
José Júlio Alferes
Moa Johansson (Eds.)

 123

LN
CS

 1
13

72

21th International Symposium, PADL 2019
Lisbon, Portugal, January 14–15, 2019
Proceedings

Practical Aspects of
Declarative Languages

Lecture Notes in Computer Science 11372

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

José Júlio Alferes • Moa Johansson (Eds.)

Practical Aspects of
Declarative Languages
21th International Symposium, PADL 2019
Lisbon, Portugal, January 14–15, 2019
Proceedings

123

Editors
José Júlio Alferes
Universidade Nova de Lisboa
Lisbon, Portugal

Moa Johansson
Chalmers University of Technology
Gothenburg, Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-05997-2 ISBN 978-3-030-05998-9 (eBook)
https://doi.org/10.1007/978-3-030-05998-9

Library of Congress Control Number: 2018964133

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-1097-8278
https://doi.org/10.1007/978-3-030-05998-9

Preface

This volume contains the papers presented at the 21st Symposium on Practical Aspects
of Declarative Languages (PADL 2019), held during January 14–15, 2019, in Lisbon,
Portugal. The symposium was co-located with the 46th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL 2019).

PADL is a well-established forum for researchers and practitioners to present
original work emphasizing novel applications and implementation techniques for all
forms of declarative concepts, including, but not limited to, logic, constraint, and
functional languages.

Declarative languages build on sound theoretical bases to provide attractive
frameworks for application development. These languages have been successfully
applied to many different real-world situations, ranging from database management to
active networks, software engineering, natural language processing, ontologies, and
decision support systems.

New developments in theory and implementation have opened up new application
areas. At the same time, applications of declarative languages to novel problems raise
numerous interesting research issues. Well-known questions include designing for
scalability, language extensions for application deployment, and programming envi-
ronments. Thus, applications drive the progress in the theory and implementation of
declarative systems and benefit from this progress.

Originally established as a workshop (PADL 1999 in San Antonio, Texas), the
PADL series developed into a regular annual symposium; previous editions took place
in San Antonio, Texas (1999), Boston, Massachusetts (2000), Las Vegas, Nevada
(2001), Portland, Oregon (2002), New Orleans, Louisiana (2003), Dallas, Texas
(2004), Long Beach, California (2005), Charleston, South Carolina (2006), Nice,
France (2007), San Francisco, California (2008), Savannah, Georgia (2009), Madrid,
Spain (2010), Austin, Texas (2012), Rome, Italy (2013), and San Diego, California
(2014), Portland, Oregon (2015), St. Petersburg, Florida (2016), and Paris, France
(2017), and Los Angeles, California (2018).

This year, the Program Committee received 35 submissions. Each submission was
reviewed by three Program Committee members, and 14 papers were accepted, based
only on the merit of each submission and regardless of scheduling or space constraints.

We would like to express thanks to the Association of Logic Programming
(ALP) and the Association for Computing Machinery (ACM) for their support of the
symposium, and Springer for the longstanding, successful cooperation with the PADL
series. We are very grateful to the 29 members of the PADL 2018 Program Committee
and external reviewers for their invaluable work and for the precious help in selecting
the two best papers. The chairs of POPL 2019 were also of great help in steering the
organizational details of the event.

We are happy to note that the conference was successfully managed with the help of
EasyChair.

January 2018 José Júlio Alferes
Moa Johansson

VI Preface

Organization

Program Committee

Erika Abraham RWTH Aachen University, Germany
Jose Julio Alferes Universidade NOVA de Lisboa, Portugal
Marcello Balduccini Saint Joseph’s University, USA
Lars Bergstrom Mozilla Research
Edwin Brady University of St. Andrews, UK
Manuel Carro Technical University of Madrid (UPM) and IMDEA

Software Institute, Spain
Stefania Costantini University of L’Aquila, Italy
Ornela Dardha University of Glasgow, UK
Esra Erdem Sabanci University, Turkey
Wolfgang Faber Alpen-Adria-Universität Klagenfurt, Austria
Marco Gavanelli University of Ferrara, Italy
Martin Gebser University of Potsdam, Germany
Alex Gerdes University of Gothenburg, Sweden
Jurriaan Hage Utrecht University, The Netherlands
Kevin Hamlen The University of Texas at Dallas, USA
Moa Johansson Chalmers University of Technology, Sweden
Ekaterina

Komendantskaya
Heriot-Watt University, UK

Ramana Kumar DeepMind
Nicola Leone University of Calabria, Italy
Geoffrey Mainland Drexel University, USA
Marco Maratea DIBRIS, University of Genoa, Italy
Emilia Oikarinen University of Helsinki, Finland
Axel Polleres Vienna University of Economics and Business, Austria
Enrico Pontelli New Mexico State University, USA
Ricardo Rocha University of Porto, Portugal
Konstantin Schekotihin Alpen-Adria Universität Klagenfurt, Austria
Meera Sridhar University of North Carolina Charlotte, USA
Paul Tarau University of North Texas, USA
Lukasz Ziarek SUNY Buffalo, USA

Additional Reviewers

Alviano, Mario
Côrte-Real, Joana
Dodaro, Carmine
Farka, Frantisek
Kaminski, Roland
Leofante, Francesco

Obermeier, Philipp
Ogris, Paul
Perri, Simona
Son, Tran Cao
Wanko, Philipp

Contents

Strong Equivalence and Program’s Structure in Arguing Essential
Equivalence Between First-Order Logic Programs . 1

Yuliya Lierler

Automatic Program Rewriting in Non-Ground Answer Set Programs 19
Nicholas Hippen and Yuliya Lierler

Personalized Course Schedule Planning Using Answer Set Programming 37
Muhammed Kerem Kahraman and Esra Erdem

An ASP Based Approach to Answering Questions for Natural
Language Text . 46

Dhruva Pendharkar and Gopal Gupta

Natural Language Generation from Ontologies . 64
Van Nguyen, Tran Cao Son, and Enrico Pontelli

Improving Residuation in Declarative Programs . 82
Michael Hanus

Incremental Evaluation of Lattice-Based Aggregates in Logic
Programming Using Modular TCLP . 98

Joaquín Arias and Manuel Carro

A Combinatorial Testing Framework for Intuitionistic Propositional
Theorem Provers. 115

Paul Tarau

Faster Coroutine Pipelines: A Reconstruction . 133
Ruben P. Pieters and Tom Schrijvers

Classes of Arbitrary Kind. 150
Alejandro Serrano and Victor Cacciari Miraldo

Distributed Protocol Combinators . 169
Kristoffer Just Arndal Andersen and Ilya Sergey

Creating Domain-Specific Languages by Composing Syntactical Constructs . . . 187
Viktor Palmkvist and David Broman

Proof-Carrying Plans . 204
Christopher Schwaab, Ekaterina Komendantskaya, Alasdair Hill,
František Farka, Ronald P. A. Petrick, Joe Wells, and Kevin Hammond

Static Partitioning of Spreadsheets for Parallel Execution 221
Alexander Asp Bock

Author Index . 239

X Contents

Strong Equivalence and Program’s
Structure in Arguing Essential

Equivalence Between First-Order Logic
Programs

Yuliya Lierler(B)

University of Nebraska at Omaha, Omaha, USA
ylierler@unomaha.edu

Abstract. Answer set programming is a prominent declarative pro-
gramming paradigm used in formulating combinatorial search problems
and implementing distinct knowledge representation formalisms. It is
common that several related and yet substantially different answer set
programs exist for a given problem. Sometimes these encodings may dis-
play significantly different performance. Uncovering precise formal links
between these programs is often important and yet far from trivial. This
paper claims the correctness of a number of interesting program rewrit-
ings. Notably, they assume programs with variables and such important
language features as choice, disjunction, and aggregates.

1 Introduction

Answer set programming (ASP) is a prominent knowledge representation
paradigm with roots in logic programming [2]. It is frequently used for address-
ing combinatorial search problems. It has also been used to provide implemen-
tations and/or translational semantics to other knowledge representation for-
malisms such as action languages including language AL [13, Sect. 8]. In ASP,
when a software engineer tackles a problem domain it is a common practice
to first develop a/some solution/encoding to a problem and then rewrite this
solution/encoding iteratively using, for example, a projection technique to gain
a better performing encoding [3]. These common processes bring a question to
light: What are the formal means to argue the correctness of renewed formu-
lations of the original encoding to a problem or, in other words, to argue that
these distinct formulations are essentially the same—in a sense that they capture
solutions to the same problem.

It has been long recognized that studying various notions of equivalence
between programs under the answer set semantics is of crucial importance.
Researchers proposed and studied strong equivalence [18,19], uniform equiva-
lence [4], relativized strong and uniform equivalences [23]. Also, equivalences
relative to specified signatures [6,15] were considered. In most of the cases the

c© Springer Nature Switzerland AG 2019
J. J. Alferes and M. Johansson (Eds.): PADL 2019, LNCS 11372, pp. 1–18, 2019.
https://doi.org/10.1007/978-3-030-05998-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05998-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-05998-9_1

2 Y. Lierler

programs considered for studying the distinct forms of equivalence are propo-
sitional. Works [5,7,15,19,22] are exceptions. These authors consider programs
with variables (or, first-order programs). Yet, it is first-order programs that ASP
knowledge engineers develop. Thus, theories on equivalence between programs
with variables are especially important as they can lead to more direct arguments
about properties of programs used in practice. On the one hand, this work can
be seen as a continuation of work by Eiter et al. [5], where we consider com-
mon program rewritings using a more complex dialect of logic programs. On the
other hand, it grounds the concept of program’s synonymity studied by Pearce
and Valverde [22] in a number of practical examples. Namely, we illustrate how
formal results on strong equivalence developed earlier and in this work help us
to construct precise claims about programs in practice.

In this paper, we systematically study some common rewritings on first-
order programs utilized by ASP practitioners. As a running and motivating
example that grounds general theoretical presentation of this work into spe-
cific context, we consider two formalizations of a planning module given in [13,
Sect. 9]. Namely,

1. a Plan-choice formalization that utilizes choice rules and aggregate expres-
sions,

2. a Plan-disj formalization that utilizes disjunctive rules.

Such a planning module is meant to be augmented with an ASP representa-
tion of a dynamic system description expressed in action language AL . In [13],
Gelfond and Kahl formally state in Proposition 9.1.1 that the answer sets of
program Plan-disj augmented with a given system description encode all the
“histories/plans” of a specified length in the transition system captured by the
system description. Although both Plan-choice and Plan-disj programs intu-
itively encode the same knowledge the exact connection between them is not
immediate. In fact, these programs (i) do not share the same signature; (ii) use
distinct syntactic constructs such as choice, disjunction, aggregates in the spec-
ification of a problem. Here, we establish a one-to-one correspondence between
the answer sets of these programs on their properties. Thus, the aforementioned
formal claim about Plan-disj translates into the same claim for Plan-choice. It is
due to remark that although in [13], Gelfond and Kahl use the word “module”
when formalizing a planning domain they utilize this term only informally to
refer to a collection of rules responsible for formalizing “planning”.

In this paper we use a dialect of ASP language called RASPL-1 [17]. Notably,
this language combines choice, aggregate, and disjunction constructs. Its seman-
tics is given in terms of the SM operator, which exemplifies the approach to
the semantics of first-order programs that bypasses grounding. Relying on SM-
based semantics allows us to refer to earlier work that study the formal prop-
erties of first-order programs [9,10] using this operator. We state a sequence of
formal results on programs rewritings and/or programs’ properties. Some dis-
cussed rewritings are well known and frequently used in practice. Often, their
correctness is an immediate consequence of well known properties about logic
programs (e.g., relation between intuitionistically provable first-order formulas

Strong Equivalence and Program’s Structure 3

and strongly equivalent programs viewed as such formulas). Other discussed
rewritings are far less straightforward and require elaborations on previous the-
oretical findings about the operator SM. It is well known that propositional
head-cycle-free disjunctive programs [1] can be rewritten to nondisjunctive pro-
grams by means of simple syntactic transformation. Here we not only generalize
this result to the case of first-order programs, but also illustrate that at times
we can remove disjunction from parts of a program even though the program is
not head-cycle-free. This result is relevant to local shifting and component-wise
shifting discussed in [5] and [16] respectively. We also generalize so called Com-
pletion Lemma and Lemma on Explicit Definitions stated in [8,11] for the case
of propositional theories and propositional logic programs. These generalizations
are applicable to first-order programs.

Summary. We view this paper as an important step towards bringing theories
about program’s equivalence to providing practical solutions in the realm of ASP
as it is used by knowledge engineers. A portfolio of formal results on program
rewritings stated in this paper can serve as a solid theoretical basis for

– a software system that may automatically produce new variants of logic pro-
grams (some of these encodings will often exhibit better performance) by
utilizing studied rewritings;

– a proof technique for arguing the correctness of a logic program. This proof
technique assumes the existence of a “gold standard” logic program formal-
izing a problem at hand, in a sense that this gold standard is trusted to
produce correct results. A proper portfolio of known program rewritings and
their properties equips ASP practitioners with powerful tools to argue that
another encoding is essentially the same to the gold standard.

Paper Outline. We start this paper by presenting the Plan-choice and Plan-
disj programs. We then introduce a logic program language called RASPL-1 [17].
The semantics of this language is given in terms of the SM operator. We then
proceed to the statement of a sequence of formal results on program’s rewritings.

2 Running Example and Observations

This section presents two ASP formalizations of a domain independent planning
module given in [13, Sect. 9]. Such planning module is meant to be augmented
with a logic program encoding a system description expressed in action lan-
guage AL that represents a domain of interest (in Sect. 8 of their book [13],
Gelfond and Kahl present a sample Blocks World domain representation). Two
formalizations of a planning module are stated here almost verbatim. Predicate
names o and sthHpd intuitively stand for occurs and something happend, respec-
tively. We eliminate classical negation symbol by (i) utilizing auxiliary predicates
non o in place of ¬o; and (ii) introducing rule ← o(A, I), non o(A, I). This is a
standard practice and ASP systems perform the same procedure when process-
ing classical negation symbol ¬ occurring in programs (in other words, symbol
¬ is treated as a syntactic sugar).

4 Y. Lierler

Let SG(I) abbreviate step(I), not goal(I), I �= n, where n is some integer
specifying a limit on a length of an allowed plan. The first formalization called
Plan-choice follows:

success ← goal(I), step(I).
← not success.

← o(A, I), non o(A, I) (1)
non o(A, I) ← action(A), step(I), not o(A, I) (2)
{o(A, I)} ← action(A), SG(I) (3)
← 2 ≤ #count{A : o(A, I)}, SG(I). (4)
← not 1 ≤ #count{A : o(A, I)}, SG(I) (5)

One more remark is in order. In [13], Gelfond and Kahl list only a single rule

1{o(A, I) : action(A)}1 ← SG(I)

in place of rules (3–5). Note that this single rule is an abbreviation for rules
(3–5) [12].

The second formalization that we call a Plan-disj encoding is obtained from
Plan-choice by replacing rules (3–5) with the following:

o(A, I) | non o(A, I) ← action(A), SG(I) (6)
← o(A, I), o(A′, I), action(A), action(A′), A �= A′ (7)
sthHpd(I) ← o(A, I) (8)
← not sthHpd(I), SG(I). (9)

It is important to note several facts about the considered planning module encod-
ings. These planning modules are meant to be used with logic programs that
capture (i) a domain of interest originally stated as a system description in
the action language AL ; (ii) a specification of an initial configuration; (iii) a
specification of a goal configuration. The process of encoding (i–iii) as a logic
program, which we call a Plan-instance encoding, follows a strict procedure. As a
consequence, some important properties hold about any Plan-instance. To state
these it is convenient to recall a notion of a simple rule and define a “terminal”
predicate.

A signature is a set of function and predicate symbols/constants. A function
symbol of arity 0 is an object constant. A term is an object constant, an object
variable, or an expression of the form f(t1, . . . , tm), where f is a function symbol
of arity m and each ti is a term. An atom is an expression of the form p(t1, . . . , tn)
or t1 = t2, where p is an n-ary predicate symbol and each ti is a term. A simple
body has the form a1, . . . , am, not am+1, . . . , not an where ai is an atom and n
is possible 0. Expression a1, . . . , am forms the positive part of a body. A simple
rule has a form h1 | · · · | hk ← Body or {h1} ← Body where hi is an atom
and Body is a simple body. We now state a recursive definition of a terminal
predicate with respect to a program. Let i be a nonnegative integer. A predicate

Strong Equivalence and Program’s Structure 5

that occurs only in rules whose body is empty is called 0-terminal. We call a
predicate i + 1-terminal when it occurs only in the heads of simple rules (left
hand side of an arrow), furthermore (i) in these rules all predicates occurring in
their positive parts of the bodies must be at most i-terminal and (ii) at least
one of these rules is such that some predicate occurring in its positive part of
the body is i-terminal. We call any x-terminal predicate terminal. For example,
in program

block(b0). block(b1).
loc(X) ← block(X). loc(table).

block is a 0-terminal predicate, loc is a 1-terminal predicate; and both predicates
are terminal.

We are now ready to state important Facts about any possible Plan-instance
and, consequently, about the considered planning modules

1. Predicate o never occurs in the heads of rules in Plan-instance.
2. Predicates action and step are terminal in Plan-instance as well as in Plan-

instance augmented by either Plan-choice or Plan-disj.
3. By Facts 1 and 2, predicate o is terminal in Plan-instance augmented by

either Plan-choice or Plan-disj.
4. Predicate sthHpd never occurs in the heads of the rules in Plan-instance.

In the remainder of the paper we will ground considered theoretical results by
illustrating how they formally support the following Observations:

1. In the presence of rule (2) it is safe to add a rule

non o(A, I) ← not o(A, I), action(A), SG(I) (10)

into an arbitrary program. By “safe to add/replace” we understand that the
resulting program has the same answer sets as the original one.

2. It is safe to replace rule (4) with rule

← o(A, I), o(A′, I), SG(I), A �= A′ (11)

within an arbitrary program.
3. In the presence of rules (1) and (2), it is safe to replace rule (3) with rule

o(A, I) ← not non o(A, I), action(A), SG(I) (12)

within an arbitrary program.
4. Given the syntactic features of the Plan-choice encoding and any Plan-

instance encoding, it is safe to replace rule (3) with rule (6). The argument
utilizes Observations 1 and 3. Fact 4 forms an essential syntactic feature.

5. Given the syntactic features of the Plan-choice encoding and any Plan-
instance encoding, it is safe to replace rule (4) with rule (7). The argument
utilizes Observation 2, i.e., it is safe to replace rule (4) with rule (11). An
essential syntactic feature relies on Fact 1, and the facts that (i) rule (3) is
the only one in Plan-choice, where predicate o occurs in the head; and (ii)
rule (7) differs from (11) only in atoms that are part of the body of (3).

6 Y. Lierler

6. By Fact 4 and the fact that sthHpd does not occur in any other rule but (9)
in Plan-disj, the answer sets of the program obtained by replacing rule (5)
with rules (8) and (9) are in one-to-one correspondence with the answer sets
of the program Plan-disj extended with Plan-instance.

Essential Equivalence Between Two Planning Modules: These Observa-
tions are sufficient to claim that the answer sets of the Plan-choice and Plan-disj
programs (extended with any Plan-instance) are in one-to-one correspondence.
We can capture the simple relation between the answer sets of these programs
by observing that dropping the atoms whose predicate symbol is sthHpd from an
answer set of the Plan-disj program results in an answer set of the Plan-choice
program.

3 Preliminaries: RASPL-1 Logic Programs, Operator
SM, Strong Equivalence

We now review a logic programming language RASPL-1 [17]. This language
is sufficient to capture choice, aggregate, and disjunction constructs (as used
in Plan-choice and Plan-disj). There are distinct and not entirely compatible
semantics for aggregate expressions in the literature. We refer the interested
reader to the discussion by Lee et al. in [17] on the roots of semantics of aggre-
gates considered in RASPL-1.

An aggregate expression is an expression of the form

b ≤ #count{x : L1, . . . , Lk} (13)

(k ≥ 1), where b is a positive integer (bound), x is a list of variables (possibly
empty), and each Li is an atom possibly preceded by not. This expression states
that there are at least b values of x such that conditions L1, . . . , Lk hold.

A body is an expression of the form

e1, . . . , em, not em+1, . . . , not en (14)

(n ≥ m ≥ 0) where each ei is an aggregate expression or an atom. A rule is an
expression of either of the forms

a1 | · · · | al ← Body (15)
{a1} ← Body (16)

(l ≥ 0) where each ai is an atom, and Body is the body in the form (14). When
l = 0, we identify the head of (15) with symbol ⊥ and call such a rule a denial.
When l = 1, we call rule (15) a defining rule. We call rule (16) a choice rule. A
(logic) program is a set of rules. An atom of the form not t1 = t2 is abbreviated
by t1 �= t2.

It is easy to see that rules in the Plan-choice and Plan-disj encodings are in
the RASPL-1 language.

Strong Equivalence and Program’s Structure 7

3.1 Operator SM

Typically, the semantics of logic programs with variables is given by stating that
these rules are an abbreviation for a possibly infinite set of propositional rules.
Then the semantics of propositional programs is considered. The SM operator
introduced by Ferraris et al. in [9] gives a definition for the semantics of first-
order programs bypassing grounding. It is an operator that takes a first-order
sentence F and a tuple p of predicate symbols and produces the second order
sentence that we denote by SMp[F].

We now review the operator SM. The symbols ⊥,∧,∨,→, ∀, and ∃ are viewed
as primitives. The formulas ¬F and � are abbreviations for F → ⊥ and ⊥ →
⊥, respectively. If p and q are predicate symbols of arity n then p ≤ q is an
abbreviation for the formula ∀x(p(x) → q(x)), where x is a tuple of variables
of length n. If p and q are tuples p1, . . . , pn and q1, . . . , qn of predicate symbols
then p ≤ q is an abbreviation for the conjunction (p1 ≤ q1)∧· · ·∧(pn ≤ qn), and
p < q is an abbreviation for (p ≤ q) ∧ ¬(q ≤ p). We apply the same notation
to tuples of predicate variables in second-order logic formulas. If p is a tuple
of predicate symbols p1, . . . , pn (not including equality), and F is a first-order
sentence then SMp[F] denotes the second-order sentence

F ∧ ¬∃u(u < p) ∧ F ∗(u),

where u is a tuple of distinct predicate variables u1, . . . , un, and F ∗(u) is defined
recursively:

– pi(t)∗ is ui(t) for any tuple t of terms;
– F ∗ is F for any atomic formula F that does not contain members of p;1

– (F ∧ G)∗ is F ∗ ∧ G∗;
– (F ∨ G)∗ is F ∗ ∨ G∗;
– (F → G)∗ is (F ∗ → G∗) ∧ (F → G);
– (∀xF)∗ is ∀xF ∗;
– (∃xF)∗ is ∃xF ∗.

Note that if p is the empty tuple then SMp[F] is equivalent to F . For intuitions
regarding the definition of the SM operator we direct the reader to [9, Sects. 2.3,
2.4].

By σ(F) we denote the set of all function and predicate constants occurring
in first-order formula F (not including equality). We will call this the signature
of F . An interpretation I over σ(F) is a p-stable model of F if it satisfies SMp[F],
where p is a tuple of predicates from σ(F). We note that a p-stable model of F
is also a model of F .

By π(F) we denote the set of all predicate constants (excluding equality)
occurring in a formula F . Let F be a first-order sentence that contains at least

1 This includes equality statements and the formula ⊥.

8 Y. Lierler

one object constant. We call an Herbrand interpretation of σ(F) that is a π(F)-
stable model of F an answer set.2 Theorem 1 from [9] illustrates in which sense
this definition can be seen as a generalization of a classical definition of an answer
set (via grounding and reduct) for typical logic programs whose syntax is more
restricted than syntax of programs considered here.

3.2 Semantics of Logic Programs

From this point on, we view logic program rules as alternative notation for
particular types of first-order sentences. We now define a procedure that turns
every aggregate, every rule, and every program into a formula of first-order
logic, called its FOL representation. First, we identify the logical connectives ∧,
∨, and ¬ with their counterparts used in logic programs, namely, the comma,
the disjunction symbol |, and connective not. This allows us to treat L1, . . . , Lk

in (13) as a conjunction of literals. The FOL representation of an aggregate
expressions of the form b ≤ #count{x : F (x)} follows

∃x1 · · ·xb
[∧
1≤i≤b

F (xi) ∧
∧

1≤i<j≤b

¬(xi = xj)
]
, (17)

where x1 · · ·xb are lists of new variables of the same length as x. The FOL
representations of logic rules of the form (15) and (16) are formulas

∀̃(Body → a1 ∨ · · · ∨ al) and ∀̃(¬¬a1 ∧ Body → a1),

where each aggregate expression in Body is replaced by its FOL representation.
Symbol ∀̃ denotes universal closure.

For example, expression SG(I) stands for formula step(I)∧¬goal(I)∧¬I = n
and rules (3) and (5) in the Plan-choice encoding have the FOL representation:

∀̃(¬¬o(A, I) ∧ SG(I) ∧ action(A) → o(A, I)
)

(18)

∀I
(¬∃A[o(A, I)] ∧ SG(I) → ⊥)

(19)

The FOL representation of rule (4) is the universal closure of the following
implication

(∃AA′(o(A, I) ∧ o(A′, I) ∧ ¬A = A′) ∧ SG(I)) → ⊥.

We define a concept of an answer set for logic programs that contain at least one
object constant. This is inessential restriction as typical logic programs with-
out object constants are in a sense trivial. In such programs, whose semantics is

2 An Herbrand interpretation of a signature σ (containing at least one object constant)
is such that its universe is the set of all ground terms of σ, and every ground term
represents itself. An Herbrand interpretation can be identified with the set of ground
atoms (not containing equality) to which it assigns the value true.

Strong Equivalence and Program’s Structure 9

given via grounding, rules with variables are eliminated during grounding. Let Π
be a logic program with at least one object constant. (In the sequel we often
omit expression “with at least one object constant”.) By Π̂ we denote its FOL
representation. (Similarly, for a body Body or a rule R, by ̂Body or R̂ we denote
their FOL representations.) An answer set of Π is an answer set of its FOL rep-
resentation Π̂. In other words, an answer set of Π is an Herbrand interpretation
of Π̂ that is a π(Π̂)-stable model of Π̂, i.e., a model of

SM π(̂Π)[Π̂]. (20)

Sometimes, it is convenient to identify a logic program Π with its semantic coun-
terpart (20) so that formal results stated in terms of SM operator immediately
translate into the results for logic programs.

3.3 Review: Strong Equivalence

We restate the definition of strong equivalence given in [9] and recall some of
its properties. First-order formulas F and G are strongly equivalent if for any
formula H, any occurrence of F in H, and any tuple p of distinct predicate
constants, SMp[H] is equivalent to SMp[H ′], where H ′ is obtained from H by
replacing F by G. Trivially, any strongly equivalent formulas are such that their
stable models coincide (relative to any tuple of predicate constants). In [19],
Ferraris et al. show that first-order formulas F and G are strongly equivalent
if they are equivalent in SQHT= logic—an intermediate logic between classical
and intuitionistic logics. We recall that every formula provable in the natural
deduction system without the law of the excluded middle (F∨¬F) is a theorem in
intuitionistic logic. Also, every formula provable using natural deduction, where
the axiom of the law of the excluded middle (F ∨ ¬F) is replaced by the weak
law of the excluded middle (¬F ∨ ¬¬F), is a theorem of SQHT=.

The definition of strong equivalence between first-order formulas paves the
way to a definition of strong equivalence for logic programs. A logic program Π1

is strongly equivalent to logic program Π2 when for any program Π,

SM
π(̂Π ∪ Π1)

[̂Π ∪ Π1] is equivalent to SM
π(̂Π ∪ Π2)

[̂Π ∪ Π2].

It immediately follows that logic programs Π1 and Π2 are strongly equivalent if
first-order formulas Π̂1 and Π̂2 are equivalent in logic of SQHT=.

We now review an important result about properties of denials.

Theorem 1 (Theorem 3 [9]). For any first-order formulas F and G and arbi-
trary tuple p of predicate constants, SMp[F ∧¬G] is equivalent to SMp[F]∧¬G.

As a consequence, p-stable models of F ∧¬G can be characterized as the p-stable
models of F that satisfy first-order logic formula ¬G. Consider any denial ←
Body . Its FOL representation has the form ∀̃(Body → ⊥) that is intuitionistically
equivalent to formula ¬∃̃Body . Thus, Theorem 1 tells us that given any denial
of a program it is safe to compute answer sets of a program without this denial
and a posteriori verify that the FOL representation of a denial is satisfied.

10 Y. Lierler

Corollary 1. Two denials are strongly equivalent if their FOL representations
are classically equivalent.

This corollary is also an immediate consequence of the Replacement Theorem
for intuitionistic logic [21, Sect. 13.1] stated below.

Replacement Theorem. If F is a first-order formula containing a subformula
G and F ′ is the result of replacing that subformula by G′ then ∀̃(G ↔ G′)
intuitionistically implies F ↔ F ′.

4 Rewritings

4.1 Rewritings via Pure Strong Equivalence

Strong equivalence can be used to argue the correctness of some program rewrit-
ings practiced by ASP software engineers. Here we state several theorems about
strong equivalence between programs. Observations 1, 2, and 3 are consequences
of these results.

We say that body Body subsumes body Body ′ when Body ′ has the form
Body ,Body ′′ (note that an order of expressions in a body is immaterial). We say
that a rule R subsumes rule R′ when heads of R and R′ coincide while body of
R subsumes body of R′. For example, rule (2) subsumes rule (10).

Subsumption Rewriting: Let R′ denote a set of rules subsumed by rule
R. It is easy to see that formulas R̂ and R̂ ∧ R̂′ are intuitionistically equiva-
lent. Thus, program composed of rule R and program {R} ∪ R′ are strongly
equivalent. It immediately follows that Observation 1 holds. Indeed, rule (2) is
strongly equivalent to the set of rules composed of itself and (10). Indeed, rule (2)
subsumes rule (10).

Removing Aggregates: The following theorem is an immediate conse-
quence of the Replacement Theorem for intuitionistic logic.

Proposition 1. Program

H ← b ≤ #count{x : F (x)}, G (21)

is strongly equivalent to program

H ← ,
1≤i≤b

F (xi) ,
1≤i<j≤b

xi �= xj , G (22)

where G and H have no occurrences of variables in xi (1 ≤ i ≤ b).

Proposition 1 shows us that Observation 2 is a special case of a more general
fact. Indeed, take rules (4) and (11) to be the instances of rules (21) and (22)
respectively.

We note that the Replacement Theorem for intuitionistic logic also allows us
to immediately conclude the following.

Strong Equivalence and Program’s Structure 11

Corollary 2. Program H ← G is strongly equivalent to program H ←
G′ when ∀̃(Ĝ ↔ Ĝ′).

Proposition 1 is a special case of this corollary. We could use Corollary 2 to
illustrate the correctness of Observation 2. Yet, the utility of Proposition 1 is that
it can guide syntactic analysis of a program with a goal of equivalent rewriting
(for instance, for the sake of performance or clarity). In contrast, Corollary 2
equips us with a general semantic condition that can be utilized in proving the
syntactic properties of programs in spirit of Proposition 1.

Replacing Choice Rule by Defining Rule: Theorem 2 shows us that
Observation 3 is an instance of a more general fact.

Theorem 2. Program

← p(x), q(x) (23)
q(x) ← not p(x), F1 (24)
{p(x)} ← F1, F2 (25)

is strongly equivalent to program composed of rules (23), (24) and rule

p(x) ← not q(x), F1, F2 (26)

Indeed, we can derive the former program (its FOL representation) from the
latter intuitionistically; and we can derive the later from the former in logic
SQHT=. For the second direction, De Morgan’s law ¬(F ∧ G) → ¬F ∨ ¬G
(provable in logic SQHT=, but not valid intuitionistically) is essential.

To illustrate the correctness of Observation 3 by Theorem 2: (i) take rules (1),
(2), (3) be the instances of rules (23), (24), (25) respectively, and (ii) rule (12)
be the instance of rule (26).

4.2 Useful Rewritings Using Structure

In this section, we study rewritings on a program that rely on its structure. We
review the concept of a dependency graph used in posing structural conditions
on rewritings.

Review: Predicate Dependency Graph. We present the concept of the
predicate dependency graph of a formula following the lines of [10]. An occur-
rence of a predicate constant, or any other subexpression, in a formula is
called positive if the number of implications containing that occurrence in the
antecedent is even, and strictly positive if that number is 0. We say that an
occurrence of a predicate constant is negated if it belongs to a subformula of the
form ¬F (an abbreviation for F → ⊥), and nonnegated otherwise.

For instance, in formula (18), predicate constant o has a strictly positive
occurrence in the consequence of the implication; whereas the same symbol o
has a negated positive occurrence in the antecedent

¬¬o(A, I) ∧ step(I) ∧ ¬goal(I) ∧ ¬I = n ∧ action(A) (27)

12 Y. Lierler

of (18). Predicate symbol action has a strictly positive non-negated occurrence
in (27). The occurrence of predicate symbol goal is negated and not positive
in (27). The occurrence of predicate symbol goal is negated and positive in (18).

An FOL rule of a first-order formula F is a strictly positive occurrence of an
implication in F . For instance, in a conjunction of two formulas (18) and (19)
the FOL rules are as follows

¬¬o(A, I) ∧ SG(I) ∧ action(A) → o(A, I) (28)
¬∃A[o(A, I)] ∧ SG(I) → ⊥. (29)

For any first-order formula F , the (predicate) dependency graph of F relative
to the tuple p of predicate symbols (excluding =) is the directed graph that (i)
has all predicates in p as its vertices, and (ii) has an edge from p to q if for some
FOL rule G → H of F

– p has a strictly positive occurrence in H, and
– q has a positive nonnegated occurrence in G.

We denote such a graph by DGp[F]. For instance, the dependence graph of
a conjunction of formulas (18) and (19) relative to all its predicate symbols
contains four vertices, namely, o, action, step, and goal, and two edges: one from
vertex o to vertex action and the other one from o to step. Indeed, consider the
only two FOL rules (28) and (29) stemming from this conjunction. Predicate
constant o has a strictly positive occurrence in the consequent o(A, I) of the
implication (28), whereas action and step are the only predicate constants in
the antecedent ¬¬o(A, I) ∧ SG(I) ∧ action(A) of (28) that have positive and
nonnegated occurrence in this antecedent. It is easy to see that a FOL rule of the
form G → ⊥, e.g., FOL rule (29), does not contribute edges to any dependency
graph.

For any logic program Π, the dependency graph of Π, denoted DG[Π], is
a directed graph of Π̂ relative to the predicates occurring in Π. For example,
let Π be composed of two rules (3) and (5). The conjunction of formulas (18)
and (19) forms its FOL representation.

Shifting. We call a logic program disjunctive if all its rules have the form (15),
where Body only contains atoms possibly preceded by not. We say that a dis-
junctive program is normal when it does not contain disjunction connective |. In
[14], Gelfond et al. defined a mapping from a propositional disjunctive program
Π to a propositional normal program by replacing each rule (15) with l > 1 in
Π by l new rules

ai ← Body , not a1, . . . not ai−1, not ai+1, . . . not al.

They showed that every answer set of the constructed program is also an answer
set of Π. Although the converse does not hold in general, in [1] Ben-Eliyahu and
Dechter showed that the converse holds if Π is “head-cycle-free”. In [20], Linke
et al. illustrated how this property holds about programs with nested expressions

Strong Equivalence and Program’s Structure 13

that capture choice rules, for instance. Here we generalize these findings further.
First, we show that shifting is applicable to first-order programs (that also allow
choice rules and aggregates in addition to disjunction). Second, we illustrate
that under certain syntactic/structural conditions on a program we may apply
shifting “locally” to some rules with disjunction and not others.

For an atom a, by a0 we denote its predicate constant. For example o(A, I)0 =
o. Let R be a rule of the form (15) with l > 1. By shiftp(R) (where p is a tuple
of distinct predicates excluding =) we denote the rule

|
1 ≤ i ≤ l, a0

i ∈ p

ai ← Body ,
1 ≤ j ≤ l, a0

j �∈ p
not aj . (30)

Let C be the set of strongly connected components in the dependency graph
of Π. By shift(R) we denote the new rules shifts(R) for every s ∈ C where s has a
predicate symbol that occurs in the head of R. Consider a sample program Πsamp

composed of two rules with disjunction

a | b | c ← d | c ←
and three defining rules

a ← b b ← a e(1). (31)

The strongly connected components of program Πsamp are {{a, b}, {c}, {d},
{e(1)}}. Expression shift(a | b | c ←) denotes rules a | b ← not c and c ←
not a, not b.

Theorem 3. Let Π be a logic program, R be a set of rules in Π of the form (15)
with l > 1. A program constructed from Π by replacing each rule R ∈ R with
shift(R) has the same answer sets as Π.

This theorem tells us, for example, that the answer sets of the sample pro-
gram Πsamp coincide with the answer sets of three distinct programs composed
of rules in (31) and rules in any of the following columns:

a | b ← not c a | b ← not c a | b | c ←
c ← not a, not b c ← not a, not b
d ← not c d | c ← d ← not c
c ← not d c ← not d

To obtain the rules in the first column take R to consist of the first two rules of
Πsamp. To obtain the second column take R to consist of the first rule of Πsamp.
To obtain the last column take R to consist of the second rule of Πsamp.

We now use Theorem 3 to argue the correctness of Observation 4. Let
Plan-choice′ denote a program constructed from the Plan-choice encoding by
replacing (3) with (6). Let Plan-choice′′ denote a program constructed from the
Plan-choice, by (i) replacing (3) with (12) and (ii) adding rule (10). Theorem 3
tells us that programs Plan-choice′ and Plan-choice′′ have the same answer sets.
Indeed,

14 Y. Lierler

1. take R to consist of rule (6) and
2. recall Facts 1, 2, and 3. Given any Plan-instance intended to use with Plan-

choice a program obtained from the union of Plan-instance and Plan-choice′

is such that o is terminal. It is easy to see that any terminal predicate in
a program occurs only in the singleton strongly connected components of a
program’s dependency graph.

Due to Observations 1 and 3, the Plan-choice encoding has the same answer
sets as Plan-choice′′ and consequently the same answer sets as Plan-choice′.
This argument accounts for the proof of Observation 4.

Completion. We now proceed at stating formal results about first-order for-
mulas and their stable models. The fact that we identify logic programs with
their FOL representations translates these results to the case of the RASPL-1
programs.

About a first-order formula F we say that it is in Clark normal form [9]
relative to the tuple/set p of predicate symbols if it is a conjunction of formulas
of the form

∀x(G → p(x)) (32)

one for each predicate p ∈ p, where x is a tuple of distinct object variables.
We refer the reader to Sect. 6.1 in [9] for the description of the intuitionistically
equivalent transformations that can convert a first-order formula, which is a FOL
representation for a RASPL-1 program (without disjunction and denials), into
Clark normal form.

The completion of a formula F in Clark normal form relative to predicate
symbols p, denoted by Compp[F], is obtained from F by replacing each con-
junctive term of the form (32) with ∀x(G ↔ p(x)).

The following Corollary is an immediate consequence of Theorem 10 in [9],
Theorem 1, and the fact that formula of the form ∀̃(Body → ⊥) is intuitionisti-
cally equivalent to formula ¬∃̃Body .

Corollary 3. For any formula G∧H such that (i) formula G is in Clark normal
form relative to p and H is a conjunction of formulas of the form ∀̃(K → ⊥),
the implication

SMp[G ∧ H] → Compp[G] ∧ H

is logically valid.

To illustrate the utility of this result we now construct an argument for the
correctness of Observation 5. This argument finds one more formal result of use:

Proposition 2. For a program Π, a first-order formula F such that every
answer set of Π satisfies F , and any two denials R and R′ such that F →
(R̂ ↔ R̂′), the answer sets of programs Π ∪ {R} and Π ∪ {R′} coincide.

Strong Equivalence and Program’s Structure 15

Consider the Plan-choice encoding without denial (4) extended with any Plan-
instance. We can partition it into two parts: one that contains the denials,
denoted by ΠH , and the remainder, denoted by ΠG. Recall Fact 1. Following the
steps described by Ferraris et al. in [9, Sect. 6.1], formula Π̂G turned into Clark
normal form relative to the predicate symbols occurring in ΠH ∪ ΠG contains
implication (18). The completion of this formula contains equivalence

∀̃(¬¬o(A, I) ∧ SG(I) ∧ action(A) ↔ o(A, I)
)
. (33)

By Corollary 3 it follows that any answer set of ΠH ∪ ΠG satisfies formula (33).
It is easy to see that an interpretation satisfies (33) and the FOL representation
of (11) if and only if it satisfies (33) and the FOL representation of denial (7).
Thus, by Proposition 2 program ΠH ∪ ΠG extended with (11) and program
ΠH ∪ ΠG extended with (7) have the same answer sets. Recall Observation 2
claiming that it is safe to replace denial (4) with denial (11) within an arbitrary
program. It follows that program ΠH ∪ ΠG extended with (7) have the same
answer sets ΠH ∪ ΠG extended with (4). This concludes the argument for the
claim of Observation 5.

We now state the last formal results of this paper. The Completion Lemma
stated next is essential in proving the Lemma on Explicit Definitions. Observa-
tion 6 follows immediately from the latter lemma.

Theorem 4 (Completion Lemma). Let F be a first-order formula and q be
a set of predicate constants that do not have positive, nonnegated occurrences
in any FOL rule of F . Let p be a set of predicates in F disjoint from q. Let
D be a formula in Clark normal form relative to q so that in every conjunctive
term (32) of D no occurrence of an element in q occurs in G as positive and
nonnegated. Formula SMpq[F ∧ D] is equivalent to formulas

SMpq[F ∧ D] ∧ Comp[D], (34)
SMp[F] ∧ Comp[D], and (35)

SMpq[F ∧
∧

q∈{q}
∀x(¬¬q(x) → q(x)

)
] ∧ Comp[D]. (36)

For an interpretation I over signature Σ, by I|σ we denote the interpretation
over σ ⊆ Σ constructed from I so that every function or predicate symbol in σ is
assigned the same value in both I and I|σ. We call formula G in (32) a definition
of p(x).

Theorem 5 (Lemma on Explicit Definitions). Let F be a first-order for-
mula, q be a set of predicate constants that do not occur in F , and p be an
arbitrary set of predicate constants in F . Let D be a formula in Clark normal
form relative to q so that in every conjunctive term (32) of D there is no occur-
rence of an element in q in G.

Then

i M �→ M|σ(F) is a 1-1 correspondence between the models of SMpq[F ∧D] and
the models SMp[F], and

16 Y. Lierler

ii SMpq[F ∧ D] and SMpq[Fq ∧ D] are equivalent, where we understand Fq as
a formula obtained from F by replacing occurrences of the definitions of q(x)
in D with q(x).

We note that Splitting Theorem from [10], Theorem 2 and Theorem 11 from [9]
provide sufficient grounds to carry out the argument for Theorem 4. The proof
of item (i) in Theorem 5 relies on Theorem 4 and the fact that the completion of
considered formula D in Theorem 5 corresponds to so called explicit definitions
in classical logic. The proof of item (ii) utilizes the Replacement Theorem for
intuitionistic logic.

It is easy to see that program composed of a single rule

p(y) ← 1 ≤ #count{x : F (x,y)}

and program p(y) ← F (x,y) are strongly equivalent. Thus, we can identify rule
(8) in the Plan-disj encoding with the rule

sthHpd(I) ← 1 ≤ #count{A : o(A, I)}. (37)

Using this fact and Theorem 5 allows us to support Observation 6. Take F to
be the FOL representation of Plan-choice encoding extended with any Plan-
instance and D be the FOL representation of (37), q be composed of a single
predicate sthHpd and p be composed of all the predicates in Plan-choice and
Plan-instance.

Conclusions. This paper lifts several important theoretical results for propo-
sitional programs to the case of first-order logic programs. These new formal
findings allow us to argue a number of first-order program rewritings to be safe.
We illustrate the usefulness of these findings by utilizing them in constructing an
argument which shows that the sample programs Plan-choice and Plan-disj are
essentially the same. We believe that these results provide a strong building block
for a portfolio of safe rewritings that can be used in creating an automatic tool
for carrying these rewritings during program performance optimization phase
discussed in Introduction.

Acknowledgements. We are grateful to Vladimir Lifschitz and Miroslaw Truszczyn-
ski for valuable discussions on the subject of this paper. Yuliya Lierler was partially
supported by the NSF 1707371 grant.

References

1. Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic pro-
grams. Ann. Math. Artif. Intell. 12, 53–87 (1994)

2. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

Strong Equivalence and Program’s Structure 17

3. Buddenhagen, M., Lierler, Y.: Performance tuning in answer set programming.
In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI),
vol. 9345, pp. 186–198. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23264-5 17

4. Eiter, T., Fink, M.: Uniform equivalence of logic programs under the stable model
semantics. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 224–238.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24599-5 16

5. Eiter, T., Fink, M., Tompits, H., Traxler, P., Woltran, S.: Replacements in non-
ground answer-set programming. In: Proceedings of International Conference on
Principles of Knowledge Representation and Reasoning (KR) (2006)

6. Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer-set pro-
gramming. In: Proceedings of International Joint Conference on Artificial Intelli-
gence (IJCAI), pp. 97–102 (2005)

7. Eiter, T., Traxler, P., Woltran, S.: An implementation for recognizing rule replace-
ments in non-ground answer-set programs. In: Fisher, M., van der Hoek, W.,
Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 477–480.
Springer, Heidelberg (2006). https://doi.org/10.1007/11853886 41

8. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131.
Springer, Heidelberg (2005). https://doi.org/10.1007/11546207 10

9. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artif. Intell.
175, 236–263 (2011)

10. Ferraris, P., Lee, J., Lifschitz, V., Palla, R.: Symmetric splitting in the general the-
ory of stable models. In: Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI), pp. 797–803. IJCAI press (2009)

11. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory Pract.
Log. Program. 5, 45–74 (2005)

12. Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract
gringo. Theory Pract. Log. Program. 15, 449–463 (2015). https://doi.org/10.1017/
S1471068415000150. http://journals.cambridge.org/article S1471068415000150

13. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University
Press, Cambridge (2014)

14. Gelfond, M., Lifschitz, V., Przymusińska, H., Truszczyński, M.: Disjunctive
defaults. In: Allen, J., Fikes, R., Sandewall, E. (eds.) Proceedings of International
Conference on Principles of Knowledge Representation and Reasoning (KR), pp.
230–237 (1991)

15. Harrison, A., Lierler, Y.: First-order modular logic programs and their conservative
extensions. In: Theory and Practice of Logic programming, 32nd International
Conference on Logic Programming (ICLP) Special Issue (2016)

16. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of dis-
junctive stable models. In: Procedings of International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR), pp. 175–187 (2007)

17. Lee, J., Lifschitz, V., Palla, R.: A reductive semantics for counting and choice in
answer set programming. In: Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pp. 472–479 (2008)

18. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Trans. Comput. Log. 2, 526–541 (2001)

https://doi.org/10.1007/978-3-319-23264-5_17
https://doi.org/10.1007/978-3-319-23264-5_17
https://doi.org/10.1007/978-3-540-24599-5_16
https://doi.org/10.1007/11853886_41
https://doi.org/10.1007/11546207_10
https://doi.org/10.1017/S1471068415000150
https://doi.org/10.1017/S1471068415000150
http://journals.cambridge.org/article_S1471068415000150

18 Y. Lierler

19. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for
logic programs with variables. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR
2007. LNCS (LNAI), vol. 4483, pp. 188–200. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-72200-7 17

20. Linke, T., Tompits, H., Woltran, S.: On acyclic and head-cycle free nested logic
programs. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp.
225–239. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27775-
0 16

21. Mints, G.: A Short Introduction to Intuitionistic Logic. Springer, New York (2000)
22. Pearce, D., Valverde, A.: Synonymous theories and knowledge representations in

answer set programming. J. Comput. Syst. Sci. 78(1), 86–104 (2012). https://doi.
org/10.1016/j.jcss.2011.02.013. http://www.sciencedirect.com/science/article/pii/
S0022000011000420, jCSS Knowledge Representation and Reasoning

23. Woltran, S.: Characterizations for relativized notions of equivalence in answer set
programming. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol.
3229, pp. 161–173. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30227-8 16

https://doi.org/10.1007/978-3-540-72200-7_17
https://doi.org/10.1007/978-3-540-72200-7_17
https://doi.org/10.1007/978-3-540-27775-0_16
https://doi.org/10.1007/978-3-540-27775-0_16
https://doi.org/10.1016/j.jcss.2011.02.013
https://doi.org/10.1016/j.jcss.2011.02.013
http://www.sciencedirect.com/science/article/pii/S0022000011000420
http://www.sciencedirect.com/science/article/pii/S0022000011000420
https://doi.org/10.1007/978-3-540-30227-8_16
https://doi.org/10.1007/978-3-540-30227-8_16

Automatic Program Rewriting
in Non-Ground Answer Set Programs

Nicholas Hippen(B) and Yuliya Lierler

University of Nebraska Omaha, Omaha, USA
{nhippen,ylierler}@unomaha.edu

Abstract. Answer set programming is a popular constraint program-
ming paradigm that has seen wide use across various industry applica-
tions. However, logic programs under answer set semantics often require
careful design and nontrivial expertise from a programmer to obtain sat-
isfactory solving times. In order to reduce this burden on a software
engineer we propose an automated rewriting technique for non-ground
logic programs that we implement in a system projector. We con-
duct rigorous experimental analysis, which shows that applying system
projector to a logic program can improve its performance, even after
significant human-performed optimizations.

1 Introduction

Answer set programming (ASP) [4] is a leading knowledge representa-
tion/declarative programming paradigm. ASP seeks to provide techniques and
tools to quickly and reliably design robust software solutions for complex
knowledge-intensive applications. It reduces the programming task to model-
ing an application domain as a set of logic rules, and leaves all computational
concerns to automated reasoning. Many efficient implementations of automated
reasoning tools for ASP that include grounders and solvers are available. See [19]
for a brief survey of grounders – e.g., lparse, gringo, idlv– and solvers – e.g.,
smodels, dlv, clasp. Thanks to these implementations, ASP has been success-
fully used in scientific and industrial applications. Examples include decision
support systems for space shuttle flight controllers [1] and team building and
scheduling [21].

These successful applications notwithstanding, ASP faces challenges. Prac-
tice shows that to achieve a required level of performance it is crucial to select
the right combination of a representation and a processing tool. Unfortunately,
at present this fundamental task is still not well understood, and it typically
requires substantial expertise and effort, and there is still no guarantee of suc-
cess. Gebser et al. in [14] presented a set of “rules-of-thumb” used by their
expert team in tuning ASP solutions. These rules include suggestions on pro-
gram rewritings that often result in substantial performance gains. Buddenhagen

We are grateful to Michael Dingess, Brian Hodges, Daniel Houston, Roland Kaminski,
Liu Liu, Miroslaw Truszczynski, Stefan Woltran for the fruitful discussions.

c© Springer Nature Switzerland AG 2019
J. J. Alferes and M. Johansson (Eds.): PADL 2019, LNCS 11372, pp. 19–36, 2019.
https://doi.org/10.1007/978-3-030-05998-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05998-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-05998-9_2

20 N. Hippen and Y. Lierler

and Lierler in [5] studied the impact of the rewritings on an ASP-based natural
language parser called aspccg [20]. They reported orders of magnitude in gains
in memory and time consumption as a result of some program transformations
they executed manually. One of the rewriting techniques used in that application
a number of times was so called “projection”. In this paper, we present a system
that performs various forms of projection automatically. We then extensively
study the effects of automatic projection. In particular, we revisit several ver-
sions of an ASP-based natural language parser aspccg and evaluate the effects
of different variants of projection on their performance. We also consider several
benchmarks from the Fifth Answer Set Programming Competition.

Related Work. The possible impact of program rewritings on its performance is
well understood. Many answer set solvers start their computation by performing
propositional program simplifications based on answer set preserving rewritings,
see, for instance, [18, Sect. 6.1] and [15]. It is important to note that solvers
will perform their preprocessing on ground programs. Tool simplify1 [10,11]
implements two program simplification techniques for non-ground disjunctive
programs, namely, rule subsumption (dropping a rule in presence of another
“subsuming” rule) and shifting (replacing a rule with disjunction in its head by
rules without disjunction, when possible). System lpopt2 [2,3] decomposes rules
of an ASP program, in the following way. Given a rule to rewrite, lpopt may
replace it with several new ones with a guarantee that the number of distinct
variables occurring in each of these rules is less than that of the original. This is
done by constructing a graph problem based on a given rule. A general-purpose
library called htd3 is used to find a solution to such graph problem. A resulting
solution is then used by lpopt to compose logic rules to replace the given one.
In this work we continue the efforts undertaken by lpopt, and propose a system
called projector. Unlike lpopt, projector develops its own rewriting strate-
gies rooted in ideas underlying projection technique – a database optimization
technique – commonly used by ASP practitioners in optimizing their encodings
as well as ASP grounders [7,12].

Paper Outline. We start by presenting the notions of α and β-projection in
Sect. 2. We continue into describing an algorithm called Projection for perform-
ing the rewritings of logic programs based on the ideas of α and β-projection.
We then present the details behind system projector that implements the
Projection procedure. We conclude with the section on experimental analysis.

2 Projections in Theory

In this section we present two methods for program rewritings, namely α and β-
projecting. We start by presenting some preliminary terminology and notation.
We then proceed towards defining α and β-projecting for arbitrary logic rules.
1 http://www.kr.tuwien.ac.at/research/systems/eq/simpl/index.html.
2 http://dbai.tuwien.ac.at/research/project/lpopt/.
3 https://github.com/mabseher/htd.

http://www.kr.tuwien.ac.at/research/systems/eq/simpl/index.html
http://dbai.tuwien.ac.at/research/project/lpopt/
https://github.com/mabseher/htd

Automatic Program Rewriting in Non-Ground Answer Set Programs 21

Preliminaries. We consider a vocabulary of function and predicate symbols
associated with an arity (nonnegative integer). A function symbol of arity 0 is
called a constant. A term is either a constant, a variable, or an expression of the
form f(t1, . . . , tk) where f is a function symbol of arity k > 0 and ti is a term.
An atom has the form p(t1, . . . , tk) where p is a predicate symbol of arity k and
ti is a term. For instance, an atom p(q(A), B,C, 1) is such that

– symbols A, B, C are variables (we use the convention customary in logic
programming and denote variables by identifiers starting with a capital
letter),

– 1 is a constant (a function symbol of arity 0),
– q is a function symbol of arity 1, and
– p is a predicate symbol of arity 4.

A rule is an expression of the form

a0 ← a1, . . . , am, not am+1, . . . , not an. (1)

where n ≥ m ≥ 0, a0 is either an atom or symbol ⊥, and a1, . . . , an are atoms.
The atom a0 is the head of the rule and a1, . . . , am, not am+1, . . . , not an is
the body. At times we use letter B to denote a body of a rule. We call atoms
and expressions of the form not a (where a is an atom) literals. It is often
convenient to identify the body of a rule with the set of the literals occur-
ring in it. For example, we may identify the body of rule (1) with the set
{a1, . . . , am, not am+1, . . . , not an}. To literals a1, . . . , am we refer as positive,
whereas to literals not am+1, . . . , not an we refer as negative. We say that a rule
is positive when its body consists only of positive literals. For example, the rule
below is positive

p(A,D) ← q(A,B,C), r(A,D). (2)

For a set L of literals, we say that a variable V is unsafe in L, if V does
not occur in a positive literal in L. For instance, B is the only unsafe variable in
{p(A), not q(A,B)}. We call a rule safe when no variable in this rule is an unsafe
variable in its body. Rule (2) is safe. Rules p(A). and ⊥ ← p(A), not q(A,B).
exemplify unsafe rules. In answer set programming, rules are required to be safe
by the grounders [6].

α-Projecting for Positive Rules. Given a literal l by vars[l] we denote the
set of variables occurring in l. For example, vars[p(f(A), B,C, 1)] = {A,B,C}.
Also, for a set L of literals vars[L] denotes the set of all variables occurring in the
elements of L. For instance, vars[{p(f(A), B,C, 1), r(A,D)}] = {A,B,C,D}.

For a rule ρ and a set V of variables, by α(ρ, V) we denote the set of all
literals in the body of ρ such that they contain some variable in V . Let ρ1 be a
rule (2). Then,

α(ρ1, {B}) = {q(A,B,C)}
α(ρ1, {B,C}) = {q(A,B,C)}

For a literal l and a set V of variables, we say that l is V -free when no variable
in V occurs in l. Symbol ⊥ is V -free for any set V .

22 N. Hippen and Y. Lierler

For a set V of variables and a positive rule ρ of the form a ← B where a is
V -free, the process of α-projecting V out of this rule will result in replacing it
by two rules:

1. a rule
q(t) ← α(ρ, V).

so that
– q is a fresh predicate symbol with respect to original program, and
– t is composed of the variables that occur in α(ρ, V), but not in V (in other

words,t = vars[α(ρ, V)] \ V ; here we abuse the notation and associate a
set of elements with a tuple. Let us assume a lexicographical order as
a default order of elements in a constructed tuple — we will use this
convention in the remainder of the paper);

2. a rule
a ← (B \ α(ρ, V)) ∪ {q(t)}.

For instance, the result of α-projecting variable B (here we identify a variable
with a singleton set composed of it) from ρ1 follows:

q′(A,C) ← q(A,B,C).
p(A,D) ← q′(A,C), r(A,D).

The result of α-projecting variables {B,C} from ρ1 follows:

q′(A) ← q(A,B,C).
p(A,D) ← q′(A), r(A,D). (3)

An Order of Projecting. We associate projections with a positive integer n
– an order – where n is the cardinality of α(ρ, V). For instance, the result of
projecting variable B or variables {B,C} from ρ1 are projections of order 1. In
other words, these are projections that affect only variables that occur in a single
literal in a body of a rule. Let ρ2 be a rule

p(A,D,F) ← q(A,B,C), r(B,D), s(D,E), u(C), w(F). (4)

Then, α(ρ2, {B}) = {q(A,B,C), r(B,D)}. The result of α-projecting variable B
from ρ2 follows. This is an example of projection of order 2.

qr′(A,C,D) ← q(A,B,C), r(B,D). (5)
p(A,D,F) ← qr′(A,C,D), s(D,E), u(C), w(F). (6)

On Grounders gringo and idlv. In practice, grounders gringo and idlv
implement instances of projection of order 1. For instance, given a program with
rule ρ1, idlv rewrites this rule and replaces it with rules listed in (3). System
gringo is capable to do the same rewriting when anonymous variables are used.
For example, if a rule ρ1 is stated as

p(A,D) ← q(A, ,), r(A,D).

Automatic Program Rewriting in Non-Ground Answer Set Programs 23

then gringo will replace it with rules listed in (3), where B and C are substi-
tuted by anonymous variable symbol .

α-Projecting for Arbitrary Rules. We now generalize α-projecting to arbi-
trary rules. The reader may observe that the definitions become more complex.
The complexity is due to the necessity of producing safe rules as a result of
projecting. Recall that rules are required to be safe by the grounders.

For a set L of literals, Lu denotes the set of all unsafe variables in L. For
function α(ρ, V), we define function V ↑ as follows

V ↑0 = V

and for i = 0, 1, 2, . . .
V ↑i + 1 = V ↑i ∪ α(ρ, V ↑i)u.

For instance, consider extending rule (2) as follows

p(A,D) ← q(A,B,C), r(A,D), t(E), not s(B,E).

By ρ3 we denote this rule. Then,

α(ρ3, {B}) = {q(A,B,C), not s(B,E)}
{q(A,B,C), not s(B,E)}u = {E}
{B}↑0 = {B}
{B}↑1 = {B,E}
{B}↑ω = {B,E}
α(ρ3, {B}↑ω) = {q(A,B,C), not s(B,E), t(E)}.

For a set V of variables and a rule ρ of the form a ← B where a is V -free,
the process of α-projecting V out of this rule will result in replacing it by two
rules:

1. a rule
q(t) ← α(ρ, V ↑ω)

so that q is a fresh predicate symbol with respect to original program and
tuple t is composed of the variables that occur in α(ρ, V ↑ω), but not in V ;

2. a rule
a ← (B \ α(ρ, V ↑ω)) ∪ {q(t)}. (7)

It is easy to see that for a positive rule, α(ρ, V ↑ω) = α(ρ, V). Thus, the presented
definition of α-projecting for an arbitrary rule is a generalization of this concept
for positive rules. The result of α-projecting B from ρ3 follows:

qst′(A,C,E) ← q(A,B,C), t(E), not s(B,E).
p(A,D) ← r(A,D), qst′(A,C,E).

24 N. Hippen and Y. Lierler

β-Projecting. For a rule ρ and a set V of variables, by β(ρ, V ↑ω) we denote
the set of all literals in the body of ρ such that all their variables are contained
in vars[α(ρ, V ↑ω)].

For example,

β(ρ2, {B}↑ω) = {q(A,B,C), r(B,D), u(C)}
β(ρ3, {B}↑ω) = α(ρ3, {B}↑ω)

It is easy to see that α(ρ, V ↑ω) ⊆ β(ρ, V ↑ω).
For a set V of variables and a rule ρ of the form a ← B where a is V -free,

the process of β-projecting V out of this rule will result in replacing it by two
rules:

1. a rule
q(t) ← β(ρ, V ↑ω)

so that q is a fresh predicate symbol with respect to original program and
tuple t is composed of the variables that occur in β(ρ, V ↑ω), but not in V ;

2. a rule (7).

For instance, the result of β-projecting variable B from rule ρ2 consists of a rule

qr′(A,C,D) ← q(A,B,C), r(B,D), u(C). (8)

and rule (6). Note that rules (5) and (8) differ only in one atom in the body,
namely, u(C). The result of β-projecting variable B from rule ρ3 coincides with
that of α-projecting B from ρ3.

In the sequel, it is convenient for us to refer to the first rule produced in
α and β-projecting as α and β-rules respectively. For instance, rule (5) is the
α-rule of α-projecting variable B from ρ2. The second rule produced in α and
β-projecting we call a replacement rule.

3 Projections in Practice

In this section we describe an algorithm, which carries out program rewritings
utilizing α and β-projection. We implement this algorithm in a system called
projector4. We conclude this section by providing technical details on the
projector implementation.

Algorithm 1 presents procedure Projection. As an input it takes a rule ρ,
a projection type τ (that can take values α or β), and a positive integer n
that specifies the order of projecting. Algorithm Projection performs projection
iteratively. It picks a set of variables for projecting and computes the respective
τ and replacement rules. It then attempts to repeat the same procedure on
the replacement rule. Procedure Projection starts by defining V as the set of
variables on which the τ -projecting of order n or less may be applied (line 2).

4 https://www.unomaha.edu/college-of-information-science-and-technology/natural-
language-processing-and-knowledge-representation-lab/software/projector.php.

https://www.unomaha.edu/college-of-information-science-and-technology/natural-language-processing-and-knowledge-representation-lab/software/projector.php
https://www.unomaha.edu/college-of-information-science-and-technology/natural-language-processing-and-knowledge-representation-lab/software/projector.php

Automatic Program Rewriting in Non-Ground Answer Set Programs 25

Next, R is initialized as an empty set that will in the future hold rules added by
projection. Lines 5–11 handle variable selection so that set W computed in these
lines contains variables to project on. This selection process targets to perform
projections of smaller orders first. Also, this process groups any variables that
can be projected together without introducing new literals into the τ -rule. Then,
the τ -rule is computed (line 12). If the set of variables occurring in the body of
the computed τ -rule is different from the set of variables occurring in the body
of ρ, we add the τ -rule to R (line 14), update rule ρ with the replacement rule
for τ -projection (line 15), and remove all of the variables we projected so far
from V (line 16). Otherwise, we remove v from V to eliminate consideration of
projecting it again. We repeat this process until set V is empty (lines 4–21).

Recall that ρ2 is rule (4). To illustrate Algorithm 1, we present the execution
of Projection(ρ2, β, 2) as a table in Fig. 1. The first and second rows of the
table state the values of variables V,R, ρ at line 4 during the first and second
iterations of the while-loop respectively. The last row presents the values of these
variables at line 22.

While-Loop Iterations Variables Values
1 V {B, C, E}

R ∅
ρ ρ2

2 V {B, C}
R {s′(D) ← s(D, E).}
ρ p(A, D, F) ← q(A, B, C), r(B, D), u(C), w(F), s′(D).

Return V ∅
R {s′(D) ← s(D, E).

qr′(A, D) ← q(A, B, C), r(B, D), u(C), s′(D).}
ρ p(A, D, F) ← w(F), s′(D), qr′(A, D).

Fig. 1. Algorithm 1 illustration with ρ = ρ2, τ = β, and n = 2.

It is due to note that procedure Projection is nondeterministic due to line 5.
In case of our illustration on Projection(ρ2, β, 2) there are two possibilities to
consider. In both cases the procedure will return rules of the form

s′(D) ← s(D,E).
p(A,D,F) ← w(F), s′(D), projbc(A,D).

whereas it will differ on the other rules presented in the table below.

possibility 1 possibility 2
projc(A,B) ← q(A,B,C), u(C). projbc(A,D) ← q(A,B,C), r(B,D),
projbc(A,D) ← projc(A,B), r(B,D), s′(D). u(C), s′(D).

26 N. Hippen and Y. Lierler

Algorithm 1: Projection
Input : ρ: rule of the form a ← B

τ : projection type α or β
n: positive integer (order of projection)

Output: a pair where the first element is the rewritten rule and the second
element is the set of τ rules produced

1 Function Projection(ρ, τ, n):
2 V ← {v |

v is a variable in ρ that doesn’t occur in its head and |α(ρ, {v}↑ω)| ≤ n};
3 R ← ∅;
4 while V �= ∅ do
5 v ← a variable in V such that there is no variable v′ in V where

|α(ρ, {v}↑ω)| > |α(ρ, {v′}↑ω)|;
6 W ← {v};
7 foreach w in V different from v do
8 if α(ρ, {w}↑ω) ⊆ τ(ρ, {v}↑ω) then
9 W ← W ∪ {w};

10 end

11 end
12 s ← the τ rule of τ projecting W from ρ;
13 if the set of variables occurring in the body of s is different from the set

of variables in the body of ρ then
14 R ← R ∪ {s};
15 ρ ← the replacement rule of τ projecting process;
16 Delete all elements in W from V ;

17 end
18 else
19 Delete v from V ;
20 end

21 end
22 return (ρ,R);

23 End Function

Implementation Details. System clingo version 5.3.0 is an answer set pro-
gramming tool chain that incorporates grounder gringo [13,17] and solver
clasp [16]. Our implementation of projector utilizes pyclingo, a sub-system
of clingo that provides users with various system enhancements through the
scripting language Python. One such enhancement allows us to intervene in the
workings of clingo. The projector system uses pyclingo to parse a logic
program and turn it into a respective abstract syntax tree. At this point, the
projector subroutines take over by analyzing the parsed program and modi-
fying its “normal” rules according with the described procedures. (By“normal”
we refer to the rules of the form discussed in this paper. Yet, the language of
clingo offers its users more sophisticated constructs in its rule, for example,

Automatic Program Rewriting in Non-Ground Answer Set Programs 27

aggregates. The projector ignores such rules.) Once program rewritings are
performed on the level of the abstract syntax tree representation of the pro-
gram the control is given back to pyclingo that continues with grounding and
then solving. The pyclingo interface allows us to guarantee that the system
projector is applicable to all programs supported by clingo version 5.3.0.

System projector can be controlled with various flags that determine which
type of projection to perform. At the url of the system given at Footnote 4, the
flags are described in detail. It is important to note that the flag --random allows
a user to specify a seed that is used to carry out the nondeterministic decision
of line 5 in the Projection algorithm.

4 Experimental Analysis

In our experiments we utilize the application called aspccg described in [20]
and three benchmarks, namely, Stable Marriage, Permutation Pattern Matching,
and Knight Tour with Holes stemming from the Fifth Answer Set programming
Competition [9]. In aspccg, the authors formulate the task of parsing natural
language, namely, recovering the internal structure of sentences, as a planning
problem in answer set programming. The three other mentioned benchmarks
were used by the authors of the system lpopt [3] to report on its performance.

Results on aspccg. Our choice of the aspccg application, is due to the
fact that a prior extensive experimental analysis was performed on it in [5].
We now restate some of these earlier findings relevant to our analysis. System
aspccg version 0.1 (aspccg-0.1) and aspccg version 0.2 (aspccg-0.2) vary
only in how specifications of the planning problem are stated, while the con-
straints of the problem remain the same. Yet, the performance of aspccg-0.1 and
aspccg-0.2 differs significantly for longer sentences. The way from aspccg-0.1
to aspccg-0.2 comprised 20 encodings, and along that way, grounding size and
solving time were the primary measures directing the changes in the encodings.
Rewriting suggestions by Gebser et al. [14] guided the aspccg encodings tuning.
These suggestions include such “hints on modeling” as

Keep the grounding compact:

(i) If possible, use aggregates; (ii) Try to avoid combinatorial blow-up;
(iii) Project out unused variables; (iv) But don’t remove too many infer-
ences!

In our experiments we consider three encodings out of the mentioned 20:

– the enc1 encoding that constitutes aspccg-0.1,
– the enc7 encoding that constitutes one of the improved encodings on a path

from aspccg-0.1 to aspccg-0.2, and
– the enc19 encoding that constitutes aspccg-0.2.

28 N. Hippen and Y. Lierler

Lierler and Schüller [20] describe the procedure of acquiring instances of the
problem using CCGbank5, a corpus of parsed sentences from real world sources.
In [5], the authors report on the performance of answer set solver clasp v 2.0.2
on a set of 30 randomly selected problem instances from CCGbank that were
used in performance tuning by Lierler and Schüller. In Fig. 2, we reproduce their
findings for enc1, enc7, and enc19. The second column presents the total num-
ber of timeouts/memory outs (3000 sec. timeout), the third column presents the
average solving time (in seconds; on instances that did not timeout/memoryout),
and the last column reports a number n so that n and 105 are factors relating to
the average number of ground rules reported by clasp v 2.0.2. These numbers
were obtained in experiments using a Xeon X5355 @ 2.66GHz CPU. The pre-
sented table illustrates that the selected enc1, enc7, and enc19 encodings differ
substantially. It is interesting to note that on the way from enc1 to enc7 a soft-
ware engineer applied projection technique once and from enc7 to enc19 three
times. In order to conduct extensive analysis on the impact of solver’s configu-
ration on aspccg, Buddenhagen and Lierler [5] separated CCGbank instances
(sentences) by word count into five word intervals restricting attention to sen-
tences having between 6 and 25 words. They then randomly selected an equal
number of sentences from each class when creating different sets of instances. In
our experiments, we utilize the set of 60 instances that they call held-out set.
We present the results for the hardest 20 instances in this set based on the per-
formance of pyclingo (using the default configuration of gringo) on enc19.
In all figures the instances are given on the x-axis sorted by the performance of
pyclingo on enc19. We benchmarked α and β projections using the greatest
possible order for each case. We also provide the results for the lpopt system. In
the figures, we present data on runtimes (time spent in grounding and solving)
and size of ground programs (number of ground rules reported by pyclingo). In
all figures, enc1, enc7, and enc19 present numbers associated with pyclingo
(using the default configuration of gringo) on the respective encoding. We used
an Intel R© CoreTM i5-4250U CPU @ 1.30GHz CPU.

Encoding # timeout/memout solving in sec factor w.r.t. grounding
ENC1 6 301 14
ENC7 5 138 4
ENC19 2 128 8

Fig. 2. aspccg performance

Figure 3 presents the total runtime in seconds for enc1 for three distinct
variants of β-projection. The numbers 123, 456, and 789 are the seeds passed
on to the system with the --random flag. We observe that a seed may affect the
performance of the system significantly. In the remainder, we present the results

5 http://groups.inf.ed.ac.uk/ccg/ccgbank.html.

http://groups.inf.ed.ac.uk/ccg/ccgbank.html

Automatic Program Rewriting in Non-Ground Answer Set Programs 29

for the 123 seed only, to keep the graphs readable. (The choice of this seed
is arbitrary.) We use the same seed for presenting the results on α projection.
System lpopt also displays nondeterministic behavior, where the flag -s is used
to specify a seed. We present the results on lpopt using the seed 123.

Figure 4 compares the runtime of all considered systems, namely, pyclingo,
α-projector, β-projector, and lpopt. Neither α nor β-projection show any
significant performance loss across the experimented instances. In nearly all
instances, projector outperforms pyclingo. Of the 20 displayed instances, 16
show improvement for β-projection over α-projection. Besides the effects of ran-
domness, we attribute the difference in the performance of α and β-projection to
the additional literals of β-rule (in comparison to α-rule) that act as “guards”6.
These guards impose further limits on the domains of variables occurring in them
so that a grounding procedure implemented in pyclingo benefits from these
additional restrictions. Figure 5 presents the data on sizes of ground programs
for the same systems and instances. For these instances, β-projection results in a
reduction of grounding size compared to α-projection for all instances. This can
again be attributed to the guards added by β-projection. This is not surprising,
as no new variables are introduced into the β-rule when compared to its α-rule
counterpart, so the additional guard literals can only restrict the grounding size.
It is also obvious that there is a strong correlation between the reduction in
grounding size and improvement of runtime.

Figure 6 compares the runtime of all considered systems on the enc7 encod-
ing. Here we again note that β-projection is generally superior to α-projection,
yet we cannot claim that β-projection improves on the original encoding enc7.
Figure 7 illustrates that both α and β-projection produce ground programs that
are larger than these produced by pyclingo given the original encoding. This
once more illustrates the strong correlation between the reduction in grounding
size and improvement of runtime.

Figure 8 compares the runtime of all considered systems on enc19. Figure 9
presents the data on sizes of ground programs. These graphs illustrate similar
behavior of the systems as in the case of the enc7 encoding.

Figure 10 presents the runtimes for pyclingo on enc1, enc7, and enc19
together with the runtime of β-projector on enc1. It shows that β-projection
can be used to supplement human efforts in performance tuning, as the runtime
of β-projector on enc1 is comparable to that of pyclingo on enc7. Recall
that enc7 was obtained from enc1 using 7 iterations by a human and substantial
experimental analysis between these iterations (see [5] for details).

So far the presented experiments illustrate that the rule decomposition
method implemented in lpopt is superior to both α and β-projection tech-
niques introduced here. The encodings of aspccg contain rules with aggregate
expressions. System lpopt is capable to perform its decomposition method also

6 The term guards was suggested by Miroslaw Truszczynski.

30 N. Hippen and Y. Lierler

Fig. 3. enc1: Runtime of β-projector with different random seeds

Fig. 4. enc1: Runtime

within these expressions, whereas projector ignores the aggregates. It is a
direction of future research to expand the capabilities of projector to handle
aggregates. Then, a more fair comparison on the aspccg domain can be made
between the systems.

Results on Stable Marriage and More. Figures 11 and 12 present the run-
times of β-projection and lpopt with three distinct seeds on Stable Marriage
and Permutation Pattern Matching domains. No aggregates were used in the
benchmarked encodings of these problems. It is apparent that the lpopt system
is truly sensitive to a provided seed. System projector exhibits comparable
performance between its variants.

In case of Stable Marriage, β-projection always outperforms pyclingo on
the original encoding. In case of lpopt, two of its variants exhibit substantially
worse behavior than pyclingo. In case of Permutation Pattern Matching, it is
safe to say that in general program rewriting techniques implemented in lpopt
and projector are of benefits (Fig. 12).

Automatic Program Rewriting in Non-Ground Answer Set Programs 31

Fig. 5. enc1: Grounding size

Fig. 6. enc7: Runtime

Fig. 7. enc7: Grounding size

32 N. Hippen and Y. Lierler

Fig. 8. enc19: Runtime

Fig. 9. enc19: Grounding size

Fig. 10. enc1, enc7, enc19: Runtime

Automatic Program Rewriting in Non-Ground Answer Set Programs 33

Fig. 11. Stable marriage: runtime

Fig. 12. Permutation pattern matching: runtime

Fig. 13. Knight tour with holes: grounding size

34 N. Hippen and Y. Lierler

The last benchmark that we consider is Knight Tour with Holes. This bench-
mark proves too difficult to be solved within 300 sec time limit for any of the
considered configurations. Yet, it is interesting to see the effect of lpopt and
projector on grounding size. System projector has no substantial effect on
grounding size of the original program (if to zoom in we would observe a slight
increase in grounding size across the board). System lpopt at least doubles the
size of any considered instance. Bichler [2] analyzed the behavior of lpopt on
this domain and came to the conclusion that it is the treatment of safety by
lpopt that translates into such a drastic difference.

5 Discussion, Future Work, Conclusions

In this work we introduce the concepts of α and β-projection and state an
algorithm called Projection that performs these projections iteratively. We then
implement the Projection procedure in system projector. Our experimental
analysis shows that β-projection outperforms α-projection in almost all cases.
We also show that lpopt is generally superior to both forms of projection on
the aspccg domain. Possibly, this is due to the lpopt system’s rich language
support. Yet, in our remaining experiments we demonstrated that projector
generates more consistent runtimes compared to lpopt and also outperforms
lpopt. The results collected through our experiments open up several directions
of future work:

– Grounding size prediction and heuristics. As demonstrated in our experimen-
tal analysis, there is a strong correlation between grounding size and runtime.
It is clear that not all projections result in performance gains. As such, it is
reasonable to believe that selectively performing projection according to the
resulting predicted grounding size could lead to substantial performance gain.
Recent work on lpopt has shown that a heuristic approach to performing
decompositions can lead to performance gains [8]. Similar approaches to
projector may also be beneficial.

– Improve language support. Expanding the functionality of projector to
include language features such as aggregates and optimization statements
may enable further performance benefits. This will also allow us to perform
a more fair comparison between lpopt and projector on more domains.

– Data collection. Expanding the experimental analysis to more domains will
enable us to better understand the implications behind the use of projector.

In conclusion, our experimental analysis shows that system projector is
a solid step in the direction of providing an automated means for performance
tuning in answer set programming.

Automatic Program Rewriting in Non-Ground Answer Set Programs 35

References

1. Balduccini, M., Gelfond, M., Nogueira, M.: Answer set based design of knowledge
systems. Ann. Math. Artif. Intell. 47(1–2), 183–219 (2006)

2. Bichler, M.: Optimizing non-ground answer set programs via rule decomposition.
Bachelor thesis. TU Wien (2015)

3. Bichler, M., Morak, M., Woltran, S.: lpopt: a rule optimization tool for answer set
programming. In: Proceedings of International Symposium on Logic-Based Pro-
gram Synthesis and Transformation (2016)

4. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

5. Buddenhagen, M., Lierler, Y.: Performance tuning in answer set programming.
In: Proceedings of the Thirteenth International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR) (2015)

6. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: the-
ory and implementation. In: Proceedings of International Conference on Logic
Programming (ICLP), pp. 407–424 (2008)

7. Calimeri, F., Fusca, D., Perri, S., Zangari, J.: I-DLV: the new intelligent grounder
of DLV. Intelligenza Artificiale 11(1), 5–20 (2017)

8. Calimeri, F., Fuscà, D., Perri, S., Zangari, J.: Optimizing answer set computation
via heuristic-based decomposition. In: Calimeri, F., Hamlen, K., Leone, N. (eds.)
PADL 2018. LNCS, vol. 10702, pp. 135–151. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-73305-0 9

9. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth
answer set programming competition. Artif. Intell. 231, 151–181 (2016). https://
doi.org/10.1016/j.artint.2015.09.008. http://www.sciencedirect.com/science/
article/pii/S0004370215001447

10. Eiter, T., Fink, M., Tompits, H., Traxler, P., Woltran, S.: Replacements in non-
ground answer-set programming. In: Proceedings of International Conference on
Principles of Knowledge Representation and Reasoning (KR) (2006)

11. Eiter, T., Traxler, P., Woltran, S.: An implementation for recognizing rule replace-
ments in non-ground answer-set programs. In: Fisher, M., van der Hoek, W.,
Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 477–480.
Springer, Heidelberg (2006). https://doi.org/10.1007/11853886 41

12. Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using database optimization tech-
niques for nonmonotonic reasoning, pp. 135–139 (1999)

13. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele,
S.: A user’s guide to gringo, clasp, clingo, and iclingo (2010). http://potassco.
sourceforge.net

14. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Challenges in answer set
solving. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Rep-
resentation, and Nonmonotonic Reasoning. LNCS (LNAI), vol. 6565, pp. 74–90.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20832-4 6

15. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Advanced preprocessing for
answer set solving. In: Proceedings of the 2008 Conference on ECAI 2008: 18th
European Conference on Artificial Intelligence, pp. 15–19. IOS Press, Amsterdam
(2008). http://dl.acm.org/citation.cfm?id=1567281.1567290

16. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from
theory to practice. Artif. Intell. 187, 52–89 (2012)

https://doi.org/10.1007/978-3-319-73305-0_9
https://doi.org/10.1007/978-3-319-73305-0_9
https://doi.org/10.1016/j.artint.2015.09.008
https://doi.org/10.1016/j.artint.2015.09.008
http://www.sciencedirect.com/science/article/pii/S0004370215001447
http://www.sciencedirect.com/science/article/pii/S0004370215001447
https://doi.org/10.1007/11853886_41
http://potassco.sourceforge.net
http://potassco.sourceforge.net
https://doi.org/10.1007/978-3-642-20832-4_6
http://dl.acm.org/citation.cfm?id=1567281.1567290

36 N. Hippen and Y. Lierler

17. Gebser, M., Schaub, T., Thiele, S.: GrinGo: a new grounder for answer set program-
ming. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI),
vol. 4483, pp. 266–271. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-72200-7 24

18. Lierler, Y.: SAT-based Answer Set Programming. Ph.D. thesis, University of Texas
at Austin (2010)

19. Lierler, Y., Maratea, M., Ricca, F.: Systems, engineering environments, and com-
petitions. AI Mag. 37(3), 45–52 (2016)

20. Lierler, Y., Schüller, P.: Parsing combinatory categorial grammar via planning in
answer set programming. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.)
Correct Reasoning. LNCS, vol. 7265, pp. 436–453. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30743-0 30

21. Ricca, F., et al.: Team-building with answer set programming in the Gioia-Tauro
seaport. Theory Pract. Logic Program. 12(3), 361–381 (2012)

https://doi.org/10.1007/978-3-540-72200-7_24
https://doi.org/10.1007/978-3-540-72200-7_24
https://doi.org/10.1007/978-3-642-30743-0_30

Personalized Course Schedule Planning
Using Answer Set Programming

Muhammed Kerem Kahraman and Esra Erdem(B)

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
{kkerem,esraerdem}@sabanciuniv.edu

Abstract. Course scheduling or timetabling is a well-known problem
that is generally studied from the perspective of schools; the goal is to
schedule the courses, considering, e.g., the expected number of students,
the sizes of the available classrooms, time conflicts between courses of the
same category. We study a complementary problem to help the students
during the course registration periods; the goal is to plan personalized
course schedules for students, considering, e.g., their preferences over
sections, instructors, distribution of the courses. We present a declarative
method to compute personalized course schedules, and an application of
this method using answer set programming, and discuss promising results
of some preliminary user evaluations via surveys.

Keywords: Course scheduling · Answer set programming
Declarative problem solving

1 Introduction

Students spend a lot of time during registration periods to plan their course
schedules, even when they know more or less which courses to take. They need to
decide which courses and their sections to register for, considering their instruc-
tors and times, times between classes, total number of courses per day, free time,
etc. For instance, some students have to take a specific section due to its time
since they may want to catch the shuttle from their home. Some students may
prefer to take some sections because their friends are registering for that section,
or they like its instructor better. Some students may want to stay on campus
and prefer a schedule that distributes the courses and their sections in such a
way; some may prefer otherwise, to have more free bulk time.

We have defined this problem more precisely, guided by students’ constraints
and preferences, and developed a declarative solution using Answer Set Program-
ming (ASP) [8,9,14,15,17] (based on answer sets [11,13]) utilizing its constructs,
like aggregates, hard/weak constraints, optimization statements.

Based on this declarative solution, we have developed a software system
(called SUcheduler) that extracts the relevant information from the published
course schedule on the web, interacts with the user to determine their preferences
and constraints, utilizes both types of information for decision making using ASP,
c© Springer Nature Switzerland AG 2019
J. J. Alferes and M. Johansson (Eds.): PADL 2019, LNCS 11372, pp. 37–45, 2019.
https://doi.org/10.1007/978-3-030-05998-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05998-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-05998-9_3

38 M. K. Kahraman and E. Erdem

and presents several personalized course schedule plans for the user. If there is
a conflict between the requests of the user (e.g., some sections may have a time
conflict), SUcheduler provides an explanation.

We have performed both objective (e.g., in terms of computation time) and
subjective experiments (e.g., user evaluations in terms of surveys); the results
are promising.

2 Problem Description

Some courses have multiple sections, and supplementary sessions, like recitations,
laboratory sessions, and/or discussion sessions. Once the students decide for their
courses, they also have to choose their sections, recitations, discussion sessions,
and/or laboratory sessions; we call this problem course schedule planning. It
takes as input

– a complete course schedule S (i.e., times, places, instructors of classes
and their sections, recitations, discussion/laboratory session) published by
a school, and

– a set C of courses (specified by their names) that the student plans to register.

As an output, it returns a schedule plan for the courses in C according to S,
including

– exactly one section for every course c ∈ C,
– exactly one recitation for every course c ∈ C that has some recitations,
– exactly one laboratory session for every course c ∈ C that has some laboratory

sessions, and
– exactly one discussion session for every course c ∈ C that has some discussion

sessions

such that there is no time and place conflict between any two courses (i.e., their
sections and supplementary sessions).

While deciding for which sections, recitations, laboratory sessions, and/or
discussion sessions to register for, students usually consider various criteria, such
as the instructors and times, times between classes, total number of classes
per day, free time, shuttle hours, etc. To be able to help each student during
their registrations, we need to solve a further personalized version of the course
schedule planning problem that also takes into account these criteria; we call
this problem personalized course schedule planning.

To identify the most desired constraints/preferences considered by the stu-
dents during registration, we have interviewed with 61 students at Sabanci Uni-
versity by a survey. Figure 1 shows a summary of the results of this survey.
According to these results;

Personalized Course Schedule Planning Using ASP 39

F
ig
.
1
.
A

su
m
m
a
ry

o
f
th
e
su
rv
ey

re
su
lt
s,

w
h
er
e
ea
ch

p
a
rt
ic
ip
a
n
t
h
a
s
ev
a
lu
a
te
d
h
ow

m
u
ch

u
se
fu
l
ea
ch

cr
it
er
io
n
is

b
a
se
d
o
n
a
L
ik
er
t
sc
a
le

o
f
1
to

5
(1

b
ei
n
g
m
o
re

u
se
fu
l,
5
b
ei
n
g
le
ss

u
se
fu
l)
.

40 M. K. Kahraman and E. Erdem

– 45 students think that “minimizing/maximizing the number of days with
classes” are useful criteria,

– 42 students think that “minimizing/maximizing the total spare time between
classes on the same day” are useful criteria,

– 39 students think that “setting an upper bound on the spare time between
classes on the same day” is a useful criterion,

– 36 students think that “choosing a specific section of a particular course” is
a useful criterion, and

– 31 students think that “choosing specific free times” is a useful criterion.

After identifying these most desired constraints/preferences, we have formu-
lated them in an elaboration tolerant way that allow personalization of the course
schedule planning problem in such a way that the students can not only choose
which criteria are important for them, but also give priorities to the criteria.

3 Method

Let us first describe how we declaratively solve the course schedule planning
problem characterized by a course schedule S and a set C of courses, in ASP.
We refer the reader to relevant sources [7,12,13] for the syntax and semantics
of programs in ASP. In the following, programs are described in mathematical
format instead of the input language of an ASP solver.

3.1 Course Schedule Planning

First, for every course c ∈ C and for every type t of its sections/sessions, exactly
one such section/session (identified by its CRN crn – Course Reference Number)
is decided by the following choice rules:

1{add(crn) : session(c, crn), crnType(crn, t)}1 ← sessionType(c, t).

Then, hard constraints are added to avoid time and place conflicts. For instance,
the time conflicts between two different sessions crn1 and crn2 that occur on
the same day d are defined as follows:

conflict(crn1, crn2, d) ← add(crn1), add(crn2),not noConflict(crn1, crn2, d),
courseDay(crn1, d), courseDay(crn2, d). (crn1<crn2)

where noConflict(crn1, crn2, d) is defined by rules to describe the sessions that
do not conflict (i.e., one of them starts after the other one ends). After that,
hard constraints are added to prevent time conflicts as follows:

← conflict(crn1, crn2, d).

The answer sets for the ASP program whose parts are described above charac-
terize course schedule plans.

Personalized Course Schedule Planning Using ASP 41

3.2 Personalizing Course Schedule Planning

Now let us discuss how the students’ desired constraints/preferences are for-
malized in ASP, to be able to solve the personalized course schedule planning
problem. Consider, for instance, “minimizing the number of days with classes” is
chosen as the most important criterion for a student. For that, first we identify
the days with selected classes and then count them:

existsCourse(d) ← add(crn), courseDay(crn, d).
totalCourses(n) ← n = #count{d : existsCourse(d)}.

After that, we minimize this number:

#minimize{n@1 : totalCourses(n)}.

Note that the priority of this optimization is set to 1.
Suppose that, as a second criterion, the student specifies that “minimizing the

total spare time between classes on the same day” is also important for her/him.
For that, we identify all consecutive courses crn1 and crn2 (where crn1 occurs
before crn2), define the spare time between them:

spareTime(crn1, crn2, start2 − end1, d) ← consecutiveCRN (crn1, crn2, d),
courseDate(crn1, d, start1, end1), courseDate(crn2, d, start2, end2).

and then minimize the total spare time between the classes selected by the
student:

#minimize{diff @2, crn1, crn2, d : spareTime(crn1, crn2, diff , d)}.

Note that the priority of this optimization is set to 2.
If the student would also prefer “choosing a specific section/session A of

type T for a particular course M”, the following weak constraint is generated
by SUcheduler and added to the program above:

∼←− session(M, crn), crnType(crn, T), section(crn, A),not add(crn).[1@3, crn]

3.3 Implementation of SUcheduler

The system SUcheduler is implemented in Python, utilizing various tech-
nologies (e.g., php, Java script, SQLite) for its user interface and information
retrieval.

SUcheduler first extracts the relevant information from the published
course schedule on the web, including the courses’ names, CRNs, sections, recita-
tions, labs, and discussion sessions, as well as their times, places, and instructors.
It represents these course information in a database as a set of facts.

42 M. K. Kahraman and E. Erdem

Via its interactive user interface (implemented, utilizing pull-down menus),
SUcheduler allows the user to specify their preferences and constraints that
are mentioned above.

After that, SUcheduler combines the ASP program for course schedule
planning (described in Sect. 3.1), the ASP program obtained from the users’
preferences/constraints (as described in Sect. 3.2), and the relevant part of the
database (obtained by SQL queries), and tries to compute several answer sets
using the ASP solver Clingo [10]. If an answer set is found, then a course
program is extracted from each answer set and presented to the user as a table.
Otherwise, time conflicts are identified by turning the hard constraint about
time conflicts into a weak constraint, and presented to the user as warnings.

4 Experimental Evaluations

We have performed two types of experimental evaluations: objective evalua-
tions (e.g., over computation timings), and subjective evaluations (e.g., via user
surveys).

To understand its computational performance in terms of CPU time, we
have tried SUcheduler with the whole course schedule for Fall 2016 semester,
published by Sabanci University on the web, over 972 courses: 259 of them have
multiple sections, 72 of them have discussion sessions, 211 have recitations, and
27 of them have lab sessions. We have observed that course schedule plans are
computed in less than a second on a regular laptop (with 2.7 GHz dual-core Intel
Core i5 processor, 8GB RAM, and macOS Sierra).

To evaluate the coverage and the usefulness the functionalities of SUched-
uler offered to students, we have interviewed with 21 students at Sabanci Uni-
versity by a survey. Figure 2 shows a summary of the results of this survey.
According to these results;

– 20 students think that SUcheduler covers a quite comprehensive set of
criteria for the students to express their constraints/preferences,

– 20 students think that being able to express their preferences is useful, and
– 8 students think that the time conflict warnings given by SUcheduler are

useful.

We have also asked participants to provide us feedback as to how it can
be further improved. Some of the participants have suggested showing also the
types of the courses (e.g., core, area, elective) and the prerequisities of courses
as further information. These suggestions will be adopted in the next versions
of SUcheduler.

Personalized Course Schedule Planning Using ASP 43

Fig. 2. A summary of the survey results: (a) how much comprehensive are the presented
criteria? (b) how much useful is it to specify preferences? (c) how much useful are the
warnings?

5 Related Work

One of the most closely related work is about course scheduling or timetabling,
a widely studied problem in literature [4,16,18]. Some of the proposed solutions
also use ASP [1,5,6]. Course timetabling is studied for the purpose of efficiently
allocating the schools’ resources (e.g., classrooms, lab spaces) to the courses
offered at that school, considering constraints about the expected number of stu-
dents, the sizes of the available classrooms, time conflicts between courses of the

44 M. K. Kahraman and E. Erdem

same category, etc. The personalized course schedule planning problem is studied
after the course timetabling problem is solved: it takes the whole course schedule
(i.e., the output of course timetabling problem), and aims to help each student
decide an efficient course program according to her/his constraints/preferences.

Another most closely related work is about recommender systems for course
enrollments. These systems consider prerequisites of courses and course loads of
students, and act as virtual academic advisors [2,3] on possible course schedule
plans (i.e., the output of personalized course schedule planning problem). In that
sense, such virtual academic advisors can be used in conjunction with SUched-
uler: once a personalized course schedule plan is generated by SUcheduler,
virtual academic advisors can be used for recommendations, e.g., considering the
course load of the student.

6 Conclusion

We have developed an application for personalized course program generation, to
help students with their decisions during registrations. We have utilized a declar-
ative problem solving method based on Answer Set Programming, for generating
personalized course schedule plans, based on the representation methodology of
(i) generating possible candidate solutions, using choice rules, and (ii) eliminat-
ing the candidates that do not correspond to solutions, using constraints, and
auxiliary definitions. To represent the students’ constraints and preferences, we
have utilized hard constraints and weak constraints, respectively. For optimizing
the number of courses, days with courses, etc. we have utilized aggregates and
optimization statements supported by ASP.

Our ongoing work includes improvements of the user interface of SUched-
uler as well as its functionalities, as suggested by the students via user surveys.

Acknowledgments. We thank the anonymous reviewers and the survey participants
for useful comments and suggestions.

References

1. Aini, I.F., Saptawijaya, A., Aminah, S.: Bringing answer set programming to the
next level: a real case on modeling course timetabling. In: Proceedings of ICACSIS,
pp. 471–476 (2017)

2. Ajanovski, V.V.: A personal mobile academic adviser. In: Daniel, F., Papadopoulos,
G.A., Thiran, P. (eds.) MobiWIS 2013. LNCS, vol. 8093, pp. 300–303. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40276-0 25

3. Ajanovski, V.V.: Curriculum mapping as a tool for improving students satisfaction
with the choice of courses. In: Proceedings of ITiCSE, pp. 76–77 (2017)

4. Aśın Achá, R., Nieuwenhuis, R.: Curriculum-based course timetabling with sat and
maxsat. Ann. Oper. Res. 218(1), 71–91 (2014)

5. Banbara, M., et al.: teaspoon: solving the curriculum-based course timetabling
problems with answer set programming. Ann. Oper. Res. (2018)

https://doi.org/10.1007/978-3-642-40276-0_25

Personalized Course Schedule Planning Using ASP 45

6. Banbara, M., Soh, T., Tamura, N., Inoue, K., Schaub, T.: Answer set programming
as a modeling language for course timetabling. TPLP 13(4–5), 783–798 (2013)

7. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solv-
ing. Cambridge University Press, New York (2003)

8. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
ACM Communun. 54(12), 92–103 (2011)

9. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming: an introduction
to the special issue. AI Mag. 37(3), 5–6 (2016)

10. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.T.: Potassco: the potsdam answer set solving collection. AI Comm. 24(2), 107–
124 (2011)

11. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of ICLP, pp. 1070–1080. MIT Press (1988)

12. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University
Press, New York (2014)

13. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9, 365–385 (1991)

14. Lifschitz, V.: Answer set programming and plan generation. AIJ 138, 39–54 (2002)
15. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming

paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.)
The Logic Programming Paradigm. Artificial Intelligence, pp. 375–398. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-642-60085-2 17

16. McCollum, B.: A perspective on bridging the gap between theory and practice in
university timetabling. In: Burke, E.K., Rudová, H. (eds.) PATAT 2006. LNCS,
vol. 3867, pp. 3–23. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-77345-0 1

17. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell. 25, 241–273 (1999)

18. Schaerf, A.: A survey of automated timetabling. AI Rev. 13(2), 87–127 (1999)

https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.1007/978-3-540-77345-0_1
https://doi.org/10.1007/978-3-540-77345-0_1

An ASP Based Approach to Answering
Questions for Natural Language Text

Dhruva Pendharkar(B) and Gopal Gupta(B)

University of Texas at Dallas, Richardson, USA
dhruva.pendharkar@gmail.com, gupta@utdallas.edu

Abstract. An approach based on answer set programming (ASP) is
proposed in this paper for representing knowledge generated from nat-
ural language text. Knowledge in the text is modeled using a Neo
Davidsonian-like formalism, represented as an answer set program. Rel-
evant common sense knowledge is additionally imported from resources
such as WordNet and represented in ASP. The resulting knowledge-base
can then be used to perform reasoning with the help of an ASP system.
This approach can facilitate many natural language tasks such as auto-
mated question answering, text summarization, and automated question
generation. ASP-based representation of techniques such as default rea-
soning, hierarchical knowledge organization, preferences over defaults,
etc., are used to model common-sense reasoning methods required to
accomplish these tasks. In this paper we describe the CASPR system
that we have developed to automate the task of answering natural lan-
guage questions given English text. CASPR can be regarded as a system
that answers questions by “understanding” the text and has been tested
on the SQuAD data set, with promising results.

Keywords: ASP · Common sense reasoning · NLP · KR

1 Introduction

The goal of AI is to build systems that can exhibit human-like intelligent behav-
ior. Decision making and the ability to reason are important attributes of intel-
ligent behavior. Hence, AI systems must be capable of performing automated
reasoning as well as responding to changing environment (for example, chang-
ing knowledge). To exhibit such a behavior, an AI system needs to understand
its environment as well interact with it to achieve certain goals. Classical logic
based approaches have traditionally been used to build automated reasoning sys-
tems but have not lead to systems that can be called truly intelligent. Humans,
arguably, do not use classical logic in their day to day reasoning tasks. They con-
siderably simplify their burden of reasoning by using techniques such as defaults,
exceptions, and preference patterns. Also, humans use non-monotonic reason-
ing and can deal with incomplete information [12,13]. All these features need
to be built into an AI system, if we want to simulate human-like intelligence.
c© Springer Nature Switzerland AG 2019
J. J. Alferes and M. Johansson (Eds.): PADL 2019, LNCS 11372, pp. 46–63, 2019.
https://doi.org/10.1007/978-3-030-05998-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05998-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-05998-9_4

ASP-Based Automated Question Answering 47

It has been shown that common-sense reasoning can be realized via a combina-
tion of (stable model semantics-based) negation as failure and classical negation
[3,12] in ASP. ASP is a well-developed paradigm and has been applied to solving
problem in planning, constraint satisfaction and optimization. There are com-
prehensive, well known implementations of ASP such as CLASP [11] and DLV
[1]. Scalable implementations of ASP that support predicates (i.e., do not require
grounding) and are query-driven, such as s(ASP) and s(CASP), have also been
developed [2,16]. ASP is also well suited for representing knowledge and for mod-
elling common-sense reasoning. Most of the knowledge resources available today
are in the form of unstructured data, either in the form of written documents,
or information present online.

In this paper we propose a system called CASPR (Commons-sense ASP
Reasoning) to automatically convert textual knowledge into ASP programs, and
use it to answer natural language questions translated into ASP queries. The
problem of converting natural language text into ASP is challenging enough,
however, even if we succeed in this translation task, the resulting knowledge is
not enough to answer questions to the level that a human can. When humans
read a passage, we automatically draw upon a large amount of common sense
knowledge that we have acquired over the course of years in understanding the
passage and in answering questions related to the passage. An automated QA
system ought to do the same. CASPR, thus, resorts to resources such as WordNet
[17], that encapsulate some of the common-sense knowledge, to augment the
knowledge derived from the text. CASPR also allows users to add common sense
knowledge—coded in ASP—manually as well.

CASPR runs on the s(ASP) answer set programming system. The s(ASP)
system [16] is a query-driven predicate ASP system that is scalable, in that it can
run answer set programs containing predicates with arbitrary terms. Since the
s(ASP) system is query-driven, it does not require grounding, a crucial feature
needed for building large-scale natural language-based KR applications using
ASP. Proof of the query serves as a justification, allowing us to give the reasoning
behind an answer to a question in CASPR.

Our research makes several contributions: (i) it shows that with the help of
novel, query-driven systems such as s(ASP), it is possible to build practical NLP
applications that rely on “text understanding”; and, (ii) traditional problems
of Natural Language Understanding such as word sense disambiguation can be
solved quite elegantly with ASP.

2 System Architecture

CASPR is composed of two main sub systems: the Knowledge Generation Sys-
tem and the Query Generation System. The architecture, as illustrated in Fig. 1,
comprises of a common resource framework shared by both these systems con-
sisting of NLP tools such as Stanford Core NLP Tools, WordNet API as well as
modules for pre-processing input text.

48 D. Pendharkar and G. Gupta

Fig. 1. System architecture

The Knowledge Generation System is mainly responsible for extracting
knowledge from natural language text. For extracting the knowledge from text,
this component uses Stanford NLP tools like the POS Tagger [22,23], Stan-
ford Dependency Parser [5], and the Stanford NER Tagger [10] to gain more
information about the input text. Apart from these resources it also taps into
the vast information that is provided by WordNet [17] and extracts information
from it, converting it into an answer set program. WordNet provides significant
amount of common sense knowledge about nouns. For verbs, at present, there
are very few digital resources available that are similar to WordNet. Common
sense knowledge for verbs, thus, has to be modeled manually as an answer set
program, and added to the common resource framework.

The Query Generation System automatically translates the question to an
ASP query that can be executed against the ASP-coded knowledge-base gener-
ated from the textual passage augmented with common sense knowledge. Exe-
cution is performed using the s(ASP) system. The solution found represents an
accurate answer to the question. The query obtained from the natural language
question is a conjunction of multiple sub-goals. If the query fails, then some of
the sub-goals are systematically removed and the query re-executed to find less
accurate answers. These less accurate answers are reported too, along with the
level of accuracy (likely, possible, guess).

3 Knowledge Representation

The Stanford Dependency Parser is used to parse the pre-processed text. A
semantic graph is generated using the Stanford Typed Dependencies represen-
tation [8,9].

ASP-Based Automated Question Answering 49

Example 1. “NASA carried out the Apollo program.”
Following is the Stanford Dependency (SD) representation: nsubj(carried-
2, NASA-1), root(ROOT-0,carried-2), compound:prt(carried-2,out-3), det
(program-6,the-4), compound(program-6,Apollo-5), dobj(carried-2,program-6)

These dependencies map straightforwardly onto a directed graph represen-
tation in which words in the sentence are nodes in the graph and grammatical
relations are edge labels. In English, most event mentions correspond to verbs
and most verbs are triggers to events. Although this is true in most cases there
are other word groups that can trigger events as well. The different verbs in the
sentence thus define various events that take place in the sentence and how these
events are connected to each other. Consider a more complex example.

Example 2. “Miitomo, which Nintendo introduced globally in 2016, features the
company’s, Mii, avatar-system and lets the users communicate by exchanging
personal information such as favorite movies.”

Fig. 2. Semantic graph representing event regions

Figure 2 shows how various words in the example passage are connected to
each other in the sentence. The main verbs of the sentence are “feature” and
“let” connected by a coordinating conjunction. The verbs in Fig. 2 represent the
head of events in the sentence and are marked using event IDs. The various color
regions denote the rough boundaries of these event regions. The semantic graph
along with the event regions are used to create ASP facts and rules.

50 D. Pendharkar and G. Gupta

3.1 Predicate Generation

Knowledge is represented using a collection of pre-defined predicates, following
the neo-Davidsonian approach [7]. Some of the predicates capture specialized
concepts such as abbreviation, start time etc., whereas others are more generic
like mod, event and so on. The generic predicates that convey information are
explicitly present in the text, whereas all others model implicit information. Note
that it is important to keep this predicate representation as simple as possible,
so that individual pieces of knowledge can be composed using common sense
reasoning patterns. These reasoning patterns have to be kept very simple as
well. Otherwise, we run the risk that we may have appropriate knowledge in our
knowledge-base to answer the given question, but we fail in answering it because
we are unable to compose that knowledge due to complexity of its representation.
A summary of important predicates that have been used by CASPR is given
below: We explain the event predicate in detail and summarize the rest (details
can be found elsewhere [19,20]).

Event Predicate: The event predicate defines an event that happens in the
sentence. The verb marks the head of the event predicate. The event predicate
consists of the various actors (doers) and participants involved in the event with
the signature:

event(event id, trigger verb, actor, participant)
where the event id is an integer that uniquely identifies that event in the para-
graph. The trigger verb denoted in the event predicate is the lemma, i.e., the
stem word, of the actual word used in the sentence. The actors in the event
predicate are the subjects to the trigger verb in the sentence. Subjects in the
sentence can be found with the help of dependencies like nsubj and nsubj:xsubj.
Just as actors can be obtained from the subject of the sentence, the participants
can be determined from direct object dependency (dobj).

Example 3. “The American Football Conference’s (AFC) champion team,
Denver Broncos, defeated the National Football Conference’s (NFC) champion
team, Carolina Panthers, by 24 10 to earn AFC third Super Bowl title”

event(1, defeat, denver broncos, carolina panthers)
event(2, earn, afc, title)

Here we can get richer information about the event by generating duplicate event
predicates for each modifier for the actor as well as the participants involved
in the event. To generate such event predicates, we use the amod or nummod
dependencies for the actors and the participants and create compound atoms
from the modifiers and their governors. Consider the following duplicate event
predicate:

event(2, earn, afc, third super bowl title)
Note that in absence of information, the default value for the actor and the
participant field maybe null. A null value indicates that either the term is absent
for the event or the system was not able to determine it.

ASP-Based Automated Question Answering 51

Property Predicate: The property predicate elaborates on the properties of
the modified noun or verb. The modifier in this case is generally a preposi-
tional phrase in the sentence. A property predicate is coupled with an event and
describes the modification only for that event.

Example 4. “The game was played on February 7 2016, at Levis Stadium, in
the San Francisco Bay Area, at Santa Clara in California”

property(2, play, on, ‘february 7 2016’)
property(2, play, at, levis stadium)
property(2, play, in, san francisco bay area)
property(2, play, at, santa clara)
property(2, santa clara, in, california)

Modifier Predicate: The modifier predicate is used to model the relationship
between adjectives and the nouns they modify and between verbs and their
modifying adverbs.

Example 5. “The Amazon rainforest, also known in English as Amazonia or
the Amazon Jungle, is a moist broadleafed forest that covers most of the Ama-
zon basin of South America.”

mod(forest, broadleafed)
mod(forest, moist)
mod(know, also)

Possessive Predicate: The possessive predicate is used to model the genitive
case in English. It is used to show possession or a possessive relation between
two entities in the sentence.

Example 6. “The American Football Conference’s (AFC) champion team,
Denver Broncos, defeated the National Football Conference’s (NFC) champion
team, Carolina Panthers, by 24 10 to earn AFC third Super Bowl title”

possess(american football conference, team)
possess(national football conference, team)
possess(american football conference, denver broncos)
possess(national football conference, carolina panthers)

Instance Predicate: The instance predicate models the concept of an instance.
As an example, red is an instance of a color.

Example 7. “Nikola Tesla was a serbian-american inventor, electrical engi-
neer, mechanical engineer, physicist, and futurist”

is(nikola tesla, inventor).
is(nikola tesla, serbian american inventor).

52 D. Pendharkar and G. Gupta

In the above example we see that the verb (is) is associated with other concepts
like engineer, physicist, and futurist using the conjunction. Thus, we can extend
the definition of the instance predicate to also include these other facts:

is(nikola tesla,electrical engineer),
is(nikola tesla, futurist),

....
Adding these facts makes the knowledge base richer which is now able to infer
many other things about the passage. Another case, where we can generate the
instance predicate is in cases where multi-word expressions like such as, or like
are used to compare two concepts to be equivalent. Details are omitted due to
lack of space.

Relation Predicate: The relation predicate is used to connect two concepts
in events. This predicate is generated to model mainly two relations, dependent
clauses and conjunctions.

Example 8. “The American Broadcasting Company (ABC), stylized in the
network’s logo as ABC since 1957, is an American commercial broadcast televi-
sion network”

relation(american broadcasting company, 1, clause)
event(1, stylize, null, null)

The relation predicate is also used to model the conjunction relation between
any two clauses. An example of such a predicate is given below.

Example 9. “Water heats and transforms into steam within a boiler operating
at a high pressure”

relation(2, 3, conj)
event(2, heat, water, null)
event(3, transform, water, null)

Named Entity Predicate: CASPR uses the Named Entity Tagger [10] to get
information about entities in the text. The Named Entity Tagger marks various
classes like LOCATION, PERSON, ORGANIZATION, MONEY, PERCENT,
TIME in the text. We make use of these tags to generate facts of the form
concept(instance). These facts together with the rules generated by the ontology
help in reasoning about the text.

Special Predicates: Special predicates have been used in the system, to model
concepts that are patterns and are understood by humans implicitly. As gram-
matical relations in the sentence do not convey the meaning of these concepts,
they must be extracted explicitly. Some of them include abbreviations, time
spans and so on. The more of these patterns are learned by the system the bet-
ter it can reason like humans. Some of these patterns are discussed in this paper.
Again, we omit details due to lack of space.

ASP-Based Automated Question Answering 53

3.2 Common Sense Knowledge Generation

We make use of additional knowledge sources such as the WordNet to gain sup-
plementary information (common sense knowledge) about the concepts in the
input passage. CASPR uses the Hypernym relation from WordNet to build its
ontology, coded as an answer set program. To generate ontology rules, we use
standard knowledge patterns from answer-set programming like the preference
pattern and the default reasoning pattern [6,12]. In general a concept is repre-
sented in our work using the following signature:

concept(concept instance, instance sense)
For example: lion(simba, noun animal).

Fig. 3. Concept graph of Hypernym relation

Hypernyms can be used to infer various properties of and functions about
concepts. Hypernyms make use of the generalization principle to transfer prop-
erties from more general concepts to their specific concepts. There are three
steps required to do so (i) Identify the concepts from the passage and generate a
hypernym graph; words may be used in multiple senses (e.g., the word lion has
four commonly used senses); example graph for word lion highlighting 4 different
senses is shown in Fig. 3. (ii) Aggregate the concepts into common base concepts.
(iii) Generate hypernym rules. Figure 4 shows ASP rules generated by CASPR
for one of the senses of the concept lion.
Adding Common Sense Knowledge Manually: Note that at the moment
we are only using WordNet, however, other knowledge resources, such as YAGO
[15], VerbNet [14], NELL [18], etc., can be incorporated as well to extract addi-
tional common sense knowledge. Doing so is relatively straightforward, as it
mostly involves syntactic transformation to ASP syntax. Note that, currently,
common sense knowledge about verbs is entered manually. An example of adding
knowledge manually is the following:
The term Nikola Tesla is similar to Tesla:

similar(tesla, nikola tesla).
A team X can represent an organization Y, if Y possesses X:

event(E, represent, X, Y) :- possess(Y, X), organization(Y), team(X).

54 D. Pendharkar and G. Gupta

Fig. 4. ASP Rules representing the animal branch of “lion”

Note that knowledge that is added manually can reside in the knowledge-base
permanently (very similar to humans, where we learn knowledge once, and may
use it later in another context).

4 Word Sense Disambiguation

Word sense disambiguation (WSD) is the task of selecting the best sense out
of a collection of senses applicable to a concept. When queried from WordNet
we get a list of senses for a specific concept ordered from the most used to the
least used. WSD is a very common problem in NLP applications and has many
statistical solutions that have been developed. We develop a method using nega-
tion as failure, classical negation and preferences that performs WSD correctly.
Essentially, contextual knowledge is used to disambiguate the word sense, in a
manner similar to what humans do. We explain it next.

Representation of Word Senses: Word senses are represented using two
different logic patterns in our work. Using both these patterns together, senses
are selected for the various concepts in the text which activate their hypernym
relations. The pattern discussed in this section, tries to prove a sense for a
concept. Its template can be given as follows

c(X, si) :- c(X), properties si(X), not -c(X, si).
In the above template, we are trying to prove that “X is an instance of concept
c with sense si”. Here every concept c has one or more senses denoted by si.
The above rule states that X is an instance of the concept c with the sense
si only if we can prove that X is some instance of concept c, X has all the
properties required to be of sense si, and we cannot prove that X is definitely
not an instance of concept c with sense si. Such rules are generated for every
sense si of the concept in the order of senses from the most used sense to the
least used sense. The first term given by ‘c(X)’ is responsible to short circuit
and fail the rule if the instance X does not belong to the class c. The second
term, ‘properties si(X)’, is the main predicate which tries to prove that X shows

ASP-Based Automated Question Answering 55

the properties of having sense si. It is this predicate that can be added either
manually or using other sources to prove the sense. The third term of the body is
a strong exception against the head of the rule, that fails the rule if an exception
is found against the application of the sense.

According to WordNet, the concept ‘tree’ has three senses, S = {plant, dia-
gram, person}, ordered according to their frequency of use. Thus, using the
above-mentioned template for the sense the three rules generated for the tree
concept can be given as follows

tree(X, plant) :- tree(X), properties plant(X),
not -tree(X, plant).

tree(X, diagram) :- tree(X), properties diagram(X),
not -tree(X, diagram).

tree(X, person) :- tree(X), properties person(X),
not -tree(X, person).

Preference Patterns for Senses: We humans perform word sense disambigua-
tion in our day to day life by taking cues from the context. Over a period of time
we learn which senses are more common than others and develop a preference
order. Consider a concept c having three senses s1, s2 and s3 ordered according
to the frequency of their use from the most used to the least used. We first
assume the sense to be s1, unless we know that s1 is not the sense from some
other source. Then we move on to the next sense s2 unless we know that both
s1 and s2 cannot be applicable. Then finally we choose s3. This process of elim-
ination of senses and choosing senses according to preferences can be modeled
as the following ASP code template.

c(X, sp) :- c(X), not -c(X, sp),
-c(X, s1), -c(X, s2), ..., -c(X, sp−1),
not c(X, sp+1), not c(X, sp+2), ..., not c(X, sn).

The above skeleton is applied for all the senses of concept c in order of preference.
The above template represents the rule generated for the pth sense of the concept
c such that 1 < p < n, where n is the total number of senses of concept c. If p
= 1 then the template omits the classical negation terms as follows

c(X, s1) :- c(X), not -c(X, s1), not c(X, s2),
not c(X, s3), ..., not c(X, sn).

Similarly, if p = n, then the template omits the negation as failure terms:
c(X, sn) :- c(X), not -c(X, sn), -c(X, s1),

-c(X, s2), ... -c(X, sn−1).
We can apply this pattern to the ‘tree’ concept as an example. A tree can be a
living object (plant), a diagram, or a person (Mr. Tree).

tree(X, plant) :- tree(X), not -tree(X, plant),
not tree(X, diagram), not tree(X, person).

tree(X, diagram) :- tree(X), not -tree(X, diagram),
-tree(X, plant), not tree(X, person).

tree(X, person) :- tree(X), not -tree(X, person),
-tree(X, plant), -tree(X, diagram).

56 D. Pendharkar and G. Gupta

This pattern is responsible for assigning at least one sense for every concept
in the text. This preference pattern along with the property pattern mentioned
previously helps disambiguate word sense in a manner that humans do.

5 Query Generation from Natural Language Question

Once knowledge has been generated from the text and auxiliary sources, our
next task is to translate the question we want to answer into an ASP query.

Since a question is also a sentence, it is processed in the same way that any
other sentence would be, as mentioned before in this paper. This means that a
semantic graph is generated for every question, and event regions are created
within the question assigning event ids to different parts of the question. To
generate an ASP query from the semantic graph the following steps are applied:
(i) Question understanding (ii) Generation of query predicates (iii) Applying
base constraints (iv) Combining constraints. Currently, this module is only built
to deal with simple interrogative sentences but can be extended to deal with
more complex questions.

Question Understanding: For analyzing questions, we obtain four kinds of
information from the question, namely, the question word, the question type as
mentioned in the previous section, the answer word or the focus of the question,
and the answer type.

The question word is the Wh-word found in the question. In general, Wh-
words can be found out by looking at the following POS Tags on the words:
WDT, WP, WP$ and WRB. If none of the tags are found, then the questions
may have a copula as its question word or a modal as its question word. The
question type contains a set of predefined question types that help in further
processing. These include WHAT, WHERE, WHO, WHICH, WHEN, HOW -
MANY, HOW MUCH, HOW LONG, HOW FAR, and UNKNOWN. Once the
main question word is found, we can use the word and its relations to deter-
mine the exact question type. The third type of information we try to extract
is the answer word or the focus of the question. The answer word is the word
in a question that tells us what kind of answer is expected from the question.
Not all types of questions require an answer word, so in those cases this infor-
mation is null. The fourth and the last information that we extract from the
question is the answer type. The answer type depends on the question type. For
most of the question types the required answer type is predefined. The answer
types supported by the system are as follows SUBJECT, OBJECT, PLACE,
PERSON, TIME, YEAR, DAY, MONTH, NUMBER and UNKNOWN. Table 1
shows expected answer types depending on question types. With the help of this
basic analysis, we start generating the predicates for query generation.

Generating Query Predicates: Using the information that we gathered dur-
ing Question Understanding, we start generating predicate facts for all the words
in the question. We will use predicates mentioned previously in the paper as a
reference. There are some changes that need to be made in a few predicates,

ASP-Based Automated Question Answering 57

Table 1. Expected answer types for question types

Question type Expected answer type

WHERE PLACE

WHO PERSON

WHEN TIME

HOW MANY NUMBER [Non-neg integer]

HOW MUCH NUMBER

HOW LONG NUMBER [length]

HOW FAR NUMBER [distance]

WHAT ** variable **

WHICH ** variable **

UNKNOWN UNKNOWN

e.g., event predicate, property predicate, etc. Others (possess, mod, and named
entity predicates) are generated as discussed earlier.

Event Predicate: In case of questions, we do not know the event id of the event
in question so we replace it with a variable. The trigger verb is in the question
that triggers the predicate generation. The actor acts like the subject of the
verb and the participant is the object or the modifier. The participants can be
obtained from the direct object (dobj) relations of the verb. There are various
ways in which we can obtain the actor or the subject in any event. Details are
omitted due to lack of space, but we give an example.
Example 10. Given the question “What company owns walt disney?”, the three
possibilities for the event predicate are:

1. event(E1, own, X1, O1), similar(walt disney, O1).
2. event(E1, own, , O1), property(E1, own, by, X1),

similar(walt disney, O1).
3. event(E1, own, ,), relation(X1, E1, clause),

similar(walt disney, O1).

Property Predicate: Property predicates are generated from verbs and nouns that
are modified by nominal phrases in the sentence. Here, like the event predicate,
we are unaware of the event id and hence it will be set as a variable. The modi-
fied entity is the noun or the verb that triggered the predicate generation. The
preposition here can either be obtained from the case relation or can be left
blank (). The modifier is the head of the nominal modifier that can be used
to constraint the query. If the modifier is the answer word, then we replace the
word with the answer tag (Xk).

Example 11. Given “On what streets is the ABC’s headquarter located?”, we
generate: property(E2, locate, on, X2).

58 D. Pendharkar and G. Gupta

Similar Predicate: The similar predicate models the concept of similarity
between entities in which one entity is so like the other one that they can replace
each other. The similar predicate thus models one of the principles of common-
sense reasoning where we as humans make use of the similarity relationship
while reasoning (referring to Albert Einstein as just Einstein). Some rules for
the similar predicate are as follows:

a. similar(X, Y) :- abbreviation(X, Y).
b. similar(X, Y) :- abbreviation(Y, X).
c. similar(X, Y) :- is(X, Y).
d. similar(X, Y) :- similar(X, Z), similar(Z, Y).

Generating Base Constraints: Base constraints are generated at the end after
all the constraints from the question have been generated. These constraints
refer to the constraint that depend on the answer type of the question. For the
following cases we generate the base constraints as follows.

TIME → time(Xk)
DAY → day(Tk, Xk), time(Tk)
MONTH → month(Tk, Xk), time(Tk)
YEAR → year(Tk, Xk), time(Tk)
PLACE → location(Xk) or location(Xk, noun location)
PERSON → person(Xk) or person(Xk, noun person)

In case the answer type is UNKNOWN, we may expect the answer to be a specific
concept represented by the answer word. In such cases the base constraint comes
from the answer word itself.

UNKNOWN → concept(Xk)
e.g., company(Xk) or city(Xk)

Combining Constraints: After generation of the predicates from the question
and the base constraints from answer type we combine all the constraints to
create the final query. This can be best explained with an example.

Example 12. For the question “When was Nikola Tesla born?”, the following
queries will be generated and automatically tried in order.

?- event(E2, bear, S2, O2), similar(nikola tesla, S2),
property(E2, bear, on, X2), time(X2).

?- event(E2, bear, , O2), property(E2, bear, by, S2),
similar(nikola tesla, S2), property(E2, bear, on, X2), time(X2).

?- event(E2, bear, ,), relation(S2, E2, clause),
similar(nikola tesla, S2), property(E2, bear, on, X2), time(X2).

?- start date(S2, X2), similar(nikola tesla, S2), time(X2).

In this sentence, we have the special predicates start date applying the con-
straints of time-spans on the entity ‘Nikola Tesla’.

Query Confidence Classes: To make any question answering system robust,
so that it fails gracefully, we introduce the concept of confidence classes on the
generated queries by relaxing constraints on the queries to make their execution
more flexible. In the absence of an answer, the CASPR system starts removing

ASP-Based Automated Question Answering 59

constraints (sub-goals) in the query and relaxing it with the hope of executing
it successfully and obtaining some answer. Currently, queries have been divided
into 4 confidence classes:
Certain: These queries have all the constraints generated by our question pro-
cessing module. If an answer is produced, it is a correct answer.
Likely: If a certain answer is not produced, all sub-goals that do not have
variables are dropped.
Possible: If likely answer is not produced, then only the answer predicates and
base constraints are included in the query (rest of the subgoals are dropped).
Guess: If possible answer is not produced, only base constraints are included in
the query (rest of the subgoals are dropped).

As an example, suppose we ask the question: “When was Tesla born?”, given
a biographical passage about Tesla. If the query that is formulated succeeds, it
will produce the certain answer (1856). However, if for some reason the query
fails, in the worst case, we would just retrieve any year in the passage and guess
it as an answer. It should be noted that with enough knowledge, we are always
guaranteed to produce the correct answer.

Note also that there are many other ways of relaxing constraints in the query
to obtain less precise answers. The above is just one reasonable scheme.

6 Evaluation Results

The SQuAD Dataset [21] contains more than 100,000 reading comprehensions
along with questions and answers for those reading passages. SQuAD dataset
uses the top 500+ articles from the English Wikipedia. These articles are then
divided into paragraphs. We used the Dev Set v1.1 of the SQuAD Dataset to
obtain comprehension passages for building a prototype for the proposed app-
roach. This dataset has around 48 different articles with each article having
around 50 paragraphs each. Out of the 48 different articles in the SQuAD dev
set, 20 articles were chosen from different domains to help build the CASPR
system (these 20 passages and associated questions can be found in [20]). Using
the 20 different articles mentioned above, the ASP code was generated for one
paragraph from each article. Then, ASP queries were generated for all the ques-
tions in the dataset for these paragraphs. The results show the percentage of
questions for which the answer generated from the ASP solver was present in
the list of answers specified for the question in the SQuAD dataset. The results
are summarized in Table 2. Our results show that approximately 77.76% of the
questions are correctly answered. This shows that most of the knowledge, if not
all, has been captured successfully in the ASP program generated for the pas-
sage. The ASP queries generated for the questions are very similar to the original
question and convey the same meaning.

Note that the two main reasons why a query may fail to produce an exact
(certain) answer are: (i) CASPR fails to parse the question; or, (ii) common
sense knowledge regarding concepts in the question is missing.

60 D. Pendharkar and G. Gupta

Table 2. Results for question answering

No Article Result % No Article Result %

1 ABC Corp. 5/5 100 11 Kenya 5/5 100

2 Amazon rainforest 12/14 85.7 12 Martin Luther 2/5 40

3 Apollo 4/5 80 13 Nikola Tesla 6/7 85.7

4 Chloroplasts 4/5 80 14 Normans 4/5 80

5 Computational complexity 3/3 100 15 Oxygen 8/15 53.3

6 Ctenophora 9/12 75 16 Rhine 5/8 62.5

7 European Union Law 13/13 100 17 Southern California 3/5 60

8 Genghis Khan 3/5 60 18 Steam Engine 4/5 80

9 Geology 4/5 80 19 Super Bowl 50 25/29 86.2

10 Immune system 13/15 86.6 20 Warsaw 3/5 60

Total 135/171 78.95%

Average Result 77.76%

Note that our system has shown excellent execution performance on the 171
questions on 20 passages tried thus far: 80% of the questions were answered in
2 to 3 ms, while the rest were answered in a few seconds.

7 Contributions, Related Work, Conclusions

The main contribution of this paper is an effective and efficient method for
converting textual data into knowledge represented as an answer set program
that can be processed on our query-driven s(ASP) ASP system. This includes
developing a neo-davidsonian logic inspired generic calculus that helps represent
knowledge, and using knowledge sources such as WordNet to acquire common
sense knowledge about terms found in the text to create a custom ontology
for the problem at hand. Yet another novelty is in showing how word sense
disambiguation can be elegantly modeled using ASP. Our system is based on
“understanding” the text in a manner similar to what humans do when they
answer questions. Our system is scalable and shows good execution performance
as the custom ontology is generated dynamically.

The paper also proposes a framework for converting natural language ques-
tions into ASP queries. These queries can be run on the query-driven s(ASP)
system to compute answers. The query generation framework is made robust
through broadening of queries by dropping constraints, thus increasing the pos-
sibility that the question will indeed be answered (even though in the worst case
the answer may just be a guess). This approach to handling question answering
is yet another novelty of the proposed system.

ASP-Based Automated Question Answering 61

Wrt related work, Cyc [25] is one of the oldest AI project that attempts
to model common sense reasoning. In Cyc, knowledge is presented in the form
of a vast collection of ontologies that consist of implicit knowledge and rules
about the world that represents common sense knowledge. Cyc uses a community
of agents consisting of multiple reasoning agents that rely on more than 1000
heuristic modules to solve inference problems. Cyc, however, does not work with
natural language, though recently some efforts have been started. A potential
problem with Cyc is knowing which agent to apply, and which heuristic to use.
For a common sense reasoning system to be successful, it has to be modeled in a
very simple way. Otherwise, we may possess the individual pieces of knowledge
to answer a given question, but may not be able to compose these pieces together
to arrive at an answer. For this reason, CASPR represents knowledge using very
few generic predicates and uses simple ASP-based reasoning patterns to compute
answers. Our initial experiments suggest that our approach is effective.

Vo and Baral [24] have developed the NL2KR tool that allows natural lan-
guage text to be translated to an answer set program. Several researchers have
worked on applying ASP for NLP tasks and many of these efforts are reported
in the first workshop on NLP and Automated Reasoning [4]. Our approach has
many elements common with these efforts, however, our work is based on the
query-driven s(ASP) predicate ASP engine, and thus is scalable and not con-
strained by limitations of grounding based implementations of ASP. The query-
driven s(ASP) system is crucial to our success. We omit details of the comparison
with other efforts due to lack of space.

There are many approaches to question answering based on machine learning
(cf. SQuAD website [21]). However, they are not based on actually understanding
the text and so can only answer questions related to data they are trained on.
CASPR, in contrast, understands the knowledge contained in the text and has
shown promising results for a subset of the SQuAD dataset.

A critical component of CASPR’s success is the s(ASP) query-driven, predi-
cate ASP system that leads to three major advantages for CASPR: (i) only parts
of the knowledge base relevant to answering the question are explored during
execution; (ii) justification for answers can be extracted from the justification
tree produced by s(ASP); and, (iii) the question answering system is scalable, as
no grounding of the program needs to be done as s(ASP) can execute predicates
directly under the stable model semantics.

CASPR is a step toward building truly intelligent systems that mimic human
reasoning. Future work includes (i) extending the system to handle more com-
plex questions (e.g., causality questions), (ii) incorporating additional knowledge
resources for importing more common sense knowledge, (iii) Generating justifi-
cations to a question’s answer in a more human-readable way, (iv) Extending
the system for other NLP tasks: text summarization, question generation, etc.

62 D. Pendharkar and G. Gupta

Acknowledgment. Authors thank NSF (Grant IIS 1718945) and members of their
research group (Zhuo Chen, Farhad Shakerin, Elmer Salazar, Joaquin Arias, Sarat
Varanasi, Kyle Marple).

References

1. Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., Terracina, G.: The dis-
junctive datalog system DLV. In: de Moor, O., Gottlob, G., Furche, T., Sellers,
A. (eds.) Datalog 2.0 2010. LNCS, vol. 6702, pp. 282–301. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24206-9 17

2. Arias, J., Carro, M., Salazar, E., Marple, K., Gupta, G.: Constraint answer set
programming without grounding. TPLP 18(3–4), 337–354 (2018)

3. Baral, C.: Knowledge Representation Reasoning and Declarative Problem Solving.
Cambridge university press, New York (2003)

4. Baral, C., Schüller, P. (eds.): Proceedings of 1st Workshop on NLP and Automated
Reasoning 2013, vol. 1044 (2013). http://ceur-ws.org/Vol-1044

5. Chen, D., Manning, C.: A fast and accurate dependency parser using neural net-
works. In: Proceedings of 2014 EMNLP, pp. 740–750 (2014)

6. Chen, Z., Marple, K., Salazar, E., Gupta, G., Tamil, L.: A physician advisory
system for CHF based on knowledge patterns. TPLP 16(5–6), 604–618 (2016)

7. Davidson, D.: Inquiries into Truth and Interpretation. Oxford University Press,
New York (1984)

8. De Marneffe, M.C., Dozat, T., et al.: Universal Stanford dependencies: a cross-
linguistic typology. In: LREC, vol. 14, pp. 4585–4592 (2014)

9. De Marneffe, M.C., Manning, C.D.: Stanford typed dependencies manual. Techni-
cal report, Stanford University (2008)

10. Finkel, J.R., et al.: Incorporating non-local information into information extraction
systems by Gibbs sampling. In: Proceedings of 43rd ACL, pp. 363–370 (2005)

11. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.:
Gringo, Clasp, Clingo, and Iclingo User Guide (2010)

12. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The ASP Approach. Cambridge University Press, New York
(2014)

13. Jonson-Laird, P.: How We Reason. Oxford University Press, New York (2009)
14. Kipper, K., et al.: Extending verbnet with novel verb classes. In: Proceedings of

LREC 2006, Genoa, Italy, pp. 1027–1032 (2006)
15. Mahdisoltani, F., et al.: YAGO3: A knowledge base from multilingual Wikipedias.

In: Proceedings of CIDR (2015)
16. Marple, K., Salazar, E., Gupta, G.: Computing stable models of normal logic pro-

grams without grounding. arXiv preprint arXiv:1709.00501 (2017)
17. Miller, G.A.: Wordnet: a Lexical database for English. Commun. ACM 38(11),

39–41 (1995)
18. Mitchell, T.M., et al.: Never-ending language learning. In: Proceedings of Twenty-

Ninth AAAI Conference on Artificial Intelligence, pp. 2302–2310 (2015)
19. Pendharkar, D.: An ASP-based Approach to Representing and Querying Textual

Knowledge. M.S. Thesis, UT Dallas. http://utdallas.edu/∼gupta/dpthesis.pdf
20. Pendharkar, D.: CASPR. https://github.com/DhruvaPendharkar/thesis-project
21. Rajpurkar, P., et al.: 100,000+ questions for machine comprehension of text. arXiv

preprint arXiv:1606.05250 (2016)

https://doi.org/10.1007/978-3-642-24206-9_17
http://ceur-ws.org/Vol-1044
http://arxiv.org/abs/1709.00501
http://utdallas.edu/~gupta/dpthesis.pdf
https://github.com/DhruvaPendharkar/thesis-project
http://arxiv.org/abs/1606.05250

ASP-Based Automated Question Answering 63

22. Toutanova, K., et al.: Feature-rich part-of-speech tagging with a cyclic dependency
network. In: Proceedings of 2003 NAACL, pp. 173–180 (2003)

23. Toutanova, K., Manning, C.D.: Enriching the knowledge sources used in a max-
imum entropy part-of-speech tagger. In: Proceedings of EMNLP 2000, pp. 63–70
(2000)

24. Vo, N.H., Mitra, A., Baral, C.: The NL2KR platform for building natural language
translation systems. In: Proceedings of ACL 2015, pp. 899–908 (2015)

25. Wikipedia contributors: Cyc – Wikipedia. Accessed 17 May 2018. https://en.
wikipedia.org/w/index.php?title=Cyc&oldid=841189903

https://en.wikipedia.org/w/index.php?title=Cyc&oldid=841189903
https://en.wikipedia.org/w/index.php?title=Cyc&oldid=841189903

Natural Language Generation
from Ontologies

Van Nguyen(B), Tran Cao Son(B), and Enrico Pontelli(B)

New Mexico State University, Las Cruces, NM 88003, USA
{vnguyen,tson,epontell}@cs.nmsu.edu

Abstract. This paper addresses the problem of automatic generation of
natural language descriptions for ontology-described artifacts. The orig-
inal motivation for the work is the challenge of providing textual nar-
ratives of automatically generated scientific workflows (e.g., paragraphs
that scientists can include in their publications). The paper presents
two systems which generate descriptions of sets of atoms derived from a
collection of ontologies. The first system, called nlgPhylogeny, demon-
strates the feasibility of the task in the Phylotastic project, providing evo-
lutionary biologists with narrative for automatically generated analysis
workflows. nlgPhylogeny utilizes the fact that the Grammatical Frame-
work (GF) is suitable for the natural language generation (NLG) task;
the paper shows how elements of the ontologies in Phylotastic, such as
web services and information artifacts, can be encoded in GF for the
NLG task. The second system, called nlgOntologyA, is a generalization
of nlgPhylogeny. It eliminates the requirement that a GF needs to be
defined and proposes the use of annotated ontologies for NLG. Given a
set of annotated ontologies, nlgOntologyA generates a GF suitable for
the creation of natural language descriptions of sets of atoms derived
from these ontologies. The paper describes the algorithms used in the
development of nlgPhylogeny and nlgOntologyA and discusses poten-
tial applications of these systems.

Keywords: Natural language generation · Ontologies
Web service · Grammatical Framework · Attempto Controlled English

1 Introduction

In many application domains, where users are not proficient in computer pro-
gramming, it is of the utmost importance to be able to communicate the results
of a computation in an easily understandable way, e.g., using text rather than
a complex data structure or mathematic formulae. The problem of generating
natural language explanations has been explored in several research efforts. For
example, the problem has been studied in the context of question-answering sys-
tems,1 recommendation systems,2 etc. With the proliferation of spoken dialogue
1 http://coherentknowledge.com.
2 http://gem.med.yale.edu/ergo/default.htm.

c© Springer Nature Switzerland AG 2019
J. J. Alferes and M. Johansson (Eds.): PADL 2019, LNCS 11372, pp. 64–81, 2019.
https://doi.org/10.1007/978-3-030-05998-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05998-9_5&domain=pdf
http://coherentknowledge.com
http://gem.med.yale.edu/ergo/default.htm
https://doi.org/10.1007/978-3-030-05998-9_5

Natural Language Generation from Ontologies 65

systems and conversational agents, verbal interfaces such as Amazon Echo and
Google Home for human-robot-interaction, and the availability of text-to-speech
programs, such as the TTSReader Extension,3 the application arena of systems
capable of generating natural language representations will continue growing. In
this paper, we describe two systems for generating natural language descriptions
of collections of atoms derived from a set of ontologies.

The first system, called nlgPhylogeny, is used to generate natural language
descriptions of automatically generated workflows, obtained by composing web
services. This is motivated by the needs of the Phylotastic project [1]; the project
provides tools for the automated construction of workflows that allow evolution-
ary biologists, teachers, and students to extracts phylogenies relevant to given
sets of species. The automated construction of workflows is justified by the exis-
tence of a large number of web services that perform parts of a desired analysis
protocol, and the complexity of effectively interfacing the services (e.g., due to
the lack of data format standardization). A typical Phylotastic workflow is com-
posed of operations to collect list of species names (e.g., from a scientific paper),
“clean” them to ensure that the proper scientific names are used, extract a sub-
tree of a reference phylogeny that covers the desired species and visualize it.
Phylotastic has been implemented using an Answer Set Programming (ASP)
backend for reasoning about ontologies and for web service composition [6]. The
web services are described by an ontology, the Phylotastic ontology (PO). PO
is composed of two parts: an ontology that describes the artifacts manipulated
by the services (e.g., alignments, phylogenetic trees, species names) [7] and an
ontology to describe the operations performed by the services (the WSO).

Figure 2 displays a sample output of nlgPhylogenygiven the workflow in Fig. 1.
The workflow in this example is a plan generated by the ASP-based web service
composition component of the Phylotastic project [6], and consists of a sequence
of steps (green rectangles). The boxes before and after each green rectangle
represent input(s) and output(s) of the service, respectively. As the inputs of
one service might require some format different from the format of the previous
outputs, data conversions might be necessary (the double arrows). Each step
corresponds to a processing step on data provided by one of the preceding steps.
Specifically, the workflow is composed of three steps:

• Extracting the set of organisms from the input text;
• Resolving the names of the identified organisms (e.g., correct spelling, identify

proper scientific names); and
• Deriving the corresponding phylogenetic tree.

Figure 2 shows the description of the workflow as generated by nlgPhylogeny.
Since the fact that to illustrate a workflow, an graphical version is approxi-
mately good enough, but to put the workflow in a biological paper, sometimes,
authors would need to write some explanations for the workflow. We find that
it would be helpful to generate the textural version as a complement to the
graphical version, and provide them as a package. So, the authors are free to

3 https://ttsreader.com.

https://ttsreader.com

66 V. Nguyen et al.

resource_FreeText

resource_SetOfSciName
AND

resource_SetOfNames

resource_SetOfSciName

resource_SetOfSciName
AND

resource_SetOfTaxon
AND

resource_SetOfResolvedName

resource_SetOfTaxon

phylotastic_GetPhylogeneticTree_OT_GET

resource_speciesTree
AND

resource_Tree

Fig. 1. An automatically gener-
ated workflow (Color figure online)

Fig. 2. Description generated for workflow
in Fig. 1 by nlgPhylogeny (Color figure
online)

choose which versions to include in their paper. Moreover, we recognize that our
general idea can be a bridge between ontology developers and ontology users
or engineers who use the ontology in question-answering system. While ontol-
ogy developers just need to add a little more annotations on their work, the
benefit for ontology users is huge because they will no longer need to develop
the answering module from scratch. The answer generated from our idea will
mimic the grammar structure of annotations provided by ontology developers,
but different in content corresponding to the queried data.

As discussed in detail later, nlgPhylogeny exploits the NLG capabilities of the
Grammatical Framework (GF) [8]. This requires the development of a GF for
the entities in the Phylostatic projects (described by the ontology). For small
ontologies, the manual development of the GF for the NLG task is feasible,
but it is an improbable task for large ontologies. Furthermore, nlgPhylogeny

will not be applicable for other ontologies. It is, however, feasible to consider
a situation where an ontology engineer has the necessary domain knowledge to
explicitly add meta-information to the concepts as they are progressively added
to the ontology. The nlgOntologyA system demonstrates that, as long as meta-
information is added in the ontology following proper guidelines, it is possible to
generate the description for the atoms derived from annotated ontologies without
the manual creation of a GF.

Natural Language Generation from Ontologies 67

The project critically relies on logic programming. ASP is employed by
the composition system and to manage the connection with the ontology. The
Attempto Parsing Engine is available in GitHub4 and it is written in SWI-Prolog.
The program to convert lexicon extracted from annotations in the ontologies to
lexicon to generate the GF concrete syntax is also a Prolog-based program.

The rest of the paper is organized as follows. We begin with a brief review of
the Grammatical Framework and Attempto Controlled English, the two frame-
works used in this paper. The following two sections describe nlgPhylogeny and
nlgOntologyA, respectively. We conclude the paper with a discussion of poten-
tial uses of nlgOntologyA and of the proposed technologies developed in this
paper.

2 Background

2.1 Grammatical Framework

The Grammatical Framework (GF) [8] is a system used for working with gram-
mars; it is composed of a programming language used to design grammars along
with a theory about grammars and languages. GF also comes with a GF Resource
Grammar Library and a GF runtime API for working with GF programs.

A GF program has two main parts. The first part is the Abstract syntax which
defines what meanings can be expressed by a grammar. The abstract syntax
defines categories (i.e., types of meaning) and functions (i.e., meaning-building
components). The following is an example of an abstract syntax component:

abstract Food = {
flags startcat = Phrase ;

cat

Phrase ; Item ; Kind ; Quality ;

fun

Is : Item -> Quality -> Phrase ;

This : Kind -> Item ;

QKind : Quality -> Kind -> Kind ;

Cheese, Fish : Kind ;

Very : Quality -> Quality ;

Warm, Italian, Delicious : Quality ;

}
In this syntax, Phrase, Item, Kind and Quality are types of meanings. The
startcat flag declaration states that Phrase is the default start category for
parsing and generation. Is is a function accepting two parameters, of type Item
and Quality. This function returns a meaning of Phrase category.

4 https://github.com/Attempto/APE.

https://github.com/Attempto/APE

68 V. Nguyen et al.

The second part is composed of one or more concrete syntax specifications.
Each concrete syntax defines the representation of meanings in each output
language. For example, the corresponding concrete syntax that maps functions
in the abstract Food grammar above to strings in English is:

concrete FoodEng of Food = {

lincat

Phrase, Item, Kind, Quality = {s : Str} ;

lin

Is item quality = {s = item.s ++ "is" ++ quality.s} ;

This kind = {s = "this" ++ kind.s} ;

QKind quality kind = {s = quality.s ++ kind.s} ;

Cheese = {s = "cheese"} ;

Fish = {s = "fish"} ;

Very quality = {s = "very" ++ quality.s} ;

Warm = {s = "warm"} ;

Italian = {s = "Italian"} ;

Delicious = {s = "delicious"} ;

}

In this concrete syntax, the linearization type definition (lincat) states that
Phrase, Item, Kind and Quality are strings (s). Linearization definitions (lin)
indicate what strings are assigned to each of the meanings defined in the abstract
syntax. Various types of linearization type definitions are considered in GF (e.g.,
string, table). Some functions represent a simple string but some functions (e.g.,
Is or This) defines a concatenation of strings.

Is: Phrase

This: Item Very: Quality

Qkind: Kind Italian: Quality

Delicious: Quality Cheese: Kind

Fig. 3. Example syntax tree

Intuitively, each function in the
abstract syntax represents a rule
in a grammar. The combination of
rules used to construct a mean-
ing type can be seen as a syntax
tree. The visualization of the tree
representing the Phrase “this deli-
cious cheese is very Italian” is illus-
trated in Fig. 3. GF has been used
in a variety of applications, such
as query-answering systems, voice
communication, language learning,
text analysis and translation, and natural language generation [3,9]. GF has been
used extensively in automated translation and it is the main vehicle behind the
MOLTO project, that aims at developing a set of tools for high-quality and real-
time translation of text between multiple languages5. To see how it works, let
us augment our program with a concrete syntax for Italian as follows:

concrete FoodIta of Food = {

lincat

5 http://www.molto-project.eu.

http://www.molto-project.eu

Natural Language Generation from Ontologies 69

Phrase, Item, Kind, Quality = {s : Str} ;

lin

Is item quality = {s = item.s ++ "e’" ++ quality.s} ;

This kind = {s = "questo" ++ kind.s} ;

QKind quality kind = {s = kind.s ++ quality.s} ;

Cheese = {s = "formaggio"} ;

Fish = {s = "pesce"} ;

Very quality = {s = "molto" ++ quality.s} ;

Warm = {s = "caldo"} ;

Italian = {s = "italiano"} ;

Delicious = {s = "delizioso"} ;

}

The translation from English to Italian can be performed as follows in the
GF API:

> parse -lang=FoodEng "this fish is warm" | linearize -lang=FoodIta

questo pesce e’ caldo

We use a pipe which includes the parse and linearize commands to find the
syntax tree of the sentence “this fish is warm” then turn that tree into a FoodIta
sentence. The last line is the result of the translation process. The translation
process is very similar to currency exchange in the old days, when exchange was
done only in gold. Assume we want to exchange US Dollars for Euros; we first
exchange US Dollars for gold, then, exchange gold for Euros. Correspondingly,
in GF the intermediate result in the translation process is the syntax tree which
contains the meaning of the translated sentence.

2.2 Attempto Controlled English

A GF program produces sentences whose syntax is specified by its abstract syn-
tax; this structure also determines the quality of its output. Developing a GF
syntax (abstract or concrete) requires understanding functional programming;
this is a level of knowledge that might not be suitable for users who are not
familiar with programming—as is the case of biologists using Phylotastic to cre-
ate and execute phylogenetic workflows. As we will see in the next section, our
nlgPhylogeny system can utilize GF to generate descriptions of Phylotastic work-
flows. It requires, however, a considerable amount of domain-specific knowledge.
To alleviate this problem, we investigate a combination of annotated ontologies
and the Attempto Controlled English (ACE) [4] for the same task, which results
in the system nlgOntologyA.

ACE is a controlled natural language, i.e., a subset of standard English with
a restricted syntax and restricted semantics, described by a small set of construc-
tion and interpretation rules. ACE sentences are normal English sentences and
can be read and understood by any English speaker. However, ACE is a formal
language that can be used for knowledge representation; ACE texts are computer-
processable and can be unambiguously translated into discourse representation

70 V. Nguyen et al.

structures, a syntactic variant of first-order logic. An ACE grammar consists of
construction rules for both simple and composite sentences, interrogative and
imperative sentences. ACE can be encoded in GF and used for NLG.

3 Generating Sentences from GF

In this section, we describe the nlgPhylogeny system. Figure 4 shows the overall
architecture of nlgPhylogeny. The main component of the system is the GF gen-
erator whose inputs are the Phylotastic ontology and the elements necessary for
the NLG task (i.e., the set of linearizations, the set of pre-defined conjunctives,
the set of vocabularies, and the set of sentence models). The output of the GF
generator is a GF program, i.e., a pair of GF abstract and concrete syntax. This
GF program is used for generating the descriptions of workflows via the GF
runtime API. The adapter provides the GF generator with the information from
the ontology, such as the classes, instances, and relations. We will describe in
more details the elements of nlgPhylogenyin Sect. 3.2.

3.1 Web Service Ontology (WSO)

Phylotastic uses web service composition to generate workflows for the extrac-
tion/construction of phylogenetic trees. It makes use of two ontologies: WSO
and PO. WSO encodes information about the registered web services, classified
in a taxonomy of classes of services. In the following discussion, we refer to a
simplified version of the ASP encoding of the ontologies used in [6], to facilitate
readability.

In WSO, a service has a name and is associated with a list of inputs and
outputs. For example, the service named FindScientificNamesFromWeb GET in
the ontology is an instance of the class names extraction web. The outputs and
inputs of FindScientificNamesFromWeb GET are encoded by the three atoms:

Ontology Linearization
Conjunctive Vocabulary

GF GeneratorAdapter

Portable
grammar

format

Sentence
Model

English concrete
syntax

Abstract
syntax

English
Description

GF Runtime API

Sentence generator

Fig. 4. Overview of nlgPhylogeny.

Natural Language Generation from Ontologies 71

has_input(FindScientificNamesFromWeb_GET,resource_WebURL,url_format).

has_output(FindScientificNamesFromWeb_GET,resource_SetOfSciName,

scientific_names_format).

has_output(FindScientificNamesFromWeb_GET,resource_SetOfNames,

list_of_strings).

In the above atoms, the first argument is the name of the service, the second is
the service input or output, and the last argument is the data type of the second
argument.

The web service ontology of the Phylotastic project is exported to an ASP
program (from its original OWL encoding) and enriched with a collection of ASP
rules to draw inferences about classes, inheritance, etc. nlgPhylogeny employs
these rules to identify information related to the set of atoms whose description
is requested by a user—e.g., What are the inputs of a service? What is the data
type of an input x of a service y?

3.2 GF Generator

Each Phylotastic workflow is an acyclic directed graph, where the nodes are web
services, each consumes some resources (inputs) and produces some resources
(outputs). An example of the specification of a workflow is as follows.6

occur concrete(GenerateGeneTree From Genes,0).

occur concrete(ExtractSpeciesNames From Gene Tree GET,1).

occur concrete(GeneTree Scaling,2).

occur concrete(ResolvedScientificNames OT TNRS GET,3).

This set of atoms is a partial description of the result of a web service composi-
tion process, as described in [6]. Intuitively, this set of atoms represents a plan
consisting of 4 steps. At each step, a concrete instance of the service class named
by the first argument of the atom occur concrete/2 is executed.

To generate the description of a workflow, we adapt the general theoretical
framework proposed in [10]. This framework consists of three major processing
phases: (1) Document planning (content determination), (2) Microplanning,
and (3) Surface realization. The document planning phase is used to determine
the structure of the text to be generated. Based on the structure determined in
the document planning phase, the microplanner makes lexical/syntatic choices
to generate the content of the sentences, and the realization phase generates
the actual sentences. In our work, we combine the microplanning and surface
realization phase into a single phase due to the nature of the grammar definition
and the capability of GF in sentence generation.

In the document planning step, we create, for each occurrence atom, a sen-
tence which specifies the input(s) and output(s) of the service mentioned in the
first argument of the atom. Optionally, users can choose to describe the service
in more details, one or two more sentences about the data type of the service’s
6 For simplicity, we use examples which are linear sequences of services. We also trim
the names of services for readability.

72 V. Nguyen et al.

inputs or outputs can be included. As we have mentioned in the previous sub-
section, the information about the inputs, outputs, and data types of the inputs
and outputs of a service can be obtained via the ASP reasoning engine of the
Phylotastic system. In general, we identify the document planning structure
described in Table 1.

Table 1. Document planning structure

The document planning phase determines three messages for the sentence
generation phase. Each message will be constructed using the arguments as men-
tioned in Table 1. While the first message is mandatory, the other two messages
are optional.

In the microplanning step, we focus on developing a GF generator that can
produce a portable grammar format (pgf) file [2]. This file is able to encode
and generate 3 types of sentences as mentioned above. The GF generator (see
Fig. 4) accepts two flows of input data. The first one is the flow of data from
the ontology, which is maintained by an adapter. The adapter is the glue code
that connects the ontology to the GF generator. Its main function is to extract
classes and properties from the ontology.

The second flow is the flow of data from predefined resources that cannot be
automatically obtained from the ontology—instead they require manual effort
from both the ontology experts and the linguistic developers.

– A list of linearizations: the translations of ontology entities into linguistic
terms. This translation is performed by experts who have knowledge of the
ontology domain. An important reason for the existence of this component
is that some classes or terms used in the ontology might not be directly
understandable by the end user. This may be the result of very special-
ized strings used in the encoding of the ontology. For example, the class
phylotastic ResolvedScientificNames OT TNRS POST can be meaningfully
linearized to Name Resolution service provided by OpenTree in Phylotastic
ontology.

Natural Language Generation from Ontologies 73

– Some sentence models which are principally Grammatical Framework syntax
trees with meta-information. The meta-information denotes which part of
syntax tree can be replaced by some vocabulary or linearization. As indicated
above, we decided that each occurrence atom in a workflow will be described
by at most three sentences. For example, if we consider the first message in
the document planning structure, the generated sentence will have the inputs
and the outputs of a service; the second message indicates a sentence about
the data type of its first argument (input or output); the third message is
about the actual data used during the execution of the workflow. However,
the messages do not specify how many inputs and outputs should be included
in the generated sentence. This means that sentences have different structures,
i.e., the structure of a sentence representing a service that requires one input
and one output is different from the structure of a sentence representing a
service that does not require any inputs. These variations in sentences are
recorded in the model sentence component.

– A list of pre-defined vocabularies which are domain-specific components for
the ontology. A pre-defined vocabulary is different from linearizations, in the
sense that some lexicon may not be present in the ontology but might be
needed in the sentence construction. The predefined vocabulary is also useful
to bring variety in word choices when parts of a model sentence are replaced
by the GF generator. For example, we would not want the system to keep
generating a sentence of the form “The service A has input X” given an atom
of the form occur concrete(A, T), but sometimes “The service A requires
input X”, or “The service A needs input X”, etc. To achieve this, we keep
“have”, “require” and “need” in the set of pre-defined vocabularies and ran-
domly select a verb to replace the verb in model sentence.

– A configuration of pre-defined conjunctives, which depend on the docu-
ment planning result. Basically, this configuration defines which sentences
accept a conjunctive adverb in order to provide generated text transition and
smoothness.

To encode sentences, the GF generator defines 3 categories: Input, Output and
Format in the abstract syntax. The corresponding English concrete syntax is as
follows:

concrete PhyloEng of Phylo = open SyntaxEng, ParadigmsEng,

ConstructorsEng

in {

lincat

Message = S; Input = NP; Output = NP; Format = NP;

... }

SyntaxEng, ParadigmsEng, ConstructorsEng are GF Resources Grammar
libraries7 providing constructors for sentence components like Verb, Noun
Phrase, etc. in English.

7 http://www.grammaticalframework.org/lib/doc/synopsis.html.

http://www.grammaticalframework.org/lib/doc/synopsis.html

74 V. Nguyen et al.

The GF generator obtains information about the services (e.g., how many
inputs/outputs has the service? what are the data types of the inputs/outputs?
etc.) by querying the ontology (via the adapter). Based on the number of inputs
and outputs of a service, the GF generator determines how many parameters
will be included in the GF abstraction function corresponding to the service.
Furthermore, for each input or output of a service, the GF generator includes
an Input or Output in the GF abstract function. For example, the encoding of
occur concrete(FindScientificNamesFromWeb GET, 1) in the GF abstract
syntax is

f_FindScientificNamesFromWeb_GET: Input -> Output -> Message;
i_resource_WebURL: Input;
o_resource_SetOfNames: Output;

Next, the GF generator looks up in the sentence models a model syntax tree
whose structure is suitable for the number of inputs and outputs of the service.
If such syntax tree exists, the GF generator will replace parts of the syntax tree
with the GF service input and output functions, to create a new GF syntax
tree which can be appended to the GF concrete function. The functions in the
abstract syntax correspond to the following functions in the GF concrete syntax:

f_phylotastic_FindScientificNamesFromWeb_GET i_resource_WebURL
o_resource_SetOfNames = mkS and_Conj

(mkS (mkCl phylotastic_FindScienticNamesFromWeb_GET_in
(mkV2 "require") i_resource_WebURL))

(mkS (mkCl phylotastic_FindScienticNamesFromWeb_GET_out
(mkV2 "return") o_resource_SetOfSciName));

i_resource_WebURL = mkNP(mkCN (mkN "webURL"));
i_resource_SetOfNames = mkNP(mkCN (mkN "asetof names"));

The above functions consist of several syntactic construction functions which are
implemented in the GF Resources Grammar:

• mkN which creates a noun from a string;
• mkCN which creates a common noun from a noun;
• mkNP which creates a noun phrase from a common noun;
• mkV2 which creates a verb from a string;
• mkCl which creates a clause. A clause can be constructed from sequence of a

noun phrase, a verb and another noun phrase (NP V2 NP);
• mkS which creates a sentence. A sentence can be constructed from a clause

(Cl) or from 2 other sentences and a conjunction word (and Conj S S).

From the abstract and concrete syntax specifications built by the GF generator,
the atom

occur concrete(phylotastic FindScientificNamesFromWeb GET, 1)
is translated into the sentence

Natural Language Generation from Ontologies 75

The input of phylotastic FindScientificNamesFromWeb GET is a web link,
and its outputs are a set of species names and a set of scientific names.

We use the same technique to encode the other types of sentences indicated by
the document planning structure. This is how the GF generator has been imple-
mented. Figure 1 is an example output of the current version of nlgPhylogeny.

4 Automatic Natural Language Generation
from Annotated Ontology: nlgOntologyA

Annotated
Ontology

Parser for
Attempto

Controlled English
(APE)

Attempto Controlled
English in Grammatical

Framework
(ACE-in-GF)

GF
Generator

Adapter

Vocabulary
extractor

English
concrete syntax

Abstract
syntax

Mappings

Portable
grammar format

Atoms
English

DescriptionGF Runtime API

Sentence generator

Fig. 5. Overview of nlgOntologyA

The previous section shows that, with suf-
ficient knowledge about the ontology and
pre-defined descriptions about elements in
the ontology, we can utilize the current
technology in NLG to generate a descrip-
tion of a set of atoms derived from the
ontology. It also highlights that the process
requires manual labor and domain exper-
tise. Such approach is feasible only in small
ontologies related to uncomplicated gram-
mars and elementary lexicons. The appli-
cation of the same process to medium or
large ontologies is likely to be too costly
or time consuming. On the other hand, we
can observe that ontologies often include
meta-data encoding of their elements. Fur-
thermore, information extracted from the meta-data of an ontology is often suf-
ficient for a basic understanding of the concepts that can be derived from the
ontology. Motivated by this observation, we develop an automatic natural lan-
guage generation method for ontologies whose meta-data can be understood by
an ACE parser. We will refer to ontologies satisfying this assumption simply as
annotated ontology. A simple annotated ontology is as following.

%% @n: Company

class(Com)

%% @pn: Apple_Inc

instanceOf(Com, Apple)

%% @pn: Beats

instanceOf(Com, Beats)

%% @lin: Beats is a company of Apple_Inc

own(Apple, Beats)

%% @pn: Silicon_Grail_Corp_Chalice

instanceOf(Com, Sgcc)

%% @pn: Silicon_Grail

instanceOf(Com, Sg)

%% @lin: Apple_Inc acquires Beats

acquire(Apple, Beats)

76 V. Nguyen et al.

In the above ontology, Com is a class, Apple, Beats, Sgcc and Sg are instances
of the class Com, and acquire and own are two properties. The tags

• %% @n marks a noun
• %% @pn denotes a proper noun
• %% @lin signals a translation of an atom to an Attempto English sentence

Ontologies annotated in this way can be understood by nlgOntologyA. We now
describe the nlgOntologyA system.

4.1 Overall Architecture

Figure 5 shows the overall structure of nlgOntologyA. The GF generator
described in Fig. 5 uses data and functions from three main components:

• A vocabulary extractor, which is responsible for collecting nouns, proper
nouns, adjectives and verbs from the ontology. The vocabulary extractor also
creates a mapping of classes or instances in the ontology to their lineariza-
tions. Moreover, in the case of adjectives and verbs, the vocabulary extractor
will query some vocabulary dictionaries to collect information like type of
verbs (transitive, intransitive) and verbs in different forms (finite singular,
infinite, etc.).

• The Attempto Controlled English Parser (APE), which analyzes sentences
extracted from the ontology. The parser translates ACE text into discourse
representation structures (DRS) [5].

Algorithm 1. Generation of portable grammar format
Require: annotated ontology, some annotations are ACE parable sentences
1: n ←extract nouns and proper nouns from ontology
2: s ←extract sentences from ontology
3: a ← empty, v ← empty
4: add n to APE lexicon
5: for i in n do
6: n′, a′, v′ ←parse i using APE
7: n := n ∪ n′, a := a ∪ a′, v := v ∪ v′

8: end for
9: for i in n do
10: find singular and plural form of i
11: end for
12: for i in a do
13: find comparative and supercomparative form of i
14: end for
15: for i in v do
16: find transitive and intransitive form of i
17: end for
18: generate vocabulary, generate mappings
19: convert vocabulary to GF syntax
20: compile grammar in ACE-in-GF and generated syntax

Natural Language Generation from Ontologies 77

• Attempto Controlled English in Grammatical Framework (ACE-in-GF),
which is an implementation of the Attempto Controlled English grammar
in the Grammatical Framework syntax.

The outputs of the generator are a portable grammar format (pgf) file, a map-
ping of annotated atoms in the ontology into GF syntax trees, and a mapping
of concepts used in the ontology into GF functions. These data will be used in
the re-construction sentence progress which is described next.

4.2 Generation of Portable Grammar Format

To generate the pgf file, the GF generator performs the procedure shown in
Procedure 1. Lines 1–2 extract annotations from the ontology. Lines 3 initialize
variables holding adjectives and verbs. Line 4 enriches the APE lexicon with
the nouns and proper nouns. This allows the APE to recognize proper nouns
that are possibly present in the sentences extract in s. Furthermore, it helps
increase the accuracy when a sentence is parsed by APE. Next, the for-loop in
lines 5–8 iterates through all sentences to collect new lexicon. Lines 9–17 find
all possible forms of words. Line 18 creates the vocabulary file and mapping file
from information obtained from previous steps. The vocabulary file is written
in Prolog. For example, a portion of the vocabulary file extracted from the
annotations from the ontology in the beginning of this section looks as follows:

noun_pl(’companies’, company, neutr).

noun_sg(’company’, company, neutr).

pn_sg(’Apple_Inc’, ’Apple_Inc’, neutr).

pn_sg(’Beats’, ’Beats’, neutr).

pn_sg(’Silicon_Grail_Corp_Chalice’, ’Silicon_Grail_Corp_Chalice’,

neutr).

pn_sg(’Silicon_Grail’, ’Silicon_Grail’, neutr).

tv_finsg(acquires, acquire).

iv_finsg(is, be).

Line 19 converts the vocabulary file to GF syntax. As an example, the conversion
produces the GF concrete syntax file:

lin

company_N = aceN "company" ;

Apple_Inc_PN = acePN "Apple_Inc" ;

Beats_PN = acePN "Beats" ;

Silicon_Grail_Corp_Chalice_PN = acePN "Silicon_Grail_Corp_Chalice"

;

Silicon_Grail_PN = acePN "Silicon_Grail" ;

acquire_V2 = aceV2 "acquire" "acquires" "acquire";

Finally, line 20 uses ACE-in-GF to compile the Attempto grammar and the
vocabulary extracted from the ontology into a portable grammar format.

78 V. Nguyen et al.

4.3 Sentence Construction

Given an input atom, the generated pgf file and a mapping file, the sentence
generator implements the algorithm presented in Procedure 2. Lines 1–3 initialize
variables as well as load the information in the pgf and mapping files. Line 4
finds the atom in the mapping file that has the same name as the input atom. We
call it model atom. Line 5 finds the syntax tree of the model atom. The for-loop
in lines 6–12 replaces parts of the syntax tree with the mapping of arguments
of atom. This process creates a new syntax tree which keeps the same structure
as the model atom’s syntax tree. Finally, line 13 converts the new syntax tree
back to a sentence.

Algorithm 2. Sentence re-construction
Require: an atom
Require: portable grammar format file, mapping file
1: a ←atom
2: pgf ←load pgf
3: map ←mapping
4: model atom ← map.keys.find(name(a))
5: syntax tree ← map(model atom)
6: for part is a part of syntax tree do
7: for arg, arg index in arguments(model atom) do
8: if part == map(arg) then
9: syntax tree[part] = map(arguments(a)[arg index])
10: end if
11: end for
12: end for
13: sentence = pgf(syntax tree)

As an example, given an annotated ontology describing Apple Inc. and its
acquired companies as mentioned in Sect. 4, from the set of atoms:

acquire(Apple,Sg). own(Sg,Sgcc). acquire(Apple,Sgcc).

we are able to generate the following sentences:

Apple_Inc acquires Silicon_Grail .

Silicon_Grail_Corp_Chalice is a company of Silicon_Grail .

Apple_Inc acquires Silicon_Grail_Corp_Chalice .

The above example illustrates the feature of nlgOntologyA; it emulates
the annotations in the ontology to generate sentences. From the annotations
provided for the specific case “Apple acquires Beats”, nlgOntologyA can gen-
erate sentences for other cases that have similar meaning but with different
objects. The repetition of narration can be seen in many question-answering
systems. In particular, nlgOntologyA uses the annotation of acquire(Apple,
Beats) to generate the sentences for acquire(Apple, Sg) and acquire(Apple,
Sgcc). The sentence generation for own(Sg,Sgcc) provides the annotation for
own(Apple, Beats).

Natural Language Generation from Ontologies 79

5 Related Work and Analysis

The closest effort to what proposed here is the work in [3], which reports on gen-
erating natural language text from class diagrams. In [3], the author developed
a system to generate specifications for UML class design while the present work
focuses on natural language text generation for a given ontology and a Gram-
matical Framework, which is manually encoded or automatically generated from
the annotations of the ontology.

The work in [11] targets generating an ASP program from controlled natu-
ral language, and vice versa. The author uses a bi-directional grammar as the
intermediate conversion in combination with reordering atoms for aggregation.
There is a correlation between our work and the work in [11] in terms of pro-
cessing the controlled input format and generating the natural language text.
The key difference between our work and that work in [11] is that our system
only relies on the structure of the annotated sentences (for nlgOntologyA) in
the text generation and thus could potentially be more flexible.

In order to assess the feasibility of our approach to automatically gener-
ate text based on an ontology, we performed an experiment using the Soft-
ware ontology,8 which is apart of The Open Biological and Biomedical Ontology
(OBO) Foundry.9 We annotated some concepts in the ontology using the tag
oboInOwl:comment as in the following example:

<!-- http://edamontology.org/operation_0244 -->

<owl:Class rdf:about="http://edamontology.org/operation_0244">

<rdfs:subClassOf rdf:resource="http://edamontology.org/operation_0243

"/>

...

<rdfs:label>

Protein flexibility and motion analysis

</rdfs:label>

<oboInOwl:comment rdf:datatype="http://www.w3.org/2001/XMLSchemastring

">

%% @n: protein_flexibility_and_motion_analysis

</oboInOwl:comment>

<oboInOwl:comment rdf:datatype="http://www.w3.org/2001/XMLSchemastring

">

%% @lin: a protein_flexibility_and_motion_analysis is a

molecular_dynamics_simulation .

</oboInOwl:comment>

</owl:Class>

We implicitly bind the annotations with the relation subclassOf due to the
simplicity of the Software ontology. Given the annotated Software ontology,
nlgOntologyA is able to generate some sentences like

8 http://theswo.sourceforge.net.
9 http://www.obofoundry.org.

http://theswo.sourceforge.net
http://www.obofoundry.org

80 V. Nguyen et al.

A DNA_substitution_modelling is a Modelling_and_simulation_operation .

A Molecular_dynamics_simulation is a Modelling_and_simulation_operation .

A Protein_flexibility_and_motion_analysis is a Modelling_and_simulation .

6 Conclusions, Discussions, and Future Work

In this paper, we presented two NLG systems, nlgPhylogeny and nlgOntologyA,
for automatic generation of English descriptions for a set of atoms derived from
ontologies. Both achieve the goal by creating a GF program and relying on
the ability to generate sentences of the Grammatical Framework. nlgPhylogeny
uses pre-defined resources (e.g., linearizations, vocabularies, etc.) to build the
sentence generator (GF program), while nlgOntologyA extracts and manipu-
lates information directly from an annotated ontology. Observe that the struc-
ture of the generated text in nlgPhylogeny is richer than that in the current
nlgOntologyA due to the fact that the pre-defined resources are hand-crafted
and nlgOntologyA employs a very simple grammar for its sentence structure.
For this reason, nlgPhylogeny can generate sentences that are more complex than
the sentences generated by nlgOntologyA. On the other hand, nlgOntologyA

relies on meta-information in the ontologies and can be used in any ontology
that is annotated and can be parsed by an Attempto Controlled English parser.
As such, nlgOntologyA can save significant efforts before it can be deployed in
an application.

We conclude the paper with a short discussion about the applications and
possible extensions of nlgOntologyA. It is easy to see that the current system can
be very useful in applications that require shallow explanations. We envision the
possibility of using nlgOntologyA for query-answering or information retrieval
systems that, at the end of their complex computations, need to present the
result—a set of atoms—to their users and do not need to explain the computation
process. In such systems, the answers are often crafted manually or using some
templates. This is certainly achievable with nlgOntologyA as such templates can
be provided as annotations for instances in the ontologies. nlgOntologyA can
add some flexibility to such system if multiple linearizations for an instance are
provided in the ontologies, since they are translated to potentially different syn-
tax trees. This will result in different sentences during the generation phase. The
current system is, on the other hand, not as good, compared to nlgPhylogeny, in
dealing with ordered sets of atoms, i.e., the explanation needs to be presented in
a certain order. For example, nlgPhylogeny needs to present a plan which is a set
of atoms with an ordering in the second parameter of the atoms occur concrete/2
to the users. The implementation of this feature in nlgOntologyA will be our
main immediate future work. This will allow nlgOntologyA to provide natural
language explanation detailing the steps involved in the computation of a result
(e.g., the steps of a procedure or workflow).

Natural Language Generation from Ontologies 81

To improve the usability of nlgOntologyA, we intend to extend the sys-
tem to consider the problem when the ontology comes with annotations in nat-
ural language, i.e., to remove the restrictions that the ontology is annotated
using controlled natural language. Interestingly, this idea is closely related to
the idea proposed in a Blue Sky Ideas of the 17th International Semantic Web
Conference [12].

Acknowledgement. We thank the reviewers for the comments and the references,
especially [12]. We would like to acknowledge the partial support of the NSF grants
1458595, 1401639, and 1345232.

References

1. Stoltzfus, A., et al.: Phylotastic! making tree-of-life knowledge accessible, reusable
and convenient. BMC Bioinform. 14, 158 (2013)

2. Angelov, K., Bringert, B., Ranta, A.: PGF: a portable run-time format for type-
theoretical grammars. J. Logic Lang. Inf. 19, 201–228 (2010)

3. Burden, H., Heldal, R.: Natural language generation from class diagrams. In: Pro-
ceedings of the 8th International Workshop on Model-Driven Engineering, Verifi-
cation and Validation (MoDeVVa 2011), Wellington, New Zealand. ACM (2011)

4. Fuchs, N.E., Schwitter, R.: Attempto controlled English (ACE). CoRR cmp-
lg/9603003 (1996)

5. Kamp, H., Reyle, U.: From Discourse to Logic. Springer, Dordrecht (1993). https://
doi.org/10.1007/978-94-017-1616-1

6. Nguyen, T.H., Son, T.C., Pontelli, E.: Automatic web services composition for phy-
lotastic. In: Calimeri, F., Hamlen, K., Leone, N. (eds.) PADL 2018. LNCS, vol.
10702, pp. 186–202. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
73305-0 13

7. Prosdocimi, F., Chisham, B., Thompson, J., Pontelli, E., Stoltzfus, A.: Initial
implementation of a comparative data analysis ontology. Evol. Bioinform. 5, 47–66
(2009)

8. Ranta, A.: Grammatical framework. J. Funct. Program. 14(2), 145–189 (2004)
9. Ranta, A.: Grammatical framework: Programming with multilingual grammars.

CSLI Publications, Center for the Study of Language and Information (2011)
10. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge

University Press, Cambridge (2000)
11. Schwitter, R.: Specifying and verbalising answer set programs in controlled natural

language (2018). arXiv preprint: arXiv:1804.10765
12. Vrandei, D.: Capturing meaning: Toward an abstract wikipedia. http://ceur-ws.

org/Vol-2180/

https://doi.org/10.1007/978-94-017-1616-1
https://doi.org/10.1007/978-94-017-1616-1
https://doi.org/10.1007/978-3-319-73305-0_13
https://doi.org/10.1007/978-3-319-73305-0_13
http://arxiv.org/abs/1804.10765
http://ceur-ws.org/Vol-2180/
http://ceur-ws.org/Vol-2180/

Improving Residuation
in Declarative Programs

Michael Hanus(B)

Institut für Informatik, CAU Kiel, 24098 Kiel, Germany
mh@informatik.uni-kiel.de

Abstract. Residuation is an operational principle to evaluate functions
in logic-oriented languages. Residuation delays function calls until the
arguments are sufficiently instantiated in order to evaluate the func-
tion deterministically. It has been proposed as an alternative to the
non-deterministic narrowing principle and is useful to connect exter-
nally defined operations. Residuation can be implemented in Prolog sys-
tems supporting coroutining, but this comes with a price: the corou-
tining mechanism causes a considerable overhead even if it is not used.
To overcome this dilemma, we propose a compile-time analysis which
approximates the run-time residuation behavior. Based on the results of
this analysis, we improve an existing implementation of residuation and
evaluate the potential efficiency gains by a number of benchmarks.

1 Introduction

Declarative programming is an attempt to build reliable software systems in
a high-level manner on sound theoretical principles. Functional languages sup-
port functions as programming entities and use reduction for evaluation. Logic
languages support relations as main entities and use unification-based resolu-
tion for evaluation. When combining both kinds of languages in order to pro-
vide a single declarative language, there are two principle choices for evalua-
tion. Narrowing extends reduction by unification so that functions can also be
invoked with partially known arguments. Thus, functions might be evaluated
non-deterministically like relations in logic programming. Residuation restricts
non-deterministic evaluation to predicates only so that functions are suspended
if their arguments are not sufficiently instantiated for deterministic reduction.
Both operational mechanisms are applied in functional logic languages that com-
bine the most important features of functional and logic programming in a single
language (see [6,12] for recent surveys).

Both narrowing and residuation have their justifications. Optimal evaluation
strategies are known for narrowing [4] whereas residuation supports concurrent
computations and allows to connect externally defined operations in a declara-
tive manner [7]. This motivated the development of the functional logic language

The research described in this paper has been partially supported by the German
Federal Ministry of Education and Research (BMBF) under Grant No. 01IH15006B.

c© Springer Nature Switzerland AG 2019
J. J. Alferes and M. Johansson (Eds.): PADL 2019, LNCS 11372, pp. 82–97, 2019.
https://doi.org/10.1007/978-3-030-05998-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05998-9_6&domain=pdf
http://orcid.org/0000-0002-4953-8202
https://doi.org/10.1007/978-3-030-05998-9_6

Improving Residuation in Declarative Programs 83

Curry [16] as a unified language for functional logic programming which combines
narrowing and residuation in a single evaluation principle [11]. A functional logic
language can be implemented with limited efforts by compiling it into Prolog
(e.g., [5,9,18]). To implement residuation, one can exploit coroutining facilities
supported by many Prolog systems: if some argument of a residuating operation
is not sufficiently instantiated, the evaluation of the corresponding Prolog pred-
icate is suspended so that another predicate can be activated [5]. Although this
implementation is quite simple, it causes additional costs if residuation is not
used, i.e., all function calls are sufficiently instantiated, since one has to check
each function call before activating them. To avoid these costs, we develop in this
paper a compile-time analysis which approximates operations w.r.t. their run-
time residuation behavior. Based on this analysis, we improve a Curry compiler
and evaluate the efficiency gains for some benchmarks.

This paper is structured as follows. After a short introduction to functional
logic programming and Curry, we sketch in Sect. 3 an existing implementation
of residuation in Prolog. Our compile-time analysis of residuation is described in
Sect. 4. The improved implementation of residuation w.r.t. analysis information
is sketched in Sect. 5 and evaluated in Sect. 6. Section 7 discusses related work
before we conclude in Sect. 8.

2 Declarative Programming with Curry

The declarative programming language Curry [16] amalgamates the most impor-
tant features of functional and logic programming as well as operational princi-
ples of combined functional logic languages [6,12], such as narrowing and resid-
uation, in a single language. Conceptually, Curry extends Haskell [21] with non-
determinism, free variables, and constraint solving. Thus, the syntax of Curry is
close to Haskell but Curry applies rules with overlapping left-hand sides in a (don’t
know) non-deterministic manner and allows free (logic) variables in conditions
and right-hand sides of rules. These variables must be explicitly declared unless
they are anonymous. Similarly to Haskell, functions are evaluated lazily to sup-
port modular programming, infinite data structures, and optimal evaluation [4].
Unlike Haskell, function calls might contain free (unbound) variables, i.e., with-
out a value at call time. If the value of such an argument is demanded, the func-
tion call is either suspended (which corresponds to residuation) or the variable is
non-deterministically instantiated (which corresponds to narrowing [4]).

Example 1. Consider the following definition of natural numbers in Peano rep-
resentation, the addition on natural numbers, and a predicate which is true on
natural numbers:

data Nat = Z | S Nat

add :: Nat → Nat → Nat nat :: Nat → Bool

add Z y = y nat Z = True

add (S x) y = S (add x y) nat (S x) = nat x

84 M. Hanus

If add is evaluated by narrowing (such functions are also called flexible), the
equation
let x free in add x (S Z) == S (S Z)

is solved by instantiating the free variable x to (S Z). However, if add is evaluated
by residuation (in this case add is called rigid), the equation solving suspends. To
proceed with suspended computations, Curry has a concurrent conjunction oper-
ator “&” which evaluates both arguments concurrently, i.e., if the evaluation of one
argument suspends, the other is evaluated. Thus, if the function add is rigid and the
predicate nat is flexible (as in languages like Le Fun [2] or Oz [23]), the conjunction
let x free in add x (S Z) == S (S Z) & nat x

is successfully evaluated by interleaving the evaluation of add and nat (which
instantiates x to (S Z)). This kind of concurrent computation is also called declar-
ative concurrency [24].

In the first version of Curry, functions were rigid and predicates flexible by
default, similarly to residuation-based languages [1,2,20,23]. Later, narrowing
became the default for all defined operations so that only externally defined
operations and conditionals, like “if-then-else” or “case-of”, are evaluated by
residuation. There is also an explicit “suspension” combinator for concurrent
programming: ensureNotFree returns its argument evaluated to head normal
form but suspends as long as the result is a free variable.

3 Implementing Residuation in Prolog

A scheme to compile functional logic languages with residuation, such as Curry,
into Prolog is proposed in [5] and used in the Curry implementation PAKCS [14]
which is part of recent Debian und Ubuntu Linux distributions. Coroutining fea-
tures of contemporary Prolog systems can be exploited to implement residuat-
ing operations. SICStus-Prolog1 offers block declarations to enforce the suspen-
sion of predicate calls under particular conditions. For instance, the declaration
“:- block p(?,-,?).” specifies that a call to p is delayed if the second argument is a
free variable. Thus, the following code defines the multiplication function on inte-
gers as a predicate which suspends if one of the arguments is a free variable:
:- block mult(-,?,?), mult(?,-,?).

mult(X,Y,R) :- R is X*Y.

An alternative to block declarations is the predicate freeze(X,G) which suspends
the evaluation of the goal G if the first argument X is a free variable. Since freeze

is less efficient than block [5], PAKCS uses block declarations when it compiles to
SICStus-Prolog and freeze declarations when it compiles to SWI-Prolog (since
SWI-Prolog does not offer block declarations).

Unfortunately, such simple block declarations are not sufficient when com-
piling functional logic programs into Prolog due to nested function calls. Since
functions are compiled into Prolog predicates by adding a result argument and

1 http://sicstus.sics.se/.

http://sicstus.sics.se/

Improving Residuation in Declarative Programs 85

evaluating demanded inner arguments before outer function calls [5,9], it must
be ensured that all predicates involved in a function call are suspended when
some argument suspends. For instance, consider the Curry program

g x = ensureNotFree x

h [] = []

h (y:ys) = h ys

main x = h (g x)

If we evaluate main x where x is a free variable, the evaluation of (g x) suspends
due to the call of ensureNotFree. Hence, the calls to h and, thus, main also sus-
pend. The Prolog code obtained by translating functions into predicates is2

:- block g(-,?).

g(X,R) :- R=X.

h(A,R) :- hnf(A,B), h_1(B,R).

h_1([],R) :- R=[].

h_1([Y|Ys],R) :- h(Ys,R).

main(A,R) :- h(g(A),R).

The evaluation of main(A,R) leads to the evaluation of hnf(g(A),B) and g(A,B),
which suspends. However, the subsequent literal h-1(B,R) can still be evaluated
which results in an infinite search space by applying the second rule of h-1 forever.

In order to avoid such problems, more control is needed so that the call to
h-1 is activated only if the evaluation of the call to g is not suspended. For
this purpose, [5] proposes to add specific input and output arguments to each
predicate. These arguments are either uninstantiated or bound to the constant
eval (the actual value is irrelevant). A computation of a predicate (implementing
some Curry function) is activated only if the input control argument is instanti-
ated. If this computation is complete, i.e., without suspension, the output control
argument is bound to eval. Thus, one can implement the required control by
chaining these control arguments through the program. As a concrete example,
our program above is implemented as follows:

:- block g(-,?,?,?), g(?,?,-,?).

g(X,R,E0,E1) :- R=X, E1=E0.

:- block h(?,?,-,?).

h(A,R,E0,E2) :- hnf(A,B,E0,E1), h_1(B,R,E1,E2).

:- block h_1(?,?,-,?).

h_1([],R,E0,E1) :- R=[], E1=E0.

h_1([Y|Ys],R,E0,E1) :- h(Ys,R,E0,E1).

:- block main(?,?,-,?).

main(A,R,E0,E1) :- h(g(A),R,E0,E1).

2 The predicate hnf computes the head normal form of its first argument. It can
be defined by a case distinction on all function and constructor symbols in the
program. The use of hnf instead of simply flattening nested function calls is essential
to implement lazy evaluation.

86 M. Hanus

Now, the evaluation of the goal main(A,R,eval,E) suspends where the call to h-1

is also suspended.
This scheme together with a sophisticated implementation of sharing (see [5]

for details) is the basis of the Curry implementation PAKCS [14]. However, this
implementation has some cost since every predicate is annotated with a block

declaration. The costs are even higher when block declarations are replaced by
freeze declarations (as shown later by our benchmarks). On the other hand,
residuation is not a dominating principle in actual programs. Originally, resid-
uation has been proposed as an alternative to narrowing in order to avoid eval-
uating functions in a non-deterministic manner, see, for instance, the languages
Escher [17], Le Fun [2], Life [1], NUE-Prolog [20], or Oz [23]. Since the language
Curry is an attempt to unify the different approaches to combine functional and
logic programming, it supports residuation and narrowing in a unified way [11].
As time has passed, residuation became less important so that functions are now
non-residuating by default [12]. Nevertheless, residuation is still interesting to
support concurrent computations and to connect externally defined operations
in a declarative way [7]. This demands for an implementation where the over-
head of residuation is accepted only if it is actually used in the program. For
this purpose, we develop in the next section a program analysis to approximate
the actual usage of residuation during run time in a Curry program.

4 Approximating Residuation Behavior

In order to improve the implementation of potentially residuating programs
sketched above, it is important to characterize programs or part of programs
where residuation is not used. This is the case if residuating functions are not
invoked at run time or they are invoked with sufficiently instantiated arguments.
Since such properties are obviously undecidable, we develop a compile-time tech-
nique to approximate them.

4.1 CASS: An Analysis Framework for Curry

CASS [15] is an incremental and modular analysis system for Curry programs.
Since CASS provides a good infrastructure to implement new program analyses,
we will use it for our purpose. A new program analysis can be added to CASS
if it is defined in a bottom-up manner, i.e., the analysis computes some abstract
information about a given operation from the definition of this operation together
with abstract information about the operations used in this definition. Then
CASS performs the necessary fixpoint computations, incremental analysis of
imported modules, etc., to analyze a given module.

To be more precise, an analysis added to CASS must be defined on an inter-
mediate language, called FlatCurry, which is used in compilers, optimization,
and verification tools, and to specify the operational semantics of Curry pro-
grams [3]. In FlatCurry, the syntactic sugar of the source language is eliminated
and the pattern matching strategy is explicit. The abstract syntax of FlatCurry

Improving Residuation in Declarative Programs 87

P ::= D1 . . . Dm (program)
D ::= f(x1, . . . , xn) = e (function definition)
e ::= x (variable)

| c(e1, . . . , en)llacrotcurtsnoc()
| f(e1, . . . , en)llacnoitcnuf()
| case e of {p1 → e1; . . . ; pn → en} (rigid case)
| fcase e of {p1 → e1; . . . ; pn → en} (flexible case)
| e1 or e2 (disjunction)
| let x free in e (free variable)
| let x = e in e′ (let binding)

p ::= c(x1, . . . , xn)nrettap()

Fig. 1. Syntax of the intermediate language FlatCurry [12]

is summarized in Fig. 1. A FlatCurry program consists of a sequence of func-
tion definitions, where each function is defined by a single rule. We assume that
all variables introduced in the left-hand side, patterns, and let expressions are
disjoint. Patterns in source programs are compiled into flexible case expressions
and overlapping rules are joined by explicit disjunctions. The difference between
case and fcase corresponds to residuation and narrowing: when the argument
e evaluates to a free variable, case suspends whereas fcase nondeterministically
binds this variable to a pattern in a branch of the case expression.

Any Curry program can be translated into a FlatCurry program by making
the pattern matching strategy explicit. For instance, the operation h defined in
Sect. 3 has the following FlatCurry representation:

h(xs) = fcase xs of { [] → []; y:ys → h(ys) }
In principle, let bindings as shown in Fig. 1 are not required to translate standard
Curry programs. However, they can be used to translate circular data structures
and are convenient to express sharing without the use of complex graph struc-
tures. Operationally, let bindings introduce new structures in memory that are
updated after evaluation, which is essential for lazy computations [3].

4.2 A Domain for Residuation Analysis

We use FlatCurry to specify our analysis of the residuation behavior of Curry
programs. Since residuation, i.e., the suspension of function calls, might occur if
variables are unbound during run time, we have to approximate which arguments
are ground at run time and under which conditions functions do not residuate.
For instance, the addition operation (+) does not residuate if both arguments
are ground. However, the constant function

const :: a → _ → a

const x y = x

does not residuate if the first argument is ground and the second argument is
arbitrary, since the latter is not evaluated by const due to lazy evaluation. There-
fore, our analysis associates to each n-ary operation f a set fα ⊆ {1, . . . , n} with

88 M. Hanus

the following interpretation: if e = f t1 . . . tn and ti is a ground constructor term
for each i ∈ fα, then the evaluation of e does not suspend and each value of e is
ground. For instance, +α = {1, 2} and constα = {1}. Since there are also opera-
tions without such a strong property or where our analysis is not precise enough,
we also add a top element �. fα = � means that a call to f might residuate
or does not yield a ground term.3 Finally, there is also an abstract bottom ele-
ment ⊥, representing no information, which is used to start the fixpoint analysis.
Thus, our analysis associates to an n-ary operation f an element of the abstract
domain

{⊥,�} ∪ {s | s ⊆ {1, . . . , n}}
Note that ⊥ has a different meaning than ∅. ⊥ means “unknown” or “no analysis
result” (e.g., loopα = ⊥ for the definition loop = loop), whereas ∅ means “no
suspension.” For instance, if mainα = ∅, then the evaluation of main will never
residuate. Similarly, if f is n-ary, the abstract value {1, . . . , n} is different from
�. If fα = {1, . . . , n}, then f t1 . . . tn does not suspend and has a ground result
value if each t1, . . . , tn are ground constructor terms, whereas fα = � means
that any call to f might residuate or does not yield a ground term.

Abstract elements are ordered as usual, i.e., ⊥ � x, x � �, and, for ⊥ 	= si 	=
� (i = 1, 2), s1 � s2 iff s1 ⊆ s2. Consequently, the least upper bound s1
 s2 of
two abstract elements s1, s2 is defined as follows:

s1
 s2 =

⎧
⎪⎪⎨

⎪⎪⎩

s1 if s2 = ⊥
s2 if s1 = ⊥
� if s1 = � or s2 = �

s1 ∪ s2 otherwise

4.3 Residuation Analysis

The analysis of a single operation f uses an assumption A which maps operations
and variables into abstract elements. A[x �→ α] denotes the extended assumption
A′ which is defined by

A′(y) =
{

α if y = x
A(y) if y 	= x

To analyze a function f w.r.t. an assumption A about operations defined in the
program, we apply the inference rules shown in Fig. 2. Rule FDecl is the main
rule to analyze a function defined by f(x1, . . . , xn) = e. For this purpose, the
right-hand side e is analyzed with the assumption extended by information about
the position of the argument variables. Rule Var simply returns the abstract ele-
ment associated to the variable so that we obtain the information of arguments
passed as results. For instance, rules FDecl and Var are sufficient to derive the
judgement A � const(x, y) = x : {1}. Rule Cons combines the information of all

3 One could also refine the abstract domain in order to distinguish between residuation
and non-ground results, but this does not seem to provide better results in practice.

Improving Residuation in Declarative Programs 89

FDecl
A[x1 {→� 1}, . . . , xn {→� n}] � e : α

A � f(x1, . . . , xn) = e : α

Var A � x : A(x)

Cons
A � e1 : α1 . . . A � en : αn

A � c(e1, . . . , en) : α1 � . . . � αn

Fun
A � e1 : α1 . . . A � en : αn

A � f(e1, . . . , en) : α

where α = αi1 � . . . � αik if A(f) = {i1, . . . , ik}, otherwise α = A(f)

Case
A � e : α A1 � e1 : α1 . . . An � en : αn

A � case e of {p1 → e1; . . . ; pn → en} : α � α1 � . . . � αn

where Ai = A[xi1 �→ α, . . . , xiki
�→ α] if pi = ci(xi1 , . . . , xiki

)

FCase
A � e : α A1 � e1 : α1 . . . An � en : αn

A � fcase e of {p1 → e1; . . . ; pn → en} : α � α1 � . . . � αn

where Ai = A[xi1 �→ α, . . . , xiki
�→ α] if pi = ci(xi1 , . . . , xiki

)

Or
A � e1 : α1 . . . A � e2 : α2

A � e1 or e2 : α1 � α2

Free
A[x �→�] � e : α

A � let x free in e : α

Let
A[x ⊥→�] � e : α A[x �→ α] � e′ : α′

A � let x = e in e′ : α′

Fig. 2. Abstract semantics for residuation analysis

arguments by returning their least upper bound. Hence, one can derive the judge-
ment A � pair(x, y) = (x, y) : {1, 2} showing that pair does not residuate and
returns a ground value if both arguments are ground. In case of function applica-
tions (rule Fun), the computation of the least upper bound can be restricted to
the arguments required by the assumption about the function. Rules Case and
FCase simply combine the information of the discriminating expression and all
branches since all of these expressions might contribute to the overall result. Note
that the operational difference between case and fcase is not considered here since
our abstract domain does not distinguish between non-ground and possibly residu-
ating expressions. Such a distinction could be introduced in principle, but practical
evaluations showed that such a refined domain does not yield more useful results
for our intended application. Rule Or combines both branches since both will be
executed at run time. Rule Free assigns the top element to the introduced variable
so that the overall result will be “possibly non-ground/suspending” if this variable
is used. Finally, rule Let analyzes the bound expression with no information about
the bound variable and, then, analyzes the main expression with the information
computed for the bound variable.

90 M. Hanus

External operations, like “+”, are not explicitly mentioned in the analysis
rules. They can be simply covered by defining A(f) = {1, . . . , n} for each external
operation f of arity n. This is a correct approximation for all currently supported
external operations, since they do not residuate and yield a ground value if all
arguments are ground values.

One might wonder why higher-order functions are not explicitly mentioned in
the analysis rules. This is because they can be transformed into first-order ones
by providing an “apply” operation between two expressions (this technique is
known as “defunctionalization” [22] and also used to extend logic programs with
higher-order features [25]). In this implementation, partially applied function
calls are considered as constructor applications where the operation apply adds
an argument and, if all arguments are provided, calls the actual function. Thus,
partial applications are analyzed by Cons and apply is considered as a predefined
operation with A(apply) = {1, 2}. The only disadvantage of this simple approach
is a possible over-approximation since all arguments of a partial application are
assumed to be evaluated. For instance, consider the definitions
f x y = y+1

main = map (f x) [1,2,3] where x free

Then the analysis yields the result that main might residuate although main

evaluates to a ground value. This over-approximation can be avoided by the
following specialized rule for partial applications which takes into account the
abstract information about functions even for partial applications:

PFun
A � e1 : α1 . . . A � em : αm

A � f(e1, . . . , em) : α
f n-ary function and m < n

where α =
⊔{αi | i ∈ A(f) and i ≤ m}, otherwise α = A(f)

An assumption A is correct if, for all operations f defined by f(x1, . . . , xn) =
e, A(f) = α and A � f(x1, . . . , xn) = e : α is derivable. Since all abstract
operations used in Fig. 2 are monotone and the abstract domain is finite, we
can compute a correct assumption as a least fixpoint by starting with the initial
assumption A0(f) = ⊥ for all operations f . Since such fixpoint computations are
supported by CASS, the residuation analysis can be implemented by encoding
the rules of Fig. 2 in a straightforward way and adding this code to CASS. The
analysis is available in the current implementation of CASS (install package cass

with the Curry package manager [13]) or via the online version of CASS.4

The soundness of the residuation analysis can be proved by induction on
the evaluation steps of the concrete semantics. For this purpose, one has to
extend the operational semantics of Curry programs presented in [3] to cover
suspended computations by returning a specific Suspend result when the dis-
criminating expression of a case expression is a free variable. Then one can show
that an expression e will not be evaluated to Suspend if all variables required
to be ground by the analysis of e are actually bound to ground expressions,

4 https://www-ps.informatik.uni-kiel.de/∼mh/webcass/.

https://www-ps.informatik.uni-kiel.de/~mh/webcass/

Improving Residuation in Declarative Programs 91

where the latter means that these expressions evaluate to ground values (and
not to Suspend). Thus, if A � main : ∅ is a correct judgement, then the
evaluation of main never suspends. Due to lack of space, we omit the detailed
definitions and proofs which can be found in a long version of this paper.

In order to evaluate the precision of the presented analysis, we analyzed
the system libraries distributed with PAKCS. For instance, the library Prelude,
which is the largest one and contains the predefined standard operations of Curry,
contains 867 operations (including auxiliary operations that are not exported)
but only one operation has the analysis result �: the operation unknown which
yields a fresh variable:
unknown = let x free in x

For all other operations, our analysis yields an argument index set, i.e., these
operations do not residuate if they are called with ground values. When ana-
lyzing all system libraries, only 25 of 2616 operations might residuate or yield
non-ground values. These are mainly operations in logic-oriented libraries for
combinatorial programming or encapsulated search.

5 Implementing Residuation with Analysis Information

In this section we sketch how one can use the results of the residuation analysis
to improve the implementation of residuation shown in Sect. 3.

As discussed in Sect. 3, suspension declarations, like block or freeze, are
necessary to suspend the evaluation of an expression if some of its demanded
subexpressions are suspended. However, if it is ensured that these subexpressions
do not suspend, the run-time checking of suspension declarations become super-
fluous since the conditions under which they fire (i.e., suspend a goal) are never
satisfied. Unfortunately, these conditions might not be the same in all calls to an
operation. For instance, the factorial function can be evaluated without residu-
ation if its argument is a number, but it is suspended when it is called with an
unbound variable until this variable is instantiated by some other thread. Thus,
if we want to keep the overall functionality of a program but improve it on calls
with sufficiently instantiated arguments, we have to duplicate the code: in addi-
tion to the original Prolog code, we add code without suspension declarations
which is activated only on sufficiently instantiated arguments. If the compiler
uses the information of the residuation analysis, calls to the appropriate version
of the code can be generated.

For instance, consider the translation of a function f(x) = g(x,h(0)). We
add the suffix -NR to Prolog predicates implementing non-residuating code. If
fα 	= �, there are sufficient conditions to evaluate f without residuation so that
we generate the non-residuating version of the code:5

f_NR(X,R,E0,E1) :- g_NR(X,h_NR(0),R,E0,E1).

5 Although the control arguments E0 and E1 are superfluous in non-residuating com-
putations, we leave them in the code in order to simplify the interaction of residuating
and non-residuating code. Improving this scheme is a topic for future work.

92 M. Hanus

Thus, non-residuating code always calls other non-residuating code. If fα = {1},
the predicate f-NR is invoked when f is called with an expression that evaluates
to a ground value and does not suspend.

However, f might also be called with non-ground arguments or expressions
which residuate. For this purpose, we also need the standard code for f but we
can improve the translation of some subexpressions if they are non-residuating.
For instance, if hα = {1}, the following code is generated:
:- block f(?,?,-,?).

f(X,R,E0,E1) :- g(X,h_NR(0),R,E0,E1).

If gα = {2}, i.e., g does not use its first argument, the code can be improved
even more:
:- block f(?,?,-,?).

f(X,R,E0,E1) :- g_NR(X,h_NR(0),R,E0,E1).

Thus, standard code can call non-residuating code but not vice versa.
Although the code duplication is a slight a drawback of our approach, it is

acceptable in practice since Prolog compilers often generate compact executables,
e.g., by using virtual machine (WAM) instructions. This is shown in the next
section where we evaluate our approach in a concrete compiler.

6 Benchmarks

In order to evaluate our approach, we added to PAKCS [14], which compiles
Curry programs into Prolog programs based on the scheme sketched in Sect. 3
and described in detail in [5], a compilation flag to select one of the following
three residuation compilation modes:

Full residuation: This is the existing compilation scheme sketched in Sect. 3
where block declarations (if SICStus-Prolog is used as the back end) or freeze
goals (if SWI-Prolog is used as the back end) are used in the translation of
all Curry operations.

No residuation: In this compilation mode, block and freeze are completely
omitted. Instead, run-time errors are emitted in cases where residuation
should occur according to the definition of Curry. Although this mode changes
the semantics of Curry, it shows the best efficiency gain which can be obtained
by removing coroutining annotations.

Optimized residuation: This is the compilation mode described in the pre-
vious section, i.e., the code generated for each operation is duplicated and
the non-residuating code is invoked depending on the results of the program
analysis described in Sect. 4.

All benchmarks were executed on a Linux machine (Debian 9.4) with an
Intel Core i7-7700K (4.20 GHz) processor and 32 GiB of memory. The Curry
implementation PAKCS (Version 2.0.2) uses SICStus-Prolog (Version 4.3.5) or
SWI-Prolog (Version 7.6.4) as back ends. Timings were performed with the Unix
time command measuring the execution time to compute all solutions (in sec-
onds) of a compiled executable for each benchmark as a mean of three runs.

Improving Residuation in Declarative Programs 93

Full Res. No Residuation Optimized Resid.
Program Time Time Speedup Time Speedup

ReverseUser 14.72 9.07 1.62 9.10 1.62
Reverse 13.06 7.75 1.69 7.77 1.68

TakPeano 6.09 2.89 2.11 4.00 1.52
Tak 4.68 3.34 1.40 4.00 1.17

ReverseHO 3.55 3.03 1.17 3.32 1.07
Primes 11.42 7.90 1.45 9.82 1.16

PrimesPeano 7.89 3.82 2.07 4.14 1.91
Queens 9.74 6.36 1.53 7.84 1.24

QueensUser 10.61 6.63 1.60 8.13 1.31
PermSort 9.57 6.50 1.47 7.81 1.23

PermSortPeano 6.20 3.18 1.95 4.84 1.28
RegExp 5.18 4.06 1.28 4.39 1.18

Fig. 3. Run times (in seconds) and speedups with SICStus-Prolog

The concrete benchmarks are Curry programs that were already used to com-
pare different Curry implementations [8]. “ReverseUser” is the naive list reverse
program applied to a list of 16384 elements, where all data (lists, numbers) are
user-defined. “Reverse” is the same but with built-in lists. “Tak” is a highly
recursive function on naturals applied to arguments (24,16,8) and “TakPeano”
is the same but with user-defined natural numbers in Peano representation (see
Example 1) so that no built-in arithmetic operations are used. “ReverseHO”
reverses a list with one million elements in linear time using higher-order func-
tions like foldl and flip. “Primes” computes the 2000th prime number via
the sieve of Eratosthenes using higher-order functions, and “PrimesPeano” com-
putes the 256th prime number but with Peano numbers and user-defined lists.
“Queens” (and “QueensUser” with user-defined lists) computes the number of
safe positions of 10 queens on a 10 × 10 chess board. Finally, “PermSort” sorts
a list containing 15 elements by enumerating all permutations and selecting
the sorted ones (“PermSortPeano” does the same for Peano numbers and 14
elements), and “RegExp” matches a regular expression in a string of length
400,000 following the non-deterministic specification of grep shown in [6]. In all
these examples, residuation is not used so that, in principle, our optimization is
applicable.

Figures 3 and 4 show the execution times and speedups for these programs
with the SICStus-Prolog and SWI-Prolog back end, respectively. The speedups
are computed relative to the “full residuation” compilation mode. The timings
and speedups show that our proposed improvement is effective, in particular, if
freeze is used for coroutining, as in SWI-Prolog. This is of practical relevance,
since the SWI-Prolog implementation of PAKCS is used in the Debian pack-
age “pakcs” which is part of recent distributions of the Ubuntu Linux system.
Our analysis can detect, for all benchmark programs, that the main expression
is non-residuating. The difference in the timings between “no residuation” and
“optimized residuation” can be explained by the fact that the run-time system

94 M. Hanus

Full Res. No Residuation Optimized Resid.
Program Time Time Speedup Time Speedup

ReverseUser 136.47 29.65 4.60 29.85 4.57
Reverse 133.62 29.01 4.61 28.29 4.72

TakPeano 53.76 16.91 3.18 23.00 2.34
Tak 42.97 24.90 1.73 32.52 1.32

ReverseHO 17.97 8.16 2.20 9.83 1.83
Primes 140.56 75.46 1.86 97.70 1.44

PrimesPeano 91.34 22.38 4.08 22.50 4.06
Queens 124.75 63.78 1.96 87.15 1.43

QueensUser 190.68 90.94 2.10 122.73 1.55
PermSort 82.61 52.74 1.57 64.20 1.29

PermSortPeano 49.09 20.80 2.36 30.52 1.61
RegExp 34.36 15.93 2.16 21.82 1.57

Fig. 4. Run times (in seconds) and speedups with SWI-Prolog

of PAKCS (i.e., the implementation of predefined operations) is not optimized
in the optimized residuation mode, since it might also be used by operations
requiring residuation.

Program Full Residuation No Residuation Optimized Res.
ReverseUser 612,257 612,126 857,588

Reverse 612,227 612,085 856,735
TakPeano 611,661 611,030 855,907

Tak 608,459 608,586 851,502
ReverseHO 612,979 611,896 859,200

Primes 610,701 610,482 855,398
PrimesPeano 614,630 614,056 864,129

Queens 610,413 609,681 852,238
QueensUser 612,797 612,715 858,428

PermSort 610,339 609,244 853,135
PermSortPeano 613,505 613,778 862,806

RegExp 614,466 613,096 859,765

Fig. 5. Program sizes (in bytes) with SICStus-Prolog

Another interesting question is the increase of the program size due to the
code duplication in the optimized residuation mode. Figures 5 and 6 show the
sizes (in bytes) of the executables (“saved state”) of all benchmark programs
with the SICStus-Prolog and SWI-Prolog back end, respectively. Note that also
all standard operations defined in the prelude are duplicated in the optimized
residuation mode. Since the run-time system is the largest part of the executable,
the difference in program size is not really relevant for such small programs. In
order to get some idea of the different sizes for realistic applications, we compiled

Improving Residuation in Declarative Programs 95

Program Full Residuation No Residuation Optimized Res.
ReverseUser 1,433,607 1,179,270 1,800,747

Reverse 1,432,692 1,178,537 1,799,469
TakPeano 1,431,921 1,178,003 1,798,219

Tak 1,427,842 1,175,038 1,791,529
ReverseHO 1,434,424 1,179,887 1,802,239

Primes 1,431,504 1,177,585 1,797,703
PrimesPeano 1,438,153 1,182,305 1,808,340

Queens 1,429,760 1,176,368 1,794,638
QueensUser 1,434,593 1,179,992 1,802,729

PermSort 1,429,425 1,176,095 1,794,054
PermSortPeano 1,436,714 1,181,373 1,805,870

RegExp 1,437,173 1,181,854 1,806,103

Fig. 6. Program sizes (in bytes) with SWI-Prolog

the Curry package manager [13], a non-trivial Curry application consisting of 116
modules, with different residuation modes. The following table contains the sizes
of the executables (in bytes):

Back end Full Residuation No Residuation Optimized Res.
SICStus-Prolog 3,230,549 3,153,585 5,644,240

SWI-Prolog 7,720,682 5,490,839 11,641,481

Although the increase in the program size is considerable, it is not relevant for
the practical execution if we take into account the memory sizes of contemporary
computer hardware.

7 Related Work

The integration of functions into logic-oriented languages by suspending function
calls with free variables has been proposed for various languages, e.g., Escher [17],
Le Fun [2], Life [1], NUE-Prolog [20], or Oz [23]. The main motivation for this
alternative to narrowing is to evaluate functions in a deterministic manner and
to delegate all non-determinism to relations, as in logic programming. Although
this principle sounds reasonable at a first glance, there are no strong results about
completeness and optimality, as for narrowing [4]. Actually, there are examples
where residuation has an infinite derivation space whereas the search space of
narrowing is finite [10]. Abandoning residuation completely is also not desirable,
since it is a good principle to connect external operations [7] and to support
concurrent computations [24].

The potential incompleteness of residuation is investigated in [10] where a
program analysis to approximate the groundness of variables for residuating logic
program is proposed. Although this has some similarities with our approach, the
analysis is different due to the different underlying languages (e.g., functions in
[10] are always strict).

96 M. Hanus

Coroutining is also used in logic programming to delay insufficiently instan-
tiated negated subgoals to avoid logically incorrect answers. This delay might
cause “floundering” if only delayed negated subgoals remain. A program analysis
to analyze such situations is presented in [19]. Although the overall objective of
this work is similar to our work, the underlying operational semantics is quite
different to the work presented in this paper.

There are many approaches to implement functional features in logic lan-
guages (see [9] and the survey in [12]). Some of them support residuation and
use block/freeze [5] or when [20] declarations. As shown by our benchmarks,
such declarations have considerable costs which can be reduced by the tech-
niques developed in this paper.

8 Conclusions

We have presented a method to improve the implementation of declarative pro-
grams with residuation. Since residuation is implemented in Prolog by coroutin-
ing annotations and these annotations have run-time costs even if they are not
activated, we developed a compile-time analysis to approximate classes of pro-
grams or parts of programs where residuation is not used. For these parts, specific
code without residuation annotations is generated. Our benchmarks show that
the code optimized in this way can be more than four times faster than the
original code if freeze is used to implement residuation. This also shows that
freeze is a costly operation for coroutining (in SWI-Prolog). The use of block

declarations (in SICStus-Prolog) is less expensive but, even in this case, we could
measure a significant speedup by our optimization.

References

1. Aı̈t-Kaci, H.: An overview of life. In: Schmidt, J.W., Stogny, A.A. (eds.) EWDW
1990. LNCS, vol. 504, pp. 42–58. Springer, Heidelberg (1991). https://doi.org/10.
1007/3-540-54141-1 4

2. Aı̈t-Kaci, H., Lincoln, P., Nasr, R.: Le fun: logic, equations, and functions. In:
Proceedings of the 4th IEEE International Symposium on Logic Programming,
San Francisco, pp. 17–23 (1987)

3. Albert, E., Hanus, M., Huch, F., Oliver, J., Vidal, G.: Operational semantics for
declarative multi-paradigm languages. J. Symb. Comput. 40(1), 795–829 (2005)

4. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. J. ACM 47(4),
776–822 (2000)

5. Antoy, S., Hanus, M.: Compiling multi-paradigm declarative programs into Prolog.
In: Kirchner, H., Ringeissen, C. (eds.) FroCoS 2000. LNCS (LNAI), vol. 1794, pp.
171–185. Springer, Heidelberg (2000). https://doi.org/10.1007/10720084 12

6. Antoy, S., Hanus, M.: Functional logic programming. Commun. ACM 53(4), 74–85
(2010)

7. Bonnier, S., Maluszynski, J.: Towards a clean amalgamation of logic programs with
external procedures. In: Proceedings of the 5th Conference on Logic Programming
and 5th Symposium on Logic Programming, Seattle, pp. 311–326. MIT Press,
Cambridge (1988)

https://doi.org/10.1007/3-540-54141-1_4
https://doi.org/10.1007/3-540-54141-1_4
https://doi.org/10.1007/10720084_12

Improving Residuation in Declarative Programs 97

8. Braßel, B., Hanus, M., Peemöller, B., Reck, F.: KiCS2: a new compiler from Curry
to Haskell. In: Kuchen, H. (ed.) WFLP 2011. LNCS, vol. 6816, pp. 1–18. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22531-4 1

9. Casas, A., Cabeza, D., Hermenegildo, M.V.: A syntactic approach to combining
functional notation, lazy evaluation, and higher-order in LP systems. In: Hagiya,
M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 146–162. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11737414 11

10. Hanus, M.: On the completeness of residuation. In: Proceedings of the 1992 Joint
International Conference and Symposium on Logic Programming, pp. 192–206.
MIT Press, Cambridge (1992)

11. Hanus, M.: A unified computation model for functional and logic programming.
In: Proceedings of the 24th ACM Symposium on Principles of Programming Lan-
guages, pp. 80–93 (1997)

12. Hanus, M.: Functional logic programming: from theory to Curry. In: Voronkov,
A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 123–168.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37651-1 6

13. Hanus, M.: Semantic versioning checking in a declarative package manager. In:
Technical Communications of the 33rd International Conference on Logic Pro-
gramming (ICLP 2017), Open Access Series in Informatics (OASIcs), pp. 6:1–6:16.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

14. Hanus, M., et al.: PAKCS: The Portland Aachen Kiel Curry System (2017). http://
www.informatik.uni-kiel.de/∼pakcs/

15. Hanus, M., Skrlac, F.: A modular and generic analysis server system for functional
logic programs. In: Proceedings of the ACM SIGPLAN 2014 Workshop on Partial
Evaluation and Program Manipulation (PEPM 2014), pp. 181–188. ACM Press
(2014)

16. Hanus, M. (ed.): Curry: An integrated functional logic language (vers. 0.9.0) (2016).
http://www.curry-language.org

17. Lloyd, J.W.: Combining functional and logic programming languages. In: Proceed-
ings of the International Logic Programming Symposium, pp. 43–57 (1994)

18. Loogen, R., Fraguas, F.L., Artalejo, M.R.: A demand driven computation strategy
for lazy narrowing. In: Bruynooghe, M., Penjam, J. (eds.) PLILP 1993. LNCS,
vol. 714, pp. 184–200. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57186-8 79

19. Marriott, K., Søndergaard, H., Dart, P.: A characterization of non-floundering
logic programs. In: Proceedings of the 1990 North American Conference on Logic
Programming, pp. 661–680. MIT Press, Cambridge (1990)

20. Naish, L.: Adding equations to NU-Prolog. In: Maluszyński, J., Wirsing, M. (eds.)
PLILP 1991. LNCS, vol. 528, pp. 15–26. Springer, Heidelberg (1991). https://doi.
org/10.1007/3-540-54444-5 84

21. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, Cambridge (2003)

22. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
In: Proceedings of the ACM Annual Conference, pp. 717–740. ACM Press (1972)

23. Smolka, G.: The Oz programming model. In: van Leeuwen, J. (ed.) Computer
Science Today: Recent Trends and Developments. LNCS, vol. 1000, pp. 324–343.
Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0015252

24. Van Roy, P., Haridi, S.: Concepts, Techniques, and Models of Computer Program-
ming. MIT Press, Cambridge (2004)

25. Warren, D.H.D.: Higher-order extensions to Prolog: are they needed? Mach. Intell.
10, 441–454 (1982)

https://doi.org/10.1007/978-3-642-22531-4_1
https://doi.org/10.1007/11737414_11
https://doi.org/10.1007/978-3-642-37651-1_6
http://www.informatik.uni-kiel.de/~pakcs/
http://www.informatik.uni-kiel.de/~pakcs/
http://www.curry-language.org
https://doi.org/10.1007/3-540-57186-8_79
https://doi.org/10.1007/3-540-57186-8_79
https://doi.org/10.1007/3-540-54444-5_84
https://doi.org/10.1007/3-540-54444-5_84
https://doi.org/10.1007/BFb0015252

Incremental Evaluation of Lattice-Based
Aggregates in Logic Programming

Using Modular TCLP

Joaquı́n Arias(B) and Manuel Carro

IMDEA Software Institute and Universidad Politécnica de Madrid, Madrid, Spain
{joaquin.arias,manuel.carro}@imdea.org, joaquin.arias@alumnos.upm.es,

manuel.carro@upm.es

Abstract. Aggregates are used to compute single pieces of information from
separate data items, such as records in a database or answers to a query to a logic
program. The maximum and minimum are well-known examples of aggregates.
The computation of aggregates in Prolog or variant-based tabling can loop even
if the aggregate at hand can be finitely determined. When answer subsumption or
mode-directed tabling is used, termination improves, but the behavior observed
in existing proposals is not consistent. We present a framework to incrementally
compute aggregates for elements in a lattice. We use the entailment and join rela-
tions of the lattice to define (and compute) aggregates and decide whether some
atom is compatible with (entails) the aggregate. The semantics of the aggregates
defined in this way is consistent with the LFP semantics of tabling with con-
straints. Our implementation is based on the TCLP framework available in Ciao
Prolog, and improves its termination properties w.r.t. similar approaches. Defin-
ing aggregates that do not fit into the lattice structure is possible, but some prop-
erties guaranteed by the lattice may not hold. However, the flexibility provided by
this possibility justifies its inclusion. We validate our design with several exam-
ples and we evaluate their performance.

1 Introduction

Aggregates, in general and informally, are operations which take all the records in a
database table or all the answers to a logic programming query and synthesize a result
using these data items. Common aggregates include maximum, minimum, and the set
of all answers, counting the number of solutions, or computing an average. A straight-
forward way to compute aggregates is to compute all solutions and then calculate the
aggregate. However, this has several drawbacks. In some cases, computing an aggregate
can be done without computing all possible answers: for example, if the operational
semantics of the underlying language include mechanisms to avoid repeating useless
computations [1,2]. Also, the computation of the aggregate may involve (recursively)

c© Springer Nature Switzerland AG 2019
J. J. Alferes and M. Johansson (Eds.): PADL 2019, LNCS 11372, pp. 98–114, 2019.
https://doi.org/10.1007/978-3-030-05998-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05998-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-05998-9_7

Incremental Evaluation of Lattice-Based Aggregates in Logic Programming 99

using the aggregate itself (see Example 1), so computing a full aggregate-less model
with a fixpoint procedure may simply be not correct, and several iterations of fixpoint
procedures may be necessary.

Several tabling systems [11,14,16] include the so-called modes, which make it pos-
sible to implement some specific aggregates incrementally. However, while being very
helpful in some situations, a careful examination of their behavior reveals inconsisten-
cies with the LFP semantics which makes reasoning about simple programs unsound.

In this paper we present a semantics for a class of common aggregates, derived
from an interpretation of their meaning in a lattice. This interpretation makes it possi-
ble to give them a consistent least fixed point semantics. We observe that it is possible
to take advantage of existing implementation techniques for tabled logic programming
and extend them in order to implement the additional machinery necessary for aggre-
gates: tabling, in all of its variants, needs to store the answers returned by the different
branches of the computation, which is a first step towards computing aggregates. We
further develop this initial implementation by adding the necessary support (in the form
of syntax and underlying infrastructure) to incrementally compute aggregates based on
the answers that are added to the table.

In particular, we base our proposal in the Modular TCLP [1,2] framework, which
already has infrastructure to perform tabling with constraints. This infrastructure
includes the possibility of storing answers and using entailment between stored answers
to increase expressiveness, termination properties, and speed of tabling.

In Sect. 2 we briefly describe the Modular TCLP interface. In Sect. 3 we present
a semantics for aggregates based on entailment and/or join operation over a lattice
which is consistent with the LFP semantics. In Sect. 4 we present the generic frame-
work for lattice-based aggregates with an improvement in Modular TCLP which allows
the combination of answers. In Sect. 5 we evaluate the expressiveness and performance
of ATCLP versus Prolog and tabling. Finally, in Sect. 6, we offer some conclusions.

2 Background: Tabling and Constraints

Tabled Logic Programming with Constraints (TCLP) [2,5,12] improves program
expressiveness and, in many cases, efficiency and termination properties. Let us con-
sider a program to compute distances between nodes in a graph written using tabling
and using TCLP (Fig. 1, left and right, resp.).

Tabling records the first occurrence of each call to a tabled predicate (the genera-
tor) and its answers. In variant tabling (the most usual form of tabling), when a call
is found to be equal, modulo variable renaming, to a previous generator, the execution
of the call is suspended and it is flagged as a consumer of the generator. For example
dist(a,Y,D) is a variant of dist(a,Z,D) if Y and Z are free variables. Upon suspen-
sion, execution switches to evaluating another, untried branch. A branch which does
not suspend due to the existence of a repeated call can generate an answer for an ini-
tial goal. When a generator finitely finishes exploring all the clauses and all answers
are collected, its consumers are resumed and are fed the answers of the generator. This
may make consumers produce new answers which can in turn resume more consumers.
This process finishes when no new answers can be generated — i.e., a fixpoint has been
reached. Tabling is sound and, for programs with a finite Herbrand model, is complete.

100 J. Arias and M. Carro

1 :- table dist/3.

2

3 dist(X, Y, D) :-

4 dist(X, Z, D1),

5 edge(Z, Y, D2),

6 D is D1 + D2.

7 dist(X, Y, D) :-

8 edge(X, Y, D).

1 :- table dist/3.

2

3 dist(X, Y, D) :-

4 D1 #> 0, D2 #> 0,

5 D #= D1 + D2,

6 dist(X, Z, D1),

7 edge(Z, Y, D2).

8 dist(X, Y, D) :-

9 edge(X, Y, D).

Fig. 1. Left-recursive distance traversal in a graph: Tabling (left)/TCLP (right). Note: The sym-
bols #> and #= are (in)equalities in CLP.

The program in Fig. 1 would always loop under SLD due to the left-recursive rule.
Under tabling, a query such as ?- dist(a,Y,D),D < K would terminate for acyclic
graphs. In a cyclic graph, however, dist/3 has an infinite Herbrand model: every cycle
can be traversed repeatedly and create paths of increasing length. Therefore, that query
will not terminate under variant tabling.

However, the integration of tabling and CLP makes it possible to execute the
dist/3, right, using constraint entailment [4] to suspend calls which are more par-
ticular than previous calls, and to keep only the most general answers. The query
?- D #< K, dist(a,Y,D) terminates under TCLP because by placing the constraint
D #< K before dist(a,Y,D), the search is pruned when the values in D are larger than
or equal to K.

This illustrates the main idea underlying the use of entailment in TCLP:
more particular calls (consumers) can suspend and later reuse the answers col-
lected by more general calls (generators). In order to make this entailment rela-
tionship explicit, we will represent a TCLP goal as 〈g, cg〉 where g is the call
(a literal) and cg is the projection of the current constraint store onto the vari-
ables of the call. For example, 〈dist(a,Y,D), D> 0∧D< 75〉 entails the goal
〈dist(a,Y,D), D< 150〉 because (D> 0∧D< 75) � D< 150. We also say that the
latter (the generator) is more general than the former (the consumer). All the solutions
of a consumer are solutions for its generator, since the space of solutions of the con-
sumer is a subset of that of the generator. However, not all answers from a generator
are valid for its consumers. For example Y= b∧D> 125∧D< 135 is a solution for
our generator, but not for our consumer, since the consumer call was made under a
constraint store more restrictive than the generator. Therefore, the tabling engine has to
filter, via the constraint solver, the answers from the generator that are consistent w.r.t.
the constraint store of the consumer.

Some tabling systems offer facilities that improve termination in this situation.
Tabling engines that implement mode-directed tabling [6,17] and/or answer subsump-
tion [13] can use policies other than being a variant to decide whether a call is a con-
sumer and should be suspended. These are expressed by specifying the modes of some
arguments. For example, the directive :- table dist(_,_,min) specifies the (aggre-
gate) mode min for the third argument. The call will in this case terminate because
only the shortest distance will be returned. However, note that the standard least fix-

Incremental Evaluation of Lattice-Based Aggregates in Logic Programming 101

point semantics (calculated by tabling) is not well-suited to programs with aggre-
gates [8,9,15]. For example, let us consider the following program:

1 p(1). 2 p(0) :- p(1).

and let us assume that we want to minimize the (single) argument to p/1, i.e., we want
to evaluate this program under the constraint that the argument of p/1 has to be as
small as possible. On the one hand, this means that only one literal (the p(X) having
the smallest value for X) should be in the model. On the other hand, it turns out that
neither {p(0)} nor {p(1)} are consistent with this intended semantics. For p(0) to
be the literal with the minimum value, p(1) needs to be true. But then p(1) would be
in the model and therefore it should be the minimum. This paradox points to the need
of an ASP semantics for the general case (and clarifies why there is not an accepted,
consistent semantics for aggregates in Prolog-based logic programming — see at the
end of Sect. 3.1). We will present here an alternative, defensible meaning for a class of
aggregates that can stay within the least fixpoint semantics.

3 Aggregates in Lattices

We consider first the case of aggregates that can be embedded into a lattice: the elements
on which we operate can be viewed as points in a lattice whose structure depends on
the particular aggregate we are computing, and where the aggregation operation can be
expressed based on the partial order of the lattice. As an intuitive example, the minimum
of a set of elements is the element x for which there is no other element y s.t. y� x. This
view gives rise to a view of aggregates returning designated representatives of a class.

3.1 Aggregates Based on Entailment

The simplest type of aggregation operations can be defined using only the � operation
of the lattice. Since � is related to constraint entailment, we have used this name.

Definition 1 (Entailment-Based Aggregates). Given a partial order relation � over
a multiset S,1 the aggregate of S over �, denoted as Agg�, is the set of more general
values of S w.r.t. �:

Agg�(S) = {x ∈ S |� ∃y ∈ S,y �= x · x � y}

minimum and maximum are two widely used entailment-based aggregates. But it is inter-
esting to note that other policies that select a subset of answers to a query, such as
variant or subsumption, can also be expressed as aggregates in a lattice.

1 This definition would usually be based on a set instead of a multiset. The reason to choose
explicitly a multiset will be clear in Sect. 4.5, when we apply our implementation to operations
that cannot be embedded in a lattice.

102 J. Arias and M. Carro

Example 1 (min). The minimum of a set of values is the least upper bound of the lattice
ordered by ' > '. The aggregate of S over min is defined as:

Aggmin(S) = {x ∈ S |� ∃y ∈ S,y �= x · x> y}
The minimum of a set of values is unique and, as aggregate, is a set: Aggmin({2,3,4}) =
{2}. Note that Aggmin({2,3,4,5,6}) = {2}, as well. Therefore, one can view the aggre-
gation of a set of values as another (potentially different) set that in some sense sum-
marizes or represents the initial set of values. As such, several sets can have the same
aggregate, or, conversely, a single aggregate can represent many initial sets. As we will
see, we define Aggmin({2,3,4}) = {x | x ≥ 2} as this brings interesting properties to
aggregates that are compatible with the intuitive idea of what an aggregate is.

We will see how this definition of aggregates can be applied to the previous min
case to generate a model that is compatible with the least fixpoint of a logic program.
Let us consider the following variant of an example taken from [15].2

Example 2 (p(min)). In the program below, :- table p(min) is intended to mean
that we want to restrict the model of the program to the atoms that minimize the value
of the single argument of p/1.

1 :- table p(min).
2 p(3).
3 p(2).

4 p(1) :- p(2).
5 p(0) :- p(3).

In absence of the table aggregate declaration, the set of answers would be
{p(0), p(1), p(2), p(3)} and, therefore, the expected aggregated answer using the
minimum should be p(0). This is the model that ATCLP returns as the aggregated
answer for the previous program and query. It also behaves consistently with an LFP
semantics if p(k) is intended to mean p(x) s.t. x ≥ k. In that case, using the clause
p(0):- p(3) does not fall into a contradiction: if p(x) s.t. x ≥ 0 is the model of the
program, the atom p(3) is true under that model (because 3 ≥ 0). Therefore, p(3) can
be used to support p(0).

We want to note that the current state of affairs in other systems is far from being
satisfactory. Following [15], none of the current answer subsumption implementations
seems to behave correctly: XSB and B-Prolog return p(1), and Yap, which uses batch
scheduling3 returns, on backtracking, p(3), p(2), and p(1) the first time the query is
issued, and only p(1) in subsequent calls.

3.2 Aggregates Based on Join

Some interesting aggregates need to be based on an operation richer than the entail-
ment, because they have to generate a new element based on previous elements. For
these cases, we posit an aggregate similar to the one in Definition 1, but using the join
operation instead of the entailment.

2 The original example used max. For coherence with the rest of the cases in this paper, we have
converted it to use min.

3 Batch scheduling returns answers as soon as they are found.

Incremental Evaluation of Lattice-Based Aggregates in Logic Programming 103

Definition 2 (Join-Based Aggregates). Given a join-semilattice domain D with a join
operation
 (that is commutative, associative and idempotent), the aggregated value of
any multiset S ∈ D over
, denoted as Agg
, is the least upper bound of S w.r.t.
:

Agg
(S) = LUB
(S)

The main difference w.r.t. entailment-based aggregates is that when using the join oper-
ator, the resulting aggregate could be a value that is not in S. In our case, it may not be
a logical consequence of the program.

Example 3 (min of pairs). Let us build on Example 1 and define the minimum of a
set of pairs as element-wise minima. We define the join operation (a1,b1)
 (a2,b2) =
(min(a1,a2),min(b1,b2)). The aggregate value of S= {(ai,bi)}, i= 1 . . .n over this join
operator is:

Aggmin(S) = LUBmin({(ai,bi) ∈ S}) = (min(ai),min(bi)) for i= 1 . . .n

Note that the minimum of a set of pairs using an entailment-based aggregate and an
element-wise order (i.e., (a1,b1) > (a2,b2) ↔ a1 > a2 ∧ b1 > b2) can return a non-
singleton set Aggmin({(4,4),(4,2),(3,3)}) = {(4,2),(3,3)} that defines a Pareto fron-
tier. The join-based definition, however, returns a unique value which was not an ele-
ment of the initial set: Aggmin({(4,4),(4,2),(3,3)}) = {(3,2)}. Similarly to Defini-
tion 1, the model derived from a join-based aggregate is assumed to capture the con-
straint used to generate the aggregate – i.e., Aggmin({(4,4),(4,2),(3,3)}) � (5,7).

4 The ATCLP Framework

We present here the ATCLP framework: how aggregated predicates are declared, how
the aggregates are defined, and how the implementation works. This implementation is
based on a program transformation that uses the underlying infrastructure of Modular
TCLP. Finally, we present an extension to the Modular TCLP framework that makes
it possible to combine answers and write aggregation operations that do not follow a
lattice structure.

4.1 From Lattices to Constraints

We built our system upon the infrastructure used in Modular TCLP [2] to handle con-
straints. Indeed, many of the operations are similar: entailment in a lattice can be han-
dled similarly (from an implementation point of view) to entailment in a constraint
system and the implementation of the join operation can also be executed in the same
places where previous, less general answer constraints are discarded in a TCLP system.
We are looking at the aggregate operations in a lattice as a counterpart of similar opera-
tions among constraints, including the removal of answers that, from the point of view
of the aggregates, are entailed by other answers.

104 J. Arias and M. Carro

4.2 Design of the ATCLP Interface

ATCLP provides a directive to declare the aggregated predicates and a generic interface
designed to facilitate the use of different user-defined aggregates.

For homogeneity, aggregated predicates are declared with the same directive
used by mode-directed tabling: :- table p(agg1,. . .,aggn), where aggi denotes the
aggregate used for the ith argument. For the arguments that should be evaluated under
variant tabling, we use the mode '_'.

Fig. 2. Left: minimum distance traversal program using aggregates. Right: transformation of the
program.

Figure 2, left, shows the minimum distance traversal program using aggregates. The
directive :- use_package(tclp_aggregate) initializes the TCLP engine, and the
directive :- table path(_,_,min) states that the answers of path/3 should be
aggregated using the min of its third argument. The aggregation operation is defined
as an entailment, by specifying with the predicate entails/3 when two values are
entailed from the point of view of min (the first argument to entails/3). Note that the
rest of the program remains as in Fig. 1. The entailment and join operations for a given
aggregate are provided by the user with predicates that implement these operations. The
two predicates that a user can define are:

– entails(Agg,A,B) defines an entailment-based aggregate. It succeeds when the
answer A entails the answer B w.r.t. the aggregate Agg, e.g., when A �Agg B.

– join(Agg,A,B,New) defines a join-based aggregate. It returns in New the combina-
tion of the answers A and B w.r.t. the aggregate Agg, e.g. New= A
Agg B.

Incremental Evaluation of Lattice-Based Aggregates in Logic Programming 105

Examples of Entailment-Based Aggregates

Example 4 (Implementation of min). The implementation of Example 1 would be com-
plete by providing the entails/3 predicate as:

1 entails(min, A, B) :- A >= B.

In order to further clarify the relationship between the aggregates and the model of the
program where they appear, we show now a program that captures the semantics of the
program in Example 2.

Example 5 (interpretation of p(min)). The code below exemplifies how Example 2 is
expected to behave under ATCLP, according to Definition 1 and the entailment defini-
tion in Example 4:

1 p(X) :- entails(min,X,3).
2 p(X) :- entails(min,X,2).
3 p(X) :- entails(min,X,1), p(Y), entails(min,2,Y).
4 p(X) :- entails(min,X,0), p(Y), entails(min,3,Y).

With this interpretation, p(2), inferred by the second clause, is more general than
p(3), inferred from the first clause, since {x ≥ 3} � {x ≥ 2}. p(3) is therefore dis-
carded when the second clause is executed and only p(2) remains in the model (which,
in our implementation, lives in the answer table of the tabling engine). After this, the
first entailment goal of the third clause succeeds, p(Y) then succeeds with Y=2 followed
by entails(min,2,2), which also succeeds because 2 ≤ 2, and p(1) is inferred. At
this point, p(2) is discarded because p(1) is more general: {x≥ 2} � {x≥ 1}. Finally,
the first entailment goal in the last clause succeeds and the rest of the clause succeeds
as well because we had p(1) and 3 ≥ 1. p(0) is then inferred and p(1) is discarded
because it entails p(0), i.e., p(1) �p(min) p(0).

The interpretation of a query is similar to that of a body goal: ?- p(2) is to be
understood as ?- p(X), entails(min,2,X) which in our example succeeds because
p(X) returns X=0 and entails(min,2,0) succeeds because 2 ≥ 0.

As noted before, this interpretation extends the range of atoms which are true to
include some that were not in the program without the aggregate declaration. The model
for the latter was {p(0), p(1), p(2), p(3)}, but the intended meaning of ?- p(X)
under the new semantics is {p(X) | entails(min,X,0)}, and therefore the query ?-
p(5) also succeeds. While this may seem strange, we also want to note that by seeing
aggregates as constraints defining a domain for a variable plus a value to anchor these
constraints, this interpretation is similar to an answer in a CLP system or to the behavior
of subsumption tabling in the Herbrand domain, as the following example highlights:

Example 6 (p(sub)). In the program below, :- table p(sub) means that we want
to keep the more general answers.

106 J. Arias and M. Carro

1 :- table p(sub).
2 p(f(X,Y)).
3 p(f(g(Z),a)).

4 :- use_module(terms_check).
5 entails(sub,A,B) :-
6 instance(A,B).

Without the aggregate declaration, the set of answers for the query ?- p(X) is
{p(f(X,Y)),p(f(g(Z),a))}. In the Herbrand domain with subsumption tabling,
the answer A = f(X,Y) covers the answer A = f(g(Z),a). Therefore, the expected
aggregated answer using subsumption is p(f(X,Y)). Note that the query ?-
p(f(1,g(-1))) succeeds under ATCLP, but also in Prolog under the standard LFP
semantics, even if the literal was not present in the set of answers obtained without
the aggregate declaration. Therefore, our interpretation of the meaning of a model for
a program with aggregates can be viewed as an extension of the Herbrand model with
subsumption for constraint domains.

An Example of Join-Based Aggregates

Example 7 (path(set)). Let us consider a program to compute the set of nodes that
are reachable from a given node in a graph. Figure 3 shows, on the left, a simple Prolog
program and, on the right, an ATCLP program using the set aggregate (see below).
While both seem to have the same expressiveness, the Prolog program would loop for
graphs with cycles and cannot to answer some queries that the ATCLP program can
(see at the end of this example). Adding tabling to the Prolog program helps in this
case, but note that mixing all-solution predicates and tabling does not always work, as
the suspension and resumption mechanism of tabling interacts with the usual failure-
and assert-driven implementations of setof/3 and similar predicates.

Fig. 3. Set of reachable nodes from a given node.

The set aggregate generates sets from the union of subsets. It can therefore generate
values that are not logical consequences of the program without aggregates. Assuming
that we have a library implementing basic operations on sets (e.g., Richard O’Keefe’s
well-known ordset.pl), we can define the set aggregate as:

1 :- use_module(library(sets)).
2 entails(set, SetA, SetB) :- ord_subset(SetA, SetB).
3 join(set, SetA, SetB, NewSet) :- ord_union(SetA, SetB, NewSet).

Note that in this case we define both the entailment and the join (although the former
can be defined in terms of the latter).

This example returns the set (as an ordered list without repetitions) L=[a,b,c,d]
for the query ?- path(a,L). Moreover, if we want to know which nodes can reach a

Incremental Evaluation of Lattice-Based Aggregates in Logic Programming 107

set of nodes, the query ?- path(X,[a,d]) returns X=a and X=b under ATCLP, which
neither Prolog nor tabling can if setof/3 is used.

In general, for lattice-based aggregates, entails/3 can be defined in terms of join/4
or vice versa. However, join-based aggregates allows us to aggregate the answers in a
unique value, and in some cases its gain in efficiency, in space, and time comes with a
loss of precision. Nevertheless, there are applications where this trade-off can remain
feasible, e.g., abstract interpretation and stream data analysis.

4.3 Implementation Sketch

In this section we present the program transformation used to execute programs with
aggregates and we describe how ATCLP is implemented using Modular TCLP as under-
lying infrastructure.

Modular TCLP: Modular TCLP is a tabling engine that handles constraints natively.
It can use constraint entailment to perform suspension and to save and return only the
most general answers to a query. Its modularity comes from the existence of a generic
interface with constraint solvers that defines what operations a constraint solver needs
to provide to the tabling engine [2]. By extending the code (written in Prolog) that
calls these external solver operations, we can hack the existing TCLP engine to execute
aggregates as described before.

Program Transformation: Figure 2, right, shows the transformation applied to the
predicate dist/3. The original entry point is rewritten to call an auxiliary predicate
where the aggregated arguments are substituted by attributed variables [7]. These are
later on caught by the tabling engine [5] and their execution is derived to the TCLP code
written in Prolog. The auxiliary predicate corresponds to the original one, but the origi-
nal arguments are retrieved from the attributed variables with get/2. The attributes are
tuples of the form (Aggi,Fi), where Aggi is the aggregate mode declared for that argu-
ment and Fi is a fresh variable where the aggregated value will be collected. Once the
auxiliary predicate collects the aggregated answer, it is either returned (if called with
an unbound variable) or checked for entailment against the value in the corresponding
argument.

ATCLP Internals: The TCLP tabling engine calls interface predicates from constraint
solvers whose implementation depends on that solver. When this interface is used to
implement aggregates, its implementation is always the same and ultimately calls the
user-provided entails/3 and join/4 predicates. Figure 4 shows the implementation
of this interface, under the simplifying assumption that we are aggregating over a single
variable. This implementation merely recovers information related to which aggregate
is being used and which variables are affected, and passes it to and from the join and
entailment operations.

ATCLP uses two objects: the aggregated argument (V) and the aggregate mode and
the value for the argument (Agg,A). There are three main phases in the execution of
ATCLP:

108 J. Arias and M. Carro

Fig. 4. Simplified ATCLP interface with the constraint tabling engine.

Call Entailment: the TCLP engine invokes store_projection(+V,-(Agg,A)) to
retrieve the representation of the aggregated arguments of a new call. Then
call_entail(+(Agg,A),+(Agg,B)) is called to check whether the new call A
entails a previous generator B. It succeeds if B is a variable or if A �Agg B. If so, the
new call suspends and consumes answers from the generator; otherwise, the new call
is marked as a new generator.

Answer entailment: the TCLP engine invokes store_projection(+V,-(Agg,A))
to retrieve the representation of aggregated arguments of a new answer. Then
it invokes answer_compare(+(Agg,A),+(Agg,B),-Res) to compare the new
answer A against a previous answer B. If A �Agg B, the predicate succeeds with
Res='=<'; conversely, if B �Agg A, the predicate returns Res='>'. This entail-
ment check discards/removes more particular answers from the answer table. When
the entailment check fails, and if the join operator of the aggregate mode Agg is
implemented, the predicate returns , where New = A
Agg B.
Otherwise, answer_compare/3 fails and the new answer is stored in the answer
table of the generator.

Answer consistency: In constraint tabling, answers from a generator may not be
directly applicable to a consumer: if the environment of the consumer is more restric-
tive than that of the generator, the generator’s answers have to be filtered by apply-
ing the constraints in the consumer environment to generate compatible answers.
The TCLP engine invokes apply_answer(+V,+(Agg,B)). When A (the aggregate
value of V) is a variable, B is returned as the aggregated answer. Otherwise, entail-
ment is checked: if A entails B, appl_answer/2 succeeds, and it fails otherwise.

4.4 Adapting the Answer Management of TCLP

The Modular TCLP framework further rewrites the program in Fig. 2, right, to add at the
end of each clause a call to the predicate new_answer/0 (Fig. 6), which saves answers
in the answer table.

This rewritten predicate is called through a meta-predicate tabled_call/1
(Fig. 5), that executes the call entailment phase. store_projection/2 retrieves the
current value of the aggregate, and call_entail/2 detects if the current call entails
a previous generator by comparing their projections, i.e., their aggregates. If that is the
case, the call is suspended by suspend_consumer/1; otherwise, the new call is made a
generator and executed (with save_generator/3 and execute_generator/2 resp.)

Incremental Evaluation of Lattice-Based Aggregates in Logic Programming 109

When the generators terminate and/or the consumers are resumed, answer consistency
is checked and apply_answer/2 applies all the answers collected during the execution
of the generator.

new_answer/0 (Fig. 6) collects the answers executing the answer entailment phase.
Lines 7 to 10 perform the entailment check while lines 11 to 13 can join an incoming
answer with previous answers into a new answer, and remove the previous answers [12].
This is used to combine two points A1 and A2 of a lattice into A1
 A2 and, for example,
store abstractions of answers. Such abstraction may lose some precision, but this can be
acceptable for some applications (e.g., in abstract interpretation).

Fig. 5. Tabled call

Fig. 6. Extended implementation of new_answer/0.

110 J. Arias and M. Carro

4.5 Non-lattice Aggregates

We presented aggregates that are defined over lattices where the join operation is com-
mutative, associative, and idempotent. However, there are many common aggregates
that can be implemented using ATCLP but that do not satisfy some of the properties
listed above. As a consequence, their execution may not completely align with LFP
semantics. This is the case of sum, which can be defined using the join operator, but
which does not have a sound definition for entailment.

Example 8 (probability of paths in a graph). Let us consider a (cyclic) graph where
each edge has a transition probability. We want the probability P of reaching a node N
from another node a. P is the sum of the transition probabilities of all possible paths
from a to N. Then, on one hand we have to multiply the probability of every traversed
edge to calculate the probability of a path and, on the other hand, we have to add proba-
bilities for every path. We define an aggregate (resp., sum and thr(Epsilon)) for each
of these.

Incrementally adding path probabilities (in general, numbers) is easy by adding
every new answer to the previous value. This behaves as expected when we have a
finite set of answers to add. For non-cyclic graphs, the model is finite and computing all
the paths and their sum is possible. However, in case of cycles, edges within loops may
have to be traversed an unbounded number of times, and their contribution to the final
solution decreases with every loop.

A possible strategy is to discard edges when their contribution goes below a certain
user-defined threshold. With a somewhat ad-hoc reading of this condition, we can say
that new solutions with a difference small enough w.r.t. existing solutions entail these
previous solutions and therefore they ought not to be taken into account. This can be
expressed in our framework by defining another aggregate that decides, via entailment,
when further advancing in a path does not contribute enough.

1 :- table reach(_,sum).
2 :- table path(_,_,thr(0.001)).
3

4 entails(sum,_,_) :- fails.
5 join(sum, A, B, C) :-
6 C is A + B.
7 entails(thr(Epsilon), A, B):-
8 A < Epsilon * B.

9 reach(N,P) :- path(a,N,P).
10

11 path(X,Y,P) :-
12 edge(X,Y,P).
13 path(X,Y,P) :-
14 edge(X,Z,P1),
15 path(Z,Y,P2),
16 P is P1 * P2.

In this example, for each node N, the predicate reach(_,sum) aggregates in its sec-
ond argument the sum of the transition probabilities of the paths from a to N. Note we
want to add all distances; therefore we define the entailment of sum to be always false.
Since cyclic graphs have infinitely many paths, we have implemented the threshold
aggregate, denoted by thr(Epsilon) to discard paths between X and Y whose rela-
tive contribution to the final results w.r.t. the contribution of another path falls below
Epsilon.

Incremental Evaluation of Lattice-Based Aggregates in Logic Programming 111

5 Experimental Evaluation

We will now evaluate the expressiveness and performance of ATCLP w.r.t. pure Prolog
and tabling. The ATCLP framework presented in this paper is based on TCLP, that is
in turn implemented in Ciao Prolog. The examples, benchmarks, and a Ciao Prolog dis-
tribution including the libraries and frameworks presented in this paper are available at
http://www.cliplab.org/papers/padl2019-atclp/.4 All the experiments were performed on
a Mac OS X 10.13.6 laptop with a 2 GHz Intel Core i5. Times are given in milliseconds.

We will first evaluate some implementations of the well-known minimax algorithm
applied to (an extended version of) TicTacToe. Our starting point is the Prolog version
from [3,10] that uses bagof/3 to collect the possible movements from a TicTacToe
position and selects the best one. Thanks to the expressiveness of ATCLP, our code for
the core minimax procedure (below) is considerably more compact (i.e., less number of
predicates and arguments per predicate) than the equivalent Prolog or tabling code.

1 :- table minimax(_, first, best).

2

3 minimax(Pos, NextPos, (Pos,Val)) :-

4 move(Pos, NextPos), % Chose a move

5 minimax(NextPos, _, (NextPos, Val)).

6 minimax(Pos, Pos, (Pos,Val)) :-

7 \+ move(Pos, _), % Final position

8 utility(Pos,Val). % Calculate score

9

10 entails(best,(Pos,ValA),(Pos,ValB)) :-

11 min_to_move(Pos), ValA >= ValB. % Minimizing

12 entails(best,(Pos,ValA),(Pos,ValB)) :-

13 max_to_move(Pos), ValA =< ValB. % Maximizing

14 entails(first,_,_) :- true. % Choose first best option

The ATCLP code chooses the best movement by applying the best aggregate which
discards movements with worst (resp., best, depending on the current player) value. The
infrastructure for aggregates transparently keeps track of gathering solutions and retains
only the most relevant one at each moment. Note that we are using two different aggre-
gates functions in the same predicate: best takes care of minimization/maximization
and first retains only the first solution found among those with the same score.

We compared execution time and memory usage in two scenarios: determining the
best initial movement for a 3×3 TicTacToe board and determining the best movement
for a 4×4 TicTacToe starting at two different positions. In all three cases the remaining
game tree was completely explored. The results (Table 1) show that the Prolog version
is the slowest, with the tabling version being faster than the ATCLP version. However,
the ATCLP version behaves considerably better than tabling in terms of table memory
consumption (between parentheses, in Mb). This is because viewing aggregates as con-
straints automatically stops the search as soon as the value of an aggregate is worse than
a previously found one. That makes the ATCLP version to terminate for cases where
regular tabling runs out of memory.

4 Stable versions of Ciao Prolog are available at http://www.ciao-lang.org. However, ATCLP is
still in development and not fully available yet in the stable versions.

http://www.cliplab.org/papers/padl2019-atclp/
http://www.ciao-lang.org

112 J. Arias and M. Carro

Table 1. Run time (ms), between parentheses the memory usage (in Mb) for Minimax with dif-
ferent initial boards.

Prolog tabling ATCLP

3 × 3 1051 167 (2) 359 (1)

4 × 4’ >5 min 10166 (130) 15194 (30)

4 × 4” >5 min out of mem. 134918 (252)

The second benchmark is the Game problem presented in the LP/CP contest of ICLP
2015 (http://picat-lang.org/lp cp pc/Games.html). The problem can be seen as a graph
traversal where the movements represent a decision regarding whether to repeat the
same game or play a new one. There are two parameters to optimize: T, the remaining
money, and F, the fun we have had (which can be negative). The final goal have as much
fun as possible, for which one has to keep as much money as possible. The core of the
algorithm, where we again want to stress its compactness, follows:

1 :- table total_fun(max).
2 total_fun(F) :-
3 reach(initial,end,_,F).
4

5 :- table reach(_,_,max,max).
6 reach(GameA,GameB,T,F) :-
7 edge(GameA,GameB,T,F).

8 reach(GameA,GameB,Tf,Ff) :-
9 reach(GameA,GameZ,T1,F1),

10 edge(GameZ,GameB,T2,F2),
11 Ff is F1 + F2,
12 Tm is T1 + T2, Tm >= 0,
13 (cap(Cap), Tm > Cap ->
14 Tf is Cap ; Tf is Tm).

We developed three versions of a program to solve this problem using Prolog,
tabling, and ATCLP. Table 2 shows that the ATCLP on-the-fly aggregate computation
performs better than either Prolog or tabling, since ATCLP does not try to evaluate
states where T and F are worse than in states already evaluated.

Table 2. Run time (ms) comparison for Games with different scenarios.

Prolog Tabling ATCLP

game data 01 8062.49 14.66 2.89

game data 02 >5 min. 37.59 4.87

game data 03 >5 min. 1071.26 19.61

game data 04 >5 min. 4883.00 23.21

6 Conclusion and Future Work

We have presented a framework to implement a type of aggregates, defined over a lattice
structure, whose behavior is consistent with the least fixpoint semantics. We provide an

http://picat-lang.org/lp_cp_pc/Games.html

Incremental Evaluation of Lattice-Based Aggregates in Logic Programming 113

interface so that final users can define the basic operations on which the aggregates are
built. We validated the flexibility and expressiveness of our framework through sev-
eral examples; we also evaluated their performance in a couple of benchmarks, which
showed a positive balance between memory consumption and execution speed.

Among the immediate future plans, we want to work on increasing the performance
of the system and improve the user interface. In many cases, the entails/3 and join/4
predicates can directly be generated from a mode definition by providing a predicate
name. While this will not enhance performance or give more flexibility, it will make
using the ATCLP interface more user-friendly. We also plan to include with ATCLP a
library of commonly-used aggregate functions.

References

1. Arias, J., Carro, M.: Description and evaluation of a generic design to integrate CLP and
tabled execution. In: International Symposium on Principles and Practice of Declarative Pro-
gramming, pp. 10–23. ACM, September 2016

2. Arias, J., Carro, M.: Description, implementation, and evaluation of a generic design for
tabled CLP. Theory and Practice of Logic Programming (2018) (to appear)

3. Bratko, I.: Prolog Programming for Artificial Intelligence. Pearson Education, London
(2001)

4. Chico de Guzmán, P., Carro, M., Hermenegildo, M.V., Stuckey, P.: A general implementation
framework for tabled CLP. In: Schrijvers, T., Thiemann, P. (eds.) FLOPS 2012. LNCS, vol.
7294, pp. 104–119. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29822-
6 11

5. Cui, B., Warren, D.S.: A system for tabled constraint logic programming. In: Lloyd, J., Dahl,
V., Furbach, U., Kerber, M., Lau, K.-K., Palamidessi, C., Pereira, L.M., Sagiv, Y., Stuckey,
P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 478–492. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44957-4 32

6. Guo, H.F., Gupta, G.: Simplifying dynamic programming via mode-directed tabling. Softw.
Pract. Exp. 1, 75–94 (2008)

7. Holzbaur, C.: Metastructures vs. attributed variables in the context of extensible unification.
In: Bruynooghe, M., Wirsing, M. (eds.) PLILP 1992. LNCS, vol. 631, pp. 260–268. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-55844-6 141

8. Kemp, D.B., Stuckey, P.J.: Semantics of logic programs with aggregates. In: Saraswat, V.A.,
Ueda, K. (eds.) International Symposium on Logic Programming, pp. 387–401. October
1991

9. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of logic pro-
grams with aggregates. Theory Pract. Log. Program. 3, 301–353 (2007)

10. Picard, G.: Artificial intelligence - implementing minimax with prolog. https://www.emse.
fr/∼picard/cours/ai/minimax/

11. Santos Costa, V., Rocha, R., Damas, L.: The YAP prolog system. Theory Pract. Log. Pro-
gram. 1–2, 5–34 (2012)

12. Schrijvers, T., Demoen, B., Warren, D.S.: TCHR: a Framework for tabled CLP. Theory Pract.
Log. Program. 4, 491–526 (2008)

13. Swift, T., Warren, D.S.: Tabling with answer subsumption: implementation, applications and
performance. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp.
300–312. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15675-5 26

14. Swift, T., Warren, D.S.: XSB: extending prolog with tabled logic programming. Theory
Pract. Log. Program. 1–2, 157–187 (2012)

https://doi.org/10.1007/978-3-642-29822-6_11
https://doi.org/10.1007/978-3-642-29822-6_11
https://doi.org/10.1007/3-540-44957-4_32
https://doi.org/10.1007/3-540-55844-6_141
https://www.emse.fr/~picard/cours/ai/minimax/
https://www.emse.fr/~picard/cours/ai/minimax/
https://doi.org/10.1007/978-3-642-15675-5_26

114 J. Arias and M. Carro

15. Vandenbroucke, A., Pirog, M., Desouter, B., Schrijvers, T.: Tabling with sound answer sub-
sumption. Theory Pract. Log. Program. 16(5–6), 933–949 (2016). 32nd International Con-
ference on Logic Programming

16. Zhou, N.F.: The language features and architecture of B-Prolog. Theory Pract. Log. Program.
1–2, 189–218 (2012)

17. Zhou, N.F., Kameya, Y., Sato, T.: Mode-directed tabling for dynamic programming, machine
learning, and constraint solving. In: International Conference on Tools with Artificial Intel-
ligence, No. 2, pp. 213–218. IEEE, October 2010

A Combinatorial Testing Framework
for Intuitionistic Propositional

Theorem Provers

Paul Tarau(B)

Department of Computer Science and Engineering,
University of North Texas, Denton, USA

paul.tarau@unt.edu

Abstract. Proving a theorem in intuitionistic propositional logic, with
implication as its single connective, is known as one of the simplest
to state PSPACE-complete problem. At the same time, via the Curry-
Howard isomorphism, it is instrumental to find lambda terms that may
inhabit a given type.

However, as hundreds of papers witness it, all starting with Gentzen’s
LJ calculus, conceptual simplicity has not come in this case with com-
parable computational counterparts. Implementing such theorem provers
faces challenges related not only to soundness and completeness but also
too termination and scalability problems.

In search for an efficient but minimalist theorem prover, on the two
sides of the Curry-Howard isomorphism, we design a combinatorial test-
ing framework using types inferred for lambda terms as well as all-term
and random term generators.

We choose Prolog as our meta-language. Being derived from essen-
tially the same formalisms as those we are covering, it reduces the seman-
tic gap and results in surprisingly concise and efficient declarative imple-
mentations. Our implementation is available at: https://github.com/
ptarau/TypesAndProofs.

Keywords: Curry-Howard isomorphism
Propositional implicational intuitionistic logic
Type inference and type inhabitation
Simply typed lambda terms
Logic programming · Propositional theorem provers
Combinatorial testing algorithms

1 Introduction

The implicational fragment of propositional intuitionistic logic can be defined
by two axiom schemes:

K : A → (B → A)
S : (A → (B → C)) → ((A → B) → (A → C))

c© Springer Nature Switzerland AG 2019
J. J. Alferes and M. Johansson (Eds.): PADL 2019, LNCS 11372, pp. 115–132, 2019.
https://doi.org/10.1007/978-3-030-05998-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05998-9_8&domain=pdf
https://github.com/ptarau/TypesAndProofs
https://github.com/ptarau/TypesAndProofs
https://doi.org/10.1007/978-3-030-05998-9_8

116 P. Tarau

and the modus ponens inference rule:

MP : A, A → B � B.

Our interest in theorem provers for this minimalist logic fragment has been
triggered by its relation, via the Curry-Howard isomorphism, to the inverse prob-
lem, corresponding to inferring types for lambda terms, type inhabitation. In its
simplest form, the Curry-Howard isomorphism [1,2] connects the implicational
fragment of propositional intuitionistic logic and types in the simply typed lambda
calculus. A low polynomial type inference algorithm associates a type (when it
exists) to a lambda term. Harder (PSPACE-complete, see [3]) algorithms asso-
ciate inhabitants to a given type expression with the resulting lambda term
(typically in normal form) serving as a witness for the existence of a proof for
the corresponding tautology in implicational propositional intuitionistic logic.
As a consequence, a theorem prover for implicational propositional intuitionistic
logic can also be seen as a tool for program synthesis, as implemented by code
extraction algorithms in proof assistants like Coq [4].

This provides a simple and effective testing mechanism: by using as input
the type of a lambda term known to have as an inhabitant the term itself. While
only providing “positive examples” - formulas known to be tautologies, this is
becoming increasingly difficult with size, as the asymptotic density of typable
terms in the set of closed lambda terms has been shown to converge to 0 [5].
As a consequence, even our best generators [6], based on Boltzmann samplers,
are limited to lambda terms in normal form of about size 60–70, given the very
large number of retries needed to filter out untypable terms.

Thus, besides generating large simply typed lambda terms, we will need
to devise testing methods also ensuring correct rejection of non-theorems and
termination on arbitrary formulas.

This will lead us to a stepwise refinement from simpler to more efficient equiva-
lent provers.Wewill start fromaknown, proven to be sound and complete prover as
a first step, and use a test-driven approach to improve its performance and scalabil-
ity while having soundness and completeness as invariants. As even small, appar-
ently obvious changes in sound and complete provers can often break these prop-
erties, one must chose between writing a formal proof for each variant or setting
up an extensive combinatorial and random testing framework, able to ensure cor-
rectness, with astronomically low chance of error, “at the push of a button”.

We chose the second approach. Besides the ability to also evaluate scalability
and performance of our provers, our combinatorial generation library, released
as open source software, has good chances to be reused as a testing harness for
other propositional solvers, (e.g., SAT, ASP or SMT solvers) with structurally
similar formulas.

Our combinatorial testing framework comprises generators for

– simply typed lambda terms (in normal form) and their types
– formulas of the implicational subset of propositional calculus, requiring

• generation of binary trees with internal nodes labeled with ‘->’
• generation of set partitions helping to label variables in leaf position.

A Combinatorial Testing Framework 117

For quick correctness tests we build all-formula generators. Total counts for
formulas of a given size for tautologies and non-tautologies provide an instant
indicator for high-probability correctness. It also provides small false positives
or negatives, helpful to explain and debug unexpected behavior.

For performance, scalability and termination tests, in the tradition of
QuickCheck [7,8] we build random formula generators, with focus on ability
to generate very large simply typed lambda terms and implicational formulas.

While our code at (https://github.com/ptarau/TypesAndProofs), covers a
few dozen variants of implicational as well as full propositional provers, we will
describe here a few that win on simplicity and/or scalable performance.

Notations and Assumptions. As we will use Prolog as our meta-language,
our notations will be derived as much as possible from its syntax (including token
types and operator definitions). Thus, variables will be denoted with upper-
case letters and, as programmer’s conventions final s letters indicate a plurality
of items (e.g., when referring to the content of Γ contexts). We assume that
the reader is familiar with basic Prolog programming, including, besides the
pure Horn clause subset, well-known builtin predicates like memberchk/2 and
select/3, elements of higher order programming (e.g., call/N), and occasional
use of CUT and if-then-else constructs.

Lambda terms are built using the function symbols a/2 = application, l/2 =
lambda binder, with a logic variable as first argument and expression as second,
as well as logic variables representing the variables of the terms.

Type expressions (also seen as implicational formulas) are built as binary
trees with the function symbol ->/2 and logic variables at their leaves.

The Paper Is Organized as Follows. Section 2 overviews the LJT sequent
calculus for implicational propositional intuitionistic logic. Section 3 describes,
starting with a direct encoding of the LJT calculus as a Prolog program, deriva-
tion steps leading to simpler and faster provers. Section 4 describes our testing
framework. Section 5 overviews related work and Sect. 6 concludes the paper.

2 Proof Systems for Implicational Propositional
Intuitionistic Logic

Initially, like for other fields of mathematics and logic, Hilbert-style axioms were
considered for intuitionistic logic. While simple and directly mapped to SKI-
combinators via the Curry-Howard isomorphism, their usability for automation
is very limited. In fact, their inadequacy for formalizing even “hand-written”
mathematics was the main trigger of Gentzen’s work on natural deduction and
sequent calculus, inspired by the need for formal reasoning in the foundation of
mathematics [9].

https://github.com/ptarau/TypesAndProofs

118 P. Tarau

Thus, we start with Gentzen’s own calculus for intuitionistic logic, simplified
here to only cover the purely implicational fragment, given that our focus is on
theorem provers working on formulas that correspond to types of simply-typed
lambda terms.

2.1 Gentzen’s LJ Calculus, Restricted to the Implicational
Fragment of Propositional Intuitionistic Logic

We assume familiarity with basic sequent calculus notation. Gentzen’s original
LJ calculus [9] (with the equivalent notation of [10]) uses the following rules.

LJ1 :
A,Γ � A

LJ2 :
A,Γ � B

Γ � A → B

LJ3 :
A → B,Γ � A B,Γ � G

A → B,Γ � G

As one can easily see, when trying a goal-driven implementation that uses the
rules in upward direction, the unchanged premises on left side of rule LJ3 would
not ensure termination as nothing prevents A and G from repeatedly trading
places during the inference process.

2.2 Roy Dyckhoff’s LJT Calculus, Restricted to the Implicational
Fragment of Propositional Intuitionistic Logic

Motivated by problems related to loop avoidance in implementing Gentzen’s LJ
calculus, Roy Dyckhoff [10] splits rule LJ3 into LJT3 and LJT4.

LJT1 :
A,Γ � A

LJT2 :
A,Γ � B

Γ � A → B

LJT3 :
B,A, Γ � G

A → B,A, Γ � G

LJT4 :
D → B,Γ � C → D B,Γ � G

(C → D) → B,Γ � G

This avoids the need for loop checking to ensure termination as one can identify
a multiset ordering-based size definition that decreases after each step [10]. The
rules work with the context Γ being a multiset, but it has been shown later [11]
that Γ can be a set, with duplication in contexts eliminated.

As it is not unusual with logic formalisms, the same calculus had been discov-
ered independently in the 50’s by Vorob’ev and in the 80’s–90’s by Hudelmaier
[12,13].

A Combinatorial Testing Framework 119

3 The Test-Driven Prover Derivation Process

Starting from this calculus, we will describe our “test-driven” derivation process
for simpler and/or more efficient provers that will be validated at each step by
our testing framework described in the next section.

3.1 An Executable Specification: Dyckhoff’s LJT Calculus, Literally

Roy Dyckhoff has implemented the LJT calculus as a Prolog program.
We have ported it to SWI-Prolog as a reference implementation

(see https://github.com/ptarau/TypesAndProofs/blob/master/third party/dyckhoff

orig.pro). However, it is a fairly large (420 lines) program, partly because it cov-
ers the full set of intuitionistic connectives and partly because of the complex
heuristics that it implements.

This brings up the question if, in the tradition of “lean theorem provers”, we
can build one directly from the LJT calculus, in a goal oriented style, by reading
the rules from conclusions to premises.

Thus, we start with a simple, almost literal translation of rules LJT1 . . . LJT4

to Prolog with values in the environment Γ denoted by the variable Vs.

lprove(T):-ljt(T,[]),!.

ljt(A,Vs):-memberchk(A,Vs),!. % LJT_1

ljt((A->B),Vs):-!,ljt(B,[A|Vs]). % LJT_2

ljt(G,Vs1):- %atomic(G), % LJT_3

select((A->B),Vs1,Vs2),

memberchk(A,Vs2),

!,

ljt(G,[B|Vs2]).

ljt(G,Vs1):- % LJT_4

select(((C->D)->B),Vs1,Vs2),

ljt((C->D), [(D->B)|Vs2]),

!,

ljt(G,[B|Vs2]).

Note the use of select/3 to extract a term from the environment (a non-
deterministic step) and termination, via a multiset ordering based measure [10].
An example of use is:

?- lprove(a->b->a).

true.

?- lprove((a->b)->a).

false.

Note also that integers can be used instead of atoms, flexibility that we will
use as needed.

Besides the correctness of the LJT rule set (as proved in [10]), given that the
prover has passed our tests, it looks like being already quite close to our interest in
a “lean” prover for the implicational fragment of propositional intuitionistic logic.

https://github.com/ptarau/TypesAndProofs/blob/master/third_party/dyckhoff_orig.pro
https://github.com/ptarau/TypesAndProofs/blob/master/third_party/dyckhoff_orig.pro

120 P. Tarau

However, given the extensive test set (see Sect. 4) that we have developed, it is
not hard to get tempted in getting it simpler and faster, knowing that the smallest
error will be instantly caught.

3.2 Concentrating Nondeterminism into One Place

We start with a transformation that keeps the underlying implicational for-
mula unchanged. It merges the work of the two select/3 calls into a single
call, observing that their respective clauses do similar things after the call to
select/3. That avoids redoing the same iteration over candidates for reduction.

bprove(T):-ljb(T,[]),!.

ljb(A,Vs):-memberchk(A,Vs),!.

ljb((A->B),Vs):-!,ljb(B,[A|Vs]).

ljb(G,Vs1):-

select((A->B),Vs1,Vs2),

ljb_imp(A,B,Vs2),

!,

ljb(G,[B|Vs2]).

ljb_imp((C->D),B,Vs):-!,ljb((C->D),[(D->B)|Vs]).

ljb_imp(A,_,Vs):-atomic(A),memberchk(A,Vs).

This results on our tests (see Sect. 4 for details) in an improvement on a
mix of tautologies and non-tautologies, in exchange for a slowdown on formulas
known to be tautologies.

3.3 Implicational Formulas as Nested Horn Clauses

Given the equivalence between: B1 → B2 . . . Bn → H and (in Prolog notation)
H :- B1, B2, . . . , Bn, (where we choose H as the atomic formula ending a chain
of implications), we can, recursively, transform an implicational formula into one
built form nested clauses, as follows.

toHorn((A->B),(H:-Bs)):-!,toHorns((A->B),Bs,H).

toHorn(H,H).

toHorns((A->B),[HA|Bs],H):-!,toHorn(A,HA),toHorns(B,Bs,H).

toHorns(H,[],H).

Note also that the transformation is reversible and that lists (instead of
Prolog’s conjunction chains) are used to collect the elements of the body of a
clause.

?- toHorn(((0->1->2->3->4)->(0->1->2)->0->2->3),R).

R = (3:-[(4:-[0, 1, 2, 3]), (2:-[0, 1]), 0, 2]).

This suggests transforming provers for implicational formulas into equivalent
provers working on nested Horn clauses.

A Combinatorial Testing Framework 121

hprove(T0):-toHorn(T0,T),ljh(T,[]),!.

ljh(A,Vs):-memberchk(A,Vs),!.

ljh((B:-As),Vs1):-!,append(As,Vs1,Vs2),ljh(B,Vs2).

ljh(G,Vs1):- % atomic(G), G not in Vs1

memberchk((G:-_),Vs1), % if not, we just fail!

select((B:-As),Vs1,Vs2), % outer select loop

select(A,As,Bs), % inner select loop

ljh_imp(A,B,Vs2), % A is an element of the body of B

!,

trimmed((B:-Bs),NewB), % trim off empty bodies

ljh(G,[NewB|Vs2]).

ljh_imp((D:-Cs),B,Vs):-!,ljh((D:-Cs),[(B:-[D])|Vs]).

ljh_imp(A,_B,Vs):-memberchk(A,Vs).

trimmed((B:-[]),R):-!,R=B.

trimmed(BBs,BBs).

A first improvement, ensuring quicker rejection of non-theorems is the call to
memberchk in the 3-rd clause to ensure that our goal G is the head of at least one
of the assumptions. Once that test is passed, the 3-rd clause works as a reducer
of the assumed hypotheses. It removes from the context a clause B:-As and it
removes from its body a formula A, to be passed to ljh_imp, with the remaining
context. Should A be atomic, we succeed if and only if it is already in the context.
Otherwise, we closely mimic rule LJT4 by trying to prove A = (D:-Cs), after
extending the context with the assumption B:-[D]. Note that in both cases the
context gets smaller, as As does not contain the A anymore. Moreover, should
the body Bs end up empty, the clause is downgraded to its atomic head by the
predicate trimmed/2. Also, by having a second select/3 call in the third clause
of ljh, will give ljh imp more chances to succeed and commit.

Thus, besides quickly filtering out failing search branches, the nested Horn
clause form of implicational logic helps bypass some intermediate steps, by focus-
ing on the head of the Horn clause, which corresponds to the last atom in a chain
of implications.

The transformation brings to hprove/1 an extra 66% performance gain over
bprove/1 on terms of size 15, which scales up to run as much as 29 times faster
on terms of size 16.

3.4 Propagating Back the Elimination of Non-matching Heads

We can propagate back to the implicational forms used in bprover the obser-
vation made on the Horn-clause form that heads (as computed below) should
match at least one assumption.

head_of(_->B,G):-!,head_of(B,G).

head_of(G,G).

122 P. Tarau

We can apply this to bprove/1 as shown in the 3-rd clause of lje, where we
can also prioritize the assumption found to have the head G, by placing it first
in the context.

eprove(T):-lje(T,[]),!.

lje(A,Vs):-memberchk(A,Vs),!.

lje((A->B),Vs):-!,lje(B,[A|Vs]).

lje(G,Vs0):-

select(T,Vs0,Vs1),head_of(T,G),!,

select((A->B),[T|Vs1],Vs2),lje_imp(A,B,Vs2),!,

lje(G,[B|Vs2]).

lje_imp((C->D),B,Vs):-!,lje((C->D),[(D->B)|Vs]).

lje_imp(A,_,Vs):-atomic(A),memberchk(A,Vs).

This brings the performance of eprove within a few percents of hprove.

3.5 Extracting the Proof Terms

Extracting the proof terms (lambda terms having the formulas we prove as types)
is achieved by decorating in the code with application nodes a/2, lambda nodes
l/2 (with first argument a logic variable) and leaf nodes (with logic variables,
same as the identically named ones in the first argument of the corresponding
l/2 nodes).

The simplicity of the predicate eprove/1 and the fact that this is essentially
the inverse of a type inference algorithm (e.g., the one in [14]) help with figuring
out how the decoration mechanism works.

sprove(T):-ljs(X,T,[]),!.

ljs(X,A,Vs):-memberchk(X:A,Vs),!. % leaf variable

ljs(l(X,E),(A->B),Vs):-!,ljs(E,B,[X:A|Vs]). % lambda term

ljs(E,G,Vs1):-

select(S:(A->B),Vs1,Vs2), % source of application

ljs_imp(T,A,B,Vs2), % target of application

!,

ljs(E,G,[a(S,T):B|Vs2]). % application

ljs_imp(X,A,_,Vs):-atomic(A),!,memberchk(X:A,Vs).

ljs_imp(E,(C->D),B,Vs):-ljs(E,(C->D),[_:(D->B)|Vs]).

Thus, lambda nodes decorate implication introductions and application nodes
decorate modus ponens reductions in the corresponding calculus. Note that the
two clauses of ljs imp provide the target node T . When seen from the type
inference side, T is the type resulting from cancelling the source type S and the
application type S → T .

A Combinatorial Testing Framework 123

Calling sprove/2 on the formulas corresponding to the types of the S,K and
I combinators, we obtain:

?- sprove(((0->1->2)->(0->1)->0->2),X).

X = l(A, l(B, l(C, a(a(A, C), a(B, C))))). % S

?- sprove((0->1->0),X).

X = l(A, l(B, A)). % K

?- sprove((0->0),X).

X = l(A, A). % I

4 The Testing Framework

Correctness can be checked by identifying false positives or false negatives. A
false positive is a non-tautology that the prover proves, breaking the soundness
property. A false negative is a tautology that the prover fails to prove, breaking
the completeness property. While classical tautologies are easily tested (at small
scale against truth tables, at medium scale with classical propositional provers
and at larger scale with a SAT solver), intuitionistic provers require a more
creative approach, given the absence of a finite truth-value table model.

As a first bootstrapping step, assuming that no “gold standard” prover is
available, one can look at the other side of the Curry-Howard isomorphism, and
rely on generators of (typable) lambda terms and generators implicational logic
formulas, with results being checked against a trusted type inference algorithm.

As a next step, a trusted prover can be used as a “gold standard” to test
both for false positives and negatives.

4.1 Finding False Negatives by Generating the Set of Simply Typed
Normal Forms of a Given Size

A false negative is identified if our prover fails on a type expression known
to have an inhabitant. Via the Curry-Howard isomorphism, such terms are the
types inferred for lambda terms, generated by increasing sizes. In fact, this means
that all implicational formulas having proofs shorter than a given number are all
covered, but possibly small formulas having long proofs might not be reachable
with this method that explores the search by the size of the proof rather than
the size of the formula to be proven. We refer to [14] for a detailed description
of efficient algorithms generating pairs of simply typed lambda terms in normal
form together with their principal types. The code we use here is at: https://

github.com/ptarau/TypesAndProofs/blob/master/allTypedNFs.pro

4.2 Finding False Positives by Generating All Implicational
Formulas/Type Expressions of a Given Size

A false positive is identified if the prover succeeds finding an inhabitant for a
type expression that does not have one.

https://github.com/ptarau/TypesAndProofs/blob/master/allTypedNFs.pro
https://github.com/ptarau/TypesAndProofs/blob/master/allTypedNFs.pro

124 P. Tarau

We obtain type expressions by generating all binary trees of a given size,
extracting their leaf variables and then iterating over the set of their set parti-
tions, while unifying variables belonging to the same partition. We refer to [14]
for a detailed description of the algorithms.

The code describing the all-tree and set partition generation as well as their
integration as a type expression generator is at:

https://github.com/ptarau/TypesAndProofs/blob/master/allPartitions.pro.
We have tested the predicate lprove/1 as well as all other provers derived

from it for false negatives against simple types of terms up to size 15 (with
size defined as 2 for applications, 1 for lambdas and 0 for variables) and for
false positives against all type expressions up to size 7 (with size defined as the
number of internal nodes).

An advantage of exhaustive testing with all formulas of a given size is that it
implicitly ensures coverage: no path is missed simply because there are no paths
left unexplored.

4.3 Testing Against a Trusted Reference Implementation

Assuming we trust an existing reference implementation (e.g., after it passes our
generator-based tests), it makes sense to use it as a “gold standard”. In this case,
we can identify both false positives and negatives directly, as follows:

gold_test(N,Generator,Gold,Silver, Term, Res):-call(Generator,N,Term),

gold_test_one(Gold,Silver,Term, Res),

Res\=agreement.

gold_test_one(Gold,Silver,T, Res):-

(call(Silver,T) -> \+ call(Gold,T),

Res = wrong_success

; call(Gold,T) -> % \+ Silver

Res = wrong_failure

; Res = agreement

).

When specializing to a generator for all well-formed implication expressions,
and using Dyckhoff’s dprove/1 predicate as a gold standard, we have:

gold_test(N, Silver, Culprit, Unexp):-

gold_test(N,allImpFormulas,dprove,Silver,Culprit,Unexp).

To test the tester, we design a prover that randomly succeeds or fails.

badProve(_) :- 0 =:= random(2).

We can now test lprove/1 and badprove/1 as follows:

?- gold_test(6,lprove,T,R).

false. % indicates that no false positive or negative is found

?- gold_test(6,badProve,T,R).

https://github.com/ptarau/TypesAndProofs/blob/master/allPartitions.pro

A Combinatorial Testing Framework 125

T = (0->1->0->0->0->0->0),

R = wrong_failure ;

...

?- gold_test(6,badProve,T,wrong_success).

T = (0->1->0->0->0->0->2) ;

...

A more interesting case is when a prover is only guilty of false positives. For
instance, let’s naively implement the intuition that a goal is provable w.r.t. an
environment Vs if all its premises are provable, with implication introduction
assuming premises and success achieved when the environment is reduced to
empty.

badSolve(A):-badSolve(A,[]).

badSolve(A,Vs):-atomic(A),!,memberchk(A,Vs).

badSolve((A->B),Vs):-badSolve(B,[A|Vs]).

badSolve(_,Vs):-badReduce(Vs).

badReduce([]):-!.

badReduce(Vs):-select(V,Vs,NewVs),badSolve(V,NewVs),badReduce(NewVs).

As the following test shows, while no tautology is missed, the false positives
are properly caught.

?- gold_test(6,badSolve,T,wrong_failure).

false.

?- gold_test(6,badSolve,T,wrong_success).

T = (0->0->0->0->0->0->1) ;

...

4.4 Random Simply-Typed Terms, with Boltzmann Samplers

Once passing correctness tests, our provers need to be tested against large ran-
dom terms. The mechanism is similar to the use of all-term generators.

We generate random simply-typed normal forms, using a Boltzmann sampler
along the lines of that described in [6]. The code variant, adapted to our different
term-size definition is at:
https://github.com/ptarau/TypesAndProofs/blob/master/ranNormalForms.pro. It
works as follows:

?- ranTNF(60,XT,TypeSize).

XT = l(l(a(a(0, l(a(a(0, a(0, l(...))), s(s(0))))),

l(l(a(a(0, a(l(...), a(..., ...))), l(0)))))))

:

(A->((((A->A)- ...)->D)->D)->M)->M),

TypeSize = 34.

https://github.com/ptarau/TypesAndProofs/blob/master/ranNormalForms.pro

126 P. Tarau

Interestingly, partly due to the fact that there’s some variation in the size
of the terms that Boltzmann samplers generate, and more to the fact that the
distribution of types favors (as seen in the second example) the simple tautologies
where an atom identical to the last one is contained in the implication chain
leading to it [5,15], if we want to use these for scalability tests, additional filtering
mechanisms need to be used to statically reject type expressions that are large
but easy to prove as intuitionistic tautologies.

4.5 Random Implicational Formulas

The generation of random implicational formulas is more intricate.
Our code combines an implementation of Rémy’s algorithm [16], along the

lines of Knuth’s algorithm R in [17] for the generation of random binary trees
at https://github.com/ptarau/TypesAndProofs/blob/master/RemyR.pro with code
to generate random set partitions at:
https://github.com/ptarau/TypesAndProofs/blob/master/ranPartition.pro.

We refer to [18] for a declarative implementation of Rémy’s algorithm in
Prolog with code adapted for this paper at:
https://github.com/ptarau/TypesAndProofs/blob/master/RemyP.pro.

As automatic Boltzmann sampler generation of set partitions is limited to
fixed numbers of equivalence classes from which a CF- grammar can be given, we
build our random set partition generator that groups variables in leaf position
into equivalence classes by using an urn-algorithm [19]. Once a random binary
tree of size N is generated with the ->/2 constructor labeling internal nodes,
the N + 1 leaves of the tree are decorated with variables denoted by successive
integers starting from 0. As variables sharing a name define equivalence classes
on the set of variables, each choice of them corresponds to a set partition of the
N +1 nodes. Thus, a set partition of the leaves {0,1,2,3} like {{0},{1,2},{3}}
will correspond to the variable leaf decorations

0, 1, 1, 2

The partition generator works as follows:

?- ranSetPart(7,Vars).

Vars = [0, 1, 2, 1, 1, 2, 3] .

Note that the list of labels it generates can be directly used to decorate
the random binary tree generated by Rémy’s algorithm, by unifying the list of
variables Vs with it.

?- remy(6,T,Vs).

T = ((((A->B)->C->D)->E->F)->G),

Vs = [A, B, C, D, E, F, G] .

https://github.com/ptarau/TypesAndProofs/blob/master/RemyR.pro
https://github.com/ptarau/TypesAndProofs/blob/master/ranPartition.pro
https://github.com/ptarau/TypesAndProofs/blob/master/RemyP.pro

A Combinatorial Testing Framework 127

The combined generator, that produces in a few seconds terms of size 1000,
works as follows:

?- time(ranImpFormula(1000,_)).

% includes tabling large Stirling numbers

% 37,245,709 inferences,7.501 CPU in

7.975 seconds (94% CPU, 4965628 Lips)

?- time(ranImpFormula(1000,_)). % fast, thanks to tabling

% 107,163 inferences,0.040 CPU in

0.044 seconds (92% CPU, 2659329 Lips)

Note that we use Prolog’s tabling (a form of automated dynamic program-
ming) to avoid costly recomputation of the (very large) Sterling numbers in the
code at: https://github.com/ptarau/TypesAndProofs/blob/master/ranPartition.pro.

4.6 Testing with Large Random Terms

Testing for false positives and false negatives for random terms proceeds in a
similar manner to exhaustive testing with terms of a given size.

Assuming Roy Dyckhoff’s prover as a gold standard, we can find out that our
bprove/1 program can handle 20 terms of size 50 as well as the gold standard.

?- gold_ran_imp_test(20,100,bprove, Culprit, Unexpected).

false. % indicates no differences with the gold standard

In fact, the size of the random terms handled by bprove/1 makes using
provers an appealing alternative to random lambda term generators in search for
very large (lambda term, simple type) pairs. Interestingly, on the side of random
simply typed terms, limitations come from their vanishing density, while on the
other side they come from the known PSPACE-complete complexity of the proof
procedures.

4.7 Scalability Tests

Besides the correctness and completeness test sets described so far, one might
want also ensure that the performance of the derived provers scales up to larger
terms. Given space constraints, we only show here a few such performance
tests and refer the reader to our benchmarks at: https://github.com/ptarau/

TypesAndProofs/blob/master/bm.pro.
Time is measured in seconds. The tables in Fig. 1 compare several provers on

exhaustive “all-terms” benchmarks, derived from our correctness test.
First, we run them on the types inferred on all simply typed lambda terms of

a given size. Note that some of the resulting types in this case can be larger and
some smaller than the sizes of their inhabitants. We place them in the column
Positive - as they are known to be all provable.

https://github.com/ptarau/TypesAndProofs/blob/master/ranPartition.pro
https://github.com/ptarau/TypesAndProofs/blob/master/bm.pro
https://github.com/ptarau/TypesAndProofs/blob/master/bm.pro

128 P. Tarau

Prover Size Positive Mix Total Time
lprove 13 0.979 0.261 1.24
lprove 14 4.551 5.564 10.116
lprove 15 30.014 5.568 35.583
lprove 16 3053.202 168.074 3221.277

bprove 13 0.943 0.203 1.147
bprove 14 4.461 4.294 8.755
bprove 15 32.206 4.306 36.513
bprove 16 3484.203 129.91 3614.114

dprove 13 5.299 0.798 6.098
dprove 14 23.161 13.514 36.675
dprove 15 107.264 13.645 120.909
dprove 16 1270.586 240.301 1510.887

Prover Size Positive Mix Total Time
hprove 13 1.007 0.111 1.119
hprove 14 4.413 1.818 6.231
hprove 15 20.09 1.836 21.927
hprove 16 90.595 30.713 121.308

eprove 13 1.07 0.132 1.203
eprove 14 4.746 2.27 7.017
eprove 15 21.562 2.248 23.81
eprove 16 97.811 43.18 140.991

sprove 13 1.757 0.173 1.931
sprove 14 8.037 2.966 11.003
sprove 15 38.266 2.941 41.208
sprove 16 188.317 54.802 243.12

Fig. 1. Performance of provers on exhaustive tests (faster ones in the right table)

Next, we run them on all implicational formulas of a given size, set to be
about half of the former (integer part of size divided by 2), as the number of
these grows much faster. We place them in the column Mix as they are a mix of
provable and unprovable formulas.

The predicate hprove/1 turns out to be an overall winner, followed closely
by eprove/1 that applies to implicational forms a technique borrowed from
hprove/1 to quickly filter out failing search branches.

Testing exhaustively on small formulas, while an accurate indicator for aver-
age speed, might not favor provers using more complex heuristics or extensive
preprocessing, as it is the case of Dyckhoff’s original dprove/1.

We conclude that early rejection via the test we have discovered in the nested
Horn clause form is a clear separator between the slow provers in the left table
and the fast ones in the right table, a simple and useful “mutation” worth prop-
agating to full propositional and first order provers.

As the focus of this paper was to develop a testing methodology for proposi-
tional theorem provers, we have not applied more intricate heuristics to further
improve performance or to perform better on “human-made” benchmarks or
compare them on such tests with other provers, as there are no purely implica-
tional tests among at the ILTP library [20] at http://www.iltp.de/. On the other
hand, for our full intuitionistic propositional provers at https://github.com/
ptarau/TypesAndProofs, as well as our Python-based ones at https://github.
com/ptarau/PythonProvers, we have adapted the ILTP benchmarks on which
we plan to report in a future paper.

http://www.iltp.de/
https://github.com/ptarau/TypesAndProofs
https://github.com/ptarau/TypesAndProofs
https://github.com/ptarau/PythonProvers
https://github.com/ptarau/PythonProvers

A Combinatorial Testing Framework 129

5 Related Work

The related work derived from Gentzen’s LJ calculus is in the hundreds if not
in the thousands of papers and books. Space constraints limit our discussion
to the most closely related papers, directly focusing on algorithms for impli-
cational intuitionistic propositional logic, which, as decision procedures, ensure
termination without a loop-checking mechanism.

Among them the closest are [10,11], that we have used as starting points for
deriving our provers. We have chosen to implement the LJT calculus directly
rather than deriving our programs from Roy Dyckhoff’s Prolog code. At the
same time, as in Roy Dyckhoff’s original prover, we have benefitted from the
elegant, loop-avoiding rewriting step also present in Hudelmaier’s work [12,13].
Similar calculi, key ideas of which made it into the Coq proof assistant’s code,
are described in [21].

On the other side of the Curry-Howard isomorphism, the thesis [22], described
in full detail in [23], finds and/or counts inhabitants of simple types in long
normal form. But interestingly, these algorithms have not crossed, at our best
knowledge, to the other side of the Curry-Howard isomorphism, in the form of
theorem provers.

Using hypothetical implications in Prolog, although all with a different
semantics than Gentzen’s LJ calculus or its LJT variant, go back as early as
[24,25], followed by a series of λProlog-related publications, e.g., [26]. The simi-
larity to the propositional subsets of N-Prolog [25] and λ-Prolog [26] comes from
their close connection to intuitionistic logic. The hereditary Harrop formulas of
[26], when restricted to their implicational subset, are much easily computable
with a direct mapping to Prolog, without the need of theorem prover. While
closer to an LJ-based calculus, the execution algorithm of [25] uses restarts on
loop detection instead of ensuring termination along the lines the LJT calcu-
lus. In [27] backtrackable linear and intuitionistic assumptions that mimic the
implication introduction rule are used, but they do not involve arbitrarily deep
nested implicational formulas.

Overviews of closely related calculi, using the implicational subset of propo-
sitional intuitionistic logic are [11,28].

For generators of random lambda terms and related functional programming
constructs we refer to [7,8]. We have shared with them the goal of achieving high-
probability correctness via automated combinatorial testing. Given our specific
focus on propositional provers, we have been able to use all-term and all-formula
generators as well as comparison mechanisms with “gold-standard” provers. We
have also taken advantage of the Curry-Howard isomorphism between types
and formulas to provide an initial set of known tautologies, usable as “boot-
strapping mechanism” allowing to test our provers independently from using a
“gold-standard”.

130 P. Tarau

6 Conclusions and Future Work

Our code base at https://github.com/ptarau/TypesAndProofs provides an
extensive test-driven development framework built on several cross-testing
opportunities between type inference algorithms for lambda terms and theorem
provers for propositional intuitionistic logic.

It also contains the code of the provers presented in the paper together with
several other provers and “human-made” test sets.

Our lightweight implementations of these theoretically hard (PSPACE-
complete) combinatorial search problems, are also more likely than provers using
complex heuristics, to be turned into parallel implementations using multi-core
and GPU algorithms.

Among them, provers working on nested Horn clauses outperformed those
working directly on implicational formulas. The fact that conjunctions in their
body are associative and commutative also opens opportunities for AND-parallel
execution.

Given that they share their main data structures with Prolog, it also seems
interesting to attempt their partial evaluation or even compilation to Prolog via
a source-to-source transformation. At the same time, the nested Horn clause
provers might be worth formalizing as a calculus and subject to deeper theoret-
ical analysis. We plan future work in formally describing the nested Horn-clause
prover in sequent-calculus as well as exploring compilation techniques and new
parallel algorithms for it. A generalization to nested Horn clauses with con-
junctions and universally quantified variables seems also promising to explore,
especially with grounding techniques as used by SAT and ASP solvers, or via
compilation to Prolog.

Acknowledgement. This research has been supported by NSF grant 1423324. We
thank the reviewers of PADL’19 for their constructive comments and suggestions for
improvement.

References

1. Howard, W.: The formulae-as-types notion of construction. In: Seldin, J., Hindley,
J. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pp. 479–490. Academic Press, London (1980)

2. Wadler, P.: Propositions as types. Commun. ACM 58, 75–84 (2015)
3. Statman, R.: Intuitionistic propositional logic is polynomial-space complete. Theor.

Comput. Sci. 9, 67–72 (1979)
4. The Coq development team: The Coq proof assistant reference manual (2018)

Version 8.8.0
5. Kostrzycka, Z., Zaionc, M.: Asymptotic densities in logic and type theory. Studia

Logica 88(3), 385–403 (2008)

https://github.com/ptarau/TypesAndProofs

A Combinatorial Testing Framework 131

6. Bendkowski, M., Grygiel, K., Tarau, P.: Random generation of closed simply typed
λ-terms: a synergy between logic programming and Boltzmann samplers. TPLP
18(1), 97–119 (2018)

7. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
haskell programs. SIGPLAN Not. 46(4), 53–64 (2011)

8. Palka, M.H., Claessen, K., Russo, A., Hughes, J.: Testing an optimising compiler by
generating random lambda terms. In: Proceedings of the 6th International Work-
shop on Automation of Software Test, AST 2011, pp. 91–97. ACM, New York
(2011)

9. Szabo, M.E.: The collected papers of Gerhard Gentzen. Philos. Sci. 39(1), 91 (1972)
10. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symbolic

Logic 57(3), 795–807 (1992)
11. Dyckhoff, R.: Intuitionistic decision procedures since Gentzen. In: Kahle, R.,

Strahm, T., Studer, T. (eds.) Advances in Proof Theory. PCSAL, vol. 28, pp.
245–267. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29198-7 6

12. Hudelmaier, J.: A PROLOG Program for Intuitionistic Logic. SNS-Bericht-. Uni-
versität Tübingen (1988)

13. Hudelmaier, J.: An O(n log n)-space decision procedure for intuitionistic proposi-
tional logic. J. Logic Comput. 3(1), 63–75 (1993)

14. Tarau, P.: A hiking trip through the orders of magnitude: deriving efficient gener-
ators for closed simply-typed lambda terms and normal forms. In: Hermenegildo,
M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 240–255.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-4 14

15. Genitrini, A., Kozik, J., Zaionc, M.: Intuitionistic vs. classical tautologies, quanti-
tative comparison. In: Miculan, M., Scagnetto, I., Honsell, F. (eds.) TYPES 2007.
LNCS, vol. 4941, pp. 100–109. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-68103-8 7

16. Rémy, J.L.: Un procédé itératif de dénombrement d’arbres binaires et son applica-
tion à leur génération aléatoire. RAIRO - Theoretical Informatics and Applications -
Informatique Théorique et Applications 19(2), 179–195 (1985)

17. Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 4: Generating
All Trees-History of Combinatorial Generation (Art of Computer Programming).
Addison-Wesley Professional, Upper Saddle River (2006)

18. Tarau, P.: Declarative algorithms for generation, counting and random sampling of
term algebras. In: Proceedings of SAC 2018, ACM Symposium on Applied Com-
puting, PL track. ACM, Pau, April 2018

19. Stam, A.: Generation of a random partition of a finite set by an urn model. J.
Comb. Theory Ser. A 35(2), 231–240 (1983)

20. Raths, T., Otten, J., Kreitz, C.: The ILTP problem library for intuitionistic logic:
release v1.1. J. Autom. Reasoning 38, 261–271 (2007)

21. Herbelin, H.: A λ-calculus structure isomorphic to Gentzen-style sequent calculus
structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75.
Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0022247

22. Ben-Yelles, C.B.: Type assignment in the lambda-calculus: syntax and semantics.
PhD thesis, University College of Swansea (1979)

23. Hindley, J.R.: Basic Simple Type Theory. Cambridge University Press, New York
(1997)

https://doi.org/10.1007/978-3-319-29198-7_6
https://doi.org/10.1007/978-3-319-63139-4_14
https://doi.org/10.1007/978-3-540-68103-8_7
https://doi.org/10.1007/978-3-540-68103-8_7
https://doi.org/10.1007/BFb0022247

132 P. Tarau

24. Gabbay, D.M., Reyle, U.: N-Prolog: an extension of prolog with hypothetical impli-
cations I. J. Logic Program. 1(4), 319–355 (1984)

25. Gabbay, D.M.: N-Prolog: an extension of prolog with hypothetical implication
II. Logical foundations, and negation as failure. J. Logic Program. 2(4), 251–283
(1985)

26. Miller, D., Nadathur, G.: Programming with Higher-Order Logic. Cambridge Uni-
versity Press, New York (2012)

27. Tarau, P., Dahl, V., Fall, A.: Backtrackable state with linear affine implication and
assumption grammars. In: Jaffar, J., Yap, R.H.C. (eds.) ASIAN 1996. LNCS, vol.
1179, pp. 53–63. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0027779

28. Gabbay, D., Olivetti, N.: Goal-oriented deductions. In: Gabbay, D.M., Guenthner,
F. (eds.) Handbook of Philosophical Logic. Handbook of Philosophical Logic, vol.
9, pp. 199–285. Springer, Dordrecht (2002). https://doi.org/10.1007/978-94-017-
0464-9 4

https://doi.org/10.1007/BFb0027779
https://doi.org/10.1007/978-94-017-0464-9_4
https://doi.org/10.1007/978-94-017-0464-9_4

Faster Coroutine Pipelines:
A Reconstruction

Ruben P. Pieters(B) and Tom Schrijvers

KU Leuven, 3001 Leuven, Belgium
{ruben.pieters,tom.schrijvers}@cs.kuleuven.be

Abstract. Spivey has recently presented a novel functional represen-
tation that supports the efficient composition, or merging, of coroutine
pipelines for processing streams of data. This representation was inspired
by Shivers and Might’s three-continuation approach and is shown to be
equivalent to a simple yet inefficient executable specification. Unfortu-
nately, neither Shivers and Might’s original work nor the equivalence
proof sheds much light on the underlying principles allowing the deriva-
tion of this efficient representation from its specification.

This paper gives the missing insight by reconstructing a systematic
derivation in terms of known transformation steps from the simple spec-
ification to the efficient representation. This derivation sheds light on
the limitations of the representation and on its applicability to other
settings. In particular, it has enabled us to obtain a similar representa-
tion for pipes featuring two-way communication, similar to the Haskell
pipes library. Our benchmarks confirm that this two-way representation
retains the same improved performance characteristics.

Keywords: Stream processing · Structured recursion · Algebra

1 Introduction

Coroutine pipelines provide a compositional approach to processing streams of
data that is both efficient in time and space, thanks to a targeted form of lazy
evaluation interacting well with side-effects like I/O. Two prominent Haskell
libraries for coroutine pipelines are pipes [5] and conduit [11]. Common to both
libraries is their representation of pipelines by an algebraic data type (ADT).

Spivey [12] has recently presented a novel Haskell representation that is
entirely function-based. His representation is an adaptation of Shivers and
Might’s earlier three-continuation representation [10] and exhibits a very effi-
cient merge operation for connecting pipes.

Spivey proves that his representation is equivalent to a simple ADT-based
specification. Yet, neither his proof nor Shivers and Might’s explanation sheds
much light on the underlying principles used to come up with the efficient rep-
resentation. This makes it difficult to adapt the representation to other settings.

c© Springer Nature Switzerland AG 2019
J. J. Alferes and M. Johansson (Eds.): PADL 2019, LNCS 11372, pp. 133–149, 2019.
https://doi.org/10.1007/978-3-030-05998-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05998-9_9&domain=pdf
http://orcid.org/0000-0003-0537-9403
http://orcid.org/0000-0001-8771-5559
https://doi.org/10.1007/978-3-030-05998-9_9

134 R. P. Pieters and T. Schrijvers

This paper remedies the situation by systematically deriving the efficient
function-based representation from the simple, but inefficient ADT-based repre-
sentation. Our derivation consists of known transformations and constructions
that are centered around folds with appropriate algebras. Our derivation clarifies
the limitations of the efficient representation, and enables us to derive a similarly
efficient representation for the two-way pipes featured in the pipes library.

The specific contributions of this paper are:

– We present a systematic derivation of Spivey’s efficient representation starting
from a simple executable specification. Our derivation only consists of known
transformations, most of which concern structural recursion with folds and
algebras. It also explains why the efficient representation only supports the
merging of “never-returning” pipes.

– We apply our derivation to a more general definition of pipes used by the
pipes library, where the communication between adjacent pipes is bidirec-
tional rather than unidirectional.

– Our benchmarks demonstrate that the merge operator for the bidirectional
three-continuation approach improves upon the pipes library’s performance.

The rest of this paper is organized as follows. Section 2 briefly introduces
both the ADT pipes encoding and the three-continuation approach. Section 3
derives the fast merging operation for a simplified setting. Section 4 derives the
fast merging operation for the original pipe setting. Section 5 extends Spivey’s
approach with the bidirectional pipes operations. Section 6 presents the results
of the primes benchmark by Spivey, on the approaches discussed in this paper.
Section 7 discusses related work and Sect. 8 concludes this paper. The appendix
is included in the extended version1.

2 Motivation

This section introduces the ADT pipes encoding and then contrasts it with the
three-continuation encoding. This serves as both a background introduction and
a motivation for a better understanding of the relation between both encodings.

2.1 Pipes

We start with a unidirectional version of the pipes library. A unidirectional pipe
can receive i values, output o values and return a values. On the other hand, a
bidirectional pipe additionally carries an output value when receiving values and
an input value when outputting values. We represent a unidirectional pipe as an
abstract syntax tree where each node is an input, output or return operation.
This is expressed in Haskell with the following ADT.

data Pipe i o a = Input (i → Pipe i o a)
| Output o (Pipe i o a)
| Return a

1 http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW715.abs.html.

http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW715.abs.html

Faster Coroutine Pipelines: A Reconstruction 135

This datatype exhibits a monadic structure where the bind operation (>>=) grafts
one syntax tree onto another.

instance Monad (Pipe i o) where
return = Return
(Input h) >>= f = Input (λi → (h i) >>= f)
(Output o r) >>= f = Output o (r >>= f)
(Return a) >>= f = f a

We define the basic components: inputP : a pipe returning its received input,
outputP : a pipe outputting a set value and returnP : a pipe returning a set value.

inputP :: Pipe i o i
inputP = Input (λi → Return i)
outputP :: o → Pipe i o ()
outputP o = Output o (Return ())
returnP :: a → Pipe i o a
returnP a = Return a

The bind operation assembles these components into larger pipes. For exam-
ple doublerP , a pipe which repeatedly takes its input, multiplies it by two and
continually outputs this new value.

doublerP :: Pipe Int Int a
doublerP = do i ← inputP ; outputP (i ∗ 2); doublerP

Another essential way of combining pipes is merging them. This connects the
outputs of the upstream to the inputs of the downstream. In the implementation,
mergePL performs a case analysis on the downstream q : if it is trying to output
then that is kept and we keep searching, if it finds an input then we call mergePR

on the wrapped continuation and the upstream. Then, in mergePR we similarly
scan the upstream for an output operation, keeping any input operations. If an
output operation is found, the output value is passed to the continuation and
the merging process starts again. If at any point we see a return, then the merge
finishes with this resulting return value. The implementation is given below.

mergeP :: Pipe i m a → Pipe m o a → Pipe i o a
mergeP p q = mergePL q p where

mergePL :: Pipe m o a → Pipe i m a → Pipe i o a
mergePL (Input h) p = mergePR p h
mergePL (Output o r) p = Output o (mergePL r p)
mergePL (Return a) p = Return a
mergePR :: Pipe i m a → (m → Pipe m o a) → Pipe i o a
mergePR (Input f) h = Input (λv → mergePR (f v) h)
mergePR (Output o r) h = mergePL (h o) r
mergePR (Return a) h = Return a

136 R. P. Pieters and T. Schrijvers

The merge operator enables expressing the merge of doublerP with itself. In
this example the left doublerP is the upstream and the right doublerP is the
downstream. The result of this merge is a pipe which outputs the quadruple of
its incoming values.

quadruplerP :: Pipe Int Int a
quadruplerP = doublerP ‘mergeP ‘ doublerP

We can run a pipe by interpreting it to IO .

toIOP :: (Read i ,Show o) ⇒ Pipe i o a → IO a
toIOP (Input f) = do i ← readLn; toIOP (f i)
toIOP (Output o r) = do putStrLn ("out: " ++ show o); toIOP r
toIOP (Return a) = return a

An example where we input 10 , receive 40 and then exit, is shown below.

λ > toIOP quadruplerP
10 〈Return〉
out : 40
〈Ctrl+C〉

2.2 Three-Continuation Approach

The function mergeP is suboptimal because it has to recursively scan a pipe for
an operation of interest while copying the other operation. When several merges
are piled up this leads to repeated scanning and copying of the same operations.

Spivey has introduced ContPipe, a different pipe representation which
enables a faster merge implementation [12]. It features three continuations, one
for each constructor. The first continuation (a → Result i o) represents the
return constructor. The next two continuations, InCont i and OutCont o as
part of Result i o, represent the input and output constructor respectively.

newtype ContPipe i o a =
MakePipe {runPipe :: (a → Result i o) → Result i o}

type Result i o = InCont i → OutCont o → IO ()
newtype InCont i =

MakeInCont {resumeI :: OutCont i → IO ()}
newtype OutCont o =

MakeOutCont {resumeO :: o → InCont o → IO ()}
instance Monad (ContPipe i o) where

return a = MakePipe (λk → k a)
p >>= f = MakePipe (λk → runPipe p (λx → runPipe (f x) k))

Faster Coroutine Pipelines: A Reconstruction 137

In the following definitions for the basic pipe components the continuation k is
the return constructor—we give it a value and the input and output constructors
and receive a pipe. The continuations ki and ko are the input and output con-
structors, we resume them with the newtype unwrapper and the continuations
are refreshed once they have been used.

returnCP :: a → ContPipe i o a
returnCP a = MakePipe (λk ki ko → k a ki ko)
inputCP :: ContPipe i o i
inputCP = MakePipe (λk ki ko →

resumeI ki (MakeOutCont (λi k ′
i → k i k ′

i ko)))
outputCP :: o → ContPipe i o ()
outputCP o = MakePipe (λk ki ko →

resumeO ko o (MakeInCont (λk ′
o → k () ki k ′

o)))

We can use the Monad instance for ContPipe to compose pipes with do-notation,
similar to Pipe.

doublerCP :: ContPipe Int Int a
doublerCP = do i ← inputCP ; outputCP (i ∗ 2); doublerCP

We can also interpret ContPipe to IO .

toIOCP :: (Read i ,Show o) ⇒ ContPipe i o () → IO ()
toIOCP p = runPipe p (λ() → return ()) ki ko where

ki = MakeInCont (λko → do x ← readLn; resumeO ko x ki)
ko = MakeOutCont (λo ki →
do putStrLn ("out: " ++ show o); resumeI ki ko)

The merge function for ContPipe is defined as:

mergeCP p q = MakePipe (λk ki ko →
runPipe q err (MakeInCont (λk ′

o → runPipe p err ki k ′
o)) ko)

where err = error "terminated"

With the merge definition we are able to create the quadrupler pipe as before.
Running toIOCP quadruplerCP results an identical scenario to the Pipe scenario
from the previous section.

quadruplerCP :: ContPipe Int Int a
quadruplerCP = doublerCP ‘mergeCP ‘ doublerCP

While Spivey has demonstrated the remarkable performance advantage of this
merge operator, he sheds little light on the origin or underlying principles of
the related encoding. The remainder of this paper provides this missing insight
by deriving Spivey’s efficient ContPipe representation from the ADT-style Pipe
by means of well-known principles. The aim is to improve understanding of the
applicability and limitations of the techniques used.

138 R. P. Pieters and T. Schrijvers

3 Fast Merging for One-Sided Pipes

To offer a firmer grip on the problem, this section considers a simplified setting
where pipes are one-sided, either only producing or only consuming data. For
example, the doubler component can not be defined in this setting. The simplified
setting gives a more straightforward path to the fast merging approach, which
we generalize back to regular ‘mixed’ pipes in Sect. 4.

3.1 One-Sided Pipes

In the simplified setting pipes are either pure Producers or pure Consumers. A
Producer only outputs values, while a Consumer only receives them.

data Producer o = Producer o (Producer o)
data Consumer i = Consumer (i → Consumer i)

If we specialize mergeP for a Consumer and a Producer , we get:

mergeA :: Producer b → Consumer b → a
mergeA p q = mergeAL q p where

mergeAL :: Consumer b → Producer b → a
mergeAL (Consumer h) p = mergeAR p h
mergeAR :: Producer b → (b → Consumer b) → a
mergeAR (Producer o r) h = mergeAL (h o) r

3.2 Mutual Recursion Elimination

The two auxiliary functions mergeAL and mergeAR turn respectively a producer
and a consumer into the result of type a by means of an additional parameter,
which is respectively of type (Producer b) and (b → Consumer b). To highlight
these parameters, we introduce type synonyms for them.

type ProdPar ′ b = Producer b
type ConsPar ′ b = b → Consumer b

Now we refactor mergeAL and mergeAR with respect to their additional param-
eter in a way that removes the term-level mutual recursion between them. Con-
sider mergeAL which does not use its parameter p directly, but only its interpre-
tation by function mergeAR. We refactor this code to a form where mergeAR has
already been applied to p before it is passed to mergeAL. This adapted mergeAL

would then have type Consumer b → (ConsPar ′ b → a) → a. At the same
time we apply a similar transformation to mergeAR, moving the application of
mergeAL to h out of it. This yields infinite types for the two new parameters,
which Haskell only accepts if we wrap them in newtypes.

newtype ProdPar b a = ProdPar (ConsPar b a → a)
newtype ConsPar b a = ConsPar (b → ProdPar b a → a)

Faster Coroutine Pipelines: A Reconstruction 139

The merge is then defined by appropriately placing newtype (un-)wrappers.

mergePar :: Producer b → Consumer b → a
mergePar p q = ml q (ProdPar (mr p)) where

ml :: Consumer b → ProdPar b a → a
ml (Consumer h) (ProdPar p) = p (ConsPar (λi → (ml (h i))))
mr :: Producer b → ConsPar b a → a
mr (Producer o r) (ConsPar h) = h o (ProdPar (mr r))

Note that we can recover Spivey’s InCont i and OutCont o by instantiating the
type parameter a to IO () in ProdPar i a and ConsPar o a respectively.

3.3 Structural Recursion with Fold

Due to the removal of the term-level mutual recursion in ml and mr , they are
easily adapted to their structurally recursive form. By isolating the work done
in each recursive step, we obtain algL and algR.

type CarrierL i a = ProdPar i a → a
algL :: (i → CarrierL i a) → CarrierL i a
algL f = λ(ProdPar prod) → prod (ConsPar f)
type CarrierR o a = ConsPar o a → a
algR :: o → CarrierR o a → CarrierR o a
algR o prod = λ(ConsPar cons) → cons o (ProdPar prod)

The functions algL and algR are now in a form known as algebras. Algebras are a
combination of a carrier r , the type of the resulting value, and an action of type
f r → r . This action denotes the computation performed at each node of the
recursive datatype, for which the functor f determines the shape of its nodes.
We omit the carrier type if it is clear from the context and simply refer to an
algebra by its action.

The structural recursion schemes, or folds, for Consumer and Producer take
algebras of the form (i → r) → r and o → r → r . Their definitions are:

foldP :: (o → r → r) → Producer o → r
foldP alg (Producer o r) = alg o (foldP alg r)
foldC :: ((i → r) → r) → Consumer i → r
foldC alg (Consumer h) = alg (λi → foldC alg (h i))

An example use of folds is an interpretation to IO by supplying the inputs for a
consumer or printing the outputs of a producer.

type CarrierConsIO i = IO ()
consumeIO :: Read i ⇒ Consumer i → IO ()
consumeIO = foldC alg where

140 R. P. Pieters and T. Schrijvers

alg :: Read i ⇒ (i → CarrierConsIO i) → CarrierConsIO i
alg f = do x ← readLn; f x

type CarrierProdIO o = IO ()
produceIO :: Show o ⇒ Producer o → IO ()
produceIO = foldP alg where

alg :: Show o ⇒ o → CarrierProdIO o → CarrierProdIO o
alg o p = do print o; p

Another example is expressing mergePar with folds using algL and algR.

mergefold :: Producer x → Consumer x → a
mergefold p q = foldC algL q (ProdPar (foldP algR p))

3.4 A Short-Cut to a Merge-Friendly Representation

Instead of directly defining a Consumer or Producer value in terms of the data
constructors of the respective types, we can also do it in a more roundabout way
by abstracting over the constructor occurrences—this is known as build form.
The build function then instantiates the abstracted constructors with the actual
constructors; for Consumer and Producer they are:

buildC :: (∀r .((i → r) → r) → r) → Consumer i
buildC g = g Consumer
buildP :: (∀r .(o → r → r) → r) → Producer o
buildP g = g Producer

For instance,

prodFrom :: Integer → Producer Integer
prodFrom n = Producer n (prodFrom (n + 1))

can be written as:

prodFrom n = buildP (prodFrom ′ n) where
prodFrom ′ :: Integer → (∀r .(Integer → r → r) → r)
prodFrom ′ n p = go n where go n = p n (go (n + 1))

The motivation for these build functions is use of the fold/build fusion rule, a
special form of short-cut fusion [4]. This rule can be applied when a fold directly
follows a build, specifically for Consumer and Producer these fusion rules are:

foldC alg (buildC cons) = cons alg
foldP alg (buildP prod) = prod alg

In other words, instead of first building an ADT representation and then folding
it to its result, we can directly create the result of the fold. This readily applies to

Faster Coroutine Pipelines: A Reconstruction 141

the two folds in mergefold. We can directly represent consumers and producers
in terms of the carrier types of those two folds,

type ConsumerAlt i = ∀a.CarrierL i a -- ∀a.ProdPar i a → a
type ProducerAlt o = ∀a.CarrierR o a -- ∀a.ConsPar o a → a

using their algebras as constructors:

inputAlt :: (i → ConsumerAlt i) → ConsumerAlt i
inputAlt = algL
outputAlt :: o → ProducerAlt o → ProducerAlt o
outputAlt = algR

For instance, after fold/build fusion prodFrom becomes:

prodFromAlt :: Integer → ProducerAlt Integer
prodFromAlt n = outputAlt n (prodFromAlt (n + 1))

The merge function for the alternate representations ProducerAlt and
ConsumerAlt then becomes an almost trivial operation.

mergeAlt :: ProducerAlt b → ConsumerAlt b → a
mergeAlt p q = q (ProdPar p)

3.5 A Not So Special Representation

This merge-friendly representations of producers and consumers are not just
specializations; they are in fact isomorphic to the originals. The inverses of ml
and mr to complete the isomorphism are given by ml−1 and mr−1. The proof is
included in the appendix.

ml−1 :: ConsumerAlt i → Consumer i
ml−1 f = f (ProdPar h) where

h :: ConsPar i (Consumer i) → Consumer i
h (ConsPar f) = Consumer (λx → f x (ProdPar h))

mr−1 :: ProducerAlt o → Producer o
mr−1 f = f (ConsPar (λx p → Producer x (h p))) where

h :: ProdPar o (Producer o) → Producer o
h (ProdPar f) = f (ConsPar (λx p → Producer x (h p)))

Hence, we can also fold with other algebras by transforming the merge-friendly
representation back to the ADT, and then folding over that.

foldPAlt
:: (o → a → a) → ProducerAlt o → a

foldPAlt
alg rep = foldP alg (mr−1 rep)

142 R. P. Pieters and T. Schrijvers

foldCAlt
:: ((i → a) → a) → ConsumerAlt i → a

foldCAlt
alg rep = foldC alg (ml−1 rep)

Of course, these definitions are wasteful because they create intermediate
datatypes. However, by performing fold/build fusion we obtain their fused ver-
sions:

foldPAlt
alg rep = rep (ConsPar (λx p → alg x (h p))) where

h (ProdPar f) = f (ConsPar (λx p → alg x (h p)))
foldCAlt

alg rep = rep (ProdPar h) where
h (ConsPar f) = alg (λx → f x (ProdPar h))

4 Return to Two-Sided Pipes

The previous section has derived an efficient approach for simplified Consumer
and Producer pipes. This section extends that approach to proper Pipes in two
steps, first supporting both input and output operations, and then also a return.

4.1 Pipe of No Return

Let us consider pipes with both input and output operations, but no return.

data Pipe∞ i o = Input∞ (i → Pipe∞ i o)
| Output∞ o (Pipe∞ i o)

We can fold over these pipes by providing algebras for both the input and output
operation, agreeing on the carrier type a.

foldPipe∞ :: Pipe∞ i o → ((i → a) → a) → (o → a → a) → a
foldPipe∞ p inAlg outAlg = go p where

go (Input∞ p) = inAlg (λi → go (p i))
go (Output∞ o p) = outAlg o (go p)

To merge these pipes, we use algL and algR developed in the previous section.
There is only one snag: the two algebras do not agree on the carrier type. The
carrier types were the alternate representations ConsumerAlt and ProducerAlt .

type ConsumerAlt i = ∀a.ProdPar i a → a
type ProducerAlt o = ∀a.ConsPar o a → a

We reconcile these two carrier types by observing that both are functions with
a common result type, but different parameter types. A combination of both is
a function taking both parameter types as input.

type ResultR i o = ∀a.ConsPar o a → ProdPar i a → a

Faster Coroutine Pipelines: A Reconstruction 143

The algebra actions are easily adapted to the additional parameter. They simply
pass it on to the recursive positions without using it themselves.

inputResultR :: (i → ResultR i o) → ResultR i o
inputResultR f = λcons (ProdPar prod) →

prod (ConsPar (λi prod ′ → f i cons prod ′))
outputResultR :: o → ResultR i o → ResultR i o
outputResultR o result = λ(ConsPar cons) prod →

cons o (ProdPar (λcons ′ → result cons ′ prod))

Like before, we can avoid the algebraic datatype Pipe∞ and directly work with
ResultR using the algebras as constructor functions.

Finally, we can use the one-sided merge function from the previous section to
merge the output side of a ResultR i m pipe with the input side of a ResultR m o
pipe. Because we defer the interpretation of the i and o sides of the respective
pipes, this one-sided merge does not yield a result of type a, but rather one of
type ConsPar o a → ProdPar i a → a. In other words, the merge of the two
pipes yields a ResultR i o pipe.

mergeResultR :: ResultR i m → ResultR m o → ResultR i o
mergeResultR p q = λconso prodi →
let q ′ = q conso

p′ = flip p prodi
in q ′ (ProdPar p′)

4.2 Return to return

Finally, we reobtain return and the monadic structure of pipes in a slightly
unusual way, by means of the continuation monad.

newtype Cont r a = Cont {runCont :: (a → r) → r }
instance Monad (Cont r) where

return x = Cont (λk → k x)
p >>= f = Cont (λk → runCont p (λx → runCont (f x) k))

If we specialize the result type r to ResultR i o, we get:

newtype ContP i o a = ContP ((a → ResultR i o) → ResultR i o)

The merge function for ContP is implemented in terms of mergeResultR .

mergeCont :: ContP i m Void → ContP m o Void → ContP i o a
mergeCont (ContP p) (ContP q) = ContP (λk →

mergeResultR (p absurd) (q absurd))

However, there is an issue: before mergeResultR can merge the two pipes, their
continuations (the interpretations of the return constructor) must be supplied.

144 R. P. Pieters and T. Schrijvers

Yet, the resulting pipe’s continuation type k does not match that of either the
upstream or downstream pipe. Thus we are stuck, unless we assume what we
have been all along: that the two pipes are infinite. Indeed, in that case it does
not matter that we don’t have a continuation for them, as their continuation is
never reached anyway. In short, mergeCont only works for never-returning pipes,
which we signal with the return type Void , only inhabited by ⊥.

4.3 Specialization for IO

To get exactly Spivey’s representation, we instantiate the polymorphic type vari-
able a in ResultR i o to IO (), which yields:

type Result i o = InCont i → OutCont o → IO ()

We can rewrite this type as a monad transformer stack, using two reader monad
transformers for the two parameters.

newtype ReaderT r m a = ReaderT {runReaderT :: r → m a }
type Result ′ i o = ReaderT (InCont i) (ReaderT (OutCont o) IO) ()

Similarly, ContPipe i o a can be written with a transformer stack by adding a
ContT layer, since Cont (m r) is equal to ContT r m for any monad m.

newtype ContT r m a = ContT {runContT :: (a → m r) → m r }
type ContPipe ′ i o a =

ContT () (ReaderT (InCont i) (ReaderT (OutCont o) IO)) a

This transformer stack view enables two additional useful operations: aborting
the pipe and embedding an IO action. Both are specializations of generic func-
tionality from the continuation monad transformer: abort and liftContT .

abort :: m r → ContT r m a
abort r = ContT (λk → r)
liftContT :: Monad m ⇒ m a → ContT r m a
liftContT p = ContT (λk → p >>= k)
exit ′ :: ContPipe ′ i o a
exit ′ = abort (liftReaderT (liftReaderT (return ())))
effect ′ :: IO a → ContPipe ′ i o a
effect ′ e = liftContT (liftReaderT (liftReaderT e))

5 Bidirectional Pipes

So far we have covered unidirectional pipes where information flows in one direc-
tion through the pipe, from the output operations in one pipe to the input

Faster Coroutine Pipelines: A Reconstruction 145

operations in the next pipe downstream. However, some use cases also require
information to flow upstream and pipes that support this are called bidirectional.

The Proxy data type at the core of the pipes library [5] implements bidirec-
tional pipes. The operations request and respond are respectively downstream
and upstream combinations of input and output . In addition, Proxy is also a
monad transformer that embed effects of monad m.

data Proxy a ′ a b′ b m r = Request a ′ (a → Proxy a ′ a b′ b m r)
| Respond b (b′ → Proxy a ′ a b′ b m r)
| M (m (Proxy a ′ a b′ b m r))
| Pure r

We refer to the pipes source code [5] for the implementation of the corresponding
mergePL and mergePR functions, which are called +>> and >>∼.

We obtain a more efficient function-based representation by adapting the
derivation of Sects. 3 and 4. This yields the parameter type PCPar .

newtype PCPar i o a = PCPar (o → PCPar o i a → a)

The ResultR counterpart for Proxy takes two such PCPars as input. In addition,
the result type r is now a monadic type m r to be able to lift operations once it
is wrapped with Cont .

type ProxyRep a ′ a b′ b m = ∀r .PCPar a a ′ (m r) → -- request
PCPar b′ b (m r) → -- respond
m r

Then, we can proceed with defining the merge function for ProxyRep and the
Cont-wrapped version similar to ResultR.

mergeProxyRep :: (c′ → ProxyRep a ′ a c′ c m) → ProxyRep c′ c b′ b m →
ProxyRep a ′ a b′ b m

mergeProxyRep fc′ q = λreq res →
let p′ c′ = fc′ c′ req

q ′ = flip q res
in q ′ (PCPar p′)

newtype ContPr a ′ a b′ b m r = ContPr {unContPr ::
(r → ProxyRep a ′ a b′ b m) → ProxyRep a ′ a b′ b m }

mergeContPr :: (c′ → ContPr a ′ a c′ c m Void) →
ContPr c′ c b′ b m Void → ContPr a ′ a b′ b m r

mergeContPr fc′ (ContPr q) = ContPr (λk →
mergeProxyRep (λc′ → unContPr (fc′ c′) absurd) (q absurd))

6 Benchmarks

Figure 1 shows the results of Spivey’s primes benchmark, which calculates the
first n primes. The benchmarks are executed using the criterion library [9] on

146 R. P. Pieters and T. Schrijvers

an Intel Core i7-6600U at 2.60 GHz with 8 GB memory running Ubuntu 16.04
and GHC 8.4.3, with -O2 enabled.2

The figure compares the pipes (v4.3.9) and conduit (v1.3.0.3) libraries
to Spivey’s original implementation (contpipe) and our generalized form
(proxyrep).

We can see that the former two libraries, which use an ADT representa-
tion, both show the quadratic performance behaviour for a use case with a high
amount of merge steps. On the other hand, the latter two show the improved
performance behaviour. The slight overhead of proxyrep compared to contpipe
can be explained by the specialization to IO () in the latter type.

The appendix contains the results of some additional microbenchmarks.

Fig. 1. Results of the primes benchmark.

7 Related Work

We have covered the main related works of Spivey [12], Shivers and Might [10]
and the pipes library [5] in the body of the paper. Below we discuss some
additional related work.

Encodings. The Church [1,2] and Scott [8] encodings encode ADTs using func-
tions. The encoding derived in this paper has a close connection to the Scott
encoding. The Scott encoding for Producer and Consumer are ScottP and
ScottC . By moving the quantified variable a to the definition, we obtain SP
and SC .
2 The benchmarks are at https://github.com/rubenpieters/orth-pipes-bench.

https://github.com/rubenpieters/orth-pipes-bench

Faster Coroutine Pipelines: A Reconstruction 147

newtype ScottP o = ScottP (∀a.(o → ScottP o → a) → a)
newtype ScottC i = ScottC (∀a.((i → ScottC i) → a) → a)
newtype SP o a = SP ((o → SP o a → a) → a)
newtype SC i a = SC (((i → SC i a) → a) → a)

Then, ∀a.SP o a is representationally equivalent to ProducerAlt and similarly
for ∀a.SC i a and ConsumerAlt (see the appendix).

If we look at the Scott encoding ScottPipe∞ for Pipe∞, we can obtain an
equivalent representation to ResultR by using SP and SC instead of ScottPipe∞
in the parameter corresponding to their operations.

newtype ScottPipe∞ i o = ScottPipe∞
(∀a.(o → ScottPipe∞ i o → a) → ((i → ScottPipe∞ i o) → a) → a)

type SP∞ i o = ∀a.(o → SP o a → a) → ((i → SC i a) → a) → a

We dubbed this the orthogonal encoding due to the separation of the operations.

Conduit. The conduit library [11] is another popular choice for Haskell stream
processing. The two main differing points of conduit with pipes is a built-in
representation of leftovers and detection of upstream finalization. Leftovers are
operations representing unprocessed outputs. For example in a takeWhile pipe,
which takes outputs until a condition is matched, the first element not matching
the condition will also be consumed. This element can then be emitted as a
leftover, which will be consumed by the downstream with priority. Detecting
upstream finalization is handled by input returning Maybe values, where Nothing
represents the finalization of the upstream.

Parsers. Spivey mentioned in his work [12] that the ContPipe approach might
be adapted to fit the use case of parallel parsers [3]. However, after gaining more
insight into ContPipe, it does not seem that the merging operation for parsers
immediately fits the pattern presented in this paper. One of the problematic ele-
ments is the fail operation, which is not passed as-is to the newly merged struc-
ture, but given a non-trivial interpretation. Namely, an interpretation dependent
on the other structure during the recursive merge process.

Shallow To Deep Handlers. The handlers framework by Kammar et al. [6] sup-
ports both shallow handlers, based on case analysis, and deep handlers, based on
folds. They cover an example of transforming a producer and consumer merging
function from shallow handlers to deep handlers. This example is related to our
simplified setting in Sect. 3. To do this they introduce Prod and Cons, which
are equivalent to our ProdPar and ConsPar . Compared to their example, we
take a more step-by-step explanatory approach and additionally move to more
complicated settings in our further sections.

148 R. P. Pieters and T. Schrijvers

Multihandlers. The Frank language [7] is based on shallow handlers and sup-
ports a feature called multihandlers. These handlers operate on multiple inputs
which have uninterpreted operations, much like pattern matching on multiple
free structures. The patterns we have handled in this paper are concerned with
pattern matching on multiple data structures and a mutual relation between
these functions. This seems like an interesting connection to investigate further.

8 Conclusion

We have given an in-depth explanation of the principles behind the fast merging
of the three-continuation approach. We have given a series of steps to derive this
fast implementation from the less efficient one.

We apply this pattern to the setting of bidirectional pipes, as in the pipes
library. This results in a more general version of this representation, but still has
the same performance due to its efficient merge implementation.

We apply Spivey’s benchmarks [12] to check that our generalized encoding
retains similar performance. We also include the pipes library in the benchmark
to compare with a commonly used implementation of bidirectional pipes.

This pipes encoding has been made available as a library on github3.

Acknowledgements. We would like to thank Nicolas Wu, Alexander Vandenbroucke
and the anonymous PADL reviewers for their feedback. This work was partly funded
by the Flemish Fund for Scientific Research (FWO).

References

1. Böhm, C., Berarducci, A.: Automatic synthesis of typed lambda-programs on term
algebras. Theor. Comput. Sci. 39, 135–154 (1985). https://doi.org/10.1016/0304-
3975(85)90135-5

2. Church, A.: The Calculi of Lambda-Conversion. Princeton University Press,
Princeton (1941)

3. Claessen, K.: Parallel parsing processes. J. Funct. Program. 14(6), 741–757 (2004).
https://doi.org/10.1017/S0956796804005192

4. Ghani, N., Uustalu, T., Vene, V.: Build, augment and destroy, universally. In: Chin,
W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 327–347. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30477-7 22

5. Gonzalez, G.: Haskell Pipes library (2012). http://hackage.haskell.org/package/
pipes

6. Kammar, O., Lindley, S., Oury, N.: Handlers in action. In: Proceedings of the
18th ACM SIGPLAN International Conference on Functional Programming, ICFP
2013, pp. 145–158. ACM, New York (2013) https://doi.org/10.1145/2500365.
2500590

7. Lindley, S., McBride, C., McLaughlin, C.: Do be do be do. In: Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, pp. 500–514. ACM, New York (2017). https://doi.org/10.1145/3009837.
3009897

3 https://github.com/rubenpieters/Orthogonal-Pipes.

https://doi.org/10.1016/0304-3975(85)90135-5
https://doi.org/10.1016/0304-3975(85)90135-5
https://doi.org/10.1017/S0956796804005192
https://doi.org/10.1007/978-3-540-30477-7_22
http://hackage.haskell.org/package/pipes
http://hackage.haskell.org/package/pipes
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/3009837.3009897
https://doi.org/10.1145/3009837.3009897
https://github.com/rubenpieters/Orthogonal-Pipes

Faster Coroutine Pipelines: A Reconstruction 149

8. Mogensen, T.: Efficient self-interpretation in lambda calculus. J. Funct. Program.
2(3), 345–364 (1992). https://doi.org/10.1017/S0956796800000423

9. O’Sullivan, B.: Haskell Criterion library (2009). http://hackage.haskell.org/
package/criterion

10. Shivers, O., Might, M.: Continuations and transducer composition. In: Proceedings
of the 27th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2006, pp. 295–307. ACM, New York (2006). https://doi.
org/10.1145/1133981.1134016

11. Snoyman, M.: Haskell Conduit library (2011). http://hackage.haskell.org/package/
conduit

12. Spivey, M.: Faster coroutine pipelines. In: Proceedings of the ACM Programming
Languages, 1(ICFP), 5:1–5:23, August 2017. https://doi.org/10.1145/3110249

https://doi.org/10.1017/S0956796800000423
http://hackage.haskell.org/package/criterion
http://hackage.haskell.org/package/criterion
https://doi.org/10.1145/1133981.1134016
https://doi.org/10.1145/1133981.1134016
http://hackage.haskell.org/package/conduit
http://hackage.haskell.org/package/conduit
https://doi.org/10.1145/3110249

Classes of Arbitrary Kind

Alejandro Serrano(B) and Victor Cacciari Miraldo(B)

Department of Information and Computing Sciences,
Utrecht University, Utrecht, Netherlands

{A.SerranoMena,V.CacciariMiraldo}@uu.nl

Abstract. The type class system in the Haskell Programming language
provides a useful abstraction for a wide range of types, such as those that
support comparison, serialization, ordering, between others. This system
can be extended by the programmer by providing custom instances to
one’s custom types. Yet, this is often a monotonous task. Some notions,
such as equality, are very regular regardless if it is being encoded for a
ground type or a type constructor. In this paper we present a technique
that unifies the treatment of ground types and type constructors when-
ever possible. This reduces code duplication and improves consistency.
We discuss the encoding of several classes in this form, including the
generic programming facility in GHC.

Keywords: Haskell · Type classes · Generic programming

1 Introduction

Type classes [16] are a widely used abstraction provided by the Haskell pro-
gramming language. In their simplest incarnation, a type class defines a set of
methods which every instance must implement, for instance:

class Eq a where
(≡) :: a → a → Bool

Where we are stating that a type a can be an instance of Eq as long as it
implements (≡). This is a very useful mechanism, as it allows a programmer
to write polymorphic functions but impose some restrictions on the types. For
instance, consider the type of the nub function below:

nub :: (Eq a) ⇒ [a] → [a]

It receives a list of arbitrary a’s, as long we can compare these values for
equality. It returns a list of the same type, but removes every duplicate element.

Supported by NWO project 612.001.401.

c© Springer Nature Switzerland AG 2019
J. J. Alferes and M. Johansson (Eds.): PADL 2019, LNCS 11372, pp. 150–168, 2019.
https://doi.org/10.1007/978-3-030-05998-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05998-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-05998-9_10

Classes of Arbitrary Kind 151

The base library comes pre-packaged with instances for built-in types, such
as integers, Booleans and lists. But the programmer is also allowed to extend
this set of instances. For example, here is a data type representing binary trees
with values in the internal nodes:

data Tree a = Leaf | Node (Tree a) a (Tree a)

Its corresponding instance for the Eq class is defined as:

instance Eq a ⇒ Eq (Tree a) where
Leaf ≡ Leaf = True
(Node �1 x1 r1) ≡ (Node �2 x2 r2) = x1 ≡ x2 ∧ �1 ≡ �2 ∧ r1 ≡ r2

≡ = False

This example highlights one of the important features of the type class system:
the availability for an instance of Tree a, in this case, depends on the availability
of an instance for the type a. In other words, in order to compare a Tree a for
equality, we must also be able to compare values of type a, since these are the
elements in the nodes of our tree. That way, we know that equality is defined
for Tree Bool — since Bool is a member of the Eq type class — but not for
Tree (Int → Bool) — since functions cannot be compared for equality.

Our Tree data type is also an instance of the Functor class, which states that
we can change a Tree a into a Tree b as long as we can change one a into one b.
We do so by applying this transformation uniformly in the nodes of the tree. In
Haskell, we would say:

class Functor f where
fmap :: (a → b) → f a → f b

instance Functor Tree where
fmap Leaf = Leaf
fmap f (Node � x r) = Node (fmap f �) (f x) (fmap f r)

There is a subtle difference between Eq and Functor that is central to our
work. The Eq class receives ground types, such as Int and Tree Bool ; whereas
the Functor receives type constructors, such as Tree. In Haskell we distinguish
between those by the means of kinds. The intuition is that a kind is the “type of
types”. By convention, ground types have kind �. Therefore, our Tree type is of
kind � → �, that is, given a ground type as an argument, it produces a ground
type. The kind system prevents us from writing nonsensical statements such as
Functor Int , since Functor expects something of kind � → � and Int has kind �.

There are several extensions to the type class mechanism, such as functional
dependencies [7], and associated types [4]. For the purpose of this paper, though,
we shall consider only the simpler version described above, with the occasional
appearance of multi-parameter type classes [11].

152 A. Serrano and V. C. Miraldo

1.1 Concepts of Arbitrary Kind

We can declare that lists support equality provided that their elements do so:

instance (Eq a) ⇒ Eq [a] where ...

However, lists support an even stronger notion of comparison: if we provide
a comparison function between elements of types a and b, we can uniformly lift
this operation to act over [a] and [b]. This concept is captured by the Eq1 type
class, which can be found in GHC’s base library:

class Eq1 (f :: � → �) where
liftEq :: (a → b → Bool) → f a → f b → Bool

Following the same line of thought, we might be inclined to derive a similar
notion for the Either a b type. This is a type constructor with two arguments
that can be compared in a similar way, but this time we would need two com-
parison functions in order to compare a Either a b with a Either c d . Alas, we
need to introduce yet another type class, since Eq1 only works for types of kind
� → �:

class Eq2 (f :: � → � → �) where
liftEq2 :: (a → b → Bool) → (c → d → Bool)

→ f a c → f b d → Bool

instance Eq2 Either where
liftEq2 p (Left x) (Left y) = p x y
liftEq2 q (Right x) (Right y) = q x y
liftEq2 = False

The notion of lifting equality makes sense for arbitrary kinds: Eq , Eq1 , Eq2 ,
and so on. Where Eq is seen as the Eq0 member of this sequence, where we do
not take any equality function as argument because the type in question has no
type parameters.

We can witness the same pattern for the Monoid and Alternative type classes,
provided in the base library:

class Monoid (m :: �) where class Alternative (f :: � → �) where
mempty :: a empty :: f a
mappend :: a → a → a (〈|〉) :: f a → f a → f a

A monoid is a type embodied with a way to combine two elements, mappend ,
which satisfies associativity and for which mempty acts as neutral element. An
instance of Alternative for a type constructor C essentially states that C a can
be used as a monoid, regardless of the element a contained in the structure.

Classes of Arbitrary Kind 153

The relationship between Monoid and Alternative is different from that
between Eq and Eq1 : in the latter case we lift a growing sequence of func-
tions, whereas in the former the type has the same shape regardless of the kind
at play. Nevertheless, the programmer has to write a new class for every different
kind, even though this might be a very regular notion.

1.2 Contributions

The main contribution of this paper is a pattern to define “once and for all”
type classes to encompass notions such as Eq and Monoid which extend to
arbitrary kinds. We borrow a technique from recent developmens in generic pro-
gramming [14], enabling us to represent type applications uniformly (Sect. 2)
and showcase its usage in the definition of type classes (Sect. 3). As it turns out,
the ability of handling type applications on the term level has far more use than
solely generic programming.

We also discuss an extension of the generic programming mechanism in
GHC [8] to represent types of arbitrary kinds (Sect. 4). Our approach can be
seen as a translation from the techniques introduced by Serrano and Miraldo [14]
to the world of pattern functors.

2 Representing Type Application

The core issue is the inability to represent a type that is applied to n type
variables. For the Eq case, we ultimately want write something in the lines of:

class Eqn (f :: � → ... → �) where
liftEqn :: (a1 → b1 → Bool) → ... → (an → bn → Bool)

→ f a1 ... an → f b1 ... bn → Bool

Yet, simple Haskell without any extension does not allow us to talk about a
type variable f applied to “as many arguments as it needs”. In fact, we require
some of the later developments on the Haskell language to be able to uniformly
talk about types of arbitrary kinds. These developments include data type pro-
motion [21] and partial support for dependent types [18].

The key idea is to split a type application such as f a b c in two parts: the
head f , and the list of types 〈a, b, c〉. Afterwards, we define an operator (:@@:)
which applies a list of types to a head. For example, we should have:

f :@@: 〈a, b, c〉 ≈ f a b c

where the ≈ denotes isomorphism.
Naturally, we want to rule our incorrect applications of the (:@@:) operator.

For example, Int :@@: 〈Int〉. should be flagged as wrong, since Int is not a type
constructor, and thus cannot take arguments. In a similar fashion, Tree :@@:
〈Tree〉 should not be allowed, because Tree needs a ground type as argument.
The required information to know whether a list of types can be applied to a

154 A. Serrano and V. C. Miraldo

head must be derived from the kind of the head. The solution is to add an index
to the type Γ that keeps track of the kind of such environment. The definition
is written as a Generalized Algebraic Data Type, which means that we give the
type of each constructor explicitly:

infixr 5 :&:
data Γ k where

ε :: Γ (�)
(:&:) :: k → Γ ks → Γ (k → ks)

An empty list of types is represented by ε. If we apply such a list of types
with a goal of getting a ground type, this implies that the kind we started with
was already �, as reflected in the index of this constructor. The other possibility
is to attach a type of kind k to a list of types with kind ks, represented by the
constructor (:&:). Here are some examples of lists of types with different indices:

Int :&: ε :: Γ (� → �)
Int :&: Bool :&: ε :: Γ (� → � → �)
Tree :&: Bool :&: ε :: Γ ((� → �) → � → �)

The next step is the definition of the (:@@:) operator.

data (f :: k) :@@: (tys :: Γ k) :: � where
A0 :: f → f :@@: ε
Arg :: f t :@@: ts → f :@@: (t :&: ts)

We abstain from using type families [13] since defining functions whose argu-
ments are applied families is hard in practice. For instance, if we had defined
(:@@:) as follows:

type family (f :: k) :@@:fam (tys :: Γ k) :: � where
f :@@:fam ε = f
f :@@:fam (a :&: as) = (f a) :@@:fam as

Then writing a simple function that is polymorphic on the number, such as:

g :: f :@@:fam tys → String
g = “Hello, PADLers!”

Would be rejected by the compiler with the following error message:
Couldn’t match type ’f :@: tys’ with ’f0 :@: tys0’
Expected type: f :@: tys -> String
Actual type: f0 :@: tys0 -> String
NB: ’(:@:)’ is a non-injective type family
The type variables ’f0’, ’tys0’ are ambiguous

Classes of Arbitrary Kind 155

The problem is that type families are not necessarily injective. That is, the
result of f :@@:fam tys is not sufficient to fix the values of the type variables f
and tys in the type of g . This is not a problem with the type checking algorithm;
these three different choices of f and tys are all equal to the same type:

Either :@@:fam (Int :&: Bool :&: ε) ≡ Either Int Bool
Either Int :@@:fam (Bool :&: ε) ≡ Either Int Bool
Either Int Bool :@@:fam ε ≡ Either Int Bool

Hence, we stick with GADTs, which allows us to write the g function above.
However, when we call the function we need to wrap the argument with con-
structor A0 and Arg . The amount of Arg constructors expresses how many of
the arguments go into the list of types. For example:

g (A0 (Left 3)) � f = Either Int Bool , tys = ε
g (Arg (Arg (A0 (Left 3)))) � f = Either , tys = Int :&: Bool :&: ε

This need to be explicit about the amount of type variables is definitely cum-
bersome. In Sect. 3.2 we define a type class which allows us to convert easily
between uses of (:@@:) and (:@@:fam).

Better Pattern Matching. A related problem with the usage of (:@@:) is the
need of nested Arg constructors, both in building values and pattern matching
over them. Fortunately, we can reduce the number of characters by using pattern
synonyms [12].

For the purposes of this paper, it is enough to provide synonyms from nested
sequences of Arg up to length 2:

pattern A1 x = Arg (A0 x)
pattern A2 x = Arg (A1 x)

This means that we could have written the latest example using g as simply
g (A2 (Left 3)).

3 Arbitrary-Kind Type Classes

With the necessary tools at hand, we are ready to discuss how to define type
classes for notions which exist in arbitrary kinds. Being able to access the type
application structure on the term level, with (:@@:), is essential. In what follows,
we look at this construction by a series of increasingly complex type classes which
generalize the well-known Show , Eq , and Functor .

156 A. Serrano and V. C. Miraldo

Generalizing Show . In its bare bones version, Show specifies how to turn a value
into a string. One could define a simplistic1 version of Show as:

class Show t where
show :: t → String

To specify that we want Show to work on arbitrary kinds, we need to add a kind
signature to its definition, and change the type of the show method to apply a
list of types:2

class Show� (f :: k) where
show� :: f :@@: tys → String

We can define an instance for integers by piggybacking on the usual version of
Show provided in Haskell’s base library:

instance Show� Int where
show� (A0 n) = show n

Note that since we are dealing with values of the data type (:@@:), we need to
pattern match on A0 to obtain the integer value itself.

If we try to write similar code for the Maybe type constructor, we will bump
into an error. Consider the following Show� Maybe instance:

instance Show� Maybe where
show� (Arg (A0 Nothing)) = “Nothing”
show� (Arg (A0 (Just x))) = “Just (” ++ show� (A0 x) ++ “)”

The compiler complains with:

Could not deduce (Show� t) arising from a use of ’show�’

The problem is in the call show� (A0 x) and stems from the fact that we have
not provided any proof that the contents inside the Just constructor can be
“shown”. Let us recall the Show instance for Maybe a:

instance Show a ⇒ Show (Maybe a) where ...

Note how this instance requires a proof that a is also an instance of Show .
We therefore need a mechanism to specify that the arguments of Maybe :@@: tys,
that is, tys, can be shown. That is, we need to specify some constraint over tys.
This will allow us to call show� with a list of types tys whenever every element
of this list is also member of Show�. In order to define this constraint we require

1 The actual Haskell definition contains functions to deal with operator precedence
and efficient construction of Strings.

2 We use the notation f� to refer to the generalized version of f .

Classes of Arbitrary Kind 157

ConstraintKinds [1] GHC extension. In summary, this extension enables the
manipulation of everything that appears before the ⇒ arrow in a Haskell type
as if it was a regular type. The only difference is in the kind: normal arguments
to functions must be of a type of kind �, implicit arguments, to the left of the
⇒, must be of kind Constraint .

We will now define a constraint that depends on the types tys that are applied
to a type constructor with f :@@:tys. This definition will proceed by induction on
the structure of tys. For the specific Show� case we define the following AllShow�

constraint. Note here that the syntax for an empty constraint is () in GHC, and
the conjunction of constraints is represented by tupling:

type family AllShow� (tys :: Γ k) :: Constraint where
AllShow� ε = ()
AllShow� (t :&: ts) = (Show� t ,AllShow� ts)

Finally we introduce this constraint in the type of show�:

class Show� (f :: k) where
show� :: AllShow� tys ⇒ f :@@: tys → String

The Show� instance for Maybe shown above is now accepted, since AllShow�

applied to a list of types of the form t :&: ε reduces to a constraint Show� t .

Generalizing Eq . The generalized equality class is slightly more complicated; the
number of arguments to the liftEq function changes between classes:

(≡) :: a → b → Bool
liftEq :: (a → b → Bool) → f a → f b → Bool
liftEq2 :: (a → b → Bool) → (c → d → Bool) → f a c → f b d → Bool

Hence, the number of arguments in this case is dictated by the kind of the
type constructor f : one per appearance of �. We will use a similar technique
to Show�, and define a data type by induction on the structure of the type
applications. This new data type, Predicates , will require a function a → b →
Bool for every pair of types obtained from the corresponding lists:

data Predicates (as :: Γ k) (bs :: Γ k) where
Pε :: Predicates ε ε
P& :: (a → b → Bool) → Predicates as bs

→ Predicates (a :&: as) (b :&: bs)

Using this data type we can chain as many predicates as we need:

P& f Pε :: Predicates (a : & : ε) (b : & : ε)
P& f (P& g Pε) :: Predicates (a : & : c : & : ε) (b : & : d : & : ε)

158 A. Serrano and V. C. Miraldo

The final step to generalize the Eq notion is to use the explicit application
operator (:@@:) in the definition of the type class. The result in this case is:

class Eq� (f :: k) where
eq� :: Predicates as bs → f :@@: as → f :@@: bs → Bool

Here are the instances for integers and the instance for Either :

instance Eq� Int where
eq� Pε (A0 x) (A0 y) = x ≡ y

instance Eq� Either where
eq� (P& l (P& r Pε)) (A2 (Left x)) (A2 (Left y)) = l x y
eq� (P& l (P& r Pε)) (A2 (Right x)) (A2 (Right y)) = r x y
eq� = False

3.1 You-Name-It-Functors

As the final example of our approach, we are going to generalize several notions
of functoriality, including those present in GHC’s base library. With access to the
structure of type applications available through (:@@:), we are able to unify the
Functor , Contravariant , Profunctor and Bifunctor classes with many others.
Recall the Functor type class, which describes how to lift a function into a
container f :

class Functor f where
fmap :: (a → b) → f a → f b

Many types, such as lists, Maybe, or binary trees, are examples of Functors.
But now take the following data type, which describes a logical predicate:

data Pred a = Pred (a → Bool)

It is not possible to write a Functor instance for this type. However, we can
write one for Contravariant , a variation of Functor in which the function being
lifted goes “in the opposite direction”:

class Contravariant f where
contramap :: (b → a) → f a → f b

instance Contravariant Pred where
contramap f (Pred p) = Pred (p ◦ f)

Classes of Arbitrary Kind 159

These notions generalize to higher kinds. For example, the type Either a b
behaves as a functor for both a and b. That is, if you give a function mapping a
to c, if can be lifted to a function between Either a b to Either c b; and the same
holds for the other type variable. We say that Either is a bifunctor. The type of
functions, a → b, is slightly trickier, because it works as a contravariant functor
in the source type, and as a usual functor in the target type. The name for this
kind of structure is a profunctor. Both structures exist in the base libraries:

class Bifunctor f where
bimap :: (a → b) → (c → d) → f a c → f b d

class Profunctor f where
dimap :: (b → a) → (c → d) → f a c → f b d

With our techniques, we can develop a unified type class for all of these
notions. The recipe is analogous: we need to specify some information for each
type argument tys in f :@@: tys. Here we need to know whether each position
maps in the “same” or “opposite” way – we call this the variance of that position.
This is essentially a list of flags whose length must coincide with the number
of type arguments to the type. We copy the approach of Γ and Predicates , and
define a new data type indexed by a kind:

data Variance k where
V ε :: Variance (�)
� :: Variance ks → Variance (� → ks)
� :: Variance ks → Variance (� → ks)
� :: Variance ks → Variance (k → ks)

For the sake of generality, we have also included a � flag which states that a type
variable is not used in any constructor of the data type, and thus we can skip it
in the list of functions to be lifted. Using this Variance type, we can express the
different ways in which Functor , Contravariant , and Bifunctor operate on their
type variables as � V ε, � V ε, and � (� V ε), respectively.

In contrast to the previous examples, to obtain the generalized version of
the Functor we need an extra parameter: we must attach the corresponding
Variance. Given a type constructor its variance is fixed, therefore, it can be
uniquely determined. This is represented by a functional dependency [7]:

class Functor� (f :: k) (v :: Variance k) | f → v where ...

160 A. Serrano and V. C. Miraldo

The next step is defining lists of functions that we will need in order to map
a f :@@: tys into a f :@@: txs. This is done in the same fashion as in the previous
examples: by induction on the structure of tys and txs. This time, however,
in addition to the list of types for the source and the target, we also use the
Variance to know which is the direction in which the function should operate:

data Mappings (v :: Variance k) (as :: Γ k) (bs :: Γ k) where
M ε :: Mappings V ε ε ε
M � :: (a → b) → Mappings vs as bs

→ Mappings (� vs) (a :&: as) (b :&: bs)
M � :: (b → a) → Mappings vs as bs

→ Mappings (� vs) (a :&: as) (b :&: bs)
M � :: Mappings vs as bs

→ Mappings (� vs) (a :&: as) (b :&: bs)

We are now ready to write the definition of Functor�, by using a list of mappings
as an argument to the generalize fmap� function:

class Functor� (f :: k) (v :: Variance k) | f → v where
fmap� :: Mappings v as bs → f :@@: as → f :@@: bs

What follows are two Functor� instances for types of different kinds, namely,
one for Pred and one for Either .

instance Functor� Pred (� V ε) where
fmap� (M � f M ε) (A1 (Pred p)) = A1 (Pred (p ◦ f)))

instance Functor� Either (� (� V ε)) where
fmap� (M � f (M � M ε)) (A2 (Left x)) = A2 (Left (f x))
fmap� (M � (M � g M ε)) (A2 (Right y)) = A2 (Right (g y))

Note how the Functor� Pred (� V ε) instance is equivalent to
Contravariant Pred and similarly Functor� Either (� (� V ε)) is equivalent
to Bifunctor Either . In fact, as a final touch, we can regain the old type classes
by giving names to certain instantiations of the Variance parameter in Functor�:

type Functor f = Functor� f (� V ε)
type Contravariant f = Functor� f (� V ε)
type Bifunctor f = Functor� f (� (� V ε))
type Profunctor f = Functor� f (� (� V ε))

Classes of Arbitrary Kind 161

3.2 From Families to Data, and Back Again

The two ways of defining type application, (:@@:fam) and (:@@:), have dual
advantages. In the case of the type family, the caller of the function does not
have to wrap the arguments manually, but the compiler rejects the function if
no further information is given. When using a data type, the compiler accepts
defining functions without further problem, at the expense for the caller having
to introduce A0 and Arg constructors.

The distinction does not have to be that sharp, though. It is simple to write
a type class Ravel which converts between the data type encoding and the type
family encoding:

class Ravel (t :: �) (f :: k) (tys :: Γ k) | f tys → t where
unravel :: f :@@: tys → f :@@:fam tys
ravel :: f :@@:fam tys → f :@@: tys

instance Ravel t t ε where
unravel (A0 x) = x
ravel x = A0 x

instance Ravel t (f x) tys ⇒ Ravel t f (x :&: tys) where
unravel (Arg x) = unravel x
ravel x = Arg (ravel x)

This way, we can pattern match in elements using (:@@:) when defining function
– and thus working around the problems of ambiguity discussed above – but at
the same time provide an external interface with simpler types by means of the
unravel and ravel conversion functions.

An immediate application of this type class is the definition of specialized
versions of fmap� for the different variances with a name. Here is the dimap
function from the Profunctor type class:

dimap :: Profunctor f ⇒ (b → a) → (c → d) → f a c → f b d
dimap f g = unravel ◦ fmap� (M � f (M � g M ε)) ◦ ravel

We first map the given value of type f a c into f :@@: (a :&: c :&: ε). At that
point we can apply the generic operation fmap�, we need to wrap the operations
f and g into the Mappings type. We get a result of type f :@@: (b :&: d :&: ε),
which we map back to f b d by means of unravel .

4 Generics for Arbitrary Kinds

As a final note on the applicability of (:@@:), we would like to show how it
immediatly helps in providing support for more types in the already existing
GHC.Generics framework. In this section, we provide a direct translation of
the work of Serrano and Miraldo [14] reusing most of the machinery already

162 A. Serrano and V. C. Miraldo

available in GHC instead of relying on complicated type level constructions, as
in the original work. These extensions are available as part of the kind-generics
library in Hackage.

Haskell compilers provide facilities to automatically write instances for
some common classes, including Eq and Show . This mechanism is syntactically
lightweight, the programmer is just required to add a deriving clause at the
end of a data type definition:

data Either a b = Left a | Right b deriving (Eq ,Show)
data Pair a b = Pair a b deriving (Eq ,Show)

GHC extends this facility with a mechanism to write functions which depend
solely on the structure of the data type, but follow the same algorithm otherwise.
This style is called generic programming.

The core idea of generic programming is simple: map data types to a uni-
form representation. Every function which operates on this representation is by
construction generic over the data type. There are several ways to obtain the
uniform representation in a typed setting; the main ones being codes [9,14,15],
and pattern functors [8,10,20]. The latter is the one used by GHC, and the one
we extend in this section.

In the pattern functor approach, the structure of a data type is expressed by
a combination of the following functors, which act as building blocks:

data U1 a = U1
data K1 p a = K1 a
data (f :∗ : g) a = f a :∗ : g a
data (f :+: g) a = L1 (f a) | R1 (g a)

Let us look at the representation of the aforementioned Either and Pair :

Rep (Either a b) = K1 R a :+: K1 R b
Rep (Pair a b) = K1 R a :∗ : K1 R b

The Either type provides a choice between two constructors. This fact is repre-
sented by using the coproduct functor (:+:). The Pair type, on the other hand,
requires two pieces of information. The product functor (:∗ :) encodes this infor-
mation. In both cases, each field is represented by the constant functor K1 R.3

The remaining block, U1 , represents a constructor with no fields attached, like
the empty list [].

3 The first argument to K1 was used in the past to encode some properties of the
field. However, it has fallen into disuse, and GHC always sets its value to R in any
automatically-derived representation.

Classes of Arbitrary Kind 163

Besides the structure of a type, we also need a map between values in the
original type and its representation. The Generic type class bridges this gap:

class Generic a where
type Rep a :: � → �
from :: a → Rep a x
to :: Rep a x → a

To define an instance of Generic, you need three pieces of information: (1) the
representation Rep, which is a functor composed of the building blocks described
above, (2) how to turn a value of type a into its representation – this is the func-
tion from –, and (3) how to map back – encoded as to. Writing these instances is
mechanical, and GHC automates them by providing a DeriveGeneric extension.

Due to space limitations, we gloss over how to define functions which work
on the generic representations. The interested reader is referred to the work of
Magalhães et al. [8], and the documentation of GHC.Generics.

The first step towards generalizing the Generic type class is to extend its
building blocks for the representations. In the case of the original Rep, we encode
a type of kind � by a functor of kind � → �; now we are going to encode a type
of kind k by a representation of kind Γ k → �. The use of a list of types Γ here
is essential, because otherwise we cannot express arbitrary kinds. This approach
deviates from the one taken by GHC, in which type constructors of kind � → �
are also represented by functors of kind � → �. In fact, all we need to do is define
a new K1 since the other combinators are readily compatible.

We solve this problem by introducing a separate data type to encode the
structure of the type of a field [14,17]. This is nothing more than the applicative
fragment of λ-calculus, in which references to type variables are encoded using
de Bruijn indices:

data TyVar d k where
VZ :: TyVar (x → xs) x
VS :: TyVar xs k → TyVar (x → xs) k

data Atom d k where
Var :: TyVar d k → Atom d k
Kon :: k → Atom d k
(:@:) :: Atom d (k1 → k2) → Atom d k1 → Atom d k2

A value of Atom d k represents a type of kind k in an environment with type
variables described by the kind d . TyVar refers to a type variable in the kind
d using Peano numerals, starting from the left-most variable. For example, the
type of the single field of the Right constructor is represented as Var (VS VZ).

By itself, Atom d k only describes the shape of a type. In order to obtain an
actual type, we need to interpret it with known values for all the type variables. If
one thinks of Atoms as expressions with variables, such as x2+x+1, interpreting

164 A. Serrano and V. C. Miraldo

the Atom boils down to obtaining the value of the expression given a value for
each variable, like x �→ 5. This interpretation can be defined by recursion on the
structure of the Atom:

type family Ty (t :: Atom d k) (tys :: Γ d) :: k where
Ty (Var VZ) (t :&: ts) = t
Ty (Var (VS v)) (t :&: ts) = Ty (Var v) ts
Ty (Kon x) tys = x
Ty (f :@: x) tys = (Ty f tys) (Ty x tys)

Note that by construction an Atom d k is always interpreted to a type of kind k .
With these ingredients, we can encode the missing building block. In Haskell,

it is required that fields in a data type have a type with kind �. This is visible
in the definition of F , where t must describe a type with that specific kind:

data F (t :: Atom d (�)) (x :: Γ d) = F (Ty t x)

The representations of Either and Pair look as follows:

Rep� Either = F (Var VZ) :+: F (Var (VS VZ))
Rep� Pair = F (Var VZ) :∗ : F (Var (VS VZ))

Note the change in the arguments to Rep�. We are no longer defining a family
of representations for every possible choice of type arguments to Either and Pair ,
as we did in the case of Rep. Here we encode precisely the polymorphic structure
of the data types.

Finally, we can wrap it all together with a type class that declares the iso-
morphism between values and their generic representation.

class Generic� (f :: k) where
type Rep� f :: Γ k → �
from� :: f :@@: x → Rep� f x
to� :: Γs x → Rep� f x → f :@@: x

One part of the isomorphism, from�, has a straightforward type. The converse
operation is harder to define though. The problem is that we need to match over
the structure of the list of types, but this information is apparent from the kind
itself. The solution is to use a singleton [5], that is, to introduce a new data type
that completely mimics the shape of the type level information:

data Γs (tys :: Γ k) where
εs :: Γs ε
&s :: Γs ts → Γs (t :&: ts)

By inspecting this singleton value, the compiler gains enough information about
the shape of tys to know that the result is well-formed.

Classes of Arbitrary Kind 165

We can finally give the Generic� instance for Either :

instance Generic� Either where
type Rep Either = F (Var VZ) :+: F (Var (VS VZ))
from� (A2 (Left x)) = InL (F x)
from� (A2 (Right y)) = InR (F y)
to� (&s (&s εs)) (InL (F x)) = A2 (Left x)
to� (&s (&s εs)) (InR (F y)) = A2 (Right y)

4.1 Representing Constraints and Existentials

One advantage of this new representation is that it becomes simple to describe
more complicated structures for data types. In particular, it enables us to repre-
sent constructors with constraints and existentials, key ingredients of Generalized
Algebraic Data Types [19] available in Haskell and OCaml, among others.

The case of constraints is very similar to that of regular fields. As we have
discussed several times already, a constraint is seen by GHC as a regular type of
a specific kind Constraint . Since our language of types, Atom, works regardless
of the kind it represents, we can still use it in this new scenario:

data (:⇒:) (c :: Atom d Constraint) (f :: Γ d → �) (x :: Γ d) where
C :: Ty c x ⇒ f x → (c :⇒: f) x

The definition of (:⇒:) wraps a representation f with an additional implicit
parameter. This means that by merely pattern matching on the constructor we
make this information available. For example, here is the usual definition of the
Equality data type and its Generic� instance:

data Equals a b where
Refl :: a ∼ b ⇒ Equals a b

instance Generic� Equals where
type Rep� Equals = (Kon (∼) :@: Var VZ :@: Var (VS VZ)) :⇒: U1
from� (A2 Refl) = C U1
to� (&s (&s εs)) (C U1) = A2 Refl

Introducing existentials requires more involved types, however.

data E k (f :: Γ (k → d) → �) (x :: Γ d) where
E :: forall k (t :: k) d (f :: Γ (k → d) → �) (x :: Γ d)

. f (t :&: x) → E k f x

The E type above provides us with the required kind Γ d → � given another
representation with the kind Γ (k → d) → �. In other words, the argument to
E is another representation where we have an additional type variable available
in the environment. This new type variable refers to the existential introduced.

166 A. Serrano and V. C. Miraldo

The following data type, Exists, keeps a value of any type we want, but
this type is not visible as an index to the type. Using E we can describe its
representation in this generic framework:

data Exists where
Exists :: a → Exists

instance Generic� X where
type Rep� Exists = E (�) (F (Var VZ))
from� (A0 (Exists x)) = E (F x)
to� εs (E (F x)) = A0 (Exists x)

In conclusion, the introduction of the (:@@:) construction provides a basis
for more expressive generic programming. By defining only one new building
block, F , we are readily able to represent types of arbitrary kind directly. Once
these foundations are laid down, we can accommodate descriptions of types using
constraints and existentials in our generic programming framework.

5 Related Work

Weirich and Casinghino [17] discuss how to encode arity and data type-generic
operations in Agda. There are two main differences between that work and ours.
First, the language of implementation is Agda, a language with full dependent
types, as opposed to Haskell. Second, whereas their goal is to define arity-generic
operations such as map, our goal is to describe notions which exist regardless of
the arity, such as Eq� and Functor�. As a result, we are less concerned about
the implementation of the instances.

The work of Hinze [6] tackles poly-kinded generic programming from a differ-
ent point of view. There generic functions defined over representations of the �
are automatically lifted to data types of higher kinds. It is an interesting avenue
to investigate how much of his method can be translated into our setting.

Quantified class constraints [2] allow the programmer to define type classes
for constructors, such as Show1 , by quantification over the constraints for ground
types. However, the ability to define the class for arbitrary kinds is still missing.
We foresee that a combination of (:@@:) with quantified constraints is possible.

Our representation of types as a type constructor and a list of arguments
resembles the applicative fragment of the spine calculus of [3]. In contrast we do
not impose any restriction about the shape of the head.

6 Conclusion

In this paper we have presented a way to encode the generalities between types of
possibly different kinds by means of polymorphic type classes. The key ingredient
being the definition of the (:@@:) data type, which turns n-ary applications into
the application of one head and a list of types.

Classes of Arbitrary Kind 167

We have discussed generalizations of the well-known Show , Eq , and Functor
type classes. In the latter case, we have also discussed how to represent the
variance of a type variable as part of the type class. We have also shown how
one could extend the Generic framework present in GHC to work over types of
arbitrary kind with minimal fuss.

References

1. Bolingbroke, M.: Constraint Kinds (2011). http://blog.omega-prime.co.uk/?p=127
2. Bottu, G.J., Karachalias, G., Schrijvers, T., Oliveira, B.C.d.S., Wadler, P.: Quan-

tified class constraints. In: Proceedings of the 10th International Symposium on
Haskell, Haskell 2017. ACM (2017)

3. Cervesato, I., Pfenning, F.: A linear spine calculus. J. Log. Comput. 13(5), 639–688
(2003)

4. Chakravarty, M.M.T., Keller, G., Peyton Jones, S., Marlow, S.: Associated types
with class. In: Proceedings of the 32nd Symposium on Principles of Programming
Languages, POPL 2005. ACM (2005)

5. Eisenberg, R.A., Weirich, S.: Dependently typed programming with singletons. In:
Proceedings of the 2012 Haskell Symposium, Haskell 2012. ACM (2012)

6. Hinze, R.: Polytypic values possess polykinded types. In: Backhouse, R., Oliveira,
J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 2–27. Springer, Heidelberg (2000).
https://doi.org/10.1007/10722010 2

7. Jones, M.P.: Type classes with functional dependencies. In: Smolka, G. (ed.) ESOP
2000. LNCS, vol. 1782, pp. 230–244. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-46425-5 15

8. Magalhães, J.P., Dijkstra, A., Jeuring, J., Löh, A.: Ageneric deriving mechanism
for haskell. In: Proceedings of the 3rd Symposium on Haskell, Haskell 2010. ACM
(2010)

9. Miraldo, V.C., Serrano, A.: Sums of products for mutually recursive datatypes:
the appropriationist’s view on generic programming. In: Proceedings of the 3rd
International Workshop on Type-Driven Development, TyDe 2018. ACM (2018)

10. Noort, T.v., Rodriguez, A., Holdermans, S., Jeuring, J., Heeren, B.: A lightweight
approach to datatype-generic rewriting. In: Proceedings of the Workshop on
Generic Programming, WGP 2008. ACM (2008)

11. Peyton Jones, S., Jones, M., Meijer, E.: Type classes: an exploration of the design
space. In: Haskell Workshop, Amsterdam (1997)

12. Pickering, M., Érdi, G., Peyton Jones, S., Eisenberg, R.A.: Pattern synonyms. In:
Proceedings of the 9th International Symposium on Haskell, Haskell 2016. ACM
(2016)

13. Schrijvers, T., Peyton Jones, S., Chakravarty, M., Sulzmann, M.: Type checking
with open type functions. In: Proceedings of the 13th International Conference on
Functional Programming, ICFP 2008. ACM (2008)

14. Serrano, A., Miraldo, V.C.: Generic programming of all kinds. In: Proceedings of
the 11th Symposium on Haskell, Haskell 2018. ACM (2018)

15. de Vries, E., Löh, A.: True sums of products. In: Proceedings of the 10th Workshop
on Generic Programming, WGP 2014. ACM (2014)

16. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Pro-
ceedings of the 16th Symposium on Principles of Programming Languages, POPL
1989. ACM (1989)

http://blog.omega-prime.co.uk/?p=127
https://doi.org/10.1007/10722010_2
https://doi.org/10.1007/3-540-46425-5_15
https://doi.org/10.1007/3-540-46425-5_15

168 A. Serrano and V. C. Miraldo

17. Weirich, S., Casinghino, C.: Arity-generic datatype-generic programming. In: Pro-
ceedings of the 4th Workshop on Programming Languages Meets Program Verifi-
cation, PLPV 2010. ACM (2010)

18. Weirich, S., Voizard, A., de Amorim, P.H.A., Eisenberg, R.A.: A specification
for dependent types in haskell. In: Proceedings ACM Programming Languages
1(ICFP) (2017)

19. Xi, H., Chen, C., Chen, G.: Guarded recursive datatype constructors. In: Proceed-
ings of the 30th Symposium on Principles of Programming Languages, POPL 2003.
ACM (2003)

20. Yakushev, A.R., Holdermans, S., Löh, A., Jeuring, J.: Generic programming with
fixed points for mutually recursive datatypes. In: Proceedings of the 14th Interna-
tional Conference on Functional Programming, ICFP 2009. ACM (2009)

21. Yorgey, B.A., Weirich, S., Cretin, J., Peyton Jones, S., Vytiniotis, D., Magalhães,
J.P.: Giving haskell a promotion. In: Proceedings of the 8th Workshop on Types
in Language Design and Implementation, TLDI 2012. ACM (2012)

Distributed Protocol Combinators

Kristoffer Just Arndal Andersen1(B) and Ilya Sergey2

1 Aarhus University, Aarhus, Denmark
kja@cs.au.dk

2 Yale-NUS College and NUS School of Computing, Singapore, Singapore
ilya.sergey@yale-nus.edu.sg

Abstract. Distributed systems are hard to get right, model, test, debug,
and teach. Their textbook definitions, typically given in a form of repli-
cated state machines, are concise, yet prone to introducing programming
errors if näıvely translated into runnable implementations.

In this work, we present Distributed Protocol Combinators (DPC), a
declarative programming framework that aims to bridge the gap between
specifications and runnable implementations of distributed systems, and
facilitate their modeling, testing, and execution. DPC builds on the ideas
from the state-of-the art logics for compositional systems verification.
The contribution of DPC is a novel family of program-level primitives,
which facilitates construction of larger distributed systems from smaller
components, streamlining the usage of the most common asynchronous
message-passing communication patterns, and providing machinery for
testing and user-friendly dynamic verification of systems. This paper
describes the main ideas behind the design of the framework and presents
its implementation in Haskell. We introduce DPC through a series of
characteristic examples and showcase it on a number of distributed pro-
tocols from the literature.

1 Introduction

Distributed fault-tolerant systems are at the heart of modern electronic services,
spanning such aspects of our lives as healthcare, online commerce, transporta-
tion, entertainment and cloud-based applications. From engineering and reason-
ing perspectives, distributed systems are amongst the most complex pieces of
software being developed nowadays. The complexity is not only due to the intri-
cacy of the underlying protocols for multi-party interaction, which should be
resilient to execution faults, packet loss and corruption, but also due to hard
performance and availability requirements [2].

The issue of system correctness is traditionally addressed by employing a
wide range of whole-system testing methodologies, with more recent advances
in integrating techniques for formal verification into the system development
process [5,8,20]. In an ongoing effort of developing a verification methodology
enabling the reuse of formal proofs about distributed systems in the context of
an open world, the Disel logic, built on top of the Coq proof assistant [3], has

c© Springer Nature Switzerland AG 2019
J. J. Alferes and M. Johansson (Eds.): PADL 2019, LNCS 11372, pp. 169–186, 2019.
https://doi.org/10.1007/978-3-030-05998-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05998-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-05998-9_11

170 K. J. A. Andersen and I. Sergey

been proposed as the first framework for mechanised verification of distributed
systems, enabling modular proofs about protocol composition [24,26].

The main construction of Disel is a distributed protocol P—an operationally
described replicated state-transition system (STS), which captures the shape of
the state of each node in the system, as well as what it can or cannot do at any
moment, depending on its state. Even though a protocol P is not an executable
program and cannot be immediately run, one can still use it as an executable spec-
ification of the system, in order to prove the system’s intrinsic properties. For
instance, reasoning at the level of a protocol, one can establish that a property
I : SystemState → Prop is an inductive invariant wrt. a protocol P.1 A some-
what simplified main judgement of Disel, P � c, asserts that an actual system
implementation c will not violate the operational specification of P. Therefore,
if this holds, one can infer that any execution of a program c, will not violate
the property I, proved for protocol P. Disel also features a full-blown program
logic, implemented as a Hoare Type Theory [19], which allows one to ascribe pre-
and post-conditions to distributed programs, enforcing them via Coq’s dependent
types, at the expense of frequently requiring the user to write lengthy proof scripts.

While expressive enough to implement and verify, for instance, a crash-
recovery service on top of a Two-Phase Commit [24], unfortunately, Disel,
as a systems implementation tool, is far from being user-friendly, and is not
immediately applicable for rapid prototyping of composite distributed systems,
their testing and debugging. Neither can one use it for teaching without assum-
ing students’ knowledge of Coq and Separation Logic [21]. Furthermore, system
implementations in Disel must be encoded in terms of low-level send/receive
primitive, obscuring the high-level protocol design.

In this work, we give a practical spin to DISEL’s main idea—disentangling
protocol specifications from runnable, possibly highly optimised, systems imple-
mentations, making the following contributions:

– We distil a number of high-level distributed interaction patterns, which are
common in practical system implementations, and capture them in a form of
a novel family of Distributed Protocol Combinators (DPC)—a set of versatile
higher-order programming primitives. DPC allow one to implement systems
concisely, while still being able to benefit from protocol-based specifications
for the sake of testing and specification-aware debugging.

– We implement DPC in Haskell, providing a set of specification and imple-
mentation primitives, parameterised by a monadic interface, which allow for
multiple interpretations of protocol-oriented distributed implementations.

– We provide a rich toolset for testing, running, and visual debugging of sys-
tems implemented via DPC, allowing one to state and dynamically check the
protocol invariants, as well as to trace their execution in a GUI.

– We showcase DPC on a variety of distributed systems, ranging from a simple
RPC-based cloud calculator and its variations, to distributed locking [10],
Two-Phase Commit [7], and Paxos consensus [12,13].

1 Examples of such properties include global-systems invariants, used, in particular, to
reason about the whole system reaching a consensus [22,25].

Distributed Protocol Combinators 171

2 Specifying and Implementing Systems with DPC

In this work, we focus on message-passing asynchronous distributed systems,
where each node maintains its internal state while interacting with others by
means of sending and receiving messages. That is, the messages, which can
be sent and received at any moment, with arbitrary delays, drops, and rear-
rangements, are the only medium of communication between the nodes. DPC
takes the common approach of thinking of message-passing systems as shared-
memory systems, in which each message in transit is allocated in a virtual shared
“message soup”, where it lingers until it is delivered to the recipient [24,27].

The exact implementation of the per-node internal state might differ from
one node to another, as it is virtually unobservable by other participants of
the system. However, in order for the whole system to function correctly, it is
required that each node’s behaviour would be at least coherent with some notion
of abstract state, which is used to describe the interaction protocol.

In the remainder of this section, we will build an intuition of designing a
system “top-down”. We will start from its specification in terms of a protocol
that defines the abstract state and governs the message-passing discipline, going
all the way down to the implementation that defines the state concretely and
possibly combines several protocols together. For this, we use a standard example
of a distributed calculator.

2.1 Describing Distributed Interaction

In a simple cloud calculator, a node takes
one of two possible roles: of a client or
of a server. A client may send a request
along with data to be acted upon to the
server (e.g., a list of numbers [3, 100, 20]

to compute the sum of), and the server in turn responds with the result of the
computation, as shown on the diagram on the right. For uniformity of imple-
mentation, all messages, including the response of the server are lists of integers.
Notice that this description does not restrict e.g., the order in which a server
must process incoming requests from the clients, which leaves a lot of room for
potential optimisations on the implementation side.

In order to capture the behavioural contract describing the interaction
between clients and servers, we need to be able to outlaw some unwelcome com-
munication scenarios. For instance, in our examples, it would be out of protocol
for the server to respond with a wrong answer (in general an issue of safety)
or to the wrong client (in general an issue of security). A convenient way to
restrict the communication rules between distributed parties is by introducing
the abstract state describing specific “life stages” of a client and a server, as well
as associated messages that trigger changes in this state—altogether forming
an STS, a well-known way to abstractly describe and reason about distributed
protocols [14,15].

172 K. J. A. Andersen and I. Sergey

Let us now describe our calculator protocol as a collection of coordinated
transition systems. The client’s part in the protocol originates in a state
ClientInit containing the input it is going to send to the server, as well as
the server’s identity. From this state, it can send a message to server S with the
payload [3, 100, 20]. It then must wait, in a blocking state, for a response from
the server.2 Upon having received the message, the client proceeds to a third
and final state, ClientDone. From here, no more transitions are possible, and
the client’s part in the protocol is completed. A schematic outline of the client
protocol is depicted in Fig. 1(a).

Fig. 1. State transitions for a client (a) and a server (b) in the calculator protocol.

In our simplified scenario, the protocol for the server (Fig. 1(b)) can be cap-
tured by just one state, ServerReady, so that receiving the request and respond-
ing to it with a correct result is observed as “atomic” by other parties, and hence,
is denoted by a single composite transition. In other words, at the specification
level, the server immediately reacts to the request by sending a response.

Notice that the protcol places no demands on the number of clients, servers
or unrelated nodes in the network, nor does it restrict the number of instances
of the protocol are running in a given network. The specification is “local” to
the parties involved (which in general can number arbitrarily many).

This “request/respond” communication pattern is so common in distributed
programming that it is worth making explicit. We will refer to this pattern
as a pure remote procedure call (RPC) and take it as our first combinator for
protocol-based implementation of distributed systems.

2 Remember that this is a specification-level blocking, the implementation can actually
do something useful in the same time, just not related to this protocol!

Distributed Protocol Combinators 173

2.2 Specifying the Protocol

We can capture the RPC-shaped communication in DPC by first enumerating all
possible states of nodes in the protocol in a single data type. For the calculator,
the states can be directly translated from the description above to the following
Haskell data type:

data S = ClientInit NodeID [Int]

| ClientDone [Int]

| ServerReady

NodeID is a type synonym for Int, but any type with equality would serve.
ClientInit contains the name of the server and the list to sum. ClientDone con-
tains the response from the server. Next, we describe the only kind of exchange
that takes place in a network of clients and servers communicating by following
the RPC discipline. We do so by specifying when a client can produce a request
in a protocol, and how the server computes the response. Perhaps, a bit surpris-
ingly, no more information is needed, as the pattern dictates that clients await
responses from servers, and the server responds immediately. This is the reason
why need only enumerate two states for the client, eliding the one for blocking,
as per Fig. 1(a): the framework adds the third during execution by wrapping
the states in a type with an additional Blocking constructor.3 The following
definition of compute outlines the specification of the protocol’s STSs:

compute :: Alternative f ⇒ ([Int] → Int) → Protlet f S

compute f = RPC "compute" clientStep serverStep

where

clientStep s = case s of

ClientInit server args → Just (server, args, ClientDone)

_ → Nothing

serverStep args s = case s of

ServerReady → Just ([f args], ServerReady)

_ → Nothing

As per its type, compute takes a client-provided function of type [Int] → Int,
which is used by the server to perform calculations. The result of compute is of
type Protlet f S, where S is the data type of our STS states defined just above
and f is an instance encapsulating a possible non-determinism in a protocol
specification. Later constructions will make integral use of non-determinism to,
e.g., decide on the next transition depending on the external inputs, and the
parameter f serves to restrict what notion of non-determinism is used in the
definition of protocols.4 For now, the result of compute is entirely deterministic.

Protlets (aka “small protocols”) are the main building blocks of our frame-
work. A distributed protocol can be thought of as a family of protlets, each of
which corresponds to a logically independent piece of functionality and can be
captured by a fixed interaction pattern between nodes. In a system, each node
can act according to one or more protlets, executing the logic corresponding to

3 See the discussion of executing specification in Sect. 3.
4 One can think of any protocol, whose diagram has a fork, as non-deterministic.

174 K. J. A. Andersen and I. Sergey

them sequentially, or in parallel. For this example, there is just the one exchange
of messages, so a single protlet makes for the complete protocol description.

Our framework provides several constructors to build protlets from the data
type description for the protocol state space and the operational semantics of
its transitions. In the example above, RPC is a data constructor, which encodes
the protlet logic by means of two functions. Its first argument, clientStep,
prescribes that from ClientInit state, a node can send args to node server,
and the response payload is later wrapped via ClientDone to form the succesor
state. The second argument, serverStep, says that the state ServerReady can
serve a request in one step: receiving args and responding with f args in a
singleton list, continuing in the same state. We have now completely captured
the above intuitions and transition system of the calculator in less than ten lines
of Haskell.

2.3 Executing the Specification

The immediate benefits of having an executable operational specification of a
protocol is to be able to run it, locally and without needing full deployment
across a network, ensuring that it satisfies basic sanity checks and more complex
invariants.

The execution model for protlets is a small-step operational semantics, with
the granularity of transitions being that of the involved protlets. We take as
machine configurations the entire network of nodes and their abstract states.

In case several protlets of a similar shape are involved (e.g., a node is involved
in two or more RPCs), we distinguish them by introducing protlet labels, a solu-
tion that is standard for program logics for concurrency [4,23]. Having intro-
duced protlet labels, we can logically partition the local state of each node
along the protlet instance space, maintaining a local state portion “per protlet”,
per node. We represent this operational machine configuration as the datatype
SpecNetwork, which is a record data structure maintaining an environment of
protlets (indexed by their associated labels) and a protlet state for each node
and protocol instance, so that the operational semantics changes one node’s one
protlet’s state at a time. The following code creates a network for the calculator
protocol with two nodes (identified by 0 and 1), both running just one protlet
(labelled with 0), for the input for the example from Sect. 2.1:

addNetwork :: Alternative f ⇒ SpecNetwork f S

addNetwork = initializeNetwork nodeStates protocols

where

nodeStates = [(0, [(0, ServerReady)])

, (1, [(0, ClientInit 0 [3, 100, 20])])]

protocols = [(0, [compute sum])]

In any given network configuration, many actions can be possible. A node
may be ready to initiate an RPC, or it might be ready to receive a message—
many such actions may be enabled and relevant at once.5 As the purpose of

5 And their abundance is precisely why reasoning about distributed systems is hard.

Distributed Protocol Combinators 175

running the specification is to trace the possible behaviors in the protocol, we
choose the next action to execute in the network by leaving the resolution to
the user of the semantics. To do so, we implement the executable small-step
relation as a monad-parameterised function capturing the possibility of non-
determinism (hence Alternative f). This makes the implementation of the
operational semantics simple, yet general, as it just needs to describe an f-ary
choice or f-full collection of transitions at each step:

step :: (Monad f, Alternative f) ⇒ SpecNetwork f s → f (SpecNetwork f s)

The network can be “run” by iterating this small-step execution function with
a suitable instance of f, a standard construction in implementation of a non-
determinism in monadic interpreters.

For example, we can instantiate the non-determinism to the classic choice of
the list monad [17], which leads to enumerating every possible action. We can
then iterate the function step by choosing a random possible transition, as in
the following interaction with the library, where we explore the “depth” of a
single run of the protocol.

> length <$> simulateNetworkIO addNetwork

4

This is coherent with the first example we envisioned wrt. the protocol: there
is (1) the initial state; (2) the state with the client awaiting response, but the
message undelivered; (3) the state with the client waiting and the server having
sent a response; and finally, (4) a terminal state with the client done.

The non-determinism can be similarly resolved by enumerating all possible
paths through a protocol, up to a certain trace length if the execution space is
not finite. If the state space of a network is finite, this can yield actual finite-
space model checking procedures. In the following subsection, we will explore
another alternative to resolving the non-determinism, yielding an unusual yet
very useful execution method.

2.4 Interactive Exploration with GUI

Fig. 2. The interactive exploration tool, loaded with
the calculator protocol.

By delegating the decision
of which transition to fol-
low to the user of an appli-
cation that performs this
simulation, we can allow
the client of the frame-
work to explore the network
behaviour interactively. The
DPC library provides a
command-line GUI applica-
tion facilitating interactive

176 K. J. A. Andersen and I. Sergey

exploration of distributed networks step-by-step. Provided an initial network
specification like the one described previously, one can start the session by typ-
ing the following:

> runGUI addNetwork

This yields the interface displayed in Fig. 2. By choosing specific transitions in
sequence, the user can evolve and inspect the network at each step of execution.
This is useful for protocol design and debugging, and can help understand the
dynamics of a protocol, and the kinds of communication patterns it describes

For example, in Fig. 3 we show the subsequent prompt after showing the
selection of Option 1:

SentMessages 0 1 [Message {_msgFrom = 1, _msgTag = "compute__Request",...

SentMessages is a human readable piece of data that represents the option of
sending in protocol instance 0, from node 1 the message with sender 1 of tag
"compute__Request". Here, the recipient and message content is elided for issues
of screenspace, but as the window is enlarged, so is the depth of information
provided.

The state view is then shows that Node 0 now has said message waiting for
it in the soup, and Node 1 is now blocking. The user is then presented with
subsequent possible choices, here the option for the calculator to receive the
request and send the response in one atomic action, as dictated by the protocol.

Fig. 3. Choosing option 1 in the prompt from Fig. 2.

Additionally, as can be
seen in Fig. 2, in the inter-
active tool we enrich the
possible transitions at every
step with the possibility of a
node to go off-line. In effect,
it means it will stop pro-
cessing messages, modelling
a benign (non-byzantine)
fault. Other nodes cannot
observe this and will “perceive” the node as not responding. This, however,
becomes very useful when we move to explore protocols that allow for partial
responses among a collection of nodes, as in the case of crash-resilient consen-
sus protocols.

2.5 Protocol-Aware Distributed Implementations

Distributed systems protocols serve as key components of some of the largest
software systems in use. The actions taken in the protocol are governed by
programs outside the key protocol primitives, so it is vital that implementations
can integrate with software components in real general-purpose languages. We
here present such a language with primitives for sending and receiving messages
as an embedded domain-specific language (EDSL) in Haskell. This allows use
of the entire Haskell toolkit in engineering efficient optimised implementations
relying on distributed interaction.

Distributed Protocol Combinators 177

Naturally, as implementations deviate from the protocols (in the way they,
e.g., implement internal state), we want to ensure that the they still adhere to
the protocol as specified. To achieve this, we introduce primitives for annotat-
ing implementations with protocol-specific assertions. These annotations can be
ignored by execution-oriented interpretations aiming for efficiency rather than
verification guarantees.

The following code implements a calculator server in plain Haskell using
do-notation to sequence effectful computations. The effects are described by
type class constraints: MessagePassing provides a send and receive primitive,
and ProtletAnnotations providing the enactingServer primitive, explained
below.
addServer :: (ProtletAnnotations S m, MessagePassing m) ⇒ Label → m a
addServer label = loop
where

loop = do
enactingServer (compute sum) $ do

Message client _ args _ _ ← spinReceive [(label, "Compute__Request")]
send client label "Compute__Response" [sum args]

loop

By using type classes describing operations, we allow for several different inter-
pretations of this code. For instance, by interpreting the send and receive as
POSIX Socket operations, we obtain a subroutine in the IO Monad, Haskell’s
effectful fragment, that we can integrate into any larger development with no
interpretive overhead. The spinReceive operation is defined using recursion
and a primitive receive operation that attempts to receive an incoming mes-
sage with a tag from amongst a list of canididate message tags in a non-blocking
manner.

The body of addServer is annotated with a (compute sum) protlet, enforcing
that the server responds to the client atomically (in terms of message passing)
and to perform the sum function (or something observationally equivalent) on the
supplied arguments. By bracketing the receive and send in the enactingServer
primitive, the implementation declares its intent to conform to the server role of
the RPC, as dictated by the protocol. Once we have a client to play the other role
in the protocol, we will demonstrate how this intent can be checked dynamically.
The message tags that appear in the code are by convention the tags used in the
RPC protocol, i.e., the name of the protocol with a suffix indicating the role in
the RPC that the message plays.

In contrast Disel and other static verification frameworks that enforce pro-
tocol adherence via (dependent) type systems (embedded in Coq or other proof
assistants) [11,24], we verify protocol properties dynamically. The tradeoff is that
of coverage versus annotation and proof overhead. We can, through exploiting
executable specifications, check that a single run of a program adheres to a pro-
tocol. Notice that addServer is, like the specification of the compute protlet,
agnostic in the number and kinds of other nodes in the network. Its behaviour is
locally and completely described by its implementation, and is segregated from
interfering with unrelated protlets via the label parameter. We refer the reader
to the development for a number of client component implementations.

178 K. J. A. Andersen and I. Sergey

Let us now reap the benefits of protocol-aware distributed programming
enabled by DPC and dynamically check that the implementations do indeed
follow the abstract protocols. We achieve this by interpreting the EDSL into a
datatype of abstract syntax trees (AST) that makes it possible to inspect their
evaluations at run time. We give a small-step structural operational semantics
to this language, and, precisely like the exectuable specifications, lift the evalu-
ation of a single program to that of an entire network of programs, by assigning
each program a node identifier in the network. Here, the global state (of type
ImplNetwork m Int, with m constrained as in addServer/addClient) is just the
message soup, and the node-local state is the program itself. Such an evaluation
is implemented by the following function.

runPure :: ImplNetwork (AST s) a →
[(TraceAction s, ImplNetwork (AST s) a)]

Here, the AST data type is the HOAS AST for message-passing implementa-
tions to be interpreted. The result of running the network is a (possibly infinite)
list of TraceActions and the network configurations they lead to. We can simu-
late a full run of the network by taking the last network in this list, provided the
network terminates. Messages can be examined by considering the soup compo-
nent at every step of evaluation.

We can verify that our implementation indeed adheres to the desired protocol
by the trace produced by runPure on a network configuration, ensuring that (a)
every observable action is compatible with the state that the node is supposed
to be in, and (b) checking the messages expected from these states. For this, we
implement yet another operational semantics, where the machine configuration
is a protocol state for every node id, and the program is a trace of primitive
actions. The interpreter faults if the current action is not applicable to the state,
or sends or receives messages not prescribed by the specification. We can run the
adherence checker on a prefix (e.g., of length 15) of the infinite trace as follows:

> checkTrace addNetwork $ fmap fst . take 15 $ runPure addConf

Right ()

The result of Right () indicates success: the trace did indeed conform to the prot-
let annotations of the program, assuming the initial state of the implementations
in addConf assumed an initial abstract state corresponding to the the network
state of addNetwork.

What happens if we introduce a mistake in the implementation? For instance,
if we erroneously annotate the server as intending to serve a product function
(instead of sum), we will fail protocol adherence, because the specification does
not agree on the content of the messages. In a different scenario, if we run the
client implementation twice, the checker would report an error, as this is not
allowed by the protocol: the client would have brought itself to the terminal
state ClientDone by the first RPC, and, hence, cannot proceed. By enriching
dynamic testing with protocol adherence checks we believe we can achieve greater
assurances of the correctness of our implementations without resorting to use
full-blown verification frameworks [8,24].

Distributed Protocol Combinators 179

3 Framework Internals

3.1 The Specification Language

A full distributed system specification consists of a collection of nodes, each
assigned a unique node identifier, and a collection of protlets for each instance
label. A node owns local state, partitioned according to protocol instance labels.
A protlet describes one exchange pattern between parties. A collection of protlets
over the same state space then describe an entire protocol.

In the overview we saw the simplest protlet, the pure RPC, but through
exploration of examples and case studies, we have discovered a number of such
patterns, each more general than the previous. These are implemented as exten-
sions to the Protlet data type. One such is the broadcast protlet, integral for
describing multi-party protocols.6

data Protlet f s =
| RPC String (ClientStep s) (ServerStep s)

| Broadcast String (Broadcast s) (Receive s) (Send f s)

| ...

The component functions of the protlets reuse a number of common type abbre-
viations, here ClientStep, Send etc. All are at work in the above listing. This
common structure unifies their implementation in the operational semantics.
The expansion of, e.g., the Broadcast synonym is as follows:

type Broadcast s = s →
Maybe ([(NodeID, [Int])], [(NodeID, [Int])] → s)

This models a “partial” function on states s, saying under which conditions a
node can initiate a broadcast, by enumerating the recipients and the body of
the messages to them, along with a continuation processing the received answers
with their associated senders. This continuation is stored in the implicit blocking
state during actual execution of the specification.

The specification language is given a non-deterministic operational semantics
as described in Sect. 2.3. Recall the network step function:

step :: (Monad f, Alternative f) ⇒
SpecNetwork f s → f (SpecNetwork f s)

It is implemented by computing an f-full of possible transitions for every node
in the network and combining the result of taking all possible transitions on the
current network. The key operation of step is a dispatch on the current protocol
state of a node:

case state of

BlockingOn _ tag f nodeIDs k →
resolveBlock label tag f nodeID inbox nodeIDs k

Running s → do

protlet ← fst <$> oneOf (_globalState Map.! label)

stepProtlet nodeID s inbox label protlet

6 We elide the other protlet constructors, which can be found in our implementation.

180 K. J. A. Andersen and I. Sergey

The constructors BlockingOn and Running are supplied by the framework. The
first is used to track the terms under which a node is blocking: what message(s)
it needs to continue and from whom. resolveBlock computes whether the con-
ditions are met for the current node to continue.

Here, _globalState is the mapping of collections of protlets (i.e., a protocol)
from instance labels. We then choose between protlets using oneOf :: [a]→f a.
stepProtlet dispatches control based on a case distinction on the protlet con-
structor: for example, here is the branch for the Broadcast protlet:
stepProtlet :: (Monad m, Alternative m) ⇒

NodeID → s → [Message] → Label → Protlet m s → m (Transition s)
stepProtlet nodeID state inbox label protlet = case protlet of

...
Broadcast name broadcast receive respond →

tryBroadcast label name broadcast nodeID state inbox <|> -- (1)
tryReceive label (name ++ "__Broadcast") receive nodeID state inbox <|> -- (2)
trySend label respond nodeID state inbox -- (3)

...

A node attempting to advance a protocol using the Broadcast protlet can do
so if it is (1) a client ready to perform a broadcast; (2) a server ready to receive
such a broadcast; or (3) a server that is ready to respond to a broadcast. The
try functions all follow the same structure: check that the user-provided protlet
component functions apply, and if so, generate an appropriate transition. For
instance, here is the signature of one such function for Broadcast:

tryBroadcast :: Alternative f ⇒ Label → String → Broadcast s →
NodeID → s → [Message] → f (Transition s)

Interpretations of Protocols. As described in Sect. 2.3, the operational semantics
of protocols can be instantiated to obtain different interpretations. We here look
at bounded model checking mentioned in passing in the overview. We can use
the List monad to enumerate all execution paths in a breadth-first manner:

simulateNetworkTraces :: SpecNetwork [] s → [[SpecNetwork [] s]]

This yields a list-of-lists where the nth list contains all possible states after
n steps of execution, in a breadth first enumeration of the state space. Each
constituent list of states is necessarily finite, but the list-of-lists need not be in
the case of infinite network executions. By virtue of Haskell’s lazy evaluation,
such a computational object is useful. We can then write a procedure that, given
a trace, applies a boolean predicate at every step of the trace.

checkTrace :: Invariant m s Bool → m → [SpecNetwork f s] → Either Int ()

The Invariant data type is an abbreviation for a boolean predicate on the type
s that additionally takes some “meta-data” m, like“roles” in a protocol, needed
to express the invariant. The procedure checkTrace returns Right () to signify
that there were no violations of the invariant, while it returns Left n to report
that the nth state was the first state to violate the invariant. With this language
of predicates we can build invariants and with the aforementioned checking pro-
cedure we can perform (bounded) checking that an invariant is in fact inductive
(i.e., holds for each state). In the case of a finite state space, this amounts

Distributed Protocol Combinators 181

to real verification of inductive invariants. The most sophisticated example we
have successfully specified is an inductive invariant for a Two-Phased Commit
protocol [24], for which we refer the curious reader to the implementation.

3.2 The Implementation Language

The monadic language for message-passing programs is implemented as an EDSL
in Haskell. This has the benefit of providing all the standard tools for writing
Haskell programs; all the abstraction mechanisms and organisational principles
are at hand to write sophisticated software, including lazy evaluation, higher-
order functions, algebraic data types and more. By virtue of the modularity
offered by the approach of EDSLs, it is straightforward to give multiple inter-
pretations of such programs.

At the time of this writing DPC’s implementation fragment came with three
interpretations of the monadic interface:

1. The AST monad used for dynamic verification of implementation adherence
of the implementations to protocols, and covered in detail in Sect. 2.5.

2. A shared-memory based interpretation where nodes are represented as
threads, and message passing is performed by writing to shared message
queues using non-blocking concurrency primitives.

3. An interpretation for distributed message passing.

In the third case (true distribution), we give an interpretation into IO com-
putations performing message passing through POSIX Sockets. For this, each
computation needs an “address book” mapping NodeIDs to physical addresses
(concretely, IP adresses and ports). Additionally, each program will have access
to a local mailbox, represented by a message buffer being filled by a local thread
whose only function is to listen for messages. These two pieces of data are col-
lected in a record of type NetworkContext. Computations running in such a
context are captured in a type synonym over the ReaderT monad transformer:

newtype SocketRunnerT m a = SocketRunnerT {

runSocketRunnerT :: ReaderT NetworkContext m a }

What follows is the implementation of the send primitive in this particular
instance of the message-passing interface:

instance (MonadIO m) ⇒ MessagePassing (SocketRunnerT m) where

send to lbl tag body = do

thisID ← this

let p = encode $ Message thisID tag body to lbl

peerSocket ← (!to) <$> view addressBook

void . liftIO $ Socket.send peerSocket p mempty

The code for sending messages is, thus, implemented in a form of a Reader-like
computation over an IO-capable monad m as indicated by the MonadIO constraint.
It starts by building a Message containing the supplied tag, body, receiver (to)
and label, along with the executing nodes ID, as supplied by another primitive,

182 K. J. A. Andersen and I. Sergey

this. It then uses encode to serialize this message into bytestring p. p is then
sent to the appropriate peerSocket, as resolved by the addressBook, using
the System.Socket.Send operation from the POSIX Socket library for Haskell.
The monadic glue code (and the rest of the Haskell toolkit) is interpreted by
choosing an appropriate base monad for the interpretation, e.g., the IO monad.
Ultimately, we build the following function for running the system:

defaultMain :: NetworkDescription → NodeID → SocketRunner a → IO ()

It takes a NetworkDescription, which maps NodeIDs to physical addresses,
a NodeID with which to identify this node, and a computation in the above
described interpretation of message passing programs. The result is an IO()
computation that establishes (if run on each machine) a fully connected mesh
network with every node in the supplied network description, and then proceeds
to run the supplied computation, passing messages accordingly. This interpre-
tation can be used to facilitate integration of DPC-based implementations with
real Haskell code once they have been assured to comply with their protocols.

4 Evaluation

The implementation of DPC is publicly available online for extensions and exper-
imentation.7 We now report on our experience of using DPC for implementing
and validating some commonly used distributed systems.

4.1 More Examples

In order to evaluate the framework, we have encoded a number of textbook
distributed protocols, translating their specifications to the abstractions of DPC.
By doing so, we were aiming to answer the following research questions:

1. Are our Protlet-based combinator sufficiently expressive to capture a variety
of distributed systems from the standard literature in a natural way?

2. Is it common to have realistic protocols that require more than one combi-
nator, i.e., can be efficiently decomposed into multiple Protlets?

3. What is the implementation burden for encoding systems using DPC?

The statistics for our experiments is summarised in Table 1.
The framework has been shaped by the explorations of protocols that we

have made, but we believe that the answer to Q1 is affirmative, supported by the
variety of protocols we have so far explored. The answer to Q2 is also affirmative.
Complex protocols from literature decompose into interactions shaped as RPCs,
notifications, etc, and we manage to capture all of them in protlets. Simply put,
for every arrow in a diagram of the network indicating a communication channel,
the protocol has a protlet detailing the exchanges occuring across that channel.
For instance the two-phase protocols like Paxos and Two-Phase Commit (2PC)

7 https://github.com/kandersen/dpc.

https://github.com/kandersen/dpc

Distributed Protocol Combinators 183

Table 1. A summary for implemented systems: protocol, runnable implementation,
count of constituent protlets, size of encoding (lines of code), employed combinators.

Protocol Impl Protlets LOC RPC ARPC Notif Broad OneOf Quorum

Calculator � 1 10 � � �
Lock Server 4 73 � � �
Concurrent Database 3 23 �
Two-Phase Commit 2 43 �
Paxos � 2 42 �

naturally decompose into two broadcast/quorum phases, while more asymmetric
protocols like distributed locking [10] requires as many as four protlets.

Regarding Q3, the lines of code versus complexity of protocol are indicative
of a positive relationship between complexity and effort to encode a protocol,
which is desireable. That is, a lot of complexity is encapsulated by the treatment
of combinators, so the coding effort in the framework is very light.

The nature of the verification that the framework enables is naturally not
strictly sound (as it is dynamic), but techniques like bounded model checking
are readily explorable. With it, we have been able to validate, e.g., correctness
for the 2PC protocol [24], a not an insignificant proof burden.

The framework also affords exploration in other directions than we have
mentioned so far. We have experimented with enriching the message passing
language with operations for shared-memory concurrency and thread-based par-
allelism. The database example in the table uses node-local threads to maintain
a database that is served by two different threads. Our approach to dynamic
checking of protocol adherance scales to concurrency, and we have a concurrent
Calculator server serving multiple arithmetic functions in parallel.

4.2 A Case Study: Constructing and Running Paxos Consensus

For a representative exploration of the capabilities of DPC we turn to a study
of the Paxos Consensus [2,6,12]. Paxos solves a problem of reaching a consensus
on a single value agreed upon across multiple nodes, of which a subset acts as
proposers (who suggest the values) and another, complementary subset acts as
acceptors (who reach an agreement). The nature of the Paxos algorithm lends
itself well to interactive exploration and the specification should be robust to
issues that appear specifically in distributed systems, like arbitrary interleaving
of messages, message reorderings, and nodes going offline. The tools we have
developed so far are enough to explore these aspects of the protocol.

184 K. J. A. Andersen and I. Sergey

We can specify this protocol in DPC with relatively little code. We further
generalise the Broadcast combinator to “quorums”—broadcasts that await only
a certain number of responses before proceeding. We introduce another entry in
our Protlet datatype for capturing this pattern.

data Protlet f s = ...

| Quorum String Rational (Broadcast s) (Receive s) (Send f s)

The Quorum protlet is and acts identical to the Broadcast protlet, but it is
further instrumented by a rational number indicating the number of responses
to await before proceeding. We encode the dissection of nodes into proposers
and acceptors directly in the state of the protocol, similar to how we dissected
the state space of the cloud server along Client/Server lines. The proposer starts
in (ProposerInit b v as) with the desire to propose to acceptors as the value
v with priority (ballot) b. We encode this with a quorom protlet:
prepare :: Alternative f ⇒ Label → Int → Protlet f PState
prepare label n = Quorum "prepare" ((fromIntegral n % 2) + 1) propositionCast ...

where
propositionCast = λcase

ProposerInit b v as → Just (zip as (repeat [b]), propositionReceive b v as)
_ → Nothing

Here, prepare is parameterised by the number of participants. Hence, the protlet
dictates we should wait for a majority quorum, to avoid ties in the system. The
listing shows the initiation of the first broadcast as representative of the rest of
the implementation. The proposer starts in an ProposerInit state, in which it
initiates a broadcast poll of all as acceptors, sending its ballot b.

The second phase of the protocol is encoded as another Quorum protlet, where
the proposers react to the outcome of the responses on the first polling. The
interactive exploration tool can be used to explore, for instance, the robustness
of the protocol with respect to crashing participants versus crashing proposers,
and why a quorum size of

(
n
2 + 1

)
acceptors is sufficient for reaching consensus.

The explored implementation demonstrates use of the state monad to organ-
ise the acceptor as an effectful program, and a callback to provide the ballot to
the proposer, using features of Haskell, while retaining the benefits of the frame-
work. Neither effect is possible to express at the protocol specification level.

5 Related Work

Declarative programming for distributed systems. In the past five years, several
works were published proposing mechanised formalisms for scalable verification of
distributed protocols, both in synchronous [5] and asynchronous setting [24,27].
All those verification frameworks allow for executable implementations, yet the
encoding overhead is prohibitively high, and no abstractions for specific interac-
tion patterns are provided in any of them. Most of the DSLs for distributed sys-
tems we are aware of are implemented by means of extracting code rather than

Distributed Protocol Combinators 185

by means of a shallow DSL embedding [9,16,18]. Mace [9], a C++ language
extension and source-to-source compiler, provides a suite of tools for generating
and model checking distributed systems. DistAlgo [18] and Splay [16] extract
implementations from protocol descriptions.

In a recent work, Brady has described a discipline of protocol-aware pro-
gramming in Idris [1], in which adherence of an implementation to a protocol is
ensured by the host language’s dependent type system, similarly to Disel, but
in a more lightweight form. That approach provides strong static safety guar-
antees; however, it does not provide dedicated combinators for specific protocol
patterns, e.g., broadcasts or quorums.

DPC’s protlets adapt DISEL’s protocols, that are phrased exclusively in
terms of low-level send/receive commands, which should be instrumented with
protocol-specific logic for each new construction. While it is possible to derive
DPC’s protlets in Disel, extracting them and ascribing them suitable types
requires large annotation overhead.

6 Conclusion and Future Work

Declarative programming over distributed protocols is possible and, we believe,
can lead to new insights, such as better understanding on how to structure
systems implementations. Even though there are several known limitations to
the design of DPC (for instance, in order to define new combinators, one needs
to extend Protlet), we consider our approach beneficial and illuminating for the
purposes of prototyping, exploration, and teaching distributed system design.

In the future, we are going to explore the opportunities, opened by DPC, for
randomised protocol testing and lightweight verification with refinement types.

Acknowledgements. We thank PADL’19 referees for their many helpful suggestions.
The authors’ work on this project has been supported by the grant by UK Research
Institute in Verified Trustworthy Software Systems (VeTSS).

References

1. Brady,E.: Type-driven development of concurrent communicating systems. Com-
put. Sci. (AGH), 18(3) (2017)

2. Chandra, T., Griesemer, R., Redstone, J.: Paxos made live: an engineering per-
spective. In: PODC (2007)

3. Coq Development Team. The Coq Proof Assistant Reference Manual (2018)
4. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-

current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol.
6183, pp. 504–528. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14107-2 24

5. Dragoi, C., Henzinger, T.A., Zufferey,D.: PSync: a partially synchronous language
for fault-tolerant distributed algorithms. In: POPL (2016)

6. Garćıa-Pérez, Á., Gotsman, A., Meshman, Y., Sergey, I.: Paxos consensus, decon-
structed and abstracted. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp.
912–939. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89884-1 32

https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-319-89884-1_32

186 K. J. A. Andersen and I. Sergey

7. Gray, J.N.: Notes on data base operating systems. In: Operating Systems (1978)
8. Hawblitzel, C., et al.: IronFleet: proving practical distributed systems correct. In:

SOSP (2015)
9. Killian, C.E., Anderson, J.W., Braud, R., Jhala, R., Vahdat, A.M.: Mace: language

support for building distributed systems. In: PLDI (2007)
10. Kleppmann, M.: How to do distributed locking, 08 February 2016. https://martin.

kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
11. Krogh-Jespersen, M., Timani, A., Ohlenbusch, M.E., Birkedal, L.: Aneris: a logic

for node-local, modular reasoning of distributed systems (2018, unpublished draft)
12. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169

(1998)
13. Lamport, L.: Paxos made simple (2001)
14. Alford, M.W., et al.: Formal foundation for specification and verification. In: Paul,

M., Siegert, H.J. (eds.) Distributed Systems: Methods and Tools for Specification.
An Advanced Course. LNCS, vol. 190, pp. 203–285. Springer, Heidelberg (1985).
https://doi.org/10.1007/3-540-15216-4 15

15. Lampson, B.W.: How to build a highly available system using consensus. In:
WDAG (1996)

16. Leonini, L., Riviere, E., Felber, P.: SPLAY: distributed systems evaluation made
simple (or how to turn ideas into live systems in a breeze). In: NSDI (2009)

17. Liang, S., Hudak, P., Jones, M.P.: Monad transformers and modular interpreters.
In: POPL (1995)

18. Liu, Y.A., Stoller, S.D., Lin, B., Gorbovitski, M.: From clarity to efficiency for
distributed algorithms. In: OOPSLA (2012)

19. Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: depen-
dent types for imperative programs. In: ICFP (2008)

20. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon web services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

21. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 1

22. P̂ırlea, G., Sergey, I.: Mechanising blockchain consensus. In: CPP (2018)
23. I. Sergey, A. Nanevski, and A. Banerjee. Mechanized verification of fine-grained

concurrent programs. In PLDI, 2015
24. Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and proving with distributed

protocols. In: PACMPL(POPL), vol. 2 (2018)
25. van Renesse, R., Altinbuken, D.: Paxos made moderately complex. ACM Comp.

Surv. 47(3), 42 (2015)
26. Wilcox, J.R., Sergey, I., Tatlock, Z.: Programming language abstractions for mod-

ularly verified distributed systems. In: SNAPL (2017)
27. Wilcox, J.R., et al.: Verdi: a framework for implementing and formally verifying

distributed systems. In: PLDI (2015)

https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://doi.org/10.1007/3-540-15216-4_15
https://doi.org/10.1007/3-540-44802-0_1

Creating Domain-Specific Languages
by Composing Syntactical Constructs

Viktor Palmkvist(B) and David Broman

KTH Royal Institute of Technology, Stockholm, Sweden
{vipa,dbro}@kth.se

Abstract. Creating a programming language is a considerable under-
taking, even for relatively small domain-specific languages (DSLs). Most
approaches to ease this task either limit the flexibility of the DSL or con-
sider entire languages as the unit of composition. This paper presents a
new approach using syntactical constructs (also called syncons) for defin-
ing DSLs in much smaller units of composition while retaining flexibility.
A syntactical construct defines a single language feature, such as an if

statement or an anonymous function. Each syntactical construct is fully
self-contained: it specifies its own concrete syntax, binding semantics,
and runtime semantics, independently of the rest of the language. The
runtime semantics are specified as a translation to a user defined tar-
get language, while the binding semantics allow name resolution before
expansion. Additionally, we present a novel approach for dealing with
syntactical ambiguity that arises when combining languages, even if the
languages are individually unambiguous. The work is implemented and
evaluated in a case study, where small subsets of OCaml and Lua have
been defined and composed using syntactical constructs.

1 Introduction

Designing and implementing user friendly domain-specific languages (DSLs)
requires both extensive programming language knowledge and domain exper-
tise. Instead of implementing a DSL compiler or interpreter from scratch, there
are several approaches for developing new DSLs more efficiently. For instance,
a language can be defined by compiler construction [8] or preprocessing tem-
plate tools [3,20] that translate a DSL program into another language with well
defined syntax and semantics. Another alternative is to embed [14] the DSL into
another host language, thus reusing the language constructs directly from the
host language. Such an approach, often referred to as embedded DSLs, has been
used in various domains [1,2,11,24,27].

New language constructs can, for instance, be implemented using host lan-
guage constructs that lifts programs into data [4,19], or by using various forms of
macro systems [23]. A macro defines a new construct by expanding code into the
host language, thus giving the illusion of a new language construct without the
need to redefine the underlying language. The sophistication of a macro system

c© Springer Nature Switzerland AG 2019
J. J. Alferes and M. Johansson (Eds.): PADL 2019, LNCS 11372, pp. 187–203, 2019.
https://doi.org/10.1007/978-3-030-05998-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05998-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-05998-9_12

188 V. Palmkvist and D. Broman

varies from simple text expansion systems to systems using hygienic macros that
enable correct name bindings [6,9] and macro systems with static types [13,16].

Macro systems enable rapid prototyping of language constructs, but the con-
crete syntax of a macro tends to be limited to the syntax of the language, e.g.,
Lisp macros look like Lisp. On the other hand, compiler construction tools, such
as parser generators and transformation frameworks, enable a higher degree of
flexibility in terms of syntax, but do not directly give the same composability
properties; the smallest unit of reuse tends to be a language, in contrast with
macros, which are more fine-grained.

In this paper, we develop the concept of syntactical constructs (also called
syncons for short) that enables both composable language constructs and syntac-
tic freedom. In contrast to current state-of-the-art techniques, the composability
is fine-grained, at the language construct level. That is, instead of composing
complete DSLs, syncons enable composability of individual language constructs.
A syncon defines a single language feature, such as an if statement or an anony-
mous function. Each syncon specifies its own syntax, binding semantics, and
runtime semantics, independently of the rest of the language. The semantics are
defined using a translation into another target language, similar to macros.

However, fine-grained composability introduces further challenges regarding
unambiguous parsing. For instance, composing two individual language con-
structs picked from two different languages may create an ambiguous language as a
result, even if the two languages are individually unambiguous. The approach pre-
sented in this paper uses general context-free grammars for syntactical flexibility,
which presents a problem: static ambiguity checking for context-free grammars is
undecidable [5]. A novel aspect of our approach is dynamic ambiguity checking,
which means that errors are encountered and reported at parse time, similarly to
how dynamically typed languages present type errors at runtime.

As part of our work, we have designed and implemented a prototype sys-
tem for creating languages using the syncon approach. We make no assumptions
about the target language, but for the purposes of evaluation, we have imple-
mented a small interpreted language to fill this role. Figure 1 shows a high-level
overview of our approach, where the different Sects. 2, 3 and 4 are highlighted
with dashed lines. More specifically, we make the following main contributions:

– We explain the key idea of the syncon concept, as well as how the concrete
syntax of a composed language is constructed. All parsing operations are
performed by first constructing a context-free grammar, which is then handed
to a general parser (Sect. 2).

– We motivate why dynamic ambiguity checking is, in some cases, preferable
to fully unambiguous languages, and explain our approach. Specifically, when
an ambiguity is encountered, the parser produces multiple parse trees, which
are examined in order to present a useful error message (Sect. 3).

– We implement name resolution and expansion (Sect. 4), and evaluate the
whole approach using a case study, where small subsets of OCaml and Lua
are defined using syncons. We show how language constructs in one language
can be extracted and composed into the other language (Sect. 5).

Creating Domain-Specific Languages by Composing Syntactical Constructs 189

Fig. 1. An overview of the various components of the system, and the sections that
explain them.

2 Defining Syncons

The central component in the approach presented in this paper is a syncon, short
for syntactical construct. Each syncon belongs to a single syntax type, similar
to how a value in a regular programming language belongs to a type. Figure 2a
shows an example that defines a slightly simplified version of a local variable
declaration in Lua. The definition consists of three parts: a header, a set of
properties, and a body.

Fig. 2. (a) A syncon implementing a basic form of a local variable declaration in Lua.
(b) Code in Lua with two local declarations that can be parsed using this syncon. (c)
A syncon implementing if, with most details elided.

190 V. Palmkvist and D. Broman

2.1 Header

The header (lines 1 through 3 in Fig. 2a) contains three things: the name of the
syncon (local), the syntax type to which it belongs (Statement), and a syntax
description (lines 2 and 3). Statement and Expression are user-defined syntax
types that define the syncon’s relation to the target language.

The syntax description of a syncon describes its concrete syntax. It is similar
to a production in Extended Backus Naur form (EBNF): it is a sequence of
quoted literals, syntax types (non-terminals), and repetitions (via ? for zero or
one, * for zero or more, or + for one or more). Parentheses are used for grouping
and have otherwise no effect on the described syntax.

The context-free grammar generated for parsing has one non-terminal per
user-defined syntax type, and one production (in EBNF) per syncon. Quoted lit-
erals and a few builtin syntax types (Identifier, String, Integer, and Float)
are terminals.

2.2 Properties

The properties of local (lines 5 and 6 in Fig. 2a) specify its binding semantics,
i.e., which names it introduces, and how they are available to other code. A
syncon can specify its binding semantics in two essentially orthogonal ways:

– As an adjacent binding; for instance, #bind x before or #bind x after. This
binds the identifier x in code appearing before or after the current syncon,
respectively. Line 5 of Fig. 2a states that x (from the syntax description on
line 2) is available only after the end of the local declaration. For example, b,
introduced on line 3 in Fig. 2b, is bound on line 4, but not on line 2 or 3.
The extent of an adjacent binding can be limited by a parent syncon specifying
a scope; for instance, #scope (e1 e2). This ensures that no adjacent binding
in subtrees e1 or e2 can be seen from the outside, while allowing both e1 and
e2 access to the bindings introduced in the other. The #scope declaration in
Fig. 2c ensures that no bindings introduced in the then branch are accessible
outside it.

– As a nested binding; for instance, #bind x in e. This binds identifier x in the
subtree represented by e.

Figure 3 shows the AST for the code in Fig. 2b. The dashed boxes denote the
regions covered by before and after in local b on line 3 in Fig. 2b. The region
in shows which regions could be covered by a #bind x in e declaration. The
horizontal bars represent scopes, which limit the extent of the adjacent bindings,
showing that if introduces a scope around each of its two branches. Had these
not been there, then before would have included true as well, while after
would have included the right-most block and all its descendants (i.e., the else
branch) as well.

Creating Domain-Specific Languages by Composing Syntactical Constructs 191

Fig. 3. The AST of the code in Fig. 2b.

Note that a single syncon may use any number of adjacent and nested binding
declarations, though usually with different identifiers. Adjacent bindings are, to
the best of our knowledge, novel, and give two advantages over purely nested
bindings:

1. Syncons may introduce bindings that can be used in a mutually recursive
way. For example, a pair of mutually recursive functions require the other
function to be in scope in its own body, but purely nested bindings can only
accomplish this for one of the functions.

2. The binding constructs common in imperative languages can be modeled
more simply. For example, the local declaration defined in Fig. 2a does not
contain the statements that follow it, which would be required if only nested
bindings were available.

The remaining properties are associativity and precedence, similar to most parser
generators, that transform the generated context-free grammar appropriately.

2.3 Body

The body of local, found on lines 7 through 11 in Fig. 2a, specifies how it is
translated to the underlying target language. The expansion is specified in a
small DSL with three kinds of constructs: variable references, folds, and syntax
literals. Variables are most commonly introduced in the syntax description in
the header (x and e on lines 2 and 3 in Fig. 2a, respectively). Folds are used to

192 V. Palmkvist and D. Broman

reduce a sequence of syntax trees to a single syntax tree. For example, the fold
on lines 10 and 11 in Fig. 2a has the following form:

The OCaml code to the right has the same meaning, but with more familiar
syntax. It is a left-fold, folding over the sequence e (which has length 0 or 1,
since it was introduced by ?). The accumulator is given the name “ ” (i.e.,
it is ignored), while the current element in the sequence reuses the name e.
The folding function is merely e, i.e., it ignores the accumulator and returns
the element as is. The initial value of the accumulator is a @unit value, which
models Lua’s nil. The end result is e if it is non-empty, and @unit otherwise. If
* or + is used in the syntax description, folds can also be done over longer lists.

A syntax literal is introduced by a syntax type and a backtick (BExpression‘
on lines 7 and 11 in Fig. 2a) followed by code with that syntax type. Code to be
run at expand-time can be spliced into a literal using one of several forms: ‘t()
for a user-defined syntax type (line 10 in Fig. 2a), ‘id() for an identifier (line 8
in Fig. 2a), ‘str() for a string, ‘int() for an integer, and ‘float() for a float.

BExpression is a syntax type in the target language, while defAfter, @ref,
@deref, and @unit are constructs in that language. The workings of these are
not relevant to the syncon approach, and are thus omitted.

The need to specify the syntax type of the syntax literal stems from a lack of
context. The issue is that the meaning of some pieces of syntax depend on their
context, even in a context-free language. For example, in OCaml,

let example [1] = [1]

contains the syntax “[1]” twice, first as a pattern, then as an expression. In a
syntax literal this context is absent, thus we require the language implementer
to specify the syntax type using, e.g., BExpression‘. Similarly, each spliced
expression must be tagged by syntax type.

3 Ambiguity Reporting

This section first argues that a dynamic check is in some cases preferable to an
unambiguous grammar, which is followed by an explanation of our approach.

Creating Domain-Specific Languages by Composing Syntactical Constructs 193

3.1 Motivation

Consider the following nested match-expression in OCaml:

1 let result = match 1 with
2 | 1 -> match "one" with
3 | str -> str
4 | 2 -> "two"

The compiler reports a type error, stating that line 4 matches a value of type
int, but expects a value of type string. The compiler sees the match-arm on
line 4 as belonging to the match on line 2, rather than the one on line 1, which
is what the programmer intended. This happens because OCaml has no layout
rules—the indentation has no impact on the semantics of the program—and the
compiler assigns every match-arm to the closest match, resulting in a type error.
Instead, the appropriate solution is to surround the inner match-expression with
parentheses, which has nothing to do with the types of the patterns. Dynamic
ambiguity checking can instead detect this case as an ambiguity and present
it as such, yielding a clearer error message. We return to this example in the
evaluation in Sect. 5.

3.2 Finding Ambiguities

In the case of ambiguous source code, the parser will produce multiple parse
trees, a so called parse forest. This is a programmer error, so the system must
produce a useful error message. In particular, it is insufficient to merely say ”the
source code is ambiguous” since the ambiguity likely involves a very limited
portion of the code. Additionally, once we have isolated the truly ambiguous
portions of the source code, we must present the different interpretations in
an understandable way. This subsection considers the former problem, while
Sect. 3.3 deals with the latter.

To aid in our discussion, consider the following parse forest, produced by pars-
ing “1 + 2 * 3 * 4” when we have defined precedence but not associativity:

add1:7(11, mul3:7(23, mul5:7(35, 47))) add1:7(11, mul3:7(mul3:5(23, 35), 47))

The subscripts signify the source code area covered (henceforth referred to as the
range of the parse tree). We see that the two parse trees share some structure:
both have the form add1:7(11, mul3:7(,)). The addition is thus unambiguous
and we wish to report only the multiplication as ambiguous. In particular, we
can find a parse forest for the range 3 : 7 whose parse trees appear as descendants
in the full parse forest:

mul3:7(23, mul5:7(35, 47)) mul3:7(mul3:5(23, 35), 47)

194 V. Palmkvist and D. Broman

We will refer to such a parse forest as a subforest.
Finding an ambiguity is now equivalent to finding a subforest whose parse

trees differ, while the full ambiguity report selects a set of such subforests.
We require three helper functions before the actual algorithm. First, we will

consider two parse trees to be shallowly equal (written =s) if they only differ in
their children (or do not differ at all). For example, add1:3(1, 2) =s add1:3(4, 5),
but add1:4(1, 2) �=s add1:3(4, 5) (different range) and add1:3(1) �=s add1:3(1, 2)
(different number of children). Second, children(t) denotes the children of the
syntax tree t, while children(t)i is the ith child of t, going left to right. Third,
range(t) is the range of the syntax tree t. The algorithm involves three steps,
starting with the complete parse forest as the input F :

The first step checks that all trees are shallowly equal, the second step extracts
all direct subforests, and the third recurses on those subforests. If either of the
first two steps fail, then we can find no smaller subforest for the current range,
thus we return F .

Applying this to the example, we quickly find that the forest only con-
tains trees that are shallowly equal (step 1), and it has two subforests: {11}
and {mul3:7(23, mul5:7(35, 47)), mul3:7(mul3:5(23, 35), 47)} (step 2). The former is
trivially unambiguous, but the latter is not: while the trees are shallowly equal
(step 1), we cannot extract subforests (step 2), since the children do not cover
the same range.

3.3 Reporting Ambiguities

With the ambiguities found, in the form of subforests, they must be presented
to the user. Each contained parse tree could be arbitrarily large, thus presenting
them in their entirety is likely to be more noise than valuable information. It is
our hypothesis that merely presenting two levels of the trees (the root and its
children) is sufficient information to begin addressing the problem and includes
very little noise.

Creating Domain-Specific Languages by Composing Syntactical Constructs 195

For example, the ambiguity in the previous section is presented as follows:

mul3:7(integer3, mul5:7) mul3:7(mul3:5, integer7)

Furthermore, the range information can be used to highlight the corresponding
regions of the source code.

As a final point, in the presence of a grouping operation (e.g., parentheses)
ambiguities involving operators can be presented in a more natural way, even if
our prototype implementation does not yet support it.

4 Binding Semantics and Expansion

Once we have parsed a syntactically unambiguous program and produced an
AST we now turn our attention to its semantics, in particular, its binding seman-
tics. The name resolution pass (Sect. 4.1) discovers the connections between
binders and bound identifiers, as well as any binding errors that may be present,
while expansion (Sect. 4.2) transforms the AST in the parsed language to an
AST in the target language.

4.1 Name Resolution

The name resolution pass is implemented as a relatively simple tree-traversal
that collects adjacent and nested bindings, and checks for binding errors. This
can be done without expanding any syncon since they all include their binding
semantics. The details of this traversal are tedious and not particularly relevant
for this paper and are thus not included, but can be found in the first author’s
Master’s thesis [18]. Two kinds of binding errors are considered:

– An identifier is reported as unbound if it is not part of a binding construct
(i.e., if it does not appear in a #bind declaration) and is not already bound
in its context.

– If a binding for an identifier is introduced twice in the same scope and the
ranges of the bindings overlap, then they are reported as duplicate. The former
requirement allows shadowing, but only in nested scopes, while the latter
allows multiple definitions in the same scope, but only if no references could
be ambiguous.

Finally, if there are no binding errors, name resolution performs a reference-
preserving renaming of all identifiers in the AST, such that no identifier is intro-
duced in a binding more than once. This simplifies writing a correct expansion,
since the programmer can now assume that no rearranging of the children of a
syncon instance can cause accidental name capture or a duplicate binding.

196 V. Palmkvist and D. Broman

4.2 Expansion

Expanding a single syncon instance consists of running a simple interpreter for
the DSL described in Sect. 2.3, with one important thing to mention: identifiers
that appear in syntax literals must be different between different expansions,
to prevent accidental name capture. In practice this is accomplished by tag-
ging each such identifier with a number that is unique per expansion (e.g., the
first expansion has number 1, the second number 2, etc.). Note that while the
expansion may assume that no rearranging of the instance’s children can cause
a duplicated binding (as mentioned in the previous section), it does not need to
ensure that this is true after the expansion.

Expanding an AST repeats this process until no remaining syncon instances
have expansions, i.e., until all remaining syncons are part of the base language.
However, we do need to maintain the invariant. Since an adjacent binding may
affect the AST arbitrarily far away from its introduction (depending on which
parents introduce scopes), we cannot simply perform renaming only on the result
of the expansion. Instead, we perform another name resolution pass, but only
when needed; most syncons do not duplicate children when they expand, in
which case there is no possibility of a duplicated binding.

5 Evaluation

The approach presented in this paper has been evaluated through an implemen-
tation of the system as a whole, and then creating two language subsets using
syncons to evaluate their expressiveness. Note that the language subsets are of
general-purpose programming languages, rather than DSLs. Having pre-existing,
well-defined semantics gives a ground truth that simplifies evaluation, and the
approach being useful for general purpose programming languages suggests that
it would be useful for a DSL as well.

5.1 Implementation

To evaluate our approach, we have written an interpreter1 in Haskell, containing
the phases described in Sects. 2, 3 and 4. The general parser used is an off-
the-shelf implementation2 of the Earley parsing algorithm [7]. We have also
implemented a simple interpreter for a small, mostly functional, base language.
The language subsets in Sect. 5.2 expand to this base language, which thus gives
us the ability to run programs and compare the syncon language implementations
with the original implementations.

The base language features include anonymous functions, mutable references,
continuations, and several builtin values (e.g., primitives for arithmetic, list
manipulation, and printing).

1 Available at https://github.com/miking-lang/syncon.
2 http://hackage.haskell.org/package/Earley.

https://github.com/miking-lang/syncon
http://hackage.haskell.org/package/Earley

Creating Domain-Specific Languages by Composing Syntactical Constructs 197

5.2 Case Studies

To evaluate the expressiveness of syncons, we have implemented small subsets
of two common programming languages:

OCaml. We have implemented a (dynamically typed) subset of OCaml to test
that syncons can express a relatively standard functional programming lan-
guage, with additional focus on pattern matching. The OCaml subset imple-
mentation consists of 32 syncons, spread over 3 syntax types.

Lua. We have implemented a subset of Lua to test that syncons can express
the control flow common in imperative language. It is worth noting here
that tables and coroutines, arguably the more particular features of Lua, are
not implemented, since they are not the reason for choosing Lua as a test
language. The Lua subset implementation consists of 29 syncons, spread over
5 syntax types.

To test the correctness of these subset implementations, we have written several
small programs:

– fib.ml and fib.lua. These programs implement functions for finding the
nth fibonacci number, one with the quadratic recursive definition, and a lin-
ear version. They test most binding constructs, some control flow, and basic
arithmetic.

– fizzbuzz.ml and fizzbuzz.lua. These programs implement fizzbuzz, an
(in)famous interview problem, and test more control flow and comparisons.

– misc.ml. This program tests the various remaining syntax constructions in
the OCaml subset, for example, boolean literals, anonymous functions and
cons patterns.

– misc.lua. This program tests the various remaining syntax constructions in
the Lua subset, for example, grouping by parentheses, break, and multipli-
cation.

The programs are chosen to ensure that between them, each syncon is used at
least once, and that some non-trivial control flow is used, e.g., recursion, mutual
recursion, and (in Lua) iteration.

We then compare the output of running each program in the subset imple-
mentation and the canonical implementation. One additional complexity is that
the subset implementations do not support the standard libraries for the lan-
guages, nor importing of modules. In particular, printing is a builtin primitive
in the subset implementations. To cover this difference we prepend a small pre-
lude to each program before running. With the exception of this prelude, the
programs are identical between the implementations.

198 V. Palmkvist and D. Broman

To test language construct composability, we extend Lua in two ways: we add
destructuring to existing binding constructs, and we add a new match-statement.
Both of these are accomplished by reusing syncons from the OCaml subset.

5.3 Analysis and Discussion

This section examines the result of extending the Lua subset with syncons from
OCaml, a few ambiguity errors in the OCaml subset, the effects of contextual
information on syncon independence, and a brief summary of other results.

Fig. 4. The change required to make a local-declaration in Lua support destructuring.

Cross-Language Reuse. Figure 4 shows the example from Sect. 2, to the left
as it was then, and to the right extended to handle destructuring using arbitrary
patterns. The patterns are defined in the OCaml subset, but can be reused in
Lua by merely importing them. Patterns are implemented as anonymous macros
that take two arguments: a function to call if the pattern match fails, and the
value to match against. We thus require three changes: switch Identifier for
Pattern, remove #bind x after, and switch defAfter with an invocation of x.
However, the binding semantics are slightly different, the right version allows
e to use names introduced by x, i.e., we allow recursive bindings, although the
system should be extended to be more conservative and disallow such bindings.

To add match we must accommodate for syntactic and semantic differences
between the two languages; sensible syntax in OCaml does not necessarily fit in
Lua, and Lua has a distinction between statements and expressions while OCaml
does not. We thus create a new syncon that expands to the match-syncon from
OCaml, which we import. This choice mirrors one from regular programming:
do you use an external library directly, or do you wrap it in an interface that
is more convenient for the current application? Different situations will produce
different answers.

Creating Domain-Specific Languages by Composing Syntactical Constructs 199

Ambiguity Errors. Consider the following OCaml code:

1 let result = match 1 with
2 | 2 -> match "two" with
3 | str -> str
4 | 4 -> "four"
5 let list = [a; b]

Lines 1 through 4 are the example from Sect. 3.1. Our prototype produces the
following ambiguity errors. Since this is a pure research prototype, little effort
has been spent on the presentation of the errors, only on what information is
presented.

Ambiguity: "1:14-4:16"
(("match", "1:14-4:16"),
[("intLit", "1:20-1:21"),
("intPat", "2:5-2:6"),
("match", "2:10-3:22"),
("intPat", "4:5-4:6"),
("stringLit", "4:10-4:16")])

(("match", "1:14-4:16"),
[("intLit", "1:20-1:21"),
("intPat", "2:5-2:6"),
("match", "2:10-4:16")])

Ambiguity: "5:12-5:18"
(("list", "5:12-5:18"),
[("seqComp", "5:13-5:17")])

(("list", "5:12-5:18"),
[("variable", "5:13-5:14"),
("variable", "5:16-5:17")])

The first ambiguity covers the match expression on lines 1 through 4, and has
two interpretations. Both are match-expressions and contain an integer literal
(1) and an integer pattern (2). Then comes the difference: either there is a nested
match ending on line 3, then an integer pattern and a string literal (i.e., another
match-arm), or a single nested match that ends on line 4. This agrees with the
conclusion in Sect. 3.1: the match-arm on line 4 could belong to either match.

The second error states that the right hand side of line 5 is either (i) a
list of one element (a sequential composition), or (ii) a list of two elements
(two variables). The rewrite required to handle this case in our prototype as in
the canonical implementation is possible, but requires duplicating syncons. An
automatic method to perform the rewrite without duplication seems plausible,
but is left for future work.

Note that the errors highlight only the ambiguous parts, let result = and
let list = are not included, since they are unambiguous.

Contextual Information. Certain syncons require information from their con-
text, e.g., a pattern needs the value being matched, and return needs to know
which function to return from. There are two intuitive ways we might attempt
to provide this information:

– Have a parent syncon bind a name which the child uses. This does not work
because the system prevents all forms of name capture.

– Have the child syncon produce a function, which the parent syncon then
applies to the information required. This works, but the function introduces
a scope, which hides any adjacent bindings exposed by the child.

200 V. Palmkvist and D. Broman

To work around this, our base language contains a form of anonymous macros;
functions that do not introduce a scope, must be applied immediately, and take
an opaque piece of syntax as an argument.

However, using anonymous macros in this fashion introduces coupling
between syncons: if one syncon requires contextual information, then all syncons
of the same syntax type must produce an anonymous macro and the information
must be threaded to children, even if the syncon itself does not require it.

Other Considerations and Limitations. This work introduces the new syn-
con approach, which enables both fine-grained composability and syntactic free-
dom. There are, however, a few limitations with the work presented so far.
Specifically, (i) the binding semantics for syncons have no concept of modules
or namespaces, and (ii) syncons cannot be disambiguated by whether their con-
tained identifiers are bound or not, which precludes, e.g., pattern match and
unification as done in Prolog. We consider these limitations as future work.
Additionally, we wish to evaluate the approach on complete languages, rather
than the subsets here, as well as more common language compositions, e.g.,
HTML and JavaScript.

6 Related Work

Macros in the Lisp family of languages provide a small unit of composition, but
are limited in their syntax; a Lisp macro still looks like Lisp. Racket [10], a
Lisp language oriented towards language creation, allows a language designer to
supply their own parser, circumventing this limitation. However, such a parser
loses the small unit of composition; the syntax is defined as a whole rather
than as a composition of smaller language constructs. λm [13] introduces a type
system that prevents macros from introducing binding errors, thus providing an
automated expansion checker that our approach currently lacks. However, λm

only supports nested bindings, adjacent bindings are not expressible. Romeo [22]
goes further and allows procedural macros, as opposed to pattern-based ones,
and thus features a more powerful macro system than both λm and this paper.
Binding safety is again ensured by a type system, with what amounts to algebraic
data types describing the abstract syntax trees that are processed. However, this
system runs into the expression problem; old macros cannot be reused if new
constructs are added to the language being transformed. Additionally, both λm

and Romeo are still constrained to Lisp syntax.
SoundX [16] takes a different approach to macros: they rewrite type deriva-

tion trees instead of syntax trees. The resulting macros can be checked to intro-
duce neither binding errors nor type errors. As an additional benefit, they can
also use type information present in the derivation but not explicitly present
in the source code. However, the concrete syntax (specified with a context free
grammar using SDF [12]) of a language described with SoundX has no guaran-
tees on ambiguity, nor a way to deal with any ambiguity that shows up.

Creating Domain-Specific Languages by Composing Syntactical Constructs 201

Compared to various embedded approaches to DSLs [1,2,4,11,14,24,27], our
approach gives greater syntactical flexibility, but less convenient expressive power
due to the limited nature of the DSL for specifying the expansion. Wyvern [17]
gives a pragmatic alternative to specifying complete new languages; new types
can be given custom literal syntax, but the rest of the language is fixed. Silkensen
et al. [21] provide an approach for parsing composed grammars efficiently using
what amounts to type information for bound identifiers.

JastAdd [8] allows modularly defining languages using an attribute grammar-
based system, but requires an external parser. The system allows smaller units
of composition than a language, namely modules. However, extra care must be
taken to produce features that can be reused with granularity. Silver [25] (a
more concise description and example of use can be found in [15]), also based
on attribute grammars, includes a parser (Copper [26]) and gives more guaran-
tees under composition: the composed concrete syntax is unambiguous and no
attributes are missing. However, syntax is limited to LALR(1) and each exten-
sion construct must start with a distinguishing terminal, to signal the transition
from core language to extension language.

The work presented in this paper is based on the first author’s Master’s thesis
[18], which has not been formally published before.

7 Conclusion

In this paper, we introduce the concept of a syntactical construct (syncon) that
enables both fine-grained composability of language constructs and syntactic
freedom for the syntax of the defined language. As a consequence of this flex-
ibility, we show how dynamic ambiguity detection is an alternative to static
ambiguity checking. The syncon approach is implemented in Haskell, and evalu-
ated by specifying small subsets of OCaml and Lua using syncons, where certain
language constructs are imported from the other language. Although the cur-
rent implementation has certain limitations, we contend that dynamic ambiguity
checking and fine-grained language construct composition can be good comple-
ments to pure static and more restrictive approaches. Combining the benefits
of both static and dynamic detection—using a form of hybrid detection and
reporting—can be an interesting direction for future work.

Acknowledgements. The authors would like to thank Elias Castegren, Mads Dam,
Philipp Haller, Daniel Lundén, Saranya Natarajan, Oscar Eriksson, and Rodothea
Myrsini Tsoupidi for valuable input and feedback. This project is financially supported
by the Swedish Foundation for Strategic Research (FFL15-0032).

202 V. Palmkvist and D. Broman

References

1. Augustsson, L., Mansell, H., Sittampalam, G.: Paradise: a two-stage dsl embedded
in haskell. In: Proceedings of the 13th ACM SIGPLAN International Conference
on Functional Programming, ICFP 2008, pp. 225–228. ACM (2008)

2. Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: hardware design in Haskell.
In: Proceedings of the Third ACM SIGPLAN International Conference on Func-
tional Programming, pp. 174–184. ACM Press, New York (1998)

3. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A
language and toolset for program transformation. Sci. Comput. Program. 72(1),
52–70 (2008)

4. Broman, D., Siek, J.G.: Gradually typed symbolic expressions. In: Proceedings of
the ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
PEPM 2018, pp. 15–29. ACM, New York (2018)

5. Cantor, D.G.: On the ambiguity problem of backus systems. J. ACM 9(4), 477–479
(1962)

6. Dybvig, R.K., Hieb, R., Bruggeman, C.: Syntactic abstraction in scheme. LISP
Symb. Comput. 5(4), 295–326 (1993)

7. Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13(2), 94–
102 (1970)

8. Ekman, T., Hedin, G.: The JastAdd system – modular extensible compiler con-
struction. Sci. Comput. Program. 69(1), 14–26 (2007)

9. Flatt, M.: Binding as sets of scopes. In: Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, pp. 705–717. ACM, New York (2016)

10. Flatt, M., PLT: Reference: Racket. Technical report PLT-TR-2010-1, PLT Design
Inc. (2010)

11. Giorgidze, G., Nilsson, H.: Embedding a functional hybrid modelling language in
haskell. In: Scholz, S.-B., Chitil, O. (eds.) IFL 2008. LNCS, vol. 5836, pp. 138–155.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24452-0 8

12. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formalism
SDF–reference manual–. ACM SIGPLAN Not. 24(11), 43–75 (1989)

13. Herman, D., Wand, M.: A theory of hygienic macros. In: Drossopoulou, S. (ed.)
ESOP 2008. LNCS, vol. 4960, pp. 48–62. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-78739-6 4

14. Hudak, P.: Building domain-specific embedded languages. ACM Comput. Surv.
28, 196 (1996)

15. Kaminski, T., Kramer, L., Carlson, T., Van Wyk, E.: Reliable and automatic
composition of language extensions to C: the ableC extensible language framework.
Proc. ACM Program. Lang. 1(OOPSLA), 98:1–98:29 (2017)

16. Lorenzen, F., Erdweg, S.: Sound type-dependent syntactic language extension. In:
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL), vol. 51, pp. 204–216. ACM Press (2016)

17. Omar, C., Kurilova, D., Nistor, L., Chung, B., Potanin, A., Aldrich, J.: Safely
composable type-specific languages. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol.
8586, pp. 105–130. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44202-9 5

18. Palmkvist, V.: Building Programming Languages, Construction by Construction.
Master’s thesis, KTH Royal Institute of Technology (2018)

https://doi.org/10.1007/978-3-642-24452-0_8
https://doi.org/10.1007/978-3-540-78739-6_4
https://doi.org/10.1007/978-3-540-78739-6_4
https://doi.org/10.1007/978-3-662-44202-9_5
https://doi.org/10.1007/978-3-662-44202-9_5

Creating Domain-Specific Languages by Composing Syntactical Constructs 203

19. Rompf, T., Odersky, M.: Lightweight modular staging: a pragmatic approach to
runtime code generation and compiled DSLs. In: Proceedings of the Ninth Inter-
national Conference on Generative Programming and Component Engineering,
GPCE 2010, pp. 127–136. ACM, New York (2010)

20. Sheard, T., Jones, S.P.: Template meta-programming for Haskell. In: Haskell 2002:
Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell, pp. 1–16. ACM
Press, New York (2002)

21. Silkensen, E., Siek, J.: Well-typed islands parse faster. In: Loidl, H.-W., Peña, R.
(eds.) TFP 2012. LNCS, vol. 7829, pp. 69–84. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40447-4 5

22. Stansifer, P., Wand, M.: Romeo. In: Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming - ICFP 2014, vol. 49, pp.
53–65. ACM Press, New York (2014)

23. Steele, Jr., G.L.: An overview of COMMON LISP. In: Proceedings of the 1982
ACM Symposium on LISP and Functional Programming, LFP 1982, pp. 98–107.
ACM, New York (1982)

24. Sujeeth, A.K., et al.: Delite: a compiler architecture for performance-oriented
embedded domain-specific languages. ACM Trans. Embed. Comput. Syst. (TECS)
13(4s), 134:1–134:25 (2014)

25. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible attribute
grammar system. Sci. Comput. Program. 75(1–2), 39–54 (2010)

26. Van Wyk, E.R., Schwerdfeger, A.C.: Context-aware scanning for parsing extensi-
ble languages. In: Proceedings of the 6th International Conference on Generative
Programming and Component Engineering - GPCE 2007, p. 63. ACM Press, New
York (2007)

27. Wan, Z., Hudak, P.: Functional reactive programming from first principles. In:
PLDI 2000: Proceedings of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation, pp. 242–252. ACM Press, New York (2000)

https://doi.org/10.1007/978-3-642-40447-4_5
https://doi.org/10.1007/978-3-642-40447-4_5

Proof-Carrying Plans

Christopher Schwaab1, Ekaterina Komendantskaya2, Alasdair Hill2(B),
František Farka1,2, Ronald P. A. Petrick2, Joe Wells2, and Kevin Hammond1

1 School of Computer Science, University of St Andrews, St Andrews, UK
{cjs26,ff32,kh8}@st-andrews.ac.uk

2 Department of Computer Science, Heriot-Watt University, Edinburgh, UK
{ek19,ath7,rpp6,jbw}@hw.ac.uk

Abstract. It is becoming increasingly important to verify safety and
security of AI applications. While declarative languages (of the kind
found in automated planners and model checkers) are traditionally used
for verifying AI systems, a big challenge is to design methods that gen-
erate verified executable programs. A good example of such a “verifica-
tion to implementation” cycle is given by automated planning languages
like PDDL, where plans are found via a model search in a declara-
tive language, but then interpreted or compiled into executable code
in an imperative language. In this paper, we show that this method
can itself be verified. We present a formal framework and a prototype
Agda implementation that represent PDDL plans as executable func-
tions that inhabit types that are given by formulae describing planning
problems. By exploiting the well-known Curry-Howard correspondence,
type-checking then automatically ensures that the generated program
corresponds precisely to the specification of the planning problem.

Keywords: AI planning · Curry-Howard correspondence
Constructive logic · Verification · Dependent types

1 Motivation

Declarative programming languages have long provided convenient formalisms
for knowledge representation and reasoning, ranging from Lisp and Prolog in the
1960s-1980s to modern SMT solvers [2,3], model checkers [13], and automated
planners [4,11]. Common features of such languages typically include a clear
logic-based syntax, a well-understood declarative semantics, and an inference
engine that produces sound results with respect to the semantics.

As AI applications become increasingly deployed in the real world, e.g. in self-
driving vehicles or autonomous robots, so safety and security issues are becoming
increasingly important. Existing ad-hoc software development approaches do not
provide the strong confidence levels that the public expects from such applica-
tions. It is tempting to envisage that declarative languages will play an increas-
ingly important role in verifying the safety and security of real-world AI appli-
cations. Ideally, such languages could become vehicles for proof-carrying code,
c© Springer Nature Switzerland AG 2019
J. J. Alferes and M. Johansson (Eds.): PADL 2019, LNCS 11372, pp. 204–220, 2019.
https://doi.org/10.1007/978-3-030-05998-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05998-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-05998-9_13

Proof-Carrying Plans 205

an approach in which all relevant verification properties are directly embedded
in the source code [12]. To make this possible, we must supplement the ability to
prove that a property A holds in a theory T (denoted T � A) with robust mecha-
nisms that can generate a program p that executes according to the specification
A, together with a proof that p satisfies A (denoted T � p : A). Such an approach
would embed verification directly as an integral part of the implementation cycle
for AI applications.

The well-known Curry-Howard correspondence [19,20], tells us, of course,
that some proofs in intuitionistic first-order logic can be represented as com-
putable functions. In this case, first-order formulae are seen as types, and proofs
are seen as terms that inhabit those types. For example, when we write T � p : A,
we mean that a proof term p is an executable program that satisfies proposition
A, and moreover that this inference is sound, i.e. that T � p : A holds in some
formal system.

Until recently, the significance of the Curry-Howard correspondence has been
predominantly theoretical. The main impediment to its practical application has
been the immaturity of programming languages that could fully implement this
idea. For example, in order to express verification properties of AI applications,
a language that could infer T � p : A must possess at least first-order types.
Moreover, it should ideally also possess dependent types. Several dependently-
typed languages have now become available and increasingly practical, e.g., Coq,
Agda, and Idris. This development has made it possible to re-open the discussion
of the actual practical value of the Curry-Howard correspondence. For example,
in [6,7] Fu et al. have given a Curry-Howard interpretation for first-order Horn
clauses and the resolution algorithm; and Urzyczyn and Schubert [16] have given
a constructive semantics for answer set programming.

In this paper, we turn our attention to AI Planning languages [4,11] – a
rapidly growing research and engineering area that develops methods and tools
for generating plans from declarative problem specifications. We show that the
Planning Domain Definition Language (PDDL) [11] is a natural domain for the
Curry-Howard implementation of declarative reasoning. In particular, specifica-
tions of planning problems that are usually written in first-order logic can be
expressed naturally as types, and executable plans that are generated by PDDL
can be formalised as programs that inhabit those types. Type checking thus ver-
ifies that correct executable programs are generated from specifications via the
automated planning tool. We provide a proof-of-concept implementation [17] in
the dependently-typed language Agda.

2 Example: Proof-Carrying PDDL

Figure 1 shows a snippet of PDDL code that describes the classic Blocksworld
domain, a simple planning task for a robot assembling a tower from bricks. It
defines a set of predicates (handEmpty, holding, onTable, on, clear) and an action
pickup_from_table that must satisfy certain pre- and post-conditions (“effects”)
that are expressed using those predicates. Several such actions are usually defined

206 C. Schwaab et al.

as part of a planning domain. In addition, a grounded problem will also be
supplied to the planner, e.g., to form a stack of blocks a on b on c, given that
a, b and c are initially on the table (but not on each other). Given the domain
and problem definitions, an automated planner will initiate an algorithm (e.g., a
search procedure) to generate a sequence of actions that satisfy the specification
and the goal. In our case, one possible solution is:

Plan1 = pickup_from_table b; putdown_on_stack b c;
pickup_from_table a; putdown_on_stack a b.

Fig. 1. The Blocksworld: a code snippet defining the planning domain and a planning
problem.

We would like to have an implementation of this planning language where an
executable function plan1 is generated from the planning domain and problem,
such that plan1 corresponds to the actions of Plan1 and has a type onTable a ∧
onTable b ∧ onTable c ∧ clear a ∧ clear b ∧ clear c ∧ handEmpty �
on a b ∧ on b c. If this judgement type-checks, then we will obtain a verified
program plan1 that can be later compiled and executed. As we will show in
the rest of the paper, this task is far from trivial. Although the Curry-Howard
correspondence tells us that, in principle, (intuitionistic) first-order proofs have
a computational meaning, it is not enough for us to just formulate arbitrary

Proof-Carrying Plans 207

proofs. Firstly, we need to formulate a generic and automatable approach to
translate PDDL domains and problems into the dependently-typed setting. In
addition, we need to devise our calculus in such a way as to ensure that the
programs that inhabit the types give us the actual executable plans in the PDDL
sense. In this paper, we therefore develop two parallel narratives. The first sets
up the general method in mathematical notation independently of the concrete
implementation. The second illustrates the important engineering aspect of this
work, with reference to the intricacies of the Agda encoding that we give in [17].
The two parallel story lines merge when we come to the main result of this paper:
the formal proof of soundness of the proof terms that implement the plans. We
state this in standard mathematical notation, but delegate the proof checking to
Agda. In time, we envisage that our Agda prototype will become a fully fledged
program for generation of executable code from planners, while maintaining the
guarantees of soundness of the generated code relative to the plan specification.

Fig. 2. Definitions of Formulae, States, Plans and Actions, given a set of predicates
R = {R, R1, R2, ..., Rn}, a set of constants C = {C1, C2, ..., Ck}, and a set of constant
actions {α, α1, . . . , αm} ∪ halt.

3 Planning Problems as Types

In their development of the STRIPS planner, Fikes and Nilsson presented an
inference system for planning languages that is based on the notion of states, or
possible worlds. The worlds are sets of atomic formulae, that interpret complex
formula of the planning domain. Operators that are defined on the worlds inter-
pret planning actions, and rewrite the worlds by adding and deleting the atomic
formulae. The inference algorithm thus starts in an initial world and ends in a
goal world by the repeated application of the operators. The system is sound in
the sense that the resultant world model satisfies the goal. We now provide a
show how to work with STRIPS predicates directly in a type-system, yielding
proof obligations that will be fulfilled by plan execution.

3.1 Formal Language and Its Declarative Semantics

We assume a finite set of predicates R = {R,R1, R2, ..., Rn} each Ri of fixed
arity, and a finite set C = {C1, C2, ..., Ck} of constants (also known as “objects”).

208 C. Schwaab et al.

The standard definition of first-order formulae is given in Fig. 2. It has two
notable restrictions: the formulae do not admit variables, and only atomic for-
mulae can be negated. The former restriction, together with the assumption that
there are only finitely many constants, ensures that the set of all atomic formu-
lae is finite, which makes it possible to take the closed world assumption [15],
and ensure the decidability of set membership on possible worlds. The latter
restriction means that disjunction is not definable in our language. In PDDL,
two key restrictions apply to the use of disjunction. Firstly, all formulae are
pre-compiled into disjunctive normal form. Secondly, no “actions” can have dis-
junctive “effects”, i.e. they cannot give rise to disjunctive post-conditions. Thus,
our second restriction actually adheres to the practice of PDDL plan specification
and search.

Fig. 3. Left: Module PCPlans giving a general-case Agda definition of a formula,
following the set-up of Fig. 2. Right: Module Blocksworld giving specification of the
particular Blocksworld domain from Fig. 1: listing its constants and predicates.

Fig. 4. Agda definitions of worlds as lists of atomic formulae, polarities. (Module
PCPlans)

Example 1. Given the syntax of Sect. 2, handEmpty ∧ ¬onTable a is a formula.

The inductive definitions of Fig. 2 are given as data type definitions in our Agda
implementation (Fig. 3). We provide a generic Agda module, PCPlans, that
is parametric in predicates and actions. For each planning problem, the set of
predicates R may then be defined concretely, as in the Blocksworld module.
Propositional equality on atomic formulae must be shown to be decidable for

Proof-Carrying Plans 209

the particular planning problem. As we will show later, this property is needed
in order to manipulate world representation. Since our implementation of the
PCPlans module takes a generic approach, a proof that propositional equality

for R is decidable must also be provided as a module parameter. This
explains the declaration of the main module:

When we instantiate R with a finite set of predicates for each planning prob-
lem, we need to instantiate isDE with a proof that propositional equality for
this particular problem is indeed decidable. In [17] we show how to automate
such “boilerplate” proofs for any given R, using reflection.

Given a set w of atomic formulae (called a world), a formula F is satisfied by
w if w |=+ F can be derived using the rules of Fig. 5. In Agda, we take advantage
of the extensive library of list operations, and so define worlds as lists of atomic
formulae, as shown in Fig. 4. Figure 7 gives an Agda definition of the entailment
relation.

Example 2. Given the world w1 = {handEmpty}, w1 |=+ handEmpty ∧¬ onTable a.

It might be expected that the rule for conjunction with negative polarity to be

given by two additional rules:
w |=− P

w |=− P ∧ Q
and

w |=− Q

w |=− P ∧ Q
. However,

our current rule is sound given the syntax restrictions, and it simplifies our
reasoning on decidability of normalisation, which we define next.

Fig. 5. Declarative interpretation of formulae. We define −t by taking −+ = − and
− − = +.

Fig. 6. Agda definition of the entailment relation given in Fig. 5. (Module PCPlans)

3.2 Operational Semantics, States and Types

Matching the declarative-style semantics of Fig. 5, we can define an operational
semantics, given by a normalisation function that acts directly on formulae and

210 C. Schwaab et al.

computes lists of atomic formulae with polarities. A state is defined as a list of
atomic formulae with polarities, as in Fig. 2. By a small abuse of notation, we
will use ∈ to denote list membership, as well as set membership. The function
↓t normalises a formula to a state:

(P ∧ Q) ↓t N = Q ↓t P ↓t N

¬A ↓t N = A ↓−t N

A ↓t N = [At, N]

We write P ↓t to mean P ↓t [].

Example 3. Continuing with the previous examples, we have:
(handEmpty ∧ ¬onTable a) ↓+= [handEmpty+, onTable a−]

As might be expected, while the definition of the entailment relation |=t is given
as an inductive data type in Agda, the normalisation is defined as a function
(Fig. 7). Note again that, in order to bring the disjunction into this language
in any future extensions, normalisation function for minus could be amended,
to allow for non-determinism. Normalisation is sound relative to the declarative
interpretation of formulae. Given a state N , define a well-formed world wN

to contain all A such that A+ ∈ N and contain no A’s such that A− �∈ N .
Generally wN is not uniquely defined, and we use the notation {wN} to refer to
the (necessarily finite) set of all wN . We then have the result:

Fig. 7. Agda definition of the normalisation function. (Module PCPlans)

Theorem 1 (Soundness and completeness of normalisation). Given a
formula P and a world w, it holds that w |=t P iff w ∈ {wP↓t

}.
Proof. (⇒) is proven by induction on the derivation of w |=t P . (⇐) follows
by induction on the shape of P , cf. the attached Agda file [17] for the fully
formalised proof.

Example 4. If N =(handEmpty ∧ ¬onTable a) ↓+ , then wN may be given by e.g.
w1 ={handEmpty}, or w2 = {handEmpty, onTable b}, or any other world containing
handEmpty but not onTable a. The given formula will be satisfied by any such wN .

Proof-Carrying Plans 211

Theorem 1 will allow us to work with states at the type level, while keeping the
link to the standard PDDL formula syntax and declarative semantics.

We finally define actions and plans. Given a halting state halt, and a finite
set of constant actions {α, α1, . . . , αm}, we define plans inductively as sequences
of action names ending with halt, cf. Fig. 2. Once again, we show an instantiated
version of the Agda definition of actions in Fig. 8, with actions specified as per
the Blocksworld problem. In the Agda prototype [17], we first develop the code
for an abstract set Action, and then instantiate it on the concrete examples.
Figure 8 also shows the Agda function plan1 that encodes Plan1 given in Sect. 2
in PDDL syntax. Keeping in line with Sect. 2, a planning domain (or a context)
Γ is a set of actions with effects, of the form α : N � M , where α is a constant
action, and N,M are states (see Fig. 2). Figure 9 shows an Agda implementation
of both the general definition of a context Γ and one concrete Γ1 that corresponds
to the PDDL code snippet of Fig. 1.

Fig. 8. Agda abstract definition of a Plan according to Fig. 2, in module PCPlans.
A concrete instantiation of the set of actions, a concrete plan plan1 in module
Blocksworld.

Fig. 9. Agda definition of the concrete context Γ1 in module Blocksworld.

212 C. Schwaab et al.

We now move on to our main goal: to realise the Curry-Howard intuition
and define a framework in which plans will inhabit normalised formulae seen
as types. We wish to show that, proving that a certain (possibly composite)
plan f satisfies pre- and post-conditions given by the formulae P and Q will be
equivalent to typing the judgement

Γ � f : P ↓+ � Q ↓+
We will say P ↓+ is the initial state of the plan f , and Q ↓+ is its final state.
In the next section, we introduce typing rules that define derivations of these
judgements.

4 Plans as Proof Terms

4.1 Typing Rules for Planning Problems

A naïve attempt to type plans introduces two problems. First, an action f : M �
N should not produce exactly N , but an extension of M by N . For example,
picking up b from the table does not affect the fact that c is still on the table (this
is known as the STRIPS assumption in planning [21]). To solve this problem,
we introduce an override operator M 	 N :

M 	 [] = M

M 	 [At, N] = [At,M\{A+, A−}] 	 N

The second problem involves applying f : M � N in a state M ′ that is stronger
(has more atomic formulae) than M . For example, if b is known to be on the
table, knowing that c is also on the table should not preclude picking up b.
This state-weakening action corresponds to sub-typing M <: M ′ defined in
Fig. 10. When we write M <: M ′, we will say M ′ is a sub-type of M . This
agrees with the usual convention that a sub-type is given by a stronger pred-
icate. The rules of Fig. 11 define how a program f : M � N can be typed
given some planning domain Γ. A well-typed plan Γ � f : M � N “transports”
an initial state M to a goal state N . The Agda code implements the typing
relation as an inductive data type with two constructors, halt and seq, follow-
ing verbatim Fig. 11 (see also the accompanying Agda file). To exemplify these
rules, we refer again to the Blocksworld problem with the pre-condition P0 =
onTable a∧ onTable b∧ onTable c∧ clear a∧ clear b∧ clear c∧ handEmpty and
the post-condition Q0 = on a b ∧ on b c. Suppose that the PDDL planner pro-
poses Plan1, as given in Sect. 2. Let plan1 be the corresponding version in the
precise mathematical notation of Fig. 2 (cf. also its Agda version in Fig. 8):

plan1 = pickup_from_table_b; putdown_on_stack_b_c;
pickup_from_table_a; putdown_on_stack_a_b; halt

If Γ1 � plan1 : P0 ↓+� Q0 ↓+ yields a typing derivation by Fig. 11, then this
typing derivation verifies that plan1 correctly implements the given planning

Proof-Carrying Plans 213

Fig. 10. Sub-typing of normalised formulae.

Fig. 11. Well-typing relation for plans.

problem in the planning domain Γ1 (cf. also Agda code for Γ1 in Fig. 9). To
make our example more readable, we will use our mathematical notation. This
gives the following definition of Γ1, corresponding to the Agda code of Fig. 9:

Γ1 = {pickup_from_table_b :
handEmpty ∧
onTable b ∧

clear b

⏐
⏐
⏐
⏐
⏐
�

+

�
¬handEmpty ∧

¬(onTable b) ∧
holding b

⏐
⏐
⏐
⏐
⏐
�

+

pickup_from_table_a : . . .

putdown_on_stack_b_c :
holding b ∧

clear c

⏐
⏐
⏐
�

+

�

¬(holding b) ∧
¬(clear c) ∧

on b c ∧
handEmpty

⏐
⏐
⏐
⏐
⏐
⏐
⏐
�

+

putdown_on_stack_a_b : . . .}

Let us perform the typing derivation for Γ1 � plan1 : P0 ↓+�
Q0 ↓+. Given P0 ↓+, then the first action that we can apply by the Seq
rule is pickup_from_table_b. The application of Seq demands that P0 ↓+
is a sub-type of the initial state of the action pickup_from_table_b in
Γ1. A sub-typing derivation provides such a proof, selecting the required
piece of evidence from P0 ↓+, i.e. handEmpty+, (onTable b)+, (clear b)+ <:

(onTable a)+, (onTable b)+, (onTable c)+, (clear a)+, (clear b)+, (clear c)+,

handEmpty+. We have thus verified that plan1 = pickup_from_table_b; f ′.
To complete the proof of well-typedness and compute an action for f ′, we
must show that the remainder of the plan is typeable. According to Seq,
we now have a new state P1 = P0 ↓+ 	 handEmpty−, (onTable b)−, (holding
b)+ = (onTable a)+, (onTable b)−, (onTable c)+, (clear a)+, (clear b)+, (clear
c)+, (handEmpty)−, (holding b)+, as well as an obligation to prove f ′ :
P1 � Q0 ↓+. We can pick the next action from Γ1: putdown_on_stack_b_c.
Again P1 is readily shown to be a sub-type of the pre-conditions of
putdown_on_stack_b_c. Continuing in this way for each action in plan1, the final
state is P3 =(onTable a)−, (onTable b)−, (onTable c)+, (clear a)+, (clear b)−,

(clear c)−, (on b c)+, handEmpty+, (holding b)−, (on a b)+, (holding a)−.
However, this is not the same state as the goal state Q0. To resolve such cases, we

214 C. Schwaab et al.

have the rule Halt, eliminating all unnecessary evidence from the current state by
proof of sub-typing i.e. Γ1 � halt : P3 � Q0. Clearly (on a b)+, (on b c)+<: P3

as required. We have thus verified that Γ1 � plan1 : P0 ↓+� Q0 ↓+. In Agda, the
above derivation will amount to type-checking the function Derivation as shown
in Fig. 12. If it type-checks, then we know that plan1 can be soundly executed
as a function. Proving this property in general is the subject of the next section.

Fig. 12. Agda type-checking the derivation of Γ1 � plan1 : P0 ↓+� Q0 ↓+. We give
the full code for Derivation in [18] or [17].

4.2 Computational Characterisation of Plans: Soundness of Plan
Execution

The proof of Γ1 � plan1 : P0 ↓+� Q0 ↓+ provides evidence that the execution
of plan1 on a world satisfying P0 produces a new world satisfying Q0. Generally,
the inference of Γ � f : M � N , with f = α1; . . . ;αj ; halt corresponds to
successively applying actions α1 . . . αj to states M,M1, . . . Mj in a sequence of
state transitions, satisfying N <: Mj . We now prove that the plan f thus inferred
indeed has a computational meaning, i.e. can be evaluated, and that the result
of its evaluation is sound. To state this, we need to define an evaluation function
�.� that will interpret actions on worlds. Recall that every state N maps to a
world wN . Let us use notation σ for an arbitrary mapping (an action handler)
that maps each action α : M � N to insertions and deletions on the world wM

according to α’s action on M . We then define the evaluation function ��σ
w that

evaluates a plan to a world (according to a given world w and action handler σ):

�halt�σ
w = w

�α; f�σ
w = �f�σ

(σ α w)

We say that an action handler σ is well-formed if, for any w ∈ {wM}, M ′ <: M
and α : M ′ � N in Γ it follows that (σ α w) ∈ {wM�N}. Figure 13 shows Agda
definitions of an action handler and evaluation action.

Canonical Handler. In order to be constructive in our further claims, and to
provide a practical solution to the quest for a well-formed handler, we first define

Proof-Carrying Plans 215

Fig. 13. Agda code for an action handler, an evaluation function and a canonical
handler.

a canonical handler for a given context (planning domain). Firstly, we define a
function σα that constructs a world from a state:

σα [] w = w

σα [A+, N ′] w = σα N ′ (w ∪ {A})

σα [A−, N ′] w = σα N ′ (w \ {A})

Next, given a context Γ, we apply σα to N for each α : M � N in Γ; thus
obtaining a canonical mapping σα Γ from actions and worlds into worlds, as
required. The resulting canonical action handler is well-formed, as long as the
states to which it is applied are consistent, in the following sense:

Implicit consistency assumption: for every state N , if At ∈ N then A−t /∈ N .

Proposition 1. Given a context Γ, the canonical action handler σα Γ is well-
formed.

Proof. The proof starts with considering an arbitrary state M with w ∈ {wM},
an arbitrary At ∈ M , and an arbitrary action α in Γ such that M ′ <: M and
α : M ′ � N . It proceeds by considering two cases, when t = + and t = −,
and consequently when A ∈ w or A /∈ w. In each of these cases, it considers
all possible effects of σα (i.e. formula deletions and insertions) in the process
of constructing the world w′ = canonical−σ α w. The attached Agda file
gives the full proof. It uses the implicit consistency assumption to eliminate the
cases when states are inconsistent and hence when more than one choice for
deletion/insertion are possible.

The next two theorems show that executing a well-typed plan f by the eval-
uation function �f�σ

w is sound, for any well-formed handler σ.

216 C. Schwaab et al.

Theorem 2. (Soundness of evaluation for normalized formulae). Sup-
pose Γ � f : M � N . Then for any w ∈ {wM}, and any well-formed handler σ,
it follows that �f�σ

w ∈ {wN}.
Proof. The proof proceeds by structural induction on the typing derivation Γ �
f : M � N .

Case 1 (Halt). By assumption w ∈ {wM} and thus because N <: M , it follows
w ∈ {wN}. Since �halt�σ

w = w, we get �halt�σ
w ∈ {wN} as required.

Case 2 (Seq). Note that f = α; f ′ and therefore α : M ′ � M2 is in Γ and
Γ � f ′ : M 	 M2 � N by inversion on Γ � α; f ′ : M � N . Then by induction
every w′ ∈ {wM�M2} gives (�f�σ

w′) ∈ {wN} for any well-formed σ. However, by
the well-formedness of σ and because w ∈ {wM}, we have (σ α w) ∈ {wM�M2}.
Thus �f ′�σ

(σ α w) ∈ {wN} and therefore �f�σ
w ∈ {wN}.

Theorem 3 (Soundness of evaluation). Suppose Γ � f : P ↓+� Q ↓+ then
for any w such that w |=+ P , and any well-formed σ it follows �f�σ

w |=+ Q.

Proof. By assumption w |=+ P and by the completeness of normalisation (The-
orem 1), we have w ∈ {wP↓+}. Then from Theorem 2, we have �f�σ

w ∈ {wQ↓+}.
Thus by the soundness of normalisation (Theorem 1), obtain �f�σ

w |=+ Q.

Thus the derivation of a type for a plan f induces a proof that the execution of
a plan in world w is correct. Although neither of the above theorems depends on
the implicit consistency assumption for its proofs, the existence of a well-formed
and canonical handler is predicated upon the consistency assumption. Our Agda
implementation of a canonical handler (cf. Fig. 13) allows us to fully harness the
computational properties of plans. For the Blocksworld example, we can directly
evaluate �plan1�

σ
w by plugging in:

– in place of w – the world resulting from computing σα(P0 ↓+ []) ∅. (To see
this, recall that P0 is the formula that described the initial state in all examples
of the previous section, and P0 ↓+ [] is the state resulting from normalising P0.)
– and in place of σ – the canonical handler for Γ1. (Recall that Γ1 is the context
that defined the given planning domain in the previous section.)

In Agda, we simply evaluate the term:

Evaluation of this term results, just as we manually computed in the last
section, in a world w′ = { handEmpty, on a b, on b c, clear a, onTable c} (in Agda
syntax:). That is,
the world that corresponds to the state P3 of the previous section. Observe that
w′ = σα P3 ∅.

5 Discussion, Conclusions, and Future Work

We have given a proof of concept formalisation of a subset of PDDL plans in
type theory. In line with the Curry-Howard approach to first-order logic, we

Proof-Carrying Plans 217

formulated an inference system that treats planning domains as types, and gen-
erated plans as functions that inhabit these types. Type-checking then ensures
the soundness of these executable functions relative to the specifications given as
types. This paper does not cover the whole PDDL syntax, nor does it implement
the search and decision procedures of a usual automated planner e.g. the Stan-
ford Research Institute Problem Solver STRIPS [4]. Rather, our contribution is
in setting up the original design of a method of Curry-Howard approach to AI
planning languages in general, as well as showing the feasibility of its successful
implementation in a dependently typed language, such as Agda. This dual pur-
pose has determined our style of presentation, in which the formal method has
been given in parallel with, but independently from, the Agda code.

Further Experiments with Plans: In the accompanying implementation [17], we
provide a second fully implemented example of a PDDL domain and plan check-
ing in Agda: for a Logistic planning problem. The problem consists of finding
the best route (airplanes, tracks, cities of call) to deliver a given parcel to a
given office. The experiment showed that, once the main Agda implementation
is set up, instantaiting it with various problems only takes a routine boilerplate
code (such as e.g. proofs of decidability of equality on predicates). Generation
of this boilerplate code can in future be fully automated using code reflection.
Throughout our implementation, we have been working with plans generated by
an on-line PDDL editor http://editor.planning.domains/. In the future, a parser
can be added to convert PDDL syntax directly into Agda.

With the view to future extensions, our Agda code is designed in a modular
way, as Sect. 3.1 illustrates: the main Agda file implementing the subset of PDDL
syntax is fully generic, and its definitions are instantiated as required when a
particular planning domain, such as Blockworld or Logistic, is presented. Proofs
of decidability for objects and predicates for each given problem are obtained in
a generic way, as well, see [17].

Computational Content of Plans and the Implicit Consistency Assumption: As
Proposition 1 has shown, the existence of a canonical and well-formed handler
depends crucially on the implicit consistency assumption. At the same time, the
proofs of Theorems 2 or 3 do not depend on the consistency assumption. Thus,
as we show in [18], it is possible in principle to construct planning domains and
problems that violate the assumption but are accepted by the well-typedness
relation of Fig. 11. However, if such examples are added to the system, the
implicit consistency assumption needs to be removed (or else will become
provable, as [18] shows). But without the assumption, we lose the existence of a
well-formed and canonical handler and thus the ability to evaluate the plans. This
situation is of course illustrative of the rigour and transparency that a construc-
tive approach brings to verification. In our case, it dictates that any practical
deployment of the presented prototype needs to enforce the consistency assump-
tion. This can be done by either embedding additional state consistency checks
or by implementing states as partial functions from formulae to Booleans.

http://editor.planning.domains/

218 C. Schwaab et al.

Generating Executable Plans from Agda: The main advantage of the presented
approach is the ability to generate executable code directly from plans verified
in Agda. We show in [18] how first a Haskell code, and then an executable
binary file, are automatically generated from the verified plan (plan1 from our
earlier example). Such binary files can then be directly deployed in applications
such as e.g. robots. This is in contrast to the existing practices when verified
plans are separately converted into C or Python code without any guarantees of
compliance of that code to the verified plans.

Related Work: Verification of AI languages and applications is an active research
field. In planning languages, two major trends exist. Firstly, PDDL is used to
verify autonomous systems and applications, see e.g. [14]; and it has been suc-
cessfully integrated within other similar languages, such as GOLOG [10], with
the purpose of verifying plans written in the situation calculus [1,22]. Secondly,
planning domains have been verified using model checkers [9], other automated
provers such as Event-B [5], or planning support tools such as VAL [8]. The
method that we have presented is complementary to these two trends. Its main
difference lies in taking the perspective of intrinsic, rather than external verifica-
tion. That is, the correctness of the generated plans is verified not by an external
tool, such as a model checker, but is performed intrinsically within the code that
implements the plans. At the same time, the code that implements the plans is
inseparable from the language in which planning domains are specified. Further-
more, the executable binary files automatically extracted from Agda are not just
ready for deployment, but also bear the verification guarantees provided by Agda
proofs. To our knowledge, this is the first attempt to bring these benefits of the
Curry-Howard approach to automated planning languages. Provisioning types
for plans not only equips planners with certificates of correctness for inspection,
but also provides a direct link to an implementation’s type theory.

Current Limitations and Possible Improvements: First-Order Planning Domains
and First-Order Types: Although the technical development of the code that we
have presented takes full advantage of Agda’s dependent types, the types that
represent the predicates and formulae of the planning problems are given by
simple types. This is because we propositionalised the planning domains. We
however hope to extend this initial framework to the full first-order syntax of
PDDL. This development will also involve the following extensions.

Beyond Consistency Assumptions; Constraints: We have discussed the implicit
consistency assumption that our approach imposes. More generally, we note
that PDDL lacks any general method of handling consistency as well as similar
but more complex constraints and invariants, such as, for example, constraints
saying that handEmpty and holding x are mutually exclusive. This is a complex
problem, but one for which we anticipate that our dependently-typed setting
will soon provide some useful solutions.

Proof-Carrying Plans 219

Functions and Higher-Order Plans: The design of this Agda prototype has
revealed several limitations in state-of-the-art implementations of planning lan-
guages: e.g. their reliance on the closed word assumption and formulae ground-
ing, the absence of functions, and the restricted use of disjunctions. Again, we
see a potential of our method to overcome many of these limitations thanks to
our general dependently-typed set-up, in which the use of functions, higher-order
features, constraints and effect handling will be much more natural than in the
current implementations.

Acknowledgements. This research has been generously supported by EPSRC Plat-
form Grant EP/N014758/1 “The Integration and Interaction of Multiple Mathe-
matical Reasoning Processes”, EPSRC Doctoral Training Partnership, EPSRC grant
EP/PP020631 “Discovery: Pattern Discovery and Program Shaping for Manycore Sys-
tems”, and by EU Horizon 2020 grant ICT-779882 “TeamPlay: Time, Energy and secu-
rity Analysis for Multi/Many-core heterogenous PLAtforms”.

References

1. Claßen, J., Eyerich, P., Lakemeyer, G., Nebel, B.: Towards an integration of Golog
and planning. In: Veloso, M.M. (ed.) IJCAI 2007, Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12 January
2007, pp. 1846–1851 (2007)

2. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

3. Dutertre, B., De Moura, L.: The Yices SMT solver. Technical report, August 2006.
Tool paper at http://yices.csl.sri.com/tool-paper.pdf

4. Fikes, R., Nilsson, N.J.: STRIPS: a new approach to the application of theorem
proving to problem solving. Artif. Intell. 2(3/4), 189–208 (1971)

5. Fourati, F., Bhiri, M.T., Robbana, R.: Verification and validation of PDDL descrip-
tions using Event-B formal method. In: 2016 5th International Conference on Mul-
timedia Computing and Systems (ICMCS), pp. 770–776, September 2016

6. Fu, P., Komendantskaya, E.: Operational semantics of resolution and productivity
in horn clause logic. Formal Asp. Comput. 29(3), 453–474 (2017)

7. Fu, P., Komendantskaya, E., Schrijvers, T., Pond, A.: Proof relevant corecursive
resolution. In: Kiselyov, O., King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp.
126–143. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29604-3_9

8. Howey, R., Long, D., Fox, M.: VAL: automatic plan validation, continuous effects
and mixed initiative planning using PDDL. In: 16th IEEE International Conference
on Tools with Artificial Intelligence, pp. 294–301 (2004)

9. Khatib, L., Muscettola, N., Havelund, K.: Verification of plan models using
UPPAAL. In: Rash, J.L., Truszkowski, W., Hinchey, M.G., Rouff, C.A., Gordon,
D. (eds.) FAABS 2000. LNCS, vol. 1871, pp. 114–122. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45484-5_9

10. Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: GOLOG: a logic
programming language for dynamic domains. J. Logic Program. 31(1), 59–83
(1997)

https://doi.org/10.1007/978-3-540-78800-3_24
http://yices.csl.sri.com/tool-paper.pdf
https://doi.org/10.1007/978-3-319-29604-3_9
https://doi.org/10.1007/3-540-45484-5_9

220 C. Schwaab et al.

11. McDermott, D., et al.: PDDL - The Planning Domain Definition Language (Version
1. 2). Technical Report CVC TR-98-003/DCS TR-1165, Yale Center for Compu-
tational Vision and Control (1998)

12. Necula, G.C.: Proof-carrying code. In: POPL, pp. 106–119 (1997)
13. Ong, L.: Higher-order model checking: an overview. In: 30th Annual ACM/IEEE

Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, 6–10 July
2015, pp. 1–15 (2015)

14. Raimondi, F., Pecheur, C., Brat, G.: PDVer, a tool to verify PDDL planning
domains. In: ICAPS 2009 Workshop on Verification and Validation of Planning
and Scheduling Systems, Thessaloniki, Greece, 20 September 2009

15. Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic
and Data Bases, pp. 55–76. Plenum Press, New York (1978)

16. Schubert, A., Urzyczyn, P.: Answer set programming in intuitionistic logic. Inda-
gationes Mathematicae 29(1), 276–292 (2018). l.E.J. Brouwer, fifty years later

17. Scwaab, C., Hill, A., Farka, F., Komendantskaya, E.: Proof-Carrying Plans: Agda
Implementation and Examples (2018). https://github.com/PDTypes

18. Scwaab, C., et al.: Proof-Carrying Plans: Extended Version of This Paper
with Appendices (2018). https://github.com/PDTypes/PADL19/blob/master/
padl-pddl-verification.pdf

19. Sorensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism, Studies
in Logic, vol. 149. Elsevier, New York (2006)

20. Wadler, P.: Propositions as types. Commun. ACM 58(12), 75–84 (2015)
21. Waldinger, R.J.: Achieving several goals simultaneously. Machine Intelligence 8

(1977)
22. Zarrieß, B., Claßen, J.: Decidable verification of GOLOG programs over non-local

effect actions. In: Schuurmans, D., Wellman, M.P. (eds.) Proceedings of the Thir-
tieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona, USA, 12–17
February 2016, pp. 1109–1115. AAAI Press (2016)

https://github.com/PDTypes
https://github.com/PDTypes/PADL19/blob/master/padl-pddl-verification.pdf
https://github.com/PDTypes/PADL19/blob/master/padl-pddl-verification.pdf

Static Partitioning of Spreadsheets
for Parallel Execution

Alexander Asp Bock(B)

Computer Science Department, IT University of Copenhagen,
Copenhagen, Denmark

albo@itu.dk

Abstract. Spreadsheets are popular tools for end-user development and
complex modelling but can suffer from poor performance. While end-
users are usually domain experts they are seldom IT professionals that
can leverage today’s abundant multicore architectures to offset such poor
performance. We present an iterative, greedy algorithm for automati-
cally partitioning spreadsheets into load-balanced, acyclic groups of cells
that can be scheduled to run on shared-memory multicore processors.
A big-step cost semantics for the spreadsheet formula language is used
to estimate work and guide partitioning. The algorithm does not require
end-users to modify the spreadsheet in any way. We implement three
extensions to the algorithm for further accelerating computation; two of
which recognise common cell structures known as cell arrays that natu-
rally express a degree of parallelism. To the best of our knowledge, no
such automatic algorithm has previously been proposed for partitioning
spreadsheets. We report a maximum 24-fold speed-up on 48 logical cores.

Keywords: Spreadsheets · Partitioning · Parallelism

1 Introduction

Spreadsheets are popular tools for end-user development, modelling and edu-
cation. Spreadsheet end-users create and maintain large, complex spreadsheets
over several years [14] and this complexity often leads to costly errors [10] and
poor performance [19]. End-users are usually domain experts but are seldom IT
professionals and may thus require help from experts to accelerate computation.

In recent years, multicore processors have become ubiquitous. For spreadsheet
end-users to benefit from this powerful hardware, they should have a tool at their
disposal to automatically identify and exploit parallelism in their spreadsheets.
Spreadsheets lend themselves well to parallelization as they are both declarative
and first-order functional languages.

In this paper, we present an iterative, greedy algorithm for automatically and
statically partitioning a spreadsheet into load-balanced, acyclic groups of cells.

Supported by the Independent Research Fund Denmark.

c© Springer Nature Switzerland AG 2019
J. J. Alferes and M. Johansson (Eds.): PADL 2019, LNCS 11372, pp. 221–237, 2019.
https://doi.org/10.1007/978-3-030-05998-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05998-9_14&domain=pdf
http://orcid.org/0000-0003-3792-0807
https://doi.org/10.1007/978-3-030-05998-9_14

222 A. A. Bock

Partitioning is guided by a big-step cost semantics to estimate the work of cells and
to produce well-balanced partitions. We implement the algorithm in the research
spreadsheet application Funcalc [18] written in C#, and we believe this is the first
thorough investigation of static partitioning of spreadsheets.

2 Related Work

Spreadsheet research has primarily focused on error detection, handling and
mitigation [6] and less on parallelization. In this section, we briefly discuss some
of the research relevant to spreadsheet parallelism.

There exist multiple distributed systems for spreadsheet calculation like
ActiveSheets [3], Nimrod [2] and HPC Services for Excel [16]. All three systems
require manual modification of the spreadsheet which may take a substantial
amount of time or require help from experts.

In his 1996 dissertation, Wack [21] investigated parallelization of spreadsheet
programs using distributed systems and an associated machine model. He par-
titioned and scheduled a set of predefined patterns and parallelized them via
message-passing in a network of work stations. Our algorithm does not rely on
pre-defined patterns or an existing network of work stations but instead targets
shared-memory multicore processors.

Biermann et al. [5] rewrote so-called cell arrays to higher-order, compiled
function calls on arrays completely transparent to end-users. Their approach
parallelized the internal evaluation of each rewritten array but evaluated disjoint
cell arrays sequentially.

LibreOffice Calc automatically compiled data-parallel expressions into
OpenCL kernels that execute on AMD GPU’s [20]. They reported a 500-fold
speed-up for a particular spreadsheet.

In recent work [4], we presented a task-based parallel spreadsheet interpreter,
dubbed Puncalc, that automatically discovers parallelism and finds cyclic refer-
ences in parallel. The system targets shared-memory multiprocessors and does
not require modification of the spreadsheet. The algorithm obtained roughly a
16-fold speed-up on 48 cores on the same set of benchmark spreadsheets used
in this paper. Puncalc is a dynamic algorithm that may not distribute work as
well as the static approach presented here.

Our static partitioning algorithm is primarily inspired by the work of Sarkar
et al. [17] on the first-order functional language SISAL which was intended
to supersede Fortran as the primary language for scientific computing. Sarkar
worked on an optimising compiler that automatically extracted parallelism by
analysing an intermediate graph representation of the program. The program
was then partitioned at compile-time and scheduled onto available processors at
runtime. SISAL programs were shown to run on par with Fortran programs on
a contemporary supercomputer [8].

Static Partitioning of Spreadsheets for Parallel Execution 223

3 Contributions

We present the following key contributions:

1. A cost model based on a big-step cost semantics for Funcalc’s formula
language (Sect. 5).

2. An algorithm for statically partitioning spreadsheets and scheduling them on
shared-memory multicore processors (Sect. 6).

3. Three extensions to the algorithm for further accelerating execution of
the partitioned spreadsheet. Two of the extensions exploit common cell
structures known as cell arrays that naturally express some degree of
parallelism (Sects. 7.1 to 7.3).

4 Background: Spreadsheet Concepts

We now introduce some basic spreadsheet concepts deemed necessary for reading
this paper. Readers already familiar with the subject can skip this section while
those interested in learning more are encouraged to read [18].

4.1 Formulas and Cell References

A cell can contain either a constant, such as a number, string or error (e.g. #NA
or #DIV/0!); or a formula expression denoted by a leading equals character
(e.g. =1+2). Each cell has a unique address denoted by its column and row
where columns start at A and rows at 1. Formulas can refer to other cells by
using their addresses, or they can refer to an area of cells using the addresses of
two corner cells separated by a colon. For example, cell C1 in Fig. 1a refers to
cells A1 and A2 while cell C3 refers to the cell area spanned by cells A1 and B2.

Cell references may be relative or absolute in each dimension. Relative ref-
erences refer to other cells using offsets, so the referenced cell depends on the
position of the referring cell. Absolute references do not change and are prefixed
by a dollar sign. For example, the formula =$A2 in cell C2 refers absolutely to
column A but relatively to row 2, so copying it to cell C3 would change the cell
reference to $A3, but it would remain unchanged if copied it to D2 since the
column is absolute. This reference scheme is called the A1 format. Relative ref-
erences are more clearly expressed in the R1C1 format where relative references
are denoted by square brackets containing an offset, and absolute references
are denoted by the absence of square brackets and an absolute row or column
number. The same spreadsheet is shown in Fig. 1b in R1C1 format.

4.2 The Support and Dependency Graphs

Cell references establish a cell dependency graph. Its inverse, the support graph,
captures cell support and is analogous to a dataflow graph where nodes are cells
and data flows along the edges from dependencies to supported cells. Cell C1
in Fig. 1a depends on A1 and A2 while both A1 and A2 support C1. Both the
dependency and support graphs may be cyclic.

224 A. A. Bock

Fig. 1. An example spreadsheet in A1 and R1C1 reference formats.

4.3 Recalculation

There are two major types of recalculation. Full recalculation unconditionally
reevaluates all formula cells. Minimal recalculation only reevaluates the transitive
closure of cells reachable, via the support graph, from cells modified by the user.
In Fig. 1a, whenever a user edits the value in A1, cells C1 and C3 must be updated
to reflect the change. The static partitioning algorithm considers all cells in the
spreadsheet and thus performs a full recalculation.

4.4 Cell Arrays

Also known as copy-equivalent formulas [12] or cp-similar cells [1], cell arrays [9]
denote a contiguous rectangular area of formulas that share the same formula
expression in R1C1 format and thus the same computational semantics [9]. A 3
rows by 1 column cell array in column B is shown in Fig. 2a in A1 format and
in Fig. 2b in R1C1 format. The latter format clearly shows that the formulas in
the cell array share a common expression.

Cell arrays are common in spreadsheets because they describe bulk opera-
tions on collections of cells similar to e.g. map and reduce on arrays in functional
programming. These bulk operations can usually be parallelized as we shall see
later. For example, the cell array in Fig. 2a effectively describes a map operation
on column A. Dou et al. [9] found that 69% (7416 out of 10754) of spreadsheets
containing formulas from the EUSES [11] and Enron [13] corpora also contained
cell arrays, and that they contained on average 80 cell arrays each. The bench-
mark spreadsheets from LibreOffice Calc used in this paper are also mainly
comprised of large cell arrays.

Fig. 2. Each cell in the cell array of column B in Fig. 2a takes the corresponding value
in column A and multiplies it by two.

Static Partitioning of Spreadsheets for Parallel Execution 225

Cell arrays can be classified as either transitive (Fig. 2c) or intransitive
(Fig. 2d) [5]. If a cell array only contains formulas that do not reference the
cell array itself, we say that it is intransitive, otherwise it is transitive. The need
for this distinction will become clear later in Sects. 6 and 7 when we describe the
algorithm and two of its extensions.

4.5 Array Formulas

When a user selects a cell area and enters a formula that returns an array, the
elements of the array are distributed across the selected area. The cells in the
area share the same singular formula expression but each cell refers only to part
of the array.

5 Cost Model

Any static partitioning algorithm needs a cost model to produce well-balanced
partitions. Specifically, we are concerned with two metrics: the cost of evaluating
a cell and the cost of synchronizing groups of cells in the partition when it is
run. We discuss these in turn.

5.1 Big-Step Cost Semantics

We have developed a concrete big-step cost semantics for Funcalc’s formula
language which we only briefly discuss here due to space limitations. We refer
interested readers to the full details in our technical report [7]. The general
judgement form σ, α � e ⇓ v, c states that given environment σ mapping cells to
values and an environment α mapping cells to array formulas, the expression e
may evaluate to some value v at cost c. The rule for the SUM built-in function is
shown below. The cost is given as integers that effectively describe the number
of operations needed to evaluate an expression but we intend to use more precise
costs in the future e.g. obtained from profiling.

Rule (sum) states that if all its argument expressions evaluate to values at some
cost, the function call may evaluate to the sum of those values. The total cost
is the sum of costs of the individual function arguments plus one.

The big-step cost semantics has other uses. It may serve as a reliable, formal
reference for implementations as it does for other functional programming lan-
guages; or used to guide other types of partitioning or parallelisation strategies
such as off-loading work to a GPU [20]. We could also envision a refactoring tool
that can identify and report bottlenecks or costly operations in spreadsheets.

226 A. A. Bock

5.2 Synchronization Cost

Sarkar’s framework [17] targeted both shared-memory and distributed systems
so their cost model had to accommodate different types of communication costs.
Our algorithm targets shared-memory multicore architectures where the cost
model must capture synchronization between threads. For simplicity, we use
a constant cost for synchronization between threads based on benchmarking
results. While this does not take memory latency and other hardware aspects into
account, it is currently sufficient for generating partitions capable of accelerating
spreadsheet computation. In the future, we intend to develop a more precise
model based on the hardware and operating system.

6 Static Partitioning Algorithm

Sarkar [17] showed that finding the optimal partition is NP-complete in the
strong sense and developed an approximate partitioning algorithm which was
close to optimal in practice. In this section, we present a similar partitioning
algorithm for spreadsheets. We first assign costs to all formula cells, then par-
tition the spreadsheet by iteratively merging groups of cells and scheduling the
computation of those groups. Afterwards, we introduce a preprocessing step
in Sect. 6.3 that speeds up partitioning and a postprocessing step in Sect. 6.4
that applies an optimisation to sequential paths in the resultant partition.

6.1 Problem Formulation

We view a spreadsheet as a graph G = (V,E) consisting of a set of formula cells
V = {c0, . . . , cn} and a set of support edges E ⊂ (V ×V). We can follow the edges
in the opposite direction to follow cell dependencies. Inspired by Sarkar [17], we
wish to partition V into an acyclic partition Pf = {τ0, . . . , τm} consisting of
disjoint, load-balanced groups τi where the cells in a group are a subset of V :
Cells(τi) ⊆ V , all formula cells are contained in some τ :

⋃m
i=0 Cells(τi) = V ,

and Pf minimizes an objective function F : arg min F (P) = Pf . Note that we do
not require Pf to be optimal. The objective function F approximates the trade-
off between parallelism and synchronization in a partition and is introduced in
the next section. We can view a partition P as a condensation of the cell graph
where subsets of cells have been assigned to some group τi and refer to this
condensed graph as the τ -graph. Any partition P produced by the algorithm is
required to be acyclic to ease scheduling but we defer a detailed discussion. We
define the following operations on a group τ .

– Cells(τ): The set of cells in τ .
– Pred(τ): The set of predecessors of τ .
– Succ(τ): The set of successors of τ .
– Time(τ): The estimated total time to recalculate each cell in Cells(τ).
– Sync(τ): The synchronization cost of τ .

The predecessors and successors are determined by the dependency and support
edges of the cells in Cells(τ).

Static Partitioning of Spreadsheets for Parallel Execution 227

6.2 Iterative, Greedy Group Merging

Starting from some initial partition, we now iteratively and greedily merge pairs
of τ ’s as guided by the objective function F , until we reach the coarsest partition
consisting of a single τ containing all cells with no parallelism but no synchro-
nization overhead either. We select the intermediate partition that minimized F
as the output of the algorithm. The objective function F is the maximum of the
critical path term and the overhead term [17] as given by Eq. (3).

Sync(P) =
∑

τ∈P

(|Pred(τ)| + |Succ(τ)|) · Sync(τ) (1)

Time(P) =
∑

τ∈P

Time(τ) (2)

F (P) = max

(
CPL(P)

Time(P) ÷ N
, 1 +

Sync(P)
Time(P)

)

(3)

The total synchronization cost of P in Eq. (1) is the number of predecessors and
successors of each τ times its synchronization cost. The total time to execute
P in Eq. (2) is the summation of the time taken to execute each τ ∈ P , and
is constant throughout partitioning since the amount of work in the partition
remains constant but its distribution between τ ’s is not. Finally, the objective
function in Eq. (3) is the maximum of the critical path and overhead terms.
The former term is the critical path length (denoted as CPL in the equation),
i.e. the most expensive sequential path in the τ -graph, divided by the ideal
parallel execution time of P given N total processors. The overhead term is the
synchronization cost of P normalised by the time taken to execute P .

A fine partition with a critical path length close to the ideal execution time
would have a critical path term close to one, but is likely to have dominant
overhead term since many τ ’s need to synchronize. Conversely, a coarser partition
may have a small overhead term as the coarseness of the partition means less
groups need to synchronize, but a dominant critical path term since many τ ’s
might have been merged into the critical path. In this way, the merging step
uses F to balance the degree of parallelism versus the cost of synchronization.

When selecting two groups τ1 and τ2 to merge, we select τ1 as the group
with the largest synchronization cost in hopes of reducing the partition’s overall
synchronization cost [17]. We select τ2 as the group that yields the smallest
change in the critical path length if we were to merge it with τ1. During iteration,
we record F (P) for each partition and return the partition Pf which minimized
F as the output of the algorithm.

Acyclic Constraint. To keep all partitions acyclic, we impose an
acyclic constraint1 on each partition [17]. When two groups τ1 and τ2 are selected
for a merge, we also merge any τ that lies on a path between τ1 and τ2, and thus
outside the convex subgraph defined by τ1 and τ2.
1 Originally referred to as the convexity constraint in [17] as it relates to convex sub-

graphs.

228 A. A. Bock

Definition 1. A subgraph H of a directed graph G is convex if for every pair of
vertices a, b ∈ H, any path between a and b is fully contained in H.

For example, if there is a path τ1 → τ → τ2 and we did not merge τ as well,
we would introduce a cycle in the τ -graph. Intuitively, the acyclic constraint
prohibits τ ’s from spawning and waiting for work (a loop between two groups),
and fork-join parallelism where the fork e.g. happens at τ1 and the join at τ2.
While this may remove some parallelism from the partition, it greatly simplifies
scheduling.

6.3 Cell Array Preprocessing

In a preprocessing step, we assign each cell array to its own τ in the initial par-
tition so we can later exploit any internal parallelism. This has two advantages.
First, it decreases the number of groups that need to be considered for merging,
lowering the partitioning time. Second, the algorithm initially needs to deter-
mine the predecessors and successors of each τ , which is necessary for computing
the synchronization cost of a partition and keeping track of dependencies when
merging. Instead of querying each cell in a potentially large cell array in some τ ,
we can in most cases query only its four corner cells to quickly find predecessors
in Pred(τ) that also contain cell arrays. Due to the complementary nature of
the support and dependency graphs, this also establishes that τ is a successor
of each such τp ∈ Pred(τ). In other cases, we conservatively query each cell.

The preprocessing step can be said to be optimistic as many real-world
spreadsheets contain large cell arrays that refer to other cell arrays, so we expect
that the preprocessing will usually succeed. Most of our benchmark spreadsheets
fall into this category.

Determining Reachability. Consider the two single-column cell arrays
spanned by cell areas B1:B255 and C1:C255 respectively in Fig. 3a. The top
and bottom cell references of the blue cell array in column B can both reach only
constants in column A and so we cannot conclude anything about the dependen-
cies of the remaining cells in the cell array since a subset of them might be able
to reach some other cell array. The top and bottom cells of the red cell array in
column C can both reach the blue cell array in column B and we conclude that
all the cells in the range C2:C254 can also reach the blue cell array by virtue of
the identical relative cell references shared by the cells. If the top and bottom
cells of column C’s cell array could reach different τ ’s, as in Fig. 3b, we cannot
conclude anything about the other cells in the cell array and instead query each
cell.

We can similarly analyse array formulas which is straight forward since their
cells share a single formula expression. Due to space limitations, we omit their
analysis here.

We exclude any corners whose cell references are transitive, i.e. all cells they
refer to belong to the cell array itself. The rest of the analysis has three pri-
mary cases. In the first case, we handle cell references that are absolute in both

Static Partitioning of Spreadsheets for Parallel Execution 229

Fig. 3. Preprocessing of different cell arrays.

dimensions (e.g. A1). Every cell in the cell array depends on such a reference
regardless of the relative position of the referring cell. Absolute cell areas refer-
enced from the cell array must be fully enclosed in the reachable τ . If they are
not, the other part of the cell area may belong to some τi which we will only
discover by examining each cell in the referenced cell area.

In the second case, we observe that even cell references that are not fully
absolute can be considered absolute in the context of a cell array as shown
in Fig. 4. Since the cell array in column B refers to cell A1 using a row-absolute
but column-relative reference, all cells in the cell array will always refer to that
cell and it can be viewed as a constant. The same is true for row-relative, column-
absolute references and single-row cell arrays.

Fig. 4. Spreadsheet calculating the circumference 2πr of various circle radii. Cell A1
holds the constant π which the cell array in column B refers to. Since the reference
is row-absolute and column-relative, all cells in the cell array always refer to A1. This
scenario occurs in the building-design spreadsheet.

The third and final case handles any other relative cell references. For each
reference in the cell array’s formula expression, we consider each unique pair of
corners and examine what cells or areas they refer to. This is necessary since all
pairs, even diagonally opposite corners, may refer to the same τ . For single-cell
references, if both corners of a cell array in τi can reach cells belonging to the
cell array of some τj , we add τj as a predecessor of τi. For cell areas, we require
the same conditions but also require that the referenced cell areas are wholly
contained in the reachable τi as for the second case. Any cells that are not part
of a cell array, and thus not handled by this analysis, are put into their own
initial τ . We are currently working on a formal version of the analysis.

230 A. A. Bock

6.4 Postprocessing

The algorithm is approximate and not guaranteed to produce the optimal
partition [17] and may miss obvious optimisations, such as a sequential chain
of dependencies in the τ -graph whose parts are assigned to different τ ’s. We
could avoid unnecessary synchronization by instead assigning the entire chain to
a single τ . Therefore, once the final partition has been found, we traverse the
τ -graph to find such chains and ensure that they are assigned to a single τ .

6.5 Scheduling Partitions

The merging step of the algorithm leaves us with a final partition Pf =
{τ0, . . . , τm}. Since Pf is acyclic, we can schedule the partition by first topo-
logically sorting the τ -graph by its dependencies then create tasks using the
Task Parallel Library (TPL) [15] to run each τ . We iterate through the topo-
logically sorted list and either (1) mark a τ without dependencies as a source
and create a task to execute it; (2) create a TPL continuation task that waits
for all its dependent tasks to finish before starting. We then start every source
task and wait for all tasks to complete. Each non-source task first checks if all
its dependent tasks ran to normal completion. If not, it immediately stops and
propagates any errors to its successors so that execution can quickly terminate.

7 Extensions

Cells within each τ are evaluated sequentially and the algorithm only parallelizes
the execution of the τ -graph, disregarding any additional parallelism inside each τ .
In this section,we present three extensions to the algorithm to remedy this: the first
extension uses nested parallelism within cell arrays; the second extension uses our
parallel spreadsheet interpreter [4] in each τ ; the third extension uses the rewriting
tool from [5] to rewrite cell arrays to calls to compiled higher-order functions that
can also be executed in parallel.

7.1 Nested Cell Array Parallelism

This extension relies on the fact that spawning nested TPL tasks within a task
will enqueue them in the current threadpool thread’s local queue, circumventing
the global queue and possibly reducing contention. However, we cannot neces-
sarily spawn a task for each cell in the cell array since its references may be
transitive [5].

In Fig. 2d on page 4, each reference in the formula of the cell array in column
B refers to a cell in the same row but in column A. Since none of the relative
cell references are transitive, we can easily spawn a task for each cell in the
cell array, and because a τ is only executed when all its inputs are ready, its
dependencies will already have been computed. In Fig. 2c, each cell reference
refers transitively to a cell five rows below it. Blindly spawning tasks for each

Static Partitioning of Spreadsheets for Parallel Execution 231

cell would not properly synchronize, but we can still parallelize some of the
work by subdividing the cell array into subgroups of five which will not have
any transitive references to themselves [5]. We then execute each subdivision in
parallel in a lockstep fashion. Therefore, we must first perform an analysis of all
cell arrays to determine if and how they can be executed in parallel, but do not
currently parallelize transitive cell arrays.

7.2 Puncalc: A Parallel Interpreter for Spreadsheets

Unlike nested cell array parallelism, using our parallel spreadsheet interpreter
does not require an additional analysis of cell arrays since the algorithm already
ensures proper synchronization [4]. The interpreter follows the support graph in
parallel in search of cells to compute, but this would mean that cells belonging
to successor τ ’s might be evaluated prematurely. To avoid this, we disallow the
interpreter from following support edges.

7.3 Rewriting Cell Arrays to Higher-Order Function Calls

Biermann et al. [5] analysed cell arrays and rewrote eligible ones to an array for-
mula consisting of a call to a higher-order, compiled function based on patterns
exhibited by the cell array’s formulae. The higher-order, compiled functions are
called sheet-defined functions and are a feature of Funcalc [18]. Users can define
functions in cells which are then compiled to Common Intermediate Language
(CIL) bytecode. Based on the cell array analysis, an expression might be rewrit-
ten to a map or prefix operation or not rewritten at all. This has led to good
speed-ups, even with no parallelization and even for spreadsheets that contain
little computation such as some from the EUSES corpus [11]. The spreadsheet
is rewritten after being loaded from disk, so no change to the static partitioning
algorithm is necessary since we already handle array formulas.

8 Results

8.1 Experimental Setup

To evaluate our algorithm, we adapted the spreadsheets from the LibreOffice
Calc benchmark suite2 to Funcalc. We partitioned all spreadsheets for each core
configuration since the partitioning algorithm is dependent on the number of
available cores (see Eq. (3) in Sect. 6.2).

Our test machine was an Intel Xeon E5-2680 v3 with two separate hardware
chips with 12 2.5 GHz cores each and hyperthreading (48 logical cores total),
running 64-bit Windows 10 and .NET 4.7.1. We initially performed three warm-
up runs and ran each benchmark for two iterations. In each iteration, we ran the
2 Available unmodified at https://gerrit.libreoffice.org/gitweb?p=benchmark.git;

a=tree.

https://gerrit.libreoffice.org/gitweb?p=benchmark.git;a=tree
https://gerrit.libreoffice.org/gitweb?p=benchmark.git;a=tree

232 A. A. Bock

benchmark ten times, for a total of 20 runs, and computed the average execution
time.3 We report the average of those two averages in Table 2. We disabled the
TPL’s heuristics for thread creation and destruction so that a thread was created
per processor at start-up.

8.2 Discussion

Partitioning currently takes on the order of a few minutes where the dominating
factor is applying the big-step cost rules to each cell. We could rectify this
by caching and reusing the computed costs if cells are not modified between
partitioning. This may inflate memory usage as the spreadsheets contain between
108 332 and 812 693 cells whose costs would need to be cached. It is also possible
to save the partition alongside the spreadsheet data so that it can be loaded
quickly next time without having to partition again. The partitioning itself is
very fast primarily due to the cell array analysis discussed in Sect. 6.3 and the
presence of large, dominating cell arrays as we discuss in a moment. There are
five key observations to be made from Tables 1 and 2.

Observation 1. The benchmark spreadsheets contain large cell arrays that
contain almost all formula cells.

Table 1 shows that all our benchmark spreadsheets are dominated by large,
intransitive cell arrays which contain almost all formula cells. This aligns with
the observations made by Dou et al. [9] that cell arrays are common structures in
spreadsheets which has two implications. First, the preprocessing step success-
fully analyses most of the cell arrays. Second, the many large cell arrays means
that there is a lot of parallel computation we can exploit with the three proposed
extensions from Sect. 7.

Table 1. From left to right: The number of cell arrays in the LibreOffice Calc spread-
sheets; the percentage of formulas contained in cell arrays; the average size of cell arrays;
and the number of rewritten intransitive and transitive cell arrays. No transitive cell
arrays are rewritten because none of the spreadsheets contain any.

Spreadsheet Cell arrays % of Formulas Average size Rewritten cell arrays

building-design 6 99.93% 18 042 6/0

energy-markets 76 99.99% 7032 76/0

grossprofit 9 99.94% 15 000 9/0

ground-water 12 100% 10 533 12/0

stock-history 22 99.97% 10 292 20/0

stocks-price 8 99.99% 101 578 8/0

3 Raw data available at https://github.com/popular-parallel-programming/p3-
results/tree/master/static-partitioning.

https://github.com/popular-parallel-programming/p3-results/tree/master/static-partitioning
https://github.com/popular-parallel-programming/p3-results/tree/master/static-partitioning

Static Partitioning of Spreadsheets for Parallel Execution 233

Table 2. Absolute running times in seconds for each configuration of cores for the base
implementation and its three extensions. Speed-up is for parallel execution on 48 cores
relative to normal sequential execution of Funcalc. Bold numbers denote the fastest
execution for each spreadsheet. The standard deviation is within ±0.08 for all results,
except for the base implementation running stocks-price on 16 cores with a standard
deviation of ±0.18.

Spreadsheet Sequential x2 x4 x8 x16 x32 x48 Speed-up

Base implementation

building-design 32.12 30.72 30.92 31.26 31.05 30.85 31.79 1.01x

energy-markets 168.16 157.08 95.75 66.51 52.95 75.45 139.41 1.21x

grossprofit 102.19 102.33 53.86 33.25 32.59 32.73 34.66 2.95x

ground-water 81.26 72.42 36.13 24.49 17.65 21.02 17.30 4.70x

stock-history 64.90 61.90 35.54 19.12 17.20 18.69 17.64 3.68x

stocks-price 102.74 158.94 171.10 169.56 174.53 168.10 172.34 0.60x

Nested cell array parallelism extension (Sect. 7.1)

building-design 32.12 26.23 13.32 7.33 3.98 2.16 1.62 19.84x

energy-markets 168.16 156.68 95.84 66.67 53.22 89.35 200.28 0.84x

grossprofit 102.19 102.72 53.31 32.46 21.06 17.16 19.95 5.12x

ground-water 81.26 69.97 35.59 19.29 10.41 5.32 3.71 21.89x

stock-history 64.90 58.84 29.94 17.73 10.47 7.00 6.17 10.52x

stocks-price 102.74 130.46 166.70 164.37 74.44 145.48 166.87 0.62x

Puncalc extension (Sect. 7.2)

building-design 32.12 31.97 16.12 8.86 4.82 2.68 1.91 16.81x

energy-markets 168.16 199.63 146.66 128.06 158.50 90.95 202.04 0.83x

grossprofit 102.19 106.70 55.22 33.48 21.57 17.55 20.25 5.05x

ground-water 81.26 80.47 41.22 22.81 12.17 6.26 4.31 18.87x

stock-history 64.90 59.05 29.97 17.81 10.92 7.12 7.03 9.24x

stocks-price 102.74 148.56 174.75 168.01 65.26 143.08 168.25 0.61x

Cell rewriting extension (Sect. 7.3)

building-design 32.12 45.35 22.79 12.49 6.58 3.35 2.39 13.44x

energy-markets 168.16 206.16 150.10 99.84 91.04 335.60 400.26 0.42x

grossprofit 102.19 109.75 58.79 36.74 26.56 31.98 63.51 1.61x

ground-water 81.26 111.90 57.74 32.07 16.71 8.34 5.79 14.03x

stock-history 64.90 51.81 26.94 14.31 7.37 3.91 2.72 23.88x

stocks-price 102.74 149.98 91.09 66.45 62.60 205.99 239.11 0.43x

Observation 2. The performance of the base implementation shows that it is
necessary to exploit the internal parallelism of cell arrays.

234 A. A. Bock

In Table 2, we get varying results for the base implementation but do get some
speed-up, especially for the grossprofit, ground-water and stock-history
spreadsheets. However, it is evident that we must also exploit the additional
parallelism exposed by cell arrays when comparing these results with those of
the three extensions.

Observation 3. The nested cell array extension produces the best overall speed-
ups on 48 cores.

Out of the three extensions, the nested cell array parallelism extension gives the
overall best speed-ups on 48 cores with a maximum speed-up of 21.89 for the
ground-water spreadsheet.

Observation 4. The energy-markets, grossprofit and stocks-price
spreadsheets have less predictable speed-ups and performance consistently
peaks at 16 or 32 cores. Adding more cores seems to slow down recalculation.

Observation 4 applies to the base implementation and its three extensions with
the exception of stocks-price for the base implementation where the best
speed-up is achieved at 2 cores, although it is still slower than sequential exe-
cution. It is especially perplexing for energy-markets that contains ample par-
allelism since it consists of multiple independent cell arrays which is captured
by partitioning. Likewise, stocks-price and grossprofit also contain some
degree of parallelism.

The slowdown may stem from TPL scheduling and hardware. Our test machine
has two separate chips of 12 physical cores each which may result in increasing
amounts of off-chip communication. We still get approximately 1.3–3.0x speed-
up for 16 and 32 cores for these spreadsheets which may be consistent with the
above hardware observation since using more threads may increase off-chip com-
munication.

One would also be inclined to suspect our simplified communication model
since the amount of synchronization needed to execute a partition may outweigh
the amount of parallelism in the spreadsheets in some cases.

In [4], we measured different structural properties of the spreadsheets but
found no correlation with performance. Upon further investigation, the garbage
collector was spending excessive amounts of time on generation zero and one col-
lections which meant that less time was spent doing useful computation.4 When
inspecting the managed heap, memory usage stemmed partly from allocation of
many small, ephemeral objects related to calling specific intrinsic Funcalc func-
tions which were mostly used by the spreadsheets that exhibit poor performance.
We also noticed memory usage related to TPL internals and task creation which
may increase with the number of cores. The latter is likely caused by the fine
granularity work distribution from parallelisation of cell arrays. We could chunk
cell arrays based on the number of processors to create less tasks with a more

4 We used the Windows Performance Monitor to monitor performance characteristics
and WinDbg to inspect the managed heap.

Static Partitioning of Spreadsheets for Parallel Execution 235

sensible work distribution. One could also switch to manual thread management
to circumvent TPL and task allocations. Finally, some object references might
be retained when they should be garbage collected instead. We are currently
working on identifying and rectifying these issues.

Observation 5. The cell rewriting extension achieves different speed-ups com-
pared to the other extensions for some spreadsheets. The nested cell array
and Puncalc extensions achieve similar speed-ups.

Table 1 shows that all intransitive cell arrays are rewritten except for two in the
stock-history spreadsheet and that no transitive cell arrays exist in any of
the spreadsheets. The results are quite different from the other two extensions.
The energy-markets and stocks-price spreadsheets have even worse perfor-
mance on 48 cores but their peak performance at 16 and 32 cores is comparable
to the peak performances of the other two extensions. For the ground-water
spreadsheet, we observe 14.03x speed-up as opposed to 21.89x and 18.87x for
extension 1 and 2 respectively. The best speed-up out of all the results is 23.88
for 48 cores for the stock-history spreadsheet. We offer two explanations for
these differences. First, more efficient and parallelizable sheet-defined functions
may be generated for the stock-history spreadsheet. Second, Table 1 shows
the average size of cell arrays is much larger in stock-history so more cells are
rewritten that invoke generated bytecode instead of using the slower interpreter.

The two other extensions achieve similar speed-ups since their method of par-
allelization is similar. The nested cell array extension beats the Puncalc extension
which is likely because it directly spawns tasks for each cell in the cell array while
the Puncalc extension uses additional synchronization and a global shared work
queue, as it is built to evaluate any kind of topology, not just cell arrays.

9 Conclusion

We have presented a static partitioning algorithm for spreadsheets that auto-
matically identifies sufficient parallelism and achieves good speed-ups on a set
of benchmark spreadsheets. A big-step cost semantics for the formula language
of Funcalc was used to estimate the cost of cells. Finally, we extended the par-
titioning algorithm in three different ways to further accelerate computation.

While cell arrays are common structures in spreadsheets, they may not uni-
versally be so. We do not benchmark on spreadsheets that contain few or no cell
arrays where the partitioning time and speed-up will likely be affected. In future
work, we intend to benchmark large spreadsheets with these characteristics and
ones with large, transitive cell arrays.

We have not compared any of our results to Excel or LibreOffice Calc and
we do not believe this is particularly useful. Both Excel and LibreOffice Calc are
intended for real-world use while Funcalc is primarily intended for research and
has not been publicly distributed.

236 A. A. Bock

It would be interesting to capture hardware characteristics in the cost model
to control the amount of parallelism if we suspect that execution may suffer if
we use too many threads. It may also suffice to re-enable TPL’s heuristics for
thread creation or opt for manual thread management. Lastly, we acknowledge
that our synchronization model may be too simplistic and it would be more
meaningful to develop a model that takes hardware into account, e.g. based
on benchmarks that compare on-chip versus off-chip synchronization. Another
hardware aspect to consider is that memory bandwidth and cache hierarchies
often limit scalability in NUMA systems which could also be incorporated into
our synchronization cost model.

Acknowledgements. The author would like to thank Peter Sestoft and Florian
Biermann for valuable insight and discussions during the development of this work,
as well as Peter Sestoft and Holger Stadel Borum for proofreading.

References

1. Abraham, R., Erwig, M.: Inferring templates from spreadsheets. In: ICSE (2006)
2. Abramson, D., Sosic, R., Giddy, J., Hall, B.: Nimrod: a tool for performing

parametrised simulations using distributed workstations. In: HPDC (1995)
3. Abramson, D., Roe, P., Kotler, L., Mather, D.: Activesheets: super-computing with

spreadsheets. In: HPC (2001)
4. Biermann, F., Bock, A.A.: Puncalc: task-based parallelism and speculative reeval-

uation in spreadsheets. In: HLPP (2018)
5. Biermann, F., Dou, W., Sestoft, P.: Rewriting high-level spreadsheet structures

into higher-order functional programs. In: Calimeri, F., Hamlen, K., Leone, N.
(eds.) PADL 2018. LNCS, vol. 10702, pp. 20–35. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-73305-0 2

6. Bock, A.A.: A literature review of spreadsheet technology. Technical report (2016).
ISBN 978-87-7949-364-3

7. Bock, A.A., Bøgholm, T., Sestoft, P., Thomsen, B., Thomsen, L.L.: Concrete and
abstract cost semantics for spreadsheets. Technical report (2018). ISBN 978-87-
7949-369-8

8. Cann, D.: Retire Fortran? A debate rekindled. Commun. ACM 35(8), 81–89 (1992)
9. Dou, W., Cheung, S.C., Wei, J.: Is spreadsheet ambiguity harmful? Detecting and

repairing spreadsheet smells due to ambiguous computation. In: ICSE (2014)
10. EuSpRiG Horror Stories. http://eusprig.org/horror-stories.htm
11. Fisher, M., Rothermel, G.: The EUSES spreadsheet corpus: a shared resource for

supporting experimentation with spreadsheet dependability mechanisms. In: SIG-
SOFT SEN (2005)

12. Hermans, F., Dig, D.: BumbleBee: a refactoring environment for spreadsheet for-
mulas. In: SIGSOFT FSE (2014)

13. Hermans, F., Murphy-Hill, E.: Enron’s spreadsheets and related emails: a dataset
and analysis. In: ICSE (2015)

14. Hermans, F., Pinzger, M., van Deursen, A.: Supporting professional spreadsheet
users by generating leveled dataflow diagrams. In: ICSE (2011)

15. Leijen, D., Schulte, W., Burckhardt, S.: The design of a task parallel library. SIG-
PLAN Not. 44(10), 227–242 (2009)

https://doi.org/10.1007/978-3-319-73305-0_2
https://doi.org/10.1007/978-3-319-73305-0_2
http://eusprig.org/horror-stories.htm

Static Partitioning of Spreadsheets for Parallel Execution 237

16. Microsoft: HPC Services For Excel
17. Sarkar, V.: Partitioning and Scheduling Parallel Programs for Multiprocessors.

Research Monographs In Parallel and Distributed Computing. MIT Press, Cam-
bridge (1989)

18. Sestoft, P.: Spreadsheet Implementation Technology. MIT Press, Cambridge (2014)
19. Swidan, A., Hermans, F., Koesoemowidjojo, R.: Improving the performance of a

large scale spreadsheet: a case study. In: SANER (2016)
20. Trudeau, J.: Collaboration and Open Source at AMD: LibreOffice. https://

developer.amd.com/collaboration-and-open-source-at-amd-libreoffice/
21. Wack, A.P.: Partitioning dependency graphs for concurrent execution: a parallel

spreadsheet on a realistically modeled message passing environment. Ph.D. thesis,
Newark, DE, USA (1996)

https://developer.amd.com/collaboration-and-open-source-at-amd-libreoffice/
https://developer.amd.com/collaboration-and-open-source-at-amd-libreoffice/

Author Index

Andersen, Kristoffer Just Arndal 169
Arias, Joaquín 98

Bock, Alexander Asp 221
Broman, David 187

Carro, Manuel 98

Erdem, Esra 37

Farka, František 204

Gupta, Gopal 46

Hammond, Kevin 204
Hanus, Michael 82
Hill, Alasdair 204
Hippen, Nicholas 19

Kahraman, Muhammed Kerem 37
Komendantskaya, Ekaterina 204

Lierler, Yuliya 1, 19

Miraldo, Victor Cacciari 150

Nguyen, Van 64

Palmkvist, Viktor 187
Pendharkar, Dhruva 46
Petrick, Ronald P. A. 204
Pieters, Ruben P. 133
Pontelli, Enrico 64

Schrijvers, Tom 133
Schwaab, Christopher 204
Sergey, Ilya 169
Serrano, Alejandro 150
Son, Tran Cao 64

Tarau, Paul 115

Wells, Joe 204

	Preface
	Organization
	Contents
	Strong Equivalence and Program's Structure in Arguing Essential Equivalence Between First-Order Logic Programs
	1 Introduction
	2 Running Example and Observations
	3 Preliminaries: RASPL-1 Logic Programs, Operator SM, Strong Equivalence
	3.1 Operator SM
	3.2 Semantics of Logic Programs
	3.3 Review: Strong Equivalence

	4 Rewritings
	4.1 Rewritings via Pure Strong Equivalence
	4.2 Useful Rewritings Using Structure

	References

	Automatic Program Rewriting in Non-Ground Answer Set Programs
	1 Introduction
	2 Projections in Theory
	3 Projections in Practice
	4 Experimental Analysis
	5 Discussion, Future Work, Conclusions
	References

	Personalized Course Schedule Planning Using Answer Set Programming
	1 Introduction
	2 Problem Description
	3 Method
	3.1 Course Schedule Planning
	3.2 Personalizing Course Schedule Planning
	3.3 Implementation of SUcheduler

	4 Experimental Evaluations
	5 Related Work
	6 Conclusion
	References

	An ASP Based Approach to Answering Questions for Natural Language Text
	1 Introduction
	2 System Architecture
	3 Knowledge Representation
	3.1 Predicate Generation
	3.2 Common Sense Knowledge Generation

	4 Word Sense Disambiguation
	5 Query Generation from Natural Language Question
	6 Evaluation Results
	7 Contributions, Related Work, Conclusions
	References

	Natural Language Generation from Ontologies
	1 Introduction
	2 Background
	2.1 Grammatical Framework
	2.2 Attempto Controlled English

	3 Generating Sentences from GF
	3.1 Web Service Ontology (WSO)
	3.2 GF Generator

	4 Automatic Natural Language Generation from Annotated Ontology: nlgOntologyA
	4.1 Overall Architecture
	4.2 Generation of Portable Grammar Format
	4.3 Sentence Construction

	5 Related Work and Analysis
	6 Conclusions, Discussions, and Future Work
	References

	Improving Residuation in Declarative Programs
	1 Introduction
	2 Declarative Programming with Curry
	3 Implementing Residuation in Prolog
	4 Approximating Residuation Behavior
	4.1 CASS: An Analysis Framework for Curry
	4.2 A Domain for Residuation Analysis
	4.3 Residuation Analysis

	5 Implementing Residuation with Analysis Information
	6 Benchmarks
	7 Related Work
	8 Conclusions
	References

	Incremental Evaluation of Lattice-Based Aggregates in Logic Programming Using Modular TCLP
	1 Introduction
	2 Background: Tabling and Constraints
	3 Aggregates in Lattices
	3.1 Aggregates Based on Entailment
	3.2 Aggregates Based on Join

	4 The ATCLP Framework
	4.1 From Lattices to Constraints
	4.2 Design of the ATCLP Interface
	4.3 Implementation Sketch
	4.4 Adapting the Answer Management of TCLP
	4.5 Non-lattice Aggregates

	5 Experimental Evaluation
	6 Conclusion and Future Work
	References

	A Combinatorial Testing Framework for Intuitionistic Propositional Theorem Provers
	1 Introduction
	2 Proof Systems for Implicational Propositional Intuitionistic Logic
	2.1 Gentzen's LJ Calculus, Restricted to the Implicational Fragment of Propositional Intuitionistic Logic
	2.2 Roy Dyckhoff's LJT Calculus, Restricted to the Implicational Fragment of Propositional Intuitionistic Logic

	3 The Test-Driven Prover Derivation Process
	3.1 An Executable Specification: Dyckhoff's LJT Calculus, Literally
	3.2 Concentrating Nondeterminism into One Place
	3.3 Implicational Formulas as Nested Horn Clauses
	3.4 Propagating Back the Elimination of Non-matching Heads
	3.5 Extracting the Proof Terms

	4 The Testing Framework
	4.1 Finding False Negatives by Generating the Set of Simply Typed Normal Forms of a Given Size
	4.2 Finding False Positives by Generating All Implicational Formulas/Type Expressions of a Given Size
	4.3 Testing Against a Trusted Reference Implementation
	4.4 Random Simply-Typed Terms, with Boltzmann Samplers
	4.5 Random Implicational Formulas
	4.6 Testing with Large Random Terms
	4.7 Scalability Tests

	5 Related Work
	6 Conclusions and Future Work
	References

	Faster Coroutine Pipelines: A Reconstruction
	1 Introduction
	2 Motivation
	2.1 Pipes
	2.2 Three-Continuation Approach

	3 Fast Merging for One-Sided Pipes
	3.1 One-Sided Pipes
	3.2 Mutual Recursion Elimination
	3.3 Structural Recursion with Fold
	3.4 A Short-Cut to a Merge-Friendly Representation
	3.5 A Not So Special Representation

	4 Return to Two-Sided Pipes
	4.1 Pipe of No Return
	4.2 Return to identifierreturn
	4.3 Specialization for identifierIO

	5 Bidirectional Pipes
	6 Benchmarks
	7 Related Work
	8 Conclusion
	References

	Classes of Arbitrary Kind
	1 Introduction
	1.1 Concepts of Arbitrary Kind
	1.2 Contributions

	2 Representing Type Application
	3 Arbitrary-Kind Type Classes
	3.1 You-Name-It-Functors
	3.2 From Families to Data, and Back Again

	4 Generics for Arbitrary Kinds
	4.1 Representing Constraints and Existentials

	5 Related Work
	6 Conclusion
	References

	Distributed Protocol Combinators
	1 Introduction
	2 Specifying and Implementing Systems with DPC
	2.1 Describing Distributed Interaction
	2.2 Specifying the Protocol
	2.3 Executing the Specification
	2.4 Interactive Exploration with GUI
	2.5 Protocol-Aware Distributed Implementations

	3 Framework Internals
	3.1 The Specification Language
	3.2 The Implementation Language

	4 Evaluation
	4.1 More Examples
	4.2 A Case Study: Constructing and Running Paxos Consensus

	5 Related Work
	6 Conclusion and Future Work
	References

	Creating Domain-Specific Languages by Composing Syntactical Constructs
	1 Introduction
	2 Defining Syncons
	2.1 Header
	2.2 Properties
	2.3 Body

	3 Ambiguity Reporting
	3.1 Motivation
	3.2 Finding Ambiguities
	3.3 Reporting Ambiguities

	4 Binding Semantics and Expansion
	4.1 Name Resolution
	4.2 Expansion

	5 Evaluation
	5.1 Implementation
	5.2 Case Studies
	5.3 Analysis and Discussion

	6 Related Work
	7 Conclusion
	References

	Proof-Carrying Plans
	1 Motivation
	2 Example: Proof-Carrying PDDL
	3 Planning Problems as Types
	3.1 Formal Language and Its Declarative Semantics
	3.2 Operational Semantics, States and Types

	4 Plans as Proof Terms
	4.1 Typing Rules for Planning Problems
	4.2 Computational Characterisation of Plans: Soundness of Plan Execution

	5 Discussion, Conclusions, and Future Work
	References

	Static Partitioning of Spreadsheets for Parallel Execution
	1 Introduction
	2 Related Work
	3 Contributions
	4 Background: Spreadsheet Concepts
	4.1 Formulas and Cell References
	4.2 The Support and Dependency Graphs
	4.3 Recalculation
	4.4 Cell Arrays
	4.5 Array Formulas

	5 Cost Model
	5.1 Big-Step Cost Semantics
	5.2 Synchronization Cost

	6 Static Partitioning Algorithm
	6.1 Problem Formulation
	6.2 Iterative, Greedy Group Merging
	6.3 Cell Array Preprocessing
	6.4 Postprocessing
	6.5 Scheduling Partitions

	7 Extensions
	7.1 Nested Cell Array Parallelism
	7.2 Puncalc: A Parallel Interpreter for Spreadsheets
	7.3 Rewriting Cell Arrays to Higher-Order Function Calls

	8 Results
	8.1 Experimental Setup
	8.2 Discussion

	9 Conclusion
	References

	Author Index

