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Abstract. This study considers the problem of resource constrained
project scheduling to maximise the net present value. A number of tasks
must be scheduled within a fixed time horizon. Tasks may have prece-
dences between them and they use a number of common resources when
executing. For each resource, there is a limit, and the cumulative resource
requirements of all tasks executing at the same time must not exceed the
limits. To solve this problem, we develop a hybrid of Construct, Merge,
Solve and Adapt (CMSA) and Ant Colony Optimisation (ACO). The
methods are implemented in a parallel setting within a multi-core shared
memory architecture. The results show that the proposed algorithm out-
performs the previous state-of-the-art method, a hybrid of Lagrangian
relaxation and ACO.
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1 Introduction

Resource constrained project scheduling is a problem that has been investi-
gated for many years. Due to the complexity of variants of the problem, solving
instances with just 100 tasks is still challenging. The details of different project
scheduling problems vary, but the basic elements require a number of tasks to be
completed with an objective related to the completion time or some value of the
tasks. In recent times, maximizing the net present value (NPV) of a project has
received attention. Each task has a cash flow that may be positive or negative.
The aim is to maximize the net present value of the profit, that is, the sum of
the discounted cumulative cash flows of the tasks [7,18,22–24].

Numerous variants of project scheduling can be found in the literature; see [6]
for an early review. All problems considered in [6] consist of tasks, precedences
between them, limited shared (renewable) resources and deadlines. The prob-
lems are solved with a number of different methods, including heuristics, local
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search and branch & bound. A discussion on details of methods for solving these
problems, including exact approaches, heuristics and meta-heuristics, is pro-
vided in [10]. Among meta-heuristics, simulated annealing, genetic algorithms,
and tabu search have been applied. Furthermore, heuristic and exact approaches
for project scheduling with time windows are discussed in [17].

A closely related problem is resource constrained job scheduling (RCJS) [21],
with the main difference being in the objective, i.e., minimising the total weighted
tardiness of the tasks. To solve this problem, hybrids of mixed integer program-
ming (MIP) decompositions and meta-heuristics [20], constraint programming
and ant colony optimisation (ACO) [21], and parallel implementations of these
methods [8,19] have been successfully applied.

For project scheduling with the NPV objective, various heuristic and exact
approaches can be found in the literature. Problem instances with up to 98
tasks are solved in [7], with an ACO approach that outperforms other meta-
heuristics such as a genetic algorithm, tabu search and simulated annealing.
In [18], the authors show that ACO can be effective for a similar problem with
up to 50 tasks. A scatter search heuristic described in [23] was shown to be
more effective than exact approaches based on branch & bound methods for the
same problem [24]. In [13], a hybrid of constraint programming and Lagrangian
relaxation is considered which is able to find good feasible solutions easily for
this problem. A hybrid of Lagrangian relaxation and ACO [22] was shown to be
particularly effective when run in parallel [5].

In this study, we consider resource constrained project scheduling (RCPS)
maximising the NPV [14]. This problem is henceforth simply denoted by RCPS-
NPV. The problem considers several tasks with varying cash flows, precedences
between some of them and a common deadline for all of them. There are also
common renewable resources, of which the tasks require some proportion. We
solve this problem considering a hybrid of two techniques: (1) Construct, Merge,
Solve & Adapt (CMSA) and (2) ACO. Hereby, within the CMSA framework, a
parallel implementation of ACO (PACO) is iteratively used to generate solutions
for being used within CMSA.

CMSA is a rather recent, generic MIP-based metaheuristic that has shown to
be effective on several problems including: the minimum common string parti-
tion and minimum covering arborescence problems [4], the repetition-free longest
common subsequence problem [3], and unbalanced common string partition [2].
While this method has not yet been tested extensively on a wide range of prob-
lems, the results from the initial studies are very promising. At each iteration,
CMSA requires a set of promising solutions to be generated by some randomized
technique. These solutions are then used to build a reduced sub-instance with
respect to the tackled problem instance. This sub-instance is then solved by a
complete technique. In the context of problems that can be modelled as MIPs, a
general-purpose MIP solver may be used for this purpose. As mentioned above,
ACO is used in the case of this paper for generating the set of solutions per iter-
ation. ACO is a meta-heuristic that uses the principles underlying the foraging
behavior of ants. This technique has shown to be effective on a number of prob-
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lems [12]. Project scheduling variants have also been solved with ACO [7,16,18].
The RCPS problem with makespan as the objective was considered, for example,
in [16]. Moreover, an ACO for project scheduling where the tasks can execute in
multiple modes is described in [7]. In [18], a problem similar to that of [23], but
with fewer tasks, was tackled.

The paper is organized as follows. Section 2 provides a MIP model of the
RCPS-NPV. Section 3 discusses CMSA and PACO. Section 4 details the exper-
iments conducted and the results obtained from these experiments, before con-
clusions are provided in Sect. 5.

2 The RCPS-NPV Problem

The RCPS-NPV problem can be formulated as follows. A set J of n tasks is
given, with each task i ∈ J having a duration di, a cash flow cfit at each time
period t ≥ 1 (which may be positive or negative), and an amount of resource
of each type k, rik, that it requires. While the cash flow of a task may vary
over its duration, we can simply calculate the total net value ci that the task
would contribute to the project if it was completed at time 0. From this we can
compute the discounted value using discount factor α > 0 for start time si as
ci e−α(si+di), where di is the duration of task i. Note that the formula e−α t for
discounting is equivalent to the commonly used function 1/(1+ ᾱ)t for a suitable
choice of α. Let P be the set of precedences P between tasks. We will write i → j
or (i, j) ∈ P ⊆ J × J to denote that the processing of task i must complete
before the processing of j starts.

Given k resources and their limits—that is, R1, . . . , Rk—the cumulative use
of resources by all tasks executing at the same time must satisfy these resource
limits. There is also a common deadline for all the tasks, δ, representing the time
horizon for completing the project. Without such a deadline, tasks with negative
cash flow and no successors would never be completed. Given the objective of
maximizing the NPV, the problem can be stated as follows:

max
∑

i∈J
ci e−α(si+di) (1)

S.T. si + di ≤ sj ∀ (i, j) ∈ P (2)
∑

i∈S(t)

rim ≤ Rm ∀ m = 1, . . . k (3)

0 ≤ si ≤ δ − di ∀ i ∈ J (4)

Hereby, set S(t) consists of tasks executing at time t. The NPV objective
function (1) is non-linear and neither convex nor concave, making this problem
challenging to solve. Constraints (2) enforce the precedences. Constraints (3)
ensure that all the resource limits are satisfied. Constraints (4) require that the
deadline is satisfied.

Like in the studies by [14] and [22], the deadline is typically not tight, as the
aim is not to minimize the makespan. The available slack means that negative-
valued tasks can be scheduled later, thereby slightly increasing the NPV.



Maximising the NPV of Project Schedules Using Parallel CMSA 19

2.1 MIP Model

A MIP model for the RCPS-NPV (see also [14]) can be defined as follows: Let
V := {xit | i = 1, . . . , n and t = 1, . . . , δ} be a the set of binary variables, where
xit takes value 1 if task i completes at time t. The objective is to maximise the
NPV:

max
∑

i∈J

δ∑

t=1

ci e−αt xit (5)

S.T.
δ∑

t=1

xit = 1 ∀ i ∈ J (6)

δ∑

t=1

t xjt −
δ∑

t=1

t xit ≥ dj ∀ (i, j) ∈ P (7)

n∑

i=1

t+di−1∑

t̂=t

rik xit̂ ≤ Rm ∀ m = 1, . . . , k, t ∈ {1, . . . , δ}

(8)

xit ∈ {0, 1} ∀ xit ∈ V (9)

Equation (5) maximises the NPV. Constraints (6) ensure that all tasks are
completed exactly once. Constraints (7) ensure that the precedences are satisfied.
Constraints (8) require that all the resource limits are satisfied.

For an exact MIP solver this would not be expected to be the most efficient
formulation. For the CMSA algorithm described below, an important character-
istic of this MIP formulation is that solutions have a low density of non-zeros,
just one per activity. Furthermore, instead of solving the full model, in CMSA
we only solve small subproblems with a significantly reduced subset of the pos-
sible time points. During preliminary experiments it was shown that such type
of MIPs can be easily solved by applying a general-purpose MIP solver.

3 The Proposed Algorithm

In this section, we provide the details of our implementation of CMSA. This
algorithm learns from sets of solutions which are recombined with the aid of a
general-purpose MIP solver. In this study we use ACO, implemented in a parallel
setting to ensure that diversity is achieved efficiently as described in [21], to
generate these sets of solutions for CMSA at each of its iterations.

3.1 Construct, Merge, Solve and Adapt

Algorithm 1 presents our implementation of CMSA for the tackled RCPS-NPV
problem. As input the algorithm takes (1) a problem instance, (2) the number
of solutions (ns), (3) a total computation time limit (ttotal), (4) a computation
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time limit per MIP-solver application at each iteration (titer), and (5) a maximum
age limit (amax). CMSA keeps, at all times, a subset V ′ of the complete set of
variables V of the MIP model (see previous section for the definition of V ).
Moreover, a solution S in the context of CMSA is a subset of V . A solution
S ⊆ V is called a valid solution iff assigning value one to all variables in S and
zero to the remaining variables in V \ S, results in a valid RCSP-NPV solution.

The objective function value of a solution S is henceforth denoted by f(S).

Algorithm 1. CMSA for the RCPS-NPV problem
1: input: RCPS-NPV instance, ns, ttotal, titer, amax

2: Initialisation: V ′ := ∅, Sbs := ∅, ajt := 0 ∀ xjt ∈ V
3: while time limit ttotal not expired do
4: for i = 1, 2, . . . , ns do # note that this is done in parallel
5: Si := GenerateSolution()
6: V ′ := V ′ ∪ {Si}
7: end for
8: Sib ← Apply ILP Solver(V ′,Sbs)
9: if f(Sib) > f(Sbs) then Sbs := Sib end if
10: Adapt(V ′, Sbs)
11: end while
12: output: Sbs

The algorithm works as follows. First, in line 2, the initial subset of variables
(V ′) is initialized to the empty set. The same is done for the best-so-far solution
Sbs.1 Moreover, the age value ajt of each variable xjt ∈ V is initialized to zero.
The main algorithm now executes between Lines 3–11 until the time limit (ttotal)
has expired. At each iteration of CMSA, the following actions are taken. First, a
number of ns solutions is generated in a randomized way, that is, the Construct
phase of CMSA is executed. In principle, any randomized method to generate
feasible solutions is acceptable. However, here we use ACO (see Sect. 3.2). In
particular, ns ACO colonies are run in parallel, where one colony is seeded with
the best-so-far solution Sbs. The remaining colonies are seeded with a random
solution. This method ensures that good parts of the search space and also
sufficiently diverse parts of the search space are covered.

Once the solutions have been produced, the variables they contain (remember
that these are the variables with value one in the corresponding MIP solutions)
are added to V ′ in line 6 (Merge phase of CMSA). Based on V ′, a reduced
MIP model is generated (see below for a detailed description) and then solved
by applying a general-purpose MIP solver in function Apply ILP Solver(V ′,Sbs)
(see line 8 of Algorithm 1). This phase is the Solve phase of CMSA. Note that
the MIP solver is warm-started with the best-so-far solution Sbs. Finally, after
potentially updating the best-so-far solution Sbs with solution Sib obtained as

1 Note that, for consistency, the objective function value of an empty solution is defined
as −∞.
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output from the MIP solver, the Adapt phase of CMSA is executed in function
Adapt(V ′, Sbs) (see line 10) as follows. All variables from V ′ which are not present
in Sbs have their age values incremented. The age values of those variables, whose
corresponding age values have passed amax, are re-initialized to zero. Moreover,
they are removed from V ′. Finally, the output of CMSA is solution Sbs.

The Restricted MIP Model. The restricted MIP model that is solved in
function Apply ILP Solver(V ′,Sbs) of Algorithm 1 is obtained from the original
MIP model outlined in Sect. 2 as follows. Instead of considering all variables
from V , the model is restricted to the variables from V ′. In this way the model
becomes much smaller and can be relatively easily solved. However, note that the
search space of such a restricted model is only a part of the original search space.
Only when V ′ is very large (this may happen when ns is large and the solution
construction is very much random) the restricted MIP may not be solved within
the given time. As mentioned above, a time limit (titer) is used to ensure the
solver always terminates sufficiently quickly even if it does not find an optimal
solution to the restricted MIP within the given time.

It should be noted that this Merge phase is guaranteed to always produce
a solution that is at least as good as any of the solutions that has contributed
to V ′. This is because (1) all variables that take value one in solution Sbs are
always present in V ′, and (2) solution Sbs is used for warm-starting the MIP
solver. Hence the merge phase provides strong intensification. Diversification
relies entirely on the solution generation mechanism. In previous papers (see, for
example, [2]), solution generation was based on randomized greedy heuristics. It
is expected that using ACO here with a guided—respectively, biased—random
solution generation will both reduce the number of variables in the restricted
MIPs (as solutions are expected to be of higher quality and, therefore, probably
with more parts in common), and will assist the method to better explore the
neighborhood of the best-so-far solution. The high-quality results that we will
present in Sect. 4 seem to support this hypothesis. However, a deeper compar-
ison between a more randomized solution construction and the construction of
solutions by parallel ACO colonies is mandatory for future work.

3.2 Parallel Ant Colony Optimisation

ACO was proposed in [11] to solve combinatorial optimisation problems. The
inspiration of these algorithms is the ability of natural ant colonies to find short
paths between their nest and food sources.

For the purpose of this work, we use the ACO model for the resource con-
strained job scheduling problem originally proposed in [21]. This approach was
extended to a parallel method in a multi-core shared memory architecture by [5].
For the sake of completeness, the details of the ACO implementation are pro-
vided here.

A solution in the ACO model is represented by a permutation of all tasks (π)
rather than by the start times of the tasks. This is because there are potentially
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Algorithm 2. ACO for the RCPS-NPV problem
1: input: An RCPS-NPV instance, T , πbs (optional)
2: Initialise πbs (if given as input, otherwise not)
3: while termination conditions not satisfied do
4: for j = 1 to nants do:
5: πj := ConstructPermutation(T )
6: ScheduleTask(πj)
7: end for
8: πib := arg minj=1,...,nants

f(πj)

9: πbs := Update(πib)
10: PheromoneUpdate(T , πbs)
11: cf := ComputeConvergence(T )
12: if cf = true then initialise T end if
13: end while
14: output: πbs (converted into a CMSA solution)

too many parameters if the ACO model is defined to explicitly learn the start
times of the tasks. Given a permutation, a serial scheduling heuristic (see [22])
can be used to generate a resource and precedence feasible schedule consisting
of starting times for all tasks in a well-defined way. This is described in Sect. 3.3
below. For the moment it is enough to know that a CMSA solution S (in terms
of a set of variables) can be derived from and ACO solution π in a well-defined
way. As in the case of CMSA solutions, the objective function value of an ACO
solution π is denoted by f(π).

The pheromone model of our ACO approach is similar to the one used by [1],
that is, the set of pheromone values (T ) consist of values τij that represent the
desirability of selecting task j for position i in the permutations to be built. Ant
colony system (ACS) [12] is the specific ACO-variant that was implemented.

The ACO algorithm is shown in Algorithm 2. An instance of the problem
and the set of pheromone value T are provided as input. Additionally, a solution
(πbs) can be provided as input which serves the purpose of initially guiding the
search towards this solution. If no solution is provided, Sbs is initialised to be
an empty solution.

The main loop of the algorithm at lines 3–13 runs until a time or iteration
limit is exceeded. Within the main loop, a number of solutions (nants) are con-
structed (ConstructPermutation(T )). Hereby, a permutation π is built incremen-
tally from left to right by selecting, at each step, a task for the current position
i = 1, . . . , n, making use of the pheromone values. Henceforth, Ĵ denotes the
tasks that can be chosen for position i, that is, Ĵ consists of all tasks (1) not
assigned already to an earlier position of π and (2) whose predecessors are all
already scheduled. In ACS, a task is selected in one of two ways. A random
number q ∈ (0, 1] is generated and a task is selected deterministically if q < q0.
That is, task k is chosen for position i of π using:

k = arg max
j∈Ĵ

τij (10)
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Otherwise, a probabilistic selection is used where job k is selected according to:

P (πi = k) =
τik∑

j∈Ĵ τij
(11)

After each step, a local pheromone update is applied to the selected task k at
position i:

τik := τik × ρ + τmin (12)

where τmin := 0.001 is a limit below which a pheromone value does not drop, so
that a task k may always have the possibility of being selected for position i.

After the construction of nants solutions, the iteration-best solution πib is
determined (line 8) and the global best solution πbs is potentially updated in
function Update(πib): f(πib) > f(πbs) ⇒ πbs := πib). Then, all pheromone
values from T are updated using the solution components from πbs in function
PheromoneUpdate(πbs):

τiπ(i) = τiπ(i) · ρ + δ (13)

where δ = 0.01 is set to be a (small) reward. The value of the evaporation
rate—that is, ρ = 0.1—is the same as the one chosen in the original study [22].

Finally, note that [5] showed different ways of parallelising ACO, where the
obvious parallelisation involves building solutions concurrently. For two reasons
we chose not to use this method for CMSA, but rather to run multiple colonies.
The first, and most significant, is that multiple solutions obtained by a single
colony can often consist of very similar components, especially when ACO is
close to convergence. Second, the cores available to the algorithm are not fully
utilised when the other components of ACO are executing (e.g. the pheromone
update). Hence, in our CMSA algorithm we use ns colonies in parallel, which
ensures diversity (especially when initialised with different random solutions)
and fully utilises the available cores.

3.3 Scheduling Tasks

As mentioned before, given a feasible permutation π of all tasks, a feasible solu-
tion in which the starting times of all tasks are explicitly given can be derived in
a well-defined way. We briefly discuss this method in the following. For complete
details of this procedure, we refer the reader to [22].

Consider a permutation π. In the given order, sets of tasks are selected where
each set consists of a task and its successors. Each set is either net positive-valued
or net negative-valued, that is, the total NPV of tasks in the set lead to positive
or negative values. Those sets which are positive valued are greedily scheduled at
the beginning of the horizon, satisfying the precedences and resources.2 Tasks in
the sets that are negative-valued are scheduled starting at the end of the horizon
and working backwards while tasks remain. The motivation for this method is
2 Tasks are selected which have no preceding tasks first. This is followed by selecting
dependent tasks that a free to be scheduled. This continues until all tasks have been
scheduled.
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that positive-valued tasks being scheduled early lead to increasing the NPV,
and scheduling negative-valued tasks at the end of the horizon leads to the least
decrease in the NPV.

4 Experiments and Results

CMSA was implemented in C++ and compiled with GCC-5.2.0. Gurobi 8.0.03

was used to solve the MIPs and ACO’s parallel component was implemented
using OpenMP [9]. Monash University’s Campus Cluster, MonARCH,4 was used
to carry out all experiments. Each machine of the cluster provides 24 cores and
256 GB RAM. Each physical core consists of two hyper-threaded cores with Intel
Xeon E5-2680 v3 2.5 GHz, 30 M Cache, 9.60 GT/s QPI, Turbo, HT, 12C/24T
(120 W).

We used the same instances as [14]. These problem instances were origi-
nally obtained from the PSPLIB [15].5 These instances are characterized by the
number of tasks {30, 60, 90, 120}, the resource factor {0.25, 0.5, 0.75, 1.0}, the
network complexity {1.5, 1.8, 2.1}, and the resource strength. Instances with 30,
60 and 90 tasks have resource strengths from the range {0.2, 0.5, 0.7, 1.0} while
the instances with 120 tasks have resource strengths from {0.1, 0.2, 0.3, 0.4, 0.5}.
The resource factor indicates the proportion of the total amount of each resource
that is used, on average, by a task. The resource strengths specify how scarce the
resources are with low values indicating tight resource constraints. The network
complexity indicates the proportion of precedences, where large values imply a
large number of precedences. The benchmark set consists, for each combination
of the four parameters indicated above, of 10 instances. This means that there
are 480 instances with 30, 60, and 90 tasks, and 600 instances with 120 tasks.
In total the benchmark set contains 2040 instances.6

The study by [14] was used as a guide to obtain the deadlines and cash flows.
For each task, the latest start time (li) is determined as lj ≥ di ∀i → j, and
then δ := 3.5 × maxj lj . A task’s cash flow ci is generated uniformly at random
from [−500, 1000]. The discount rate is determined as α := 52

√
1 + 0.05 − 1.

For all runs we allowed the use of 5 cores, for both the MIP solver (Gurobi)
and the ACO component (resulting in 5 parallel colonies). The parameters set-
tings for each individual colony were the same as those used in [22]. Addition-
ally, the current state-of-the-art algorithm from [22], which is a hybrid between
Lagrangian Relaxation and ACO (henceforth denoted as LRACO), was re-run
for all the instances to allow a fair comparison. Moreover, note that ACO also
used 5 cores in parallel.

3 http://www.gurobi.com/.
4 https://confluence.apps.monash.edu/display/monarch/MonARCH+Home.
5 https://www.sciencedirect.com/science/article/abs/pii/S0377221796001701.
6 Gurobi can solve most of the problem instances with 30 tasks (the optimal solutions
are provided in PSPLIB), a number of instances with 60 tasks (<60%), and a very
small proportion of the instances with 90 tasks (<2%). None of the instances with
120 tasks can be solved with Gurobi.

http://www.gurobi.com/
https://confluence.apps.monash.edu/display/monarch/MonARCH+Home
https://www.sciencedirect.com/science/article/abs/pii/S0377221796001701
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The tuning of the parameters related to CMSA is described in AppendixA.
Both algorithms were run once on each problem instance and allowed 15 min of
wall-clock time.

4.1 Comparison: CMSA Versus LRACO

Table 1 shows a summary of the comparison between LRACO and CMSA. Aver-
aged over the all the instances with the same number of tasks, the table provides
gap (UB−LB

UB ) for each algorithm and the number of times (out of 480, resp. 600)
each one finds the best solution (# best). Moreover, the last table column con-
tains the factor of how many more best solutions were found by CMSA relative
to LRACO. For example, in the case of instances with 30 tasks, CMSA found
20.92 times more best solutions than LRACO.

For CMSA, the results are reported as the gap between the CMSA lower
bound and the upper bound of LRACO (since we do not have a valid upper
bound from CMSA). We see that CMSA performs—on average—better than
LRACO for each problem size. Additionally, the number of best solutions found
shows that CMSA is significantly more effective. Interestingly, the factor (last
table column) drops with an increase in the number of tasks (from 20.92 for
30 tasks compared to 2.92 for 120 tasks). This means that, while CMSA is
very strong for rather small problem instances, it still significantly outperforms
LRACO on large problem instances. The drops of the performance of CMSA
with growing problem size, might be related to the number of iterations that
can be performed within the allowed computation time. More specifically, CMSA
can generally perform more than 100 iterations within the allowed CPU time
for instances with 30 tasks, but generally less than 20 iterations for 120 task
problems.

These results are visualized in Fig. 1. The boxplots in this graphic show the
improvement of CMSA over LRACO in percent ( (CMSAi−LRi)∗100

LRi
, ∀i ∈ I)7 for

subsets of the complete set of instances. A value above 0.00 indicates that CMSA

Table 1. Average gaps of LRACO and CMSA to the upper bound obtained by LRACO
computed as UB−LB

UB
. The number of instances for which an algorithm finds the best

solution is shown in column # best, while Factor indicates how many times more best
solutions were found by CMSA relative to LRACO.

Tasks LRACO CMSA Factor

Mean SD # best Mean SD # best

30 0.0189 0.0605 12 0.0180 0.0692 251 20.92

60 0.0148 0.0125 25 0.0133 0.0118 369 14.76

90 0.0147 0.0105 59 0.0136 0.0103 355 6.02

120 0.0176 0.0099 153 0.0165 0.0105 446 2.92

7 I is the set of instances.
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Fig. 1. The improvement of CMSA over LRACO (in percent) for subgroups of instances
(as determined by the network complexity and the resource factor). Note that CMSA
improves over LRACO whenever a data point has a positive value (that is, when it is
located in the area with light blue background). (Color figure online)

performs better than LRACO for the respective instance, while a value below
0.0 indicates the opposite.

In can be observed that for instances with resource factors 0.25 and 0.5,
CMSA generally improves over LRACO. However, with growing instance size
and resource factor, this advantage of CMSA diminishes. In fact, for instances
with 120 tasks and a resource factor of 1.0, LR-ACO seems to slightly outperform
CMSA. Note also that a single instance of 30 tasks was removed from this
graphic, as the gap was very large in favor of CMSA (gap = 2.98). This instance
is interesting since it consists of many more negative valued tasks than other
instances, leading to solutions with large negative NPVs. In this case CMSA is
able to handle the negative tasks much more effectively than LRACO.

Table 2 shows an even more detailed breakdown of the results with respect
to the four problem instance parameters (number of tasks, network complexity,
resource factor and resource strength). In addition to the observations mentioned
earlier, there are a few cases where large differences between the algorithms can
be seen. For instances with 30 tasks, with a high resource factor (RF = 1.0) and
a relatively high resource strength (RS = 0.7), the difference between CMSA and
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Table 2. A breakdown of the results with respect to instance parameters (number of
tasks, NC - network complexity, RF - resource factor, RS- resource strength). Gap%
shows the same information as the boxplots in Fig. 1 (percentage improvement of CMSA
over LRACO).

30 tasks 60 tasks 90 tasks 120 tasks

Gap% SD Gap% SD Gap% SD Gap% SD

NC 1.5 0.08 0.14 0.16 0.19 0.12 0.17 0.17 0.54

1.8 0.06 0.11 0.17 0.24 0.11 0.20 0.10 0.39

2.1 0.07 0.20 0.13 0.16 0.11 0.19 0.07 0.38

RF 0.3 0.01 0.02 0.07 0.13 0.11 0.13 0.30 0.15

0.5 0.05 0.10 0.18 0.24 0.19 0.18 0.25 0.30

0.8 0.10 0.13 0.18 0.21 0.11 0.18 0.09 0.57

1.0 2.61 27.20 0.18 0.18 0.05 0.21 −0.19 0.47

RS 0.1 - - - - - - −0.05 0.80

0.2 0.16 0.19 0.32 0.26 0.13 0.30 0.24 0.17

0.3 - - - - - - 0.03 0.44

0.4 - - - - - - 0.14 0.25

0.5 0.08 0.20 0.21 0.16 0.21 0.13 0.20 0.14

0.7 2.52 27.21 0.08 0.07 0.11 0.08 - -

1.0 0.00 0.00 0.00 0.00 0.00 0.00 - -

LRACO is very high. On the other side, when the instances consist of relatively
trivial constraints (high resource strength, i.e., RS = 1.0), both algorithms are
nearly equal. Interestingly, for a number of very hard instances, LRACO out-
performs CMSA (RF = 1.0, RS = 0.1). As mentioned above, this is likely to be
due to the insufficient number of iterations completed the CMSA within the
time-limit for such large problems.

5 Conclusion

In this study, we investigate a parallel hybrid of CMSA and ACO for resource
constrained project scheduling under the maximization of the net present value.
The proposed hybrid algorithm has several key characteristics. First, it makes
use of a general purpose MIP solver in an iterative way, in order to solve reduced
subinstances of the original problem instances. Second, it makes an efficient use
of resources in parallel. This is achieved by running a number of ACO colonies
in parallel leading to a diverse solutions space in the considered reduced subin-
stances. The results show that the hybrid CMSA approach is efficient at solving
the problem, and improves upon LRACO, which is currently the state-of-the-art
method in the literature.

This study has shown that if a problem can be efficiently modeled both with
ACO and with MIP techniques, a generic hybrid can be developed that can
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solve such a problem efficiently. We are currently working in this direction by
developing a generic heuristic that can be applied to a range of problems in a
very similar fashion. Furthermore, given that multi-core architectures are readily
available nowadays, the parallelisation is straightforward.

A further line of investigation is related to developing a tighter coupling
between ACO and CMSA. Since the MIP leads the search towards local optima,
the solution information could be used to further assist ACO. For example, the
solutions found by the MIPs could be used to generate or update the pheromone
matrices at each iteration.

A key component of CMSA is defining an efficient MIP model. In this study,
a straightforward MIP model has been used, however, the results could signifi-
cantly improve with more efficient models. For example, the cumulative model
proposed in [22] is more efficient, but requires a different way of extracting solu-
tion information. For this purpose, we are developing an alternative method
labeled Merge search.

Acknowledgements. This research was supported in part by the Monash eResearch
Centre and eSolutions-Research Support Services through the use of the MonARCH
HPC Cluster.

A CMSA Parameter Selection

In order to determine the parameter settings of CMSA for the experiments, a
subset of the problem instances were selected and used for testing. The param-
eters of interest are the MIP time limit (we considered either 60 or 120 s), the
number of ACO iterations (500, 1000 and 2000 iterations) and the maximum
age limit (3, 5 and 10). The instances selected consist of 60 (small) and 120
(large) tasks, with resource factors of 0.5 (low-medium) and 1.0 (high), resource
strengths of 0.5 (low-medium) and 1.0 (high). Each run was given 5 ACO colonies
(and hence 5 cores) and 15 min of wall-clock time.

Table 3. Number of best solutions found by varying parameters (MIP time limit -
MIP TL., ACO iterations - ACO iter. and Age limit - Age).

Param. Value 60 tasks 120 tasks

MIP TL. 60 4 11

120 2 1

ACO Iter. 500 4 4

1000 0 4

2000 2 4

Age 3 3 4

5 1 7

10 3 1
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Table 3 shows the number of instances for which the best solution was found
with the respective settings. We consider the MIP time limit first, choose the
best option, then select the best value for the number of ACO iterations, choose
the best option, and finally select between the age limits. For the MIP time limit,
60 s is best for 60 and 120 tasks. Comparing iterations for 60 tasks, 500 is best
and we use the same value for 120 tasks observing that there is no advantage.
The best age limit for 120 tasks is 5, but because there is no obvious advantage
for 60 tasks, we pick 3 in order for the built MIPs to be smaller and the MIP
solver, therefore, faster.
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