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Abstract. In this paper we present a new population based metaheuris-
tic called the fixed set search (FSS). The proposed approach represents a
method of adding a learning mechanism to the greedy randomized adap-
tive search procedure (GRASP). The basic concept of FSS is to avoid
focusing on specific high quality solutions but on parts or elements that
such solutions have. This is done through fixing a set of elements that
exist in such solutions and dedicating computational effort to finding
near optimal solutions for the underlying subproblem. The simplicity of
implementing the proposed method is illustrated on the traveling sales-
man problem. Our computational experiments show that the FSS man-
ages to find significantly better solutions than the GRASP it is based
on, the dynamic convexized method and the ant colony optimization
combined with a local search.
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1 Introduction

In the last several decades there has been an extensive research effort on devel-
oping different metaheuristics for finding near optimal solutions for hard opti-
mization problems. Most metaheuristic approaches focus on how to balance the
global search (exploration) and local search (exploitation) in examining the solu-
tion space. There have been several directions in this research. Early methods
include simulated annealing [23] and tabu search [15,16] where the search is
focused near the best found solution and on mechanisms of escaping local optima.
In later stages population based methods have proven to be very powerful. The
general approach in such methods is generating a large number of solutions and
including different types of learning mechanisms. In case of genetic algorithms
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[27] and differential evolution [28] the main idea is in combining different high
quality solutions with the addition of a certain level of randomization. Particle
swarm optimization [1,2] explores the solution space through generating new
solutions based on the positions of the globally and locally best found solution.
This basic idea has been incorporated in a wide range of similar methods like
cuckoo search [14], artificial bee colony algorithm [22] and many others. (The
reader should note that we are fully aware about the controversial discussion
with respect to some of these or similar approaches; see [31].) The ant colony
optimization [10,20] uses a population based method to add a learning mecha-
nism to greedy algorithms.

One of the most common methods for improving population based meta-
heuristics is by combining them with local searches. The variable neighborhood
search [17] metaheuristic focuses on the efficient use of local searches. The per-
formance of the original metaheuristics is often improved by different types of
enhancements or by creating hybridized methods that combine one or more of
such metaheuristic methods [5,25,34]. The main problems with such methods is
the increased complexity of implementation. This problem is most evident if we
observe publications in fields other than operations research and applied math-
ematics. In the vast majority of them only the original, simple to implement,
method is used to solve the problem of interest.

Model-based heuristics are generally based upon the identification of a set of
parameters, defining a model that, in turn, well captures some features of the
search space [6]. These algorithms heavily rely on a set of update schemes used
to progressively modify the model itself such that the possibility of obtaining
higher quality solutions under the new model is increased. Recently, more and
more emphasis is put on the application of learning mechanisms. In this phase,
modifications are applied to the model and/or its parameters to reflect insights
collected and generated during the search phase.

Well-known paradigms that can be interpreted under the philosophy of
model-based heuristics are mostly from the area of Swarm Intelligence, but also
focus on semi-greedy heuristics, including the greedy randomized adaptive search
procedure (GRASP) [12,18], where the greedy function that guides the selec-
tion of the best candidates might incorporate some sort of stochastic model.
Semi-greedy heuristics and GRASP exemplify of how simplicity is important.
Although it generally has a worse performance than combining one of the more
complex methods with a local search it is extensively used. The advantage of
more complex metaheuristics often occurs only for very large problem instances;
some examples in case of ACO can be seen in [19,21]. Because of this, it is rea-
sonable to attempt to increase the size of problems that GRASP can solve, but
in a way that there is no or only a small increase in complexity of the original
method.

In this paper we focus on developing this type of method through adding
a simple learning mechanism to GRASP. Some examples of such methods are
GRASP with path relinking [13] and the dynamic convexized method [37]. Both
of these methods produce a significant level of improvement. Note that both use
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the standard concept of intensifying the search of the solution space based on
the location of globally and locally best found solutions. The basic concept of
the proposed fixed set search method (FSS) is to avoid focusing on specific high
quality solutions but on parts or elements that such solutions have. This idea of
exploiting elements that belong to high quality solutions is used in ACO, were the
randomized greedy algorithm is directed to choose such elements. The concept of
generating new solutions based on the frequency of elements appearing in high
quality solutions is the basis of the cross-entropy method (CE) [9]. The main
conceptual difference between FSS and these two methods is that the proposed
methods use only elements that are a part of locally optimal solutions. In practice
this produces a significant difference in performance since the CE and ACO tend
to over popularize elements in the best solution and in small variations of it and
the FSS does not.

The ideas for developing this method may be based on earlier notions of
chunking [35,36], vocabulary building and consistent chains [30] as they have
been used, e.g., in relation to tabu search. In those notions one relates given
solutions of an optimization problem as composed of parts (or chunks). Consid-
ering the traveling salesman problem (TSP), for instance, a part may be a set of
nodes to be visited consecutively. Moreover, some parts may be closely related
to some other parts so that a corresponding connection can be made between
two parts. Similar ideas are even found in the POPMUSIC paradigm [33]. The
general idea of the proposed approach is to fix a set of elements that exist in
high quality solutions and dedicate computational effort on “filling in the gaps”.
The idea of fixed sets has also been explored in the construct, merge, solve &
adapt (CMSA) [4] matheuristic. In CMSA, which may also be interpreted as an
implementation of POPMUSIC, a fixed set is used to decide which part of the
solution space will be explored using an exact solver; later the newly generated
solution is used to direct the next step of the search.

The concept of using fixed sets is illustrated on the symmetric TSP through
adding a learning mechanism to GRASP. We should note that exact codes for
the TSP are available [7]. Nevertheless, due to its widespread investigation it
seems appropriate to use it for illustration purposes. As it will be seen in the fol-
lowing, this type of approach can easily be added to existing GRASP algorithms
and produces a high level of improvement in the quality of found solutions and
computational cost.

The paper is organized as follows. In the next section we give a brief descrip-
tion of GRASP for the TSP. Then we present the FSS and show how it is applied
to the TSP. In Sect. 4, we discuss the performed computational experiments.

2 GRASP

In this section we provide a short outline of the GRASP used for solving the
TSP. (A pseudocode for the general GRASP is given in Algorithm1.) In the
case of the TSP it is common to use a randomization of the nearest neighbor
greedy algorithm with a restricted candidate list (RCL) based on the cardinality
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Algorithm 1. Pseudocode for GRASP
while Not Stop Criteria Satisfied do

Generate Solutions S using randomized greedy algorithm
Apply local search to S
Check if S is the new best

end while

of nodes [3]. For the local search, the most commonly used ones are the 2-OPT
[8] and 3-OPT [24] searches. In practice instead of the original versions of the
two local searches it is common to use a RCL of edges that will be used for
evaluating the proposed improvement.

3 Fixed Set Search

In this section we present the proposed fixed set search metaheuristic and show
how it can be used in combination with GRASP. Before giving the details of the
method we give the basic concepts on which it is constructed.

One of the main disadvantages of GRASP is the fact that it does not incor-
porate any learning mechanism. On the other hand, such an improvement should
be designed in a way that it is simple to implement. In this paper we propose one
such method called the fixed set search (FSS). In the following we will assume
that a solution S of the problem of interest can be represented in the form
of a set. In case of the TSP, the solution S can be viewed as a set of edges
{e1, e2, . . . , el}. The development of FSS is based on two simple premises:

– A combinatorial optimization problem is generally substantially easier to solve
if we fix some parts of the solution, and in this way lower the size of the
solution space that is being explored.

– There are some parts of high quality solutions that are “easy to recognize”.
We say this in the sense that they appear in many good solutions. In general
there is no need to dedicate a significant amount of computational effort to
analyze them.

The general idea of FSS is to fix such “easy to recognize” parts of good
solutions and dedicate computational effort in finding the optimal (or close to
optimal) solution for the corresponding subset of the solution space. Informally,
we take the common sections of good solutions, which we will call the fixed set,
and try to “fill in the gaps”. In the following sections we will illustrate how this
simple idea can be incorporated in the GRASP metaheuristic for the TSP. The
proposed algorithm has three basic steps. The first one is finding a fixed set.
The second is adapting the randomized greedy algorithm to be able to use a
preselected set of elements. Finally, specify and apply the method which gains
experience from previously generated solutions.
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3.1 Fixed Set

As previously stated, to be able to implement the proposed method it is necessary
that we can represent a solution of the problem in the form of a set S. In
case of the TSP, a solution S corresponds to the set of edges that represent
a Hamiltonian cycle. Let us use the notation P for the set of all the generated
solutions (population). In relation, let us define Pn as the set of n best generated
solutions based on the objective function, the path length. Further, let us use the
notation F for a fixed set that will be used in the search. Note that the elements
of F will be inside the newly generated solution. In the following we define a
method for finding a fixed set F for a population of solutions P. The proposed
method should satisfy the following requirements:

– (R1) A generated fixed set F should consist of elements of high quality solu-
tions.

– (R2) The method should be able to generate many different random fixed
sets that can be used to generate new high quality solutions.

– (R3) A generated fixed set F can be used to generate a feasible solution. More
precisely, there exists a feasible solution S such that F ⊂ S

– (R4) Ability to control the size of the generated fixed set |F |.
The first two requirements can be achieved if we only use some randomly

selected high quality solutions for generating the fixed sets. This can be achieved
by simply selecting k random solutions from the set Pn. Let us define Skn as
the set of selected solutions. The initial idea is to use the intersection of all the
solutions in Skn for the fixed set F . The problem is that we have no control over
the size of the intersection. A simple idea to control the size of F is, instead
of using the intersection of Skn, to select the elements (edges) that are part of
the highest number of solutions. The problem with this approach is that such
a selection can potentially contain edges that could not be used to generate a
feasible solution.

Both of these issues can be avoided if a base solution B ∈ Pm is used in
generating a fixed set F . More precisely, we can select the elements of B that
occur most frequently in Skn. Let us define this procedure more formally. We will
assume that we are finding a fixed set F with |F | = Size for a set of solutions
Skn = {S1, .., Sk} and base solution B = {e1, . . . el}. Let use define the function
C(ex, S) which is equal to 1 if ex ∈ S and 0 otherwise. Using C(ex, S) we can
define a function that counts the number of times an edge ex occurs in Skn as
follows.

O(ex,Skn) =
∑

S∈Skn

C(ex, S) (1)

Now, we can define F ⊂ B as the set of edges ex that have the largest value
of O(ex,Skn). In relation, let us define function F = Fix(B,Skn, Size) that
corresponds to the fixed set generated for a base solution B, a set of solutions
Skn having Size elements. An illustration of the method for generating a fixed
set for the TSP can be seen in Fig. 1.
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Fig. 1. Illustration of generating a fixed set. The input is Skn (top left), a set of four
randomly selected solutions out of the six best ones, and a base solution B (left bottom).
Values on an edge of B represent the number of occurrences of that edge in elements
of Skn. The edges on the right present the corresponding fixed set of size four.

3.2 Randomized Greedy Algorithm with Preselected Elements

To be able to use the fixed set within a GRASP setting we need to adapt the
greedy randomized algorithm. Let us first note that in case of the TSP, the fixed
set F will consist of several paths (sequence of edges which connect a sequence
of vertices) of graph G. This effects the greedy algorithm in two ways. First, the
inside nodes of the path should be removed from the candidate list. Secondly,
if a node that is a start or end node of a path in the fixed set, is added to the
current partial solutions the whole path must be added in the proper direction.
Pseudocode for the adapted greedy algorithm can be seen in Algorithm2.

In relation, let us define the function S = RGF (F ), for a fixed set F , as the
solution acquired using this algorithm.

3.3 Learning Mechanism

In this section we present the FSS which is used as a learning mechanism for
GRASP. Before presenting details of the proposed methods, let us first make a
few observations. In the general case the early iterations of GRASP frequently
manage to improve the quality of the best found solution. At later stages such
improvements become significantly less frequent and the method becomes depen-
dent on “lucky” hits. The idea is to use a fixed set F , for some promising region
of the solution space, generate a solution S = RGF (F ) and apply a local search
to S. In this way we increase the probability that a higher quality solution will
be found. An important aspect is how to select the size of the fixed set. In case
it is small, it efficiently performs a global search but after a certain number of
executions, as in the case of GRASP, it will to a large extend be dependent on
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Algorithm 2. Pseudocode for Greedy algorithm with preselected elements
Set Paths to all paths in F
Candidates = V
Candidates = Candidates \ F
for all p ∈ Paths do

Candidates = Candidates ∪ p[First] ∪ p[Last]
end for
Select Random start city from Candidates
while Not Completed Tour do

Select next city c using RCL
for all p ∈ Paths do

if (c = p[First]) ∧ (c = p[Last]) then
Add path p to current solution in correct direction
break

end if
end for

end while

“lucky” hits. On the other hand if F is large, it will only explore the parts of the
solution space that are close to already generated solutions. As a consequence,
there is a high risk of being trapped in locally optimal solutions.

This indicates that the size of the fixed set should be adapted during the
execution of the algorithms. For simplicity, we can a priori define an array Sizes
of fixed set sizes that will be tested, using the following formula:

Sizes[i] = |V | − |V |
2i

(2)

In (2), V represents the set of nodes of the graph on which the TSP is to be
solved. The maximal value of an element in the array Sizes is chosen based on
the problem being solved. Using this array let us give an outline of the FSS. We
will first generate an initial population of solutions P by executing GRASP for
N iterations. This initial population will be used to find the fixed sets. We start
from a small fixed set and generate solutions until stagnation, in the sense of not
finding new best solutions for a large number of iterations, has occurred. When
stagnation occurs, we increase the size of the fixed set (selecting the next element
of Sizes) and repeat the procedure. In this way a more focused exploration of
the search space is executed. This procedure is repeated until the largest element
in Sizes is tested.

At this stage it is expected that the set Pm of m best solutions has signifi-
cantly changed and contains higher quality solutions than in the initial popula-
tion. Because of this, there is a potential that even for smaller sized fixed sets,
since they are now generated using better solutions, there is a higher probability
of finding new quality solutions. So, we can repeat the same procedure from
the smallest fixed set size. Let us note that after a large number of solutions is
generated the new solutions acquired using small fixed sets are rarely new best
ones. The importance of their revisit is in generating new types of high quality
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solutions. If the method does not manage to find a new solution among the best
m ones for a large number of iterations for a specific fixed set size, this size can
be excluded from the further search. This idea is better understood by observing
the pseudocode for FSS given in Algorithm3.

Algorithm 3. Pseudocode for the fixed set search
Initialize Sizes
Size = Sizes.Next
Generate initial population P using GRASP (N)
while (Not termination condition) do

Set Skn to random k elements of Pn

Set B to a random solution in Pm

F = Fix(B,Skn, Size)
S = RGF (F )
Apply local search to S
P = P ∪ {S}
if Stagnant Best Solution then

if (Stagnant Candidates) ∧ (Size = Min(Sizes)) then
Remove Size from Sizes

end if
Size = Sizes.Next

end if
end while

In the pseudocode for the FSS, the first step is initializing the sizes of fixed
sets using (2). Next the initial population of solutions is generated performing N
iterations of the basic GRASP algorithm. The current size of the fixed set Size
is set to the smallest fixed set size. In the main loop, we first randomly generate
a set of solutions Skn by selecting k elements from Pn. Next, we select a random
solution B out of the set Pm. Using Skn, B and Size we generate the fixed set
F as described in the above. Using F we generate a solution S = RGF (F ) using
the randomized greedy algorithm with preselected elements. Next, we apply the
local search to S and check if we have found a new best solution and add it to
the set of generated solutions P. After a new solution is generated we check the
two stagnation conditions. The first one checks if the search for the best solution
has become stagnant. If so, we set the value of Size to the next value in Sizes.
Let us note, that the next size is the next larger element of array Sizes. In case
Size is already the largest size, we select the smallest element in Sizes. Before
updating Size, we also check if stagnation has occurred in the search of high
quality solutions (we have not found a solution which is among the best n or m
ones). In case this is true the current Size is removed from Sizes. It is important
to note, that this is only done if Size is equal to the smallest member of Sizes.
This is due to the fact that if we have managed to find an improvement for a
smaller fixed set than Size, it is expected that we have just been “unlucky” and
there is no need to remove this value from the search. This procedure is repeated
until the array Sizes is empty or some other termination criterion is satisfied.
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4 Results

In this section we present the results of our computational experiments used to
evaluate the performance of the proposed method. This has been done in a com-
parison with the GRASP algorithm presented in [26], the dynamic convexized
method (DCTSP) from [37] and the ant colony optimization combined with a
the 2-OPT local search (ACO-2OPT) [32]. The focus of the comparison is on
the quality of found solutions.

The FSS and GRASP have been evaluated for both 2-OPT and 3-OPT as
local searches. In case of the DCTSP a combination of 2-OPT and 3-OPT has
been used as a local search. GRASP has been included to be able to evaluate the
effect of the learning mechanism included in the FSS. DCTSP has been used in
the comparison since it is a good representative of a metaheuristic whose search
is focused on regions near the best solution. The comparison with ACO-2OPT
is used to show the advantage of having a learning mechanism dependent on
the local search, which is the case for FSS but not ACO-2OPT. In case of the
FSS the randomized greedy algorithm used an RCL with 20 elements. In case
of both local searches, 2-OPT and 3-OPT, the same size of RCL has been used.
To increase the computational efficiency of the local searches we have used the
standard approach of “don’t look bits” (DLBs) [3]. Note that when we apply
the local search inside the main loop of FSS, some of the DLBs could be preset
based on the fixed set which significantly decreased the computational cost. The
parameters for FSS are the following; k = 10 random solutions are selected
from the best n = 500 ones for the set of solutions Skn. The base solution is
selected from the m = 100 best solutions. The size of the initial population was
100. The stagnation criterion was that no new best or high quality solution has
been found in the last Stag = 100 iterations for the current fixed set size. The
FSS and GRASP with 2-OPT have been implemented in C# using Microsoft
Visual Studio 2017. The calculations have been done on a machine with Intel(R)
Core(TM) i7-2630 QM CPU 2.00 GHz, 4 GB of DDR3-1333 RAM, running on
Microsoft Windows 7 Home Premium 64-bit.

The comparison of the methods has been done on the standard benchmark
library TSPLIB [29]. The test instances are the same as in [37]. A total of 48 test
instances with Euclidean distances are used, with the number of nodes ranging
from 51 to 2392. Note that in FSS the fact that distances are Euclidean is not
exploited. The termination criterion was that a maximal number of solutions
has been generated. The limit was the same as in [37], more precisely in case
of problem instances having less than 1000 nodes it was 100|V |, with V the
set of nodes of the considered instance, and in case of larger instances it was
10|V |. For each of the instances a single run of each of the methods has been
performed, as in [37]. The results of the computational experiments can be seen
in Table 1. In it, the results for DCTSP are taken from [37] and for GRASP with
3-OPT are taken from [26]. Note that the results for GRASP-3OPT are very
similar to the ones from [26] and slightly better than our implementation. In
case of ACO − 2OPT , the results for the same number of generated solutions
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and applied local searches have been taken from [32]. Note that these results
correspond to an average of ten independent runs.

From the results in Table 1, we can first observe that the GRASP-2OPT has
a significantly worse performance than all other methods finding best known
solutions for only four instances and having an average relative error of 2.73%. In
case of FSS-2OPT, the improvement is very significant: 20 known best solutions
are found and the average relative error is 0.40%. What is very interesting is
that FSS-2OPT performs only slightly worse than GRASP-3OPT which finds
22 known best solutions and has an average relative error of 0.39%. This indicates
that the use of the proposed method can be very beneficial in case of less powerful
local searches. The FSS-2OPT has found a higher quality solution than ACO-
2OPT for each of the test instances from [32]. The average relative error of
FSS-2OPT, on these instances, is 0.36% compared to 1.65% of ACO-2OPT.

Although FSS-2OPT has an overall worse performance than DCTSP, it man-
ages to find better solutions for five problem instances. From the results in
Table 1, it is evident that FSS-3OPT has the best performance. It manages to
find better solutions than all the other methods for all instances or equal in case
methods have found best known solutions. It finds three more known optimal
solutions than DCTSP and has a notable improvement in relative average error.
It is important to note that FSS-3OPT never has an error greater than 0.40%.

The parameters selected for specifying FSS have been chosen empirically
through extensive testing. Overall the FSS is not highly sensitive to these param-
eters. The parameter k used to specify the number of solutions selected for gen-
erating the set Skn had the following effect. In case of small values, the selection
would result in highly randomized fixed sets. The reason for this is that there are
no clear “good elements”, especially in case of larger problem instances where
there are not many common elements in all the solutions. In case of large values
of k, the method would select very similar fixed sets. The parameter m used
to specify the population from which the base solution would be selected has
the following effect. In case of small values of m the convergence speed would
initially be very fast but would quickly get trapped in locally optimal solutions.
This is due to the fact that it becomes very hard to find new high quality solu-
tions. Such values of m are useful in case we can only generate a small number
of solutions. In case of high values of m, the convergence speed is much slower.
The problem is that when the fixed set is generated for a lower quality solution
B, although the method manages to find solutions of higher quality than B, it is
unlikely that very high quality ones will be found. The effect of parameter n for
specifying the size of the population used for generating Skn had a similar effect
but to a much lower extent. We found that the best choice of parameters for
stagnation, both for finding best and high quality solutions, was the same as the
number of iterations from which GRASP would rarely find new best solutions.
In general, it is important to avoid very small values for this parameter because
it results in prematurely stopping the evaluation of small fixed sets.

In Table 1 we did not include computational times, since they are highly
dependent on structures used for implementing the local searches. The same
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Table 1. Comparison of the proposed algorithms with GRASP and DCTSP for differ-
ent TSPLIB instances.

Instance Tour length Relative error [%]

2OPT 3OPT Known
best

2OPT 3OPT
GRASPACO FSS GRASPDCTSPFSS GRASPACOFSS GRASPDCTSPFSS

eil51 426 - 426 426 426 426 426 0.00 - 0.00 0.00 0.00 0.00

berlin52 7542 - 7542 7542 7542 7542 7542 0.00 - 0.00 0.00 0.00 0.00

pr76 108351 - 108159 108159 108159 108159 108159 0.18 - 0.00 0.00 0.00 0.00

rat99 1223 - 1211 1211 1211 1211 1211 0.99 - 0.00 0.00 0.00 0.00

kroA100 21282 21427 21282 21282 21282 21282 21282 0.00 0.68 0.00 0.00 0.00 0.00

kroB100 22157 - 22141 22141 22141 22141 22141 0.07 - 0.00 0.00 0.00 0.00

kroC100 20802 - 20749 20749 20749 20749 20749 0.26 - 0.00 0.00 0.00 0.00

kroD100 21468 - 21309 21294 21294 21294 21294 0.82 - 0.07 0.00 0.00 0.00

kroE100 22106 - 22100 22068 22068 22068 22068 0.17 - 0.15 0.00 0.00 0.00

rd100 7960 - 7910 7910 7910 7910 7910 0.63 - 0.00 0.00 0.00 0.00

eil101 638 - 629 629 629 629 629 1.43 - 0.00 0.00 0.00 0.00

lin105 14379 - 14379 14379 14379 14379 14379 0.00 - 0.00 0.00 0.00 0.00

pr107 44394 - 44303 44303 44303 44303 44303 0.21 - 0.00 0.00 0.00 0.00

pr124 59159 - 59030 59030 59030 59030 59030 0.22 - 0.00 0.00 0.00 0.00

ch130 6135 - 6110 6110 6110 6110 6110 0.41 - 0.00 0.00 0.00 0.00

pr136 98614 - 96920 96772 96772 96772 96772 1.90 - 0.15 0.00 0.00 0.00

pr144 58554 - 58537 58537 58537 58537 58537 0.03 - 0.00 0.00 0.00 0.00

ch150 6586 - 6549 6528 6528 6528 6528 0.89 - 0.32 0.00 0.00 0.00

kroA150 26768 - 26524 26524 26525 26524 26524 0.92 - 0.00 0.00 0.00 0.00

pr152 74315 - 73682 73682 73682 73682 73682 0.86 - 0.00 0.00 0.00 0.00

rat195 2391 - 2330 2331 2323 2323 2323 2.93 - 0.30 0.34 0.00 0.00

d198 16000 15856 15803 15788 15780 15786 15780 1.40 0.48 0.15 0.05 0.04 0.00

kroA200 29803 - 29368 29380 29382 29368 29368 1.48 - 0.00 0.04 0.00 0.00

kroB200 29909 - 29447 29482 29437 29437 29437 1.60 - 0.03 0.15 0.00 0.00

ts225 127485 - 127301 126643 126643 126643 126643 0.66 - 0.52 0.00 0.00 0.00

pr226 80714 - 80369 80414 80369 80369 80369 0.43 - 0.00 0.06 0.00 0.00

gil262 2456 - 2378 2385 2379 2378 2378 3.28 - 0.00 0.29 0.04 0.00

pr264 50744 - 49135 49135 49135 49135 49135 3.27 - 0.00 0.00 0.00 0.00

a280 2658 - 2584 2589 2579 2579 2579 3.06 - 0.19 0.39 0.00 0.00

pr299 49522 - 48256 48235 48207 48191 48191 2.76 - 0.13 0.09 0.03 0.00

lin318 43324 42426 42185 42538 − 42029 42029 3.08 0.94 0.37 1.21 - 0.00

rd400 15986 - 15322 15385 15299 15284 15281 4.61 - 0.27 0.68 0.12 0.02

fl417 12066 - 11883 11895 11883 11871 11861 1.73 - 0.19 0.29 0.19 0.08

pr439 110564 - 107259 107401 107303 107217 107217 3.12 - 0.04 0.17 0.08 0.00

pcb442 52790 51794 50945 50946 50860 50846 50778 3.96 2.00 0.33 0.33 0.16 0.13

d493 36192 - 35055 35253 35136 35018 35002 3.40 - 0.15 0.72 0.38 0.05

att532 28965 28233 27860 28180 − 27735 27686 4.62 1.98 0.62 1.78 - 0.17

rat575 7143 - 6795 6863 6814 6776 6773 5.46 - 0.32 1.33 0.61 0.04

p654 35113 - 34812 34707 34658 34645 34643 1.36 - 0.49 0.18 0.04 0.01

d657 51226 - 49258 49531 49110 49014 48912 4.73 - 0.71 1.27 0.40 0.21

rat783 9352 9142 8869 8897 8848 8815 8806 6.20 3.81 0.72 1.03 0.48 0.10

pr1002 276251 - 264737 262060 260218 259512 259045 6.64 - 2.20 1.16 0.45 0.18

pcb1173 61210 - 57788 57676 57061 56965 56892 7.59 - 1.57 1.38 0.30 0.13

d1291 54537 - 51026 51616 51099 50862 50801 7.35 - 0.44 1.60 0.59 0.12

rl1304 270441 - 255867 255185 253842 253361 252948 6.92 - 1.15 0.88 0.35 0.16

rl1323 288538 - 271837 273115 271914 270678 270199 6.79 - 0.61 1.08 0.63 0.18

fl1400 21044 - 20398 20310 20167 20149 20127 4.56 - 1.35 0.91 0.20 0.11

fl1577 23274 - 22512 22427 22352 22300 22249 4.61 - 1.18 0.80 0.46 0.23

rl1889 339151 - 322883 319250 317825 317801 316536 7.14 - 2.01 0.86 0.41 0.40

d2103 86179 - 81197 81312 81078 80551 80450 7.12 - 0.93 1.07 0.78 0.13

pr2392 409970 - 387169 386017 380030 379307 378032 8.45 - 2.42 2.11 0.53 0.34

Number of found best known solutions (instances from [37]) 2 - 20 22 27 31

Average relative error (instances from [37]) 2.73 - 0.40 0.39 0.15 0.05
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(a) Less than 1000 nodes (b) More than 1000 nodes

Fig. 2. Average relative error for multiple TSPLIB problem instances with normalized
execution time

(a) rd400 (b) pr1002

Fig. 3. Average solution quality of ten independent runs of FSS and GRASP for the
TSPLIB problem instances

information is excluded in the articles used for comparison. We would like to
note that in case of our implementation of FSS and GRASP there was a sig-
nificant decrease in computational time. This is due to the fact of a smaller
candidate set for the greedy algorithm. The second reason is that the number
of iterations needed to generate the solution was significantly lower. As it is
well-known, the computational cost of 2-OPT and 3-OPT local searches is sig-
nificantly higher than for generating the initial solution. An extensive analysis
of the computational cost of 2-OPT can be found in [11]. In case of FSS, we
exploit the fact that the fixed set is a subset of a locally optimal base solution
B through DLBs. More precisely, the DLBs of all the inner points of paths in
the fixed set can be preset. Note that the number of preset DLBs is close to the
size of the fixed set. In practice this means instead of having the computational
cost of the first iteration of 2-OPT being proportional to |V |C, were C is the
size of the RCL, it is close to (|V | − |F |)C. Similar analysis can be done for the
3-OPT local search. In case of very large fixed sets, the time FSS generated a
new solution and applied the local search was a fraction of the time needed to
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accomplishing the same task in GRASP. It is expected that a similar behavior
would be present in applying FSS to other combinatorial problems.

This decrease in computational cost of the FSS compared to GRASP directly
effects the convergence speed. In Fig. 2 we show the average relative error for
instances having up to/above 1000 nodes for normalized time. The normalization
has been done based on the maximal time needed for all the methods to find
the best solutions for each instance. From these results it is evident that the use
of FSS significantly increases the convergence speed. Another illustration of this
behavior can be seen in Fig. 3 for representative problem instances. In each of the
figures the convergence speed of the average solution length for ten independent
runs of GRASP and FSS, with 2-OPT and 3-OPT used as local searches, are
shown. It can be observed that there is a drastic increase in the convergence
speed after the initial population is generated for the FSS.

5 Conclusion

In this paper we have presented a new metaheuristic called fixed set search that
exploits the common elements of high quality solutions. The proposed meta-
heuristic represents a method of adding a learning mechanism to the GRASP
metaheuristic. It is expected that FSS can be applied to a wide range of problems
since the only requirement is that the solution can be represented in a set form.
A very important aspect of FSS is the simplicity in which a GRASP algorithm
can be adapted to it. This is done with two basic steps. Firstly, the randomized
greedy algorithm, used in the GRASP, is adapted to a setting were some ele-
ments are preselected. We have shown that this can be trivially achieved in case
of the TSP, and it is expected that this is the case for many other combinatorial
problems. Secondly, the method for generating a fixed set needs to be imple-
mented which consists in selecting several solutions and tracking the number of
times their elements occur in a selected base solution.

We have illustrated the effectiveness of the proposed approach on the TSP.
Our computational experiments have shown that the proposed method has a
significantly better performance than the basic GRASP approach when both
solution quality and convergence speed are considered. Further, we have shown
that the approach has a considerably better performance than the dynamic con-
vexized method applied to the TSP in case 3-OPT is used as a local search.
The proposed method has proven very efficient in improving the performance of
GRASP in case of a less powerful local search.

It is important to note that there is a wide range of potential improvements
to the proposed method. Some examples are having a more intelligent method
of selecting the solutions used in generating the fixed set, or adapting the com-
putational effort used to solve the subproblem related to a specific fixed set. Our
objective was to show that even in the most basic form the proposed method
can produce a significant improvement. We would like to note that the concept
of using a fixed set can potentially be used to hybridize other metaheuristics like
ACO, genetic algorithms and similar, for solving large scale problems through
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focusing the search in some promising areas of the solution space. On the other
hand the idea of fixing elements of a solution can easily be included in mixed
integer programs so there is a potential of adapting FSS to a matheuristic setting.
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