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Abstract. Creating a programming language is a considerable under-
taking, even for relatively small domain-specific languages (DSLs). Most
approaches to ease this task either limit the flexibility of the DSL or con-
sider entire languages as the unit of composition. This paper presents a
new approach using syntactical constructs (also called syncons) for defin-
ing DSLs in much smaller units of composition while retaining flexibility.
A syntactical construct defines a single language feature, such as an if

statement or an anonymous function. Each syntactical construct is fully
self-contained: it specifies its own concrete syntax, binding semantics,
and runtime semantics, independently of the rest of the language. The
runtime semantics are specified as a translation to a user defined tar-
get language, while the binding semantics allow name resolution before
expansion. Additionally, we present a novel approach for dealing with
syntactical ambiguity that arises when combining languages, even if the
languages are individually unambiguous. The work is implemented and
evaluated in a case study, where small subsets of OCaml and Lua have
been defined and composed using syntactical constructs.

1 Introduction

Designing and implementing user friendly domain-specific languages (DSLs)
requires both extensive programming language knowledge and domain exper-
tise. Instead of implementing a DSL compiler or interpreter from scratch, there
are several approaches for developing new DSLs more efficiently. For instance,
a language can be defined by compiler construction [8] or preprocessing tem-
plate tools [3,20] that translate a DSL program into another language with well
defined syntax and semantics. Another alternative is to embed [14] the DSL into
another host language, thus reusing the language constructs directly from the
host language. Such an approach, often referred to as embedded DSLs, has been
used in various domains [1,2,11,24,27].

New language constructs can, for instance, be implemented using host lan-
guage constructs that lifts programs into data [4,19], or by using various forms of
macro systems [23]. A macro defines a new construct by expanding code into the
host language, thus giving the illusion of a new language construct without the
need to redefine the underlying language. The sophistication of a macro system
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varies from simple text expansion systems to systems using hygienic macros that
enable correct name bindings [6,9] and macro systems with static types [13,16].

Macro systems enable rapid prototyping of language constructs, but the con-
crete syntax of a macro tends to be limited to the syntax of the language, e.g.,
Lisp macros look like Lisp. On the other hand, compiler construction tools, such
as parser generators and transformation frameworks, enable a higher degree of
flexibility in terms of syntax, but do not directly give the same composability
properties; the smallest unit of reuse tends to be a language, in contrast with
macros, which are more fine-grained.

In this paper, we develop the concept of syntactical constructs (also called
syncons for short) that enables both composable language constructs and syntac-
tic freedom. In contrast to current state-of-the-art techniques, the composability
is fine-grained, at the language construct level. That is, instead of composing
complete DSLs, syncons enable composability of individual language constructs.
A syncon defines a single language feature, such as an if statement or an anony-
mous function. Each syncon specifies its own syntax, binding semantics, and
runtime semantics, independently of the rest of the language. The semantics are
defined using a translation into another target language, similar to macros.

However, fine-grained composability introduces further challenges regarding
unambiguous parsing. For instance, composing two individual language con-
structs picked from two different languages may create an ambiguous language as a
result, even if the two languages are individually unambiguous. The approach pre-
sented in this paper uses general context-free grammars for syntactical flexibility,
which presents a problem: static ambiguity checking for context-free grammars is
undecidable [5]. A novel aspect of our approach is dynamic ambiguity checking,
which means that errors are encountered and reported at parse time, similarly to
how dynamically typed languages present type errors at runtime.

As part of our work, we have designed and implemented a prototype sys-
tem for creating languages using the syncon approach. We make no assumptions
about the target language, but for the purposes of evaluation, we have imple-
mented a small interpreted language to fill this role. Figure 1 shows a high-level
overview of our approach, where the different Sects. 2, 3 and 4 are highlighted
with dashed lines. More specifically, we make the following main contributions:

– We explain the key idea of the syncon concept, as well as how the concrete
syntax of a composed language is constructed. All parsing operations are
performed by first constructing a context-free grammar, which is then handed
to a general parser (Sect. 2).

– We motivate why dynamic ambiguity checking is, in some cases, preferable
to fully unambiguous languages, and explain our approach. Specifically, when
an ambiguity is encountered, the parser produces multiple parse trees, which
are examined in order to present a useful error message (Sect. 3).

– We implement name resolution and expansion (Sect. 4), and evaluate the
whole approach using a case study, where small subsets of OCaml and Lua
are defined using syncons. We show how language constructs in one language
can be extracted and composed into the other language (Sect. 5).
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Fig. 1. An overview of the various components of the system, and the sections that
explain them.

2 Defining Syncons

The central component in the approach presented in this paper is a syncon, short
for syntactical construct. Each syncon belongs to a single syntax type, similar
to how a value in a regular programming language belongs to a type. Figure 2a
shows an example that defines a slightly simplified version of a local variable
declaration in Lua. The definition consists of three parts: a header, a set of
properties, and a body.

Fig. 2. (a) A syncon implementing a basic form of a local variable declaration in Lua.
(b) Code in Lua with two local declarations that can be parsed using this syncon. (c)
A syncon implementing if, with most details elided.
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2.1 Header

The header (lines 1 through 3 in Fig. 2a) contains three things: the name of the
syncon (local), the syntax type to which it belongs (Statement), and a syntax
description (lines 2 and 3). Statement and Expression are user-defined syntax
types that define the syncon’s relation to the target language.

The syntax description of a syncon describes its concrete syntax. It is similar
to a production in Extended Backus Naur form (EBNF): it is a sequence of
quoted literals, syntax types (non-terminals), and repetitions (via ? for zero or
one, * for zero or more, or + for one or more). Parentheses are used for grouping
and have otherwise no effect on the described syntax.

The context-free grammar generated for parsing has one non-terminal per
user-defined syntax type, and one production (in EBNF) per syncon. Quoted lit-
erals and a few builtin syntax types (Identifier, String, Integer, and Float)
are terminals.

2.2 Properties

The properties of local (lines 5 and 6 in Fig. 2a) specify its binding semantics,
i.e., which names it introduces, and how they are available to other code. A
syncon can specify its binding semantics in two essentially orthogonal ways:

– As an adjacent binding; for instance, #bind x before or #bind x after. This
binds the identifier x in code appearing before or after the current syncon,
respectively. Line 5 of Fig. 2a states that x (from the syntax description on
line 2) is available only after the end of the local declaration. For example, b,
introduced on line 3 in Fig. 2b, is bound on line 4, but not on line 2 or 3.
The extent of an adjacent binding can be limited by a parent syncon specifying
a scope; for instance, #scope (e1 e2). This ensures that no adjacent binding
in subtrees e1 or e2 can be seen from the outside, while allowing both e1 and
e2 access to the bindings introduced in the other. The #scope declaration in
Fig. 2c ensures that no bindings introduced in the then branch are accessible
outside it.

– As a nested binding; for instance, #bind x in e. This binds identifier x in the
subtree represented by e.

Figure 3 shows the AST for the code in Fig. 2b. The dashed boxes denote the
regions covered by before and after in local b on line 3 in Fig. 2b. The region
in shows which regions could be covered by a #bind x in e declaration. The
horizontal bars represent scopes, which limit the extent of the adjacent bindings,
showing that if introduces a scope around each of its two branches. Had these
not been there, then before would have included true as well, while after
would have included the right-most block and all its descendants (i.e., the else
branch) as well.
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Fig. 3. The AST of the code in Fig. 2b.

Note that a single syncon may use any number of adjacent and nested binding
declarations, though usually with different identifiers. Adjacent bindings are, to
the best of our knowledge, novel, and give two advantages over purely nested
bindings:

1. Syncons may introduce bindings that can be used in a mutually recursive
way. For example, a pair of mutually recursive functions require the other
function to be in scope in its own body, but purely nested bindings can only
accomplish this for one of the functions.

2. The binding constructs common in imperative languages can be modeled
more simply. For example, the local declaration defined in Fig. 2a does not
contain the statements that follow it, which would be required if only nested
bindings were available.

The remaining properties are associativity and precedence, similar to most parser
generators, that transform the generated context-free grammar appropriately.

2.3 Body

The body of local, found on lines 7 through 11 in Fig. 2a, specifies how it is
translated to the underlying target language. The expansion is specified in a
small DSL with three kinds of constructs: variable references, folds, and syntax
literals. Variables are most commonly introduced in the syntax description in
the header (x and e on lines 2 and 3 in Fig. 2a, respectively). Folds are used to
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reduce a sequence of syntax trees to a single syntax tree. For example, the fold
on lines 10 and 11 in Fig. 2a has the following form:

The OCaml code to the right has the same meaning, but with more familiar
syntax. It is a left-fold, folding over the sequence e (which has length 0 or 1,
since it was introduced by ?). The accumulator is given the name “ ” (i.e.,
it is ignored), while the current element in the sequence reuses the name e.
The folding function is merely e, i.e., it ignores the accumulator and returns
the element as is. The initial value of the accumulator is a @unit value, which
models Lua’s nil. The end result is e if it is non-empty, and @unit otherwise. If
* or + is used in the syntax description, folds can also be done over longer lists.

A syntax literal is introduced by a syntax type and a backtick (BExpression‘
on lines 7 and 11 in Fig. 2a) followed by code with that syntax type. Code to be
run at expand-time can be spliced into a literal using one of several forms: ‘t()
for a user-defined syntax type (line 10 in Fig. 2a), ‘id() for an identifier (line 8
in Fig. 2a), ‘str() for a string, ‘int() for an integer, and ‘float() for a float.

BExpression is a syntax type in the target language, while defAfter, @ref,
@deref, and @unit are constructs in that language. The workings of these are
not relevant to the syncon approach, and are thus omitted.

The need to specify the syntax type of the syntax literal stems from a lack of
context. The issue is that the meaning of some pieces of syntax depend on their
context, even in a context-free language. For example, in OCaml,

let example [1] = [1]

contains the syntax “[1]” twice, first as a pattern, then as an expression. In a
syntax literal this context is absent, thus we require the language implementer
to specify the syntax type using, e.g., BExpression‘. Similarly, each spliced
expression must be tagged by syntax type.

3 Ambiguity Reporting

This section first argues that a dynamic check is in some cases preferable to an
unambiguous grammar, which is followed by an explanation of our approach.
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3.1 Motivation

Consider the following nested match-expression in OCaml:

1 let result = match 1 with
2 | 1 -> match "one" with
3 | str -> str
4 | 2 -> "two"

The compiler reports a type error, stating that line 4 matches a value of type
int, but expects a value of type string. The compiler sees the match-arm on
line 4 as belonging to the match on line 2, rather than the one on line 1, which
is what the programmer intended. This happens because OCaml has no layout
rules—the indentation has no impact on the semantics of the program—and the
compiler assigns every match-arm to the closest match, resulting in a type error.
Instead, the appropriate solution is to surround the inner match-expression with
parentheses, which has nothing to do with the types of the patterns. Dynamic
ambiguity checking can instead detect this case as an ambiguity and present
it as such, yielding a clearer error message. We return to this example in the
evaluation in Sect. 5.

3.2 Finding Ambiguities

In the case of ambiguous source code, the parser will produce multiple parse
trees, a so called parse forest. This is a programmer error, so the system must
produce a useful error message. In particular, it is insufficient to merely say ”the
source code is ambiguous” since the ambiguity likely involves a very limited
portion of the code. Additionally, once we have isolated the truly ambiguous
portions of the source code, we must present the different interpretations in
an understandable way. This subsection considers the former problem, while
Sect. 3.3 deals with the latter.

To aid in our discussion, consider the following parse forest, produced by pars-
ing “1 + 2 * 3 * 4” when we have defined precedence but not associativity:

add1:7(11, mul3:7(23, mul5:7(35, 47))) add1:7(11, mul3:7(mul3:5(23, 35), 47))

The subscripts signify the source code area covered (henceforth referred to as the
range of the parse tree). We see that the two parse trees share some structure:
both have the form add1:7(11, mul3:7( , )). The addition is thus unambiguous
and we wish to report only the multiplication as ambiguous. In particular, we
can find a parse forest for the range 3 : 7 whose parse trees appear as descendants
in the full parse forest:

mul3:7(23, mul5:7(35, 47)) mul3:7(mul3:5(23, 35), 47)
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We will refer to such a parse forest as a subforest.
Finding an ambiguity is now equivalent to finding a subforest whose parse

trees differ, while the full ambiguity report selects a set of such subforests.
We require three helper functions before the actual algorithm. First, we will

consider two parse trees to be shallowly equal (written =s) if they only differ in
their children (or do not differ at all). For example, add1:3(1, 2) =s add1:3(4, 5),
but add1:4(1, 2) �=s add1:3(4, 5) (different range) and add1:3(1) �=s add1:3(1, 2)
(different number of children). Second, children(t) denotes the children of the
syntax tree t, while children(t)i is the ith child of t, going left to right. Third,
range(t) is the range of the syntax tree t. The algorithm involves three steps,
starting with the complete parse forest as the input F :

The first step checks that all trees are shallowly equal, the second step extracts
all direct subforests, and the third recurses on those subforests. If either of the
first two steps fail, then we can find no smaller subforest for the current range,
thus we return F .

Applying this to the example, we quickly find that the forest only con-
tains trees that are shallowly equal (step 1), and it has two subforests: {11}
and {mul3:7(23, mul5:7(35, 47)), mul3:7(mul3:5(23, 35), 47)} (step 2). The former is
trivially unambiguous, but the latter is not: while the trees are shallowly equal
(step 1), we cannot extract subforests (step 2), since the children do not cover
the same range.

3.3 Reporting Ambiguities

With the ambiguities found, in the form of subforests, they must be presented
to the user. Each contained parse tree could be arbitrarily large, thus presenting
them in their entirety is likely to be more noise than valuable information. It is
our hypothesis that merely presenting two levels of the trees (the root and its
children) is sufficient information to begin addressing the problem and includes
very little noise.
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For example, the ambiguity in the previous section is presented as follows:

mul3:7(integer3, mul5:7) mul3:7(mul3:5, integer7)

Furthermore, the range information can be used to highlight the corresponding
regions of the source code.

As a final point, in the presence of a grouping operation (e.g., parentheses)
ambiguities involving operators can be presented in a more natural way, even if
our prototype implementation does not yet support it.

4 Binding Semantics and Expansion

Once we have parsed a syntactically unambiguous program and produced an
AST we now turn our attention to its semantics, in particular, its binding seman-
tics. The name resolution pass (Sect. 4.1) discovers the connections between
binders and bound identifiers, as well as any binding errors that may be present,
while expansion (Sect. 4.2) transforms the AST in the parsed language to an
AST in the target language.

4.1 Name Resolution

The name resolution pass is implemented as a relatively simple tree-traversal
that collects adjacent and nested bindings, and checks for binding errors. This
can be done without expanding any syncon since they all include their binding
semantics. The details of this traversal are tedious and not particularly relevant
for this paper and are thus not included, but can be found in the first author’s
Master’s thesis [18]. Two kinds of binding errors are considered:

– An identifier is reported as unbound if it is not part of a binding construct
(i.e., if it does not appear in a #bind declaration) and is not already bound
in its context.

– If a binding for an identifier is introduced twice in the same scope and the
ranges of the bindings overlap, then they are reported as duplicate. The former
requirement allows shadowing, but only in nested scopes, while the latter
allows multiple definitions in the same scope, but only if no references could
be ambiguous.

Finally, if there are no binding errors, name resolution performs a reference-
preserving renaming of all identifiers in the AST, such that no identifier is intro-
duced in a binding more than once. This simplifies writing a correct expansion,
since the programmer can now assume that no rearranging of the children of a
syncon instance can cause accidental name capture or a duplicate binding.
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4.2 Expansion

Expanding a single syncon instance consists of running a simple interpreter for
the DSL described in Sect. 2.3, with one important thing to mention: identifiers
that appear in syntax literals must be different between different expansions,
to prevent accidental name capture. In practice this is accomplished by tag-
ging each such identifier with a number that is unique per expansion (e.g., the
first expansion has number 1, the second number 2, etc.). Note that while the
expansion may assume that no rearranging of the instance’s children can cause
a duplicated binding (as mentioned in the previous section), it does not need to
ensure that this is true after the expansion.

Expanding an AST repeats this process until no remaining syncon instances
have expansions, i.e., until all remaining syncons are part of the base language.
However, we do need to maintain the invariant. Since an adjacent binding may
affect the AST arbitrarily far away from its introduction (depending on which
parents introduce scopes), we cannot simply perform renaming only on the result
of the expansion. Instead, we perform another name resolution pass, but only
when needed; most syncons do not duplicate children when they expand, in
which case there is no possibility of a duplicated binding.

5 Evaluation

The approach presented in this paper has been evaluated through an implemen-
tation of the system as a whole, and then creating two language subsets using
syncons to evaluate their expressiveness. Note that the language subsets are of
general-purpose programming languages, rather than DSLs. Having pre-existing,
well-defined semantics gives a ground truth that simplifies evaluation, and the
approach being useful for general purpose programming languages suggests that
it would be useful for a DSL as well.

5.1 Implementation

To evaluate our approach, we have written an interpreter1 in Haskell, containing
the phases described in Sects. 2, 3 and 4. The general parser used is an off-
the-shelf implementation2 of the Earley parsing algorithm [7]. We have also
implemented a simple interpreter for a small, mostly functional, base language.
The language subsets in Sect. 5.2 expand to this base language, which thus gives
us the ability to run programs and compare the syncon language implementations
with the original implementations.

The base language features include anonymous functions, mutable references,
continuations, and several builtin values (e.g., primitives for arithmetic, list
manipulation, and printing).

1 Available at https://github.com/miking-lang/syncon.
2 http://hackage.haskell.org/package/Earley.

https://github.com/miking-lang/syncon
http://hackage.haskell.org/package/Earley
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5.2 Case Studies

To evaluate the expressiveness of syncons, we have implemented small subsets
of two common programming languages:

OCaml. We have implemented a (dynamically typed) subset of OCaml to test
that syncons can express a relatively standard functional programming lan-
guage, with additional focus on pattern matching. The OCaml subset imple-
mentation consists of 32 syncons, spread over 3 syntax types.

Lua. We have implemented a subset of Lua to test that syncons can express
the control flow common in imperative language. It is worth noting here
that tables and coroutines, arguably the more particular features of Lua, are
not implemented, since they are not the reason for choosing Lua as a test
language. The Lua subset implementation consists of 29 syncons, spread over
5 syntax types.

To test the correctness of these subset implementations, we have written several
small programs:

– fib.ml and fib.lua. These programs implement functions for finding the
nth fibonacci number, one with the quadratic recursive definition, and a lin-
ear version. They test most binding constructs, some control flow, and basic
arithmetic.

– fizzbuzz.ml and fizzbuzz.lua. These programs implement fizzbuzz, an
(in)famous interview problem, and test more control flow and comparisons.

– misc.ml. This program tests the various remaining syntax constructions in
the OCaml subset, for example, boolean literals, anonymous functions and
cons patterns.

– misc.lua. This program tests the various remaining syntax constructions in
the Lua subset, for example, grouping by parentheses, break, and multipli-
cation.

The programs are chosen to ensure that between them, each syncon is used at
least once, and that some non-trivial control flow is used, e.g., recursion, mutual
recursion, and (in Lua) iteration.

We then compare the output of running each program in the subset imple-
mentation and the canonical implementation. One additional complexity is that
the subset implementations do not support the standard libraries for the lan-
guages, nor importing of modules. In particular, printing is a builtin primitive
in the subset implementations. To cover this difference we prepend a small pre-
lude to each program before running. With the exception of this prelude, the
programs are identical between the implementations.
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To test language construct composability, we extend Lua in two ways: we add
destructuring to existing binding constructs, and we add a new match-statement.
Both of these are accomplished by reusing syncons from the OCaml subset.

5.3 Analysis and Discussion

This section examines the result of extending the Lua subset with syncons from
OCaml, a few ambiguity errors in the OCaml subset, the effects of contextual
information on syncon independence, and a brief summary of other results.

Fig. 4. The change required to make a local-declaration in Lua support destructuring.

Cross-Language Reuse. Figure 4 shows the example from Sect. 2, to the left
as it was then, and to the right extended to handle destructuring using arbitrary
patterns. The patterns are defined in the OCaml subset, but can be reused in
Lua by merely importing them. Patterns are implemented as anonymous macros
that take two arguments: a function to call if the pattern match fails, and the
value to match against. We thus require three changes: switch Identifier for
Pattern, remove #bind x after, and switch defAfter with an invocation of x.
However, the binding semantics are slightly different, the right version allows
e to use names introduced by x, i.e., we allow recursive bindings, although the
system should be extended to be more conservative and disallow such bindings.

To add match we must accommodate for syntactic and semantic differences
between the two languages; sensible syntax in OCaml does not necessarily fit in
Lua, and Lua has a distinction between statements and expressions while OCaml
does not. We thus create a new syncon that expands to the match-syncon from
OCaml, which we import. This choice mirrors one from regular programming:
do you use an external library directly, or do you wrap it in an interface that
is more convenient for the current application? Different situations will produce
different answers.
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Ambiguity Errors. Consider the following OCaml code:

1 let result = match 1 with
2 | 2 -> match "two" with
3 | str -> str
4 | 4 -> "four"
5 let list = [a; b]

Lines 1 through 4 are the example from Sect. 3.1. Our prototype produces the
following ambiguity errors. Since this is a pure research prototype, little effort
has been spent on the presentation of the errors, only on what information is
presented.

Ambiguity: "1:14-4:16"
(("match", "1:14-4:16"),
[("intLit", "1:20-1:21"),
("intPat", "2:5-2:6"),
("match", "2:10-3:22"),
("intPat", "4:5-4:6"),
("stringLit", "4:10-4:16")])

(("match", "1:14-4:16"),
[("intLit", "1:20-1:21"),
("intPat", "2:5-2:6"),
("match", "2:10-4:16")])

Ambiguity: "5:12-5:18"
(("list", "5:12-5:18"),
[("seqComp", "5:13-5:17")])

(("list", "5:12-5:18"),
[("variable", "5:13-5:14"),
("variable", "5:16-5:17")])

The first ambiguity covers the match expression on lines 1 through 4, and has
two interpretations. Both are match-expressions and contain an integer literal
(1) and an integer pattern (2). Then comes the difference: either there is a nested
match ending on line 3, then an integer pattern and a string literal (i.e., another
match-arm), or a single nested match that ends on line 4. This agrees with the
conclusion in Sect. 3.1: the match-arm on line 4 could belong to either match.

The second error states that the right hand side of line 5 is either (i) a
list of one element (a sequential composition), or (ii) a list of two elements
(two variables). The rewrite required to handle this case in our prototype as in
the canonical implementation is possible, but requires duplicating syncons. An
automatic method to perform the rewrite without duplication seems plausible,
but is left for future work.

Note that the errors highlight only the ambiguous parts, let result = and
let list = are not included, since they are unambiguous.

Contextual Information. Certain syncons require information from their con-
text, e.g., a pattern needs the value being matched, and return needs to know
which function to return from. There are two intuitive ways we might attempt
to provide this information:

– Have a parent syncon bind a name which the child uses. This does not work
because the system prevents all forms of name capture.

– Have the child syncon produce a function, which the parent syncon then
applies to the information required. This works, but the function introduces
a scope, which hides any adjacent bindings exposed by the child.
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To work around this, our base language contains a form of anonymous macros;
functions that do not introduce a scope, must be applied immediately, and take
an opaque piece of syntax as an argument.

However, using anonymous macros in this fashion introduces coupling
between syncons: if one syncon requires contextual information, then all syncons
of the same syntax type must produce an anonymous macro and the information
must be threaded to children, even if the syncon itself does not require it.

Other Considerations and Limitations. This work introduces the new syn-
con approach, which enables both fine-grained composability and syntactic free-
dom. There are, however, a few limitations with the work presented so far.
Specifically, (i) the binding semantics for syncons have no concept of modules
or namespaces, and (ii) syncons cannot be disambiguated by whether their con-
tained identifiers are bound or not, which precludes, e.g., pattern match and
unification as done in Prolog. We consider these limitations as future work.
Additionally, we wish to evaluate the approach on complete languages, rather
than the subsets here, as well as more common language compositions, e.g.,
HTML and JavaScript.

6 Related Work

Macros in the Lisp family of languages provide a small unit of composition, but
are limited in their syntax; a Lisp macro still looks like Lisp. Racket [10], a
Lisp language oriented towards language creation, allows a language designer to
supply their own parser, circumventing this limitation. However, such a parser
loses the small unit of composition; the syntax is defined as a whole rather
than as a composition of smaller language constructs. λm [13] introduces a type
system that prevents macros from introducing binding errors, thus providing an
automated expansion checker that our approach currently lacks. However, λm

only supports nested bindings, adjacent bindings are not expressible. Romeo [22]
goes further and allows procedural macros, as opposed to pattern-based ones,
and thus features a more powerful macro system than both λm and this paper.
Binding safety is again ensured by a type system, with what amounts to algebraic
data types describing the abstract syntax trees that are processed. However, this
system runs into the expression problem; old macros cannot be reused if new
constructs are added to the language being transformed. Additionally, both λm

and Romeo are still constrained to Lisp syntax.
SoundX [16] takes a different approach to macros: they rewrite type deriva-

tion trees instead of syntax trees. The resulting macros can be checked to intro-
duce neither binding errors nor type errors. As an additional benefit, they can
also use type information present in the derivation but not explicitly present
in the source code. However, the concrete syntax (specified with a context free
grammar using SDF [12]) of a language described with SoundX has no guaran-
tees on ambiguity, nor a way to deal with any ambiguity that shows up.
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Compared to various embedded approaches to DSLs [1,2,4,11,14,24,27], our
approach gives greater syntactical flexibility, but less convenient expressive power
due to the limited nature of the DSL for specifying the expansion. Wyvern [17]
gives a pragmatic alternative to specifying complete new languages; new types
can be given custom literal syntax, but the rest of the language is fixed. Silkensen
et al. [21] provide an approach for parsing composed grammars efficiently using
what amounts to type information for bound identifiers.

JastAdd [8] allows modularly defining languages using an attribute grammar-
based system, but requires an external parser. The system allows smaller units
of composition than a language, namely modules. However, extra care must be
taken to produce features that can be reused with granularity. Silver [25] (a
more concise description and example of use can be found in [15]), also based
on attribute grammars, includes a parser (Copper [26]) and gives more guaran-
tees under composition: the composed concrete syntax is unambiguous and no
attributes are missing. However, syntax is limited to LALR(1) and each exten-
sion construct must start with a distinguishing terminal, to signal the transition
from core language to extension language.

The work presented in this paper is based on the first author’s Master’s thesis
[18], which has not been formally published before.

7 Conclusion

In this paper, we introduce the concept of a syntactical construct (syncon) that
enables both fine-grained composability of language constructs and syntactic
freedom for the syntax of the defined language. As a consequence of this flex-
ibility, we show how dynamic ambiguity detection is an alternative to static
ambiguity checking. The syncon approach is implemented in Haskell, and evalu-
ated by specifying small subsets of OCaml and Lua using syncons, where certain
language constructs are imported from the other language. Although the cur-
rent implementation has certain limitations, we contend that dynamic ambiguity
checking and fine-grained language construct composition can be good comple-
ments to pure static and more restrictive approaches. Combining the benefits
of both static and dynamic detection—using a form of hybrid detection and
reporting—can be an interesting direction for future work.
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