->’
• generation of set partitions helping to label variables in leaf position.

A Combinatorial Testing Framework 117

For quick correctness tests we build all-formula generators. Total counts for
formulas of a given size for tautologies and non-tautologies provide an instant
indicator for high-probability correctness. It also provides small false positives
or negatives, helpful to explain and debug unexpected behavior.

For performance, scalability and termination tests, in the tradition of
QuickCheck [7,8] we build random formula generators, with focus on ability
to generate very large simply typed lambda terms and implicational formulas.

While our code at (https://github.com/ptarau/TypesAndProofs), covers a
few dozen variants of implicational as well as full propositional provers, we will
describe here a few that win on simplicity and/or scalable performance.

Notations and Assumptions. As we will use Prolog as our meta-language,
our notations will be derived as much as possible from its syntax (including token
types and operator definitions). Thus, variables will be denoted with upper-
case letters and, as programmer’s conventions final s letters indicate a plurality
of items (e.g., when referring to the content of Γ contexts). We assume that
the reader is familiar with basic Prolog programming, including, besides the
pure Horn clause subset, well-known builtin predicates like memberchk/2 and
select/3, elements of higher order programming (e.g., call/N), and occasional
use of CUT and if-then-else constructs.

Lambda terms are built using the function symbols a/2 = application, l/2 =
lambda binder, with a logic variable as first argument and expression as second,
as well as logic variables representing the variables of the terms.

Type expressions (also seen as implicational formulas) are built as binary
trees with the function symbol ->/2 and logic variables at their leaves.

The Paper Is Organized as Follows. Section 2 overviews the LJT sequent
calculus for implicational propositional intuitionistic logic. Section 3 describes,
starting with a direct encoding of the LJT calculus as a Prolog program, deriva-
tion steps leading to simpler and faster provers. Section 4 describes our testing
framework. Section 5 overviews related work and Sect. 6 concludes the paper.

2 Proof Systems for Implicational Propositional
Intuitionistic Logic

Initially, like for other fields of mathematics and logic, Hilbert-style axioms were
considered for intuitionistic logic. While simple and directly mapped to SKI-
combinators via the Curry-Howard isomorphism, their usability for automation
is very limited. In fact, their inadequacy for formalizing even “hand-written”
mathematics was the main trigger of Gentzen’s work on natural deduction and
sequent calculus, inspired by the need for formal reasoning in the foundation of
mathematics [9].

https://github.com/ptarau/TypesAndProofs

118 P. Tarau

Thus, we start with Gentzen’s own calculus for intuitionistic logic, simplified
here to only cover the purely implicational fragment, given that our focus is on
theorem provers working on formulas that correspond to types of simply-typed
lambda terms.

2.1 Gentzen’s LJ Calculus, Restricted to the Implicational
Fragment of Propositional Intuitionistic Logic

We assume familiarity with basic sequent calculus notation. Gentzen’s original
LJ calculus [9] (with the equivalent notation of [10]) uses the following rules.

LJ1 :
A,Γ � A

LJ2 :
A,Γ � B

Γ � A → B

LJ3 :
A → B,Γ � A B,Γ � G

A → B,Γ � G

As one can easily see, when trying a goal-driven implementation that uses the
rules in upward direction, the unchanged premises on left side of rule LJ3 would
not ensure termination as nothing prevents A and G from repeatedly trading
places during the inference process.

2.2 Roy Dyckhoff’s LJT Calculus, Restricted to the Implicational
Fragment of Propositional Intuitionistic Logic

Motivated by problems related to loop avoidance in implementing Gentzen’s LJ
calculus, Roy Dyckhoff [10] splits rule LJ3 into LJT3 and LJT4.

LJT1 :
A,Γ � A

LJT2 :
A,Γ � B

Γ � A → B

LJT3 :
B,A, Γ � G

A → B,A, Γ � G

LJT4 :
D → B,Γ � C → D B,Γ � G

(C → D) → B,Γ � G

This avoids the need for loop checking to ensure termination as one can identify
a multiset ordering-based size definition that decreases after each step [10]. The
rules work with the context Γ being a multiset, but it has been shown later [11]
that Γ can be a set, with duplication in contexts eliminated.

As it is not unusual with logic formalisms, the same calculus had been discov-
ered independently in the 50’s by Vorob’ev and in the 80’s–90’s by Hudelmaier
[12,13].

A Combinatorial Testing Framework 119

3 The Test-Driven Prover Derivation Process

Starting from this calculus, we will describe our “test-driven” derivation process
for simpler and/or more efficient provers that will be validated at each step by
our testing framework described in the next section.

3.1 An Executable Specification: Dyckhoff’s LJT Calculus, Literally

Roy Dyckhoff has implemented the LJT calculus as a Prolog program.
We have ported it to SWI-Prolog as a reference implementation

(see https://github.com/ptarau/TypesAndProofs/blob/master/third party/dyckhoff

orig.pro). However, it is a fairly large (420 lines) program, partly because it cov-
ers the full set of intuitionistic connectives and partly because of the complex
heuristics that it implements.

This brings up the question if, in the tradition of “lean theorem provers”, we
can build one directly from the LJT calculus, in a goal oriented style, by reading
the rules from conclusions to premises.

Thus, we start with a simple, almost literal translation of rules LJT1 . . . LJT4

to Prolog with values in the environment Γ denoted by the variable Vs.

lprove(T):-ljt(T,[]),!.

ljt(A,Vs):-memberchk(A,Vs),!. % LJT_1

ljt((A->B),Vs):-!,ljt(B,[A|Vs]). % LJT_2

ljt(G,Vs1):- %atomic(G), % LJT_3

select((A->B),Vs1,Vs2),

memberchk(A,Vs2),

!,

ljt(G,[B|Vs2]).

ljt(G,Vs1):- % LJT_4

select(((C->D)->B),Vs1,Vs2),

ljt((C->D), [(D->B)|Vs2]),

!,

ljt(G,[B|Vs2]).

Note the use of select/3 to extract a term from the environment (a non-
deterministic step) and termination, via a multiset ordering based measure [10].
An example of use is:

?- lprove(a->b->a).

true.

?- lprove((a->b)->a).

false.

Note also that integers can be used instead of atoms, flexibility that we will
use as needed.

Besides the correctness of the LJT rule set (as proved in [10]), given that the
prover has passed our tests, it looks like being already quite close to our interest in
a “lean” prover for the implicational fragment of propositional intuitionistic logic.

https://github.com/ptarau/TypesAndProofs/blob/master/third_party/dyckhoff_orig.pro
https://github.com/ptarau/TypesAndProofs/blob/master/third_party/dyckhoff_orig.pro

120 P. Tarau

However, given the extensive test set (see Sect. 4) that we have developed, it is
not hard to get tempted in getting it simpler and faster, knowing that the smallest
error will be instantly caught.

3.2 Concentrating Nondeterminism into One Place

We start with a transformation that keeps the underlying implicational for-
mula unchanged. It merges the work of the two select/3 calls into a single
call, observing that their respective clauses do similar things after the call to
select/3. That avoids redoing the same iteration over candidates for reduction.

bprove(T):-ljb(T,[]),!.

ljb(A,Vs):-memberchk(A,Vs),!.

ljb((A->B),Vs):-!,ljb(B,[A|Vs]).

ljb(G,Vs1):-

select((A->B),Vs1,Vs2),

ljb_imp(A,B,Vs2),

!,

ljb(G,[B|Vs2]).

ljb_imp((C->D),B,Vs):-!,ljb((C->D),[(D->B)|Vs]).

ljb_imp(A,_,Vs):-atomic(A),memberchk(A,Vs).

This results on our tests (see Sect. 4 for details) in an improvement on a
mix of tautologies and non-tautologies, in exchange for a slowdown on formulas
known to be tautologies.

3.3 Implicational Formulas as Nested Horn Clauses

Given the equivalence between: B1 → B2 . . . Bn → H and (in Prolog notation)
H :- B1, B2, . . . , Bn, (where we choose H as the atomic formula ending a chain
of implications), we can, recursively, transform an implicational formula into one
built form nested clauses, as follows.

toHorn((A->B),(H:-Bs)):-!,toHorns((A->B),Bs,H).

toHorn(H,H).

toHorns((A->B),[HA|Bs],H):-!,toHorn(A,HA),toHorns(B,Bs,H).

toHorns(H,[],H).

Note also that the transformation is reversible and that lists (instead of
Prolog’s conjunction chains) are used to collect the elements of the body of a
clause.

?- toHorn(((0->1->2->3->4)->(0->1->2)->0->2->3),R).

R = (3:-[(4:-[0, 1, 2, 3]), (2:-[0, 1]), 0, 2]).

This suggests transforming provers for implicational formulas into equivalent
provers working on nested Horn clauses.

A Combinatorial Testing Framework 121

hprove(T0):-toHorn(T0,T),ljh(T,[]),!.

ljh(A,Vs):-memberchk(A,Vs),!.

ljh((B:-As),Vs1):-!,append(As,Vs1,Vs2),ljh(B,Vs2).

ljh(G,Vs1):- % atomic(G), G not in Vs1

memberchk((G:-_),Vs1), % if not, we just fail!

select((B:-As),Vs1,Vs2), % outer select loop

select(A,As,Bs), % inner select loop

ljh_imp(A,B,Vs2), % A is an element of the body of B

!,

trimmed((B:-Bs),NewB), % trim off empty bodies

ljh(G,[NewB|Vs2]).

ljh_imp((D:-Cs),B,Vs):-!,ljh((D:-Cs),[(B:-[D])|Vs]).

ljh_imp(A,_B,Vs):-memberchk(A,Vs).

trimmed((B:-[]),R):-!,R=B.

trimmed(BBs,BBs).

A first improvement, ensuring quicker rejection of non-theorems is the call to
memberchk in the 3-rd clause to ensure that our goal G is the head of at least one
of the assumptions. Once that test is passed, the 3-rd clause works as a reducer
of the assumed hypotheses. It removes from the context a clause B:-As and it
removes from its body a formula A, to be passed to ljh_imp, with the remaining
context. Should A be atomic, we succeed if and only if it is already in the context.
Otherwise, we closely mimic rule LJT4 by trying to prove A = (D:-Cs), after
extending the context with the assumption B:-[D]. Note that in both cases the
context gets smaller, as As does not contain the A anymore. Moreover, should
the body Bs end up empty, the clause is downgraded to its atomic head by the
predicate trimmed/2. Also, by having a second select/3 call in the third clause
of ljh, will give ljh imp more chances to succeed and commit.

Thus, besides quickly filtering out failing search branches, the nested Horn
clause form of implicational logic helps bypass some intermediate steps, by focus-
ing on the head of the Horn clause, which corresponds to the last atom in a chain
of implications.

The transformation brings to hprove/1 an extra 66% performance gain over
bprove/1 on terms of size 15, which scales up to run as much as 29 times faster
on terms of size 16.

3.4 Propagating Back the Elimination of Non-matching Heads

We can propagate back to the implicational forms used in bprover the obser-
vation made on the Horn-clause form that heads (as computed below) should
match at least one assumption.

head_of(_->B,G):-!,head_of(B,G).

head_of(G,G).

122 P. Tarau

We can apply this to bprove/1 as shown in the 3-rd clause of lje, where we
can also prioritize the assumption found to have the head G, by placing it first
in the context.

eprove(T):-lje(T,[]),!.

lje(A,Vs):-memberchk(A,Vs),!.

lje((A->B),Vs):-!,lje(B,[A|Vs]).

lje(G,Vs0):-

select(T,Vs0,Vs1),head_of(T,G),!,

select((A->B),[T|Vs1],Vs2),lje_imp(A,B,Vs2),!,

lje(G,[B|Vs2]).

lje_imp((C->D),B,Vs):-!,lje((C->D),[(D->B)|Vs]).

lje_imp(A,_,Vs):-atomic(A),memberchk(A,Vs).

This brings the performance of eprove within a few percents of hprove.

3.5 Extracting the Proof Terms

Extracting the proof terms (lambda terms having the formulas we prove as types)
is achieved by decorating in the code with application nodes a/2, lambda nodes
l/2 (with first argument a logic variable) and leaf nodes (with logic variables,
same as the identically named ones in the first argument of the corresponding
l/2 nodes).

The simplicity of the predicate eprove/1 and the fact that this is essentially
the inverse of a type inference algorithm (e.g., the one in [14]) help with figuring
out how the decoration mechanism works.

sprove(T):-ljs(X,T,[]),!.

ljs(X,A,Vs):-memberchk(X:A,Vs),!. % leaf variable

ljs(l(X,E),(A->B),Vs):-!,ljs(E,B,[X:A|Vs]). % lambda term

ljs(E,G,Vs1):-

select(S:(A->B),Vs1,Vs2), % source of application

ljs_imp(T,A,B,Vs2), % target of application

!,

ljs(E,G,[a(S,T):B|Vs2]). % application

ljs_imp(X,A,_,Vs):-atomic(A),!,memberchk(X:A,Vs).

ljs_imp(E,(C->D),B,Vs):-ljs(E,(C->D),[_:(D->B)|Vs]).

Thus, lambda nodes decorate implication introductions and application nodes
decorate modus ponens reductions in the corresponding calculus. Note that the
two clauses of ljs imp provide the target node T . When seen from the type
inference side, T is the type resulting from cancelling the source type S and the
application type S → T .

A Combinatorial Testing Framework 123

Calling sprove/2 on the formulas corresponding to the types of the S,K and
I combinators, we obtain:

?- sprove(((0->1->2)->(0->1)->0->2),X).

X = l(A, l(B, l(C, a(a(A, C), a(B, C))))). % S

?- sprove((0->1->0),X).

X = l(A, l(B, A)). % K

?- sprove((0->0),X).

X = l(A, A). % I

4 The Testing Framework

Correctness can be checked by identifying false positives or false negatives. A
false positive is a non-tautology that the prover proves, breaking the soundness
property. A false negative is a tautology that the prover fails to prove, breaking
the completeness property. While classical tautologies are easily tested (at small
scale against truth tables, at medium scale with classical propositional provers
and at larger scale with a SAT solver), intuitionistic provers require a more
creative approach, given the absence of a finite truth-value table model.

As a first bootstrapping step, assuming that no “gold standard” prover is
available, one can look at the other side of the Curry-Howard isomorphism, and
rely on generators of (typable) lambda terms and generators implicational logic
formulas, with results being checked against a trusted type inference algorithm.

As a next step, a trusted prover can be used as a “gold standard” to test
both for false positives and negatives.

4.1 Finding False Negatives by Generating the Set of Simply Typed
Normal Forms of a Given Size

A false negative is identified if our prover fails on a type expression known
to have an inhabitant. Via the Curry-Howard isomorphism, such terms are the
types inferred for lambda terms, generated by increasing sizes. In fact, this means
that all implicational formulas having proofs shorter than a given number are all
covered, but possibly small formulas having long proofs might not be reachable
with this method that explores the search by the size of the proof rather than
the size of the formula to be proven. We refer to [14] for a detailed description
of efficient algorithms generating pairs of simply typed lambda terms in normal
form together with their principal types. The code we use here is at: https://

github.com/ptarau/TypesAndProofs/blob/master/allTypedNFs.pro

4.2 Finding False Positives by Generating All Implicational
Formulas/Type Expressions of a Given Size

A false positive is identified if the prover succeeds finding an inhabitant for a
type expression that does not have one.

https://github.com/ptarau/TypesAndProofs/blob/master/allTypedNFs.pro
https://github.com/ptarau/TypesAndProofs/blob/master/allTypedNFs.pro

124 P. Tarau

We obtain type expressions by generating all binary trees of a given size,
extracting their leaf variables and then iterating over the set of their set parti-
tions, while unifying variables belonging to the same partition. We refer to [14]
for a detailed description of the algorithms.

The code describing the all-tree and set partition generation as well as their
integration as a type expression generator is at:

https://github.com/ptarau/TypesAndProofs/blob/master/allPartitions.pro.
We have tested the predicate lprove/1 as well as all other provers derived

from it for false negatives against simple types of terms up to size 15 (with
size defined as 2 for applications, 1 for lambdas and 0 for variables) and for
false positives against all type expressions up to size 7 (with size defined as the
number of internal nodes).

An advantage of exhaustive testing with all formulas of a given size is that it
implicitly ensures coverage: no path is missed simply because there are no paths
left unexplored.

4.3 Testing Against a Trusted Reference Implementation

Assuming we trust an existing reference implementation (e.g., after it passes our
generator-based tests), it makes sense to use it as a “gold standard”. In this case,
we can identify both false positives and negatives directly, as follows:

gold_test(N,Generator,Gold,Silver, Term, Res):-call(Generator,N,Term),

gold_test_one(Gold,Silver,Term, Res),

Res\=agreement.

gold_test_one(Gold,Silver,T, Res):-

(call(Silver,T) -> \+ call(Gold,T),

Res = wrong_success

; call(Gold,T) -> % \+ Silver

Res = wrong_failure

; Res = agreement

).

When specializing to a generator for all well-formed implication expressions,
and using Dyckhoff’s dprove/1 predicate as a gold standard, we have:

gold_test(N, Silver, Culprit, Unexp):-

gold_test(N,allImpFormulas,dprove,Silver,Culprit,Unexp).

To test the tester, we design a prover that randomly succeeds or fails.

badProve(_) :- 0 =:= random(2).

We can now test lprove/1 and badprove/1 as follows:

?- gold_test(6,lprove,T,R).

false. % indicates that no false positive or negative is found

?- gold_test(6,badProve,T,R).

https://github.com/ptarau/TypesAndProofs/blob/master/allPartitions.pro

A Combinatorial Testing Framework 125

T = (0->1->0->0->0->0->0),

R = wrong_failure ;

...

?- gold_test(6,badProve,T,wrong_success).

T = (0->1->0->0->0->0->2) ;

...

A more interesting case is when a prover is only guilty of false positives. For
instance, let’s naively implement the intuition that a goal is provable w.r.t. an
environment Vs if all its premises are provable, with implication introduction
assuming premises and success achieved when the environment is reduced to
empty.

badSolve(A):-badSolve(A,[]).

badSolve(A,Vs):-atomic(A),!,memberchk(A,Vs).

badSolve((A->B),Vs):-badSolve(B,[A|Vs]).

badSolve(_,Vs):-badReduce(Vs).

badReduce([]):-!.

badReduce(Vs):-select(V,Vs,NewVs),badSolve(V,NewVs),badReduce(NewVs).

As the following test shows, while no tautology is missed, the false positives
are properly caught.

?- gold_test(6,badSolve,T,wrong_failure).

false.

?- gold_test(6,badSolve,T,wrong_success).

T = (0->0->0->0->0->0->1) ;

...

4.4 Random Simply-Typed Terms, with Boltzmann Samplers

Once passing correctness tests, our provers need to be tested against large ran-
dom terms. The mechanism is similar to the use of all-term generators.

We generate random simply-typed normal forms, using a Boltzmann sampler
along the lines of that described in [6]. The code variant, adapted to our different
term-size definition is at:
https://github.com/ptarau/TypesAndProofs/blob/master/ranNormalForms.pro. It
works as follows:

?- ranTNF(60,XT,TypeSize).

XT = l(l(a(a(0, l(a(a(0, a(0, l(...))), s(s(0))))),

l(l(a(a(0, a(l(...), a(..., ...))), l(0)))))))

:

(A->((((A->A)- ...)->D)->D)->M)->M),

TypeSize = 34.

https://github.com/ptarau/TypesAndProofs/blob/master/ranNormalForms.pro

126 P. Tarau

Interestingly, partly due to the fact that there’s some variation in the size
of the terms that Boltzmann samplers generate, and more to the fact that the
distribution of types favors (as seen in the second example) the simple tautologies
where an atom identical to the last one is contained in the implication chain
leading to it [5,15], if we want to use these for scalability tests, additional filtering
mechanisms need to be used to statically reject type expressions that are large
but easy to prove as intuitionistic tautologies.

4.5 Random Implicational Formulas

The generation of random implicational formulas is more intricate.
Our code combines an implementation of Rémy’s algorithm [16], along the

lines of Knuth’s algorithm R in [17] for the generation of random binary trees
at https://github.com/ptarau/TypesAndProofs/blob/master/RemyR.pro with code
to generate random set partitions at:
https://github.com/ptarau/TypesAndProofs/blob/master/ranPartition.pro.

We refer to [18] for a declarative implementation of Rémy’s algorithm in
Prolog with code adapted for this paper at:
https://github.com/ptarau/TypesAndProofs/blob/master/RemyP.pro.

As automatic Boltzmann sampler generation of set partitions is limited to
fixed numbers of equivalence classes from which a CF- grammar can be given, we
build our random set partition generator that groups variables in leaf position
into equivalence classes by using an urn-algorithm [19]. Once a random binary
tree of size N is generated with the ->/2 constructor labeling internal nodes,
the N + 1 leaves of the tree are decorated with variables denoted by successive
integers starting from 0. As variables sharing a name define equivalence classes
on the set of variables, each choice of them corresponds to a set partition of the
N +1 nodes. Thus, a set partition of the leaves {0,1,2,3} like {{0},{1,2},{3}}
will correspond to the variable leaf decorations

0, 1, 1, 2

The partition generator works as follows:

?- ranSetPart(7,Vars).

Vars = [0, 1, 2, 1, 1, 2, 3] .

Note that the list of labels it generates can be directly used to decorate
the random binary tree generated by Rémy’s algorithm, by unifying the list of
variables Vs with it.

?- remy(6,T,Vs).

T = ((((A->B)->C->D)->E->F)->G),

Vs = [A, B, C, D, E, F, G] .

https://github.com/ptarau/TypesAndProofs/blob/master/RemyR.pro
https://github.com/ptarau/TypesAndProofs/blob/master/ranPartition.pro
https://github.com/ptarau/TypesAndProofs/blob/master/RemyP.pro

A Combinatorial Testing Framework 127

The combined generator, that produces in a few seconds terms of size 1000,
works as follows:

?- time(ranImpFormula(1000,_)).

% includes tabling large Stirling numbers

% 37,245,709 inferences,7.501 CPU in

7.975 seconds (94% CPU, 4965628 Lips)

?- time(ranImpFormula(1000,_)). % fast, thanks to tabling

% 107,163 inferences,0.040 CPU in

0.044 seconds (92% CPU, 2659329 Lips)

Note that we use Prolog’s tabling (a form of automated dynamic program-
ming) to avoid costly recomputation of the (very large) Sterling numbers in the
code at: https://github.com/ptarau/TypesAndProofs/blob/master/ranPartition.pro.

4.6 Testing with Large Random Terms

Testing for false positives and false negatives for random terms proceeds in a
similar manner to exhaustive testing with terms of a given size.

Assuming Roy Dyckhoff’s prover as a gold standard, we can find out that our
bprove/1 program can handle 20 terms of size 50 as well as the gold standard.

?- gold_ran_imp_test(20,100,bprove, Culprit, Unexpected).

false. % indicates no differences with the gold standard

In fact, the size of the random terms handled by bprove/1 makes using
provers an appealing alternative to random lambda term generators in search for
very large (lambda term, simple type) pairs. Interestingly, on the side of random
simply typed terms, limitations come from their vanishing density, while on the
other side they come from the known PSPACE-complete complexity of the proof
procedures.

4.7 Scalability Tests

Besides the correctness and completeness test sets described so far, one might
want also ensure that the performance of the derived provers scales up to larger
terms. Given space constraints, we only show here a few such performance
tests and refer the reader to our benchmarks at: https://github.com/ptarau/

TypesAndProofs/blob/master/bm.pro.
Time is measured in seconds. The tables in Fig. 1 compare several provers on

exhaustive “all-terms” benchmarks, derived from our correctness test.
First, we run them on the types inferred on all simply typed lambda terms of

a given size. Note that some of the resulting types in this case can be larger and
some smaller than the sizes of their inhabitants. We place them in the column
Positive - as they are known to be all provable.

https://github.com/ptarau/TypesAndProofs/blob/master/ranPartition.pro
https://github.com/ptarau/TypesAndProofs/blob/master/bm.pro
https://github.com/ptarau/TypesAndProofs/blob/master/bm.pro

128 P. Tarau

Prover Size Positive Mix Total Time
lprove 13 0.979 0.261 1.24
lprove 14 4.551 5.564 10.116
lprove 15 30.014 5.568 35.583
lprove 16 3053.202 168.074 3221.277

bprove 13 0.943 0.203 1.147
bprove 14 4.461 4.294 8.755
bprove 15 32.206 4.306 36.513
bprove 16 3484.203 129.91 3614.114

dprove 13 5.299 0.798 6.098
dprove 14 23.161 13.514 36.675
dprove 15 107.264 13.645 120.909
dprove 16 1270.586 240.301 1510.887

Prover Size Positive Mix Total Time
hprove 13 1.007 0.111 1.119
hprove 14 4.413 1.818 6.231
hprove 15 20.09 1.836 21.927
hprove 16 90.595 30.713 121.308

eprove 13 1.07 0.132 1.203
eprove 14 4.746 2.27 7.017
eprove 15 21.562 2.248 23.81
eprove 16 97.811 43.18 140.991

sprove 13 1.757 0.173 1.931
sprove 14 8.037 2.966 11.003
sprove 15 38.266 2.941 41.208
sprove 16 188.317 54.802 243.12

Fig. 1. Performance of provers on exhaustive tests (faster ones in the right table)

Next, we run them on all implicational formulas of a given size, set to be
about half of the former (integer part of size divided by 2), as the number of
these grows much faster. We place them in the column Mix as they are a mix of
provable and unprovable formulas.

The predicate hprove/1 turns out to be an overall winner, followed closely
by eprove/1 that applies to implicational forms a technique borrowed from
hprove/1 to quickly filter out failing search branches.

Testing exhaustively on small formulas, while an accurate indicator for aver-
age speed, might not favor provers using more complex heuristics or extensive
preprocessing, as it is the case of Dyckhoff’s original dprove/1.

We conclude that early rejection via the test we have discovered in the nested
Horn clause form is a clear separator between the slow provers in the left table
and the fast ones in the right table, a simple and useful “mutation” worth prop-
agating to full propositional and first order provers.

As the focus of this paper was to develop a testing methodology for proposi-
tional theorem provers, we have not applied more intricate heuristics to further
improve performance or to perform better on “human-made” benchmarks or
compare them on such tests with other provers, as there are no purely implica-
tional tests among at the ILTP library [20] at http://www.iltp.de/. On the other
hand, for our full intuitionistic propositional provers at https://github.com/
ptarau/TypesAndProofs, as well as our Python-based ones at https://github.
com/ptarau/PythonProvers, we have adapted the ILTP benchmarks on which
we plan to report in a future paper.

http://www.iltp.de/
https://github.com/ptarau/TypesAndProofs
https://github.com/ptarau/TypesAndProofs
https://github.com/ptarau/PythonProvers
https://github.com/ptarau/PythonProvers

A Combinatorial Testing Framework 129

5 Related Work

The related work derived from Gentzen’s LJ calculus is in the hundreds if not
in the thousands of papers and books. Space constraints limit our discussion
to the most closely related papers, directly focusing on algorithms for impli-
cational intuitionistic propositional logic, which, as decision procedures, ensure
termination without a loop-checking mechanism.

Among them the closest are [10,11], that we have used as starting points for
deriving our provers. We have chosen to implement the LJT calculus directly
rather than deriving our programs from Roy Dyckhoff’s Prolog code. At the
same time, as in Roy Dyckhoff’s original prover, we have benefitted from the
elegant, loop-avoiding rewriting step also present in Hudelmaier’s work [12,13].
Similar calculi, key ideas of which made it into the Coq proof assistant’s code,
are described in [21].

On the other side of the Curry-Howard isomorphism, the thesis [22], described
in full detail in [23], finds and/or counts inhabitants of simple types in long
normal form. But interestingly, these algorithms have not crossed, at our best
knowledge, to the other side of the Curry-Howard isomorphism, in the form of
theorem provers.

Using hypothetical implications in Prolog, although all with a different
semantics than Gentzen’s LJ calculus or its LJT variant, go back as early as
[24,25], followed by a series of λProlog-related publications, e.g., [26]. The simi-
larity to the propositional subsets of N-Prolog [25] and λ-Prolog [26] comes from
their close connection to intuitionistic logic. The hereditary Harrop formulas of
[26], when restricted to their implicational subset, are much easily computable
with a direct mapping to Prolog, without the need of theorem prover. While
closer to an LJ-based calculus, the execution algorithm of [25] uses restarts on
loop detection instead of ensuring termination along the lines the LJT calcu-
lus. In [27] backtrackable linear and intuitionistic assumptions that mimic the
implication introduction rule are used, but they do not involve arbitrarily deep
nested implicational formulas.

Overviews of closely related calculi, using the implicational subset of propo-
sitional intuitionistic logic are [11,28].

For generators of random lambda terms and related functional programming
constructs we refer to [7,8]. We have shared with them the goal of achieving high-
probability correctness via automated combinatorial testing. Given our specific
focus on propositional provers, we have been able to use all-term and all-formula
generators as well as comparison mechanisms with “gold-standard” provers. We
have also taken advantage of the Curry-Howard isomorphism between types
and formulas to provide an initial set of known tautologies, usable as “boot-
strapping mechanism” allowing to test our provers independently from using a
“gold-standard”.

130 P. Tarau

6 Conclusions and Future Work

Our code base at https://github.com/ptarau/TypesAndProofs provides an
extensive test-driven development framework built on several cross-testing
opportunities between type inference algorithms for lambda terms and theorem
provers for propositional intuitionistic logic.

It also contains the code of the provers presented in the paper together with
several other provers and “human-made” test sets.

Our lightweight implementations of these theoretically hard (PSPACE-
complete) combinatorial search problems, are also more likely than provers using
complex heuristics, to be turned into parallel implementations using multi-core
and GPU algorithms.

Among them, provers working on nested Horn clauses outperformed those
working directly on implicational formulas. The fact that conjunctions in their
body are associative and commutative also opens opportunities for AND-parallel
execution.

Given that they share their main data structures with Prolog, it also seems
interesting to attempt their partial evaluation or even compilation to Prolog via
a source-to-source transformation. At the same time, the nested Horn clause
provers might be worth formalizing as a calculus and subject to deeper theoret-
ical analysis. We plan future work in formally describing the nested Horn-clause
prover in sequent-calculus as well as exploring compilation techniques and new
parallel algorithms for it. A generalization to nested Horn clauses with con-
junctions and universally quantified variables seems also promising to explore,
especially with grounding techniques as used by SAT and ASP solvers, or via
compilation to Prolog.

Acknowledgement. This research has been supported by NSF grant 1423324. We
thank the reviewers of PADL’19 for their constructive comments and suggestions for
improvement.

References

1. Howard, W.: The formulae-as-types notion of construction. In: Seldin, J., Hindley,
J. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pp. 479–490. Academic Press, London (1980)

2. Wadler, P.: Propositions as types. Commun. ACM 58, 75–84 (2015)
3. Statman, R.: Intuitionistic propositional logic is polynomial-space complete. Theor.

Comput. Sci. 9, 67–72 (1979)
4. The Coq development team: The Coq proof assistant reference manual (2018)

Version 8.8.0
5. Kostrzycka, Z., Zaionc, M.: Asymptotic densities in logic and type theory. Studia

Logica 88(3), 385–403 (2008)

https://github.com/ptarau/TypesAndProofs

A Combinatorial Testing Framework 131

6. Bendkowski, M., Grygiel, K., Tarau, P.: Random generation of closed simply typed
λ-terms: a synergy between logic programming and Boltzmann samplers. TPLP
18(1), 97–119 (2018)

7. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
haskell programs. SIGPLAN Not. 46(4), 53–64 (2011)

8. Palka, M.H., Claessen, K., Russo, A., Hughes, J.: Testing an optimising compiler by
generating random lambda terms. In: Proceedings of the 6th International Work-
shop on Automation of Software Test, AST 2011, pp. 91–97. ACM, New York
(2011)

9. Szabo, M.E.: The collected papers of Gerhard Gentzen. Philos. Sci. 39(1), 91 (1972)
10. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symbolic

Logic 57(3), 795–807 (1992)
11. Dyckhoff, R.: Intuitionistic decision procedures since Gentzen. In: Kahle, R.,

Strahm, T., Studer, T. (eds.) Advances in Proof Theory. PCSAL, vol. 28, pp.
245–267. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29198-7 6

12. Hudelmaier, J.: A PROLOG Program for Intuitionistic Logic. SNS-Bericht-. Uni-
versität Tübingen (1988)

13. Hudelmaier, J.: An O(n log n)-space decision procedure for intuitionistic proposi-
tional logic. J. Logic Comput. 3(1), 63–75 (1993)

14. Tarau, P.: A hiking trip through the orders of magnitude: deriving efficient gener-
ators for closed simply-typed lambda terms and normal forms. In: Hermenegildo,
M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 240–255.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-4 14

15. Genitrini, A., Kozik, J., Zaionc, M.: Intuitionistic vs. classical tautologies, quanti-
tative comparison. In: Miculan, M., Scagnetto, I., Honsell, F. (eds.) TYPES 2007.
LNCS, vol. 4941, pp. 100–109. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-68103-8 7

16. Rémy, J.L.: Un procédé itératif de dénombrement d’arbres binaires et son applica-
tion à leur génération aléatoire. RAIRO - Theoretical Informatics and Applications -
Informatique Théorique et Applications 19(2), 179–195 (1985)

17. Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 4: Generating
All Trees-History of Combinatorial Generation (Art of Computer Programming).
Addison-Wesley Professional, Upper Saddle River (2006)

18. Tarau, P.: Declarative algorithms for generation, counting and random sampling of
term algebras. In: Proceedings of SAC 2018, ACM Symposium on Applied Com-
puting, PL track. ACM, Pau, April 2018

19. Stam, A.: Generation of a random partition of a finite set by an urn model. J.
Comb. Theory Ser. A 35(2), 231–240 (1983)

20. Raths, T., Otten, J., Kreitz, C.: The ILTP problem library for intuitionistic logic:
release v1.1. J. Autom. Reasoning 38, 261–271 (2007)

21. Herbelin, H.: A λ-calculus structure isomorphic to Gentzen-style sequent calculus
structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75.
Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0022247

22. Ben-Yelles, C.B.: Type assignment in the lambda-calculus: syntax and semantics.
PhD thesis, University College of Swansea (1979)

23. Hindley, J.R.: Basic Simple Type Theory. Cambridge University Press, New York
(1997)

https://doi.org/10.1007/978-3-319-29198-7_6
https://doi.org/10.1007/978-3-319-63139-4_14
https://doi.org/10.1007/978-3-540-68103-8_7
https://doi.org/10.1007/978-3-540-68103-8_7
https://doi.org/10.1007/BFb0022247

132 P. Tarau

24. Gabbay, D.M., Reyle, U.: N-Prolog: an extension of prolog with hypothetical impli-
cations I. J. Logic Program. 1(4), 319–355 (1984)

25. Gabbay, D.M.: N-Prolog: an extension of prolog with hypothetical implication
II. Logical foundations, and negation as failure. J. Logic Program. 2(4), 251–283
(1985)

26. Miller, D., Nadathur, G.: Programming with Higher-Order Logic. Cambridge Uni-
versity Press, New York (2012)

27. Tarau, P., Dahl, V., Fall, A.: Backtrackable state with linear affine implication and
assumption grammars. In: Jaffar, J., Yap, R.H.C. (eds.) ASIAN 1996. LNCS, vol.
1179, pp. 53–63. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0027779

28. Gabbay, D., Olivetti, N.: Goal-oriented deductions. In: Gabbay, D.M., Guenthner,
F. (eds.) Handbook of Philosophical Logic. Handbook of Philosophical Logic, vol.
9, pp. 199–285. Springer, Dordrecht (2002). https://doi.org/10.1007/978-94-017-
0464-9 4

https://doi.org/10.1007/BFb0027779
https://doi.org/10.1007/978-94-017-0464-9_4
https://doi.org/10.1007/978-94-017-0464-9_4

	A Combinatorial Testing Framework for Intuitionistic Propositional Theorem Provers
	1 Introduction
	2 Proof Systems for Implicational Propositional Intuitionistic Logic
	2.1 Gentzen's LJ Calculus, Restricted to the Implicational Fragment of Propositional Intuitionistic Logic
	2.2 Roy Dyckhoff's LJT Calculus, Restricted to the Implicational Fragment of Propositional Intuitionistic Logic

	3 The Test-Driven Prover Derivation Process
	3.1 An Executable Specification: Dyckhoff's LJT Calculus, Literally
	3.2 Concentrating Nondeterminism into One Place
	3.3 Implicational Formulas as Nested Horn Clauses
	3.4 Propagating Back the Elimination of Non-matching Heads
	3.5 Extracting the Proof Terms

	4 The Testing Framework
	4.1 Finding False Negatives by Generating the Set of Simply Typed Normal Forms of a Given Size
	4.2 Finding False Positives by Generating All Implicational Formulas/Type Expressions of a Given Size
	4.3 Testing Against a Trusted Reference Implementation
	4.4 Random Simply-Typed Terms, with Boltzmann Samplers
	4.5 Random Implicational Formulas
	4.6 Testing with Large Random Terms
	4.7 Scalability Tests

	5 Related Work
	6 Conclusions and Future Work
	References

