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Preface

After dedicating several decades to the broad development and the deep understanding
of sole metaheuristics, it became evident that the concentration on a sole metaheuristic
is a rather restrictive strategy when tackling a combinatorial problem. Instead, a skilled
combination of concepts from different optimization techniques can provide a more
efficient behavior and a higher flexibility for its solvability. These requirements have
become especially necessary when dealing with modern real-world and large-scale
problems. Hybrid metaheuristics are such techniques for optimization that combine
different metaheuristics or integrate AI/OR techniques into metaheuristics.

After more than a decade of worldwide research in this area, today we can be
assured that hybrid metaheuristics is a part of experimental science and that its strong
interdisciplinarity supports cooperation between researchers with different expertise.
Currently, the research on hybrid metaheuristics has reached an interesting point, since
it has become clear that many of the optimization problems appearing today require a
problem-oriented rather than an algorithm-oriented approach in order to enable a faster
and more effective implementation. As a consequence, the hybridization is no longer
restricted to different variants of metaheuristics but includes, for example, the combi-
nation of mathematical programming, dynamic programming, or constraint program-
ming with metaheuristics, reflecting cross-fertilization in fields such as optimization,
algorithmics, mathematical modeling, operations research, statistics, and simulation.

The HM workshops have been consecrated as a forum for researchers from all over
the world who study such hybridization strategies and explore the integration of new
techniques coming from other areas of expertise. The first edition of HM was held in
2004 and, since then, the event has been held regularly until this 11th edition. Except
for its first edition, the proceedings were always published by Springer in this series of
Lecture Notes in Computer Science (chronologically, volumes LNCS no. 3636, 4030,
4771, 5296, 5818, 6373, 7919, 8457 and 9668).

HM 2019 was the first time that the workshop left Europe and took place in
Concepción, Chile, during January 16–18, 2019. This edition was enriched by the
presence of four excellent plenary speakers: Haroldo Gambini Santos, from the
Universidade Federal de Ouro Preto in Brazil, Manuel López-Ibáñez, from the
University of Manchester in the UK, Günther Raidl, from the TU Wien in Austria, and
Christian Blum, from the Artificial Intelligence Research Institute (IIIA) in Spain.
These researchers are among the leading researchers in the area of hybrid meta-
heuristics and some of their works make up the state-of-the-art techniques for important
optimization problems. We would like to express our gratitude to all of them for having
accepted our invitation, and for their participation, which greatly enhanced the quality
of the workshop.

On the basis of reviews by the Program Committee members and evaluations by the
program chairs, HM 2019 had an acceptance rate of 48% (concerning full papers). We
had a double-blind peer review process, with at least three expert referees per



manuscript, so that not only originality and overall quality of the papers could be
properly evaluated, but also constructive suggestions for improvement could be pro-
vided. In light of this, a special thanks is addressed to all the researchers who authored
a paper for HM 2019, and to each member of the Program Committee and the external
reviewers, who devoted their valuable time and expertise in order to guarantee the
scientific quality and interest of this edition of the HM workshops.

January 2019 Maria J. Blesa Aguilera
Christian Blum

Haroldo Gambini Santos
Pedro Pinacho-Davidson
Julio Godoy del Campo

VI Preface
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Generic CP-Supported CMSA for Binary
Integer Linear Programs

Christian Blum1(B) and Haroldo Gambini Santos2

1 Artificial Intelligence Research Institute (IIIA-CSIC), Campus of the UAB,
Bellaterra, Spain

christian.blum@iiia.csic.es
2 Department of Computer Science, Universidade Federal de Ouro Preto,

Ouro Preto, Brazil
haroldo@ufop.edu.br

Abstract. Construct, Merge, Solve & Adapt (CMSA) is a general
hybrid metaheuristic for solving combinatorial optimization problems.
At each iteration, CMSA (1) constructs feasible solutions to the tackled
problem instance in a probabilistic way and (2) solves a reduced problem
instance (if possible) to optimality. The construction of feasible solutions
is hereby problem-specific, usually involving a fast greedy heuristic. The
goal of this paper is to design a problem-agnostic CMSA variant whose
exclusive input is an integer linear program (ILP). In order to reduce the
complexity of this task, the current study is restricted to binary ILPs.
In addition to a basic problem-agnostic CMSA variant, we also present
an extended version that makes use of a constraint propagation engine
for constructing solutions. The results show that our technique is able to
match the upper bounds of the standalone application of CPLEX in the
context of rather easy-to-solve instances, while it generally outperforms
the standalone application of CPLEX in the context of hard instances.
Moreover, the results indicate that the support of the constraint prop-
agation engine is useful in the context of problems for which finding
feasible solutions is rather difficult.

1 Introduction

Construct, Merge, Solve & Adapt (CMSA) [6] is a hybrid metaheuristic that
can be applied to any combinatorial optimization problem for which is known
a way of generating feasible solutions, and whose subproblems can be solved
to optimality by a black-box solver. Moreover, note that CMSA is thought for
those problem instances for which the application of the standalone black-box
solver is not feasible due to the problem instance size and/or difficulty. The
main idea of CMSA is to generate reduced sub-instances of the original prob-
lem instances, based on feasible solutions that are constructed at each iteration,
and to solve these reduced instances by means of the black-box solver. Obvi-
ously, the parameters of CMSA have to be adjusted in order for the size of the

c© Springer Nature Switzerland AG 2019
M. J. Blesa Aguilera et al. (Eds.): HM 2019, LNCS 11299, pp. 1–15, 2019.
https://doi.org/10.1007/978-3-030-05983-5_1
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2 C. Blum and H. Gambini Santos

reduced sub-instances to be such that the black-box solver can solve them effi-
ciently. CMSA has been applied to several NP-hard combinatorial optimization
problems, including minimum common string partition [4,6], the repetition-free
longest common subsequence problem [5], and the multi-dimensional knapsack
problem [15].

A possible disadvantage of CMSA is the fact that a problem-specific way
of probabilistically generating solutions is used in the above-mentioned applica-
tions. Therefore, the goal of this paper is to design a CMSA variant that can
be easily applied to different combinatorial optimization problems. One way of
achieving this goal is the development of a solver for a quite general problem.
Combinatorial optimization problems can be conveniently expressed as Integer
Linear Programs (ILPs) in the format min cTx : Ax = b,x ∈ Z

n, where A
indicates a constraints matrix, b and c are the cost and right-hand-side vectors,
respectively and x is a vector of decision variables whose values are restricted to
integral numbers. In this paper we propose a generic CMSA for binary integer
programs (BIPs), that are obtained when x ∈ {0, 1}n. This type of problem is
generic enough to model a wide range of combinatorial optimization problems,
from the classical traveling salesman problem [2] to protein threading prob-
lems [19] and a myriad of applications listed in the MIPLIB 2010 collection of
problem instances [13]. As CMSA is an algorithm that makes use of a solution
construction mechanism at each iteration, one of the challenges that we address
in this paper is the fast production of feasible solutions for general BIPs. For this
purpose we support the proposed generic CMSA with a constraint propagation
(CP) tool for increasing the probability to generate feasible solutions.

This paper is organized as follows. The next section discusses related work. In
Sect. 3, the original version of CMSA is presented, which assumes that the type
of the tackled problem is known. The generic CMSA proposal for general BIPs
is described in Sect. 4. Finally, an extensive experimental evaluation is presented
in Sect. 5 and conclusions as well as an outlook to future work are provided in
Sect. 6.

2 Related Work

The development of fast, reliable general purpose combinatorial optimization
solvers is a topic that occupies operations research practitioners since many
years. The main reason being that the structure of real world optimization
problems usually does not remain fixed over time: constraints usually change
over time and solvers optimized for a very particular problem structure may
lose their efficiency in this process. Thus, a remarkable interest in integer linear
programming (ILP) software packages exists, with several commercially success-
ful products such as IBM CPLEX, Gurobi and XPRESS. This success can be
attributed to the continuous improvements concerning the performance of these
solvers [11,12] and the availability of high level languages such AMPL [10]. The
application of these solvers to instances with very different structures creates
many challenges. From a practical point of view, the most important one is, pos-
sibly, the ability of quickly providing high quality feasible solutions: even though
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a complete search is executed, it is quite often the case that time limits need to
be imposed and a truncated search is performed. Thus, several methods have
been proposed to try to produce feasible solutions in the first steps of the search
process. One of the best known approaches is the so-called feasibility pump [8,9].

In the context of metaheuristics, Kochenberger et al. [14] developed a gen-
eral solver for unconstrained binary quadratic programming (UBQP) problems.
A whole range of important combinatorial optimization problems such as set
partitioning and k-coloring can be easily modeled as special cases of the UBQP
problem. Experiments showed that their general solver was able to produce high
quality solutions much faster than the general purpose ILP solver CPLEX for
hard problems such as the set partitioning problem. Brito and Santos [18] pro-
posed a local search approach for solving BIPs, obtaining some encouraging
results when comparing to the COIN-OR CBC Branch-and-Cut solver. In the
context of constraint programming, Benoist et al. [3] proposed a fast heuristic
solver (LocalSolver) based on local search. Experiments showed that LocalSolver
outperformed several other solvers, especially for what concerns executions with
very restricted computation times. In this paper we propose a CMSA solver for
solving BIPs. This format is more restricted than the LocalSolver format, where
non-linear functions can be used, but much more general than the UBQP, which
can be easily modeled as a special case of binary programming. One advantage
of BIPs is that several high performance solvers can be used to solve the sub-
problems generated within CMSA, a feature that will be explored in the next
sections.

3 Original CMSA in the Context of BIPs

As already mentioned, in this work we focus on solving BIPs. Any BIP can be
expressed in the following way:

min{cTx : Ax ≤ b, xj ∈ {0, 1} ∀j = 1, . . . , n} (1)

where A is an m × n matrix, b is the right-hand-size vector of size m, c is a cost
vector, and x is the vector of n binary decision variables. Note that m is the
number of constraints of this BIP.

In the following we describe the original CMSA algorithm from [6]. However,
instead of providing a general description as in [6], our description is already
tailored for the application to BIPs. In order to clarify this fact, the algorithm
described below is labeled CMSA-BIP. In general, the main idea of CMSA algo-
rithms is to take profit from an efficient complete solver even in the context of
problem instances that are too large to be solved directly. The general idea of
CMSA is as follows. At each iteration, CMSA probabilistically generates solu-
tions to the tackled problem instance. Next, the solution components that are
found in these solutions are added to a sub-instance of the original problem
instance. Subsequently, an exact solver is used to solve the sub-instance (if pos-
sible in the given time) to optimality.1 Moreover, the algorithm is equipped with
1 In the context of problems that can be modelled as BIPs, any black-box ILP solver

such as, for example, CPLEX can be used for this purpose.
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a mechanism for deleting seemingly useless solution components from the sub-
instance. This is done such that the sub-instance has a moderate size and can
be solved rather quickly to optimality.

In the context of CMSA-BIP, any combination of a variable xj with one of
its values v ∈ {0, 1} is a solution component denoted by (xj , v). Given a BIP
instance, the complete set of solution components if denoted by C. Any sub-
instance of the given BIP is a subset C ′ of C, that is, C ′ ⊆ C. Such a sub-instance
C ′ ⊆ C is feasible, if C ′ contains for each variable xj (j = 1, . . . , n) at least one
solution component (xj , v), that is, either (xj , 0), or (xj , 1), or both. Moreover,
a solution to the given BIP is any binary vector s that fulfills the constraints
from Eq. (1). Note that a feasible solution s contains n solution components:
{(xj , sj) | j = 1, . . . , n}.

The pseudo-code of the CMSA-BIP algorithm is given in Algorithm 1. At each
iteration the following is done. First, the best-so-far solution sbsf is initialized to
null, indicating that no such solution exists yet. Moreover, sub-instance C ′ is
initialized to the empty set. Note, also, that each solution component (xj , v) ∈ C
has a so-called age value denoted by age[(xj , v)]. All these age values are initial-
ized to zero at the start of the algorithm. Then, at each iteration, na solutions
are probabilistically generated in function ProbabilisticSolutionGeneration(C); see
line 6 of Algorithm 1. As mentioned above, problem-specific heuristics are gen-
erally used for this purpose. The solution components found in the constructed
solutions are then added to C ′. Next, an ILP solver is applied in function Apply-
ILPSolver(C ′) to find a possibly optimal solution s′

opt to the restricted prob-
lem instance C ′ (see below for a more detailed description). Note that null is
returned in case the ILP solver cannot find any feasible solution. If s′

opt is bet-
ter than the current best-so-far solution sbsf , solution s′

opt is taken as the new
best-so-far solution. Next, sub-instance C ′ is adapted on the basis of solution
s′
opt in conjunction with the age values of the solution components; see function

Adapt(C ′, s′
opt, agemax) in line 14. This is done as follows. First, the age of all

solution components from C ′ that are not in s′
opt is incremented. Moreover, the

age of each solution component from s′
opt is re-initialized to zero. Subsequently,

those solution components from C ′ with an age value greater than agemax—
which is a parameter of the algorithm—are removed from C ′. This causes that
solution components that never appear in solutions derived by the ILP solver do
not slow down the solver in subsequent iterations. On the other side, components
which appear in the solutions returned by the ILP solver should be maintained
in C ′.

Finally, the BIP that is solved at each iteration in function ApplyILP-
Solver(C ′) is generated by adding the following constraints to the original BIP.
For each j = 1, . . . , n the following is done. If C ′ only contains solution com-
ponent (xj , 0), the additional constraint xj = 0 is added to the original BIP.
Otherwise, if C ′ only contains solution component (xj , 1), the additional con-
straint xj = 1 is added to the original BIP. Nothing is added to the original BIP
in case C ′ contains both solution components. Note that the ILP solver is applied
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Algorithm 1. CMSA-BIP: CMSA for solving BIPs
1: given: a BIP instance, and values for the algorithm parameters
2: sbsf := null; C′ := ∅
3: age[(xj , v)] := 0 for all (xj , v) ∈ C
4: while CPU time limit not reached do
5: for i = 1, . . . , na do
6: s := ProbabilisticSolutionGeneration(C)
7: for j = 1, . . . , n do
8: if (xj , sj) /∈ C′ then
9: age[(xj , sj)] := 0

10: C′ := C′ ∪ {(xj , sj)}
11: end if
12: end for
13: end for
14: s′

opt := ApplyILPSolver(C′)
15: if s′

opt is better than sbsf then sbsf := s′
opt end if

16: Adapt(C′, s′
opt, agemax)

17: end while
18: return sbsf

with a computation time limit of tSUB CPU seconds, which is a parameter of
the algorithm.

4 Generic Way of Generating Solutions for BIPs

In those cases in which the optimization problem modeled by the given BIP
is not known, we need a generic way of generating solutions to the given BIP
in order to be able to apply the CMSA-BIP algorithm described in the pre-
vious section. In the following we first describe a basic solution construction
mechanims, and afterwards an alternative mechanism which uses a CP tool for
increasing the probability to generate feasible solutions. The first algorithm vari-
ant is henceforth denoted as Gen-Cmsa-Bip (standing for generic CMSA-BIP)
and the second algorithm variant as Gen/Cp-Cmsa-Bip (standing for generic
CMSA-BIP with CP support).

4.1 Basic Solution Construction Mechanism

Before starting with the first CMSA-BIP iteration, a node heuristic of the applied
ILP solver might be used in order to obtain a first feasible solution. In our
case, we used the node heuristic of CPLEX. If, in this way, a feasible solution
can be obtained it is stored in sbsf . Otherwise, sbsf is set to null. If, after
this step, sbsf has value null, the LP relaxation of the given BIP is solved.
However, in order not to spend too much computation time on this step, a
computation time limit of tLP seconds is applied. After this, the possibly optimal
solution of the LP relaxation is stored in vector xLP . Then, whenever function
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ProbabilisticSolutionGeneration(C) is called, the following is done. First, a so-
called sampling vector xsamp for sampling new (possibly feasible) solutions by
randomized rounding is generated. If sbsf �= null, xsamp is generated based on
sbsf and a so-called determinism rate 0 < drate < 0.5 as follows:

xsamp
j =

{
drate if sbsfj = 0
1 − drate if sbsfj = 1

for all j = 1, . . . , n. In case sbsf = null, xsamp is—for all j = 1, . . . , n—generated
on the basis of xLP :

xsamp
j =

⎧⎪⎨
⎪⎩

xLP
j if drate ≤ xLP

j ≤ 1 − drate

drate if xLP
j < drate

1 − drate if xLP
j > 1 − drate

After generating xsamp, a possibly infeasible binary solutions s is generated from
xsamp by randomized rounding. Note that this is done in the order j = 1, . . . , n.

4.2 CP Supported Construction Mechanism

Our algorithm makes use of the Constraint Propagation (CP) engine cprop that
implements ideas from [1,17].2 The support of CP is used in the following two
ways. First, all constraints are processed and implications derived from the con-
straint set are detected and the problem is preprocessed to keep those variables
fixed throughout the search process. Second, the solution construction mecha-
nism changes in the following way. Instead of deriving values for the variables in
the order j = 1, . . . , n, a random order π is chosen for each solution construc-
tion. That is, at step j, instead of deriving a value for variable xj , instead a
value for variable xπ(j) is derived. Then, after deciding for a value for variable
xπ(j), the CP tool checks if this assignment will produce an infeasible solution. If
this is the case, variable xπ(j) is fixed to the alternative value. If, again, the CP
tool determines that this setting cannot lead to a feasible solution, the solution
construction proceeds as described in Sect. 4.1, that is, finalizing the solution
construction without further CP support. Otherwise—that is, if a feasible value
can be chosen for the current variable—the CP might indicate possible impli-
cations consisting of further variables that, as a consequence, have to be fixed
to certain values. All these implications are dealt with, before dealing with the
next non-fixed variable according to π.3

4.3 An Additional Algorithmic Aspect

Instead of using fixed values for CMSA-BIP parameters drate and tSUB, we
implemented the following scheme. For both parameters we use a lower bound
2 The used CP tool can be obtained at https://github.com/h-g-s/cprop.
3 Note that, after fixing a value for xπ(j), the value of xπ(j+1) might already be fixed

due to one of the implications dealt with earlier.

https://github.com/h-g-s/cprop
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and an upper bound. At the start of CMSA-BIP, the values of drate and tSUB

are set to the lower bound. Whenever an iteration improves sbsf , the values of
drate and tSUB are set back to their respective lower bounds. Otherwise, the
values of drate and tSUB are increased by a factor determined by substracting
the lower bound value from the upper bound value and dividing the result by
5.0. Finally, whenever the value of drate, respectively tSUB , exceeds its upper
bound, it is set back to the lower bound value. This procedure is inspired by
variable neighborhood search (VNS) [16].

5 Experimental Evaluation

In the following we present an experimental evaluation of Gen-Cmsa-Bip and
Gen/Cp-Cmsa-Bip in comparison to the standalone application of the ILP
solver IBM ILOG CPLEX v12.7. Note that the same version of CPLEX was
applied within both CMSA variants. Moreover, in all cases CPLEX was executed
in one-threaded mode. In order to ensure a fair comparison, CPLEX was exe-
cuted with two different parameter settings in the standalone mode: the default
parameter settings, and with the MIP emphasis parameter set to a value of 4
(which means that the focus of CPLEX is on finding good solutions rather than
on proving optimality). The default version of CPLEX is henceforth denoted
by Cplex-Opt and the heuristic version of CPLEX by Cplex-Heur. All tech-
niques were implemented in ANSI C++ (with the Concert Library of ILOG for
implementing everything related to the ILP models), and using GCC 5.4.0 for
compiling the software. Moreover, the experimental evaluation was performed
on a cluster of PCs with Intel(R) Xeon(R) CPU 5670 CPUs of 12 nuclei of
2933 MHz and at least 40 Gigabytes of RAM.

5.1 Considered Problem Instances

The properties of the 30 selected BIPs are described in Table 1. The first 27
instances are taken from MIPLIB 2010 (http://miplib.zib.de/miplib2010.php),
which is one of the best-known libraries for integer linear programming. More
specifically, the ILPs on MIPLIB are classified into three hardness categories:
easy, hard, and open. From each one of the these categories we chose (more
or less randomly) 9 BIPs. In addition, we selected three instances from recent
applications found in the literature:

– mcsp-2000-4 is an instance of the minimum common string partition problem
with input strings of length 2000 and an alphabet size of four [6]. The hardness
of this instance is due to a massive amount of constraints.

– rflcs-2048-3n-div-8 is an instance of the repetition-free longest common
subsequence problem with two input strings of length 2048 and an alphabet
size of 768 [5]. This instance is hard to solve due to the large number of
variables.

– rcjs-20testS6 is an instance of the resource constraint job scheduling prob-
lem considered in [7]. Finding feasible solutions for this problem is, for general
purpose ILP solvers, rather time consuming.

http://miplib.zib.de/miplib2010.php
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Table 1. Characteristics of the 30 BIPs that were considered.

BIP instance name # Cols/Vars # Rows Opt. Val. MIPLIB status

acc-tight5 1339 3052 0.0 Easy

air04 8904 823 56137.0 Easy

cov1075 120 637 20.0 Easy

eilB101 2818 100 1216.92 Easy

ex9 10404 40962 81.0 Easy

netdiversion 129180 119589 242.0 Easy

opm2-z7-s2 2023 31798 −10280.0 Easy

tanglegram1 34759 68342 5182.0 Easy

vpphard 51471 47280 5.0 Easy

ivu52 157591 2116 481.007 Hard

opm2-z12-s14 10800 319508 −64291.0 Hard

p6b 462 5852 −63.0 Hard

protfold 1835 2112 −31.0 Hard

queens-30 900 960 −40.0 Hard

reblock354 3540 19906 −39280521.23 Hard

rmine10 8439 65274 −1913.88 Hard

seymour-disj-10 1209 5108 287.0 Hard

wnq-n100-mw99-14 10000 656900 259.0 Hard

bab1 61152 60680 Unknown Open

methanosarcina 7930 14604 Unknown Open

ramos3 2187 2187 Unknown Open

rmine14 32205 268535 Unknown Open

rmine25 326599 2953849 Unknown Open

sts405 405 27270 Unknown Open

sts729 729 88452 Unknown Open

t1717 73885 551 Unknown Open

t1722 36630 338 Unknown Open

mcsp-2000-4 1335342 4000 Unkonwn n.a

rflcs-2048-3n-div-8 5461 7480548 Unknown n.a

rcjs-20testS6 273372 29032 Unknown n.a

5.2 Parameter Setting

Both generic CMSA variants have the following parameters for which well-
working values must be found: (1) the number of solution constructions per
iteration (na), (2) the maximumm age of solution components (agemax), (3) a
computation time limit for solving the LP relaxation (tLP ), (4) a lower and an
upper bound for the determinism rate (drate (LB) and drate (UB)), and (5) a
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lower and an upper bound for the computation time limit of the ILP solver at
each iteration (tSUB (LB) and tSUB (UB)).

Concerning agemax, it became clear during preliminary experiments that
this parameter has not the same importance for Gen-Cmsa-Bip and Gen/Cp-
Cmsa-Bip as it has for a problem-specific CMSA. In other words, while a setting
of na = 10 and agemax = 3 is essentially different to a setting of na = 30
and agemax = 1 for a problem-specific CMSA, this is not the case for the
generic CMSA variants. This is related to the way of constructing solutions.
In a problem-specific CMSA, the greedy heuristic that is used in a probabilis-
tic way biases the search towards a certain area of the search space. This is
generally beneficial, but may have the consequence that some solution com-
ponents that are needed for high-quality solutions have actually a low prob-
ability to be included in the constructed solutions. A setting of agemax > 1
provides agemax opportunites—that is, applications of the ILP solver—to find
high-quality solutions that incorporate such solution components. In contrast,
the way of constructing solutions in the generic CMSA variants does not pro-
duce this situtaiton. Therefore, we decided for a setting of agemax = 1 for all
further experiments. Apart from agemax, after preliminary experiments we also
fixed the following parameter values:

– na = 5
– tLP = 10.0
– The lower bound of tSUB is set to 30.0 and the upper bound to 100.0

The parameter that has the strongest impact on the performance of the generic
CMSA variants is drate. We noticed that both generic CMSA variants are quite
sensitive to the setting of the lower and the upper bound for this parameter.
However, in order to avoid a fine-tuning for each single problem instance, we
decided to identify four representative parameter value configurations in order
to cover the characteristics of the 30 selected problem instances. Both generic
CMSA variants are then applied with all four parameter configurations to all 30
problem instances. For each problem instance we take the result of the respec-
tive best configuration as the final result (and we indicate with which configu-
ration this result was obtained). The four utilized parameter configurations are
described in Table 2.

Table 2. The four parameter configurations used for both Gen-Cmsa-Bip and
Gen/Cp-Cmsa-Bip.

Parameter configuration drate (LB) drate (UB)

Configuration 1 0.03 0.08

Configuration 2 0.05 0.15

Configuration 3 0.1 0.3

Configuration 4 0.3 0.5
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5.3 Results

All four approaches (Gen-Cmsa-Bip, Gen/Cp-Cmsa-Bip, Cplex-Opt, and
Cplex-Heur) were applied with a computation time limit of 1000 CPU sec-
onds to each one of the 30 problem instances. However, as Gen-Cmsa-Bip
and Gen/Cp-Cmsa-Bip are stochastic algorithms, they are applied 10 times
to each instance, while the two CPLEX variants are applied exactly once to
each instance. The numerical results are provided in Table 3, which has the fol-
lowing structure. The first column contains the problem instance name, and the
second column provides the value of an optimal solution (if known).4 The results
of Gen-Cmsa-Bip and Gen/Cp-Cmsa-Bip are presented in three columns for
each algorithm. The first column (with heading ‘Best’) contains the best result
obtained over 10 runs, the second column (with heading ‘Avg.’) shows the aver-
age of the best results obtained in each of the 10 runs, and the third column indi-
cates the configuration (out of 4) that has produced the corresponding results.
Finally, the results of Cplex-Opt and Cplex-Heur are both presented in two
columns. The first column shows the value of the best feasible solution produced
within the allowed computation time, and the second column shows the best
gap (in percent) at the end of each run. Note that a gap of 0.0 indicates that
optimality was proven.
The following observations can be made:

– Concerning the BIPs classified as easy (see the first nine table rows), it can be
noticed that Cplex-Heur always generates an optimal solution, even though
optimality can not be proven in two cases. Gen/Cp-Cmsa-Bip–that is, the
generic CP-supported CMSA variant—also produces an optimal solution in
at least one out of 10 runs for all nine problem instances. However, in three
cases, the algorithm fails to produce an optimal solution in all 10 runs per
instance. The results of the basic generic CMSA variant (Gen-Cmsa-Bip) are
quite similar. However, for instance ex9 it is not able to produce any feasible
solution, and for instance netdiversion the results are clearly inferior to
those of Gen/Cp-Cmsa-Bip. Nevertheless, the support of CP also comes
with a cost. This can be seen when looking at the anytime behaviour of the
algorithms as shown for six exemplary cases in Fig. 1. In particular, Gen/Cp-
Cmsa-Bip is often not converging as fast to good solutions as Gen-Cmsa-
Bip.

– The increased difficulty of the instances labelled as hard (see table rows 10-
18), produces more differences between the four approaches. In fact, some-
times one of the CPLEX variants is clearly better than the two CMSA ver-
sions (see, for example, instance ivu52), and sometimes the generic CMSA
variants outperform the CPLEX versions (such as, for example, for instance
opm2-z12-s14). As the CP-support is more costly for these instances, the
results of Gen-Cmsa-Bip are generally a bit better than those of Gen/Cp-
Cmsa-Bip. The effect of the increased cost of the CP support can also nicely

4 Note that all considered BIPs are in standard form, that is, they must be minimized.
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Fig. 1. Anytime performance of Gen-Cmsa-Bip and Gen/Cp-Cmsa-Bip in compari-
son to the two CPLEX variants. The performance of the two generic CMSA versions
is shown via the mean performance together with the confidence ribbon (based on 10
independent runs).
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be observed in the anytime behaviour of the algorithms for two hard instances
in Fig. 1c and b.

– In the context of the nine open instances, the generic CMSA variants clearly
outperform the standalone application of CPLEX, with the exception of
instance t1722. The same holds for the three additional, difficult prob-
lem instances (last three table rows). Note, especially, that for instance
rcjs-20testS6 the support of CP pays off again, as it is difficult to find
feasible solutions for this instance.
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Fig. 2. Boxplots showing the 10 results per algorithm configuration for Gen-Cmsa-Bip
and Gen/Cp-Cmsa-Bip in the context of three of the considered problem instances.
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Summarizing, with increasing problem size/difficulty, the advantage of the
generic CMSA variants over the standalone application of CPLEX becomes more
and more pronounced. However, as the cost of the CP support also increases
with growing problem size, Gen/Cp-Cmsa-Bip is only able to outperform Gen-
Cmsa-Bip when finding feasible solutions is really difficult. However, we noticed
that the CP support has also an additional effect, which is shown in the graphics
of Fig. 2. Each boxplot shows the final results (obtained by 10 runs per instance)
of each of the four parameter configurations for both generic CMSA variants.
Interestingly, the use of CP during solution construction flattens out the quality
differences between the four parameter configurations. This can be seen in all
three boxplots. In Fig. 2b, for example, the results of Gen-Cmsa-Bip are good
with configurations 3 and 4, while they are significantly worse with configurations
1 and 2. In contrast, the results of Gen/Cp-Cmsa-Bip, while also being best
with configurations 3 and 4, are only slightly worse with configurations 1 and 2.
In that sense, the CP-support makes the algorithm more robust with respect to
the parameter setting.

6 Conclusions

In this work, we developed a problem-agnostic CMSA algorithm for solving
binary linear integer programs. The main challenge was on constructing solutions
to unknown problems, in a way such that feasibility is quickly reached. For this
purpose we developed—in addition to the basic approach—an algorithm variant
that makes use of a constraint programming tool. Concerning the results, we were
able to observe that the use of the constraint programming tool pays off for those
problems for which reaching feasiblity is rather difficult. In general, with growing
problem size and/or difficulty, both CMSA variants have an increasing advantage
over the standalone appliaction of the ILP solver CPLEX. In a sense, our generic
CMSA can be seen—in many cases—as a better way of making use of a black-box
ILP solver. Concerning future work, we plan to extend our work towards general
ILPs. Moreover, we plan to work on a mechanism for automatically adjusting
the algorithm parameters at the start of a run.

References

1. Achterberg, T.: Constraint Integer Programming. Ph.D. thesis (2007)
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Abstract. This study considers the problem of resource constrained
project scheduling to maximise the net present value. A number of tasks
must be scheduled within a fixed time horizon. Tasks may have prece-
dences between them and they use a number of common resources when
executing. For each resource, there is a limit, and the cumulative resource
requirements of all tasks executing at the same time must not exceed the
limits. To solve this problem, we develop a hybrid of Construct, Merge,
Solve and Adapt (CMSA) and Ant Colony Optimisation (ACO). The
methods are implemented in a parallel setting within a multi-core shared
memory architecture. The results show that the proposed algorithm out-
performs the previous state-of-the-art method, a hybrid of Lagrangian
relaxation and ACO.

Keywords: Project scheduling · Net present value
Construct, Merge, Solve & Adapt · Ant Colony Optimisation

1 Introduction

Resource constrained project scheduling is a problem that has been investi-
gated for many years. Due to the complexity of variants of the problem, solving
instances with just 100 tasks is still challenging. The details of different project
scheduling problems vary, but the basic elements require a number of tasks to be
completed with an objective related to the completion time or some value of the
tasks. In recent times, maximizing the net present value (NPV) of a project has
received attention. Each task has a cash flow that may be positive or negative.
The aim is to maximize the net present value of the profit, that is, the sum of
the discounted cumulative cash flows of the tasks [7,18,22–24].

Numerous variants of project scheduling can be found in the literature; see [6]
for an early review. All problems considered in [6] consist of tasks, precedences
between them, limited shared (renewable) resources and deadlines. The prob-
lems are solved with a number of different methods, including heuristics, local
c© Springer Nature Switzerland AG 2019
M. J. Blesa Aguilera et al. (Eds.): HM 2019, LNCS 11299, pp. 16–30, 2019.
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search and branch & bound. A discussion on details of methods for solving these
problems, including exact approaches, heuristics and meta-heuristics, is pro-
vided in [10]. Among meta-heuristics, simulated annealing, genetic algorithms,
and tabu search have been applied. Furthermore, heuristic and exact approaches
for project scheduling with time windows are discussed in [17].

A closely related problem is resource constrained job scheduling (RCJS) [21],
with the main difference being in the objective, i.e., minimising the total weighted
tardiness of the tasks. To solve this problem, hybrids of mixed integer program-
ming (MIP) decompositions and meta-heuristics [20], constraint programming
and ant colony optimisation (ACO) [21], and parallel implementations of these
methods [8,19] have been successfully applied.

For project scheduling with the NPV objective, various heuristic and exact
approaches can be found in the literature. Problem instances with up to 98
tasks are solved in [7], with an ACO approach that outperforms other meta-
heuristics such as a genetic algorithm, tabu search and simulated annealing.
In [18], the authors show that ACO can be effective for a similar problem with
up to 50 tasks. A scatter search heuristic described in [23] was shown to be
more effective than exact approaches based on branch & bound methods for the
same problem [24]. In [13], a hybrid of constraint programming and Lagrangian
relaxation is considered which is able to find good feasible solutions easily for
this problem. A hybrid of Lagrangian relaxation and ACO [22] was shown to be
particularly effective when run in parallel [5].

In this study, we consider resource constrained project scheduling (RCPS)
maximising the NPV [14]. This problem is henceforth simply denoted by RCPS-
NPV. The problem considers several tasks with varying cash flows, precedences
between some of them and a common deadline for all of them. There are also
common renewable resources, of which the tasks require some proportion. We
solve this problem considering a hybrid of two techniques: (1) Construct, Merge,
Solve & Adapt (CMSA) and (2) ACO. Hereby, within the CMSA framework, a
parallel implementation of ACO (PACO) is iteratively used to generate solutions
for being used within CMSA.

CMSA is a rather recent, generic MIP-based metaheuristic that has shown to
be effective on several problems including: the minimum common string parti-
tion and minimum covering arborescence problems [4], the repetition-free longest
common subsequence problem [3], and unbalanced common string partition [2].
While this method has not yet been tested extensively on a wide range of prob-
lems, the results from the initial studies are very promising. At each iteration,
CMSA requires a set of promising solutions to be generated by some randomized
technique. These solutions are then used to build a reduced sub-instance with
respect to the tackled problem instance. This sub-instance is then solved by a
complete technique. In the context of problems that can be modelled as MIPs, a
general-purpose MIP solver may be used for this purpose. As mentioned above,
ACO is used in the case of this paper for generating the set of solutions per iter-
ation. ACO is a meta-heuristic that uses the principles underlying the foraging
behavior of ants. This technique has shown to be effective on a number of prob-
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lems [12]. Project scheduling variants have also been solved with ACO [7,16,18].
The RCPS problem with makespan as the objective was considered, for example,
in [16]. Moreover, an ACO for project scheduling where the tasks can execute in
multiple modes is described in [7]. In [18], a problem similar to that of [23], but
with fewer tasks, was tackled.

The paper is organized as follows. Section 2 provides a MIP model of the
RCPS-NPV. Section 3 discusses CMSA and PACO. Section 4 details the exper-
iments conducted and the results obtained from these experiments, before con-
clusions are provided in Sect. 5.

2 The RCPS-NPV Problem

The RCPS-NPV problem can be formulated as follows. A set J of n tasks is
given, with each task i ∈ J having a duration di, a cash flow cfit at each time
period t ≥ 1 (which may be positive or negative), and an amount of resource
of each type k, rik, that it requires. While the cash flow of a task may vary
over its duration, we can simply calculate the total net value ci that the task
would contribute to the project if it was completed at time 0. From this we can
compute the discounted value using discount factor α > 0 for start time si as
ci e−α(si+di), where di is the duration of task i. Note that the formula e−α t for
discounting is equivalent to the commonly used function 1/(1+ ᾱ)t for a suitable
choice of α. Let P be the set of precedences P between tasks. We will write i → j
or (i, j) ∈ P ⊆ J × J to denote that the processing of task i must complete
before the processing of j starts.

Given k resources and their limits—that is, R1, . . . , Rk—the cumulative use
of resources by all tasks executing at the same time must satisfy these resource
limits. There is also a common deadline for all the tasks, δ, representing the time
horizon for completing the project. Without such a deadline, tasks with negative
cash flow and no successors would never be completed. Given the objective of
maximizing the NPV, the problem can be stated as follows:

max
∑

i∈J
ci e−α(si+di) (1)

S.T. si + di ≤ sj ∀ (i, j) ∈ P (2)
∑

i∈S(t)

rim ≤ Rm ∀ m = 1, . . . k (3)

0 ≤ si ≤ δ − di ∀ i ∈ J (4)

Hereby, set S(t) consists of tasks executing at time t. The NPV objective
function (1) is non-linear and neither convex nor concave, making this problem
challenging to solve. Constraints (2) enforce the precedences. Constraints (3)
ensure that all the resource limits are satisfied. Constraints (4) require that the
deadline is satisfied.

Like in the studies by [14] and [22], the deadline is typically not tight, as the
aim is not to minimize the makespan. The available slack means that negative-
valued tasks can be scheduled later, thereby slightly increasing the NPV.
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2.1 MIP Model

A MIP model for the RCPS-NPV (see also [14]) can be defined as follows: Let
V := {xit | i = 1, . . . , n and t = 1, . . . , δ} be a the set of binary variables, where
xit takes value 1 if task i completes at time t. The objective is to maximise the
NPV:

max
∑

i∈J

δ∑

t=1

ci e−αt xit (5)

S.T.
δ∑

t=1

xit = 1 ∀ i ∈ J (6)

δ∑

t=1

t xjt −
δ∑

t=1

t xit ≥ dj ∀ (i, j) ∈ P (7)

n∑

i=1

t+di−1∑

t̂=t

rik xit̂ ≤ Rm ∀ m = 1, . . . , k, t ∈ {1, . . . , δ}

(8)

xit ∈ {0, 1} ∀ xit ∈ V (9)

Equation (5) maximises the NPV. Constraints (6) ensure that all tasks are
completed exactly once. Constraints (7) ensure that the precedences are satisfied.
Constraints (8) require that all the resource limits are satisfied.

For an exact MIP solver this would not be expected to be the most efficient
formulation. For the CMSA algorithm described below, an important character-
istic of this MIP formulation is that solutions have a low density of non-zeros,
just one per activity. Furthermore, instead of solving the full model, in CMSA
we only solve small subproblems with a significantly reduced subset of the pos-
sible time points. During preliminary experiments it was shown that such type
of MIPs can be easily solved by applying a general-purpose MIP solver.

3 The Proposed Algorithm

In this section, we provide the details of our implementation of CMSA. This
algorithm learns from sets of solutions which are recombined with the aid of a
general-purpose MIP solver. In this study we use ACO, implemented in a parallel
setting to ensure that diversity is achieved efficiently as described in [21], to
generate these sets of solutions for CMSA at each of its iterations.

3.1 Construct, Merge, Solve and Adapt

Algorithm 1 presents our implementation of CMSA for the tackled RCPS-NPV
problem. As input the algorithm takes (1) a problem instance, (2) the number
of solutions (ns), (3) a total computation time limit (ttotal), (4) a computation
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time limit per MIP-solver application at each iteration (titer), and (5) a maximum
age limit (amax). CMSA keeps, at all times, a subset V ′ of the complete set of
variables V of the MIP model (see previous section for the definition of V ).
Moreover, a solution S in the context of CMSA is a subset of V . A solution
S ⊆ V is called a valid solution iff assigning value one to all variables in S and
zero to the remaining variables in V \ S, results in a valid RCSP-NPV solution.

The objective function value of a solution S is henceforth denoted by f(S).

Algorithm 1. CMSA for the RCPS-NPV problem
1: input: RCPS-NPV instance, ns, ttotal, titer, amax

2: Initialisation: V ′ := ∅, Sbs := ∅, ajt := 0 ∀ xjt ∈ V
3: while time limit ttotal not expired do
4: for i = 1, 2, . . . , ns do # note that this is done in parallel
5: Si := GenerateSolution()
6: V ′ := V ′ ∪ {Si}
7: end for
8: Sib ← Apply ILP Solver(V ′,Sbs)
9: if f(Sib) > f(Sbs) then Sbs := Sib end if
10: Adapt(V ′, Sbs)
11: end while
12: output: Sbs

The algorithm works as follows. First, in line 2, the initial subset of variables
(V ′) is initialized to the empty set. The same is done for the best-so-far solution
Sbs.1 Moreover, the age value ajt of each variable xjt ∈ V is initialized to zero.
The main algorithm now executes between Lines 3–11 until the time limit (ttotal)
has expired. At each iteration of CMSA, the following actions are taken. First, a
number of ns solutions is generated in a randomized way, that is, the Construct
phase of CMSA is executed. In principle, any randomized method to generate
feasible solutions is acceptable. However, here we use ACO (see Sect. 3.2). In
particular, ns ACO colonies are run in parallel, where one colony is seeded with
the best-so-far solution Sbs. The remaining colonies are seeded with a random
solution. This method ensures that good parts of the search space and also
sufficiently diverse parts of the search space are covered.

Once the solutions have been produced, the variables they contain (remember
that these are the variables with value one in the corresponding MIP solutions)
are added to V ′ in line 6 (Merge phase of CMSA). Based on V ′, a reduced
MIP model is generated (see below for a detailed description) and then solved
by applying a general-purpose MIP solver in function Apply ILP Solver(V ′,Sbs)
(see line 8 of Algorithm 1). This phase is the Solve phase of CMSA. Note that
the MIP solver is warm-started with the best-so-far solution Sbs. Finally, after
potentially updating the best-so-far solution Sbs with solution Sib obtained as

1 Note that, for consistency, the objective function value of an empty solution is defined
as −∞.
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output from the MIP solver, the Adapt phase of CMSA is executed in function
Adapt(V ′, Sbs) (see line 10) as follows. All variables from V ′ which are not present
in Sbs have their age values incremented. The age values of those variables, whose
corresponding age values have passed amax, are re-initialized to zero. Moreover,
they are removed from V ′. Finally, the output of CMSA is solution Sbs.

The Restricted MIP Model. The restricted MIP model that is solved in
function Apply ILP Solver(V ′,Sbs) of Algorithm 1 is obtained from the original
MIP model outlined in Sect. 2 as follows. Instead of considering all variables
from V , the model is restricted to the variables from V ′. In this way the model
becomes much smaller and can be relatively easily solved. However, note that the
search space of such a restricted model is only a part of the original search space.
Only when V ′ is very large (this may happen when ns is large and the solution
construction is very much random) the restricted MIP may not be solved within
the given time. As mentioned above, a time limit (titer) is used to ensure the
solver always terminates sufficiently quickly even if it does not find an optimal
solution to the restricted MIP within the given time.

It should be noted that this Merge phase is guaranteed to always produce
a solution that is at least as good as any of the solutions that has contributed
to V ′. This is because (1) all variables that take value one in solution Sbs are
always present in V ′, and (2) solution Sbs is used for warm-starting the MIP
solver. Hence the merge phase provides strong intensification. Diversification
relies entirely on the solution generation mechanism. In previous papers (see, for
example, [2]), solution generation was based on randomized greedy heuristics. It
is expected that using ACO here with a guided—respectively, biased—random
solution generation will both reduce the number of variables in the restricted
MIPs (as solutions are expected to be of higher quality and, therefore, probably
with more parts in common), and will assist the method to better explore the
neighborhood of the best-so-far solution. The high-quality results that we will
present in Sect. 4 seem to support this hypothesis. However, a deeper compar-
ison between a more randomized solution construction and the construction of
solutions by parallel ACO colonies is mandatory for future work.

3.2 Parallel Ant Colony Optimisation

ACO was proposed in [11] to solve combinatorial optimisation problems. The
inspiration of these algorithms is the ability of natural ant colonies to find short
paths between their nest and food sources.

For the purpose of this work, we use the ACO model for the resource con-
strained job scheduling problem originally proposed in [21]. This approach was
extended to a parallel method in a multi-core shared memory architecture by [5].
For the sake of completeness, the details of the ACO implementation are pro-
vided here.

A solution in the ACO model is represented by a permutation of all tasks (π)
rather than by the start times of the tasks. This is because there are potentially
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Algorithm 2. ACO for the RCPS-NPV problem
1: input: An RCPS-NPV instance, T , πbs (optional)
2: Initialise πbs (if given as input, otherwise not)
3: while termination conditions not satisfied do
4: for j = 1 to nants do:
5: πj := ConstructPermutation(T )
6: ScheduleTask(πj)
7: end for
8: πib := arg minj=1,...,nants

f(πj)

9: πbs := Update(πib)
10: PheromoneUpdate(T , πbs)
11: cf := ComputeConvergence(T )
12: if cf = true then initialise T end if
13: end while
14: output: πbs (converted into a CMSA solution)

too many parameters if the ACO model is defined to explicitly learn the start
times of the tasks. Given a permutation, a serial scheduling heuristic (see [22])
can be used to generate a resource and precedence feasible schedule consisting
of starting times for all tasks in a well-defined way. This is described in Sect. 3.3
below. For the moment it is enough to know that a CMSA solution S (in terms
of a set of variables) can be derived from and ACO solution π in a well-defined
way. As in the case of CMSA solutions, the objective function value of an ACO
solution π is denoted by f(π).

The pheromone model of our ACO approach is similar to the one used by [1],
that is, the set of pheromone values (T ) consist of values τij that represent the
desirability of selecting task j for position i in the permutations to be built. Ant
colony system (ACS) [12] is the specific ACO-variant that was implemented.

The ACO algorithm is shown in Algorithm 2. An instance of the problem
and the set of pheromone value T are provided as input. Additionally, a solution
(πbs) can be provided as input which serves the purpose of initially guiding the
search towards this solution. If no solution is provided, Sbs is initialised to be
an empty solution.

The main loop of the algorithm at lines 3–13 runs until a time or iteration
limit is exceeded. Within the main loop, a number of solutions (nants) are con-
structed (ConstructPermutation(T )). Hereby, a permutation π is built incremen-
tally from left to right by selecting, at each step, a task for the current position
i = 1, . . . , n, making use of the pheromone values. Henceforth, Ĵ denotes the
tasks that can be chosen for position i, that is, Ĵ consists of all tasks (1) not
assigned already to an earlier position of π and (2) whose predecessors are all
already scheduled. In ACS, a task is selected in one of two ways. A random
number q ∈ (0, 1] is generated and a task is selected deterministically if q < q0.
That is, task k is chosen for position i of π using:

k = arg max
j∈Ĵ

τij (10)
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Otherwise, a probabilistic selection is used where job k is selected according to:

P (πi = k) =
τik∑

j∈Ĵ τij
(11)

After each step, a local pheromone update is applied to the selected task k at
position i:

τik := τik × ρ + τmin (12)

where τmin := 0.001 is a limit below which a pheromone value does not drop, so
that a task k may always have the possibility of being selected for position i.

After the construction of nants solutions, the iteration-best solution πib is
determined (line 8) and the global best solution πbs is potentially updated in
function Update(πib): f(πib) > f(πbs) ⇒ πbs := πib). Then, all pheromone
values from T are updated using the solution components from πbs in function
PheromoneUpdate(πbs):

τiπ(i) = τiπ(i) · ρ + δ (13)

where δ = 0.01 is set to be a (small) reward. The value of the evaporation
rate—that is, ρ = 0.1—is the same as the one chosen in the original study [22].

Finally, note that [5] showed different ways of parallelising ACO, where the
obvious parallelisation involves building solutions concurrently. For two reasons
we chose not to use this method for CMSA, but rather to run multiple colonies.
The first, and most significant, is that multiple solutions obtained by a single
colony can often consist of very similar components, especially when ACO is
close to convergence. Second, the cores available to the algorithm are not fully
utilised when the other components of ACO are executing (e.g. the pheromone
update). Hence, in our CMSA algorithm we use ns colonies in parallel, which
ensures diversity (especially when initialised with different random solutions)
and fully utilises the available cores.

3.3 Scheduling Tasks

As mentioned before, given a feasible permutation π of all tasks, a feasible solu-
tion in which the starting times of all tasks are explicitly given can be derived in
a well-defined way. We briefly discuss this method in the following. For complete
details of this procedure, we refer the reader to [22].

Consider a permutation π. In the given order, sets of tasks are selected where
each set consists of a task and its successors. Each set is either net positive-valued
or net negative-valued, that is, the total NPV of tasks in the set lead to positive
or negative values. Those sets which are positive valued are greedily scheduled at
the beginning of the horizon, satisfying the precedences and resources.2 Tasks in
the sets that are negative-valued are scheduled starting at the end of the horizon
and working backwards while tasks remain. The motivation for this method is
2 Tasks are selected which have no preceding tasks first. This is followed by selecting
dependent tasks that a free to be scheduled. This continues until all tasks have been
scheduled.
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that positive-valued tasks being scheduled early lead to increasing the NPV,
and scheduling negative-valued tasks at the end of the horizon leads to the least
decrease in the NPV.

4 Experiments and Results

CMSA was implemented in C++ and compiled with GCC-5.2.0. Gurobi 8.0.03

was used to solve the MIPs and ACO’s parallel component was implemented
using OpenMP [9]. Monash University’s Campus Cluster, MonARCH,4 was used
to carry out all experiments. Each machine of the cluster provides 24 cores and
256 GB RAM. Each physical core consists of two hyper-threaded cores with Intel
Xeon E5-2680 v3 2.5 GHz, 30 M Cache, 9.60 GT/s QPI, Turbo, HT, 12C/24T
(120 W).

We used the same instances as [14]. These problem instances were origi-
nally obtained from the PSPLIB [15].5 These instances are characterized by the
number of tasks {30, 60, 90, 120}, the resource factor {0.25, 0.5, 0.75, 1.0}, the
network complexity {1.5, 1.8, 2.1}, and the resource strength. Instances with 30,
60 and 90 tasks have resource strengths from the range {0.2, 0.5, 0.7, 1.0} while
the instances with 120 tasks have resource strengths from {0.1, 0.2, 0.3, 0.4, 0.5}.
The resource factor indicates the proportion of the total amount of each resource
that is used, on average, by a task. The resource strengths specify how scarce the
resources are with low values indicating tight resource constraints. The network
complexity indicates the proportion of precedences, where large values imply a
large number of precedences. The benchmark set consists, for each combination
of the four parameters indicated above, of 10 instances. This means that there
are 480 instances with 30, 60, and 90 tasks, and 600 instances with 120 tasks.
In total the benchmark set contains 2040 instances.6

The study by [14] was used as a guide to obtain the deadlines and cash flows.
For each task, the latest start time (li) is determined as lj ≥ di ∀i → j, and
then δ := 3.5 × maxj lj . A task’s cash flow ci is generated uniformly at random
from [−500, 1000]. The discount rate is determined as α := 52

√
1 + 0.05 − 1.

For all runs we allowed the use of 5 cores, for both the MIP solver (Gurobi)
and the ACO component (resulting in 5 parallel colonies). The parameters set-
tings for each individual colony were the same as those used in [22]. Addition-
ally, the current state-of-the-art algorithm from [22], which is a hybrid between
Lagrangian Relaxation and ACO (henceforth denoted as LRACO), was re-run
for all the instances to allow a fair comparison. Moreover, note that ACO also
used 5 cores in parallel.

3 http://www.gurobi.com/.
4 https://confluence.apps.monash.edu/display/monarch/MonARCH+Home.
5 https://www.sciencedirect.com/science/article/abs/pii/S0377221796001701.
6 Gurobi can solve most of the problem instances with 30 tasks (the optimal solutions
are provided in PSPLIB), a number of instances with 60 tasks (<60%), and a very
small proportion of the instances with 90 tasks (<2%). None of the instances with
120 tasks can be solved with Gurobi.

http://www.gurobi.com/
https://confluence.apps.monash.edu/display/monarch/MonARCH+Home
https://www.sciencedirect.com/science/article/abs/pii/S0377221796001701
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The tuning of the parameters related to CMSA is described in AppendixA.
Both algorithms were run once on each problem instance and allowed 15 min of
wall-clock time.

4.1 Comparison: CMSA Versus LRACO

Table 1 shows a summary of the comparison between LRACO and CMSA. Aver-
aged over the all the instances with the same number of tasks, the table provides
gap (UB−LB

UB ) for each algorithm and the number of times (out of 480, resp. 600)
each one finds the best solution (# best). Moreover, the last table column con-
tains the factor of how many more best solutions were found by CMSA relative
to LRACO. For example, in the case of instances with 30 tasks, CMSA found
20.92 times more best solutions than LRACO.

For CMSA, the results are reported as the gap between the CMSA lower
bound and the upper bound of LRACO (since we do not have a valid upper
bound from CMSA). We see that CMSA performs—on average—better than
LRACO for each problem size. Additionally, the number of best solutions found
shows that CMSA is significantly more effective. Interestingly, the factor (last
table column) drops with an increase in the number of tasks (from 20.92 for
30 tasks compared to 2.92 for 120 tasks). This means that, while CMSA is
very strong for rather small problem instances, it still significantly outperforms
LRACO on large problem instances. The drops of the performance of CMSA
with growing problem size, might be related to the number of iterations that
can be performed within the allowed computation time. More specifically, CMSA
can generally perform more than 100 iterations within the allowed CPU time
for instances with 30 tasks, but generally less than 20 iterations for 120 task
problems.

These results are visualized in Fig. 1. The boxplots in this graphic show the
improvement of CMSA over LRACO in percent ( (CMSAi−LRi)∗100

LRi
, ∀i ∈ I)7 for

subsets of the complete set of instances. A value above 0.00 indicates that CMSA

Table 1. Average gaps of LRACO and CMSA to the upper bound obtained by LRACO
computed as UB−LB

UB
. The number of instances for which an algorithm finds the best

solution is shown in column # best, while Factor indicates how many times more best
solutions were found by CMSA relative to LRACO.

Tasks LRACO CMSA Factor

Mean SD # best Mean SD # best

30 0.0189 0.0605 12 0.0180 0.0692 251 20.92

60 0.0148 0.0125 25 0.0133 0.0118 369 14.76

90 0.0147 0.0105 59 0.0136 0.0103 355 6.02

120 0.0176 0.0099 153 0.0165 0.0105 446 2.92

7 I is the set of instances.
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Fig. 1. The improvement of CMSA over LRACO (in percent) for subgroups of instances
(as determined by the network complexity and the resource factor). Note that CMSA
improves over LRACO whenever a data point has a positive value (that is, when it is
located in the area with light blue background). (Color figure online)

performs better than LRACO for the respective instance, while a value below
0.0 indicates the opposite.

In can be observed that for instances with resource factors 0.25 and 0.5,
CMSA generally improves over LRACO. However, with growing instance size
and resource factor, this advantage of CMSA diminishes. In fact, for instances
with 120 tasks and a resource factor of 1.0, LR-ACO seems to slightly outperform
CMSA. Note also that a single instance of 30 tasks was removed from this
graphic, as the gap was very large in favor of CMSA (gap = 2.98). This instance
is interesting since it consists of many more negative valued tasks than other
instances, leading to solutions with large negative NPVs. In this case CMSA is
able to handle the negative tasks much more effectively than LRACO.

Table 2 shows an even more detailed breakdown of the results with respect
to the four problem instance parameters (number of tasks, network complexity,
resource factor and resource strength). In addition to the observations mentioned
earlier, there are a few cases where large differences between the algorithms can
be seen. For instances with 30 tasks, with a high resource factor (RF = 1.0) and
a relatively high resource strength (RS = 0.7), the difference between CMSA and
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Table 2. A breakdown of the results with respect to instance parameters (number of
tasks, NC - network complexity, RF - resource factor, RS- resource strength). Gap%
shows the same information as the boxplots in Fig. 1 (percentage improvement of CMSA
over LRACO).

30 tasks 60 tasks 90 tasks 120 tasks

Gap% SD Gap% SD Gap% SD Gap% SD

NC 1.5 0.08 0.14 0.16 0.19 0.12 0.17 0.17 0.54

1.8 0.06 0.11 0.17 0.24 0.11 0.20 0.10 0.39

2.1 0.07 0.20 0.13 0.16 0.11 0.19 0.07 0.38

RF 0.3 0.01 0.02 0.07 0.13 0.11 0.13 0.30 0.15

0.5 0.05 0.10 0.18 0.24 0.19 0.18 0.25 0.30

0.8 0.10 0.13 0.18 0.21 0.11 0.18 0.09 0.57

1.0 2.61 27.20 0.18 0.18 0.05 0.21 −0.19 0.47

RS 0.1 - - - - - - −0.05 0.80

0.2 0.16 0.19 0.32 0.26 0.13 0.30 0.24 0.17

0.3 - - - - - - 0.03 0.44

0.4 - - - - - - 0.14 0.25

0.5 0.08 0.20 0.21 0.16 0.21 0.13 0.20 0.14

0.7 2.52 27.21 0.08 0.07 0.11 0.08 - -

1.0 0.00 0.00 0.00 0.00 0.00 0.00 - -

LRACO is very high. On the other side, when the instances consist of relatively
trivial constraints (high resource strength, i.e., RS = 1.0), both algorithms are
nearly equal. Interestingly, for a number of very hard instances, LRACO out-
performs CMSA (RF = 1.0, RS = 0.1). As mentioned above, this is likely to be
due to the insufficient number of iterations completed the CMSA within the
time-limit for such large problems.

5 Conclusion

In this study, we investigate a parallel hybrid of CMSA and ACO for resource
constrained project scheduling under the maximization of the net present value.
The proposed hybrid algorithm has several key characteristics. First, it makes
use of a general purpose MIP solver in an iterative way, in order to solve reduced
subinstances of the original problem instances. Second, it makes an efficient use
of resources in parallel. This is achieved by running a number of ACO colonies
in parallel leading to a diverse solutions space in the considered reduced subin-
stances. The results show that the hybrid CMSA approach is efficient at solving
the problem, and improves upon LRACO, which is currently the state-of-the-art
method in the literature.

This study has shown that if a problem can be efficiently modeled both with
ACO and with MIP techniques, a generic hybrid can be developed that can
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solve such a problem efficiently. We are currently working in this direction by
developing a generic heuristic that can be applied to a range of problems in a
very similar fashion. Furthermore, given that multi-core architectures are readily
available nowadays, the parallelisation is straightforward.

A further line of investigation is related to developing a tighter coupling
between ACO and CMSA. Since the MIP leads the search towards local optima,
the solution information could be used to further assist ACO. For example, the
solutions found by the MIPs could be used to generate or update the pheromone
matrices at each iteration.

A key component of CMSA is defining an efficient MIP model. In this study,
a straightforward MIP model has been used, however, the results could signifi-
cantly improve with more efficient models. For example, the cumulative model
proposed in [22] is more efficient, but requires a different way of extracting solu-
tion information. For this purpose, we are developing an alternative method
labeled Merge search.

Acknowledgements. This research was supported in part by the Monash eResearch
Centre and eSolutions-Research Support Services through the use of the MonARCH
HPC Cluster.

A CMSA Parameter Selection

In order to determine the parameter settings of CMSA for the experiments, a
subset of the problem instances were selected and used for testing. The param-
eters of interest are the MIP time limit (we considered either 60 or 120 s), the
number of ACO iterations (500, 1000 and 2000 iterations) and the maximum
age limit (3, 5 and 10). The instances selected consist of 60 (small) and 120
(large) tasks, with resource factors of 0.5 (low-medium) and 1.0 (high), resource
strengths of 0.5 (low-medium) and 1.0 (high). Each run was given 5 ACO colonies
(and hence 5 cores) and 15 min of wall-clock time.

Table 3. Number of best solutions found by varying parameters (MIP time limit -
MIP TL., ACO iterations - ACO iter. and Age limit - Age).

Param. Value 60 tasks 120 tasks

MIP TL. 60 4 11

120 2 1

ACO Iter. 500 4 4

1000 0 4

2000 2 4

Age 3 3 4

5 1 7

10 3 1
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Table 3 shows the number of instances for which the best solution was found
with the respective settings. We consider the MIP time limit first, choose the
best option, then select the best value for the number of ACO iterations, choose
the best option, and finally select between the age limits. For the MIP time limit,
60 s is best for 60 and 120 tasks. Comparing iterations for 60 tasks, 500 is best
and we use the same value for 120 tasks observing that there is no advantage.
The best age limit for 120 tasks is 5, but because there is no obvious advantage
for 60 tasks, we pick 3 in order for the built MIPs to be smaller and the MIP
solver, therefore, faster.
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Abstract. Traveling salesperson problem with hotel selection consists
of determining a tour for the salesperson who needs to visit a predefined
number of customers at different locations by taking into consideration
that each working day is limited by time. If the time limit is accom-
plished, the salesperson must select a hotel from the set of available
ones to spend the night. The aim is to minimize the number of necessary
days to visit all customers spending the shortest possible travel time. We
present an adaptive efficient heuristic based on the Iterated Local Search
metaheuristic to solve available instances. The proposed heuristic is able
to find good solutions for almost all instances and, in some cases, it is able
to improve the quality of the best results found in literature, decreasing
the number of trips necessary or time to travel along a tour. Moreover,
the heuristic is fast enough to be applied to real problems that require
fast responses.

Keywords: Optimization · Metaheuristic · Iterated Local Search
Traveling Salesperson Problem with Hotel Selection

1 Introduction

The current paper concerns a variant of the classical Traveling Salesperson Prob-
lem (TSP). A set of cities needs to be visited exactly once by salesperson in TSP.
Therefore, the aim of the TSP is to find the best tour to minimize the use of
resources such as time, distance or costs. The tour should start in a specific city
and return to it after all cities are visited.

Many studies have dealt with this problem in the last decades and very good
results were found for the available test instances [1]. New variants have emerged
to explore different and more complex applications in the real world. A recent
variant is the Traveling Salesperson Problem with Hotel Selection (TSPHS) [28],
which can be defined as a hierarchical multi-period TSP variation that has the
salesperson’s working day limited by a maximum time.
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Two terms are used to describe the difference between a single working day
and the whole work accomplished by the salesperson, namely: trip, which is used
to indicate a sequence of visited customers beginning at one hotel and ending in
the same or another hotel (which can be an extreme or an intermediate hotel);
tour, which means the set of connected trips that together attend all customers.
The aim of the TSPHS is to lexicographically minimize the number of working
days and the total travel time.

Formally, TSPHS takes into consideration the graph G = (V,A); where:
V = H ∪ C (H represents the non-empty set of available hotels and C is the
set of customers who should be visited just once). The edges are defined by
A = {(i, j)|i, j ∈ V, i �= j} where each edge (i, j) represents a connection between
two customers, two hotels or a customer and a hotel. There is an associated
visitation time τi to each customer i ∈ C and τi = 0, for all i ∈ H. The necessary
time cij to travel from facility i to j is known for all facility combinations. The
tour must start and end at the same specific hotel (i = 0, i ∈ H) and such
hotel could be used as an intermediate hotel between two connected trips. The
remaining hotels (i �= 0, i ∈ H) can be used, if needed, in a complete salesperson
tour. A hotel can be used more than once due to its features, and that is why
a TSPHS solution cannot be expressed by a simple circle. Moreover, each trip
should start and end at one of the available hotels. The total visitation time
spent in one trip cannot exceed a predefined constant L; besides, one trip must
start where the previous one ended. A formulation is proposed in [7].

Applications in the real world can be mapped within this problem: (i) a
salesperson who needs to deliver many products but faces constraints associated
with his/her luggage capacity, and who needs to pick-up products at some place;
(ii) electrical vehicles that need to stop in specific recharge places; (iii) a truck
driver who has predefined appropriate areas to stay in at night throughout the
tour; and (iv) other applications that require partitioning the service required
to be done.

The first study concerning TSPHS was proposed by Vansteenwegen et al. [28],
who developed a two-index formulation and solved it using an approach based
on the Iterated Local Search (ILS) heuristic [17]. Castro et al. [7] proposed a
formulation based on the sub-tour Dantzig-Fulkerson-Johnson elimination con-
straints and, additionally, an effective approach consisting of a Memetic Algo-
rithm (MA) [3] was adopted. A Tabu Search (TS) was applied to improve quality
solutions. Although MA was able to obtain good solutions to all available TSPHS
instances, it demands too much computational time for instances with more than
288 customers, which makes it unsuitable for real-time applications that require
computational time not larger than a few seconds. A comparison between dif-
ferent memetic algorithm approaches was conducted by Sousa et al. [25]. Castro
et al. [6], in order to decrease the computational time, have introduced a fast
heuristic that requires very short computational time and finds solutions of good
quality. Their heuristic uses the Iterated Local Search framework with the Vari-
able Neighborhood Descent (VND) [13] procedure to replace the conventional
local search procedure. Additionally, two perturbation procedures capable of
bringing diversification to the solutions are iteratively applied.
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Recently, some authors proposed and investigated TSPHS variants such as
the Multiple Traveling Salesperson Problem with Hotel Selection (MTSPHS) [4]
and the Traveling Salesman Problem with Multiple Time Windows and Hotel
Selection (TSPMTW-HS) [2]. Other problems with similar features involving
hotel selection (intermediate facilities) are: Orienteering Problem with Hotel
Selection (OPHS) [11], Capacitated Arc Routing Problem with Intermediate
Facilities [24], Vehicle-Routing Problem with Intermediate Replenishment Facil-
ities [27] and Vehicle Routing Problem with Intermediate Facilities [18]. In
fact, heuristic and metaheuristics such as Variable Neighborhood Descent, Tabu
Search, Greedy Randomized Adaptive Search Procedure, Iterated Local Search
and Memetic Algorithm have been used to effectively solve this kind of problem.
Population heuristic often leads to solutions of better quality; however, they
demand much more computational time. The key question for solving TSPHS is
to find balance between quality and computational time.

Given the complexity of the classical Traveling Salesperson Problem and by
considering that TSPHS can be easily turned into TSP just by eliminating the
time limit constraint trip, TSPHS is at least as hard as TSP and, consequently,
it is also NP-hard. Thus, optimally solving moderate to big sized instances
can be impractical, even with the use of currently available high-performance
machines. The contribution of the present study lies on the development of an
effective adaptive heuristic for TSPHS able to lead to solutions of good quality
using little computational time.

Despite the similarities with other TSP variants, TSPHS has one feature that
makes it harder to solve. The choice of intermediate hotels causes great impact
on the final solution [14]. A simple change of an intermediate hotel has direct
impact on at least two trips, thus it forces these trips to be re-optimized.

The current paper is organized as follows: Sect. 2 describes the herein pro-
posed heuristic; Sect. 3 presents results and; finally, Sect. 4 relates conclusions,
future research about TSPHS and the suggested variants.

2 A Heuristic for TSPHS

This section describes the proposed heuristic algorithm, which is based on ILS
metaheuristic whose main steps are summarized in Algorithm 1. ILS was used
to solve the related problem due to its simple structure, few parameters to set
and high performance when applied to similar vehicle routing problems [8,23].

Algorithm 1. Procedure Iterated Local Search (ILS)
1: out: s∗

2: s0 = GenerateInitialSolution()
3: s∗ = LocalSearch(s0)
4: while termination condition not met do
5: s′ = Perturbation(s∗);
6: s′∗ = LocalSearch(s′);
7: s∗ = AcceptanceCriterion(s∗, s′∗);
8: end while
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Initially, a feasible solution is generated and a local search is applied to the
solution. Then, some iterations are performed until a termination criterion is
met. A perturbation is applied to the solution to generate a new solution in each
iteration. A local search is conducted in order to look for a better solution in the
neighborhood of the modified solution. After the local search, in case the new
generated solution passes an acceptance test, it becomes the next incumbent
solution, otherwise the incumbent solution is not changed.

Algorithm 2 shows the developed Efficient Adaptive Iterated Local Search
(EA-ILS) Procedure. An initial solution is built and improved through the local
search VND [12] procedure (lines 2–3). Subsequently, a percentage parameter
used by the perturbation procedure is defined (line 6) (such parameter will be
explained later). The procedure demands performing some iterations and it is
over when imax iterations are performed without solution improvement (lines
7–24). A new solution from a neighborhood (choose randomly a hotel used in a
solution and put then in another position inside the tour, too randomly defined)
or from the perturbation procedure (see Subsect. 2.3) is obtained in each iteration
(lines 8–12). The local search procedure is an attempt (line 13) to improve the
solution. There is a variable that controls how often the perturbation procedure
is applied (lines 21–23). The generation of a new solution through a perturbation
or by choosing a neighbor always occurs considering the best current solution of
a given iteration.

The diversification procedure is controlled and it allows increasing perturba-
tion when the difficulty of improving a solution increases. If an iteration of the
proposed heuristic procedure is multiple of the var mod parameter, the pertur-
bation procedure is applied. Otherwise, one neighbor solution of the incumbent
solution is chosen to be explored. The interval established to apply the pertur-
bation is defined through the interval pert parameter with a value empirically
defined. This procedure saves computational time and ensures that a neighbor-
hood of a search space will be more explored before to move to another region.

The proposed heuristic uses a random mechanism to guide the solution
through different search spaces; therefore, an efficient way to generate random
numbers presented by [20] is used. This random number generating mechanism
assures effectiveness and uncommonly generates repeated numbers.

Throughout the application of Algorithm2, the feasibility is guaranteed only
for the initial solution. Next, all generated solutions may be feasible or not. Thus,
the solution found after the perturbation procedure is not necessarily feasible.
However, such occurrence is desirable in order to enable diversification. The local
search procedure uses a solution generated by the perturbation procedure and
needs a way to check the quality of the solution in each iteration. Therefore the
heuristic adopts an objective function (see Eq. (1) below) that penalizes unfeasi-
ble trips (contained inside a solution y) in order to analyze unfeasible solutions.
Trips exceeding the time limit constraint have the infeasibility quantities mul-
tiplied by the constant M = 10000. Such M value was defined by Castro et
al. [7]. Such penalty value forces the heuristic to give preference to better tours
focusing in feasible solutions with smallest number of trips. In other words, this
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Algorithm 2 . Algorithm for finding a high quality TSPHS solution from a
subset of all possible solutions
1: in: imax, interval pert out: y
2: y = GenerateInitialSolution()
3: y = LocalSearch(y)
4: i = 0
5: var mod = interval pert
6: θ1 = Define-Perturbation()
7: while (i < imax) do
8: if ((i % var mod)�= 0) then
9: y′ = Neigborhood(y)

10: else
11: y′ = Perturbation(y, θ1)
12: end if
13: y′ = LocalSearch(y′)
14: if y′ better than y then
15: y = y′

16: i = 0
17: var mod = interval pert + 1
18: else
19: i = i + 1
20: end if
21: if ((i%var mod)= 0) then
22: var mod = var mod − 1
23: end if
24: end while

procedure ensures that a feasible solution with at least the same number of trips
will always be better than another infeasible solution.

F (y) =
D∑

d=1

(M + timed) + M
D∑

d=1

max(0, timed − L) (1)

The proposed heuristic uses the same neighborhood structures from Castro
et al. [6], which had been applied to similar routing problems before obtain-
ing satisfactory results. In this work, these neighborhoods have been used in a
different context from other works because they were used for developing a Ran-
dom Variable Neighborhood Descent (RVND) heuristic for (local search (see
Subsect. 3.2).

Also a new way of applying the perturbation procedure was developed. There
is a periodicity for applying the perturbation procedure in the current solution
and the control of perturbation intensity is adjusted proportionally to instance
size. Both are explained in Subsect. 2.3.
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2.1 Initial Solution

The order-first split-second method was the procedure chosen to generate an
initial solution, similarly to the method used by Castro et al. [6]. Initially, a TSP
tour is generated using Lin-Kernighan heuristic (LK) [16] as implemented by [1].
The use of LK is necessary to avoid the initial solution to have a big number of
trips and consequently, demands high computational processing time to achieve
feasibility. For some complex instances, without using a LK it is impossible to
find a feasible initial solution in reasonable computational time. Furthermore,
this technique was widely used with success by [6,7].

Using LK, there is no time limit imposed to the trips, the tour starts and
ends at a predefined hotel (hotel 0) and all the customers are visited. The initial
solution obtained through LK for almost all cases is not feasible to TSPHS; thus,
a split procedure is applied in a second phase in order to make each trip dura-
tion less than the time limit. This splitting procedure was inspired in Dijkstra
Algorithm [10]. A graph is developed using all customers and hotels. All edges
that do not comprise the LK solution are multiplied by the constant M = 10000
and it implies that Dijkstra’s algorithm will tend to keep the generated solution
LK. The Dijkstra procedure starts by visiting the initial hotel (h = 0) and it
iteratively visits a customer as an attempt to form a minimum time path. When
no more customers can be added to the path, without violating the time limit
for a trip, then one of the hotels is chosen to be the trip stop. The final path
involves customers and hotels that guarantee the viability of the solution, as well
as that all customers are visited.

2.2 Local Search Procedure

The local search procedure is based on the simple Variable Neighborhood
Descent (VND) [21]. Local search procedures exploring many neighborhood
structures have been used to solve problems that demand tour definition. The
procedure differs from the conventional VND because the application order of
different neighborhood structures is randomly chosen in each iteration of Algo-
rithm2. The variation called RVND was effectively used in other optimization
problems [19,26]. Algorithm 3 describes the RVND procedure. Initially, the appli-
cation order of the neighborhoods is randomly defined (line 2). Then, a local
search is performed according to the order defined by index k.

If a better solution is found through the kth neighborhood, the variable k is
set to 1 (k = 1) and the first neighborhood is used again. If, at any iteration, the
local search does not return a better solution, the next neighborhood is used.
The procedure ends when there is no better solution after all neighborhoods are
tested.

An embedded search procedure (Algorithm 4) is applied in each RVND iter-
ation. Neighborhood structures used are explained below in details.

– 2-OPT (intra-trip) [9] makes a move inside a trip so that two distinct edges
connecting customers are removed and the visiting order of the intermediary
customers is reversed.



An Efficient Heuristic to the TSPHS 37

Algorithm 3. LocalSearch Algorithm
1: in: y out: y
2: DF[ ] = Define Order()
3: k = 1
4: while (k <= 4) do
5: y′ = SEARCH(NDF [k], y)
6: if (y′ better than y) then
7: y ← y′

8: k ← 1
9: else

10: k = k + 1
11: end if
12: end while

– OR-OPT (intra-trip) [22] reorganizes a set of m customers inside a trip;
where: m = {3, 2, 1}. An inverse order {1, 2, 3} is valid, however, is computa-
tionally more expensive (identical to Relocate and Exchange). This structure
finds the neighbor solution that mostly improves the total travel time.

– Relocate (inter-trip) [15] modifies a solution moving a set of m customers
from one trip to another. This neighborhood tries to move consecutive cus-
tomers in a given order m = {3, 2, 1} to find the neighbor with the best
improvement by considering all tested neighbors.

– Exchange (inter-trip) [15] alters two different trips by exchanging a set of m
consecutive customers; where: m = {3, 2, 1}, by considering the best solution
to execute the movement, only.

– Changehotels (hotel operator) [6] defines a structure to test if the change of
a hotel by another improves the incumbent solution. The quality of the final
solution strongly depends on the choice made for the intermediate hotels [2,
7,28].

– Jointrips (hotel operator) [6,7] tries to decrease the number of used interme-
diate hotels. Consequently, it joins two trips that share the same hotel. This
operator works only with hotels. Without this operator, an improvement on
the number of trips would not be possible; thus, the same number of trips
defined on initial solution would be kept. This operator is quite relevant when
considering the first TSPHS goal, that is to minimize the number of trips.

The procedure labeled as SEARCH receives two parameters: the type of
neighborhood to be used and a solution to be improved. If the obtained solution
y′′ is better than y′, then, two local searches using 2-OPT and Or-OPT neigh-
borhood structures are applied as an attempt to improve the solution. The best
neighbor y′ is returned by the procedure SEARCH. The search procedure uses
four neighborhood structures, which were successfully applied by [6,7,25,28].
They consist of two different approaches. The first one, which is called intra-
trips structure, is applied inside a single trip. The second one is used to improve
a solution by taking into consideration all trips that together make up the tour.
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Algorithm 4. SEARCH Algorithm
1: in: Nk , y out: y′

2: y′ = y
3: while (improvement is found) do
4: y′′ = argminS∈Nk(y′)F (S)
5: if (y′′ better than y′) then
6: y′ = optimize y′′ with 2-OPT/OR-OPT
7: end if
8: end while

2.3 Perturbation

The perturbation method used to assure solution diversification consists of ran-
domly choosing some customers of the current solution and moving them to
other positions which are also randomly chosen. The first issue concerns defin-
ing a perturbation rate able to determine the number of customers to be moved.
This number should be carefully defined in order to be large enough to guide the
solution to another search space and, at same time, to be small enough to keep
some of the features detected in the current solution. If these assumptions are
not taken into account, the resultant solution may be too similar to the current
solution or too different.

A fixed perturbation rate has been used in many studies [6,7]. However,
when it comes to the TSPHS problem, problems can arise when a fixed rate
is used. If the instance has a small number of customers, e.g. 10 customers,
at least a rate of 10% is needed to perturb a single customer. However, if the
same perturbation rate is applied to one of the biggest instances available to
TSPHS, e.g. 1001 customers, 101 customers will be moved within the solution.
The perturbation procedure applied to a larger number of customers may be
successfully accomplished. However, the new solution may be too much different
and worse than the present solution, thus leading the heuristic to a solution
space too distinct from the one that has been exploited so far.

A varying rate was defined through the Nonlinear Symmetrical Sigmoidal
Function (4PL) described by MyCurveFit (http://mycurvefit.com/) in order to
prevent this problem. This function assures that a sufficient number of customers
would be changed for a small instance. The changes would guide the search for a
new search space without performing a completely random restart of the proce-
dure. It is importante to know that a higher perturbation rate (20%) is applied
to small instances (e.g. 10 customers), whereas this percentage is drastically
decreased to 1% for large instances (see Fig. 1).

3 Computational Experiments

All computational experiments were carried out in an Intel i7 870 computer,
with a 2.93 GHz processor, 8 GB RAM under Ubuntu 14.04 operational system
and gcc 4.8.2 compiler using optimization flag -Ofast. The proposed heuristic

http://mycurvefit.com/
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Fig. 1. Relationship between applied perturbation rate and number of customers.

used two parameters: the maximum number of iterations without improvement
(imax) and the interval of iterations without perturbation (interval pert). The
benchmark instances used in this paper were defined by Castro et al. [5].

Three values were tested for each parameter: 20, 30 and 40 for imax and 3, 5
and 7 for interval pert. Tests were conducted with the 9 possible combinations.
The configuration that obtained the highest number of best results in relation
to the best solution in the literature, spending the least computational time was
30 for imax and 5 for interval pert.

Perturbation strategy used by [6] considers a fixed percentage independent
of instances characteristics (i.e. number of customers). The proposed heuristic
(EA-ILS) innovates making use of an adaptive percentage based on the number
of customers. An experiment was conducted to show effectiveness of this tech-
nique. The EA-ILS heuristic was executed using the adaptive rate percentage
proposed in this work and the fixed rate percentage used by [6]. Each approach
was executed 30 times, using all instances available. Results are summarized in
Tables 1 and 2. In the first column Best Known Solution (BKS) is Best solu-
tion available so far and Perturbation Local Search (PLS) represents the results
obtained by [6]. The next three columns present the number of trips (#T), aver-
age computational time (Time), and the average gap between the BKS and the
value found by the heuristics. The gap value is calculated by Eq. (2). Results
obtained in SET 2 with 10 and 15 customers were omitted since that there is no
difference between the results obtained by BKS, PLS and the proposed heuristic.
The number of trips found by the EA-ILS heuristic using adapted and fixed per-
centage rate for perturbation was the same. The gaps obtained by the adaptive
strategy was equal or less than the gaps obtained by the fixed strategy for all
groups of instances except group SET 3 5, while the computational times needed
for the adaptive strategy is equal or less to those needed by the fixed strategy
in all groups.

Once that EA-ILS with adaptive perturbation procedure reached good
results, another test was conducted to check if all neighborhood structures are
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Table 1. Summarized results comparing number of trips, computational time and
GAP for Best Known Solution, PLS and EA-ILS, part 1.

SET 1 SET 2 30 SET 2 40

#T Time GAP #T Time GAP #T Time GAP

BKS 77 96.6 - 25 0.0 - 31 0.0 -

PLS 78 0.5 0.34 26 0.0 1.02 33 0.0 2.98

EA-ILS adaptive perturbation 77 1.0 0.25 25 0.0 1.30 32 0.0 2.62

EA-ILS fixed perturbation 77 1.3 0.34 25 0.0 1.30 32 0.0 2.62

Table 2. Summarized results comparing number of trips, computational time and
GAP for Best Known Solution, PLS and EA-ILS, part 2.

SET 3 3 SET 3 5 SET 3 10 SET 4

#T Time GAP #T Time GAP #T Time GAP #T Time GAP

BKS 65 60.6 - 97 44.2 - 169 42.0 - 92 81.1 -

PLS 67 2.5 0.31 98 1.6 0.38 173 1.0 −0.06 95 2.5 0.59

EA-ILS adaptive 64 5.3 −0.02 96 3.4 −0.15 169 3.1 −0.13 91 33.7 0.67

EA-ILS fixed 64 19.3 0.01 96 18.2 −0.16 169 17.3 −0.04 91 46.9 0.92

Table 3. Summarized results showing difference between execution of full neighbor-
hood proposed heuristic and execution without each neighborhood structure separately,
part 1.

SET 1 SET 2 30 SET 2 40

#T Time GAP #T Time GAP #T Time GAP

EA-ILS 77 1.0 0.25 25 0.0 1.30 32 0.0 2.62

Without Relocate 79 0.2 0.66 25 0.0 1.30 33 0.0 2.93

Without Exchange 78 0.8 0.22 25 0.0 1.30 32 0.0 2.62

Without JoinTrips 79 1.1 0.23 27 0.0 1.02 34 0.0 2.62

Without Chghotels 77 1.2 0.28 25 0.0 1.34 32 0.0 2.65

Without 2OPT 77 1.3 0.26 25 0.0 1.30 32 0.0 2.64

Without OrOpt 77 1.2 0.26 25 0.0 1.30 32 0.0 2.62

really necessary. The experiments consisted in disabling neighborhoods one at
a time. Results are presented at Tables 3 and 4, showing the better results in
dark gray color. Results for SET 2 with 10 and 15 customers were omitted since
the results were the same for all neighborhoods. The gaps values show that it
is not possible to determine which neighborhood has the greatest influence in
the quality of the solution related to total trip time, because the better results
produce variation according with the type of neighborhood that is not used.
However the EA-ILS heuristic with adaptive strategy was able to find the least
number of trips for all groups of instances. Therefore this justifies the need to
use all structures of neighborhoods combined with adaptive perturbation.
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Table 4. Summarized results showing difference between execution of full neighbor-
hood proposed heuristic and execution without each neighborhood structure, part 2.

SET 3 3 SET 3 5 SET 3 10 SET 4

#T Time GAP #T Time GAP #T Time GAP #T Time GAP

EA-ILS 64 5.3 −0.02 96 3.4 −0.15 169 3.1 −0.13 91 33.7 0.67

Without Relocate 65 1.3 0.06 97 0.9 −0.07 172 0.8 −0.33 99 2.3 4.54

Without Exchange 64 3.9 0.00 96 2.4 −0.15 169 2.2 −0.02 92 41.2 0.93

Without JoinTrips 66 6.1 0.04 97 3.8 −0.07 172 3.1 −0.34 101 34.5 0.19

Without Chghotels 64 5.3 −0.02 96 3.4 −0.15 169 3.1 −0.05 91 34.6 0.68

Without 2OPT 64 5.8 0.01 96 3.9 −0.12 169 2.6 −0.13 91 13.1 0.84

Without OrOpt 64 4.3 0.01 97 3.8 −0.10 169 3.2 −0.04 92 34.4 0.74

Solutions found by Castro et al. [7] are often the best solutions in literature,
but their computational time is too large; therefore, only a quality comparison
was made. The main focus of the present study consists in comparing the pro-
posed heuristic and the fastest heuristic for the TSPHS that presented good
solutions [6]. Therefore, just the computational times of PLS [6] and proposed
Efficient Adaptive Iterated Local Search (EA-ILS) were compared. Since the
machine used in the present study was similar to that used by Castro et al. [6,7],
it was not necessary to apply any rescaled method such as the one applied by
Castro et al. [7].

The solution s1 is considered to be better than solution s2 in the presented
results, if the number of trips in s1 is smaller than the number in s2, even if the
total travel time in s1 is larger than in s2. Furthermore, if two solutions have the
same number of trips, the one with the shorter total travel time is considered to
be better.

Each instance was executed 30 times and the best result for all iterations is
presented. The obtained results were compared by firstly considering the number
of trips; next, the total travel time; and finally, by considering the computational
time.

The Gain Average Percentage (GAP) equation used to compare the results
obtained through the heuristic and the BKS only takes the total travel time into
consideration, and it includes the visitation time to each customer. The reason
to not consider the number of trips lies on the fact that all procedures led to the
same number of trips in almost all instances. Positive GAP values mean that
the solution is worse than BKS and negative values mean a solution is better
than BKS. Some special cases occur when the GAP is positive but the number
of trips is smaller because it makes the result better than BKS.

GAP = 100 × Time(Heuristic) − Time(BKS)
Time(BKS)

. (2)

Due to the space limitation, the tables with detailing results found for each
of the available instances were made available in an appendix format that can
be accessed by the following url: https://goo.gl/5UfhBz.

https://goo.gl/5UfhBz
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The obtained results are presented summarized in Tables 5 and 6. In first
table, are showed the average of results obtained. In this table first column
shows the sets of instances used while second column information about aver-
age computational time spent on BKS. In next four columns, are demonstrated
computational time and GAP for heuristic PLS and EA-ILS.

Table 5. Summary of results of all available sets of instances

BKS PLS EA-ILS

Time Time GAP Time GAP

SET 1 96.6 0.5 0.34 1.0 0.25

SET 2 10 0.0 0.0 0.00 0.0 0.00

SET 2 15 0.0 0.0 0.00 0.0 0.00

SET 2 30 0.0 0.0 1.02 0.0 1.30

SET 2 40 0.0 0.0 2.96 0.0 2.62

SET 3 3 60.6 2.5 0.31 5.3 −0.02

SET 3 5 44.2 1.6 0.38 3.4 −0.15

SET 3 10 42.0 1.0 −0.06 3.1 −0.13

SET 4 81.1 2.5 0.59 33.7 0.67

For SET 1 is possible to see that EA-ILS GAP is approximately 26% smaller
than that observed in PLS and the number of trips used is equal to BKS (see
Table 6). Computational time is 0.5 s on average higher than PLS, however is an
acceptable difference for application in real world problems. For SET 2 10 (10
customers) and SET 2 15 (15 customers) there are no difference significant both
in computational time and in GAP. In SET 2 30 and SET 2 40 computational
time is no expressive, meanwhile GAP values are higher for both heuristics,
by the fact that BKS consider an exact approach with good results in SET 2.
Nevertheless EA-ILS require fewer number of trips than PLS. For SET 3 there
are three subsets of instances, with three, five and ten extra hotels. Results for all
three subsets show superiority of EA-ILS in terms of quality solution becoming
better than the BKS for some instances. Computational time for EA-ILS never
exceeds three times the computational time spent by PLS. In reference to the
last set, the GAP are quite higher than PLS, however does not mean worsening
in the solution for all instances, since the number of trips required in EA-ILS
is lower than that found by PLS. An important point is the computational
time demanded for this group, which was much higher due to an excessive time
consumed by the last and bigger instance. In general, EA-ILS stands out PLS
on average quality solution, using a bit of more computational time.

According to the problem objective that says a solution with smaller number
of trips is better, Table 6 presents the sum of trips for each set of instances.
The results show that for all sets (except SET 2 with 40 customers) the sum of
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trips of EA-ILS is equal or smaller than BKS and PLS. This demonstrates the
robustness of the method to find good solutions.

Table 6. Sum of trips needed for each set of instance for compared heuristics or
heuristics and exact methods

SET 1 SET 2 SET 3 SET 4

Number of customers Number of hotels

10 15 30 40 3 5 10

BKS 77 14 16 25 31 65 97 169 92

PLS 78 14 16 26 33 67 98 173 95

EA-ILS 77 14 16 25 32 64 96 169 91

To show the effectiveness of the proposed approach, a statistical test was
done in order to compare the solutions found by EA-ILS and solutions reported
by Castro et al. [6]. A single solution for each instance was presented in Castro
et al. [6], so to apply complex statistical tests or construct graphics (i.e. boxplot)
to visualize variance intervals of solutions was impracticable.

Considering the first objective of TSPHS that is to minimize number of trips
necessary to visit all customers, a statistical T-test was carried out comparing
number of trips of PLS and EA-ILS. Two hypotheses were defined, being: (i)
H0 null hypothesis means that the difference between average number of trips
is equal to zero; (ii) H1 alternative hypothesis that there is difference between
average number of trips, considering an alpha value of 0.01 (i.e. α = 0.01). The
tests conducted on Microsoft Excel 2013 accuse a p-value = 0.00002, so rejecting
the null hypothesis.

4 Conclusions

The TSPHS is a challenging combinatorial optimization problem and it can
model other problems that demand routing and choice of intermediate facilities.

TSPHS in the present study was solved using an ILS heuristic. The compu-
tational experiments showed that the Adaptive Iterated Local Search heuristic
found results of very good quality in comparison to the Best Known Solutions.
It was able to improve 6 total travel time values and decrease the number of
trips in 4 instances using small computational times. The maximum mean GAP
between the proposed heuristic approach and other heuristic available in the lit-
erature is 0.67%, which is low considering that the best number of trips in some
instances have decreased and it implies in larger total travel time.

When compared to those presented by Castro et al. [6] (PLS), they showed
that when applied to 131 available instances, the proposed heuristic was able
to find equivalent or better quality solutions for 123 instances. For 16 instances
EA-ILS decreased number of trips necessary. The statistical T-test shows that
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the results are statistically significant when compared with PLS, showing that
the proposed heuristic is efficient for decreasing the number of trips.

These good results showed that the proposal of developing a RVND heuristic,
using known neighborhood structures, for the local search of an ILS heuristic
worked very well. Also, the use of proposed variable perturbation has assured
that the perturbation avoids a randomly restart in any instance of the problem,
and has also allowed getting away from local optimal solutions.

TSPHS extensions with other variants, including time windows, multiple
salesperson with heterogeneous load constraints and hotel costs, can be consid-
ered in future studies. These proposed variants of the problem will help modeling
more realistic real-life situations.
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12. Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applica-
tions. Eur. J. Oper. Res. 130(3), 449–467 (2001)

13. Hansen, P., Mladenović, N., Brimberg, J., Pérez, J.A.M.: Handbook of Metaheuris-
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25. Sousa, M.M., Gonçalves, L.B.: Comparação de abordagens heuŕısticas baseadas em
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Abstract. We consider a framework for obtaining a sequence of con-
verging primal and dual bounds based on mixed integer linear pro-
gramming formulations on layered graphs. The proposed iterative algo-
rithm avoids the typically rather large size of the full layered graph by
approximating it incrementally. We focus in particular on this refine-
ment step that extends the graph in each iteration. Novel path-based
approaches are compared to existing variants from the literature. Exper-
iments on two benchmark problems—the traveling salesman problem
with time windows and the rooted distance-constrained minimum span-
ning tree problem—show the effectiveness of our new strategies. More-
over, we investigate the impact of a strong heuristic component within
the algorithm, both for improving convergence speed and for improving
the potential of an employed reduced cost fixing step.

Keywords: Iterative refinement · Layered graphs
Integer programming · Traveling salesman problem with time windows

1 Introduction

Layered graphs (LGs) are a well-known technique in mathematical programming
to deal with specific constraints and restrictions in problems expressed on graphs.
The basic idea is to construct an extended model that considers some problem
dimension explicitly to make it easier to formulate certain constraints or even
impose them implicitly. Picard and Queyranne [12] were among the first to
consider such an approach. They modeled the time-dependent traveling salesman
problem by introducing for each original node copies for all sequence positions
at which it might be feasibly reached. Another typical application is related to
distance restrictions in graphs. In such cases one can create node copies w.r.t.
the feasible distances at which the original nodes can be reached. By omitting
copies beyond the distance limit it is implicitly ensured that all paths in the
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extended graph adhere to the limit. If the dimension among which the original
graph is extended corresponds to time, resulting LGs are sometimes called time-
expanded networks. Such approaches are frequently considered for scheduling
problems in which time is discretized to obtain so-called time-indexed models.
For further details on LGs and associated mixed integer linear programming
(MILP) formulations see the extensive survey by Gouveia et al. [8].

The main advantage of LG formulations is that they provide a conve-
nient modeling option while usually leading to strong linear programming (LP)
bounds. In many cases the LG is even acyclic and allows pseudo-polynomial
formulations. However, there is also an important drawback involved: LGs and
the associated models are typically much larger than simpler formulations on
the original input. Frequently, this leads to models which are computation-
ally impractical for reasonable problem sizes. However, often it is the case that
already a subgraph of the full LG would suffice to encode an optimal solu-
tion. Several researchers used this observation to construct iterative algorithms
that successively approximate the full LG until an optimal solution is found.
This is usually done by omitting node copies and redirecting arcs. Among the
first were Wand and Regan [16] who consider LG formulations for a pickup
and delivery problem with time windows. In particular, they propose a relaxed
formulation and a heuristic component that considers a subset of the feasible
solutions. Those two formulations are successively extended until their bounds
match, proving optimality. Ruthmair and Raidl [15] suggested such an iterative
approach for the rooted distance-constrained minimum spanning tree problem
(DCMST). Another successful application of a similar algorithm was proposed
by Dash et al. [6] for solving the traveling salesman problem with time win-
dows (TSPTW). Their approach differs slightly from the former two as it refines
the reduced LG only based on solving LP relaxations in a first stage. The final
reduced LG is then used for solving an MILP in which the remaining infeasibili-
ties are tackled by cutting planes. Further iterative refinement approaches in the
network design area were considered by Macedo et al. [11], Boland et al. [3,4],
and Clautiaux et al. [5].

Algorithms of this type that contain a component for obtaining heuristic
solutions provide an eventually converging sequence of primal and dual bounds.
Therefore, such an algorithm can also be terminated prematurely to obtain a
high-quality primal solution together with a dual bound.

All previous works in this area have in common that they consider only a
single strategy for extending the reduced LG in each iteration without evaluating
alternatives. The employed techniques reach from rather simple approaches to
more complex algorithms. In our previous work [13] we presented an extensive
evaluation of different refinement techniques for a resource-constrained project
scheduling problem (RCPSP). However, scheduling problems are somewhat spe-
cial when it comes to the refinement step. In an aggregated set of time instants
it is usually not clear what is the best/most promising option to reveal infeasi-
bilities. Network design problems appear to be more accessible in this respect.
An LG relaxation is typically obtained by redirecting arcs due to omitted lay-
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ers which causes the arcs to no longer represent correct lengths. This makes
it straightforward how an arc can be corrected to the full extent. Moreover,
we can use the knowledge regarding the true length of the arcs to get further
insight from intermediate solutions. This is a crucial part of the algorithm and
evaluating promising alternatives seems to be worthwhile.

In the following we start by introducing the necessary terminology of LGs
in terms of an example problem: the TSPTW. In particular, we discuss how
reduced LGs can be obtained, whose associated MILP models provide either pri-
mal or dual bounds. Then, we propose a generic refinement algorithm including
several enhancements. Afterwards, we explain the specific refinement strategies
and evaluate them in our computational experiments. In addition to existing
strategies from the literature, we suggest new ones that aim at extracting more
information from intermediate solutions. In the computational study we evaluate
the discussed refinement strategies on several benchmark sets for the TSPTW.
To show how the strategies behave on a structurally different problem we also
conduct experiments for the rooted DCMST.

2 Mathematical Formalization

In the following we describe the construction of an LG and an associated MILP
model. The process is exemplified in terms of the TSPTW. Afterwards, we char-
acterize reduced LGs that serve as basis for the refinement algorithm introduced
in the next section.

Notational Remarks. For a graph G = (V,A) and node subset S ⊆ V let
δ+(S) = {(i, j) ∈ A | i ∈ S, j /∈ S} be the set of outgoing and δ−(S) = {(j, i) ∈
A | i ∈ S, j /∈ S} be the set of incoming arcs. To simplify notation we omit the
set braces for singletons S. Variable vectors are denoted in bold face. Solution
vectors are indicated by a superscript “∗”.

2.1 Traveling Salesman Problem with Time Windows

The traveling salesman problem with time windows (TSPTW) is defined on a
directed graph G = (V,A) with node set V = {α, 1, . . . , n, ω}, associated arc
costs c : A → Z≥0, and travel times t : A → Z>0. As in [6], we represent the
depot by two distinct nodes α and ω in order to model a tour starting and
ending at the depot as path. Each node i ∈ V is associated with a time window
[ri, di] with ri ≤ di. Service times for the nodes can be incorporated into the
travel times and are therefore not considered separately. The goal is to find a
least cost Hamiltonian path through V starting at α and ending at ω s.t. all
nodes are visited within their time windows. Waiting at nodes is allowed in case
of early arrival.
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2.2 Layered Graph Model

We consider the layered digraph GL = (VL, AL). Initially, node set VL = {il | i ∈
V, l ∈ [ri, di]} contains all node copies that are feasible w.r.t. the time windows.
Thereby, node copy il ∈ VL at layer l represents original graph node i ∈ V
reached at time l. To get an abstraction for connecting the layered node copies
we introduce function θ(il, j) := max(rj , l + t(i,j)) that provides the layer at
which node j is reached when starting at node i at layer l. The obtained arc
set is AL = {(il, jm) | il, jm ∈ VL, (i, j) ∈ A, θ(il, j) = m}. To obtain a smaller
graph we remove all unnecessary node copies—and their incident arcs—that
cannot be reached from depot copy αrα

1. For an example see Fig. 1 where node
31 is not reachable from α0.

α = ω[0, 5] 1[1, 4]

2[1, 4]3[1, 2]
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Fig. 1. Example of a layered graph for a TSPTW instance with t = c.

We model the TSPTW in terms of binary arc variables xa, for a ∈ A, indi-
cating which arcs of the original graph are part of the tour, and non-negative
arc variables za for the LG. Observe that this problem could also be modeled
without the original graph variables. However, these variables are convenient for
imposing certain strengthening inequalities and beneficial for the reduced cost
fixing explained in Sect. 3.

(TSPTW-L) min
∑

a∈A

caxa (1)

s.t.
∑

il∈VL

∑

a∈δ−(il)

za = 1 ∀i ∈ V \ {α}, (2)

∑

a∈δ+(il)

za =
∑

a∈δ−(il)

za ∀il ∈ VL, (3)

1 When referring to the full LG GL in the following, we assume this step to be
completed.
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∑

(il,jm)∈AL

z(il,jm) = x(i,j) ∀(i, j) ∈ A, (4)

x ∈ {0, 1}|A|, z ∈ R
|AL|
≥0 . (5)

The model presented above can be strengthened2 by well-known cut-set
inequalities of the following form:

∑

a∈δ−(W )

xa ≥ 1 ∀W ⊆ V \ {α}, W 	= ∅. (6)

Stronger cut-set inequalities can be specified w.r.t. the z variables (see [8]):
∑

a∈δ−(W )

za ≥ 1 ∀W ⊆ VL \ {αrα
}, W 	= ∅, ∃v ∈ V : {vl ∈ VL} ⊆ W. (7)

Both sets of cut-set inequalities are of exponential size and require dynamic
separation in practice. Although the original graph cut-set inequalities are known
to be weaker than their LG counterpart, they are still worth considering due to
faster convergence as a result of the smaller size of the original graph.

2.3 Reduced Layered Graphs

The full LG defined above guarantees that the associated MILP model, denoted
by TSPTW-L(GL), contains all feasible solutions that are possible w.r.t. the
original graph. However, depending on the number of layers and the density of
the original graph we often end up with a problematic model size. Smaller graphs
can be extracted from the full LG by either giving up optimality or feasibility.
For pragmatic reasons we require each reduced LG G′

L = (V ′
L, A′

L) to contain at
least one copy for each node of the original graph, i.e., V = {i | il ∈ V ′

L}.
Due to the omitted node copies, arcs are redirected. We say that an arc

(il, jm) is shortened (lengthened) if there exists an arc (il, jk) in the full LG s.t.
m < k (m > k), otherwise it has the correct length.

Dual Layered Graphs. A dual LG GdL = (VdL, AdL) is obtained by consider-
ing only a subset of the layered node copies VdL ⊆ VL inducing the reduced arc
set

AdL = {(il, jm) | il, jm ∈ VdL, (i, j) ∈ A, m ≤ θ(il, j),
�m′ (m < m′ ≤ θ(il, j) ∧ jm′ ∈ VdL)}.

In short, this means that if a layered node is present in VdL but the target of
its outgoing arc according to GL is not, then we use the copy of the target node
at the maximum layer no larger than the originally used copy and omit the arc
if such a copy does not exist. An example is provided in Fig. 2.
2 In case of cycles due to zero travel times, these inequalities become mandatory.
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α0

11 21

ω2 32

Fig. 2. Example of a dual layered graph w.r.t. the TSPTW instance provided in Fig. 1.

In order to guarantee that the associated MILP model is a relaxation we only
consider node subsets VdL ⊆ VL s.t. il ∈ VdL ∧ (il, jm) ∈ AL =⇒ ∃m′ (m′ ≤
m∧(il, jm′) ∈ AdL). This ensures that we loose no connections that were present
in the original graph. By using only shortened and correct arcs we never arrive
at a node on a higher layer than in the full LG. As a result TSPTW-L(GdL)
is a relaxation w.r.t. the original problem. Consequently, the LP relaxation of
TSPTW-L(GdL) yields a dual bound. Moreover, if an optimal integral solution
to TSPTW-L(GdL) is feasible (on the x variables) w.r.t. the original problem,
then it is guaranteed to be optimal. Observe that the dual LG is—opposed to
the full LG—usually not acyclic. Therefore, separating cut-set inequalities is
necessary to obtain a connected solution.

Primal Layered Graphs. A primal LG GpL = (VpL, ApL) is obtained by
considering only a subset of the layered node copies VpL ⊆ VL and an associated
induced arc set

ApL = {(il, jm) | il, jm ∈ VpL, (i, j) ∈ A, m ≥ θ(il, j),
�m′ (θ(il, j) ≤ m′ < m ∧ jm′ ∈ VpL)}.

This time we redirect arcs to the node copy at the minimum layer at least
as large as the original one. Therefore, the primal LG turns its associated MILP
model into a heuristic as it may exclude feasible solutions—possibly to the extent
that no solutions remain. A feasible solution to TSPTW-L(GpL) provides a pri-
mal bound but cannot be shown to be optimal on its own—not even if all layered
arcs associated with the selected z variables have the correct length.

2.4 Other Problems

The definitions provided above can easily be adjusted to other problems. To
cover the rooted DCMST (see [9])—for which we also perform experiments in
Sect. 4—it suffices to redefine function θ to θ(il, j) := l + d(i,j), i.e., waiting is
not permitted/necessary. The problem’s distance restriction can be imagined as
time window for each node with a lower bound of zero and an upper bound equal
to the global distance limit. A suitable MILP model can then be obtained by
taking the model for the TSPTW and replacing constraints (3) by
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z(il,jm) ≤
∑

(kh,il)∈δ−(il):k �=j

z(kh,il) ∀il ∈ VL, ∀(il, jm) ∈ δ+(il). (8)

3 Algorithmic Framework

In this section we describe our iterative refinement algorithm. In particular, we
consider different refinement strategies that are used to iteratively extend an
initially small dual LG.

To simplify the description in what follows, we make some assumptions on
the considered input problem. We focus on problems for which each node must
be connected to a designated source node. This guarantees that we can perform
the necessary path computations in the LG for some of the refinement strategies
presented in Sect. 3.2. Consequently, suitable connectivity inequalities must be
available (e.g., cut-set inequalities (7) for the TSPTW). This assumption might
seem restrictive at first but actually covers a large variety of problems. Depot
based routing problems as well as most network design problems are compatible
with this restriction. In addition, we assume that the model is specified as mini-
mization problem and includes at least design variables x for the original graph
arcs and design variables z for the LG variables—further auxiliary variables are
of course possible. Note that these conditions are more strict than necessary but
being more general would go beyond the scope of this work.

3.1 Iterative Refinement Algorithm

The main idea of our iterative refinement algorithm (IRA) is to start with a
small dual graph and solve the associated MILP model or its corresponding LP
relaxation, respectively. The result is then used to either prove optimality or—
if this cannot be done—to obtain a larger dual graph (closer to the full LG)
for repeating the procedure. This step of adding not-yet-present node copies of
the full LG to the dual LG is called refinement. If the refinement adds at least
one new node copy in each iteration, then it is guaranteed that the algorithm
terminates with an optimal solution in finitely many iterations since the dual
graph eventually converges to the full LG.

Algorithm 1 provides the detailed procedure. The mentioned gap refers to the
absolute difference between the current dual (db) and primal (pb) bounds and
is considered to be closed if db ≥ pb. In the beginning we need an initial dual
LG. This step depends on the problem at hand. For the TSPTW—and many
other problems—a minimal starting graph that satisfies the restrictions imposed
above can be obtained by considering for each original graph node the copy at the
smallest feasible layer. Based on this initial dual LG we solve the LP relaxation of
the associated MILP model. The obtained solution value is a dual bound and can
be used to prove optimality if a primal bound is available. In order to get a more
meaningful solution for the subsequent refinement process, we assume the LP to



Strategies for Iteratively Refining Layered Graph Models 53

Algorithm 1. Iterative refinement algorithm (IRA)
1 while termination condition not met do
2 solve LP; stop if gap closed
3 refine LG
4 if solution is integer and feasible then terminate // optimal solution

5 apply primal heuristic; stop if gap closed
6 apply reduced cost fixing
7 if graph could be refined then continue with next iteration
8 solve IP
9 refine LG

10 if solution is feasible then terminate // optimal solution

11 apply primal heuristic; stop if gap closed

12 end

be extended by connectivity inequalities. If optimality could not be proven yet,
we use a refinement algorithm to identify possible infeasibilities in the relaxed
solution. If infeasibilities could be detected, we add further nodes to the graph to
reveal them. Otherwise, we test whether the obtained LP solution is integral. An
integral solution that is feasible must be optimal according to the construction
of the dual LG. A fractional solution, on the other hand, might prevent the
refinement algorithm from detecting remaining infeasibilities. Therefore, we solve
the MILP model in the following. However, before doing this, we can apply a
heuristic (guided by the current fractional solution) to obtain a primal bound
to possibly close the gap and prove optimality. Furthermore, we can use the
obtained primal bound to attempt reduced cost fixing w.r.t. the x variables of
the MILP model. To this end let db be the current solution value of the LP
relaxation, pb the current primal bound, x∗ the solution vector of the original
graph variables, and xr the vector of reduced costs of the x variables. For each
arc a ∈ A we consider two cases. If x∗

a = 0 ∧ db + xr
a ≥ pb, we can remove arc

a from the input graph and consequently all its copies in any LG. On the other
hand, if x∗

a = 1 ∧ db − xr
a ≥ pb, we know that arc a must be part of an optimal

solution and its associated variable can therefore be fixed to one in subsequent
iterations. When the algorithm is already close to convergence, reduced cost
fixing might fix a sufficient number of variables to zero s.t. the model becomes
infeasible, proving optimality of the solution that provided the current primal
bound.

Unless one of the previous considerations allowed proving optimality, we are
now in the situation that the (fractional) LP solution does not allow the refine-
ment algorithm to identify the remaining infeasibilities. In this unfortunate case
we have to take the additional computational burden and solve the MILP to opti-
mality. If the integral solution is feasible, we proved optimality. Otherwise, we
apply the primal heuristic once more before solving the LP relaxation according
to the refined dual LG.
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Primal Graph Heuristic. Steps 5 and 11 of Algorithm1 can in principle be
realized by any suitable heuristic. Problem-dependent algorithms typically pro-
vide better solution quality but are sometimes tedious to implement and often
have to be replaced completely if a slightly different problem variant is consid-
ered. A more convenient problem-independent way to obtain heuristic solutions
is to use the MILP formulation on the primal LG. We construct the primal LG
by taking the node set of the dual LG and add for each node a copy at the
maximum feasible layer. This enables us to benefit from the iterations made so
far while reducing the risk of obtaining a graph that encodes no feasible solution.
Primal graph heuristics of this type were considered in [5,14–16].

3.2 Refinement Procedures

The perhaps most crucial part of IRA is the refinement step. Solutions w.r.t.
the current dual LG typically contain multiple infeasibilities and it is usually
not clear how they can be handled most efficiently. In this context one has to
deal (among others) with the following important questions: (a) for which nodes
should further copies be added, (b) how many copies should be added, and (c) on
which layers should the copies be inserted. Answering those questions typically
involves keeping a suitable balance between the growth of the dual LG and the
number of iterations IRA has to complete before proving optimality. The latter
is quite important as it determines how often the MILP solver has to be invoked
which is usually the most time-consuming part of the algorithm. On the other
hand, the time each invocation takes increases with the size of the associated
dual LG.

Full Infeasible Arc Refinement (FAR). The probably most straightforward
refinement strategy simply refines all nodes that are part of the current solution.
To this end, we consider all layered arcs whose associated solution value is non-
zero. All shortened arcs are fully corrected by adding the appropriate target
node to the dual LG. To avoid refining already feasible solutions, we check if the
solution w.r.t. the x variables is feasible before starting the refinement process.
This refinement procedure was employed in [4,11,14,15].

Infeasible Path Refinement (PR). Instead of considering all arcs, we only
consider those that are most relevant from the structural perspective. We start
by constructing an auxiliary LG that is obtained by taking all arcs of the dual
LG with associated non-zero z variable value in the current solution. Based on
this graph we compute a shortest path w.r.t. time, using travel times weighted
by 1 − z∗

a, to each node and determine the effective time at which the node
would be reached. If the resulting arrival time is incompatible with the node’s
time window, we compute a refinement. This is done by traversing the path
backwards and refining each arc as done for FAR stopping once we reach a node
for which the effective time is equivalent to its layer.
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Repeated Infeasible Path Refinement (RPR). We start by performing
PR. In a subsequent step, we check for each formerly infeasible path if it is still
contained in the adjusted dual LG—traversing different node copies but still
reaching the target node after its time window when considering the effective
length of the path—and repeat the refinement step until the path is no longer
present.

Single-Copy Infeasible Path Refinement (SPR). Especially in later itera-
tions the dual LG contains multiple layered copies w.r.t. each node of the original
graph. We perform the same approach as done in PR, however, for each node of
the original graph we only compute a refinement for the path reaching the node
at the latest effective time, i.e., the most infeasible path.

Minimum Sum of Negative Waiting Times (DASH). This strategy was
developed by Dash et al. [6]. Similar to the other techniques they consider the
subgraph G′

dL induced by non-zero z variable values. If a node copy vl is reached
by shortened arcs, a new node copy is added that minimizes the sum of negative
waiting times. The negative waiting time of an arc is essentially the amount
by which it was shortened, i.e., if (il, jm) ∈ A′

dL and (il, jk) ∈ AL, then the
negative waiting time is k − m. A new layered copy of node v is added at the
layer λ that achieves the minimum when computing the sum of negative waiting
times weighted by the associated arcs’ solution values. Let z∗ be the current
solution vector and let Ivl

= {((jm, vl), l′) | (jm, vl) ∈ A′
dL, (jm, vl′) ∈ AL}.

Then we seek the layer λ that minimizes μ(vl, λ) =
∑

(a,l′)∈Ivl
:l′<λ (l′ − l)z∗

a +∑
(a,l′)∈Ivl

:l′≥λ (l′ − λ)z∗
a. Dash et al. do not indicate which value is used if there

are multiple options for λ that achieve the minimum. Function μ is piece-wise
linear for a fixed vl and changes slope only at points at which at least one arc
arrives at the correct time. Therefore, it makes sense to restrict the procedure to
such values, i.e., l′ −λ is zero for at least one element from Ivl

, as this guarantees
to reduce the number of shortened arcs. However, this still might leave several
options. In preliminary experiments we tested using either the smallest or the
largest value of λ that achieves the minimum. The performance was roughly the
same with a slight advantage for the latter.

Again we check feasibility w.r.t. the original graph variables to avoid super-
fluous refinements.

4 Computational Study

Our algorithms are implemented in C++ using CPLEX 12.8.0 as general-purpose
MILP solver. All experiments have been performed in single thread mode with
default parameter settings. For performance reasons the implicitly integral LG
variables z are implemented as binary variables together with a cost-based
branching priority to focus on the original graph variables. Experiments have
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been executed on an Intel Xeon E5540 machine with 2.53 GHz. The computa-
tion time limit has been set to 7200 s and the memory limit to 8 GB RAM.
To test our framework we consider two benchmark sets for the TSPTW from
http://lopez-ibanez.eu/tsptw-instances. The first set is from [1] and contains 50
instances while the second one was proposed in [7] and contains 135 instances. In
addition, we also tested on instances for the rooted DCMST by [9]. Experiments
were limited to the subset of 60 “TE” instances with distances ranging to 10,
100, and 1000 as the other instances turned out to be too easy. The TSPTW
instances were preprocessed as described in [1] and the DCMST instances as
described in [14].

We want to emphasize that our aim is to compare the different refinement
strategies on a common basis and not to beat the state of the art. Achieving
the latter would require further problem-specific tuning and incorporation of
additional strengthening inequalities which is not the focus of this work.

4.1 Experiments

In the upcoming tables we present averages for gaps, computation times, the
number of iterations in which the LP relaxation was solved (itr), the number of
iterations in which the MILP was solved (itr-ip) as well as the number of nodes
and arcs in the final LGs. Instances that terminated due to the memory limit
are omitted when computing averages and those that ran into the time limit are
considered with a value of 7200 s. Gaps are computed by (pb∗ − db)/pb∗ where
db is the dual bound of the respective run and pb∗ is the best primal bound
known for the respective instance. The remaining columns report the number of
runs that ran into the time limit (tl) or the memory limit (ml), respectively, and
the number of instances solved to proven optimality (opt).

For the TSPTW we consider each refinement strategy in three variants:
without a primal component, with an initially provided primal solution (“HS”),
and with an initially provided primal solution and reduced cost fixing activated
(“HS RCF”). We do this in order to show two things: (1) the benefits of a strong
primal component and (2) the potential of reduced cost fixing if a high-quality
solution is available. High-quality heuristic solutions for the Ascheuer instances
were obtained from http://lopez-ibanez.eu/tsptw-instances and optimal solu-
tions for the instances by Dumas et al. were obtained from http://homepages.
dcc.ufmg.br/∼rfsilva/tsptw.

Table 1 reports our results on the instances by Ascheuer et al. [1]. The first
observation is that directly solving the MILP on the full LG (MIP) is not effec-
tive. The size of the associated model leads either to problems with the memory
limit or to long runs that can frequently not be completed within the time limit.
Consequently, the remaining gap is quite large with more than 10% on average.
All variants of our refinement algorithm perform much better. The most striking
difference is that we deal with considerably smaller graphs that help to avoid any
memory issues. This enables us to solve significantly more instances to optimal-
ity. Among the various refinement strategies we observe that the naive approach
(FAR) solves the fewest instances to optimality while leading to the largest graph

http://lopez-ibanez.eu/tsptw-instances
http://lopez-ibanez.eu/tsptw-instances
http://homepages.dcc.ufmg.br/~rfsilva/tsptw
http://homepages.dcc.ufmg.br/~rfsilva/tsptw
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Table 1. Results on the TSPTW instances by Ascheuer et al. [1]

Algorithm Gap [%] Time [s] #itr #itr-ip |V | |A| #tl #ml #opt

MIP 20.24 3800 - - 78437 1339490 21 5 24

IRA FAR 0.09 2230 17.9 0.0 547 9820 14 0 36

IRA DASH 0.08 2114 18.8 0.0 531 9546 13 0 37

IRA PR 0.08 2090 31.4 3.5 398 7663 13 0 37

IRA RPR 0.08 2007 22.1 2.5 417 8010 12 0 38

IRA SPR 0.08 2080 32.6 3.6 399 7761 12 0 38

IRA FAR HS 0.08 2215 15.1 0.0 503 9248 14 0 36

IRA DASH HS 0.08 2064 15.5 0.0 480 8872 13 0 37

IRA PR HS 0.08 2038 27.9 3.2 376 7379 12 0 38

IRA RPR HS 0.08 1937 19.1 1.9 394 7710 12 0 38

IRA SPR HS 0.08 2068 29.2 3.1 377 7398 12 0 38

IRA FAR HS RCF 0.08 2047 15.3 0.0 492 8340 13 0 37

IRA DASH HS RCF 0.08 1935 15.4 0.0 475 7985 13 0 37

IRA PR HS RCF 0.08 2096 29.2 3.6 384 6876 13 0 37

IRA RPR HS RCF 0.08 1933 19.2 2.0 399 7190 12 0 38

IRA SPR HS RCF 0.08 2001 30.6 3.3 384 6948 12 0 38

sizes. The approach by Dash et al. [6] works noticeably better and solves one
more instance to optimality but requires comparatively large graphs. Our new
path-based strategies solve the largest number of instances to optimality. The
drawback of these rather careful and minimalist approaches is that they require
a higher number of iterations to converge, even including some iterations where
the MILP has to be solved, which is not necessary for FAR and DASH. Neverthe-
less, we observe the smallest average computation times for these strategies. The
more slowly growing graphs outweigh the higher number of iterations through
the smaller associated models. Among the three path-based approaches, we see
that RPR performs best.

Providing high-quality initial solutions improves all variants of IRA alike. We
observe a decrease in the number of iterations as well as the final graph sizes.
This shows that a tight dual bound is sometimes obtained before feasibility can
be established through further refinement steps. Enabling reduced cost fixing
helps to improve the results further. For strategy PR we observe a minor slow-
down compared to the variant in which only the initial solution is provided. The
reason is that solution quality and refinement quality are not directly correlated.
A weaker solution might lead to a very successful refinement in a subsequent iter-
ation that is not reached by a better solution. The slowdown, however, is not
dramatic and we achieve the smallest final graph size with this approach.

In Table 2 we provide the results on the instances by Dumas et al. [7]. Com-
pared to the Ascheuer instances this set features much narrower time windows
(100 at most). Therefore, the MILP on the full LG performs considerably better.
Although it no longer faces problems with the memory limit, it is still not able
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Table 2. Results on the TSPTW instances by Dumas et al. [7]

Algorithm Gap [%] Time [s] #itr #itr-ip |V | |A| #tl #ml #opt

MIP 0.42 2000 - - 3276 37069 29 0 106

IRA FAR 0.00 250 10.5 0.2 285 3597 1 0 134

IRA DASH 0.00 240 10.7 0.1 282 3549 1 0 134

IRA PR 0.00 80 13.1 4.0 142 1719 0 0 135

IRA RPR 0.00 55 9.2 3.0 145 1773 0 0 135

IRA SPR 0.00 93 13.2 4.1 141 1711 0 0 135

IRA FAR HS 0.00 110 8.2 0.1 256 3207 0 0 135

IRA DASH HS 0.00 123 8.3 0.1 251 3135 0 0 135

IRA PR HS 0.00 65 12.3 3.5 139 1681 0 0 135

IRA RPR HS 0.00 45 8.4 2.5 139 1691 0 0 135

IRA SPR HS 0.00 73 12.4 3.5 138 1674 0 0 135

IRA FAR HS RCF 0.00 44 8.0 0.1 255 2247 0 0 135

IRA DASH HS RCF 0.00 45 8.3 0.1 250 2187 0 0 135

IRA PR HS RCF 0.00 56 12.4 3.5 138 1395 0 0 135

IRA RPR HS RCF 0.00 42 8.3 2.5 138 1401 0 0 135

IRA SPR HS RCF 0.00 55 12.4 3.5 138 1387 0 0 135

to solve all instances to optimality within the time limit. The remaining gap is
rather small but could also not be closed completely. In terms of computation
times we again observe a clear advantage for IRA. The performance of the dif-
ferent refinement strategies is comparable to what we observed for the Ascheuer
instances. Strategies FAR and DASH require larger graphs but converge within
fewer iterations. The path-based approaches, on the other hand, lead to much
smaller final graphs but also have to complete some iterations in which the MILP
is solved. Providing an initial primal solution again improves the results signif-
icantly. This time reduced cost fixing provides a consistent improvement and
does not suffer from side effects. It is even effective enough to almost improve
the slower refinement strategies to the level of the better ones through variable
fixes that significantly reduce the LG size.

Finding feasible solutions to the TSPTW is NP-hard (see [1]) but can be
done in (pseudo-)polynomial time for the rooted DCMST. Therefore, we use
this problem to show the performance of a simple problem-specific heuristic
(“PHeu”) in comparison to the general purpose heuristic based on the primal
LG (“PG”). The considered problem-specific heuristic iteratively computes a
resource-constrained shortest path to a still unreached node farthest from the
source. The costs of the thereby added arcs are set to 0 for the next iteration and
the procedure is stopped once all nodes are connected to the source. We use the
solution on the x variables as guidance by operating on adjusted costs weighted
by 1−x∗

a. We do not use reduced cost fixing here to avoid side effects that could
influence the results. The outcome of the experiments on the DCMST instances
is summarized in Table 3.
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Table 3. Results on the hard DCMST instances (TE) by Gouveia et al. [9]

Algorithm Gap [%] Time [s] #itr #itr-ip |V | |A| #tl #ml #opt

MIP 0.72 3063 - - 23833 529314 13 13 34

IRA FAR 0.08 2481 21.9 0.0 474 10827 9 0 51

IRA DASH 0.05 2118 22.4 0.1 473 10816 6 0 54

IRA PR 0.05 2555 23.6 0.2 418 9703 7 0 53

IRA RPR 0.04 1913 18.0 0.1 481 10767 4 0 56

IRA SPR 0.06 2601 24.3 0.2 415 9640 10 0 50

IRA FAR PHeu 0.07 2211 21.5 0.0 471 10769 6 0 54

IRA DASH PHeu 0.05 2058 21.9 0.0 472 10793 5 0 55

IRA PR PHeu 0.04 2256 23.0 0.1 417 9678 6 0 54

IRA RPR PHeu 0.04 1680 17.8 0.1 482 10781 4 0 56

IRA SPR PHeu 0.04 1987 23.6 0.2 414 9632 4 0 56

IRA FAR PG 0.08 2453 21.2 0.0 469 10709 9 0 51

IRA DASH PG 0.05 2185 21.5 0.0 467 10675 5 0 55

IRA PR PG 0.04 2269 23.3 0.2 416 9659 6 0 54

IRA RPR PG 0.04 1816 17.6 0.1 479 10702 4 0 56

IRA SPR PG 0.07 2553 23.9 0.2 413 9606 9 0 51

The MILP model on the full LG once more solves the fewest instances to
optimality while being the slowest algorithm on average. The reason why the
MILP is not that far off this time is that the considered instance set consid-
ers also small distance limits. For small and medium distance limits the MILP
is competitive while it is clearly outperformed for the larger ones or cannot be
solved due to the memory limit. Again, all variants of the iterative approach out-
perform the pure MILP approach for the larger distance restrictions. Strategies
FAR and SPR do not work as well as the other strategies. The former appears to
refine too unstructured while the latter does not make enough progress resulting
in a comparatively high number of iterations. Among the remaining three vari-
ants we observe that RPR works best. Although it leads to larger graphs than
the other path-based strategies, it turned out to be quite fast. Apparently, the
repeated refinement helps to significantly reduce the number of iterations which
compensates for the larger graph size.

Adding heuristics significantly decreases computation times and allows solv-
ing further instances to proven optimality. The primal LG heuristic turns out
to be a valuable alternative to the problem-specific one. Nevertheless, we want
to point out that it strongly depends on the problem whether the generic app-
roach works well. Preliminary experiments for the TSPTW showed that it can
be difficult to obtain feasible solutions if the underlying problem is challenging
in this respect. Node copies corresponding to an initial heuristic solution might
be inserted into the LG to resolve these issues.

Finally, we applied the one-tailed Wilcoxon signed-rank test for RPR and
each other refinement strategy (without heuristics or reduced cost fixing). The
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alternative hypothesis that RPR is faster was assumed with a significance level of
0.05, except for the instances by Ascheuer where PR, SPR, and DASH performed
too similar, mainly due to the comparatively high number of unsolved instances.

5 Conclusion and Future Work

In this work we considered a general framework for iteratively refining a reduced
layered graph (LG). Based on solutions to an associated mixed integer linear
programming formulation and heuristically obtained primal bounds the app-
roach converges towards proven optimality if given enough time. In particular,
we focused on one of the crucial points of such algorithms which did not receive
much attention in previous works: the refinement step that extends the LG in
each iteration. We investigated strategies from the literature and suggested new
path-based ones. Through our experiments on two benchmark problems we could
show that the previous approaches work reasonably well but still leave room for
improvement. The path-based approaches are able to solve a higher number of
instances to optimality while leading to smaller LGs in the final iteration. We
also showed that a strong heuristic component is important for the algorithm to
converge faster and to provide high-quality (intermediate) solutions.

A problem-independent heuristic was shown to be competitive with a simple
problem-specific one. Future work could put more effort into this component to
improve the obtained results. In this work we focused on refinement strategies
for the reduced LG that is used to compute dual bounds. However, one may also
consider refinements based on the LG that is used to obtain heuristic solutions.

For brevity, we restricted the discussion to problems with a designated source
node to which all other nodes must be connected. However, the method can
in principle be applied to any network design problem for which feasibility of
the relaxation may be checked by path computations. Interesting problems are
those whose resource dependencies can be naturally modeled through LG. This
especially includes problems with resource-dependent (non-linear) costs, e.g.,
time-dependent travel times. If many layers are present of which only few are
assumed to be traversed, the iterative algorithm is expected to work particularly
well. In general, the approach does not work for applications represented by a
cyclic LG because the described dual LGs not necessarily represent a relaxation
for them. Typical examples are pickup and delivery problems with increasing
and decreasing load along the route as well as the energy state in electric vehicle
routing.

To be comparable to the state of the art further tuning would be necessary
for both benchmark problems. In terms of the traveling salesman prblem with
time windows our algorithms struggle in particular with some of the harder
Ascheuer instances. A promising solution appears to be the inclusion of infor-
mation related to node precedences as done, e.g., in [2,6]. Concerning the rooted
distance-constrained minimum spanning tree problem our results are already
quite close to the state-of-the-art column generation approach in [10] with only
four instances that could not be solved to optimality.
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In preliminary experiments we tested a cleanup algorithm that removes nodes
from the LG that were not used for a specified number of iterations. This app-
roach showed potential to decrease the final graph sizes further. Unfortunately,
we ran into problems with cycling that increased the number of iterations, negat-
ing the provided benefits. Future research could address these issues by more
complex cleanup or cycle-prevention strategies. Having shown that even smaller
final graph sizes can be achieved, we think that a more theoretical investigation
could prove useful. Computing minimal or even minimum LGs that lead to tight
dual bounds or optimal solutions could serve as starting point to design more
elaborate refinement strategies.
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Abstract. In this paper we present a new population based metaheuris-
tic called the fixed set search (FSS). The proposed approach represents a
method of adding a learning mechanism to the greedy randomized adap-
tive search procedure (GRASP). The basic concept of FSS is to avoid
focusing on specific high quality solutions but on parts or elements that
such solutions have. This is done through fixing a set of elements that
exist in such solutions and dedicating computational effort to finding
near optimal solutions for the underlying subproblem. The simplicity of
implementing the proposed method is illustrated on the traveling sales-
man problem. Our computational experiments show that the FSS man-
ages to find significantly better solutions than the GRASP it is based
on, the dynamic convexized method and the ant colony optimization
combined with a local search.

Keywords: Metaheuristic · Traveling salesman problem · GRASP

1 Introduction

In the last several decades there has been an extensive research effort on devel-
oping different metaheuristics for finding near optimal solutions for hard opti-
mization problems. Most metaheuristic approaches focus on how to balance the
global search (exploration) and local search (exploitation) in examining the solu-
tion space. There have been several directions in this research. Early methods
include simulated annealing [23] and tabu search [15,16] where the search is
focused near the best found solution and on mechanisms of escaping local optima.
In later stages population based methods have proven to be very powerful. The
general approach in such methods is generating a large number of solutions and
including different types of learning mechanisms. In case of genetic algorithms
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[27] and differential evolution [28] the main idea is in combining different high
quality solutions with the addition of a certain level of randomization. Particle
swarm optimization [1,2] explores the solution space through generating new
solutions based on the positions of the globally and locally best found solution.
This basic idea has been incorporated in a wide range of similar methods like
cuckoo search [14], artificial bee colony algorithm [22] and many others. (The
reader should note that we are fully aware about the controversial discussion
with respect to some of these or similar approaches; see [31].) The ant colony
optimization [10,20] uses a population based method to add a learning mecha-
nism to greedy algorithms.

One of the most common methods for improving population based meta-
heuristics is by combining them with local searches. The variable neighborhood
search [17] metaheuristic focuses on the efficient use of local searches. The per-
formance of the original metaheuristics is often improved by different types of
enhancements or by creating hybridized methods that combine one or more of
such metaheuristic methods [5,25,34]. The main problems with such methods is
the increased complexity of implementation. This problem is most evident if we
observe publications in fields other than operations research and applied math-
ematics. In the vast majority of them only the original, simple to implement,
method is used to solve the problem of interest.

Model-based heuristics are generally based upon the identification of a set of
parameters, defining a model that, in turn, well captures some features of the
search space [6]. These algorithms heavily rely on a set of update schemes used
to progressively modify the model itself such that the possibility of obtaining
higher quality solutions under the new model is increased. Recently, more and
more emphasis is put on the application of learning mechanisms. In this phase,
modifications are applied to the model and/or its parameters to reflect insights
collected and generated during the search phase.

Well-known paradigms that can be interpreted under the philosophy of
model-based heuristics are mostly from the area of Swarm Intelligence, but also
focus on semi-greedy heuristics, including the greedy randomized adaptive search
procedure (GRASP) [12,18], where the greedy function that guides the selec-
tion of the best candidates might incorporate some sort of stochastic model.
Semi-greedy heuristics and GRASP exemplify of how simplicity is important.
Although it generally has a worse performance than combining one of the more
complex methods with a local search it is extensively used. The advantage of
more complex metaheuristics often occurs only for very large problem instances;
some examples in case of ACO can be seen in [19,21]. Because of this, it is rea-
sonable to attempt to increase the size of problems that GRASP can solve, but
in a way that there is no or only a small increase in complexity of the original
method.

In this paper we focus on developing this type of method through adding
a simple learning mechanism to GRASP. Some examples of such methods are
GRASP with path relinking [13] and the dynamic convexized method [37]. Both
of these methods produce a significant level of improvement. Note that both use
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the standard concept of intensifying the search of the solution space based on
the location of globally and locally best found solutions. The basic concept of
the proposed fixed set search method (FSS) is to avoid focusing on specific high
quality solutions but on parts or elements that such solutions have. This idea of
exploiting elements that belong to high quality solutions is used in ACO, were the
randomized greedy algorithm is directed to choose such elements. The concept of
generating new solutions based on the frequency of elements appearing in high
quality solutions is the basis of the cross-entropy method (CE) [9]. The main
conceptual difference between FSS and these two methods is that the proposed
methods use only elements that are a part of locally optimal solutions. In practice
this produces a significant difference in performance since the CE and ACO tend
to over popularize elements in the best solution and in small variations of it and
the FSS does not.

The ideas for developing this method may be based on earlier notions of
chunking [35,36], vocabulary building and consistent chains [30] as they have
been used, e.g., in relation to tabu search. In those notions one relates given
solutions of an optimization problem as composed of parts (or chunks). Consid-
ering the traveling salesman problem (TSP), for instance, a part may be a set of
nodes to be visited consecutively. Moreover, some parts may be closely related
to some other parts so that a corresponding connection can be made between
two parts. Similar ideas are even found in the POPMUSIC paradigm [33]. The
general idea of the proposed approach is to fix a set of elements that exist in
high quality solutions and dedicate computational effort on “filling in the gaps”.
The idea of fixed sets has also been explored in the construct, merge, solve &
adapt (CMSA) [4] matheuristic. In CMSA, which may also be interpreted as an
implementation of POPMUSIC, a fixed set is used to decide which part of the
solution space will be explored using an exact solver; later the newly generated
solution is used to direct the next step of the search.

The concept of using fixed sets is illustrated on the symmetric TSP through
adding a learning mechanism to GRASP. We should note that exact codes for
the TSP are available [7]. Nevertheless, due to its widespread investigation it
seems appropriate to use it for illustration purposes. As it will be seen in the fol-
lowing, this type of approach can easily be added to existing GRASP algorithms
and produces a high level of improvement in the quality of found solutions and
computational cost.

The paper is organized as follows. In the next section we give a brief descrip-
tion of GRASP for the TSP. Then we present the FSS and show how it is applied
to the TSP. In Sect. 4, we discuss the performed computational experiments.

2 GRASP

In this section we provide a short outline of the GRASP used for solving the
TSP. (A pseudocode for the general GRASP is given in Algorithm1.) In the
case of the TSP it is common to use a randomization of the nearest neighbor
greedy algorithm with a restricted candidate list (RCL) based on the cardinality
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Algorithm 1. Pseudocode for GRASP
while Not Stop Criteria Satisfied do

Generate Solutions S using randomized greedy algorithm
Apply local search to S
Check if S is the new best

end while

of nodes [3]. For the local search, the most commonly used ones are the 2-OPT
[8] and 3-OPT [24] searches. In practice instead of the original versions of the
two local searches it is common to use a RCL of edges that will be used for
evaluating the proposed improvement.

3 Fixed Set Search

In this section we present the proposed fixed set search metaheuristic and show
how it can be used in combination with GRASP. Before giving the details of the
method we give the basic concepts on which it is constructed.

One of the main disadvantages of GRASP is the fact that it does not incor-
porate any learning mechanism. On the other hand, such an improvement should
be designed in a way that it is simple to implement. In this paper we propose one
such method called the fixed set search (FSS). In the following we will assume
that a solution S of the problem of interest can be represented in the form
of a set. In case of the TSP, the solution S can be viewed as a set of edges
{e1, e2, . . . , el}. The development of FSS is based on two simple premises:

– A combinatorial optimization problem is generally substantially easier to solve
if we fix some parts of the solution, and in this way lower the size of the
solution space that is being explored.

– There are some parts of high quality solutions that are “easy to recognize”.
We say this in the sense that they appear in many good solutions. In general
there is no need to dedicate a significant amount of computational effort to
analyze them.

The general idea of FSS is to fix such “easy to recognize” parts of good
solutions and dedicate computational effort in finding the optimal (or close to
optimal) solution for the corresponding subset of the solution space. Informally,
we take the common sections of good solutions, which we will call the fixed set,
and try to “fill in the gaps”. In the following sections we will illustrate how this
simple idea can be incorporated in the GRASP metaheuristic for the TSP. The
proposed algorithm has three basic steps. The first one is finding a fixed set.
The second is adapting the randomized greedy algorithm to be able to use a
preselected set of elements. Finally, specify and apply the method which gains
experience from previously generated solutions.
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3.1 Fixed Set

As previously stated, to be able to implement the proposed method it is necessary
that we can represent a solution of the problem in the form of a set S. In
case of the TSP, a solution S corresponds to the set of edges that represent
a Hamiltonian cycle. Let us use the notation P for the set of all the generated
solutions (population). In relation, let us define Pn as the set of n best generated
solutions based on the objective function, the path length. Further, let us use the
notation F for a fixed set that will be used in the search. Note that the elements
of F will be inside the newly generated solution. In the following we define a
method for finding a fixed set F for a population of solutions P. The proposed
method should satisfy the following requirements:

– (R1) A generated fixed set F should consist of elements of high quality solu-
tions.

– (R2) The method should be able to generate many different random fixed
sets that can be used to generate new high quality solutions.

– (R3) A generated fixed set F can be used to generate a feasible solution. More
precisely, there exists a feasible solution S such that F ⊂ S

– (R4) Ability to control the size of the generated fixed set |F |.
The first two requirements can be achieved if we only use some randomly

selected high quality solutions for generating the fixed sets. This can be achieved
by simply selecting k random solutions from the set Pn. Let us define Skn as
the set of selected solutions. The initial idea is to use the intersection of all the
solutions in Skn for the fixed set F . The problem is that we have no control over
the size of the intersection. A simple idea to control the size of F is, instead
of using the intersection of Skn, to select the elements (edges) that are part of
the highest number of solutions. The problem with this approach is that such
a selection can potentially contain edges that could not be used to generate a
feasible solution.

Both of these issues can be avoided if a base solution B ∈ Pm is used in
generating a fixed set F . More precisely, we can select the elements of B that
occur most frequently in Skn. Let us define this procedure more formally. We will
assume that we are finding a fixed set F with |F | = Size for a set of solutions
Skn = {S1, .., Sk} and base solution B = {e1, . . . el}. Let use define the function
C(ex, S) which is equal to 1 if ex ∈ S and 0 otherwise. Using C(ex, S) we can
define a function that counts the number of times an edge ex occurs in Skn as
follows.

O(ex,Skn) =
∑

S∈Skn

C(ex, S) (1)

Now, we can define F ⊂ B as the set of edges ex that have the largest value
of O(ex,Skn). In relation, let us define function F = Fix(B,Skn, Size) that
corresponds to the fixed set generated for a base solution B, a set of solutions
Skn having Size elements. An illustration of the method for generating a fixed
set for the TSP can be seen in Fig. 1.
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Fig. 1. Illustration of generating a fixed set. The input is Skn (top left), a set of four
randomly selected solutions out of the six best ones, and a base solution B (left bottom).
Values on an edge of B represent the number of occurrences of that edge in elements
of Skn. The edges on the right present the corresponding fixed set of size four.

3.2 Randomized Greedy Algorithm with Preselected Elements

To be able to use the fixed set within a GRASP setting we need to adapt the
greedy randomized algorithm. Let us first note that in case of the TSP, the fixed
set F will consist of several paths (sequence of edges which connect a sequence
of vertices) of graph G. This effects the greedy algorithm in two ways. First, the
inside nodes of the path should be removed from the candidate list. Secondly,
if a node that is a start or end node of a path in the fixed set, is added to the
current partial solutions the whole path must be added in the proper direction.
Pseudocode for the adapted greedy algorithm can be seen in Algorithm2.

In relation, let us define the function S = RGF (F ), for a fixed set F , as the
solution acquired using this algorithm.

3.3 Learning Mechanism

In this section we present the FSS which is used as a learning mechanism for
GRASP. Before presenting details of the proposed methods, let us first make a
few observations. In the general case the early iterations of GRASP frequently
manage to improve the quality of the best found solution. At later stages such
improvements become significantly less frequent and the method becomes depen-
dent on “lucky” hits. The idea is to use a fixed set F , for some promising region
of the solution space, generate a solution S = RGF (F ) and apply a local search
to S. In this way we increase the probability that a higher quality solution will
be found. An important aspect is how to select the size of the fixed set. In case
it is small, it efficiently performs a global search but after a certain number of
executions, as in the case of GRASP, it will to a large extend be dependent on



Fixed Set Search Applied to the Traveling Salesman Problem 69

Algorithm 2. Pseudocode for Greedy algorithm with preselected elements
Set Paths to all paths in F
Candidates = V
Candidates = Candidates \ F
for all p ∈ Paths do

Candidates = Candidates ∪ p[First] ∪ p[Last]
end for
Select Random start city from Candidates
while Not Completed Tour do

Select next city c using RCL
for all p ∈ Paths do

if (c = p[First]) ∧ (c = p[Last]) then
Add path p to current solution in correct direction
break

end if
end for

end while

“lucky” hits. On the other hand if F is large, it will only explore the parts of the
solution space that are close to already generated solutions. As a consequence,
there is a high risk of being trapped in locally optimal solutions.

This indicates that the size of the fixed set should be adapted during the
execution of the algorithms. For simplicity, we can a priori define an array Sizes
of fixed set sizes that will be tested, using the following formula:

Sizes[i] = |V | − |V |
2i

(2)

In (2), V represents the set of nodes of the graph on which the TSP is to be
solved. The maximal value of an element in the array Sizes is chosen based on
the problem being solved. Using this array let us give an outline of the FSS. We
will first generate an initial population of solutions P by executing GRASP for
N iterations. This initial population will be used to find the fixed sets. We start
from a small fixed set and generate solutions until stagnation, in the sense of not
finding new best solutions for a large number of iterations, has occurred. When
stagnation occurs, we increase the size of the fixed set (selecting the next element
of Sizes) and repeat the procedure. In this way a more focused exploration of
the search space is executed. This procedure is repeated until the largest element
in Sizes is tested.

At this stage it is expected that the set Pm of m best solutions has signifi-
cantly changed and contains higher quality solutions than in the initial popula-
tion. Because of this, there is a potential that even for smaller sized fixed sets,
since they are now generated using better solutions, there is a higher probability
of finding new quality solutions. So, we can repeat the same procedure from
the smallest fixed set size. Let us note that after a large number of solutions is
generated the new solutions acquired using small fixed sets are rarely new best
ones. The importance of their revisit is in generating new types of high quality
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solutions. If the method does not manage to find a new solution among the best
m ones for a large number of iterations for a specific fixed set size, this size can
be excluded from the further search. This idea is better understood by observing
the pseudocode for FSS given in Algorithm3.

Algorithm 3. Pseudocode for the fixed set search
Initialize Sizes
Size = Sizes.Next
Generate initial population P using GRASP (N)
while (Not termination condition) do

Set Skn to random k elements of Pn

Set B to a random solution in Pm

F = Fix(B,Skn, Size)
S = RGF (F )
Apply local search to S
P = P ∪ {S}
if Stagnant Best Solution then

if (Stagnant Candidates) ∧ (Size = Min(Sizes)) then
Remove Size from Sizes

end if
Size = Sizes.Next

end if
end while

In the pseudocode for the FSS, the first step is initializing the sizes of fixed
sets using (2). Next the initial population of solutions is generated performing N
iterations of the basic GRASP algorithm. The current size of the fixed set Size
is set to the smallest fixed set size. In the main loop, we first randomly generate
a set of solutions Skn by selecting k elements from Pn. Next, we select a random
solution B out of the set Pm. Using Skn, B and Size we generate the fixed set
F as described in the above. Using F we generate a solution S = RGF (F ) using
the randomized greedy algorithm with preselected elements. Next, we apply the
local search to S and check if we have found a new best solution and add it to
the set of generated solutions P. After a new solution is generated we check the
two stagnation conditions. The first one checks if the search for the best solution
has become stagnant. If so, we set the value of Size to the next value in Sizes.
Let us note, that the next size is the next larger element of array Sizes. In case
Size is already the largest size, we select the smallest element in Sizes. Before
updating Size, we also check if stagnation has occurred in the search of high
quality solutions (we have not found a solution which is among the best n or m
ones). In case this is true the current Size is removed from Sizes. It is important
to note, that this is only done if Size is equal to the smallest member of Sizes.
This is due to the fact that if we have managed to find an improvement for a
smaller fixed set than Size, it is expected that we have just been “unlucky” and
there is no need to remove this value from the search. This procedure is repeated
until the array Sizes is empty or some other termination criterion is satisfied.
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4 Results

In this section we present the results of our computational experiments used to
evaluate the performance of the proposed method. This has been done in a com-
parison with the GRASP algorithm presented in [26], the dynamic convexized
method (DCTSP) from [37] and the ant colony optimization combined with a
the 2-OPT local search (ACO-2OPT) [32]. The focus of the comparison is on
the quality of found solutions.

The FSS and GRASP have been evaluated for both 2-OPT and 3-OPT as
local searches. In case of the DCTSP a combination of 2-OPT and 3-OPT has
been used as a local search. GRASP has been included to be able to evaluate the
effect of the learning mechanism included in the FSS. DCTSP has been used in
the comparison since it is a good representative of a metaheuristic whose search
is focused on regions near the best solution. The comparison with ACO-2OPT
is used to show the advantage of having a learning mechanism dependent on
the local search, which is the case for FSS but not ACO-2OPT. In case of the
FSS the randomized greedy algorithm used an RCL with 20 elements. In case
of both local searches, 2-OPT and 3-OPT, the same size of RCL has been used.
To increase the computational efficiency of the local searches we have used the
standard approach of “don’t look bits” (DLBs) [3]. Note that when we apply
the local search inside the main loop of FSS, some of the DLBs could be preset
based on the fixed set which significantly decreased the computational cost. The
parameters for FSS are the following; k = 10 random solutions are selected
from the best n = 500 ones for the set of solutions Skn. The base solution is
selected from the m = 100 best solutions. The size of the initial population was
100. The stagnation criterion was that no new best or high quality solution has
been found in the last Stag = 100 iterations for the current fixed set size. The
FSS and GRASP with 2-OPT have been implemented in C# using Microsoft
Visual Studio 2017. The calculations have been done on a machine with Intel(R)
Core(TM) i7-2630 QM CPU 2.00 GHz, 4 GB of DDR3-1333 RAM, running on
Microsoft Windows 7 Home Premium 64-bit.

The comparison of the methods has been done on the standard benchmark
library TSPLIB [29]. The test instances are the same as in [37]. A total of 48 test
instances with Euclidean distances are used, with the number of nodes ranging
from 51 to 2392. Note that in FSS the fact that distances are Euclidean is not
exploited. The termination criterion was that a maximal number of solutions
has been generated. The limit was the same as in [37], more precisely in case
of problem instances having less than 1000 nodes it was 100|V |, with V the
set of nodes of the considered instance, and in case of larger instances it was
10|V |. For each of the instances a single run of each of the methods has been
performed, as in [37]. The results of the computational experiments can be seen
in Table 1. In it, the results for DCTSP are taken from [37] and for GRASP with
3-OPT are taken from [26]. Note that the results for GRASP-3OPT are very
similar to the ones from [26] and slightly better than our implementation. In
case of ACO − 2OPT , the results for the same number of generated solutions
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and applied local searches have been taken from [32]. Note that these results
correspond to an average of ten independent runs.

From the results in Table 1, we can first observe that the GRASP-2OPT has
a significantly worse performance than all other methods finding best known
solutions for only four instances and having an average relative error of 2.73%. In
case of FSS-2OPT, the improvement is very significant: 20 known best solutions
are found and the average relative error is 0.40%. What is very interesting is
that FSS-2OPT performs only slightly worse than GRASP-3OPT which finds
22 known best solutions and has an average relative error of 0.39%. This indicates
that the use of the proposed method can be very beneficial in case of less powerful
local searches. The FSS-2OPT has found a higher quality solution than ACO-
2OPT for each of the test instances from [32]. The average relative error of
FSS-2OPT, on these instances, is 0.36% compared to 1.65% of ACO-2OPT.

Although FSS-2OPT has an overall worse performance than DCTSP, it man-
ages to find better solutions for five problem instances. From the results in
Table 1, it is evident that FSS-3OPT has the best performance. It manages to
find better solutions than all the other methods for all instances or equal in case
methods have found best known solutions. It finds three more known optimal
solutions than DCTSP and has a notable improvement in relative average error.
It is important to note that FSS-3OPT never has an error greater than 0.40%.

The parameters selected for specifying FSS have been chosen empirically
through extensive testing. Overall the FSS is not highly sensitive to these param-
eters. The parameter k used to specify the number of solutions selected for gen-
erating the set Skn had the following effect. In case of small values, the selection
would result in highly randomized fixed sets. The reason for this is that there are
no clear “good elements”, especially in case of larger problem instances where
there are not many common elements in all the solutions. In case of large values
of k, the method would select very similar fixed sets. The parameter m used
to specify the population from which the base solution would be selected has
the following effect. In case of small values of m the convergence speed would
initially be very fast but would quickly get trapped in locally optimal solutions.
This is due to the fact that it becomes very hard to find new high quality solu-
tions. Such values of m are useful in case we can only generate a small number
of solutions. In case of high values of m, the convergence speed is much slower.
The problem is that when the fixed set is generated for a lower quality solution
B, although the method manages to find solutions of higher quality than B, it is
unlikely that very high quality ones will be found. The effect of parameter n for
specifying the size of the population used for generating Skn had a similar effect
but to a much lower extent. We found that the best choice of parameters for
stagnation, both for finding best and high quality solutions, was the same as the
number of iterations from which GRASP would rarely find new best solutions.
In general, it is important to avoid very small values for this parameter because
it results in prematurely stopping the evaluation of small fixed sets.

In Table 1 we did not include computational times, since they are highly
dependent on structures used for implementing the local searches. The same
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Table 1. Comparison of the proposed algorithms with GRASP and DCTSP for differ-
ent TSPLIB instances.

Instance Tour length Relative error [%]

2OPT 3OPT Known
best

2OPT 3OPT
GRASPACO FSS GRASPDCTSPFSS GRASPACOFSS GRASPDCTSPFSS

eil51 426 - 426 426 426 426 426 0.00 - 0.00 0.00 0.00 0.00

berlin52 7542 - 7542 7542 7542 7542 7542 0.00 - 0.00 0.00 0.00 0.00

pr76 108351 - 108159 108159 108159 108159 108159 0.18 - 0.00 0.00 0.00 0.00

rat99 1223 - 1211 1211 1211 1211 1211 0.99 - 0.00 0.00 0.00 0.00

kroA100 21282 21427 21282 21282 21282 21282 21282 0.00 0.68 0.00 0.00 0.00 0.00

kroB100 22157 - 22141 22141 22141 22141 22141 0.07 - 0.00 0.00 0.00 0.00

kroC100 20802 - 20749 20749 20749 20749 20749 0.26 - 0.00 0.00 0.00 0.00

kroD100 21468 - 21309 21294 21294 21294 21294 0.82 - 0.07 0.00 0.00 0.00

kroE100 22106 - 22100 22068 22068 22068 22068 0.17 - 0.15 0.00 0.00 0.00

rd100 7960 - 7910 7910 7910 7910 7910 0.63 - 0.00 0.00 0.00 0.00

eil101 638 - 629 629 629 629 629 1.43 - 0.00 0.00 0.00 0.00

lin105 14379 - 14379 14379 14379 14379 14379 0.00 - 0.00 0.00 0.00 0.00

pr107 44394 - 44303 44303 44303 44303 44303 0.21 - 0.00 0.00 0.00 0.00

pr124 59159 - 59030 59030 59030 59030 59030 0.22 - 0.00 0.00 0.00 0.00

ch130 6135 - 6110 6110 6110 6110 6110 0.41 - 0.00 0.00 0.00 0.00

pr136 98614 - 96920 96772 96772 96772 96772 1.90 - 0.15 0.00 0.00 0.00

pr144 58554 - 58537 58537 58537 58537 58537 0.03 - 0.00 0.00 0.00 0.00

ch150 6586 - 6549 6528 6528 6528 6528 0.89 - 0.32 0.00 0.00 0.00

kroA150 26768 - 26524 26524 26525 26524 26524 0.92 - 0.00 0.00 0.00 0.00

pr152 74315 - 73682 73682 73682 73682 73682 0.86 - 0.00 0.00 0.00 0.00

rat195 2391 - 2330 2331 2323 2323 2323 2.93 - 0.30 0.34 0.00 0.00

d198 16000 15856 15803 15788 15780 15786 15780 1.40 0.48 0.15 0.05 0.04 0.00

kroA200 29803 - 29368 29380 29382 29368 29368 1.48 - 0.00 0.04 0.00 0.00

kroB200 29909 - 29447 29482 29437 29437 29437 1.60 - 0.03 0.15 0.00 0.00

ts225 127485 - 127301 126643 126643 126643 126643 0.66 - 0.52 0.00 0.00 0.00

pr226 80714 - 80369 80414 80369 80369 80369 0.43 - 0.00 0.06 0.00 0.00

gil262 2456 - 2378 2385 2379 2378 2378 3.28 - 0.00 0.29 0.04 0.00

pr264 50744 - 49135 49135 49135 49135 49135 3.27 - 0.00 0.00 0.00 0.00

a280 2658 - 2584 2589 2579 2579 2579 3.06 - 0.19 0.39 0.00 0.00

pr299 49522 - 48256 48235 48207 48191 48191 2.76 - 0.13 0.09 0.03 0.00

lin318 43324 42426 42185 42538 − 42029 42029 3.08 0.94 0.37 1.21 - 0.00

rd400 15986 - 15322 15385 15299 15284 15281 4.61 - 0.27 0.68 0.12 0.02

fl417 12066 - 11883 11895 11883 11871 11861 1.73 - 0.19 0.29 0.19 0.08

pr439 110564 - 107259 107401 107303 107217 107217 3.12 - 0.04 0.17 0.08 0.00

pcb442 52790 51794 50945 50946 50860 50846 50778 3.96 2.00 0.33 0.33 0.16 0.13

d493 36192 - 35055 35253 35136 35018 35002 3.40 - 0.15 0.72 0.38 0.05

att532 28965 28233 27860 28180 − 27735 27686 4.62 1.98 0.62 1.78 - 0.17

rat575 7143 - 6795 6863 6814 6776 6773 5.46 - 0.32 1.33 0.61 0.04

p654 35113 - 34812 34707 34658 34645 34643 1.36 - 0.49 0.18 0.04 0.01

d657 51226 - 49258 49531 49110 49014 48912 4.73 - 0.71 1.27 0.40 0.21

rat783 9352 9142 8869 8897 8848 8815 8806 6.20 3.81 0.72 1.03 0.48 0.10

pr1002 276251 - 264737 262060 260218 259512 259045 6.64 - 2.20 1.16 0.45 0.18

pcb1173 61210 - 57788 57676 57061 56965 56892 7.59 - 1.57 1.38 0.30 0.13

d1291 54537 - 51026 51616 51099 50862 50801 7.35 - 0.44 1.60 0.59 0.12

rl1304 270441 - 255867 255185 253842 253361 252948 6.92 - 1.15 0.88 0.35 0.16

rl1323 288538 - 271837 273115 271914 270678 270199 6.79 - 0.61 1.08 0.63 0.18

fl1400 21044 - 20398 20310 20167 20149 20127 4.56 - 1.35 0.91 0.20 0.11

fl1577 23274 - 22512 22427 22352 22300 22249 4.61 - 1.18 0.80 0.46 0.23

rl1889 339151 - 322883 319250 317825 317801 316536 7.14 - 2.01 0.86 0.41 0.40

d2103 86179 - 81197 81312 81078 80551 80450 7.12 - 0.93 1.07 0.78 0.13

pr2392 409970 - 387169 386017 380030 379307 378032 8.45 - 2.42 2.11 0.53 0.34

Number of found best known solutions (instances from [37]) 2 - 20 22 27 31

Average relative error (instances from [37]) 2.73 - 0.40 0.39 0.15 0.05
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(a) Less than 1000 nodes (b) More than 1000 nodes

Fig. 2. Average relative error for multiple TSPLIB problem instances with normalized
execution time

(a) rd400 (b) pr1002

Fig. 3. Average solution quality of ten independent runs of FSS and GRASP for the
TSPLIB problem instances

information is excluded in the articles used for comparison. We would like to
note that in case of our implementation of FSS and GRASP there was a sig-
nificant decrease in computational time. This is due to the fact of a smaller
candidate set for the greedy algorithm. The second reason is that the number
of iterations needed to generate the solution was significantly lower. As it is
well-known, the computational cost of 2-OPT and 3-OPT local searches is sig-
nificantly higher than for generating the initial solution. An extensive analysis
of the computational cost of 2-OPT can be found in [11]. In case of FSS, we
exploit the fact that the fixed set is a subset of a locally optimal base solution
B through DLBs. More precisely, the DLBs of all the inner points of paths in
the fixed set can be preset. Note that the number of preset DLBs is close to the
size of the fixed set. In practice this means instead of having the computational
cost of the first iteration of 2-OPT being proportional to |V |C, were C is the
size of the RCL, it is close to (|V | − |F |)C. Similar analysis can be done for the
3-OPT local search. In case of very large fixed sets, the time FSS generated a
new solution and applied the local search was a fraction of the time needed to
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accomplishing the same task in GRASP. It is expected that a similar behavior
would be present in applying FSS to other combinatorial problems.

This decrease in computational cost of the FSS compared to GRASP directly
effects the convergence speed. In Fig. 2 we show the average relative error for
instances having up to/above 1000 nodes for normalized time. The normalization
has been done based on the maximal time needed for all the methods to find
the best solutions for each instance. From these results it is evident that the use
of FSS significantly increases the convergence speed. Another illustration of this
behavior can be seen in Fig. 3 for representative problem instances. In each of the
figures the convergence speed of the average solution length for ten independent
runs of GRASP and FSS, with 2-OPT and 3-OPT used as local searches, are
shown. It can be observed that there is a drastic increase in the convergence
speed after the initial population is generated for the FSS.

5 Conclusion

In this paper we have presented a new metaheuristic called fixed set search that
exploits the common elements of high quality solutions. The proposed meta-
heuristic represents a method of adding a learning mechanism to the GRASP
metaheuristic. It is expected that FSS can be applied to a wide range of problems
since the only requirement is that the solution can be represented in a set form.
A very important aspect of FSS is the simplicity in which a GRASP algorithm
can be adapted to it. This is done with two basic steps. Firstly, the randomized
greedy algorithm, used in the GRASP, is adapted to a setting were some ele-
ments are preselected. We have shown that this can be trivially achieved in case
of the TSP, and it is expected that this is the case for many other combinatorial
problems. Secondly, the method for generating a fixed set needs to be imple-
mented which consists in selecting several solutions and tracking the number of
times their elements occur in a selected base solution.

We have illustrated the effectiveness of the proposed approach on the TSP.
Our computational experiments have shown that the proposed method has a
significantly better performance than the basic GRASP approach when both
solution quality and convergence speed are considered. Further, we have shown
that the approach has a considerably better performance than the dynamic con-
vexized method applied to the TSP in case 3-OPT is used as a local search.
The proposed method has proven very efficient in improving the performance of
GRASP in case of a less powerful local search.

It is important to note that there is a wide range of potential improvements
to the proposed method. Some examples are having a more intelligent method
of selecting the solutions used in generating the fixed set, or adapting the com-
putational effort used to solve the subproblem related to a specific fixed set. Our
objective was to show that even in the most basic form the proposed method
can produce a significant improvement. We would like to note that the concept
of using a fixed set can potentially be used to hybridize other metaheuristics like
ACO, genetic algorithms and similar, for solving large scale problems through
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focusing the search in some promising areas of the solution space. On the other
hand the idea of fixing elements of a solution can easily be included in mixed
integer programs so there is a potential of adapting FSS to a matheuristic setting.
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Abstract. There is a strong interplay between network reliability and
connectivity theory. In fact, previous studies show that the graphs with
maximum reliability, called uniformly most-reliable graphs, must have
the highest connectivity. In this paper, we revisit the underlying theory in
order to build uniformly most-reliable cubic graphs. The computational
complexity of the problem promotes the development of heuristics. The
contributions of this paper are three-fold. In a first stage, we propose
an ideal Variable Neighborhood Descent (VND) which returns the graph
with maximum reliability. This VND works in exponential time. In a
second stage, we propose a hybrid GRASP/VND approach that trades
quality for computational effort. A construction phase enriched with a
Restricted Candidate List (RCL) offers diversification. Our local search
phase includes a factor-2 algorithm for an Integer Linear Programming
(ILP) model. As a product of our research, we recovered previous optimal
graphs from the related literature in the field. Additionally, we offer new
candidates of uniformly most-reliable graphs with maximum connectivity
and maximum number of spanning trees.

Keywords: Network optimization · Maximum reliability · Heuristics
GRASP · VND · ILP

1 Motivation

In network reliability analysis, the goal is to find the probability of correct oper-
ation of a system [2,6]. The context of the original problem determines our
notion of correct operation. For instance, delay sensitive applications such as
videoconference require a hop-constrained network, where the terminals should
be connected by short paths [5]. Wireless systems deal with a hostile environ-
ment with mobility (fading, handover and coverage, among other challenges).
The goal is to achieve a Grade of Service (GoS) during the busy hour, and node-
reliability analysis is more suitable for this context [12]. The interaction between
peers in a cooperative environment suggests potential links, and a link-reliability
analysis is adequate for this context. Peer-to-peer systems suffer from starvation
when the missing-piece syndrome affect all the system [9]. Clearly, the swarm
c© Springer Nature Switzerland AG 2019
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(or population) should be connected, and the all-terminal reliability model is a
suitable tool in order to understand this phenomena.

Several researchers from different fields of knowledge (mathematics, computer
science, engineering), shaped the body of network reliability analysis, given the
application and importance of the underlying models. A fundamental problem is
to find the connectedness probability of a random graph, subject to link failures,
called the all-terminal reliability. The scientific literature around this problem
is vast; however, this problem is not fully understood yet. The corresponding
practical problem is to connect p sites using q links in the best way, this is, to
find the graph whose all-terminal reliability is maximum among all (p, q)-graphs.
Such graphs are called uniformly most-reliable graphs.

The main contributions of this paper are the following:

1. An exact VND that returns uniformly most-reliable graphs is presented.
2. A hybrid GRASP/VND heuristic is introduced in order to find graphs with

high reliability. It trades quality for computational feasibility.
3. An Integer Lineal Programming (ILP) formulation called Regularity Problem

is proposed. The goal is to find a regular graph starting from a non-regular
one moving as minimum number of links as possible.

4. A factor 2 for the Regularity Problem is introduced.
5. Novel networks that show high reliability and connectivity are found, as a

result of our hybrid heuristic.

The document is organized in the following manner. Section 2 formally states
the problem and breakthroughs in the field of uniformly most-reliable graphs.
Section 3 presents an exact VND that runs in exponential time, and a hybrid
GRASP/VND heuristic that trades quality for computational feasibility. As a
product, we offer novel cubic networks with high reliability in Sect. 4. Concluding
remarks and open problems are discussed in Sect. 5.

2 Uniformly Most-Reliable Graphs

2.1 Definition

In the following, we work with undirected graphs without loops, and a graph
with p nodes and q links is a (p, q)-graph.

Definition 1. Consider a graph G with perfect nodes but independent link fail-
ures with identical probability ρ ∈ (0, 1). The all-terminal reliability, RG(ρ), is
the probability that the resulting subgraph remains connected.

The unreliability UG(ρ) = 1 − RG(ρ) can be expressed using sum-rule:

UG(ρ) =
q∑

k=0

mk(G)ρk(1 − ρ)q−k, (1)

being mk(G) the number of spanning disconnected subgraphs of G with exactly
q −k links. Therefore, RG(ρ) is a polynomial in ρ ∈ (0, 1), and its determination
is reduced to counting the numbers {mk}k=0,...,q.
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Definition 2. A (p, q)-graph H is uniformly most-reliable if RH(ρ) ≥ RG(ρ)
for all (p, q)-graph G and all ρ ∈ (0, 1).

Alternatively, H is uniformly most-reliable if its unreliability UH(ρ) is dom-
inated (i.e., upper-bounded) by all functions UG(ρ) for all (p, q)-graph G.

2.2 Breakthroughs

In this section we present fundamental results that are the cornerstone in the
theory of uniformly most-reliable graphs. The following section briefly describes
the main findings that complement the fundamental results.

In 1977, Arnie Rosenthal formally proved that the K-terminal reliability
evaluation belongs to the class of NP-Hard computational problems [19]. The
key concept of the proof is the reducibility introduced in 1972 by Richard Karp,
which represents a foundational work in computational complexity [13]. As corol-
lary, finding uniformly most-reliable graphs is a hard problem as well.

Observe that if mk(H) ≤ mk(G) for all k ∈ {0, . . . , q} and (p, q)-graph
G, then H is uniformly most-reliable. This is a simple but elegant interplay
between network reliability analysis and connectivity theory. Curiously enough,
the converse is still an open problem:

Conjecture 1 (Boesch et al.). If G is uniformly most-reliable (p, q)-graph, then
mk(G) ≤ mk(H) for all (p, q)-graph H.

If λ(H) denotes the connectivity of H and τ(H) its number of spanning trees,
the following necessary criterion holds [1]:

Corollary 1. A uniformly most-reliable graph H must have the maximum tree-
number τ(H), maximum connectivity λ(H), and the minimum number mλ(H).

Corollary 1 wakes up interest in two special sub-problems: the maximum
connectivity and maximum tree-number of a graph. In the second book ever
written in graph theory, Claude Berge challenges the readers to find the graph
with maximum connectivity among all graphs with a fixed number of nodes and
links. Frank Harary provided not only a full answer, but also found connected
graphs with minimum and maximum diameter [10]. The idea behind his con-
struction is simple: by handshaking, the average degree of a (p, q)-graph is 2q

p .
Therefore, λ ≤ � 2q

p �. Harary graphs achieve this upper-bound, which represents
the maximum connectivity of a graph.

Gustav Kirchhoff solved linear time-invariant resistive circuits, and as corol-
lary he introduced the Matrix-Tree theorem, where he counts the number of
spanning trees of a connected graph (i.e., the tree-number) using the determi-
nant of a matrix [3,15]. This breakthrough in electrical systems launched the
theory of trees, which provides the building blocks in communication design.
However, the corresponding extremal problem is not well understood: find the
graph with a fixed number of nodes and links that maximizes the tree-number.
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For convenience we say that a (p, q)-graph, H, is t-optimal if τ(H) ≥ τ(G)
for every (p, q) graph G. Briefly, Corollary 1 claims that uniformly most-reliable
graphs must be t-optimal and max-λ min-mλ, where λ denotes the edge connec-
tivity.

Another breakthrough from the related literature is a reliability improving
graph transformation called swing surgery, independently discovered by Kel-
mans [14] and Satyanarayana et al. [20]. Specifically, if we are given a (p, q)-
graph G = (V,E), two nodes x, y ∈ V with respective neighboring nodes Sx

and Sy with Sx \ {y} ⊂ Sy, B ⊆ Sy − {x} such that B ∩ Sx = ∅, and G′ the
graph obtained by G by removing the links {(y, z), z ∈ B} and adding the links
{(x, z), z ∈ B}, then RG′(ρ) ≥ RG(ρ) for all ρ ∈ (0, 1).

2.3 Findings

Redundancy is of paramount importance in communication networks. For that
reason, in the following we are specifically focused on uniformly most-reliable
cubic graphs (i.e., 3-regular connected graphs). By handshaking, this is the case
of (2r, 3r)-graphs for some r ≥ 2. Recall that Möbius graph Mn is precisely
the elementary cycle C2n together with all the diameters (opposite nodes are
also linked). So far, the findings of uniformly most-reliable cubic graphs can be
summarized in the following list:

– K4 = M2; complete graph with 4 nodes; case r = 2; see [4].
– K(3,3) = M3; complete bipartite graph; case r = 3; see [23].
– W4 = M4; Wagner graph (r = 4); see [18].
– P5; Petersen graph (r = 5); see [16].
– Y6; Yutsis graph (r = 6); see [22].
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(a) K4 = M2 (b) K(3,3) = M3 (c) M4

Fig. 1. Möbius graphs M2, M3 and M4

The reader is invited to consult the corresponding references for a mathematical
proof that these graphs are uniformly most-reliable. They are sketched in Figs. 1
and 2. By computational limits, currently it is not possible to find uniformly
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Fig. 2. Petersen P5 and Yutsis graph Y6.

most-reliable cubic graphs for r ≥ 7. The goal of this paper is to build highly
reliable cubic graphs for r ∈ {7, . . . , 10}, finding a trade-off between quality and
computational effort.

2.4 Equivalent Combinatorial Problem

It is worth to remark that the problem of finding uniformly most-reliable
graphs is a simultaneous minimization of an uncountable family of numbers
{UG(ρ)}ρ∈(0,1). However, if Boesch Conjecture holds, we observe that the prob-
lem can be translated to a (single-objective) combinatorial optimization prob-
lem. Specifically, let us denote m(G) to the number of disconnected spanning
subgraphs for G. By the definition of link disconnecting sets, we get that:

m(G) =
q∑

k=0

mk(G).

Proposition 1. Consider natural numbers p and q such that there exists a
unique (p, q)-graph. If Boesch conjecture holds, then G is uniformly most-reliable
(p, q) graph if and only if m(G) is minimum.

Proof. Assume that G is uniformly most-reliable. By Boesch conjecture, every
disconnecting set mk(G) is minimum among all the other (p, q)-graphs. There-
fore, the number m(G) =

∑q
k=0 mk(G) is also minimum in this set.

For the converse, consider a (p, q)-graph G such that m(G) is minimum. By
hypothesis, there exists some (p, q)-graph, denoted by H. By Boesch conjecture,
mk(H) ≤ mk(G). Since m(G) =

∑q
k=0 mk(G) is minimum, the only possibility is

that mk(G) = mk(H) for all k. Therefore, G and H share the same unreliability
polynomial. By uniqueness, we must have G = H, and the statement is proved.

In short, Proposition 1 tells us that if Boesch conjecture holds, then finding
uniformly most-reliable graphs is equivalent to the minimization of disconnected
spanning subgraphs m(G). This result reinforces the evidence that the optimum
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graphs under connectivity (i.e., purely deterministic) and reliability optics (prob-
abilistic) share common properties.

In this work we are focused on the minimization of disconnecting spanning
subgraphs m(G). In this paper, we offer highly reliable cubic graphs, which share
strong connectivity properties as well, supported by Proposition 1.

It is well-known that finding the coefficients {mk(G)}k=0,...,q belongs to the
hierarchy of #P-Complete counting problems [21]. Furthermore, the number
m(G) =

∑q
k=0 mk(G) = T (1, 2), is precisely Tutte polynomial evaluated at the

point (1, 2), which is a #P-Hard counting problem, even for bipartite planar
graphs [11]. Here, we propose a pointwise statistical estimation of this number.
Monte Carlo is a noteworthy computational tool for simulation. From a macro-
scopic point of view, the idea is to faithfully simulate a complex system (or a
part of it), and consider N independent experiments of that simulation, in order
to determine the performance of the system (or subsystem) and assist decisions
on it [8].

We will use Crude Monte Carlo (CMC) in order to provide an unbiased
statistical estimation for m(G). First of all, observe that m(G) is strictly related
with the unreliability evaluation at ρ = 1

2 :

UG(
1
2
) =

q∑

k=0

mk(G)(
1
2
)k(

1
2
)q−k =

m(G)
2q

. (2)

Equation 2 shows that, alternatively, we must minimize UG( 12 ), or the prob-
ability that the resulting subgraph is disconnected under identical independent
link failures with probability ρ = 1

2 . For any given graph G, let us consider a
sample of random graphs G1, . . . , GN picked independently with link failures
ρ = 1

2 , and independent Bernoulli variables X1, . . . , XN such that Xi = 1 if and
only if Gi is disconnected. By strong law of large numbers, the mean sample XN

converges almost surely to u = UG( 12 ). Therefore, in order to decide whether

m(G1) < m(G2) or not, we use the criterion XN
1

< XN
2

for N large enough,
being XN

i
the mean sample for the graph Gi. This criterion avoids the full

determination of the coefficients mk(G), and it will be useful for the design of a
GRASP/VND heuristic to build highly reliable graphs.

3 Metaheuristics

In this section we develop an ideal VND metaheuristic that returns a uniformly
most-reliable graph. Since it has exponential time, we must trade accuracy for
computational effort. As a consequence, a full GRASP/VND heuristic is intro-
duced.

3.1 VND

Variable Neighborhood Descent (VND) explores several neighborhood structures
in a deterministic order. Its success is based on the simple fact that different
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neighborhood structures do not usually have the same local minima. Thus, the
local optima trap problem is addressed by a deterministic change of neighbor-
hoods [7].

Recall that a simultaneous minimization of the coefficients {mk(G)}k=0,...,q

is a sufficient condition for G to be uniformly most-reliable. Therefore, if there
is one local search dedicated to each coefficient, the output must be uniformly
most-reliable. Trivial neighborhood structures where all (p, q)-graphs are neigh-
bors of some fixed graph work. However, the cardinality of the search-space
of (p, q)-graphs is

(
p(p−1)/2

q

)
. Therefore, an exhaustive search among the trivial

neighborhood structures of all (p, q)-graphs is computationally prohibitive.

3.2 GRASP/VND Heuristic

GRASP is an iterative multi-start process which operates in two phases [17]. In
the Construction Phase a feasible solution is built whose neighborhood is then
explored in the Local Search Phase [17]. The second phase is usually enriched
by means of different variable neighborhood structures, for instance, VND.

We adapt the previous ideal VND in order to obtain a feasible computational
solution in a multi-start fashion with diversification in a previous construction
phase. Algorithm HighlyReliable receives a maximum number of iterations iter,
a natural number r ≥ 2, and returns a highly reliable cubic (2r, 3r)-graph.

Algorithm 1. G = HighlyReliable(r, iter)
1: G ← Mr

2: for i = 1 to iter do
3: Ginput ← GreedyRandomized(r, α)
4: G(i) ← V ND(Ginput)
5: if m(G(i)) ≤ m(G) for all k then
6: G ← G(i)
7: end if
8: end for
9: return G

In Line 1, the graph is initialized in Möbius graph Mr, which is known to
be optimal for the cases where r ∈ {2, 3, 4}. In a for-loop with iter iterations
(Lines 2–8), we iteratively call in sequence the Construction Phase (Line 3) and
VND (Line 4). If the number of disconnecting spanning subgraphs m(G(i)) is
dominated by m(G), the current graph G is replaced by G(i) (Lines 5–6). It is
worth to remark that the test m(G(i)) ≤ m(G) considers the criterion detailed
in Subsect. 2.4. The best graph among all the iterations is returned as the output
(Line 9).

In the following, we provide details of the Construction Phase
(GreedyRandomized(r) from Line 3) and Local Search Phase (V ND function,
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from Line 4). The result is not necessarily a uniformly most-reliable network,
but a highly reliable cubic network, which is useful for practical purposes.

Algorithm 2. G = Construct(r)
1: U ← RandomNumbers(r(r − 1)/2)
2: G ← RandomTree(U)
3: δ ← minv∈G{deg(v)}
4: Δ ← maxv∈G{deg(v)}
5: RCL ← {(vi, vj) : deg(vi)deg(vj) ≤ δ2 + α(Δ2 − δ2)}
6: for i = 1 to r + 1 do
7: ei ← Random(RCL)
8: G ← G ∪ {ei}
9: RCL ← Update(RCL, ei)

10: end for
11: return G

Construction Phase. The main idea is to start with a random tree with
2r − 1 links and insert adequately r + 1 links meeting a final size of 3r links. In
Line 1, for every pair of potential links we pick independent numbers in (0, 1)
uniformly chosen at random. In this way, we get random costs cij for every
pair of nodes vi and vj . A random tree is found in Line 2. Specifically, function
RandomTree applies Kruskal algorithm with the costs cij . The minimum and
maximum degree of the resulting graph are found in Lines 3 and 4 respectively.
The addition of the remaining r + 1 links takes place in the block of Lines
5–10. A Restricted Candidate List, RCL, selects a percentage of α links e(i,j)
with the lowest product degrees deg(vi) × deg(vj); see Line 5. In the for-loop
of Lines 6–10, links are iteratively picked from the RCL (Line 7) and added
to the graph G (Line 8). Observe that the RCL should be updated, since the
degrees are modified in each iteration. This operation takes place in function
Update(RCL, ei) (Line 9). Clearly, G is not necessarily regular, but the effect of
the RCL provides diversity in the solutions. Naturally, it trades greediness for
randomization with the parameter α, and tends to return almost-regular graphs.

Local Search Phase. In the Local Search Phase, a VND is considered with
the following movements:

1. Surgery: applies the graph transformation called Swing Surgery (see Sub-
sect. 2.2).

2. Regular: returns a regular graph after adequate link addition/deletions.
3. Crossing: tests whether the tree-number is increased after all feasible graph-

crossings.

A graph G is healthy if there is no feasible surgery that improves the reliability
uniformly in (0,1). In other words, it is locally optimum with respect to local
movements under Swing Surgery. Analogously, we say that G is strong if G
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has the largest tree-number with respect to all feasible crossings (i.e., it is a
locally optimum solution with respect to local movements of Crossing). Figure 3
presents the full VND. The reader can observe that the output G is regular,
healthy and strong.

In the following, we explain the three movements. Let us start with Surgery
and Crossing (as we will see, Regular movement includes an ILP formulation, a
new result on approximation algorithms and an exact polynomial time algorithm
to solve it). Surgery just applies a reliability-improving graph transformation
called Swing Surgery from Subsect. 2.2 whenever possible. Finally, Crossing tries
to find an edge-crossing with largest tree-number. Specifically, if the links e1 =
(x, y) and e2 = (z, t) belong to G, but (x, z), (y, t) do not belong to G, Crossing
counts the tree-number of the new graph G′ = (G−{(x, y), (z, t)}∪{(x, z), (y, t)}.
The tree-number is efficiently found by Kirchhoff theorem, as any cofactor of the
Laplacian matrix [3].

The main idea of Regular is to return a regular graph, starting from a non-
regular one. Regular movement is a solution to an Integer Linear Programming
formulation. Consider the input graph G = (V,E), the resulting regular graph
G′ = (V,E′) and the following binary variables:

– e(i,j) = 1 iff (i, j) ∈ E (adjacency matrix for G);
– a(i,j) = 1 iff (i, j) ∈ E′ − E (links added to G′);
– r(i,j) = 1 iff (i, j) ∈ E − E′ (links removed from G).

Our goal is to minimize the number of addition/deletions in order to return a
3-regular graph G′. The Regularity Problem can be formalized by the following
ILP:

min
∑

i<j

a(i,j) (3)

s.t. (4)
∑

i<j

a(i,j) =
∑

i<j

r(i,j) (5)

∑

i<j

a(i,j) + e(i,j) − ri,j = 3∀i ∈ {1, . . . , 2r} (6)

a(i,j); r(i,j) ∈ {0, 1} ∀i < j. (7)

Constraint 5 states that the number of added/removed links must be iden-
tical, so, |E| = |E′|. Constraint 6 state that the resulting graph G′ must be
3-regular. Finally, Constraint 7 determine the binary domain for the decision
variables a(i,j) and r(i,j).



A Hybrid GRASP/VND Heuristic for the Design 87

In the following, Regular movement is specified.

Algorithm 3. G = Regular(G)
1: Δ ← maxv∈V (Gin){deg(v)}
2: δ ← minv∈V (Gin){deg(v)}
3: while δ(G) < Δ(G) do
4: x ← arg maxu∈V {deg(u)}
5: y ← arg minu∈V {deg(v′)}
6: z ← Random(N(x) − N(y))
7: G ← (G − (x, z)) ∪ (y, z)
8: end while
9: return G

Regular function receives a (p, q)-graph G and returns a regular graph. The
key is to move links from nodes with the highest degree to nodes with the lowest
degree. In Lines 1–2, the maximum and minimum degrees for the input graph
are found. A while-loop (Lines 3–8) takes effect whenever δ < Δ. Since the
degree of some low-degree (high-degree) node is increased (resp. decreased) by
a unit in all the iterations, the number of iterations is finite, and the algorithm
returns a 3-regular graph. In Lines 4 and 5, we pick some node x (y) with the
highest (resp. lowest) degree. Since deg(x) > deg(y), there exists some node, z,
such that z is adjacent to x but non-adjacent to y (Line 6). In the iteration, the
link (x, z) is deleted, while (y, z) is added (Line 7). Observe that, in the resulting
graph, the degree of x (y) is decreased (resp. increased), but the degree of the
pivotal node z is identical. The output of while-loop must be a regular graph,
which is returned in Line 9.

Theorem 1. Regular is an approximation algorithm with factor 2 for the Reg-
ularity Problem.

Proof. In an arbitrary link addition/deletion, we can reduce at most 2 degrees of
high-degree nodes and increase 2 degrees in the set of low-degree nodes. Regular
performs methodically an addition/reduction of a single-degree in each move-
ment. Therefore, the number of movements during the execution of Regular is,
at most, twice the optimal solution. 
�

4 Results

By construction, it is clear that our GRASP/VND heuristic returns Mr for the
known cases r ∈ {2, 3, 4} (see Line 1 of Construction). In order to test the
effectiveness of our GRASP/VND heuristic, we look for r ∈ {5, . . . , 10}. We
know beforehand that the uniformly most reliable graph for r = 5 is Petersen
graph [16]; when r = 6 Yutsis graph Y6.

Figure 4 sketches the six resulting graphs for r ∈ {5, 6, 7, 8, 9, 10} using
iter = 105 iterations, α = 0.5 and sample size N = 104 for Crude Monte
Carlo for the pointwise reliability estimation of UG( 12 ) as detailed in Subsect. 2.4.
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Fig. 3. Flow diagram for the Local Search Phase - VND.
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Heawood Graph Möbius-Kantor Graph

1

2
45

10

3

8

9

13
7 6

12

14

11

1

2
312

10

4

6

14

13

11
7 8

5

16

15

9

(c) UR7(
1
2
) = 0.9177 (d) UR8(

1
2
) = 0.94320

τ(R7) = 50421 τ(R8) = 248832

156
17

4

8

14

16

12
18 7 13

3

2

15

10

11

9 1
2

34
5

8

11

9

16

17

14
18

7 19
20

13

12

6

10

15

(e) UR9(
1
2
) = 0.9607 (f) UR10(

1
2
) = 0.97310

τ(R9) = 1265625 τ(R10) = 6422000

Fig. 4. Results for r ∈ {5, 6, 7, 8, 9, 10}



90 M. Bourel et al.

Figure 4(a) and (b) depict Petersen and Yutsis graphs respectively. These base-
steps confirm that our hybrid GRASP/VND heuristic is able to discover uni-
formly most-reliable graphs, as the recent literature in the field confirms with
mathematical proofs [16].

Curiously enough, the following cases for r ≥ 7 are not covered in the related
literature. The graphs produced for r = 7 and r = 8 are strongly symmetric,
and they are respectively Heawood and Möbius-Kantor graphs (Fig. 4(c) and
(d) depict both graphs). Finally, we could not identify the graphs from Fig. 4(e)
and (f) with a previous known name. These results are encouraging, since some
uniformly most-reliable graphs were identified. Furthermore, an exhaustive com-
putational test with cubic graphs with girth greater than 3 confirms that the
resulting graphs have the maximum tree-number (therefore, they are the only
candidates of uniformly most-reliable graphs).

5 Conclusions and Trends for Future Work

Reliability maximization is a relevant problem from network design. Potential
applications include virtual and wireless systems, and cooperative environments
in a hostile system, where the links may fail.

In the theory of reliability maximization, the goal is to find uniformly most-
reliable graphs. The breakthroughs and main result of this theory are here out-
lined. It has half a century of development; however, there are key questions
without concluding answers. Boesch conjecture and Wagner extension are just
examples.

Supported by the computational complexity of the problem, we first present
a VND metaheuristic that returns all uniformly most-reliable graphs. The main
drawback of this proposal is the computational effort. As a consequence, we
then develop a hybrid GRASP/VND heuristic that keeps the most meaningful
elements of the first VND implementation, enriched with a construction phase
in order to gain diversification.

The first results are encouraging. Our hybrid GRASP/VND was able to
detect a couple of previous uniformly most-reliable graphs from the related lit-
erature. Furthermore, it returns new candidates of such optimal graphs from a
reliability viewpoint.

There are several trends for future work. A powerful methodology to find
uniformly most-reliable graphs is not known. The power of different graph trans-
formations such as iterative augmentation and swing surgery is not explored yet.
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A Hybrid GRASP/VND Heuristic for the Design 91

References

1. Bauer, D., Boesch, F., Suffel, C., Van Slyke, R.: On the validity of a reduction of
reliable network design to a graph extremal problem. IEEE Trans. Circuits Syst.
34(12), 1579–1581 (1987)

2. Beineke, L.W., Wilson, R.J., Oellermann, O.R.: Topics in Structural Graph Theory.
Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge (2012)

3. Biggs, N.: Algebraic Graph Theory. Cambridge Mathematical Library. Cambridge
University Press, Cambridge (1993)

4. Boesch, F.T., Li, X., Suffel, C.: On the existence of uniformly optimally reliable
networks. Networks 21(2), 181–194 (1991)

5. Canale, E., Cancela, H., Robledo, F., Romero, P., Sartor, P.: Full complexity anal-
ysis of the diameter-constrained reliability. Int. Trans. Oper. Res. 22(5), 811–821
(2015)

6. Colbourn, C.J.: Reliability issues in telecommunications network planning. In:
Sansò, B., Soriano, P. (eds.) Telecommunications Network Planning. CRT, pp.
135–146. Springer, Boston (1999). https://doi.org/10.1007/978-1-4615-5087-7 8
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Computación y Control, Universidad Central de Venezuela, Caracas, Venezuela

ebert.brea@ucv.ve, ebertbrea@gmail.com,

https://www.researchgate.net/profile/Ebert Brea

Abstract. In this article we present a comparison of the performance
between a metaheuristic optimization method, Game of Patterns (GofP),
so-called by the author, and the well-known genetic algorithms (GAs),
through two implementations, namely: the GA of Scilab (SGA); and
the GA of the R Project for Statistical Computing (RGA). For this
purpose, we have selected a set of multimodal objective functions in
the n-dimensional Euclidean space R

n with a unique global minimum.
For comparing both metaheuristic optimization approaches, a perfor-
mance indicator of quality, denoted Q(p, n, s), was defined, which allows
us to measure the quality of the obtained global optimal solution for
each pth problem, in the n-dimensional space, when it is solved by each
metaheuristic optimization method s ∈ {GofP, SGA, RGA}. The indicator
Q(p, n, s) then depends on: the number of evaluations of the pth opti-
mization problem in the Euclidean space R

n, which has required the s
metaheuristic optimization method for identifying the global minimum;
and the distance between the location of its respective unique global min-
imum and the location of the minimum that has been identified by the s
metaheuristic optimization method. The paper also offers a brief expla-
nation of the GofP method, which has been developed for solving uncon-
strained mixed integer problems in the n × m-dimensional Euclidean
space R

n × Z
m.

Keywords: Game of Patterns · Genetic algorithms
Comparison of metaheuristic optimization methods

1 Introduction

Consider the following unconstrained nonlinear problem:

minimize
x∈Rn

f(x), (1)

where f(x) : R
n → R is a nonlinear objective function with just one global

minimum. Furthermore, we have also assumed that an explicit mathematical
expression of f(x) is not necessarily available.
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A metaheuristics method, so called Game of Patterns (GofP), has been
recently developed by the author for globally solving mixed integer nonlinear
problems [4,5], which is been here applied to some numerical examples in the
n-dimensional Euclidean space R

n for comparing it with the well known genetic
algorithms (GAs).

The author has obtained a very good performance when the GofP method
is applied to unconstrained mixed integer nonlinear optimization problems, for
identifying at least a global solution. Moreover, the GofP method has shown
to have an excellent performance when it is also applied to constrained mixed
integer nonlinear optimization problems. In this last case, the penalty function
approach has been applied for solving this case. The GofP method is based on
a zero-sum game framework, which was originally developed for globally solving
mixed integer nonlinear problems [4,5]. The GofP method is conformed by a
set of player. Each player carries out one iteration, at each round, of a search
algorithm called Mixed Integer Randomized Pattern Search Algorithm (MIRPS),
developed by Brea [3].

The main purpose of this paper is to show the results of statistically com-
parison between the GofP method and the implementations of the genetic algo-
rithms under: Scilab and the language and environment for statistical computing
R for solving minimization of an objective function under bounded constraints
[2,11,12].

The remainder of this article is organized as follows. A brief explanation of the
GofP method is discussed in Sect. 2. In Sect. 3 we also offer a short explanation
on the GAs. In Sect. 4, we describe the performance measure defined in this
research for comparing both metaheuristic optimization approaches. In Sect. 5
we show a set of nonlinear numerical problems and statistical summaries of
performance indicators for statistically comparing the metaheuristic approaches.
Finally, conclusions and future research are discussed in Sect. 6.

2 The Game of Patterns

Let P be the following unconstrained mixed integer nonlinear optimization prob-
lem,

minimize
(x,y)∈Rn×Zm

f(x, y), (2)

where f(x, y) : Rn × Z
m → R is a mixed integer nonlinear objective function.

Furthermore, note that an explicit mathematical expression of f(x, y) is not
necessarily available, which could be evaluated at each point (xt, yt)t by solving
a system of equations or by simulation models.

The main idea of the Game of Patterns (GofP) method for solving the prob-
lem P is based on a zero-sum game framework, wherein there are η players, and
each one of them is a randomized pattern search algorithm. In our case, each �th
player performs just one iteration of a novel random search algorithm for solving
mixed integer nonlinear problems, which is called the Mixed Integer Randomized
Pattern Search Algorithm (MIRPSA) [3]. The mixed integer randomized pattern
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search of the MIRPSA is modified by two main operations of the MIRPSA for
finding at least a local minimum of the problem P. These main operations are:
moving operation and shrinking operation. Each operation is carried out by the
MIRPSA when a set of conditions are present [3].

Therefore, the GofP method arranges the game among the set of mixed
integer randomized pattern searches H[k]

� at each kth game round, where each
�th player accounts with an initial balance b

[0]
� at the beginning of the game,

this is at the beginning of the 1st round. Namely, let Γ = {H�;S�;Q�}η
�=1 be a

framework of a zero-sum game defined by a set of η players {H�}η
�=1, wherein

each �th player has a set of S� strategies, and a pay-off function for each �th
player, which is given by Q� : ×η

�=1S� → N, [7].
The strategy of each �th player at each kth round is given by a random

number of trial points, which is given by a uniform distribution between n + m

and 2(n + m), within its mixed integer randomized pattern search H[k]
� . The

winner of each kth round is the player that had identified the best value of the
objective function. In this case, each loser must pay the winner an among equal
to its number of trial points. We must point out that, according to the rule of
the GofP, any �th active player H[k]

� will become a disqualified player H[k]

� at any
(k + 1)th round, if his account balance b

[k+1]
� , after the kth round, becomes less

than the minimum level of bet M� = n + m, then it will cause a disqualification
of the player, and therefore this player will not come back to the game.

This process is recurrently repeated until that just leaves one qualified player,
who will be considered the winner of the game. At this stage, the winner of the
game restarts the MIRPSA using its last location as starting point for accurately
identifying the minimum of the problem.

A study of some convergence properties are presented by Brea [5], when
the GofP method is applied to unconstrained mixed integer nonlinear problems.
However, the GofP method can be also applied to constrained problems, using
the penalty function approach, what this viewpoint also allows us to identify at
least a global solution of the constrained problem under minimization.

Despite the GofP method was developed for solving mixed integer nonlinear
problems [5], the GofP method can be applied to nonlinear problems only defined
either in the real field R

n or in the integer field Z
m. We consequently need

pointing out that for this study, we have applied the GofP method to a set of
test problems uniquely defined in the Euclidean real field R

n.

3 The Genetic Algorithms

Genetic algorithms (GAs) are considered metaheuristic and bioinspirited ran-
dom search algorithms, originally developed by Holland [6], and they have been
applied for globally solving nonlinear optimization problems.

The main idea of GAs are based on the adaptive processes associated with
natural genetics, wherein with an initial set of random potential solutions called
the population (generation) are evaluated using the objective function of the
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optimization problem being solved. In each generation, among the best individ-
uals or solutions are randomly selected for modifying its genome by recombi-
nation and possibly random mutations, who will yield a new generation. The
individuals of the new generation are evaluated using the objective function for
carrying out a next iteration. The algorithm commonly finishes by number of
generations.

There exists a vast amount of literature on the GAs, for instance, [1,8,14].
We have used two implementations of the GAs for solving the minimization of
an objective function subject to bounded constraints, which both are part of the
toolboxes of the free and open source softwares: Scilab [11] and R [10]. The Scilab
GA (SGA) was included in the 5th Scilab version thanks to the contributions of
Collette [2]. Whilst, the GA by R (RGA) was implemented by Scrucca [12].

Both implementations, the SGA and the RGA, were developed for globally
solving bounded nonlinear problems. Namely, for solving nonlinear problems
such as:

minimize
x∈Rn

f(x), (3a)

subject to : l(k) ≤ x(k) ≤ u(k), ∀k ∈ {1, . . . , n}, (3b)

where f(x) : Rn → R is a nonlinear objective function, and l(k) and u(k) are
respectively the kth lower and kth upper bounds for each kth component of the
vector x = (x(1), . . . , x(n))t.

4 Performance Measure of Comparison

Our target in this research is to measure the performance of the GofP method
versus both the SGA and the RGA for comparing them, using a representative
number of samples or running replications, each with different random number
sequences for each metaheuristic method.

For comparing these sets of observations, which were respectively yielded
by the performance measure of each metaheuristic method, we have then used a
measure of quality, for each pth test problem, in the n-dimensional real Euclidean
space, each s metaheuristic method, given by s ∈ {GofP, SGA, RGA}, and each ith
replication or sample of the respective metaheuristic method. Namely, each ith
replication yields a q(i)(p, n, s), which is given by

q(i)(p, n, s) =
1

1 + r(i)(p, n, s) · d(i)(p, n, s)
, ∀i ∈ N, (4)

where, r(i)(p, n, s) is the number of evaluations of the objective function (NEOF)
for each ith replication, and d(i)(p, n, s) is the distance to the true point (DTP),
which is given by

d(i)(p, n, s) = +
√

(x̂ − x̃i)t(x̂ − x̃i), ∀i ∈ N, (5)

where: x̂ ∈ R
n is the theoretical and unique location of the global minimum

of the objective function, because we have selected a set of test problems with
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multimodal objective functions, which each of them has several local minima
and just one global minimum; and x̃i ∈ R

n is the best point reported by the
algorithm method s ∈ {GofP, SGA, RGA} at the ith replication.

Obviously, analyzing (4), each ith quality q(i)(p, n, s) sample can uniquely
take value in the interval (0, 1], where the best quality of the performance mea-
sure is equal to 1, whilst the worst performance causes a q(i)(p, n, s) approaching
to zero.

Let Q(p, n, s) be the quality random variable, which is doubtless given by

Q(p, n, s) =
1

1 + R(p, n, s) · D(p, n, s)
, (6)

where R(p, n, s) ∈ N+ is the NEOF discrete random variable with an unknown
distribution, and D(p, n, s) ∈ R \ R− is the DTP continuous random variable,
which has also an unidentified distribution.

Notice that, the density function of Q, fQ(q) = 0 for all q ∈ R \ (0, 1].
Moreover, if the optimization method under study yielded values of Q approach
to 0, then this should be consider a substandard performance of the method.
Whilst if the method produced Q values between 0.9 and 1, we could then say
that the method has had an excellent performance.

It is opportune saying that in this comparative study, neither parametric
nor nonparametric statistical tests have here been applied, because: firstly, the
performance measure Q(p, n, s) has an unknown distribution, although, under
some assumptions for both random variables R(p, n, s) and D(p, n, s), it could
be easily estimated; secondly, according to a set of preliminary numerical experi-
ments and from its respective empirical frequency histograms, these have shown
to be significantly asymmetric, which could implicate that the median and the
mean of Q(p, n, s) could have significantly dissimilar values for the metaheuristic
methods, it would therefore cause distorted conclusions on the comparison of the
optimization methods.

Hence, we have added a set of statistical summaries of Q(p, n, s), R(p, n, s)
and D(p, n, s) for each pth problem, which reports: the minimum, the first quar-
tile, the median, the third quartile and the maximum of Q(p, n, s), R(p, n, s)
and D(p, n, s). These statistical summaries offer an additional viewpoint in our
comparative analysis of the GofP and the GAs.

Furthermore, for carrying out the comparison of the metaheuristic methods,
we have considered appropriate to estimate the complementary cumulative fre-
quency function (CCFF) f{Q(p, n, s) > q} for all q ∈ R, through the relative
frequency of occurrence of that {Q(p, n, s) > q}. Namely,

f(q) = Nq+/N, ∀0 < q ≤ 1, (7)

where Nq+ is the number of ith replication, whose q(i)(p, n, s) have yielded a
value more than q, and N is the total number of replications for each pth test
n-dimensional problem using the s ∈ {GofP, SGA, RGA} metaheuristic method.
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5 Numerical Examples

A set of five numerical test problems defined in 2, 5 and 10 dimensional real field
are here presented, where for the set of test problems, the parameters of the GofP
methods were fixed as follows: α = 0.9, δ = 5, ε = 10−6, the number of sampling
or replications of the GofP was equal to 100, the number of players η = 5, the
start point for each �th randomized pattern searches H[0]

� was randomly located
using a uniform random number between −10 and 10 for each ν0,� component,
and the initial balance for each player was fixed according to each n-dimensional
case, this is, b

[0]
� was fixed to 400, 500 and 700; for the case of n equal to 2, 5

and 10, respectively.
Whilst, the parameters of the SGA and the RGA were fixed as follows: for

each kth individual of the initial population has been also randomly located,
using a uniform random number between −20 and 20 for each ith component
of the vector xk ∈ R

n that represents it; the number of members of the initial
population, which is denoted by z, was fixed to 50n; a crossover probability
equal to 0.7; a mutation probability of 0.1; a number of couple equal to 55n;
and each ith component of the vector xk, which represents each kth individual,
is bounded between −20 and 20. Namely, −20 ≤ x

(i)
k ≤ 20 for all i ∈ {1, . . . , n}

and for each member in {xk}z
k=1.

The stopping rule for the SGA was |fg(x̂) − fg(x̌)| < ε, where fg(x̂) is the
obtained maximum value of f(x) at the gth generation, fg(x̌) is the obtained
minimum value of fg(x) at the same generation, and ε = 10−6 is the stopping
threshold. Nevertheless, the stopping rule for the RGA was defined by a number
of generations equal to 400.

It is worthwhile pointing out that we have run the SGA under fine tuning of
the parameters of the GA, which are handled by the SGA itself, and the number
of replications for getting samples of solving the problems by the GofP, and the
GAs were all equals to 100.

5.1 Goldstein Price Problem, p = 1

This problem was considered by Shi and Ólafsson [13], because it is commonly
used to test global optimization, and we have also considered this problem for
same reason.

minimize
x∈R2

f(x), (8)

subject to: − 2.5 ≤ x(i) ≤ 2.5, ∀i ∈ {1, 2}, (9)

where

f(x) =(1 + (x(1) + x(2) + 1)2

(19 − 14x(1) + 3x(1)2 − 140x(2) + 6x(1)x(2) + 3x(2)2))

(30 + (2x(1) − 3x(2))2

(18 − 32x(1) + 12x(1)2 + 48x(2) − 36x(1)x(2) + 27x(2)2)).

(10)
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For this problem, penalty function approach was used, then for a k = 103,
the problem was then rewritten as

minimize
x∈R2

(f(x) + p(x)) , (11)

where p(x) = k
∑2

i=1

(
max(−2.5 − x(i), 0) + max(x(i) − 2.5, 0)

)
.

Solution: x̂ = (0,−1)t is the global solution, and with a value of f(x̂) = 3.
Table 1 depicts a report of statistical summary for Q(1, 2, s), D(1, 2, s) and

R(1, 2, s), which were yielded by the metaheuristic methods. In the table we can
see the GofP reached a significative better performance Q(1, 2, GofP) than the
yielded values by the GAs. Moreover, from the reported results on the table,
we can say the D(1, 2, GofP) was smaller than the values of D(1, 2, SGA) and
D(1, 2, RGA). Nevertheless, the GofP required more number of function evalua-
tions than the GAs.

Table 1. Statistical summary of Q(1, 2, s), D(1, 2, s) and R(1, 2, s) by metaheurictic
method for the Goldstein Price problem in R

2

Method Min 1st Qu. Median Mean 3rd Qu. Max

Q(1, 2, s) GofP 0.999903 0.999956 0.999970 0.999967 0.999984 0.999998

SGA 0.091025 0.978662 0.985741 0.942320 0.990963 0.998432

RGA 0.003683 0.017505 0.026627 0.057548 0.053657 0.835909

D(1, 2, s) GofP 0.0e+00 0.000000 0.000000 0.000000 0.000000 0.000000

SGA 0.0e+00 0.000003 0.000004 0.000072 0.000007 0.001668

RGA 2.5e−05 0.003923 0.007578 0.014796 0.016221 0.151307

R(1, 2, s) GofP 3522 5480 6431 6309 7298 9485

SGA 2785 3081 3280 3395 3500 6975

RGA 1788 3286 4291 4404 5384 8420

5.2 Rastrigin Problem, p = 2

This problem is an extension to the n-dimensional Euclidean space R
n from

the original Rastrigin problem, which has been proposed by Mühlenbein and
coworkers [9].

minimize
x∈Rn

(

10n +
n∑

i=1

[
x(i)2 − 10 cos(2πx(i))

]
)

. (12)

Solution: x̂ = (0, 0, . . . , 0
︸ ︷︷ ︸

n

)t is the global solution, and with value function

f(x̂) = 0.
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Table 2. Statistical summary of Q(2, 2, s), D(2, 2, s) and R(2, 2, s) by metaheurictic
method for the Rastrigin problem in R

2

Method Min 1st Qu. Median Mean 3rd Qu. Max

Q(2, 2, s) GofP 0.999845 0.999887 0.999906 0.999910 0.999930 0.999986

SGA 0.000228 0.971631 0.981521 0.885927 0.988382 0.997171

RGA 0.003129 0.056990 0.123612 0.162379 0.216709 0.807428

D(2, 2, s) GofP 0.0e+00 0.000000 0.000000 0.000000 0.000000 0.000000

SGA 1.0e−06 0.000003 0.000005 0.049901 0.000009 0.994964

RGA 4.3e−05 0.000653 0.001652 0.005960 0.004280 0.195209

R(2, 2, s) GofP 3220 5334 5758 5648 6188 6939

SGA 2841 3199 3470 3556 3772 5553

RGA 1632 3295 4512 4640 5812 8756

Table 3. Statistical summary of Q(2, 5, s), D(2, 5, s) and R(2, 5, s) by metaheurictic
method for the Rastrigin problem in R

5

Method Min 1st Qu. Median Mean 3rd Qu. Max

Q(2, 5, s) GofP 0.993528 0.996719 0.999631 0.998324 0.999710 0.999954

SGA 0.000024 0.000036 0.000044 0.001045 0.000058 0.013761

RGA 0.001155 0.002701 0.004026 0.005327 0.007055 0.018407

D(2, 5, s) GofP 0.000000 0.000000 0.000000 0.000000 0.000001 0.000001

SGA 0.004022 0.990782 1.003044 1.072469 1.412059 2.229021

RGA 0.001709 0.005985 0.011131 0.016601 0.020991 0.097805

R(2, 5, s) GofP 4206 5807 7814 7951 10038 12455

SGA 14219 17044 18798 19043 20417 26009

RGA 7502 15491 19420 20941 24638 48803

As is shown in Table 2, the GofP reported a more advantageous value of
Q(2, 2, GofP) than the GAs, because the minimum Q(2, 2, GofP) was 0.999845,
whilst the minimum values of Q(2, 2, SGA) and Q(2, 2, RGA) were respectively
0.000228 and 0.003129. Furthermore, the reported mean of Q(2, 2, GofP) was
0.999910, in contrast to the means yielded by the SGA and the RGA, which
were 0.885927 and 0.162379, respectively. It can be also seen from the table,
the D(2, 2, GofP) was practically zero, whilst the SGA and RGA respectively
reported minimum values of DTP 1.0e−06 and 4.3e−05. In relation to R(2, 2, s),
there exists a no significant difference among the metaheuristic methods, what
does not allow us to distinguish the best metaheuristic method, if we comparatily
analysis the performance of them using their R(2, 2, s).

On the other hand, according to Table 3, the performance of the GofP
reached a considerably better level of the Q(2, 5, s) than the Q(2, 5, s) of both
GAs, because the minimum value of Q(2, 5, GofP) was equal to 0.993528, whilst
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the reported maximum values of Q(2, 5, SGA) and Q(2, 5, RGA) were respectively
0.013761 and 0.018407. Moreover, from the table, it can be seen that the max-
imum DTP of GofP (D(2, 5, GofP)) was 0.000001, in contrast to the reported
minimum values by the GAs, which were 0.004022 and 0.001709; and in refer-
ence to the R(2, 5, s), the GofP obtained a maximum value of R(2, 5, GofP) equal
to 12455, whilst the SGA and RGA respectively reported maximum values of
26009 and 48803.

From Table 4, we have that the GofP had a much higher performance than
the GAs, because the minimum value of Q(2, 10, GofP) was equal to 0.975781,
whilst the reported maximum values of Q(2, 10, SGA) and Q(2, 10, RGA) were
0.000027 and 0.002115, respectively. Moreover, the maximum of D(2, 10, GofP)
was 0.000002; to difference of the minimum values reported by the GAs, which
were 0.968809 and 0.005161. On the NEOF, we can say the maximum value
of R(2, 10, GofP) was equal to 23033, in contract to the minimum values of the
GAs, these were 37516 and 20957.

Table 4. Statistical summary of Q(2, 10, s), D(2, 10, s) and R(2, 10, s) by metaheurictic
method for the Rastrigin problem in R

10

Method Min 1st Qu. Median Mean 3rd Qu. Max

Q(2, 10, s) GofP 0.975781 0.984336 0.987424 0.989437 0.998704 0.999376

SGA 0.000005 0.000007 0.000008 0.000009 0.000010 0.000027

RGA 0.000101 0.000511 0.000731 0.000807 0.000984 0.002115

D(2, 10, s) GofP 0.000000 0.000000 0.000001 0.000001 0.000002 0.000002

SGA 0.968809 1.984582 2.426535 2.455552 2.801321 4.665179

RGA 0.005161 0.012359 0.017905 0.028672 0.028657 0.222039

R(2, 10, s) GofP 6939 9072 11006 12229 14373 23033

SGA 37516 46870 49286 49506 52281 67703

RGA 20957 59961 71744 72416 84468 134774

5.3 Tang Problem, p = 3

This problem is presented by Shi and Ólafsson [13].

minimize
x∈Rn

n∑

i=1

[
sin(x(i)) + sin(2x(i)/3)

]
, (13)

subject to: 3 ≤ x(i) ≤ 13; ∀i ∈ {1, . . . , n}. (14)

For this problem, a penalty function viewpoint was used, the problem is then
defined by

minimize
x∈R2

(
n∑

i=1

[
sin(x(i)) + sin(2x(i)/3)

]
+ p(x)

)

, (15)
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where

p(x) = 106
n∑

i=1

(
max(3 − x(i), 0) + max(x(i) − 13, 0)

)
. (16)

Solution: x̂ = (5.362247554154065, . . . , 5.362247554154065
︸ ︷︷ ︸

n

)t is the global solu-

tion, and with a function value of f(v̂) = −1.21598217508091n.
Table 5 depicts that the GofP reached a significantly superior response of

Q(3, 2, s) in comparison to the generated performances by the GAs. As we can see
from table, the reported interval of the GofP between the first quartile and third
quartile of Q(3, 2, GofP) was (0.999891, 0.999958). However, the intervals yielded
by the SGA and the RGA were respectively equals to (0.715244, 0.854145) and
(0.012875, 0.025398), what allows us to verify the good performance reached
by the GofP in comparison to the GAs in this case. Moreover, the reported
maximum values of D(3, 2, GofP) was zero, whilst the SGA and RGA reported
maximum values of 0.000521 and 0.153334, respectively.

Table 5. Statistical summary of Q(3, 2, s), D(3, 2, s) and R(3, 2, s) by metaheurictic
method for the Tang problem in R

2

Method Min 1st Qu. Median Mean 3rd Qu. Max

Q(3, 2, s) GofP 0.999108 0.999891 0.999927 0.999916 0.999958 0.999997

SGA 0.447584 0.715244 0.773974 0.780454 0.854145 0.995261

RGA 0.003549 0.012875 0.016408 0.021733 0.025398 0.094698

D(3, 2, s) GofP 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

SGA 0.000002 0.000072 0.000117 0.000124 0.000159 0.000521

RGA 0.002282 0.009803 0.012311 0.015311 0.014742 0.153334

R(3, 2, s) GofP 2569 4719 5326 5292 6048 7147

SGA 1964 2303 2366 2470 2504 4373

RGA 1831 3595 4348 4569 5384 11346

From Table 6, we can see that the performance of the GofP was sig-
nificantly better than the performance of the GAs, because the interval of
Q(3, 5, s) between its first quartile and third quartile was (0.995418, 0.998098),
whilst the reported intervals of the SGA and the RGA were respectively
(0.003078, 0.008684) and (0.000925, 0.002008). We also note that the mean of
D(3, 5, s) for the GofP, SGA and RGA were 0.865507, 0.214862 and 0.063269,
respectively. Furthermore, note from the table that, the GofP required a maxi-
mum R(3, 5, GofP) significantly smaller that the GAs.
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Table 6. Statistical summary of Q(3, 5, s), D(3, 5, s) and R(3, 5, s) by metaheurictic
method for the Tang problem in R

5

Method Min 1st Qu. Median Mean 3rd Qu. Max

Q(3, 5, s) GofP 1.5e−05 0.995418 0.996548 0.827801 0.998098 0.999872

SGA 7.0e−06 0.003078 0.004486 0.012726 0.008684 0.221331

RGA 2.9e−04 0.000925 0.001386 0.001605 0.002008 0.008778

D(3, 5, s) GofP 0.000000 0.000000 0.000001 0.865507 0.000001 5.091215

SGA 0.000356 0.006932 0.012296 0.214862 0.017641 5.101781

RGA 0.008304 0.020350 0.034852 0.063269 0.076490 0.495136

R(3, 5, s) GofP 4051 4492 5042 6259 7702 13191

SGA 9870 14374 16744 17796 20803 28740

RGA 6099 12136 19862 20459 26251 55217

As we can be seen from Table 7, the Q(3, 10, s) mean obtained by the GofP,
the SGA and the RGA were respectively 0.197418, 0.000369 and 0.000297. How-
ever, in this case, the GAs got values of D(3, 10, s) better than the GofP.
With respect to the NEOF, the GofP required a significative smaller number
of R(3, 10, GofP) than the GAs.

5.4 W Problem, p = 4

This problem is here proposed by the author, which is given by

minimize
x∈Rn

n∑

i=1

[(
x(i)

4

)4

+ 1 − (x(i) − 2)2
]

. (17)

Notice that, the objective function for optimizing is multimodal function and
continuous in all Euclidean space R

n, and it only has a global minimum.
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Table 7. Statistical summary of Q(3, 10, s), D(3, 10, s) and R(3, 10, s) by metaheurictic
method for the Tang problem in R

10

Method Min 1st Qu. Median Mean 3rd Qu. Max

Q(3, 10, s) GofP 8.0e−06 0.000017 0.000022 0.197418 0.000026 0.992883

SGA 3.0e−06 0.000279 0.000343 0.000369 0.000437 0.000826

RGA 7.6e−05 0.000225 0.000291 0.000297 0.000358 0.000680

D(3, 10, s) GofP 0.000001 5.091214 5.091215 4.643824 5.091217 8.818244

SGA 0.028145 0.043804 0.052133 0.250084 0.058609 5.044742

RGA 0.020157 0.035721 0.051613 0.095453 0.084864 0.856772

R(3, 10, s) GofP 6841 8064 8832 9484 9819 20145

SGA 35038 47478 56661 57278 65694 96636

RGA 13618 52792 66440 65730 80356 116950

Table 8. Statistical summary of Q(4, 2, s), D(4, 2, s) and R(4, 2, s) by metaheurictic
method for the W function problem in R

2

Method Min 1st Qu. Median Mean 3rd Qu. Max

Q(4, 2, s) GofP 0.000007 0.999127 0.999396 0.919438 0.999538 0.999934

SGA 0.061023 0.825318 0.884586 0.836627 0.929947 0.988410

RGA 0.001911 0.011449 0.030554 0.059176 0.067604 0.424724

D(4, 2, s) GofP 0.000000 0.000000 0.000000 1.787342 0.000000 22.341778

SGA 0.000004 0.000028 0.000047 0.000127 0.000072 0.002498

RGA 0.000177 0.002280 0.005932 0.024284 0.021248 0.278545

R(4, 2, s) GofP 2456 2597 4379 4300 5655 7193

SGA 2126 2490 2612 3106 2746 10277

RGA 1605 3334 4883 5057 6374 11690

Figure 1 depicts an example of the W function in R
2, which shows four min-

ima and only one of them is a global minimum, that is located at the point
x̂ = (−12.2055,−12.2055)t.

Solution: x̂ = (−12.20549696692415, . . . ,−12.20549696692415)t is the global
solution, and with minimum value function f(x̂) = −114.10356900557n.

From Table 8, we can note that both the GofP and the SGA reported similar
results of Q(4, 2, s), whilst the Q(4, 2, RGA) was substantially worse than the
yielded by the GofP and the SGA. However, the obtained value of D(4, 2, SGA)
was considerably smaller than the others metaheuristic methods. It is worthwhile
pointing out that the GofP reaches these results with a maximum of R(4, 2, GofP)
equal to 7193, in contrast with the GAs, which reported maximum value of 10277
and 11690.

As we can be seen from Table 9, the GofP method has shown to have higher
performance than the GAs, because the mean of Q(4, 5, GofP) was 0.029873,
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Table 9. Statistical summary of Q(4, 5, s), D(4, 5, s) and R(4, 5, s) by metaheurictic
method for the W function problem in R

5

Method Min 1st Qu. Median Mean 3rd Qu. Max

Q(4, 5, s) GofP 2.0e−06 0.000004 0.000007 0.029873 0.000010 0.996253

SGA 1.0e−06 0.000734 0.001239 0.003528 0.002510 0.156065

RGA 5.9e−05 0.000102 0.000119 0.000132 0.000159 0.000312

D(4, 5, s) GofP 0.000001 22.341778 31.596045 28.925895 31.596045 44.683556

SGA 0.000183 0.009940 0.014141 1.800320 0.021206 22.379268

RGA 0.086110 0.208527 0.314682 0.391693 0.496187 1.633537

R(4, 5, s) GofP 3813 4044 4353 5773 6938 12356

SGA 14766 35887 57028 55623 74738 119282

RGA 5176 18012 27302 27857 36281 60624

Table 10. Statistical summary of Q(4, 10, s), D(4, 10, s) and R(4, 10, s) by metaheuric-
tic method for the W function problem in R

10

Method Min 1st Qu. Median Mean 3rd Qu. Max

Q(4, 10, s) GofP 1e−06 4.0e−06 5.0e−06 0.079089 6.0e−06 0.991331

SGA 0e+00 0.0e+00 0.0e+00 0.000016 3.3e−05 0.000084

RGA 8e−06 1.1e−05 1.2e−05 0.000013 1.4e−05 0.000018

D(4, 10, s) GofP 0.000001 22.341778 22.341779 25.799132 31.59605 38.697095

SGA 0.037815 0.069033 22.297555 18.332901 22.36464 31.625469

RGA 0.419649 0.533760 0.663045 0.810854 0.90135 5.887933

R(4, 10, s) GofP 6664 6989 7322 8393 8816 18944

SGA 100570 233857 273234 290789 337276 554248

RGA 16538 94410 119361 115935 145801 146657

whilst the reported means by the SGA and the RGA were 0.003528 and 0.000119,
respectively. Nevertheless, with respect to the D(4, 5, s), the GAs obtained sig-
nificative better results than the GofP method, because the means were respec-
tively 1.800320 and 0.391693 for the SGA and the RGA, whilst the mean
of D(4, 5, GofP) was 28.925895. Note that, the R(4, 5, GofP) was considerably
smaller the reported values by the GAs.

From Table 10, we note that, the GofP has shown to have a better perfor-
mance Q(4, 10, GofP) than the reported performance by the GAs. Nevertheless,
the GofP and the SGA yielded maximum value of D(4, 10, s) greater than 30,
although the reported NEOF of GofP was significatively smaller than the regis-
tered value of the GAs.

Figure 2 displays a set of figures, which represent the complementary cumu-
lative frequency of Q(p, 2, s) for p ∈ {1, 2, 3, 4} and s ∈ {GofP, SGA, RGA}. As we
can be seen from figures, the GofP yielded a considerably superior performance
of Q(p, 2, GofP) for p ∈ {1, 2, 3} than the GAs.
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Fig. 2. Complementary cumulative frequency of quality performance Q(p, 2, s) for a
set of problems in R

2

6 Conclusions and Future Research

This article has provided a numerical comparison of the GofP and two imple-
mentations of the GAs. Although this comparative study is based on a small
set of numerical examples, we think that the GofP has offered better perfor-
mance than the two implementations of the GAs, what it would allow us to infer
that the GofP could be a good via for globally solving nonlinear optimization
problems.

However, thus far, that the GofP has not tuned and a stopping rule based on
the convergence rate has not been included yet, which will require to do more
study for tuning it and improving its stopping rule.

We shall end with some interesting future research, which would allow us
to focus on: (i) to estimate the convergence rate of the GofP; (ii) to tune the
parameters of the GofP; (iii) to propose of an optimum payment rule for dealing



Game of Patterns and Genetic Algorithms Under a Comparative Study 107

points among the active players at each game round; and (iv) to study a very
large number of numerical examples for statistically evaluating the GofP.
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Abstract. In this paper, two heuristic algorithms are proposed to solve
the direct aperture optimisation problem (DAO) in radiation therapy
for cancer treatment. In the DAO problem, the goal is to find a set of
deliverable aperture shapes and intensities so we can irradiate the tumor
according to a medical prescription without producing any harm to the
surrounding healthy tissues. Unlike the traditional two-step approach
used in intensity modulated radiation therapy (IMRT) where the inten-
sities are computed and then the apertures shapes are determined by
solving a sequencing problem, in the DAO problem, constraints asso-
ciated to the number of deliverable aperture shapes as well as physical
constraints are taken into account during the intensities optimisation pro-
cess. Thus, we do not longer need any leaves sequencing procedure after
solving the DAO problem. We try our heuristic algorithms on a prostate
case and compare the obtained treatment plan to the one obtained using
the traditional two-step approach. Results show that our algorithms are
able to find treatment plans that are very competitive when considering
the number of deliverable aperture shapes.

Keywords: Intensity modulated radiation therapy
Direct Aperture Optimisation · Multi-leaf collimator sequencing

1 Introduction

Intensity modulated radiation therapy (IMRT) is one of the most common tech-
niques in radiation therapy for cancer treatment. Unfortunately, the IMRT plan-
ning problem is an extremely complex optimisation problem. Because of that,
the problem is usually divided into three sequential sub-problems, namely, beam
angle optimisation (BAO), fluence map optimisation (FMO) and multi-leaf col-
limator (MLC) sequencing. In the BAO problem, the aim is to find the optimal
beam angle configuration (BAC), i.e. the BAC that leads to the optimal treat-
ment plan. To find this optimal treatment plan, the intensities for the given
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BAC, need to be computed (FMO problem). Finally, the MCL sequencing prob-
lem must be solved to find the set of deliverable aperture shapes and intensities
of the MLC during the delivery process [10].

One problem of this sequential approach is that, once the FMO problem is
solved, i.e., we have computed the optimal intensities for a given BAC, we need
to determine a set of apertures for the MLC such that the optimal intensities
can be delivered to the patient. Although there exist exact approaches that min-
imise the time a patient is exposed to the radiation (beam-on time) and heuristic
algorithms that are very efficient minimising the number of apertures (decom-
position time), solutions of the MLC sequencing problem usually require too
many deliverable aperture shapes and long beam-on times, which is something
that we want to avoid as it means patients should stay longer on the treatment
couch and fewer patients can be treated per day. In order to reduce the num-
ber of apertures and the beam-on time, treatment planners usually simplify the
treatment plan by rounding the intensities at each beam angle to some prede-
fined values. Although this (over-)simplification of the optimal plan allows us
to deliver a treatment plan using fewer deliverable aperture shapes and shorter
beam-on times, the quality of the treatment plan is impaired w.r.t. the optimal
one. Thus, it seems reasonable to incorporate some MLC sequencing considera-
tions into the FMO problem such that the optimal intensities found during its
optimisation process can be directly delivered to the patient without needing
any ‘adjustment’ process.

In this paper we focus on solving the direct aperture optimisation problem
(DAO), that is, the problem of optimising the intensities and shapes of the
apertures simultaneously, for a specific BAC. In other words, we aim to solve
the FMO problem taking into account a constraint on the number of deliverable
apertures and the physical constraints associated with the MLC sequencing. In
this way, any post-processing on the intensities found by the solver is needed.

First, let us introduce the mathematical model of the FMO problem [3].
Consider that each beam angle is associated with a series of sub-beams or beam-
lets and n is the total number of beamlets summed over all the possible beam
angles. Let A be a BAC and x ∈ R

n be an intensity vector or fluence map
solution. Each component xi of a solution represents the length of time that a
patient is exposed to the beamlet i. The set X (A ) ⊆ R

n is the set of all fea-
sible solutions of the FMO problem when the BAC A is considered1. Finally,
z(x) : Rn → R

∗
+ := {v ∈ R : v ≥ 0}∪{∞} is a function that attempts to penalize

both: (1) zones where the tumor would not be properly irradiated according to
the medical prescription and (2) healthy tissues that would be harmed by the
fluence map x. Thus, solving the FMO problem for a given BAC A consists on
finding the fluence map x ∈ X (A ) that minimises the penalty z(x).

The main difference of DAO w.r.t. the FMO problem is related to the set
of feasible intensity vectors X (A ). For the DAO problem we need to add some
additional constraints to the set X (A ). In particular, we first need to set the

1 i.e., only beamlets xi that belong to a beam angle in A are allowed to be greater
than zero.
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number of apertures ΘA i
for each beam Ai ∈ A with i = {1, . . . , N}. Then, we

have to ensure that the beamlets intensities can be delivered given the number
of apertures for each beam angle θA i . We denote this new set of feasible intensity
vectors as X (A , Θ).

The DAO problem was first introduced by [13]. In their paper, the authors
identify as input for the DAO problem the beam angles, the beam energies and
the number of apertures per beam angle, while the decision variables are the
leaf positions for each aperture and the weight assigned to each aperture. They
propose to solve the problem by adjusting the leaf position at each iteration
following a set of rules that determine, using a probabilistic function, which pair
of leaves should be adjusted next. Authors consider a function similar to the
one we use in this paper. The DAO problem is also considered in [15]. Unlike
previous approaches, [15] proposes a “rapid” DAO algorithm which replaces the
traditional Monte Carlo method for dose calculation by what they call a dose
influence matrix based piece-wise aperture dose model. The authors claim that
their approach is faster than traditional approaches based on Monte Carlo as
well as able to find treatment plans that result in more precise dose conformality.
In [2], authors focus on the DAO problem as a mean of reducing the complexity
of IMRT. Authors define the complexity of a treatment plan in IMRT in terms
of the number of monitor units (MU) a plan needs to be delivered. Since the
DAO problem gives control over the number of apertures (and therefore over
the number of MUs), authors claim that they can reduce the complexity of
treatment plans without any major impairment on the overall quality of the
delivered treatment plan. A similar conclusion is drawn by [8,11,13,15].

The main goal of our work is to study and evaluate the design and applica-
tion of hybrid algorithms combining the best features of local search techniques
and FMO models to generate high-quality treatment plans that exhibit charac-
teristics that make them candidates to be applied in real cases. As a first step
towards this goal, the work presented in this paper studies the application of
two simple stochastic local search algorithms to solve the DAO problem. We
apply these algorithms on a simple prostate case considering two organs at risk,
namely, the bladder and the rectum. We compare treatment plans obtained by
our algorithms with those obtained by well-known FMO models. We compare
these treatment plans in terms of their corresponding dose-volume-histograms
as well as in terms of their objective function value in order to evaluate their
quality and their practical desirability.

The remaining of this paper is organized as follows: Sect. 1.1 introduces the
general concepts of IMRT as well as the mathematical models we will consider in
this study. In Sect. 2 the algorithms we implement in this paper are presented and
their main features discussed. Section 3 presents the prostate case algorithms are
applied on and the obtained results. A discussion on these results is also included
in this section. Finally, in Sect. 4 we draw the main conclusions of our work as
well as outline future work.
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1.1 IMRT: An Overview

In this section we briefly introduce some key concept in IMRT. This section is
mainly based on the IMRT description given in [3–6,10].

In IMRT, each organ is discretised into small sub-volumes called voxels. The
radiation dose deposited by a fluence map x into each voxel j, denoted by dr

j , of
the tumor and each organ at risk (OAR), is calculated using expression (1) [10].

dr
j(x) =

n∑

i=1

Ar
jixi ∀j = 1, 2, . . . , mr, (1)

where r ∈ R = {O1, . . . , OQ, T} is an element of the index set of regions, with
the tumor indexed by r = T and the organs at risk and normal tissue indexed
by r = Oq with q = 1, . . . , Q. mr is the total number of voxels in region r, j
corresponds to a specific voxel in region r, dr ∈ R

mr

is a dose vector and its
elements dr

j give the total dose delivered to voxel j in region r by the fluence map
x ∈ X(A , θ). Here, dose deposition matrix Ar ∈ R

mr×n is a given matrix where
Ar

ji � 0 defines the rate at which radiation dose along beamlet i is deposited
into voxel j in region r.

Based on the dose distribution in (1), both physical (dose-volume) and bio-
logical (dose-response) models have been proposed (see [10] for a survey). Here,
the following dose-volume model of the FMO problem is considered:

min
x∈X(A ,Θ)

z(x) =
Q∑

q=1
( 1

mOq
×

mOq∑
j=1

(max(dOq

j − DOq , 0)2)) + (2)

( 1
mT ×

mT∑
j=1

(max(DT − dT
j , 0)2))

where parameters DT and DOq correspond to the prescribed dose values for
tumor and OARs, respectively. This problem is a convex optimisation problem
and, thus, optimal fluence maps can be obtained using mathematical program-
ming techniques.

2 Stochastic Local Search Algorithms for DAO

In this section we present two stochastic local search algorithms to solve DAO.
For a given BAC A , and subject to a maximum number of apertures for each
beam angle, the algorithms attempt to find a set of aperture shapes for each angle
in A such that the corresponding fluence map x minimizes z(x). Both algorithms
follow an iterative improvement scheme and they diverge in the representation
they use to search the aperture shapes and intensities.

The algorithmic scheme followed by the proposed techniques is outlined in
Algorithm 1. The algorithm receives as input the maximum number of apertures
per beam angle (asize), the number of target beamlets (bsize), the number of
target voxels (vsize), the perturbation size (psize), the number of steps without
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improvement to perform a perturbation (n restart), the aperture pattern ini-
tial setup (ap setup), the budget available for the search (budget), and other
parameters related to the search strategy instantiated in the algorithm (. . .).

The idea of the algorithm is simple. An initial configuration or plan S of
aperture shapes and intensities for each beam angle is generated (line 2). xS

denotes the fluence map generated by the plan S. Then the algorithm identi-
fies one of the bsize beamlets b impacting the most to a subset of the vsize
worst voxels of the organ (resp. tumor) (line 8), i.e., a subset of the voxels with
the largest (resp. smallest) deposited doses of radiation. Then, we attempt to
improve the current plan by modifying the apertures and intensities related to
the selected beamlet (line 9). If the change improves the quality of S, then it
is accepted, otherwise we try with another beamlet and the process is repeated.
When all selected beamlet modifications have been evaluated without finding
an improvement to the current plan or when n restart iterations without an
improvement have been reached, a perturbation of size psize is applied (line 7
and line 17). Finally, the best plan found is returned.

1 IterativeImprovement (asize,bsize, vsize,psize, n restart,ap setup,
budget, . . .); out: Sbest

2 S ← initializeangles (ap setup);
3 Sbest ← S;
4 no improvement ← 0;
5 while !termination(budget) do
6 while improvementExhauted(bsize,vsize,S) do
7 S ← perturbation(S, psize);

8 (b, angle) ← select promising beamlet (S, bsize, vsize);
9 S′ ← search(b, angle, S, . . .);

10 no improvement ← no improvement + 1;
11 if z(xS′) < z(xS) then
12 no improvement ← 0;
13 S ← S′;
14 if z(xS) < z(xSbest) then
15 Sbest ← S;
16 if no improvement ≥ n restart then
17 S ← perturbation(S, psize) ;

18 return Sbest

Algorithm 1. Iterated improvement outline of the proposed techniques.

2.1 Selecting a Promising Beamlet

The procedure select promising beamlet(S, bsize,vsize) returns one of the bsize
beamlets impacting the most to a subset of vsize voxels of the organs/tumor. In
the following, we give details about how these beamlets (and voxels) are selected.
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Consider a current fluence map x. From Eqs. (1) and (2) we can deduce that
the change in the evaluation of z(x) provided by increasing or decreasing the
intensity of a beamlet i in 1 is approximately:

Δz(i) =
∑

(j,r)∈V

Ar
ji

∂z

∂dr
j

(x)

where V is the set of all the pairs (voxel, organ) of the problem. Thus, we con-
sider that the most promising beamlets are those beamlets maximizing |Δz(i)|.
However, given that computing Δz(i) is expensive, mainly due to |V | is very
large (of the order of tens of thousands), we only consider a subset of vsize
representative voxels.

We rank the voxels according to how much the objective function changes if
we increase (or decrease) the radiation dose deposited in the voxel. The rate of
change is given by

∣∣∣ ∂z
∂dr

j
(x)

∣∣∣, and the voxels are kept sorted by this value in a set
V . The procedure select promising beamlet then uses the first vsize voxels from
V for identifying the bsize beamlets maximizing |Δz(i)|. Finally, one of these
beamlets is randomly selected and returned by the procedure.

2.2 Representation of the DAO Search Space

We propose two different approaches for representing the search space of the
problem. An intensity-based representation which defines a matrix of intensities
for each angle maintaining the constraints related to the apertures. And an
aperture-based representation which defines a set of aperture shapes for each
angle and assigns an intensity to each of these shapes. In the following we provide
more details for each representation.

Intensity-Based Representation: The set of aperture shapes of each angle is
represented by a single intensity integer matrix I. Each value Ixy in the matrix
corresponds to the total intensity delivered by the corresponding beamlet and
the set of apertures. In order to respect the limit of allowed aperture shapes we
force the matrix to respect two conditions:

– The number of different intensities n in the matrix cannot be greater than
the maximum number of allowed aperture shapes.

– For each row, consider that the k-th beamlet has the greatest intensity. Then,
the intensities of beamlets {1, 2, .., k} should increase monotonically and the
intensities of beamlets {k, k + 1, .., xmax} should decrease monotonically.

If the intensity matrix I satisfies the two conditions, it is easy to map I
to a set of n aperture shapes. Consider the intensity matrix of Fig. 1. It has
n = 5 different intensities: Y = {1, 2, 4, 7, 8} and each row satisfies the second
condition. In order to obtain the intensities of the matrix we can consider the
following five aperture shapes:
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– An aperture of intensity 1 considering every beamlet (x, y) such that Ixy ≥ 1.
– An aperture of intensity 1 considering every beamlet (x, y) such that Ixy ≥ 2.
– An aperture of intensity 2 considering every beamlet (x, y) such that Ixy ≥ 4.
– An aperture of intensity 3 considering every beamlet (x, y) such that Ixy ≥ 7.
– An aperture of intensity 1 considering every beamlet (x, y) such that Ixy ≥ 8.

Note that, in general, we should consider every aperture with intensity Yi −Yi−1

and beamlets (x, y) such that Ixy ≥ Yi. Also note that the sum of intensities of
the apertures (beam-on time) is equal to the maximum intensity in the matrix
(1 + 1 + 2 + 3 + 1 = 8 in the example).

Fig. 1. An intensity matrix representing a set of five aperture shapes.

Aperture-Based Representation: We directly represent the aperture shapes
of an angle as a set of n apertures A = {a1, . . . , an}, where each element is a list
ai = {(x1, y1), . . . , (xr, yr)}, xj , yj ∈ {1, . . . , cj}, and xj ≤ yj ,∀j ∈ {1, . . . , r}, r
is the number of rows in a beam of the MLC, and cj is the number of active
beamlets in row j. The set a indicates the range of beamlets that are open per
each row of the beam. An intensity value I[i] ∈ {1, . . . ,max i} is assigned to
each of these aperture shapes, where max i is the maximum intensity allowed
for a beam/aperture. All open beamlets in an aperture ai emit radiation with
the same intensity I[i]. Figure 2 shows an example of this representation using 5
aperture shapes for the matrix presented in Fig. 1. Searching this representation
has the benefit that the generated solutions inherently satisfy the constraints
associated to the number of apertures. Nevertheless, the complex dependencies
of the aperture shapes and the delivered radiation dose difficult the optimisation
and thus, effectively searching the solution space depends greatly of the technique
applied.

2.3 Intensity-Based Beamlet Targeted Search

When the intensity-based representation is used, the search method of the algo-
rithm attempts to increase (or decrease) the intensity of a subset of contiguous
beamlets of the angle. Algorithm 2 shows the procedure. Note that, in addi-
tion to the angle, the beamlet and the current solution, the procedure also
gets some user-defined parameters as input. First, the values delta intensity
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a1 = {( 3,10), ( 6,13), (4, 4), ( 1, 5), (1,1)}, I[1]=1

a2 = {( 5, 9), ( 7,13), (6,10), ( 6,14), (1,3)}, I[2]=2

a3 = {( 5, 9), ( 9,13), (5,10), (13,14), (1,2)}, I[3]=4

a4 = {(10,11), (13,13), (6,11), (14,14), (1,6)}, I[4]=1

a5 = {( 8, 8), ( 7, 8), (9,10), (13,13), (3,5)}, I[5]=1

Fig. 2. Aperture-based representation for angle intensity matrix in Fig 1.

and a are randomly selected from an uniform distribution). Then, the proce-
dure increaseIntensity attempts to increase in delta intensity the intensity of a
square a × a, including the beamlet, and its surrounding beamlets. Note that if
a = 1 the intensity of only one beamlet will be modified.

Note that the values of the parameters max a and max d progressively
decrease as the search goes on (providing that α < 1). This mechanism forces
larger changes at the beginning of the search and smaller changes at the end.
The procedure returns the new modified solution S′.

1 search (b, angle, S, α,max d,max r,); out: S′

2 delta intensity ← random(1,max d);
3 max d ← α∗max d;
4 a ← random(1,max r);
5 max r ← α∗max r;
6 S′ ← increaseIntensity(S, b, angle, delta intensity, a);
7 return S′;

Algorithm 2. Search procedure for the intensity-based representation.

Increasing/Decreasing Intensities in the Matrix: In Algorithm 2, the pro-
cedure increaseIntensity attempts to increase the intensity of a square of beam-
lets in delta intensity units. The procedure increases the intensities directly in
the intensity matrix and then it runs a two-phase reparation mechanism for
re-satisfying the conditions of the intensity-based representation.

In the first phase we perform a reparation related to the second condition.
The procedure repairs each row independently. If delta intensity is positive we
may arrive to a situation as in Fig. 3-left. The figure shows the intensities (y
axis) of all the beamlets of a row (x axis). The intensity of red beamlets has
increased violating the second condition. For repairing the row we first identify
the beamlet with the largest intensity b. Then we increase the intensities of some
beamlets (green beamlets in Fig. 3-right) to force the intensities on the left side
of b to increase monotonically and the intensities on the right side of b to decrease
monotonically. As a result we obtain the intensity distribution in Fig. 3-right.

In the case that delta intensity is negative we also identify the beamlet b
with the largest intensity and force the intensities of the left and the right side
of b to increase or decrease monotonically depending on the case. However, in
this case this is achieved by reducing the intensities of some beamlets.
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Fig. 3. Example of the reparation mechanism when the intensity of some beamlets
increases. (left) The intensities in red increased. (right) The reparation mechanism
modified the intensities in green. (Color figure online)

In the second phase of the reparation mechanism, called aperture-reduction,
the first condition is treated. If the number of different intensity values is larger
than the maximal number of aperture shapes allowed then we try to reduce this
number with the following procedure:

– We consider the set of different intensities Y, where Y0 = 0.
– We consider that changing an intensity Ixy in c units has a cost of c.
– For each value Yi (i ≥ 1), we compute the cost of changing all the intensities

Ixy = Yi by Yi−1 and by Yi+1.
– We perform the change with the minimum cost.
– The process is repeated until the number of different intensities is equal to

the number of maximal number of apertures allowed.

Consider the intensity matrix of Fig. 1 and suppose that the maximal number
of apertures allowed is 4. The set of intensities is Y = {0, 1, 2, 4, 7, 8}. There are
11 beamlets with intensity equal to 1, thus changing its intensities to 0 (or 2) has
a cost of 11. Changing the 2s to 1s has a cost of 10. Changing the 4s to 2s has a
cost of 4 · 2 = 8. Changing the 7s to 8s has a cost of 14 and changing the 8s to
7s has a cost of 5. Thus, we will prefer to perform the last change transforming
the matrix into the intensity matrix of Fig. 4.

Fig. 4. The matrix of Fig. 1 reduced to a set of four aperture shapes.

Perturbation: In the case of the intensity-based representation, the perturba-
tion method performs psize times the following two steps:

– Select a random angle
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– Reduce the number of intensities in the angle matrix by performing the
aperture-reduction procedure.

This method has a two-fold objective: one is to perturb the current solution in
order to explore other regions in the search space, the other to reduce the number
of apertures without affecting too much the cost of the objective function.

2.4 Aperture-Based Beamlet Targeted Search

When searching the aperture-based representation the proposed algorithm
attempts to either increase or decrease the contribution of radiation of the
targeted beamlet by (1) opening/closing the beamlet in the apertures of the
angle, or (2) by modifying the intensity of the apertures in which the beamlet is
active (not closed). Algorithm 3 gives the outline of the search procedure for the
aperture-based representation. The procedure starts by obtaining the minimum
delta allowed to modify the intensity of an aperture (line 1). Each iteration, a
random aperture of the selected angle is targeted in order to attempt improving
the objective function of the treatment plan by either modifying its aperture
shape or its intensity. When it is possible to perform both operations, the mod-
ification of the aperture intensity is selected with probability p int (line 8). As
soon an improving solution is obtained, the algorithm returns it to re-start the
process with a different beamlet. The aperture shapes are modified in line 11
and line 17. When the radiation must be reduced for the selected beamlet, if
possible, we evaluate to close the beamlet by moving the right and the left leaf.
Note that this implies that the procedure evaluates two modifications in some
cases.

1 search (angle, beamlet, S); out: S′ δ ← getMinDelta(angle, beamlet, S);

2 S′ ← S;
3 for a in randomOrder(angle.A) do
4 open ← isOpen(angle, beamlet, a);
5 if δ < 0 then
6 if !open then next;
7 if S.I[a][beamlet] + δ < 0 then δ = −S.I[a][beamlet];
8 if rand() <p int then
9 S′ ← modifyIntensity(angle, S, a, δ);

10 else
11 S′ ← modifyAperture(angle, beamlet, S, a, δ);

12 else
13 if S.I[a][beamlet] + δ > max p then δ =max p−S.I[a][beamlet] ;
14 if open then
15 S′ ← modifyIntensity(angle, S, a, δ);
16 else
17 S′ ← modifyAperture(angle, beamlet, S, a, δ);

18 if z(xS′ ) < z(xS) then return (S′);
19 ;

20 S′ = S;

21 return S′

Algorithm 3. Search procedure for the aperture-based representation.
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Fig. 5. Prostate case considered in this study. Two OARs (bladder and rectum) are
considered. (Color figure online)

Perturbation: The perturbation procedure implements an operator that
changes psize times the initial solution S by randomly choosing, with probabil-
ity 0.5, to modify the intensity of a randomly selected aperture a or modifying
the aperture shape in a by opening or closing a randomly selected beamlet.

3 Experiments

A clinical prostate case obtained from the CERR package [7] has been considered
in this study. Figure 5 shows a transversal view of this case. Boundaries of the
target volume (tumor + margin in green), rectum (in light blue) and bladder
(in yellow) are highlighted as the regions of interest in this study. We label the
rectum and the bladder as organs at risk (OARs). The total number of voxels is
about 56, 000. The number of decision variables (beamlets) depends on the BAC
and ranges between 320 and 380. The number of beam angles N considered in
a BAC is equal to 5. The dose deposition matrix Ar is given for each BAC. We
consider 72 beam angles, all of which are on the same plane. Just as in [4,6], we
consider a set of 14 equidistant BACs to make our experiments.

We compare the algorithms described before to the sequential approach com-
monly used in clinical practice. That is, we first optimise the intensities (i.e. to
solve the FMO problem) and then we find the set of deliverable apertures corre-
sponding to the optimal intensities (i.e. to solve the MLC sequencing problem).
While to solve the FMO problem we use the IPOPT solver [14], to solve the
MLC sequencing problem we use the algorithm proposed in [1]. This algorithm
finds a set of apertures delivering the optimal intensities and minimizing the
beam-on time.
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3.1 Parameter Configuration

In order to properly compare the proposed algorithms, we configure the parame-
ter values of the intensity-based and aperture-based approaches using irace [12].
Each DAO algorithm run is allowed 60 seconds of execution time. The bud-
get provided to irace for searching the parameter space of the algorithms was
1 000 evaluations and the configuration process was performed over 7 equidistant
IMRT instances using default irace settings. The parameter settings obtained by
irace, and used in the following experiments, are given in Table 1.

Table 1. Parameters settings obtained by irace (With the exception of n restart
which was set manually to 100 iterations) for the aperture-based algorithm (ABLS)
and the intensity-based algorithm (IBLS).

Parameter ABLS IBLS Parameter ABLS IBLS

bsize 7 45 p int 0.01 −
vsize 34 92 max delta − 15

psize 6 6 α − 0.99

Initial setup open-min open-min max ratio − 5

n restart* 100 100

3.2 Initialisation Method

The proposed algorithms have an intensifying nature due to the beamlet selection
heuristic and the acceptance of only improving solutions. The initialisation setup
of the aperture shapes and the intensities can influence the performance of the
algorithms given that they provide the initial point from which solutions are
repaired and improved. In the following experiments we evaluate the effect of
the initialisation strategy on the performance of the proposed algorithms. For the
aperture shapes we define 3 types of initial setup: (open, closed, random). The
open setup initialises all the beamlets in the apertures open, closed does the
opposite by initialising all beamlets as closed, and random initialises the aperture
shapes randomly. The intensities can be initialised to the minimum intensity
allowed (min), the maximum intensity (max), or a random (rand) value between
the permitted minimum and maximum intensity. Table 2 gives the mean results
obtained using the different initialisation approaches. In both algorithms the
best mean results are obtained by the open-min strategy and the worst results
are obtained by open-max. We note that the results of the closed-min strategy
are not significantly different from the results of open-min for the intensity-
based algorithm (p-value = 0.54). This hints that the selection of the most
promising beamlet heuristic and the proposed search procedures benefit of a low
initial intensity that will be iteratively increased during the search. Oppositely,
repairing a treatment plan initialized with high intensities appears to be a more
difficult scenario to tackle for these techniques.
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Table 2. Mean value of z(x) obtained by 30 repetitions of the algorithms using different
initialisation strategies across the set of 14 BACs. The best mean results are shown in
bold and results that are not significantly different to the bests mean results are shown
in cursive (Wilcoxon signed-rank test with Bonferroni correction, α = 0.05).

open-min open-max closed-min rand

IBLS 55.2 85.1 55.6 56.2

ABLS 70.3 137 98.8 91.0

3.3 Comparison of Performance

Table 3 shows a comparison between the different proposed strategies and the
IPOPT solver which solves the FMO problem to optimality. The first column
shows the BAC for which the intensities and deliverable apertures are com-
puted. Columns 2–7 show the mean cost, the standard deviation (SD) and
the mean beam-on time (BOT) found by the proposed intensity-based (IBLS)
and aperture-based (ABLS) strategies considering a maximum of 5 apertures
per beam angle, that is, a total of 25 deliverable aperture shapes per BAC.
Each heuristic algorithm was run 30 times with a budget of 40 seconds on each
instance. Columns 8–10 show the optimal cost for the FMO problem found by
the IPOPT solver, the minimal beam-on time of the optimal solution found and
a lower bound for the number of the aperture shapes required. The latter two
values were reported by the MLC sequencing algorithm proposed in [1].

The results obtained by the proposed techniques are worst, in terms of the
evaluation function, when compared to the optimal solution of the FMO prob-
lem. Nevertheless, the average beam-on time and number of aperture shapes
required by this optimal solution are considerable larger. Large number of aper-
tures and large beam-on times result in long treatment times which are undesir-
able from a practical perspective2. In particular, the significantly better beam-on
time reported by IBLS is mainly due to the conditions imposed by the matrix
representation of the intensities. For each angle, this matrix can be easily mapped
to a small set of apertures with a total beam-on time equal to the maximum
beamlet intensity in the matrix.

The solutions obtained by the intensity-based algorithm are competitive w.r.t
the rounded solutions as they further reduce the beam-on time and number of
aperture shapes increasing the applicability of the treatment plan and producing
a smaller worsening of the evaluation function compared to the aperture-based
technique. An important aspect of the desirability of treatment plans is the
radiation dose distribution in the organs and tumours.

Figure 6 shows an example of dose distributions for an instance and the three
strategies using their best configurations. Each curve represents an organ (the

2 Even disregarding the impact on the clinical schedule, long treatment times are
uncomfortable for the patients and carry an increased risk of intra-fraction motion,
which may compromise plan quality [9].
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Table 3. Mean results (z(x)), standard deviation (SD) and beam-on time (BOT)
obtained by the intensity-based and aperture-based algorithms (IBLS and ABLS resp.),
the FMO problem optimal solution evaluation (IPOPT, z(x∗)), the corresponding
beam-on time and a lower bound for the required number of apertures (#ap).

Instances IBLS ABLS IPOPT

z(x) SD BOT z(x) SD BOT z(x∗) BOT #ap

0-70-140-210-280 55.2 2.16 85 77.6 7.46 114 41.3 204 40

5-75-145-215-285 55.8 2.78 85 73.8 5.28 148 41.6 188 39

10-80-150-220-290 55.7 3.84 88 73.7 7.37 148 41.8 216 39

15-85-155-225-295 54.9 2.96 87 69.1 6.73 143 41.7 220 39

20-90-160-230-300 55.5 2.98 87 68.6 5.4 111 41.8 194 37

25-95-165-235-305 54.4 2.51 85 67.4 6.24 116 42.3 242 38

30-100-170-240-310 54.2 2.71 84 64.6 3.67 120 42.4 218 40

35-105-175-245-315 55.3 2.22 84 68.3 5.69 125 42.0 206 38

40-110-180-250-320 55.6 3.24 87 72.4 5.61 136 42.3 222 39

45-115-185-255-325 56.2 2.76 86 70.7 5.32 156 43.0 208 41

50-120-190-260-330 55.6 3.26 84 72.8 6.6 131 42.9 222 41

55-125-195-265-335 55.3 2.74 85 69.7 5.38 130 42.4 210 40

60-130-200-270-340 54.2 2.44 83 68.1 5.84 138 42.7 238 39

65-135-205-275-345 54.8 2.6 86 67.3 4.99 119 41.4 236 39

Average 55.2 2.8 86 70.3 5.83 131 42.1 216 39.2

Fig. 6. Dose distributions of the instance 0-70-140-210-280 obtained by using IPOPT
(left) the intensity-based strategy (middle) and the aperture-based one (right). (Color
figure online)

yellow one corresponds to the tumor). Points (x, y) in each curve indicate that,
related to the organ (or tumor), the y% of its voxels receive a radiation dose of
at most x. Thus, it is desirable that the organ curves quickly decline to y = 0,
while the tumor curve should remain high until the prescribed dose is reached.

Note that the dose distribution curves of the intensity-based strategy are
quite similar to the ones reached by IPOPT. While, the tumor curve is slightly
to the left, the organs clearly receive smaller radiation doses. On the other hand,
in the aperture-based strategy the tumor reaches a dose closer to the prescribed
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dose but, as a result, the organs are affected to a greater extent by the radiation.
Finally, highlight that, as our methods are stochastic, they may be able to offer
different alternative treatments depending on the random number sequence.

4 Conclusions

In this paper we have introduced two novel heuristic algorithms to solve the DAO
problem in radiation therapy for cancer treatment. Proposed heuristics are able
to find a set of deliverable aperture shapes and intensities for each beam angle of
a given BAC within a clinically acceptable time. Further, despite the heuristic
algorithms were allowed to use only 5 apertures shapes per beam angle, they
were able to find very competitive treatment plans.

We compare the heuristic algorithms to the traditional two-step approach
where the optimisation of the intensities is performed first and then the sequenc-
ing problem is solved given an optimal intensity map. Results show that deliver-
ing the optimal plan would require more than two times the number of deliver-
able aperture shapes than our heuristic methods. These promising preliminary
results encourage us to keep working on this research field.

As future work we want to include other criteria within our proposed frame-
work, such as clinical markers. The collaboration of both techniques to solve
DAO and the integration of the FMO problem model to use the optimal solu-
tion to guide this search is also part of our future work. Moreover, we also want
to integrate to the proposed framework the beam angle optimisation problem,
so we can (approximately) solve the whole IMRT problem in an integrated way.
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Abstract. Stochastic Tunneling (STUN) is an optimization heuristic
whose basic mechanism is based on reducing barriers for its search pro-
cess between local optima via a non-linear transformation. Here, we
hybridize STUN with the idea of Tabu Search (TS), namely, the avoid-
ance of revisiting previously assessed solutions. This prevents STUN
from inefficiently scan areas of the search space whose objective function
values have already been “transformed away”. We introduce the novel
idea of using a probabilistic data structure (Bloom filters) to store a
(quasi-)infinite tabu history. Empirical results for a combinatorial opti-
mization problem show superior performance. An analysis of the tabu
list statistics shows the importance of this hybridization idea.

1 Introduction

Real-world optimization problems often show multiple minima, e.g., sev-
eral (local) optima. This occurs, for example, in the structure prediction of
biomolecules where local minima correspond to partially folded proteins, or –
more general – in any non-convex optimization scenario.

The number of those local minima typically increases with the dimension-
ality of the search space. Heuristics are a powerful tool to obtain approximate
solutions in practice. Such approximations are at the same time better than
only greedily (and thus locally) optimized solutions which are obtained by stub-
bornly following a (generalized) gradient and follow greedily only the path of
strict improvements, eventually failing to overcome barriers between such (local)
minima.

While Wolpert’s “no free lunch” theorem [14] states that any optimization
algorithm will not perform better – averaged over all optimization problems –
than any other, for specific subset of optimization problems there are distinct
performance improvements possible. This insight opens the route to hybridiza-
tion techniques in which components of heuristic optimization procedures are
synergistically combined. The possibilities of the hybridization idea are impress-
ing due to the combinatorics of potential pairings of such components.
c© Springer Nature Switzerland AG 2019
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In this contribution we discuss the hybridization of a randomized search
procedure (Stochastic Tunneling [6,7,13]) with the power of Tabu Search [3–5],
which tries to avoid reassessing previously visited parts of the search space.

We will first review the details of both procedures and then propose our
novel hybridization idea that overcomes shortcomings of both approaches applied
individually. We will use the terms energy, objective function value, as well as
objective function and potential energy surface interchangeably.

1.1 Stochastic Tunneling

Stochastic Tunneling (STUN) [6,7,13]) is a Monte-Carlo based sampling proce-
dure in the spirit of Simulated Annealing (SA) [9]. While SA features a time-
dependent temperature, STUN can be shown to be driven by an energy depen-
dent (and thus position-dependent) temperature in certain cases [6].

In contrast to SA, STUN samples a transformed function fSTUN of the form

fSTUN = 1 − exp (−γ · (f(x) − f0)) (1)

with a transformation strength γ and the Metropolis-Monte-Carlo acceptance
criterion based on a constant temperature β. Here, f0 := f(x0) is the best
known function value so far at the best guess of its location x0. Note, that the
transformation is ad hoc and does not imply the evaluation of f(x) at several
other locations (such as a Fourier-transform would require). STUN evaluates the
objective function the same number of times as SA given finite iteration numbers
imax the procedure is allowed to run. In Fig. 1 we illustrate the effect of STUN.

The idea of STUN is to overcome barriers between minima more easily. This
is possible as barriers are reduced whenever they are “higher” than the best
known f0 so far. The reliance on f0 implies, that STUN is not Markovian any
more, but eventually contains a history of function values.

The problem that plagues STUN after a considerable large number of steps is
directly caused by the barrier reduction itself: when there are only a few better
minima to be found, then the transformed function fSTUN becomes rather flat.
Eventually, the STUN process diffuses on a flat surface with one remaining “hole”
(the global minimum) – effectively playing golf.

In the extreme case when the structure and topology of the potential energy
surface are disregarded, the processes is an unguided diffusion. Then, the visiting
probability of any portion of the search space is uniformly likely and thus the
density in search space uniform. Thus, in this worst case the process just guesses
randomly.

It would thus be desirable to avoid not only function values that are uninter-
esting (which STUN does), but also areas of the search space previously visited.
Then, the process is not a random walk anymore and guided by its history in
search space.

Our idea, therefore, is to hybridize STUN to be dependent on the histories
of both, the function values and the areas of search space visited.
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Fig. 1. The principle of the STUN transformation. Top: original objective function
f(x). Bottom, left: STUN transformation fSTUN(x) of f(x) for the indicated x0 (red
arrows); bottom, right: transformation after reaching an improved x0. Note, how bar-
riers are reduced upon a better estimate of x0 and thus f0. (Color figure online)

1.2 Tabu Search

From its inception on, Tabu Search (TS) [3–5], has gained tremendous traction
in the heuristics community and is the procedure of choice to search with a
history of areas visited during the course of an optimization run.

TS is also an iterative procedure that visits points in the search space based
on a neighborhood relation (as SA and STUN). It, however, includes also a list of
previously visited locations of the search space. Now, the number of visited loca-
tions needs to be limited due to memory and time/search constraints. This limit
is called tabu tenure. Upon reaching this limit the history is either completely
deleted or the “oldest” memory is progressively deleted.

The tabu region idea would be beneficial for STUN to avoid the diffusive
behavior as argued above. However, a list of previously visited solutions of which
entries are periodically revoked as the tabu tenure is reached might not address
the diffusive behavior to its full extent. In theory, an infinite history would be
the solution. However, this is unattainable in practice – again due to resource
constraints.

2 (Quasi-)Infinite History via Bloom Filters

To implement a trade-off between a (sufficiently large) tabu history and the con-
straints of resources and look-up complexity, we propose a Tabu-STUN-hybrid
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Algorithm 1. Storage procedure for the Bloom filter BLOOM for a configuration
s in search space.
Require: k many distinct hash function hi(s) for members s of the search space S

function BLOOM.Storage(s)
v := (h1(s), . . . hk(s))
for 1 ≤ i ≤ k do

BLOOM[vi] := 1

end function

Algorithm 2. Retrieval procedure for BLOOM; returns a Boolean to indicate
whether s was seen before.
Require: k many distinct hash function hi(s) for members s of the search space S

function BLOOM.Retrieval(s)
v := (h1(s), . . . hk(s))
for 1 ≤ i ≤ k do

if BLOOM[vi] == 0 then return False

return True

end function

that relies upon a probabilistic data structure to store visited points in search
space.

We propose to use Bloom filters [2] to represent the history of an STUN
run. Bloom filters are of fixed size and store information of previously stored
information. We use an array BLOOM of m bits to store information upon visited
locations s. At start, each cell of BLOOM is initialized to zero. Each location to be
entered into BLOOM is first mapped via k many hash functions to a vector-based
fingerprint

v := (h1(s), . . . , hk(s))

The hash functions hi need not to be cryptographically secure, but must be
distinct such that hi(s) �= hj(s) for i �= j almost always. For the search space
S we have in addition ∀i ∈ [1, . . . , k], s ∈ S : hi(s) ∈ [1, . . . m]. We then can
use the individual values hi(s) as addresses of BLOOM. We enter a new visited
location by setting every bit in BLOOM addressed by the fingerprint vector v. We
ask whether we have seen a s by mapping again to addresses hi(s) and taking a
logical and over the binary values under the k many addresses thus computed.

Note, that BLOOM’s recall is exact: any input ever encountered before will be
reported as such; however, to avoid infinite storage requirements, a Bloom filter
shows a non-vanishing error rate in reporting false positives. Thus, a Bloom filter
will assign a “visited” label to some configurations in search space that have not
been assessed before. In Algorithms 1 and 2 we show the procedures of storage
and retrieval in pseudo-code.

In [12] the rule k := m
d loge 2 is derived as an optimal value for k based

on a minimal false positive rate p. The Bloom filter has given size m and data
{s1, . . . , sd} is to be inserted. Note, that this relation implies a linear increase
in storage size m with respect to data size d. While the scaling in requirements
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is the same, the amount of real memory needed, however, could be orders of
magnitude different: m is the number of bits stored in the Bloom filter, while a
datum s might be a complex data structure with large memory footprint, e.g.,
in our test system a datum s needs at least 400 bits for its representation (see
Sect. 3.1 below). Thus, a Bloom filter can help to reduce memory requirements
tremendously – eventually, enabling a “full-take” of the search history.

2.1 Proposed Hybrid Algorithm

In Algorithm 3 we show pseudo-code for our proposed Bloom-augmented STUN
variant. We create new candidate solutions t for the Monte-Carlo process until
we find a never visited one (assured by the condition BLOOM.Retrieval(t)).

Due to potential false positives and/or a “trapping” in a corner of the search
space, we must, however, also allow the process to escape such a trap. We achieve
this by the additional condition that no more than 2 · |s| many trials are tested
for.

Eventually, this limit was never reached in our application (see below,
Sect. 4). Therefore, this condition remains a hypothetical assurance for the pro-
cess to not get stuck in an infinite loop that in practice is never realized.

The history of solutions visited and stored in the Bloom filter is (quasi-)
infinite when we use the number of maximal iterations imax in STUN as the size
of the data to be put into the Bloom filter d = imax. Here, the Bloom-filter can
be allocated beforehand as we know imax in advance.

2.2 Potential Shortcomings

Avoiding diffusive behavior of STUN via Bloom filters might lead to ignorance
about some configurations (false positives) and – in the worst case – prevent
our new STUN variant to ever reach the global minimum. Thus, the Bloom
filter-based step generation is a trade-off whose advantages and disadvantages
need to be assessed for a particular application. To this end we have chosen a
combinatorial optimization problem described in the next section.

3 Experimental Setup

3.1 Test Case

We need a test instance whose objective function can be evaluated very fast,
but which shows all the characteristics of difficult optimization problems (multi-
minima, exponential scaling of those with the dimension of the test instance,
large to arbitrary barriers between local minima). Ising spin-glasses [1] with
Gaussian distributed interaction couplings fulfill all these specifications, while
at the same time exact solutions can be computed by an external sources [10].
The objective function reads

min E(s) =
∑

<i,j>

Jijsisj ∀i∈{1...N} : si ∈ [−1/2; 1/2] (2)
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Algorithm 3. Proposed STUN-variant with (quasi-)infinite tabu tenure; using
the STUN transformation function f(x, y) := 1 − exp (−γ · (x − y)). Additions
to the original STUN algorithm of Refs. [7, 13] are marked in blue.
Require: k many distinct hash function hi(s) for members s of the search space S
Require: neighborhood relation N (s) for any s of the search space S
Require: rnd() uniform random number generator ∈ [0; 1]
Require: s0 some starting point
Require: E(s) objective function
Require: β, γ as constant hyperparameters
Require: initialized Bloom-filter object BLOOM

E0 := E(s0), s := s0, E := E0

for 1 ≤ i ≤ imax do
w := 0
repeat � find previously non-visited t

t := draw from N (s) uniformly
w := w + 1

until w > 2 · |s| or not BLOOM.Retrieval(t)
insert w into histogram h(w) � optional: for analysis in Fig. 4
if exp (−β · [fSTUN(E(t), E0) − fSTUN(E, E0)]) < rnd() then � accept move

s := t
E := E(t)
BLOOM.Storage(t) � store a newly visited t
if E < E0 then � better solution found

E0 := E
s0 := t

return (s0, E0) � best spin configuration and its energy

The sum over <i, j> of Eq. 2 is restricted to nearest neighbors on a 2D grid
of N spins and thus a regular lattice of side length

√
N . The Jij are drawn from

a Gaussian distribution. The vector s∗ := (s∗
1, s

∗
2, . . . , s

∗
N ) contains the optimal

solution. We will deal with a 20 × 20 grid of spins, thus with N = 400. This
problems has a large sample space1 of size 2399.

3.2 Experimental Details

The algorithm was implemented in C++, using g++ and the hash-function of the
Boost library based on existing Ising simulation code [6,8]. Production runs were
done under the Linux OS. The k many different hash function hi were derived
by k copies of Boost’s hash function and seeding each with a distinct random
number.

The computational burden in real-time units (like seconds etc.) is largely
influenced by hardware details and software versions. To circumvent this problem
we only refer to the number of calls to the objective function E(s) as a proxy
for the time spent in the overall computation.
1 For general, random Jij there exist one symmetry between up/down-spin states that

eventually degenerates into two global solution dividing the search space in one half.
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We show the average performance of 250 independent runs of the Ising ground
state problem: obtained for 50 independently created Ising spin systems (50 times
drawn N values Jij) for which we apply STUN and STUN-BLOOM five times
independently for each instance.

3.3 Hyperparameters

The inverse temperature β and the transformation strength γ are the hyperpa-
rameters of STUN. Furthermore, the number of distinct hash functions k used
in the Bloom filter can be regarded as another one. However, analytic arguments
[12] determine the optimal value for k := m

d log 2 given the Bloom filter size m
and the number of data d. Now, d could be chosen larger than necessary. Here,
we decided to set d = imax as the number of iterations. Thus, we demand the
Bloom filter to contain imax configurations at most while not wasting memory.
Our setup is thus optimize for low(er) memory footprint while being able to dis-
tinguish most if not all visited configurations (but not more). From this point of
view, the history taken into account is effectively (quasi-)infinite for a prescribed
number of iterations.

For imax = 2·108 and p = 10−8 we obtain m = 7, 668, 046, 702 which amounts
to a memory demand 914.1 MiB = 958.5 MB using the optimal k = 27.

We performed a scan for suitable hyperparameters β and γ taken from the
grid (β, γ) ∈ [0.1; 1; 5; 10] × [0.1, 1, 10] for imax = 2 · 108. We found βopt = 5
and γopt = 10 to perform best with respect to the average relative error of the
objective function value εrel(niter) which we define as

εrel(niter) :=
E(α)(niter) − E

(α)
o

E
(α)
o

where E
(α)
o is known global optimum value obtained from the spin-glass-server

[10]. α is the id of the respective test-instance; niter the iteration number –
corresponding to the number of calls of the objective function.

4 Results

Note, that false positives in the Bloom filter do not decrease the number of visited
configurations, but rather “push” the search process further away than necessary.
By this construction we ensure that exactly imax distinct spin configurations are
visited. We never reached the upper limit of too many visited configurations as
tested for in Algorithm 3.

In Fig. 2 we show a direct comparison of the classical STUN procedure with
the herein proposed variant based on Bloom filters. We used raw data for all
hyperparameters and iteration numbers. As is evident, the new variant almost
always performs better than the classical STUN.

For larger iteration numbers, the superiority of the new algorithm is even
more pronounced as can be seen in Fig. 3 where we show the averaged relative
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Fig. 2. Averaged relative errors εrel compared for identical hyperparameters (β, γ) and
various iteration numbers i between STUN (S) and BLOOM-STUN (B). Error bars
represent standard deviations over 250 independent runs and replicas as described in
Sect. 3.3 over which also the averages where taken. We indicate by the filled triangle
situations for which STUN performed better as STUN-BLOOM (negligible).

error as a function of the number of calls of the objective function for the best
hyperparameters of each variant.

The drop at a distinct number of iterations in Fig. 3 was observed previ-
ously [7,8]. It is caused by reaching a local minimum from the arbitrary starting
configuration. Immediate gains are thus easy during the first ∼ 105−106 itera-
tions. The ultimate challenge, however, is the search dynamics during later times
(106−108 iterations). Clearly, Fig. 3 shows that BLOOM-STUN does improve
upon STUN. While STUN for various parameters seem to get stuck, the new
Bloom filter-based variant has not reached any saturation.

To illustrate the importance of the BLOOM.Retrieval condition in Algo-
rithm3 we went further and analyzed how many candidate configurations t were
actually tested for membership in BLOOM.

The answer is somewhat surprising: on average w̄ ∼ 3.8 neighbors needed
to be tested to find a candidate t never visited before. In Fig. 4 we present the
histogram h(w) of Algorithm 3.

From these observation on h(w) we can immediately conclude that the ini-
tial motivation to incorporate a (quasi-)infinite Tabu Search-like avoidance of
previously visited solutions was justified: without this mechanism the classic
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Fig. 3. Averaged relative errors εrel as a function of computational time (expressed as
the number of calls to the objective function). Error bars for BLOOM-STUN represent
standard deviations over 250 independent runs and replicas as described in Sect. 3.3.
Error bars for STUN are of the same order, but were omitted for visual clarity. We
directly compare the performance of STUN and BLOOM-STUN at BLOOM-STUN’s
best hyperparameters (β, γ) = (5, 10) [black and purple], as well as for STUN’s best
hyperparameters (β, γ) = (10, 0.1) [green]. (Color figure online)

STUN process would have revisited time and again already assessed areas of the
search space. With the inclusion of a tabu mechanism we have forced the search
space out of the seemingly diffusion-like behavior into one that searches more
effectively.

This conclusion is furthermore strengthened by the different choices of best
hyperparameters (as shown in Fig. 3): the tabu/Bloom based variant runs better
at a larger temperature (smaller β) and stronger transformation (larger γ) than
the classic STUN. The original Monte-Carlo process without a tabu list would be
much more diffusive, thus more inclined to randomly guess than the Bloom/tabu
list augmented one.
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STUN/Monte-Carlo step of Algorithm3. Note, that the final step was always suc-
cessful, that is a new configuration never encountered before. Thus, a history-unaware,
Markovian process would show a delta peak at w. Here, we averaged over 300 indepen-
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5 Conclusions

Motivated by the observation that the heuristic optimization procedure Stochas-
tic Tunneling (STUN) tends to diffusion-like (and thus inefficient) search behav-
ior, we hybridized it with the idea of Tabu Search (TS) to avoid re-visiting areas
of the search space again and again.

We used the probabilistic data structure of Bloom filters to maintain a
(quasi-)infinite history of visited solutions. A Bloom filter is a trade-off between
reducing the memory requirements to store the full search history and a (small
and a priori setable) false positive rate.

This small modification of STUN rendered the search process exponentially
more effective in regard to the relative error for a combinatorial optimization
problem (Ising spin glass ground states).

In theory, the usage of a probabilistic structure with a false-positive rate could
potentially lead to exclusion of the global minimum. In practice, however, where
there myriads of local minima, this hypothetical outcome seems unimportant
when contrasted with the beneficial performance shown in Fig. 2.
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Furthermore, our ex post analysis of the importance of the tabu list –
expressed in the histogram h(w) of the number of rejected tabu configurations
w – showed that the initial hypothesis on the improvable details of STUN was
correct.

As a final note, we want to critically remark that the look-up via
BLOOM.Retrieval might be more time-consuming than the actual recomputa-
tion of the objective function itself. Clearly, in our test system of Ising spin
glasses the overall computational burden lies not in the objective function itself.
In real-world applications of heuristics, such as protein structure prediction [11],
the relation is, however, reversed: here the dominant part of the computations
reside in the evaluation of the objective function and not in the rather trivial
BLOOM.Retrieval procedure with some k ≈ O(10) hash function evaluations.
Therefore, in such realistic settings the additional overhead to maintain the tabu
list is negligible.

In the future, we want to derive an analytic theory for the findings on h(w)
in Fig. 4. We speculate that the rather high w̄ ∼ 3.8 is a consequence of the
high-dimensionality of the Ising search space in combination with a only a few
(namely two) choices per degree of freedom. Such a theory, however, is beyond
the scope of the hybridization question and will be pursued in the future from
the point of view of stochastic processes.
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Abstract. This work presents four hybrid methods based on the
Self-adaptive Differential Evolution algorithm with fragment insertion
applied to the protein structure prediction problem. The protein repre-
sentation is the backbone torsion angles with side chain centroid coor-
dinates. The fragment insertion is made by the Monte Carlo algorithm.
The hybrid methods were compared with recent and compatible methods
from the literature, where two proposed approaches achieved competi-
tive results. The results have shown that using parameter control and
fragment insertion greatly improves the results of the prediction when
compared to fragment-less methods or without parameter control. Fur-
thermore, an extra analysis was conducted using GDT-TS and TM-Score
metrics to better understand the results obtained.

Keywords: Structural biology · Bioinformatics
Evolutionary algorithms · Parameter control · Monte Carlo search

1 Introduction

Proteins are one of the four macromolecules essential for the life as we know it.
They are responsible for metabolic, structural, hormonal, regulatory and other
functions. The three-dimensional conformation of a protein (i.e, its shape, struc-
ture) has a direct connection to the protein function. Therefore, knowing the
three-dimensional conformation can give insights on the roles that a protein has
in an organism, on drug design and a better understanding of diseases [24]. Each
protein can be uniquely identified by its amino acid sequence. The process of
determining this sequence is called protein sequencing and it is a relatively cheap
process. On the other hand, determining a protein structure depends on expen-
sive methods as X-Ray crystallography or nuclear magnetic resonance, which are
slow, error-prone and very expensive [6]. Hence, the gap between the number of
sequenced and structured proteins is larger than 3 orders of magnitude [2].

With the goal of closing this gap, scientists have been working for decades
to model methods to predict the protein structure from its sequence. This prob-
lem is referenced as Protein Structure Prediction Problem (PSPP) and it is
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considered one of the main open problems in computer science and bioinfor-
matics [5,11,12]. Several protein representation models have been proposed to
handle the PSPP in different levels of details. The HP on-lattice model, which
can be considered as the simplest one, is an NP-Hard problem [1,9] being unfea-
sible to solve it for real instances using exact methods. One attempt at solving
the HP model is presented in [15], however, they are far from achieving good
results for real proteins. Other models used in the literature describe the pro-
tein as a set of backbone angles and torsions with the option of using the side
chain information. These representations have a higher level of details at the
cost of complexity, thus requiring the use of (meta)heuristics methods, such as
bio-inspired algorithms [17]. Examples of such works can be seen in the use
of Genetic Algorithms [3], Memetic Algorithms [7], Simulated Annealing [22],
hybrid methods [29], and Differential Evolution [14]. The Differential Evolution
(DE) has shown its potential over the years and it is currently one of the best
performing continuous optimizers.

It is known that parameters play a big role in the performance of meta-
heuristics [18], and this is no different for the PSPP. Finding the optimal set
of parameters is usually a long process and very resource consuming since it
requires many executions of the optimization process. Furthermore, the differ-
ent target protein may have different optimal parameters. Therefore, finding
the parameters prior to making the final prediction is not ideal resource-wise.
Another problem also arises from this: Using only one set of parameters during
the whole process may impact negatively on the optimization process, that is
related to the balance between exploration and exploitation. And, different steps
of the process may require a different set of parameters to achieve a better per-
formance. Works such as [14] shows that even hard coded strategies for different
steps of the process can improve the final solution. It has been shown in several
studies that the choice of parameters is critical for the performance of DE [10].

Some algorithms can be considered for parameters’ auto adaptation using
DE: JADE [28], CODE [25] and SaDE [20]. The one chosen to be used in this
work was SaDE, for the reasons explained next. SaDE is capable of adapting its
parameters over the course of the optimization, based on each operator in use.
It can adapt the parameter over the run, allowing for the use of heterogeneous
operators working together. The other reason for using SaDE is that it can
control which operator will be used, based on its success rate. This allows for
SaDE to use different operators over different stages of the optimization process.

This work investigates the use of a hybrid approach based on the Self-
Adaptive Differential Evolution algorithm coupled with fragment insertion in
four variants. The fragment insertion is made by the Monte Carlo algorithm [23].
The goal is to adapt the search to the problem complexity during the optimiza-
tion process while including more knowledge from the problem domain. This is
accomplished with the use of a fragment library assembly using Rosetta [16].
A fragment library is a set of protein pieces of which all are a sub-sequence
of the target protein, in a way that it can be assembled (or at least approxi-
mated) with a set of fragments. Also, we provide an analysis of the proposed
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algorithms using several metrics, with the objective of making more information
about their performance and allowing future developments to compare to our
results obtained.

This work is structured as follows. Section 2 presents the PSPP, the com-
putational model used and the target energy function. Section 3 presents the
Self-adaptive Differential Evolution used in this work. Section 4 shows the hybrid
fragment-based approaches proposed in this work. In Sect. 5 the experimentation
setup used is shown. In Sect. 6 the results obtained are presented and analyzed.
Section 7 contains the conclusions and future research directions.

2 The Protein Structure Prediction Problem (PSPP)

A given protein can be analyzed at different levels of detail: Primary, secondary,
tertiary and quaternary. At the primary level, the protein structure is analyzed
considering only the amino acid sequence, which can be used to uniquely describe
the protein. The secondary structure considers recurrent patterns inside a local
sequence of amino acids considering the dihedral angles, where the most common
ones are the α-helix (helicoid shape), β-sheet (planar shapes) and coils (irregular
shapes). The tertiary structure corresponds to the three-dimensional shape of the
protein, also called the three-dimensional conformation or native conformation.
The quaternary structure is formed by the composition of 2 or more proteins.
Thus, the PSPP can be defined as finding the tertiary structure of a protein
from its primary structure.

2.1 Protein Representation

When representing a protein computationally there are several options available,
depending on the level of detail desired and what is being considered about the
protein. Those models can then be divided into two major classes: On-lattice and
off-lattice. The on-lattice models consider each amino acid as a point in space and
the bonds between them are lines. These lines are restricted to a regular lattice
in a two or three-dimensional space. It is possible to solve the on-lattice models
exactly and to prove its optimality [15], however, their lack of details makes them
far from real conformations. Off-lattice models, on the other hand, can represent
proteins in a higher level of details, since its angles are not limited to a fixed
increment. Its main models are: Cα Coordinates, all heavy atoms coordinates,
backbone torsion angles with side chain centroid coordinates, backbone and side
chain torsion angles, and all atoms coordinates. This research uses the backbone
torsion angles with side chain centroid coordinates model, as illustrated in Fig. 1.
Each peptide bond is composed of 3 angles, phi, psi and omega, that can rotate
freely from −180◦ to 180◦. Each angle represents a variable to be optimized.

2.2 Energy Landscapes

The process of predicting a protein tertiary structure based only on the pri-
mary structure is referenced in the literature as ab initio. This process can be
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Fig. 1. Backbone protein representation

improved by utilizing more knowledge gathered from other sources of information
than the primary structure. Examples of this are the prediction of the secondary
structure, libraries of rotamers, information about the angle distribution, and
libraries of fragments. When some of this information is utilized we have a de
novo prediction. Either of those methodologies are guided by the optimization of
a potential energy function, such as AMBER, CHARMM, or Rosetta [5]. These
energy functions are computable approximations of the many physical and chem-
ical interactions that happen naturally. They are extremely complex, requiring
advanced methods to overcome the high dimensionality and multimodality of the
problem. This work uses Rosetta’s energy function, Rosetta’s fragment library
and secondary structure prediction with PSIPRED [4].

2.3 Prediction Assessment

To evaluate how good (or bad) a prediction is, it is necessary to have an assess-
ment metric. The main assessment metric is based on the Root Mean Square
Deviation (RMSD), as shown in Eq. (1). It consists of iterating two conformations
A and B over all n α-carbons, squaring their differences in position, averaging
it according to n and then returning the square root of this value. It is worth
noting that the two conformations must be aligned.

RMSDα(A,B) =
2

√∑n
i=1 (Ai − Bi)2

n
(1)

Most of the works found in the literature use only the RMSD as an evalua-
tion metric. However, there are many other metrics that can be employed for a
better (or complimentary) assessment than the RMSD. Two other metrics are
the GDT-TS [27] and the TM-Score [30], which are largely utilized in CASP [13]
competition. Besides RMSD, both GDT-TS and TM-Score metrics will be used
in this work.

Both GDT-TS and TM-Score have several advantages over RMSD. They
can provide a normalized value and are less sensitive to local changes, while
RMSD can be very sensitive to local variations. RMSD also scales quadratically,
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which can make values hard to be interpreted. Also, the RMSD is sensitive to
the protein number of amino acids. As bigger the protein is, higher the RMSD
can be. This makes the prediction performance hard to compare on different
proteins. The GDT-TS and TM-Score metrics are normalized and nonsensitive
to the protein length. Furthermore, they have cutoff values that can indicate how
good a prediction is without an explicity comparison with other methods. Both
GDT-TS and TM-Score are maximization scores. As reported in [26], a TM-Score
of 0.5 or bigger can be considered an indicator of a good prediction. Similarly,
for GDT-TS, a value bigger than 0.5 can be considered a good prediction, while
a value less than 0.2 indicates the performance of a random search.

3 Self-adaptive Differential Evolution (SaDE)

The Differential Evolution (DE) algorithm is a metaheuristic proposed by Storn
and Price in 1996 for continuous optimization problems [19]. It consists of a pop-
ulation of size NP of solution vectors of size D, where new individuals are gener-
ated by recombination of individuals of the previous generation. Each individual
has a fitness value proportional to how good it is and this value is responsible
for guiding the DE in the search space. A newer individual compete with the
previous one and must have a better fitness in order to replace the competing
individual.

There are several means of combining individuals to form newer ones. Table 1
presents the ones used in this work. The operators are named as xx/yy/zz and
mean the following. The term xx names what is used as a base vector. Can be
rand meaning a random vector xr1, best meaning the vector with the best fitness
xbest or curr meaning the current vector x being iterated. The second term, yy,
is the number of difference vectors used, and it is usually 1 or 2. The third term,
zz, is the combination operator. Two main methods of combining vectors are
present in the literature: the binary operator and the exponential operator. In
short, the binary chooses for each dimension the source of the mutation, whereas
the exponential operator copies a continuous sequence. Given the nature of the
PSPP, copying continuous sequences of amino acids can lead to better results.

Table 1. DE mutation operators

Name Formulation

best/1/exp w = xbest + F × (xr1 − xr2)

best/2/exp w = xbest + F × (xr1 − xr2) + F × (xr3 − xr4)

rand/1/exp w = xr1 + F × (xr2 − xr3)

rand/2/exp w = xr1 + F × (xr2 − xr3) + F × (xr4 − xr5)

curr-to-best/2/exp w = x + F × (xbest − xx) + F × (xr2 − xr3)

curr-to-rand/1/exp w = x + F × (xr1 − xr2)
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DE has 3 main parameters: F , Cr and NP . F is a scalar that controls how
much the base vector is perturbed compared to the differential vectors used. A
smaller value leads to a local search (or exploitation), where a bigger value leads
to a more global search (or exploration). The parameter Cr controls how much
of the current vector is replaced by the new one. A small value leads to only
a few variables being replaced, while a bigger value will make more variables
being replaced. This can be used to speed up or hold down the convergence
speed. Finally, NP simply control how many solution vectors there are in the
population. A bigger value will mean that the search space is more explored
inside the same generation and a smaller value leads to only a few examples of
the search space. Assuming a fixed budget of function evaluations, a bigger value
leads to fewer generations, which in turn gives the individuals fewer opportunities
for evolution.

The SaDE algorithm [20] is responsible for controlling 3 aspects of DE. First,
it modifies F using a normal distribution with mean 0.5 and standard devia-
tion 0.3. This parameter is not adapted but suffers random variations favouring
exploration and exploitation in all stages of the optimization process. The Cr
parameter is controlled by the SaDE in which each operator available to SaDE
has its own value of Cr. Hence, different operators may have different optimal
parameters. The adaptation of Cr is based on a learning phase, which tries to
find good values for it. After the learning phase, the median of the best values is
used as Cr. Each time an operator is applied a new value is generated based on
the median, which allows for the parameter to slightly change and adapt over
time. If the newly generated value was able to lead to an improvement, then
it is stored for later use. The third aspect under SaDE is the mutation oper-
ator. The original work of [20] uses 5 operators. In this work, it ranges from
4 to 10. Each time an operator is applied to a solution vector, its success (or
failure) is recorded. Over time, the operators which had the bigger amount of
improvements has a bigger chance of being used than the ones with a smaller one
based on a proportional selection. With that, SaDE is able to use the operators
that are most likely to have a positive effect while avoiding spending function
evaluations on the bad ones. For more details on SaDE see [20,21].

4 SaDE with Fragment Insertion

This work explores four variations of the hybrid approach based on the SaDE
algorithm with the use of fragment insertion. The fragment insertion is made by
the Monte Carlo algorithm [23]. Since SaDE is able to control the DE parameters
as well as select which operators to use, our hybrid approach consists in putting
problem specific operators under SaDE control to achieve hybridization, bridging
the gap between the optimizer and the problem.

Fragments are pieces of proteins that had its structure determined in a labo-
ratory and which have the same subsequence as out protein. There are 4 fragment
insertion operators: 3mer, 3merSmooth, 9mer and 9merSmooth. The 3mer and
9mer consist of a simple fragment insertion of size 3 or 9, respectively. On the
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other hand, 3merSmooth and 9merSmooth can add a fragment into a random
position, and them, select a second fragment insertion in a way where the total
backbone displacement is reduced. These two operators can achieve a greater
acceptance rate (since it is less likely to make a bad move) and can explore the
search space more locally. These operators use experimental data to assemble
the fragment library, thus, they can give more problem domain information. For
this, two new set of domain-specific operators are presented.

The first set of domain-specific operators used in the proposed hybrid app-
roach consists in pure fragment insertion and will be referenced as the FRAG
operator. As mentioned before, their insertion is made by the Monte Carlo algo-
rithm that is applied for a predefined number of attempts. Hence, improving
changes are always accepted and worsen changes are probabilistically accepted
according to a predefined constant, also known as temperature. This constant is
controlled by the SaDE algorithm. This criterion allows the operator to escape
from local minima.

The second set of domain-specific operators is very similar to the FRAG oper-
ator, having all of its elements. While FRAG is the operator set with the biggest
amount of information available, it also has no capacity to use the information
stored in other solution vectors (individuals). That is, if there is information
of good quality available at one solution vector, the others have no access to
it. One way of dealing with that is to use the Replica Exchange Monte Carlo
(REMC) [8], which can copy the solution vector of other solution vectors before
starting applying the fragments. This permits reuse of good information between
different solution vectors. This approach will be referenced as REMC operator.
Each time the operator is called, it competes with the previous solution vector.
That is, if the i-th solution vector had the REMC operator called, first, it will
be compared to the (i − 1)-th solution vector with the Monte Carlo criterion.
This wraps around, so the first solution vector competes with the last one. This
means that the information is passed in a ring topology, thus, preventing prema-
ture convergence of the algorithm while at the same time sharing good solutions
vectors information.

In light of this, the four hybrid methods explored in this work are SaDE
with FRAG and DE operators; SaDE with REMC and DE operators; SaDE
using only FRAG operators; SaDE using only REMC operators. The reasoning
in exploring these four optimization models are as follows. SaDE is able to do
parameter control during the optimization process and can select which operators
are given the most improvement. Both FRAG and REMC operators are able to
include problem-specific information into the optimization process, giving to DE
the ability to better explore the potential energy landscape.

Finally, all four optimization models have some common elements. All solu-
tion vectors are codified in terms of backbone angles, three for each peptide,
that can rotate freely from −180◦ to 180◦. The initial population is generated
by optimizing a simple objective function by using fragment insertion. This func-
tion is named score0 (available in Rosetta) and consists only of repulsive van der
Waals force, which is capable to detect conformations with colliding parts and
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are undesirable. At the end of the optimization process, the conformation with
the best energy score is selected and repacked. Repacking consists of replacing
the side chain centroids by its original structure. This requires a re-optimization
of the protein backbone, which is conducted with gradient descent.

5 Experiments Setup

With the goal of verifying the performance of the proposed optimization models,
4 proteins were selected from PDB [2] based on their utilization in the literature.
The protein properties are summarized in Table 2, where the first column holds
the protein name, the second column shows the protein size (number of amino
acids), the third column holds the number of backbone angles (which corresponds
to the number of variables being optimized), and the fourth column shows the
secondary structures found in the native conformation of the protein.

Table 2. Target proteins and their features

Name Size Backbone angles Structure

1ZDD 35 105 2α

1CRN 46 138 2α, 2β

1ENH 54 162 3α

1AIL 72 216 3α

The main objective of the optimization process is to minimize the score
function, thus, this is one of the performance metrics being utilized. However,
to access the usefulness of the predictor it is necessary to identify how close
the prediction is from a reliable reference such as the native conformation. For
this purpose, it is used the Root Mean Squared Deviation (RMSD), presented in
Eq. (1), which can give a distance metric of how close the predicted conformation
is from the native conformation. Then, it is possible to have a measure of how
good the optimization is and how good the prediction is. This is very important
since the improvement of one does not imply the improvement of the other.
Since the works found in the literature which are compatible with this work
only provided the RMSD, it is not possible to do a direct comparison with them
using other metrics.

Four optimization models are employed, named SADE-DE-FRAG, SADE-
DE-REMC, SADE-FRAG, and SADE-REMC, described in Sect. 4. For each
variant of the proposed method, 10 independent runs were made for each of
the target proteins. The tests were run on a machine equipped with an Intel R©
CoreTM i5-3570k clocked at 4.2 GHz, 16 GB of RAM clocked at 1400 MHz, and
running a GNU/Linux operating system.

The SADE-DE-FRAG and SADE-DE-REMC models use four fragment
insertion operators each, plus six DE operators shown on Table 1. The SADE-
FRAG and SADE-REMC models use only the four fragment insertion operators.
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Results are compared with two works from the literature that are compatible
with the proteins and metrics used in this work: MSA [22], which uses a multi-
stage simulated annealing with fragment insertion, and the GA-APL [3], which
uses a Genetic Algorithm with distribution of angles for each amino acid based
on its predicted secondary structure.

All four proposed methods were run with a budget of 500000 function evalu-
ations. This value was chosen to mimic the values used by the MSA algorithm.
The parameters for all methods are exactly the same: population size is set to
100 and the learning phase of SaDE is set to 50 generations. The methods using
fragment insertion can use up to 10 function evaluations per solution vector per
generation with Monte Carlo criterion. This means that the number of gener-
ations can vary, due to a variable amount of function evaluation being spent
with each fragment insertion operator. The average energy is compared using a
Student’s T-Test with a confidence of 95%.

6 Results and Analysis

Table 3 presents the results obtained. The first column shows the protein code-
name as in PDB, the second column presents the algorithm name, the third
column shows the best (lowest) energy found in 10 runs, the fourth column
shows the best (lowest) RMSD between the alpha carbons of the best-predicted
protein and its native structure, and the fifth column shows the average energy
and its standard deviation of 10 runs. The best values of each column, per
protein, are marked in boldface. The average processing time was 7.43 ± 1.15,
10.34 ± 1.29, 11.87 ± 1.52 and 16.50 ± 1.58 min for 1ZDD, 1CRN, 1ENH, and
1AIL, respectively.

When comparing the minimum energy, RMSD and average energy of each
algorithm, it is possible to notice that the methods proposed in this work are, in
general, able to outperform both MSA and GA-APL. Considering only the pro-
posed methods, both SADE-FRAG and SADE-REMC outperformed the other
methods, with the exception of MSA on 1CRN when considering the average
energy.

The comparison of the minimum energy reached within 10 runs of each algo-
rithm shows that 3 of the 4 hybrid methods proposed achieved better energy
values on the 1ZDD protein. For 1CRN, which is arguably the harder protein
in this set, SADE-REMC achieved the best results and MSA scored the sec-
ond best energy followed by SADE-FRAG. On the 1ENH protein, SADE-FRAG
scored the best energy and SADE-REMC the second best, being apart by less
than 2 units. For 1AIL protein, SADE-REMC got the best energy, more than
ten units from the second best. With this information, it is possible to see that
SADE-REMC is able to achieve the best energy values, or at least get a very
close value to it.

Analyzing the RSMD it is possible to notice that for 1ZDD, near-native
structures are found by all methods, with the exception of GA-APL. SADE-
REMC achieved the best results for all proteins, with the exception of 1CRN,
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Table 3. Results obtained

Protein Algorithm Min. energy RMSDα(Å) Avg. energy

1ZDD GA-APL −40.40 10.9 −36.20 ± 2.60

MSA −62.99 2.62 −48.96 ± 7.77

SADE-DE-FRAG −62.49 2.97 −30.44 ± 27.07

SADE-DE-REMC −70.06 1.81 −53.17 ± 11.33

SADE-FRAG −80.67 1.51 −69.36± 5.50

SADE-REMC −82.46 1.16 −68.36 ± 8.50

1CRN GA-APL −22.70 5.8 −18.20 ± 2.9

MSA −76.93 6.96 −54.01± 17.30

SADE-DE-FRAG −44.02 7.80 2.31 ± 55.94

SADE-DE-REMC −31.60 5.45 3.67 ± 36.82

SADE-FRAG −68.38 5.38 −45.29 ± 20.70

SADE-REMC −82.72 6.08 −23.18 ± 55.94

1ENH GA-APL −56.08 14.99 −51.52 ± 1.94

MSA −95.86 5.70 −80.75 ± 8.48

SADE-DE-FRAG −112.64 4.40 −87.63 ± 15.95

SADE-DE-REMC −113.93 3.90 −86.12 ± 30.66

SADE-FRAG −127.31 4.69 −104.09± 12.06

SADE-REMC −125.89 3.23 −98.75 ± 10.04

1AIL GA-APL −75.07 12.34 −71.08 ± 3.35

MSA −128.55 8.27 −117.54 ± 10.28

SADE-DE-FRAG −126.31 7.28 −96.70 ± 22.63

SADE-DE-REMC −149.37 6.43 −106.08 ± 31.94

SADE-FRAG −142.05 7.41 −118.39 ± 13.01

SADE-REMC −159.48 4.46 −119.16± 25.01

when it loses to SADE-FRAG. For 1CRN, all methods achieved similar results
with a small amplitude between the methods, indicating the complexity of the
protein. For 1ENH and 1AIL proteins, results with a correct global fold are
found, however, lacking local alignments. This is confirmed later with visual
analysis.

The average energy found during the experimentation indicates that SADE-
FRAG and SADE-REMC achieved better results in all cases except for 1CRN.
For 1CRN, as shown by the standard deviation, all four proposed models appear
to have a varying result, while the competing methods had a smaller standard
deviation. On 1ZDD and 1ENH proteins, SADE-FRAG and SADE-REMC have
statistically equal results and are able to outperform all the others as confirmed
with an unpaired Student’s T-Test. In the 1CRN protein, SADE-REMC, SADE-
FRAG and MSA are all statistically equal. However, MSA has a smaller mean
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and standard deviation. As for 1AIL, all four proposed methods and MSA are
equivalent.

Table 4. Results showing the GDT-TS metric

Protein SADE-FRAG SADE-REMC

(Best)Avg ± StdDev (Best)Avg ± StdDev

1ZDD (0.860)0.779 ± 0.072 (0.860)0.762 ± 0.066

1CRN (0.543)0.422 ± 0.057 (0.462)0.405 ± 0.047

1ENH (0.463)0.414 ± 0.036 (0.463)0.390 ± 0.037

1AIL (0.407)0.342 ± 0.031 (0.449)0.365 ± 0.039

Table 5. Results showing the TM-Score metric

Protein SADE-FRAG SADE-REMC

(Best)Avg ± StdDev (Best)Avg ± StdDev

1ZDD (0.658)0.547 ± 0.091 (0.666)0.542 ± 0.085

1CRN (0.393)0.288 ± 0.041 (0.295)0.261 ± 0.033

1ENH (0.288)0.254 ± 0.022 (0.292)0.237 ± 0.025

1AIL (0.338)0.281 ± 0.030 (0.440)0.298 ± 0.051

Tables 4 and 5 present for the two best methods, SADE-REMC and SADE-
FRAG, their respective GDT-TS and TM-Score. It can be seen that for 1ZDD
the mean value of the predictions was above 0.5, meaning that both algorithms
got the same fold. 1CRN and 1ENH proteins had similar results for GDT-TS,
with a value close to 0.4, indicating that the method was close to arriving at
a solution in the same fold. Proteins 1CRN, 1ENH and 1AIL had similar TM-
Scores of about 0.28, showing that it started to converge but did not get to the
same fold as the native structure. With this information, it is possible to see that
there is more room for improvement than just the one pointed by RMSD. There
is a strong indication that the method’s performance decreases as the number of
amino acids increases, which was expected since the number of variables grows
making the problem more complex. Another aspect worth noting is that GDT-
TS and TM-Score do agree on which method was the best considering the mean.
However, regarding the relative performance between two proteins, the metrics
do not always agree. For instance, TM-Score points out that SADE-FRAG was
better on 1AIL than on 1ENH, but GDT-TS points otherwise. This happens due
to different aspects being measured by each metric.

With the intent of a visual evaluation of the results obtained, the conforma-
tions with best RMSDs, selected from Table 3, were plotted in Fig. 2 with the pre-
dicted protein in cyan/light color and the native conformation in red/dark color.
The 1ZDD protein achieved the best overall RMSD and is shown in Fig. 2(a).
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It is possible to notice only small deviations from the native conformation. The
1CRN protein, shown in Fig. 2(b), is the hardest target protein approached in
this work, and this can be confirmed by the visual analysis. The shape of the
fold is mostly correct on the prediction, with one α-helix rotated approximately
130◦ from where it should be. The main loop of the protein also is close to the
native conformation. However, the β-sheets were not found by the prediction.
On 1ENH protein, Fig. 2(c), the prediction was very accurate in most part of the
protein, however at both ends the α-helices were misfolded. For 1AIL protein,
Fig. 2(d), the analysis is similar to the last protein. Two of the three α-helices
present in this protein are correctly predicted with one of them missing a sin-
gle turn, and the other one lacking 1 turn at the beginning and approximately 3
turns at the end. This is responsible for most of the error found in the prediction
of this protein.

(a) 1ZDD (b) 1CRN (c) 1ENH

(d) 1AIL

Fig. 2. Predicted proteins (cyan, lighter) compared to the native conformations (red,
darker) (Color figure online)

7 Conclusions and Future Work

This work presented four hybrid methods for solving the PSPP based on SaDE
and non-homologous fragment insertion guided by the Monte Carlo algorithm.
In our application, the initial population is generated with a Monte Carlo phase
using a relaxed score function and a repacking stage is employed at the end of
the optimization. Two proposed approaches, SADE-REMC and SADE-FRAG,
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were both able to outperform other algorithms found in the literature. In light
of the experimentation and its results, it was observed that the hybridization
of the SaDE algorithm with domain-specific operators achieved better results.
Also, the use of fragment insertion leads to a better result than methods guided
only by using the energy function. The visual analysis of the best conformations
showed that in 1ENH and 1AIL proteins the main source of error was due to
incorrect prediction of the secondary structure.

Furthermore, the use of GDT-TS and TM-Score metrics allowed to gather
more insights about the performance of the proposed methods. With that in
mind, it was presented the measurements in the hope that it would be used as a
reference for future works. Also, the use of better metrics than the RMSD start
to become more frequently used.

As future research directions, it is possible to explore other self-adaptive
schemes for controlling fragment insertion. The inclusion of more proteins should
also be considered, to provide better understand the proposed method’s per-
formance and to compare to more works in the literature. The prediction of
secondary protein structure should also be explored by using other predictors
available in the literature. The same can be applied for fragment generation.
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algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187
(2015)

https://doi.org/10.1007/0-387-33746-6


A Self-adaptive Differential Evolution with Fragment Insertion for the PSPP 149

11. Liu, J., Li, G., Yu, J., Yao, Y.: Heuristic energy landscape paving for protein
folding problem in the three-dimensional HP lattice model. Comput. Biol. Chem.
38, 17–26 (2012)

12. Lopes, H.S.: Evolutionary algorithms for the protein folding problem: a review
and current trends. In: Smolinski, T.G., Milanova, M.G., Hassanien, A.E. (eds.)
Computational Intelligence in Biomedicine and Bioinformatics. SCI, vol. 151, pp.
297–315. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70778-
3 12

13. Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T., Tramontano, A.: Critical
assessment of methods of protein structure prediction: progress and new directions
in round XI. Proteins: Struct. Funct. Bioinf. 84(S1), 4–14 (2016)

14. Narloch, P.H., Parpinelli, R.S.: The protein structure prediction problem
approached by a cascade differential evolution algorithm using ROSETTA, pp.
294–299. IEEE (2017)

15. Nunes, L.F., Galvão, L.C., Lopes, H.S., Moscato, P., Berretta, R.: An integer
programming model for protein structure prediction using the 3D-HP side chain
model. Discrete Appl. Math. 198, 206–214 (2016)

16. de Oliveira, S.H., Shi, J., Deane, C.M.: Building a better fragment library for de
novo protein structure prediction. PloS One 10(4), e0123998 (2015)

17. Parpinelli, R.S., Lopes, H.S.: New inspirations in swarm intelligence; a survey. Int.
J. Bio-Inspir. Comput. 3(1), 1–16 (2011)

18. Parpinelli, R.S., Plichoski, G.F., Da Silva, R.S., Narloch, P.H.: A review of tech-
nique for on-line control of parameters in swarm intelligence and evolutionary
computation algorithms. Int. J. Bio-Inspir. Comput. (IJBIC) (2019, accepted for
publication)

19. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical App-
roach to Global Optimization. Springer, Heidelberg (2005). https://doi.org/10.
1007/3-540-31306-0

20. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with
strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput.
13(2), 398–417 (2009)

21. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for
numerical optimization. In: The 2005 IEEE Congress on Evolutionary Compu-
tation, vol. 2, pp. 1785–1791. IEEE (2005)

22. Silva, R.S., Parpinelli, R.S.: A multistage simulated annealing for protein structure
prediction using Rosetta. In: Anais do Computer on the Beach, pp. 850–859 (2018)

23. Vanderbilt, D., Louie, S.G.: A Monte Carlo simulated annealing approach to opti-
mization over continuous variables. J. Comput. Phys. 56(2), 259–271 (1984)

24. Walsh, G.: Proteins: Biochemistry and Biotechnology. Wiley, Hoboken (2002)
25. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector

generation strategies and control parameters. IEEE Trans. Evol. Comput. 15(1),
55–66 (2011)

26. Xu, J., Zhang, Y.: How significant is a protein structure similarity with TM-score
= 0.5? Bioinformatics 26(7), 889–895 (2010)

27. Zemla, A.: LGA: a method for finding 3D similarities in protein structures. Nucleic
Acids Res. 31(13), 3370–3374 (2003)

28. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional
external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

29. Zhang, X., et al.: 3D protein structure prediction with genetic tabu search algo-
rithm. BMC Syst. Biol. 4(1), S6 (2010)

30. Zhang, Y., Skolnick, J.: Scoring function for automated assessment of protein struc-
ture template quality. Proteins: Struct. Funct. Bioinf. 57(4), 702–710 (2004)

https://doi.org/10.1007/978-3-540-70778-3_12
https://doi.org/10.1007/978-3-540-70778-3_12
https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.1007/3-540-31306-0


Scheduling Simultaneous Resources:
A Case Study on a Calibration

Laboratory

Roberto Tavares Neto(B) and Fabio Molina da Silva(B)

Federal University of Sao Carlos, Sao Paulo, Brazil
{tavares,fabio}@dep.ufscar.br

Abstract. A calibration laboratory studied in this research performs a
thermal test that requires an analyst for setup and processing and an
oven to perform such an essay. For convenience, it’s possible to group
some of the essays according to the oven capacity. In this scenario, this
paper proposes a scheduling approach to minimize the total flowtime
of the orders. This is a multiple resource scheduling problem, where a
resource (operator) is used on two processes (oven setup and analysis). In
contrast to the classical definition of multiple resource scheduling prob-
lems, the oven setup process requires the presence of the operator only
for the startup of the process. To solve this problem, we derived: (i) a
mixed-integer formulation; (ii) an Ant Colony Optimization (ACO) app-
roach. On those developments, we also discuss some structural properties
of this problem, that may lead to further advances in this field in the
future. Our results show the ACO approach as a good alternative to the
MIP, especially when solving instances with 30 service orders.

Keywords: Multiple resource scheduling · Ant Colony Optimization
Multiple constraint scheduling

1 Introduction

From time to time, pieces of equipment used by manufacturing and service
systems require to be submitted to some calibration procedure. This paper
approaches a problem found by a laboratory that serves mainly an aircraft ser-
vice facility. In this problem, there is a set of calibration service orders on a
process that uses two resources: a human analyst and an oven. The human ana-
lyst is required to program the oven and to elaborate the report of each piece.
The oven is used to perform the essays after the programming. It’s possible to
group the essays in batches, respecting the oven capacity. The reports, on the
other hand, must be processed individually. The goal of the laboratory is to find
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the processing sequence of the activities of both the analyst and the oven that
minimizes the system flowtime.

Formally, this problem has some characteristics already addressed by the sci-
entific literature (e.g., [1]). It’s clear that we are dealing with a 2-stage flowshop
manufacturing environment. The sequence of operations is not required to be
the same on the two stages, making this problem close to a non-permutation
flowshop environment. On this flowshop, batches are allowed on the first stage.

Another feature of this problem is the requirement of two resources to be allo-
cated to a single operation (the oven processing). Some studies have addressed
the issue of multiple resources scheduling. In those papers, all the resources allo-
cated to operate are used during all the processing, being released together at
the end of it (a comprehensive review on the topic can be found in [21]). This
constraint does not apply to the problem studied in this paper: in this case, there
is an operation that requires two resources (analyst and oven) to be started. Fur-
thermore, after being released, the “analyst resource” can be allocated to work
on unfinished reports while the oven is performing the rest of their operation.

To address this problem, the remaining of this paper is organized as follows:
Sect. 2 formally defines the problem; Sect. 3 presents some concepts from the
literature regarding the above-mentioned problems; Sect. 4.1 presents a mathe-
matical formulation of the problem; Sect. 4.2 presents a heuristic approach for
the problem; furthermore, Sect. 5 presents the results of the solution methods
on a large set of problem instances; finally, Sect. 6 presents the final remarks of
this paper.

2 Problem Definition

As stated previously, this paper tries to solve a scheduling problem found on a
calibration laboratory with two processing resources: an oven and an analyst.
The analyst is required to perform the initial setup of the oven, and then is
released to perform another duties. Each processing order requires two sequential
operations: the essay (performed by the oven) and the analysis (performed by
the analyst). Several essays can be grouped, according to the oven capacity. The
objective is to minimize the total system flowtime. Figure 1 presents a possible
three-order scheduling. In this example, the essay of orders 2 and 3 are grouped
and executed at t = 0. Once the essays are finished, it is performed the analysis
of order 2. When the analysis of order 2 is finished, the analyst is released to
perform the setup for the essay of order 1. After the setup is finished, the analyst
perform the analysis of order 3 while the oven is processing the essay of order
1. When the essay of order 1 is completed, the analyst perform the analysis of
order 1.

To represent this problem, this paper groups the activities into batches. A
batch of activities is composed by all operations performed between two oven
operations. Thus, in Fig. 1, the first batch (b = 0) is composed by oven operation
[2+3], the corresponding analyst setup and the reporting operation [2]. Similarly,
the second batch is composed by the oven/analyst setup operation of [1] and the
reporting operation of [3, 1].
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Fig. 1. A simple scheduling of three service orders grouped into two batches

Table 1. Symbols used on this formulation

Symbol Type Description

N Set Set of orders

S Set Set of all subset of vertices of the graph represented by yijb

ρ0i Real Processing time for the oven operation of order i

ρ1i Real Time required to perform the oven setup by the analyst

ρ2i Real Time required to perform analysis on order i

b Integer Index for setup batch task

{i, j, k} Integer Indexes for an analysis task (0 is a dummy order)

B Integer Max number of elements allowed in a single batch

xib Binary Assumes 1 if order i is allocated into batch b, 0 otherwise

yijb Binary Assumes 1 if analysis j is performed after analysis i at batch b

0 otherwise

Sb Real Starting time of batch b

Co
b Real Completion time of operation performed by the oven at batch b

Cao
b Real Completion time of operation performed by the operator to

execute the oven setup at batch b

Sa
i Real Starting time of reporting operation of order i

Ca
i Real Completion time of reporting operation of order i

Formally, this paper adopts a set of symbols to address each element of this
problem and the corresponding solution. Those symbols are presented in Table 1.

3 Literature Overview

3.1 Multiple Resource Scheduling

The coordination between limited resources is also a key factor in healthcare
related problems. As an example, [22] presents a branch-and-price approach and
apply it to two case studies of scheduling patients on exam labs, coordinating
the assignment of exam rooms and medical personnel. In this problem, besides
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the need for simultaneous allocation between the physical and human resources,
there is a no-wait constrain imposed. Likewise, manufacturing facilities demand
a careful assignment of limited resources. This can be found on injection molding
operations (e.g., see [7]) and semiconductor manufacturing (e.g., [12]). The class
of problems that allows the assignment of both machines and workers is usually
referred as Dual Resource Constrained (DRC) systems. Several solution meth-
ods have been proposed in the literature: e.g., [13] uses a Branch Population
Genetic Algorithm (BPGA) to address a DRC problem consisting of allocating
machines and workers to process parts of manufacturing jobs. Further heuristic
and metaheuristic-based approaches for the DRC systems can be found in the
literature (e.g., [20]).

All the researches mentioned allocates the multiple resources during all the
processing time of the operation. However, in the specific case of the problem
approached by this paper, the oven and analyst resources are jointly allocated
only on the initial phase of the oven operation.

3.2 Batching in Two-Stage Flowshops

The relevance of batching to real-world applications is well-documented in the
literature (e.g., see [3]). This category of problems has been solved using a wide
range of techniques: [14] presents a mathematical formulation for a scheduling
problem considering a flowshop when batches are formed at the first stage and
then processed by all stages. Further formulations are presented by [2], among
others. Further approaches can also be found: e.g., [19] proposes a dynamic
programming algorithm; [23] uses a genetic algorithm.

All of those researches considered single-resource scheduling problems. Unfor-
tunately, we could not find a solution for a batching flowshop environment with
the characteristics considered by this paper.

3.3 The Ant Colony Optimization

The Ant Colony Optimization [8,9,11] is a nature-inspired meta-heuristic that
creates solutions based on the movement of virtual agents (named “ants”) on a
graph. Those agents mimic the behavior of real ants use to gather food to the
nest: initially, the ants move randomly, based only on the neighborhood charac-
teristics. When some food source is found, the ant return to the nest depositing
a chemical substance named pheromone. This substance slowly evaporates after
its release. Once an ant can perceive any pheromone trail, the chance of choos-
ing routes with higher pheromone values increases. After some ants perform this
cycle, the pheromone levels related to the path elected by most ants became
dominant. Thus, the next ants choose to use this path to reach the food source.
Figure 2 represents the mechanism of pheromone updating.

To implement this behavior, the literature (e.g., see [8–11]) presents some
common approaches:

– The pheromone is represented as a τij array, representing the value of the
pheromone on the arc i → j;
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Fig. 2. The pheromone evolution during an ACO algorithm execution

– The τij array is updating according Eq. 1 (Δτ is zero if i → j does not belong
to the current solution).

– The neighborhood characteristics are modeled by a visibility function ηij .
This function is usually found by some problem-specific characteristics (e.g.,
when solving the traveling salesman problem, it’s usual to describe the visi-
bility as a function of the distances between two cities).

– The next movement of the ant is given by a probabilistic function weighted
according to a transition rule presented in Eq. 2.

– γ, β and Δτ are parameters.

τij(t) = γ · τij(t − 1) + Δτ (1)

Pij =
τij · ηβ

ij

max(i)∑

k=0

τkj · ηβ
kj

(2)

Formally, the pseudo-code for an ACO algorithm is presented in Algorithm1.

Algorithm 1: The ACO pseudo-code
1 Initialize;
2 repeat At this level, each execution is called iteration
3 Each ant is positioned on the initial node;
4 repeat At this level, each execution is called step
5 Each ant applies a state transition rule to increment the solution;
6 Apply the pheromone local update rule;

7 until all the ants have built a complete solution;
8 Apply a local search procedure;
9 Apply the pheromone global update rule;

10 until the stop criteria is satisfied ;

Several researches use ACO-based algorithms to tackle important scheduling
problems. E.g., [17] presents an ACO algorithm to schedule orders into a flow-
shop; [4] combines ACO and Bean Search to generate schedules for an open-shop
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environment; [16] uses an ACO algorithm to optimize a project schedule. Mostly
problem structures of those implementations uses a full-connected graph. As will
be presented in Sect. 4.2, this paper uses a different representation, more suitable
to a pure assignment problem.

4 Solution Strategies

Two approaches were developed to solve the problem presented in this paper:
a mixed-integer programming (MIP) model and an ACO algorithm. Although
the MIP could, in theory, delivery the optimal solution, the computational effort
require is usually prohibited. This strategy is used in this paper to validate the
results of the ACO and to obtain optimal solutions for the small-sized problems.

4.1 A Mixed-Integer Formulation

The first approach for this problem on this paper was a Mixed-Integer Program-
ming model. This approach was used to: (i) assist to formally define the problem;
and (ii) obtain optimal results to allow the assessment of the algorithm proposed
in Sect. 4.2.

Equations 3–5 guarantees the validity of the setup batches formed by the
model. Equations 3 assures that any non-dummy order must be assigned just
once. The oven capacity is constrained by Eq. 4. A dummy order is assigned to
all setup batches, as stated by Eq. 5.

∑

0≤b<|N |
xib = 1 ∀{

0 < i < |N | (3)

∑

0≤b<|N |
xib ≤ B ∀{

0 ≤ b < |N | (4)

x0b = 1 ∀{
0 ≤ b < |N | (5)

Equations 6–12 grant the validity of the solution regarding the yijk variables.
Those constrains are common in the VRP literature (e.g., see [6]), and can be
divided in two subgroups: Eq. 6 assures that an order i cannot be scheduled after
itself; Eqs. 7–9 assures that each order is performed in just one batch; Eqs. 10–
11 assures that all schedules start at the dummy node; Eq. 12 guarantee the
structure of a schedule on each batch.

yiib = 0 ∀
{

1 ≤ i < |N |
0 ≤ b < |N | (6)

∑

1≤i<|N |
0≤b<|N |

yijb = 1 ∀{
1 ≤ j < |N | (7)
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∑

1≤j<|N |
0≤b<|N |

yijb = 1 ∀{
1 ≤ i < |N | (8)

∑

0≤i<|N |
ykjb =

∑

0≤i<|N |
yikb ∀

{
0 ≤ k < |N |
0 ≤ b < |N | (9)

∑

0≤i<|N |
yi0b = 1 ∀{

0 < b < |N | (10)

∑

0≤j<|N |
y0jb = 1 ∀{

0 ≤ b < |N | (11)

∑

{i,j}∈S

xijb ≤ |S| − 1 ∀
⎧
⎨

⎩

0 ≤ b < |N |
S ⊂ N

2 ≤ |S| ≤ |N |/2
(12)

The starting and completion times are found by Eqs. 13–22, widely present in
the Vehicle Routing Problem literature (VRP - e.g., see [5,6]). Equations 13–16
state that a batch other than the first one can only be processed when: 14–
15 the previous setup has finished at the oven and analyst; and 16 any previous
reporting activity has finished. Equations 17–18 establish the processing times for
each batch. Equations 19–22 determine the values of the starting and completion
times of the reporting orders.

S0 = 0 (13)

Sb ≥ Co
(b−1) ∀{

0 < b < |N | (14)

Sb ≥ Cao
(b−1) ∀{

0 < b < |N | (15)

Sb ≥ Ca
i − M · (1 −

∑

1≤j<|N |
yijb) ∀{

0 < b < |N | (16)

Co
b ≥ Sb + ρ0,i · xib ∀

{
0 ≤ b < |N |
1 ≤ i < |N | (17)

Cao
b ≥ Sb + ρ1,i · xib ∀

{
0 ≤ b < |N |
1 ≤ i < |N | (18)

Sa
i ≥ Co

b − M · (1 − xib) ∀
{

0 ≤ b < |N |
1 ≤ i < |N | (19)

Sa
i ≥ Cao

b − M · (1 − xib) ∀
{

0 ≤ b < |N |
1 ≤ i < |N | (20)

Sa
j ≥ Ca

i − M · (1 − yijb) ∀
⎧
⎨

⎩

0 ≤ b < |N |
1 ≤ i < |N |
1 ≤ j < |N |

(21)

Ca
i = Sa

i + ρ2,i ∀{
1 ≤ i < |N | (22)
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4.2 An Ant Colony Optimization Approach

Two main design choices were made to allow the application of the concepts
of the ACO meta-heuristic presented in Sect. 3.3 on this problem: the graph
encoding and a corresponding fitness function.

Graph Modeling. As presented in Sect. 3.3, ACO algorithms require a graph
that allows the ant to create a solution. In the specific case of this implementation
the graph is composed of two stages: the first stage allows the ant to allocate
orders into groups of oven operations; the second stage allows the ant to allocate
reporting activities into batches, following the concept of batches presented in
Sect. 2. Since the order of the assignment is not important in this data structure,
it’s possible to adopt a directed graph as shown in Fig. 31. On this graph, there
are two groups of vertices. On each group, there is one line for each batch and one
column for each order. The left group represents the allocation of oven operations
into batches, and the right represents the allocation of reporting operations. The
ant builds a new solution by moving from left to right. Figure 3 indicates how
an ant would use such graph to build the solution presented in Fig. 1.

Fig. 3. A graph representing a 3-orders, 3-batches problem. The solution highlighted
is the one presented in Fig. 1

The Visibility Function. Two different visibility functions were defined,
according the choice to be made by the ant. When moving through the oven
operations part of the graph, the ant uses the visibility presented in Eq. 23. On
the case of reporting operations, the algorithm adopts Eq. 24. On this equation,
b′ is the batch that executes the oven operations of order i.

ηib =

{
1

1+|maxj∈b{xjb}−ρ0i| if b is the current batch
1

1+ρ0i
otherwise

(23)

ηib =

{
1 if b ≥ b′

0 otherwise
(24)

1 For convenience, the dummy node i = 0 is not represented here.
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The Fitness Function. Given a batch assignment for each analysis, each value
of Ca

i can be found by using Algorithm2. On this algorithm, for each batch b,
the orders i ∈ b are divided into two sets: Πa, containing all orders processed
by the oven on previous batches (and can be executed at any moment); and Πb,
containing all orders which oven operations are executed on the current batch
(and must wait until Co

b to start the processing). In the example of Fig. 1, when
b = 1, Πa = {3} and Πb = {1}. This algorithm is composed of three different
stages:

STAGE 1. Orders Πa by ρ2i and schedule them until the idle time is not
reached.

STAGE 2. If there is at least a non-scheduled order remaining at Πa, decides
if this order must use the idle time or be delayed.

STAGE 3. All the remaining orders are sorted by ρ2i and then scheduled using
this sequence.

The optimal scheduling of orders at Stage 1 and Stage 3 is straightforward:
since it’s well-known that the minimum flowtime of a single processor is achieved
by ordering the orders by their processing time [18]. Thus, the optimal scheduling
of Stage 1 and 3 is achieve by ordering the jobs according the values of ρ2i.

When scheduling the jobs of Πa, it’s possible that the total processing time
is higher than the idle time of the batch. In this case, the first job that violates
the idle time can be assigned to be scheduled following the previous sequence
of Πa or moved to Πb. One can show that, considering ρa as the processing
time of the first job i of Πa that violates the batch idle time and ρb the lower
processing time of all batches of Πb, i must be moved from Πa to Πb only if
ρa − ρb > 2 · Idle, Idle represents the idle time of the analyst on this processing
batch.

5 Results and Analysis

The model presented in Sect. 4.1 was coded in Python 3 with CPLEX 12.8
library. It was stated a maximum running time of 3600 s. The ACO algorithm
presented in Sect. 4.2 was coded in C++, and compiled using GCC 4.8.4. The
IRACE package [15] was used to obtain the optimal values of the parameters
of ACO algorithm. The following parameters were considered: number of cycles:
100, 1000 or 5000; initial value of the pheromone: 100 or 200; pheromone evap-
oration constant: 0.8, 0.85, 0.9, 0.95, 0.99 or 1; pheromone increase constant:
0, 1, 2, 3, 4 or 5; β: 1, 2, 3, 4, or 5. For each class of problem, one instance
was randomly selected and the resulting set of instances were used by IRACE
to perform the tunning. All the remaining configurations were set as the default
values. After running the IRACE package, the optimal parameter setting was:
100 cycles; initial value of pheromone: 100; pheromone evaporation constant:
0.8; pheromone increase constant: 5; β: 1.

A set of 960 instance files were generated. The parameters used to generate
the files, defined based on information gathered on the calibration laboratory,
are presented in Table 2.
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Algorithm 2: The pseudo-code for finding the final fitness and the
sequence of reporting activities given an ACO solution.
1 Πa ← set of jobs that can be started at any moment;
2 Πb ← set of jobs that can be started only after the oven operation is finished;
3 Πs ← final sequence;
4 Idle ← The idle time of the analyst;
5 Ci ← The Completion Time of order i;
6 begin
7 foreach batch k do
8 Order Πa and Πb by the values of ρ2,i;
9 Πs ← ∅ ;

10 while Πa �= ∅ and ρ2,Πa[0] +
∑

i

ρ2,Πb[i] ≤ Idle do

11 Move Πa[0] to the end of Πs;

12 if Πa �= ∅ then
13 if ρ(2,Πa[0])

+ ρ2,Πb[0] ≤ 2 · Idle then

14 Move Πa[0] to the end of Πs;

15 CΠs[0] = Caok + ρ2,Πs[0] ;
16 CΠs[i] = CΠs[i−1] + ρ2,Πs[i], ∀0 < i ≤ |Πs| ;
17 Πb ← Πb

⋃
Πa;

18 Order Πb by the values of ρ2,i;
19 CΠb[0] = maxi{CΠs[i]} + ρ2,Πb[0] ;
20 CΠb[i] = CΠb[i−1] + ρ2,Πb[i], ∀0 < i ≤ |Πb| ;
21 Append Πb at the end of Πs;

22 return Πs,
∑

i Ci

Table 2. Parameters used to generate the instance files

Parameter Values

Number of files 20 for each combination of |N | and B

|N | 5, 10, 15, 20, 30, 40, 50, 100 or 200 orders

B 4, 6 or 8 orders

ρ0i Integer sampled from [106, 345]

ρ1i Real number sampled from [0.2, 0.4] ·ρ0i

ρ2i Integer sampled from [20, 75]

The first analysis performed is regarding the fitness found by both algorithms.
To perform this comparison, for each fitness measure, it was calculated the Gap,
Gap = (“FitnessFound” − “BestF itness”)/“BestF itness”. A graphical and a
descriptive statistical analysis are presented in Fig. 4 and Table 3. As presented,
the exact approach could obtain better results on mostly problem instances
containing 5, 10 and 20 orders. For larger problems, the mathematical model
could not reach the best value and ACO presented better results.
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Fig. 4. Values of Gap found, according to the instance size and method

Table 3. Descriptive statistics analysis for the fitness results

Method Size Min Average Std. Dev. Max

MIP 5 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00

20 0.00 0.00 0.00 0.01

30 0.03 0.30 0.17 0.95

ACO 5 0.00 0.01 0.02 0.19

10 0.00 0.01 0.02 0.18

20 0.00 0.00 0.00 0.00

30 0.00 0.00 0.00 0.00

Table 4 presents the time required to run each algorithm according to the
instance sizes. As expected, the ACO approach demands less resources than he
MIP approach.

Given those results, some analysis can be derived:
For small-sized instances (5, 10 and 20), the MIP approach was able to obtain

the optimal solution within the time limit imposed. For instances of size 5 and
10, the ACO algorithm behavior was slightly worse, with more outliers and a
standard deviation of 0.2. For instances of size 20, the fitness found by both
approaches were practically the same.

On instances of size 30, the MIP approach were not able to reach the optimal
solution on any instance. On those cases, the ACO presented a superior behavior.
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Table 4. Descriptive statistics analysis for the running time

Method Size Min Average Std. Dev. Max

MIP 5 0.00 0.27 0.72 5.00

10 3600.00 3602.03 4.42 3628.00

20 3600.00 3601.99 3.75 3631.00

30 3600.00 3601.44 3.35 3624.00

ACO 5 0.00 0.00 0.00 0.00

10 0.01 0.01 0.00 0.01

20 0.02 0.03 0.01 0.04

30 0.03 0.05 0.01 0.07

6 Final Remarks

This paper approaches the problem of scheduling thermical essays of a labora-
tory. In this problem, an analyst is require to perform a setup of the oven and
to elaborate reports. The oven is occupied during the setup and execution of the
essay.

To solve this problem, this paper proposed a representation scheme and two
solutions methods - a MIP formulation and an ACO algorithm. It was clear
that the ACO algorithm could obtain good results requiring significantly less
resources than the MIP.

In further works, are planned the development of more specific exact methods
(since the pure MIP model does not seems to be adequate to solve instances
larger than 30 orders) and local search methods to be used by the ACO.
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Abstract. Global energy demand has undergone a substantial increase
in past decades because of the rapid increase of the global population and
the energetic consumption of new production technologies. As a result,
a change is necessary in the global energy generating matrix, in which
the sources originate primarily from renewable energy sources. The main
renewable energy source may be solar energy, and one of its applications
is solar mobility. A world-class solar racing car exists that requires a
rational use of velocity and energy to minimize the time spent in a race.
A total of three search metaheuristics were tested to achieve an efficient
velocity profile for this car in the Atacama 2018 Solar Race: Genetic
Algorithm, Simulated Annealing and Iterated Local Search. The three
methods provided similar results, with Simulated Annealing being the
one that provided better solutions.

Keywords: Hybrid electric vehicle · Energy management
Metaheuristics · Solar competition

1 Introduction

World’s energy demand has significantly risen during the last decades due to the
growth of global population and the increasing consumption of newer production
technologies. As a result, the amount of energy generation has grown at the same
rate to meet the global requirements. Therefore, it is necessary to consider the
use of renewable energy sources, such as solar energy, wind energy, hydropower
and geothermal. Out of these renewable sources, solar energy may be the best
option because of the following reasons: (i) it is the most abundant source of
renewable of energy in the Earth, receiving approximately 1.8× 1014 [kW], fully
covering the global energy demand; (ii) it is a virtually inexhaustible source of
energy; (iii) its utilization causes no environmental damage whatsoever; (iv) it
may be used at several scales and at both industrial and domestic levels [1]. Solar
energy has various forms of use, one of these being its use in solar vehicles. The
amount of solar energy collected by the exposed surface of the domestic vehicles
in some parts of the world is able to propel them for a distance of 30 to 50 Km
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per day, which is sufficient for a city car. Therefore, its domestic use is possible
without the need to charge its battery in the main power grid [2].

Atacama Desert, located in Chile, receives a solar irradiance level above
7 kWh/(m2d), which is one of the largest in the world. The central region of the
country receives a solar irradiance level above 5 kWh/(m2d), thus making Chile
a prime candidate for the use of solar energy [3]. The increased solar irradiance
levels in the Atacama Desert occur because of its location in the “solar belt”, a
region of the planet constrained between latitudes 40◦N and 40◦S. Furthermore,
because of its altitude, the thickness of the atmosphere is reduced [4].

DAS-UdeC team built the solar vehicle AntuNekul II for solar racing vehicles
competitions. There have been attempts to generate an efficient policy for the
management of the speed and battery of the vehicle, although it has not been
conducted because of their unsatisfactory results [5]. It is the pilot’s task to
perform the adjustment of the vehicle’s velocity at all times, which leads to
sub-optimal results for the racing times.

In this study, we propose a formal method of velocity and energy management
for AntuNekul II. This car is a state-of-the-art solar competition car, but lacks a
method to efficiently manage its velocity and energy system. Three metaheuristic
algorithms were programmed in C++11: Simulated Annealing (SA), Iterated
Local Search (ILS) and Genetic Algorithm (GA) [6]. Three test instances are
used, and then, results and efficiency of each algorithm are evaluated.

2 Methodology

The objective of the study is to obtain an optimal velocity profile for AntuNekul
II, to be used in the 2018 Atacama Solar Challenge, subject to physical and
regulatory constraints.

2.1 Description of AntuNekul II

AntuNekul II is a hybrid electric vehicle (HEV). The power system of AntuNekul
II is composed by an MPPT, photovoltaic cells, electric motor, controller and
battery [5]. It has two power sources: photovoltaic cells that capture the incident
solar radiation and the battery that transforms the stored chemical energy into
electric power. The MPPT allows for optimization of the power provided by the
solar panel through an adjustment of voltage and current supplied to the con-
troller. The controller is responsible to determine the different operating modes,
controlling the delivered current, velocity and acceleration of the HEV.

2.2 Problem Characterization

The aim of the optimization is to obtain an optimal velocity profile for the
2018 Atacama Solar race that minimizes the time spent on the route. The total
length of the race is divided into segments. A total of 47 reference points were
identified along the route, thus obtaining 46 segments between these reference
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points, as shown in Fig. 1. The segments do not necessarily have the same length
or inclination. Each reference point has an hour hi and a state of charge of the
battery (SOC), Bi, associated. Each segment has a velocity vi, a received solar
energy Es,i and a demanded energy Ed,i associated. The value of Bi depends on
Bi−1, Es,i and Ed,i [7].

Fig. 1. Segmentation of the route from Santiago to Arica.

2.3 Solar Irradiance Estimation

As described by [5], a second-degree polynomial curve can be adjusted to mean
solar irradiance hourly measurements [8], obtaining the total incident energy per
[m2] in any segment of the race. This outcome is achieved through the use of
the definite integral of the function between two hours hi−1 and hi, as shown in
Eq. 1.

Es,i[
J

m2
] = D + 3600 × (A × [h3

i−1 − h3
i ]+

B × [h2
i − h2

i−1]+
C × [hi−1 − hi])

(1)

Parameters A, B and C take different values for each city, as presented in
Table 1. These parameters are valid for all segments according to the reference
point they represent, until reaching the reference point that corresponds to the
next city (i.e. If the closest city to segment i is Santiago, the value for the
parameters A, B, C and D for segment i, are taken from the first column of
Table 1). Parameter D has a value equal to 0, except when there is a change
of day, i.e., the current time is less than the previous time (hi < hi−1). This
parameter is equivalent to the radiation obtained during a whole day per m2.
Once Es,i is obtained, the energy received by the HEV is obtained from Eq. 2.
Parameters Apanels, EfMPPT and Efpanels have values of 6 [m2], 0.99 and 0.226,
respectively, corresponding to the area of the solar panels, efficiency of the MPPT
and the efficiency of the solar panels [5].

Es,i,HEV [J ] = Es,i[
J

m2
] × Apanels[m2] × EfMPPT × Efpanels (2)
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Table 1. Parameters A, B, C y D for Eq. 1

Santiago Valparaiso La Serena Copiapo Antofagasta Calama

A 6.75 7.07 7.31 9.70 9.29 11.74

B 243.07 254.67 263.26 349.32 334.48 422.52

C 2328.90 2440.80 2529.40 3363.20 3329.40 4082.10

D 19404101 20301926 20707170 27184193 25630889 32253541

2.4 Dynamic Model of the HEV

To calculate the demanded energy on each segment of the race by the vehicle, a
dynamic model of the HEV is constructed. Figure 2 shows the free body diagram
of a car while ascending a slope with an inclination angle of θ [5]. Only the x-
axis is considered because there is no displacement in the y-axis. The following
incident forces on the vehicle are considered: force exerted by the engine, friction
force by the rolling resistance, aerodynamic drag, and the component in the x-
axis of the gravity force. [5] shows that Eq. 3 describes the consumed energy
Ec,i[J ] by the vehicle in each segment, where CR corresponds to the friction
coefficient and has a value of 0.911, the vehicle mass m of has a value of 299.5 [kg],
constant g has a value of 9.8 [m/s2], λ has a value of 0.1125. θi represents the
inclination of segment i. ti and Vi represent time spent and velocity of the vehicle
on segment i respectively.

Ec,i[J ] = ti(CRmg cos θiVi + λV 3
i + mg sin θiVi) (3)

Fig. 2. Free body diagram of AntuNekul II.

2.5 Velocity Profile Optimization

Let V = [v1, v2, . . . , vN ] be a vector that contains a velocity profile for the
N segments in which the race is divided. Let L = [l1, l2, . . . , lN ] be a vector
that contains the lengths li of each segment of the race. Likewise, let T =
[t1, t2, . . . , tN ] be a vector that contains the times ti used to travel each segment
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of the race, where ti is the quotient of li and vi. The solution of the problem
consists in minimizing objective function 4, or fitness function regarding Genetic
Algorithm. To find an efficient velocity profile, the following search techniques
are used: Iterated Local Search, Simulated Annealing and Genetic Algorithm.

minFobj =
N∑

i=1

ti (4)

2.6 Constraints

Restrictions for this problem can be classified according to their nature [5]. These
restrictions may be regulatory, referring to the rules of the race [9], or physical,
referring to the HEV itself. The physical constraint is that the SOC of the battery
cannot be less than 5%. Because the battery of AntuNekul II has a capacity of
17496 [kJ], the minimum SOC corresponds to 874.8 [kJ]. Regulatory constraints
are:

1. The race starts at 08:30 on the first day and at 08:00 the following days. The
race stops at 17:00 everyday.

2. The HEV is not allowed to recharge its battery in the night stop, that is,
between 17:00 of one day and 08:00 of the next day.

3. The HEV will be disqualified if it travels at a speed less than 50 [km/h].
4. The maximum speed can be of 100 [km/h], according to Chilean regulations.
5. There is a 30-min solar stop every day of the race.

2.7 Test Instances

A total of three instances are used in this study. The first two instances corre-
spond to a half course and the entire course of the World Solar Challenge in
Australia [7]. The first instance contains 26 segments, and is used to calibrate
the metaheuristic parameters. The second instance contains 52 segments and is
used to validate the results obtained by metaheuristics, comparing the obtained
results with the actual time obtained by the winner team of the World Solar
Challenge 2017. The third instance, constructed by the authors of this study,
contains 46 segments and corresponds to the Atacama Solar Race 2018.

2.8 Metaheuristics

As described before, three search metaheuristics were used in this study: SA,
ILS and GA. The solution representation consists of a vector V of length n,
containing the vehicle’s constant velocity vi for each of the n segments of the race,
as described in Sect. 2.5. SA and ILS generate a random feasible initial solution,
GA generates a random feasible initial population. To assure the feasibility of a
solution, the algorithm assigns a uniformly distributed random number between
50 and 100 to each segment. Later, it calculates the received and demanded
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energy for each segment, thus obtaining the SOC for each reference point. If it
violates the physical constraint described in Sect. 2.6, a new solution is generated.

Local Search on ILS is performed using a 2-opt approach [10], while Pertur-
bation is performed by assigning a new random velocity to two random segments.
For SA, the correct definition of the neighborhood of the solutions has a noto-
rious impact on the performance of the algorithm. If the neighborhood is too
small, the algorithm cannot explore enough solutions before convergence. If it
is too large, the algorithm performs practically a random search [11]. A neigh-
bor is defined as a vector containing exactly two different components. On GA,
crossover is performed using 2-opt, and mutation is performed by assigning a
random new velocity to a random chromosome.

3 Results

The three search metaheuristics: ILS, SA and GA were programmed in C++ in
the IDE Code::Blocks Release 16.01 rev 10702. To evaluate the quality of the
algorithms, two parameters are measured: total time of the race and execution
time of the algorithm. The total time of the race provides a direct measure of the
quality of the solution because this is the value to be minimized. The execution
time of the algorithm provides a measure of its efficiency.

3.1 World Solar Challenge Instance

To analyze the metaheuristics, a comparison of the results with a known efficient
solution is required. Because there is no benchmark solution available, instance
2 is used, corresponding to the entire World Solar Challenge length. Thus, the
results obtained by the algorithms for this instance are compared with the actual
time obtained by the winning team of the 2017 edition. The winning team arrived
on the seventh day of the race, at 14:10. Note that the World Solar Challenge
has the same rules than the Atacama Solar Race, except that the area of the
solar panels must be of a maximum of 4 [m2] instead of 6 [m2]. For this reason,
this parameter must be adjusted in the three algorithms for this instance. It
is assumed that the incident radiation is similar to the Chilean case because
Australia is in the same hemisphere as Chile, and the race was held in the same
month as the Atacama Solar race. A total of 5 replicas are executed for each of
the algorithms. Table 2 shows the obtained results. The first row corresponds to
the best value, the second row corresponds to the average value and the last row
contains the worst values. The three methods are found to provide better results
than those of the actual winning team. Therefore, it can be concluded that the
three methods provide good quality results.

3.2 Atacama Solar Race 2018 Instance

The results obtained by the three algorithms for instance 3, corresponding to
Atacama Solar Race 2018, are shown. Five replicas are performed for each algo-
rithm. The results obtained for instance 3 are shown in Table 3. The first row
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Table 2. Results for the example of the World Solar Challenge

ILS SA GA

R [s] ET [s] Hour R [s] ET [s] Hour R [s] ET [s] Hour

193844 2.33 11:02 193900 10.25 11:02 195117 18.50 11:04

194125 4.87 11:03 193994 11.40 11:02 195339 21.36 11:05

194312 7.47 11:03 194084 11.68 11:02 195706 25.04 11:06

corresponds to the best value, the second row corresponds to the average value
and the last row contains the worst values. It is shown that Simulated Annealing
delivers the best results, and Iterated Local search delivers the shortest execu-
tion times. Genetic Algorithm provides the worst results, in addition to being
the slowest algorithm.

Table 3. Results obtained for the three methods for the Atacama Solar Race 2018.

ILS SA GA

R [s] ET [s] R [s] ET [s] R [s] ET [s]

146027 1.11 145710 11.17 146865 14.85

146345 1.91 145792 11.88 147735 17.22

146950 2.37 145904 12.63 148118 20.63

4 Discussion and Conclusions

A total of three metaheuristics were designed, calibrated and tested, namely,
ILS, SA and GA, to obtain an efficient velocity profile, with the goal of min-
imizing the total time spent on the race. These algorithms were developed for
any instance described by reference points that contain two parameters: dis-
tance from the start of the race and altitude. The three algorithms function in
a similar manner: ILS and GA generate a feasible initial solution, whereas GA
generates a population of initial feasible solutions. These algorithms improve this
solution through an iterative search process in the space of solutions, whereas
GA generates a population of initial feasible solutions, and in each iteration, the
population is improved, subject to the described fitness function.

A total of three test instances in the problem were used: the first two corre-
spond to the World Solar Challenge, and the last one corresponds to the Atacama
Solar Race 2018. The latter was created by the author, with the assistance of
Google Maps and Google Earth software. Instances 1 and 2 were used to cal-
ibrate the parameters of the algorithms and to validate the results obtained,
respectively. The third instance was used to create an efficient velocity profile
for the Atacama Solar Race 2018.
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Section 3 shows that the three algorithms had a shorter driving time than
the winning team of the World Solar Challenge 2017; thus, it is concluded that
reliable and good quality results are provided. Both in instances 2 and 3 the
algorithm SA is the one that provides the best results, ILS provides a shorter
execution time, whereas GA provides the worst results in a longer execution
time.
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Abstract. The Multi-Mode Resource-Constrained Project Scheduling
Problem with energy saving (MRCPSP-energy) is a variant of the classi-
cal Resource-Constrained Project Scheduling Problem (RCPSP). In this
variant, the execution of each job must take into account the job dura-
tion and the energy spent to execute that job, which are conflicting. The
objective is to minimize both makespan and total energy consumption.
This work proposes two local search methods to improve a large dataset
of inputs. One of them is a restricted version of a Mixed-Integer Program-
ming formulation and the other one is a heuristic local search called H.
The computational experiments showed that the hybrid method with
the H algorithm obtained better solutions and is competitive with the
literature results.

Keywords: MRCPSP · MRCPSP-energy · Heuristics
Local search procedures · Hybrid heuristics

1 Introduction

The Project Scheduling Problem (PSP) is one of the most studied subjects in
the combinatorial optimization field due to its application in different areas.
A classical variant is the Multi-Mode Resource-Constrained Project Scheduling
Problem (MRCPSP), where the jobs can be executed in different ways (modes).
Each mode assumes a possible distinct job duration and resources needed to exe-
cute the job. The objective is to minimize the makespan, i.e. the finish time of the
last job, without violations in the job precedences and the resources availability.

Nowadays, there is great concern in reducing the consumption of energy in
manufacturing, without negatively impacting final production. The MRCPSP
with energy saving (MRCPSP-energy) was proposed in [14] to model such sit-
uations. In the MRCPSP-energy, the job modes require the same quantity of
available resources, but have a duration and an amount of energy needed that
may vary from mode to mode. The objective is to minimize both the makespan

c© Springer Nature Switzerland AG 2019
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and the total energy spent. However, these two elements are conflicting, since a
lower energy consumption implies in a longer job duration.

Instead of employing a bi-objective function, the authors adopted a new met-
ric, called “relative project efficiency” (η). Suppose a solution S has makespan
Sm and total energy consumption Se. The project relative efficiency η =
LB0
Sm

∗ Emin

Se
, where LB0 is the makespan lower bound given by the Critical

Path Method and Emin is the sum of the minimum energy mode of all jobs.
So, the higher the efficiency the better the solution is. The MRCPSP-energy has
many applications in industry and manufacturing where the modern machinery
is capable of operating in different energy-saving profiles.

This work presents two local search approaches to improve basic solutions
for the MRCPSP-energy. The first one is restricted Mixed-Integer Programming
formulation, where additional constraints are heuristically generated. The second
approach is a local search procedure which adapts its movements according to
previous improvements obtained. Both methods have not yet been proposed for
the MRCPSP-energy.

The remainder of this paper is given as follows. The Sect. 2 highlights the still
scarce literature about the problem. The Sects. 3 and 4 present some proposed
local search methods and the computational results, respectively. The Sect. 5
brings out the conclusions of this work.

2 Literature Review

The literature about RCPSP and its variants is so extensive that there are some
surveys that seek to classify or give a general notation for problem models as
presented in [1,4,7]. Almost every optimization combinatorial method has been
used from exact approaches [5,18], through classical heuristic algorithms [2,3,6]
to hybrid methods [10,16,17].

In [14], the MRCPSP-energy and a benchmark set of instances (2040 artificial
projects with 30–120 jobs) were proposed. In [15], the first heuristic (Ant Colony
Optimization - ACO) and Mixed-Integer Programming (MIP) formulation were
proposed. Both performed relatively well, finding several optimal solutions in
small instances, but they struggled on large instances, where no good bounds
were provided.

In [12], the authors proposed a Genetic Algorithm (GA) based on a double
list codification. These two lists are called Activity List (a priority list used to
schedule the jobs of the project) and Mode List (a n-dimensional array, where
each element indicates the execution mode of a job). The authors proposed
exclusive operators for each list and used them in different phases of the GA.
In the same paper, a Mixed Integer Non-Linear Programming formulation is
also proposed (the objective function is non-linear). This formulation is quite
similar to that in [15], although the linearization of the objective function is
not presented. The GA achieved almost the same results of the mathematical
formulation taking a much smaller computational time. Comparing [12] and [15],
the MIP formulation of the first work had a better average efficiency while the
GA slightly outperformed the ACO.
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3 Proposed Local Search Approaches

Formally, [12] described the problem as a project that consists of a set of n
activities (jobs) I = 0, ..., i, ..., n, a set B of Kρ shared renewable resources B =
1, ..., b, ...,Kρ, and an available amount Rρ

b of every renewable resource. Each i
has Mi execution modes, where each mode m ∈ Mi requires a nonpreemptive
execution time dim, a total of rρ

ib renewable resources of type b, and an amount
of energy eim for its realization. The activities must respect precedence among
them and the objective is to minimize the relative project efficiency (η), which
comprises both project makespan and the total energy consumption.

To create a base of solutions on which local search approaches can be run
and analyzed, several instances from [14] have been selected at random. The Ant
Colony Optimization (ACO) algorithm [15] was used to produce these solutions
for each selected instance. Each time a better solution was found, it was inserted
into an elite set of solutions that will be used for local search approaches with
the MIP formulation. The final solution for this instance is the best solution
found during the execution of the algorithm.

3.1 MIP Extra Restrictions

Combinatorial optimization softwares such as Cplex (www.ibm.com/analytics/
cplex-optimizer) or Gurobi (www.gurobi.com) have been used in recent years
as a tool to perform local search approaches by reducing the number of vari-
ables or increasing the number of constraints. In this case, it is expected that a
more limited solution space will favor the faster computation of a better quality
solution.

This way, we seek to use a more restricted version of the mathematical for-
mulation present in [15]. Each elite set of the dataset is then analyzed in 5
characteristics: (1) The interval between the largest and the smallest makespan;
(2) the interval between the highest and lowest total energy consumption; (3)
both of the previous intervals; (4) the interval between the highest and lowest
start times of each job; (5) the interval between the highest and lowest finish
time of each job.

For each characteristic analyzed, additional constraints will be created and
inserted into the original mathematical formulation, so that a feasible solution
must also respect them. These limitations will use the intervals described above,
applying a small Δ value to the bounds of the intervals.

For example, suppose that the solutions of the elite set have makespan
between 20 and 30. If Δ = ±10%, the mathematical formulation will require
a feasible solution to have makespan between 18 (= 20 × 0.9) and 33 (= 30 ×
1.1). If the limitation is given by the energy consumption, a feasible solution
must have similar lower and upper bounds in this characteristic. Regarding the
jobs execution modes, only those modes that are used in at least one elite set
solution will be allowed by the restricted formulation. The limitations given by
the start or finish intervals of each job will use a δ value that will be added to
or subtracted from the bounds of those intervals.

www.ibm.com/analytics/cplex-optimizer
www.ibm.com/analytics/cplex-optimizer
www.gurobi.com
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We adopted a set of elite solutions and their respective intervals because
applying extra constraints on a single input (solution) seldom allowed the finding
of better solutions.

3.2 Heuristic Approach

We also propose a new heuristic approach, called H, for the MRCPSP-energy, in
order to be used as a local search procedure. The algorithm H takes a sequence
of pairs (i,m), where i indicates a job and m indicates an execution mode. This
sequence is retrieved from an initial feasible solution given to the algorithm.

The project jobs are scheduled according to that sequence, at the earliest
possible time. This time depends on the resource availability and the predecessors
finishing time. In that sequence, if job i is predecessor of job j, i must appear
before j.

In order to explore the solution neighborhood, some operations are proposed.
The first one changes the execution mode of a randomly selected job to a new
mode also randomly chosen. The second and the third operations, respectively,
postpone or anticipate a randomly selected job as much as possible, without
violating the jobs precedence order. The last operation swaps a job with its
successor in the sequence, if it is possible. Every operation can be repeatedly
executed a given number of times before the scheduling algorithm is called to
compute the solution value.

The pseudo-code can be seen in Algorithm 1. The scheduling algorithm is
called inside the Execute(..) procedure (l. 14) to evaluate the modified solution.

Algorithm 1. H (input: feasible solution S0)
1: S∗ ← S ← S0
2: iter ← 0
3: last ← 0
4: factor ← 1.0
5: while stop criterion is not met do
6: if iter − last ≥ Limit1 then
7: factor ← Slack
8: else if iter − last ≥ Limit2 then
9: S ← S0
10: last ← iter
11: end if
12: op ← ChooseOperation()
13: x ← ChooseQuantity()
14: S′ ← Execute(S, op, x)
15: if value(S′) < value(S) ∗ factor then
16: S ← S′

17: last ← iter
18: factor ← 1.0
19: if value(S′) < value(S∗) then
20: S∗ ← S′

21: UpdateProbabilities()
22: end if
23: end if
24: end while
25: return S∗
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At the beginning, the algorithm uses an initial feasible solution (l. 1). The
current iteration and the last improvement counters are initialized (ls. 2–3) as
well as the acceptance factor (l. 4). If the last improvement occurred many
iterations ago (l. 6), a first diversification mechanism is applied, allowing new
solutions to be a little worse than the incumbent solution S (l. 15). The second
diversification is triggered if H executes further without improvements. In this
case, H restarts the incumbent solution (ls. 8–11).

At that point, the algorithm performs some modifications to the solution S,
choosing an operation and a number of repetitions (ls. 12–14). It is important to
notice that the scheduling (evaluation) procedure is executed once per iteration,
only after all repetitions for the chosen operation is performed. Thus, these
repetitions modifies the current solution “blindly”. This scheme is used to avoid
the hill-climbing local optima convergence.

If the modified solution is acceptable (l. 15), it replaces the incumbent solu-
tion S (ls. 16–18). If S′ is the best solution found so far, the operations and
repetitions probabilities are updated. This update procedure is the H intensifi-
cation mechanism. Initially, all options have the same probability. Every time
a new best solution is found, the operation selected at that iteration and the
number of repetitions made receive a bonus and become more likely of being
chosen afterward.

The selections at lines 12 and 13 use the roulette technique. So, a simple way
of implementing the whole method consists in starting each option probability
with an integer p and the given bonus increases the specific probability by an
amount k. This strategy was used in [9,13], for example. In our experiments,
the following parameter values were used: p = 10, k = 1, Limit1 = 1000,
Limit2 = 5000 and Slack = 1.1. Each operation may be performed up to 5
times at each iteration. All parameters were defined after several preliminary
tests, combining many different values. In these tests, Limit2 = 10000 achieved
statistically similar results.

4 Computational Results

The instances used in the computational experiments were retrieved from [11]
and the computational environment is similar to [15] and to [12]: Intel I7-
3630QM, 8 GB RAM, Windows 8.0, Cplex 12.7.3. All algorithms were imple-
mented using C++.

Each solution of the dataset was generated by the ACO algorithm with stop-
ping criterion of 24000 schedules, which will be explained later. This amount
of schedules corresponds to 80 rounds of 300 ants each. The average computa-
tional time was 0.8, 1.4, 2.1 and 2.9 s for instances with 30, 60, 90 and 120 jobs,
respectively. The average efficiency can be seen in Table 2.

In the first experiment, the five characteristics extracted from the elite set
were tested by inserting their additional constraints to the original mathematical
formulation. As mentioned previously, each characteristic was related to some
Δ values. Local search approaches had a time limit of 5, 10, 15 and 20 min
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for instances with 30, 60, 90 and 120 jobs, respectively. The Table 1 shows the
five largest average efficiency increase of the best solution obtained by the local
search in relation to the original solution (generated by the ACO).

Table 1. Best average improvement obtained by the local search implied by each
analyzed characteristic. (1) The interval between the largest and the smallest makespan;
(3) both makespan and total energy consumption intervals; (4) the interval between
the highest and lowest start times of each job.

Charac. Δ Improv.

4 ±3 0.0255

4 ±2 0.0255

4 ±1 0.0252

1 ±15% 0.0248

3 ±15% 0.0248

The results indicated that the largest increments are produced by performing
the local search using the makespan alone (characteristic 1) or in conjunction
with the total energy consumed (characteristic 3), or by limiting the start times
of the tasks (characteristic 4). In absolute terms, the total energy consumed
varied between 3 and 8 times the projects makespan. Thus, the reduction of
only one unit in makespan represents a large increase in the solution efficiency.
The exploration of characteristics 1 and 3 privileges the reduction of makespan.
In relation to characteristic 4 (interval between the largest and smallest jobs
start times), the results showed that the larger the Δ value, the larger the space
of solutions to be explored by the local search. So, the chance of finding a better
solution also increases.

The Table 2 (third column) presents the improvements obtained by the local
search approaches using the characteristics analyzed. The average computational
time was 14, 272, 631 and 941 s for instances with 30, 60, 90 and 120 jobs,
respectively. Approximately 38% of the local search executions finished before
the time limit.

In the last computational experiment, the solutions generated by the ACO are
given to the algorithm H, which executes 26000 iterations for each instance. In
this way, the joint execution of the ACO+H represents a total of 50000 schedules.
This stopping criterion is very common in the literature and it has been suggested
by [8] and followed by [12]. Since the algorithm H is stochastic, 20 runs are
performed for each input. Table 2 (fifth column) shows the average improvements
obtained for each set of instances.

The fourth and sixth columns of Table 2 shows that the solutions produced
by the algorithm H have a higher average efficiency value than the solutions
produced by the restricted mathematical formulation. In addition, the compu-
tational time of the algorithm H is much lower, being approximately 0.5, 0.9,
1.7 and 3.1 s, respectively, for instances with 30, 60, 90 and 120 jobs. The best
solutions for each execution are usually found in less than half that time.
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Table 2. Average improvement and final results for each instance size.

Jobs ACO L.S. improv. L.S. final ACO+H improv. ACO+H final [15] [12]

30 0.6411 0.0105 0.6516 0.0165 0.6576 0.6495 0.6564

60 0.6610 0.0367 0.6977 0.0407 0.7017 0.6666 0.6919

90 0.6630 0.0355 0.6985 0.0466 0.7096 0.6757 Not avail.

120 0.5098 0.0467 0.5565 0.0629 0.5725 0.5182 0.5590

Finally, the Table 2 also compares the best solutions produced by the hybrid
ACO+H algorithm with the results provided in [12] and [15] (the last two
columns). The results of the ACO+H hybrid method are slightly higher than
those reported in the literature. However, it is not possible to state that one
method is better than the other because in this work, the generation of solutions
for the dataset used a subset of randomly chosen instances in order to show the
potential for improvement of the proposed local search methods.

5 Concluding Remarks

The MRCPSP-energy is a new variant of the classical RCPSP where the jobs
can be executed with multiple modes, representing distinct job durations and a
required amount of energy to execute that job. The objective is to minimize the
relative project efficiency (η), which comprises the project makespan and the
total energy consumption.

As the MRCPSP-energy was recently proposed, the literature presents only
a couple of approaches. Two local search methods are proposed in this work.
The first one consists in inserting additional constraints into a MIP formulation
in order to restrict the local search to look for a better solution according to
some characteristics retrieved from a elite set of instances. The second method
consists in applying a local search heuristic (called H) to improve the solutions
provided by another heuristic algorithm of the literature.

After several experiments and comparisons, the hybrid method ACO+H
obtained better results for the compiled dataset. The hybrid algorithm is also
competitive with the literature results.

Future works include more experiments with a larger set of instances to
show how much robust the hybrid algorithm is. Another possibility consists in
improving the literature mathematical formulations in order to produce more
optimal solutions or, at least, to obtain improved bounds.
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Abstract. Office-space-allocation (OFA) problem is a category of a
timetabling problem that involves the distribution of a set of limited
entities to a set of resources subject to satisfying a set of given con-
straints. The constraints in OFA problem is of two types: hard and soft.
The hard constraints are the one that must be satisfied for the solution
to be feasible while the violation of soft constraints is allowed but it must
be reduced as much as possible. The quality of the OFA solution is deter-
mined by the satisfaction of the soft constraints in a feasible solution. The
complexity of the OFA problem motivated the researchers in the domain
of AI and Operational research to develop numerous metaheuristic-based
techniques. Among recently introduced local search-based metaheuristic
techniques that have been successfully utilized to solve complex optimiza-
tion problem is the Late Acceptance Hill Climbing (LAHC) algorithm.
This paper presents an adaptation of LAHC algorithm to tackle the OFA
problem in which three neighbourhood structures are embedded with the
operators of the LAHC algorithm in order to explore the solution space
of the OFA efficiently. The benchmark instances proposed by the Uni-
versity of Nottingham and University of Wolverhampton datasets are
employed in the evaluation of the proposed algorithm. The LAHC algo-
rithm is able to produced one new result, two best results and competitive
results when compared with the state-of-the-art methods.

Keywords: Timetabling problem · Office-space allocation
Metaheuristics · Late Acceptance Hill Climbing
Local search-based methods

1 Introduction

Many practical applications of the office-space allocation (OFA) problem to
numerous organization have been proposed and tackled using several algorithmic
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techniques by the workers in the field of timetabling and operational research
over the last few decades. The OFA is a complex combinatorial optimization
problem which is NP-hard in all its variation [1]. It involves allocating a set of
resources limited to a set of spaces such that all resources are assigned to the
required spaces subject to satisfying a set of constraints in order to achieve opti-
mal utilization. Generally, the classification of constraints in OFA is grouped into
hard and soft: the hard constraints in an OFA problem must be compulsorily
satisfied for the solution to be feasible, whereas it is not mandatory to satisfy all
the soft constraints but their satisfactions improved the quality of the solution.
The quality of the solution to the OFA problem is measured by the satisfactions
of number of soft constraints.

The algorithmic techniques employed by the researchers for the OFA are
exact approaches, heuristics-based and metaheuristic-based approaches [2]. Few
examples of the studies that proposed the exact methods for the OFA can be
found in [3–5]. Numerous applications of metaheuristic-based algorithms for solv-
ing many complex optimization problems have been recorded over the past two
decades. Metaheuristic-based algorithms that have been employed successfully in
the field of timetabling to optimize OFA problem are classified into population-
based and local search-based methods. Few examples of population-based meth-
ods proposed for the OFA include harmony search [6], genetic algorithm [7,8],
and artificial bee colony algorithm [9]. These algorithms work with many solu-
tion and iteratively improve these solutions based on existing knowledge from
previous searches. Similarly, local search-based approaches begin with one solu-
tion and iteratively improve this solution until a desired solution is achieved.
Some examples of local search-based approaches employed for the OFA include,
simulated annealing [7,10], tabu search [11] and hill climbing [7,11]. Further-
more, studies that proposed usage of hyper-heuristic and hybrid metaheuristic
approaches for the OFA can be found in [12–14].

Late acceptance hill climbing (LAHC) algorithm is an extension of the clas-
sical hill climbing, recently introduced to tackled the examination timetabling
problem by Burke and Bykov in 2008 [15]. Originally, the idea behind the LAHC
is its late acceptance strategy that is utilized to prevent the algorithm from
getting stuck in a local minimum that common to many greedy search algo-
rithms. Due to its simplicity, it has been successfully adapted, applied, modified
and hybridized by the researchers in the domain of artificial intelligence and
operations research to tackle numerous optimization problems such as balanc-
ing two-sided assembly lines [16], course and examination timetabling [17], lock
scheduling [18], liner shipping fleet repositioning [19], traveling salesman problem
[20], patient admission scheduling problem [21]. The LAHC was also hybridized
with other metaheuristics components in [22] and its applicability in the hyper-
heuristics framework have been reported in [23,24]. However, none of the studies
have reported it adaptation for tackling Office-space Allocation (OFA) problem.
Thus, the main focus of this paper is to investigate the performance of LAHC
algorithm for solving the OFA problem.
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2 Office-Space Allocation Problem (OFA)

The formulation to the OFA involves a set of l entities, with dimensions d =
{di|i = 0, . . . , l−1}, and a set of m rooms with capacities c = {ci|i = 0, . . . ,m−
1}. The OFA solution is given by a two dimensional vector X of [xi,j ] values,
where xi,j = 1 if the entity j (ej) is assigned to room i (ri). The main objective
of the OFA problem is to generate a feasible solution with the best quality. The
different constraints of the OFA problem considered in this study are:

– No sharing - this constraint specifies that the room of a particular entity
should not be shared with another entity.

– Be located in - a specific room should be allocated to a particular entity.
– Be adjacent to - a particular entity should be assigned to room adjacent to

another entity.
– Be away - room allocation of a particular entity should not close to another

entity.
– Be together with - two particular entity should be assigned to the same room.
– Be grouped with - A group of entities should be assigned close to each other.

The solution to the OFA is evaluated based on the penalty cost f(x ) as
specified in Eq. (1)

min f(x) = f1(x) + f2(x). (1)

subject to
l−1∑

i=0

m−1∑

j=0

xi,j = 1. (2)

where the space misuse function is given by f1(x) and violation of the soft
constraints is computed by f2(x).

f1(x) =
l−1∑

i=0

WPi +
l−1∑

i=0

OPi. (3)

f2(x) =
s−1∑

r=0

SCPr. (4)

where both WPi and OPi are the amount of space wasted or overused for each
room i ; SCPr represents the penalty for violating the rth soft constraint. For
each room only i one of WPi or OPi has a value greater than zero, and the
amount of overused for each room i is computed as shown in Eqs. 5 and 6.

WPi = max(0, ci −
m−1∑

j=0

xi,j · wj). (5)

OPi = max(0, 2(
m−1∑

j=0

xi,j · wj − ci)). (6)

Where wj is the space requirement of resource j and ci represents the capacity
of the room i.
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3 Late Acceptance Hill Climbing Algorithm

Late Acceptance Hill Climbing (LAHC) algorithm is one of the newly introduced
multi-purpose meta-heuristic techniques, proposed for examination timetabling
problems by Burke and Bykov [15]. It belongs to the category of iterative search
techniques which employs an advanced acceptance strategy in its operation.
Typically, it is based on the existing idea of one point solution search meta-
heuristics such as classical hill climbing and simulated annealing algorithms in
which at each iteration; a new generated candidate solution is compared with
a current one. However, the main strategy of LAHC is to memorize the fitness
costs after each single move during the search process (C = LAHC list) with
size (l). In LAHC, acceptance of the new solution depends on a comparison
between the new candidate solution and previous solutions generated several
iterations before. The “delay” in the comparing new a solution with its previous
one motivates the name of this new one-point solution algorithm and also enables
the usage of the simplest greedy acceptance mechanism. The algorithm accepts
a candidate solution as long as their fitness cost is better than the one generated
t iterations ago.

3.1 Adaptation of LAHC for the (OFA)

In this section, an adaptation of LAHC for tackling the OFA is presented. The
adaptation process involves integrating the three different neighbourhood search
within the operators of the LAHC in order to navigate the OFA search space
effectively. It worthy of notice that the feasible region of the OFA search space
is maintained during search and thus step in the process of adaptation of LAHC
for OFA is provided in the next subsection.

Generate Initial Feasible OFA Solution. In this phase, the initial feasi-
ble solution to the OFA problem where the hard constraints are satisfied and
resources are assigned to suitable rooms is generated based on the Peckish ini-
tialization procedure. The procedure is similar to what was utilized in [6,9] and
the pseudocode of the initialization using the peckish procedure is provided in
Algorithm 1.

Algorithm 1. Peckish initialization procedure
while not all entities are assigned do

K = N/3
Select an unassigned entity j randomly
Select a number of K rooms which satisfy 1/2 × wj ≤ wj ≤ 3/2 × wj randomly
Select the best room from K rooms with the minimum penalty
Assign the entity j to the best room

end while
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Neighbourhood Search. Neighbourhood search is the strategy employed to
move the search towards neighbouring solutions from the existing one in solution
search space. The three neighbourhood searches used in this study are:

1. EntityRelocate − Neighbourhood: This neighbourhood search randomly
removes an entity x′

i from its current room and assigned to another avail-
able room randomly.

2. EntitySwap−Neighbourhood: This neighbourhood swaps the rooms of the
two entities x′

i and x′
j which are randomly selected i.e. the room that is

assigned to entity A is swapped with the room assigned to entity B randomly
and vice versa.

3. RoomInterchange−Neighbourhood: This neighbourhood randomly selected
two rooms, and all entities assigned to room A are interchanged with all
entities assigned to room B.

Proposed LAHC for the OFA. The procedure of adapting the LAHC algo-
rithm for the OFA problem is presented in this section. This is followed by
the initialization of the parameters of the LAHC algorithm for the OFA. These
parameters include MaxnoIteration that represents the number of iterations and
l which is the table size (or penalty cost array). Similarly, the variables of the
OFA that are also extracted from the dataset include entities, set of rooms and
capacity of the room, the size of capacity needed by each entity and set of con-
straints (i.e. hard and soft). The OFA main decision variable is the entities where
each entity could be assigned to a feasible resource in the OFA solution. A set
of all feasible resources could be considered as the available range of such enti-
ties. Note that the feasible resources of each entity changes during the search
of LAHC algorithm. The pseudocode of adapting the LAHC algorithm for the
OFA is given in Algorithm2.

The initial feasible solution to the OFA is generated randomly using the
peckish initialization procedure and the fitness cost of the feasible solution is
evaluated using Eq. 1. It is noteworthy that the feasibility region of the search
space must be protected at the initial stage and during the search activities of
the LAHC algorithm. The optimization of the feasible OFA solution is carried
out with the aid of three randomly chosen neighbourhood searches in order to
generate a new optimized solution. The cost value of the optimized solution is
evaluated and if better than or equal to the penalty cost of the current solution
and penalty cost is stored on the position of v = i mod l. Then the optimized
solution replaces the current solution and thus the last element of the list l is
removed and cost value of the new solution is stored at the beginning of the table
list l. Furthermore, if the cost value of the optimized solution is better than the
cost value of the best solution found so far, then the optimized solution is stored
as the best solution. However, if the penalty cost of the optimized solution is not
better than or equal to the penalty cost of the last element of the list l, then the
optimized solution is rejected.
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Algorithm 2. The pseudocode of the Proposed LAHC for OFA
1: Initialize the parameters of the LAHC and OFA
2: Initialize OFA feasible solution x using Algorithm 1
3: Evaluate the penalty cost f(x)
4: Output: Best OFA solution found x∗.
5: set i = 0
6: Set the Iter = 1
7: for k ∈ (0 . . . l − 1) f(k)=f(x) do
8: while Iter ≤ MaxIter) do
9: /* Construct a candidate solution x ’ */

10: i = RND() {/}* RND generate a random integer number between 1-3 */
11: if (i == 1) then
12: x ′

i = EntityRelocate(x i)
13: else
14: if (i == 2) then
15: x ′

i = EntitySwap(x i)
16: else
17: if (i == 3) then
18: x ′

i = RoomInterchange(x i)
19: end if
20: end if
21: end if
22: /* Penalty Cost Evaluation f(x’).
23: v = i mod l.
24: if f(x ′

i) ≤ f(v i) then
25: v i = x ′

i

26: if f(v i) ≤ f(x∗) then
27: x∗ = v i

28: end if
29: end if
30: i= i + 1
31: Iter = Iter + 1
32: end while
33: end for

4 Experimental Results and Discussions

The proposed LAHC algorithm is programmed with Microsoft Visual Basic.NET
on Windows 8 platform on Intel� core i3-4005u CPU @1.70 GHz and 4 GB RAM
and the results all instances of the dataset are obtained within computational
time of 100 s. The benchmark instances of the datasets introduced by University
of Nottingham and University of Wolverhampton are used in the evaluation of
the performance of the proposed method. The characteristics of these datasets
are provided in [9]. The parameter settings for LAHC is fixed as follows: Maxnon-
Iter = 10000 while l = 25, which is adapted from [21].
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4.1 Experimental Design

In order to study the sensitivity of using the three neighbourhood searches on
the performance of the LAHC when adapted for tackling the OFA problem,
this section provides an experimental design for the seven convergence cases
(Cases 1–7) of different incorporations of these neighbourhood searches within
the operator of the LAHC algorithm as shown in Table 1. Generally, all possible
incorporations of these neighbourhood searches are studied separately.

Table 1. Experimental setup that effects of neighbourhood structure on LAHC algo-
rithm for the OFP

Neighbourhood search Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

EntityRelocate � X X � � X �
EntitySwap X � X � X � �
RoomInterchange X X � X � � �

4.2 Experimental Results

The summary of the results obtained by the LAHC based on seven conver-
gence cases are presented in Table 2. The values in Table 2 represent the penalty
cost which is formulated in Eq. 1. Note that lowest value is the best. For each
instance of the benchmark datasets, the best, average and worst of the 10
runs are recorded. The best result obtained by the proposed LAHC algorithm
for each instance is highlighted in bold. As shown in Table 2, the proposed
LAHC algorithm with integration of three neighbourhood structures (i.e., case
7) obtained best results in comparison with all other cases that integrated sin-
gle or double neighborhood searches. Similarly, the results obtained by the case
5 shows that this version LAHC algorithm that incorporate EntityRelocate
and RoomInterchange is able compete with case 7 which shows that incor-
poration of these neighbourhood searches within the component of the LAHC
algorithm could aid the search navigation of the algorithm and thus improve
the performance. Apparently, the performance of case 4 with EntityRelocate
and EntitySwap neighbourhoods is closer to that case 5 in terms of the penalty
cost in almost all the instances when compared with the remaining cases 1, 2,
3 and 6. Moreover, the results obtained by the LAHC algorithm is enhanced by
lowering the penalty cost further with different incorporations of these neigh-
bourhoods (i.e. Case 5 and 4). Finally, it can be seen that the results obtained
prove that incorporation of two or more neighbourhoods with the operators of
LAHC algorithm enhances the search capability of the proposed algorithm.
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Table 2. Computational results of using different incorporation of neighbourhood
searches on LAHC algorithm

Instances Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

NOTT 1 Best 1219.45 1218.70 831.95 523.35 503.95 472.90 393.80

Average 1344.91 1418.24 918.94 781.79 711.33 655.71 601.13

Worst 1484.55 1652.15 1023.05 1302.25 1085.10 747.90 834.45

NOTT 1A Best 1201.30 1207.05 845.75 503.90 486.70 629.35 461.75

Average 1325.16 1345.55 963.47 770.63 614.93 764.13 665.39

Worst 1391.35 1566.80 1136.85 1061.10 812.70 963.95 1067.85

NOTT 1B Best 676.75 1069.30 744.60 375.65 363.20 499.35 332.50

Average 731.43 1115.93 795.93 458.31 391.63 541.95 376.96

Worst 826.05 1171.15 838.10 543.40 426.85 577.65 430.50

NOTT 1C Best 994.30 647.65 496.75 379.40 427.70 418.45 356.60

Average 1071.46 730.27 606.97 481.65 547.39 538.96 498.82

Worst 1164.40 849.70 696.80 542.75 639.15 823.70 719.75

NOTT 1D Best 495.05 425.15 335.00 295.65 305.65 328.50 288.30

Average 538.49 487.44 362.05 338.46 346.23 411.42 332.59

Worst 596.40 510.00 374.60 366.75 469.40 473.40 405.00

NOTT 1E Best 579.90 740.70 448.90 226.70 144.90 252.90 137.70

Average 633.27 851.33 507.85 316.35 232.57 291.92 203.15

Worst 777.30 963.10 579.80 462.70 414.90 339.40 268.40

WOLVER 1 Best 697.25 634.19 634.37 634.19 634.19 634.19 634.19

Average 756.00 660.77 653.23 637.16 690.20 686.53 678.51

Worst 822.77 691.79 706.49 651.98 895.31 782.00 872.18

TRENT1 Best 4124.00 9801.00 9178.00 3200.00 3138.00 8574.00 3072.00

Average 4642.71 9929.00 9327.33 3538.83 3658.50 8722.00 3608.83

Worst 5497.00 10037.00 9396.00 4066.00 3929.00 8836.00 4245.00

4.3 Comparative Results

The computational results obtained by the LAHC algorithm using the two
datasets are compared with results of other existing algorithms from the lit-
erature which include ABC-OFA [9], IPM-OFA [3], OFA-MP [3], HSA-OFA [6],
SA-OFA [25], and HMHPB [25]. Note that the best results obtained by the
different methods are presented in bold. The performance LAHC algorithm is
better than other existing algorithms by achieving high quality solutions in all
instances. The proposed LAHC algorithm achieved new results in two instances
(i.e. NOTT 1 and NOTT 1E) of Nottingham dataset and had comparable perfor-
mance in the remaining instances of the dataset. Similarly, the LAHC obtained
best result WOLVER 1 as achieved by ABC-OFA, IMP-OFA and HSA-OFA
methods (Table 3).
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Table 3. The best results achieved by LAHC algorithm and other comparative tech-
niques

INSTANCE Proposed LAHC ABC-OFA IPM-OFA OFA-MP HAS-OFA SA-OFA HMHPB

NOTT1 393.80 425.50 = = 539.35 543.70 482.20

NOTT1A 461.75 437.05 378.88 = = =

NOTT1B 332.50 356.60 246.18 243.28 = 470.70 417.10

NOTT1C 356.60 324.20 305.73 305.73 = 342.50 315.40

NOTT1D 288.30 334.15 202.70 202.73 200.10 =

NOTT1E 137.70 147.70 177.70 177.70 = =

WOLVER1 634.19 634.19 634.20 634.19 634.19 =

TRENT1 3072.00 9885.00 = = = 2724.40 2531.40

5 Conclusion

This paper investigates a Late Acceptance Hill Climbing (LAHC), a recently
proposed one-point meta-heuristic algorithm for solving Office-Space Allocation
Problem. The LAHC algorithm is a variant of hill climbing optimizer that uti-
lized an advanced acceptance criteria (i.e. late acceptance strategy) in order to
prevent the algorithm from getting stuck in a local minimum. The OFA is a
complex combinatorial optimization problem that involves allocating a set of
resources limited to a set of spaces such that all resources are assigned to the
require spaces subject to satisfying a set of constraints in order to achieve opti-
mal utilization. The performance of the LAHC is evaluated using the datasets
published by University of Nottingham and the University of Wolvehampton.
The design of the experiment is intentionally made to test effects of the different
combinations of these neighborhood searches on the performance of the pro-
posed LAHC. The computational results proved that the LAHC incorporated
with the three neighborhood searches is an effective technique for the OFA. It
is noteworthy that a comparative evaluation with previous methods shows that
proposed LAHC algorithm produced two new results, one best result and com-
petitive results from the remaining instances. Finally, future research directions
is to enhance the performance of the LAHC algorithm through the modifications
and hybridizations with operators other metaheuristic algorithm.
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Abstract. Ordering systems are a mechanism used to program the flow
of production orders into the manufacturing system. The correct usage
and parametrization of such systems have a significant impact on the
performance of the production. One of the well-succeed ordering sys-
tems available in the literature is the Period-batch control (PBC), that
allows one to group the orders into different production periods, and pro-
gram it into the planning horizon. This paper assumes a manufacturing
system controlled by PBC. On this system, this paper considered two
performance indicators: a primary goal is to minimize the total tardiness
and the second goal is to minimize the idleness of the production system.
Two approaches are implemented to solve this problem: a mixed-integer
programming model and eight algorithms based on the Iterated Greedy
method. Beyond finding good results when comparing to the ones found
by the mathematical model approach, this paper also performs the Tar-
diness × Production Capacity on each algorithm.

Keywords: Periodic Batch Control · Iterated Greedy
Production planning and control · Scheduling

1 Introduction

The Periodic Batch Control (PBC) ordering system is a production program-
ming and control that, given the demand specified by the Master Production
Schedule (MPS), establish the required amount of components and materials.
[1–7] emphasize that this ordering system is very common in production sys-
tems, especially the ones that seek modern manufacturing paradigms (such as
lean manufacturing and quick response manufacturing). The efficiency of PBC
is also strictly related to the generation of the MPS, especially on make-to-order
systems [8].
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The PBC considers that the production periods are equal, regardless of the
amount of work allocated in each one. According [2], the set of policies defined
by PBC guarantee that the processing of all orders occurs during the assigned
production period.

Many manufacturing environments choose to adopt an implementation of the
PBC ordering system instead of planning the shop floor schedule by using some
algorithmic strategy to sequence and program each production order. This is
mainly due to the idea of separate the set of orders into blocks of periods, where all
the material transfer occurs only on the end of each block. Moreover, any process
variability is easily absorbed by the capacity gaps introduced by the planner.

Even though many companies use PBC-based production planning, there is
little research about how to allocate service orders into the production peri-
ods. Thus, this paper analyzes different strategies to perform this allocation.
Are presented: a Mixed-Integer Programming model and an Iterated Greedy
(IG) technique to elaborate the production plan of a make-to-order production
system. The overall goal is to allow one to better use the existing production
resources according to two objectives: firstly, to minimize total tardiness and,
on a second stage, to minimize the idleness of the overall system. According to
a literature review presented by [9], there is no previous use of the IG on the
planning of the PBC ordering system.

2 The Iterated Greedy

The literature brings two major groups of algorithms to solve combinatorial
problems: constructive algorithms that generate a new solution according to
rules previously established and improvement algorithms, that, iteratively, seeks
to generate better results than the current solution. As improvement algorithms,
researches have been presenting strategies as Genetic Algorithms (GA - e.g., [3]),
Particle Swarm Optimization (PSO - e.g. [4]), Ant Colony Optimization (ACO -
e.g. [1]) and Iterated Greedy (IG - e.g. [8]). On the specific case of IG, a literature
overview shows a set of applications, including algorithms to solve the Multiple
Knapsack Problem (e.g. [2]), the Single Machine Scheduling (e.g. [9]) and the
Flowshop Scheduling Problem (e.g. [8]).

The IG is composed of 3 main phases:

– An Initialization Phase, that generates an initial solution, usually based
on a constructive heuristic. As an example, in the IG approach to a Permuta-
tional Scheduling Problem, [8] uses an insertion algorithm similar to the one
used by the NEH algorithm [5].

– A Destruction Phase, that uses an implementation-specific strategy to
remove elements from the current solution. Although previous researches have
presented several destruction strategies (e.g., see [7]), a simple random sam-
pling strategy is presented as a very suitable approach (e.g. [8]).

– A Reconstruction Phase, that uses some construction procedure to gener-
ate the new solution. Usually one apply a simple algorithm (e.g., [8] and [6]
uses the insertion phase of the NEH algorithm).



Applying IG to a PBC Controlled Production 193

Three further elements are also presented on the IG implementation found
in the literature:

– An acceptance criteria, responsible for replacing the best solution found
by the algorithm. The most straightforward strategy used to implement this
feature is a pure greedy rule that the replacement occurs solely when the new
solution found is better than the current best solution. To avoid it, researchers
such as [6–8] suggest to use a simulated annealing-based rule.

– A stopping criteria, usually related to the number of destruc-
tion/reconstruction cycles, computational time spent or some stability mea-
sure of the final solution.

– A local search (optional) that can be used to assist the main algorithm to
avoid local minimum solutions.

3 Problem Description

As mentioned before, the problem approached by this research considers a man-
ufacturing system controlled by PBC, where a set of orders must be allocated
into n production periods. The goal is to minimize the total tardiness of the
orders and, considering this minimum total tardiness value, minimize the overall
idleness of the production system. There is a constraint regarding the avail-
able production capacity at each production stage. For modeling issues, the
orders that could not be produced on the available stages are programmed into
an infinite-capacity dummy stage (the last one). Table 1 describe the symbols
adopted into this research.

Table 1. Symbols used to describe the problem

Symbol Definition

c Number of production cycles (without the dummy stage)

P Number of production orders

N Number of production stages

HP Size of the programming horizon (HP = N + c)

j a production period (j = 1, 2, ..., HP )

i an order (i = 1, 2, ..., P )

w a productive stage (w = 1, 2, ..., N)

TPiw Processing time of order i on productive stage w

CPwj Productive capacity of stage w on period j

di due date of order i

Table 2 presents the symbols used to identify a solution.
To accomplish the above statement goals, two MIP models were applied

sequentially: the first one, composed by Eqs. 1–5, obtains the minimum value
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Table 2. Solution variables

Symbol Definition

Ai Tardiness of order i

COwj Idleness of stage w at period j

CORwj Real idleness of stage w at period j. This variable is
included to assure that the objective function is not
penalized when one have full idle periods

yj 1 if any order is allocated into period j, 0 otherwise

xij 1 if order i is allocated to the period j, 0 otherwise

of
∑

i Ai; the second one, composed by Eqs. 6–9, minimizes the idleness of the
system.

z1 =
∑

i

Ai → min (1)

∑

j

xij = 1 ∀i (2)

∑

j≤N−1

xij = 0 ∀i (3)

∑

i

(TPiw · xij) + COw(j−(N−w)) = CPw(j−(N−w)) ∀
{

w
j ≥ N

(4)

Ai ≥ j · xij − di ∀
{
i
j

(5)

On this model, Eq. 1 if the objective function (minimize total tardiness); Eq. 2
assures that every order is allocated just to one period on PBC; Eq. 3 assures that
no order will be allocated in a period before that it is required for its production;
Eq. 4 establishes the capacity constrains of each period; Eq. 5 determine the
values of the tardiness of each order.

z2 =
∑

w,j

CORwj → min (6)

yj · M ≥
∑

i

xij ∀j (7)

CORw(j−N−w) ≥ COw(j−N−w) − M · (1 − yj) ∀
{
w
j

(8)
∑

i

Ai ≤ z1 (9)

On this second model, the objective function is given by Eq. 6; Eqs. 7 and 8
assures that, if there is an order allocated on period j, CORwj = COwj ; other-
wise, CORwj = 0. Equation 9 assures that the minimum total tardiness found
previously is maintained.
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4 The IG Algorithm

The first stage on the design the IG algorithm is to define the initialization
procedure. In this case, this paper developed the following algorithm: on the first
stage the EDD (Earliest Due Date) is applied; if there are orders with the same
due date, the second stage sequence those orders by the LPT (Longest Processing
Time) rule. Once sequenced, the orders are allocated into the production period,
assuring that the capacity constraints are respected.

The destruction phase is given by two different methods: (D1) a random-
based removal of the existing orders from the current solution and D2 a lookup
function that removes the orders that use most of the production capacity.

The following methods were developed to the reconstruction phase: R1
allocates a random order into the first available period (this is a variation of the
bin-packing heuristic Batch First Fit); the method R2 chooses the order with
smaller sum of processing times and program on the first available period; the
method R3 selects the order with larger sum of processing times and program it
on the first available period; R4 sequences the set of removed jobs by the inverse
of the total processing times and try to backward schedule the order to set the
tardiness equal to zero. If it is not possible, a forward schedule is performed in
such way that the minimum tardiness is achieved; finally, R5 allocates the order
with higher capacity utilization on the period with more idle capacity.

Using those procedures, 7 algorithms were developed, as shown in Table 3.

Table 3. Developed algorithms

Algorithm Destruction Reconstruction

H1A D1 R5

H1B D1 R1

H1C D2 R5

H1D D2 R2

H1E D1 R3

H1F D1 R4

H1G D1 R2

5 Results and Analysis

Our literature review does not reveal any publicly available benchmarks to use
in this work. Therefore, a set of test instances were generated using the following
parameters: the number of orders were n = {30, 50, 100, 200 or 300}; the number
of production stages were given by w = {3, 5 or 7}. The processing times were
sampled from an uniform distribution {5, 20}. The due dates were sampled from
an integer uniform distribution {w,w+j}. With no loss of generality, we assume
the processing times and due dates as integers. The programming periods are 2
or 4 periods ahead. This procedure generates a set of 300 test instances.
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The seven heuristics were coded in C++. The algorithms with stochastic
components were executed 30 times and the better results were stored. The
implementations were executed into a microcomputer i3 with 4GB RAM with
Windows 7.

The instances were solved by the MIP model implemented in GAMS/CPLEX
and by the heuristics. Two parameters were obtained: (i) a gap between the total
tardiness found by CPLEX and each algorithm; (ii) a gap between the remaining
capacity of every period found by CPLEX end by the algorithm. The average
value of each gap is presented in Table 4 and Figs. 1 and 2.

Table 4. Average gap found (%)

Total tardiness Idleness

Average Std. Dev. Average Std. Dev.

EDD 0.058 0.079 123.21 2022.02

H1A 0.058 0.079 123.18 2022.12

H1B 0.058 0.079 122.61 2017.71

H1C 0.055 0.076 114.69 1909.18

H1D 0.046 0.075 119.06 1972.08

H1E 0.055 0.077 94.53 1635.08

H1F 0.041 0.058 62.21 1042.89

H1G 0.058 0.078 120.4 2005.86
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Fig. 1. Tardiness × Idle Capacity analysis for heuristics EDD, H1A, H1B and H1C
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Fig. 2. Tardiness × Idle Capacity analysis for heuristics H1D, H1E, H1F and H1G
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Fig. 3. Gap found by each heuristic

Figure 3 presents an analysis of the tardiness values found by each heuristic.
As presented, the heuristics H1D and H1F could be able to find a better values
on both total tardiness average and standard deviation.

Figure 4 compares the results of heuristics H1D and H1F. According this
figure, heuristic H1F allows one to better use the production facility.
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Fig. 4. Analysis of H1D and H1F heuristics

6 Conclusions

This paper presented a MIP model and a set of eight heuristics to minimize
the total tardiness and improve the usage of a production system controlled
by the PBC ordering system. Our computational tests have shown that the
H1F heuristic presents better results than the remaining ones, considering the
instances found. Moreover, this heuristic could achieve overall good results when
compared with the solutions given by the mathematical model.

It was shown that each heuristic uses the available production capacity differ-
ently: when comparing only the tardiness objective, the results of the heuristics
are similar. However, the H1F heuristic presents a better use of the production
capacity. This indicates that, for real-world applications, rule H1F can obtain
better performance when considering idle capacity as a secondary performance
indicator.

As future developments, it is expected to improve the H1F rule, and to
apply this solution procedure in practical scenarios. Moreover, one can real-
ize the appeal to integrate the PBC with different decisions of the production
system.
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Abstract. The demand for blood transfusion is considered a real world problem
which is needed for various medical emergencies. The blood assignment
problem was introduced to address this problem. The formulation of this
problem stretches from managing critical blood shortage levels and blood unit
expiration, to blood compatibility between donor and patients. Another con-
tributing factor to the blood assignment problem, lies in the blood bank having
to import additional blood units from external sources when supply cannot meet
the demand. These challenges have serious consequences especially in the case
where the demand for blood is very high. Taking these factors into considera-
tion, this study implements a metaheuristic hybrid algorithm that combines
symbiotic organisms search algorithm with the blood assignment policy in
relation to the blood banks of South Africa. The aim of this study is to minimize
blood product wastage with regards to expiration and importation, whilst
maximizing product delivery to patients in need. In addition, this study also
implements a unique way of generating randomized datasets based on social
events relating to South Africa public holidays. The computational results
indicate that the proposed hybrid algorithm performed well in minimizing blood
importation, and experienced no form of expiration throughout the time period.

1 Introduction

Human blood inventory management is categorized by a string of influences which
contributes to its efficiency and can complicate as time progresses [1]. In the past years,
many aspects of blood management have been introduced and scrutinized in order to
implement dynamic policies and strategies that would optimize the management pro-
cess [2–4]. Blood is a perishable commodity with unique medical value to humans [2].
In accordance to the blood system, often referred to as the ABO system [3], there exist
8 blood types in humans. Blood compatibility plays a vital role in blood management,
and distribution of such units [5]. Cases have risen where patients received incom-
patible blood types which resulted in blood clumping (also referred to as agglutination),
which can be life threatening. The Blood Assignment Problem (BAP) can simply be
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defined as an optimization process which efficiently assigns a supply of WB units to the
daily demand of these units. The BAP has many underlying external components
which contribute to the complexity of the problem. However, the main issue relates to
the demand for Whole Blood (WB) units. Demand for WB units can be classified as
either “expected” or “unexpected”, and it is usually the unexpected component which
causes issues with regards to WB unit supply.

In this paper, the possibility of improving the recently proposed Symbiotic
Organisms Search (SOS) algorithm with an efficient blood assignment model to solve
the BAP is investigated. The SOS Algorithm was first introduced in [12] to solve
complex structural engineering design optimization problems. The SOS is capable of
providing efficient and robust approach in exploiting and exploring large search space,
more so, it has been employed to optimize a number of combinatorial optimization
problems and have proved to be an efficient performer in that aspect [13–16]. The
contribution of this paper involves the hybridization of SOS algorithm with a blood
bank management policy. However, due to confidentiality issues, this study could not
use real-world data and therefore, stochastic datasets, which were randomly generated
were used to implement the proposed hybrid algorithm. This technique is further
discussed in the later section of this paper. The policy also takes into account other
contributing factors which could affect the management of blood products. These
factors include: blood compatibility, the First-In-First-Out (FIFO) issuing system,
expiration of WB units and importation of additional WB units from external sources.

2 Methodology

Every day the demand for WB units must be met. If the daily supply is greater than or
equal to the daily demand, then the supply is distributed accordingly and the demand is
considered as satisfied. However, if the daily demand exceeds supply, this then initiates
other processes that would meet the desired level for demand. First, the blood bank
must check for compatible blood types and use only the remaining units from the blood
groups (each blood type is expected to fulfil their respective demand first). If pulling
from additional blood units still has not satisfied the demand, then the blood bank must
import additional units from external sources in order to satisfy the request. Overall the
BAP can be summarized into 4 major components: Supply, Demand, Importation and
Expiration. The proposed BAP objective function aims to minimize the combination of
both importation and expiration over a finite period of time for all the blood types.

Generating Demand and Supply: Due to confidentiality issues, it was not possible to
use real-world datasets in this study. Instead, a randomly generating datasets which
utilises South African social trends based on monthly statistics was used. By incor-
porating monthly holidays as well as terms from educational institutions [9], it was
theoretically possible to create unique percentage bounds and allocate them to each
month, which in turn reduces unpredictability when generating dataset values. Reports
have previously indicated that levels of drunken driving increases during the Easter
period [8], thus blood banks tend to stock-pile blood products for precautionary
measures during these public holidays. In terms of generating percentage bounds for
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supply, there were no significant events that occurred during a standard South African
year, therefore the percentage bounds will be set between 25–75%. In South Africa,
months like December (with many public holidays and closed schooling institutes)
would experience much higher levels of WB units demand, unlike February, which has
no form of public holidays.

Therefore, if we denote following as:

A: Represent the initial volume in a blood bank
d: Represent a day
m: Represent a month
b: Represent a blood type
Bu: Represent the upper percentage bound
Bl: Represent the lower percentage bound
rng: Represents a random generator

Supplyb or Demandb ¼ A : rng BU � Blð Þm
� � ð1Þ

From Eq. 1, the supply or demand was generated by randomly selecting a percent
between the upper and lower bounds depending on the month the system was currently
in This was then multiplied by the initial volume in the blood bank to generates a value
for supply or demand. The process for generating supply has an additional step, which
involves adding the previous days’ remainder (as long as the remainder was greater
than 0). However, if the system was in the first day, then remainder was taken as 0.

3 Symbiotic Organisms Search Algorithm

The SOS is an algorithm which emulates the interactive behaviour of creatures within
nature [10], with a notable advantage of having no specific parameter tuning, which
decreases time in order to achieve good results [11]. The SOS can be divided into 3
main optimization phases namely: Mutualism, Commensalism and Parasitism. Each of
these phases tries to modify the chosen individual(s) with the hopes of obtaining a more
improved solution.

Mutualism: Organisms interact with each other in a way that benefits both parties. Let
Xi and Xj represent 2 random individuals within a population, MV represent the Mutual
Vector, Xbest represent the organism with the best advantage, and BF represent the
benefit factor. The mutualism phase is presented using the following equations.

Xinew ¼ Xi þ randð0; 1Þ � Xbest �MV � BF1ð Þ ð2Þ

Xjnew ¼ Xj þ randð0; 1Þ � Xbest �MV � BF2ð Þ ð3Þ
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Where:

MV ¼ Xi þXj
� �

=2 ð4Þ

The value obtained from Xbest �MVð Þ tries to increase survival in the population,
with all improved individuals replacing the original individuals. The values of the
benefit factors BF1 and BF2 are determined randomly using Eqs. 5 and 6.

BF1 ¼ ð1þ round rand 0; 1ð Þð Þ; jrand 2 ½0; 1� ð5Þ

BF2 ¼ ð1þ round rand 0; 1ð Þð Þ; jrand 2 ½0; 1� ð6Þ

Where round and rand are MATLAB function. The round function rounds up
generated values to the nearest whole number and the rand function generates random
number.

Commensalism: In this phase, the individual organism interacts with each other in a
way that results in one organism benefiting without harming the other organism.
Selection of two organisms is done randomly from the population, and have their
fitness values evaluated. The fitter individual is labelled as Xi and the inferior individual
is labelled as Xj.

Xinew ¼ Xi þ rand �1; 1ð Þ:ðXbest � XjÞ ð7Þ

Xi benefits fromXj by means of ðXbest � XjÞ ð8Þ

Parasitism: In this phase, the organisms interact with each other in a way that benefits
one organism (parasite) whilst harming the other organism (host). To evaluate a form of
parasitism for the BAP, two individuals from a population are randomly selected, with
each of its fitness values evaluated similar to the commensalism phase. Following the
evaluation, the fitter individual is labelled as the parasite, and the inferior as the host.
The parasite then swaps segments of its representation with the host only if the value
(from the host) improves its original solution.

Solution Representation. As mentioned previously, there are eight (8) different blood
types for humans, which is donate here as the SOS organisms. Using this information,
it is possible to extrapolate a solution representation pattern for an individual organism
within a population of ecosystem. The individual organisms are finite with 8 segments,
and each segment is represented with a specific blood type capable of containing a
value of type double. Figure 1 depicts the individual organism used in the SOS

Fig. 1. Solution representation for the BAP
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algorithm with each segment representing an individual blood type and a specific
numerical value.

The Algorithm 1 below represents the general implementation of the improved SOS
algorithm. Furthermore, Algorithm 1 also exhibits the functioning of the parasitism
phase were the parasite analyses the host and swaps segments if the host contains a
better value than itself.

Algorithm 1: Symbiotic organism search algorithm
1: 
2: =
3: Begin
4: Generate initial population of blood types X= , and evaluate its ϐitness
5: While stopping criteria is false
6:
7: Calculate fitness of each individual organism (blood types)
8: = individual with lowest fitness
9: End For
10: //Implement the three SOS interaction phases
11: Mutualism phase mentioned
12: Commensalism phase
13: Parasitism phase 
14:    {
15: for i = 1: .length
16: if ( [i] is not equal to [i])
17:
18:
19: end if
20: if ( < )          
21: swap host and parasite segments.   
22: end if
23: if ( ≥ )
24:           do not replace value.
25: end if
26: }
27: If (fitness (Par) < fitness ( ))
28: =
16. End While
17: Return 
18: End

It is noteworthy to mention here that because the basic SOS algorithm was originally
designed for solving continuous optimization problem and the BAP being a combi-
natorial optimization problem, a random permutation process of using a modulus
function given by u ¼ xþ kb c mod m was used to convert the solution x to an integer u,
where, k and m > 0 are integers.

4 Experimental Setting and Dataset Generation

The SOS algorithm was implemented on Intel core i5 CPU with 2.5 GHz and 4 GB
RAM and Windows 10.0 Operating system, while the implementation software is Java.
For each dataset, the algorithm was run for 1000 iterations, using population size of 50
organisms. Previous studies resorted to generating datasets by means of incorporating
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fixed percentage bounds between the ranges of 25 to 75%. This was used to generate
both demand and supply. This study tries to minimize the unpredictability associated

with stochastic dataset when generating demand values, by incorporating public hol-
idays and schooling terms based on the South Africa vacation trends, referred here as
South African generated values (SAGV). Table 1 represents the datasets used in this
study, as well as the percentage bounds pertaining to each dataset.

4.1 Results and Discussion

In Table 2, the average computational results achieved by the SOS implementation for
the BAP in accordance to each dataset described in Table 1. The significant compo-
nents used to analyse the performance of the hybrid SOS algorithm are the two vari-
ables which create the objective function, namely the expiration and importation of WB
units. A solution was found if the supply for the day matches the daily demand.
However, due to the way in which supply for a day was generated such that the
previous days’ remainder was added to the newer influx of donations, stock-piling can
occur. Figure 2 also gives an indication as to when the stock-piling event occurs. It is
important to mention that the quicker this happens, the fewer would be the importation
of the WB unit. Figure 2, represent the line graphs plots over a 365-day period for each
dataset used to test the hybrid implementation of the SOS algorithm that was combined
with the blood bank assignment policy.

In Table 2 and Fig. 2, the results indicate that the hybrid SOS algorithm coupled
with the blood management policy achieved good results in terms of having very low
importation levels and no form of expiration across any of the datasets. The results also
show that stock-piling occurs at early period within the time frame which supports low

Table 1. Study datasets and percentage bounds pertaining to each dataset.

Dataset Initial
blood
volume

Demand
bounds (%)

Supply
bounds
(%)

Description

1 500 25–75 25–75 Experimental control- Used in
[2, 6, 7]

2 500 SAGV 25–75 South African statistics for
generating the value for demand

3 500 75–100 25–50 Examines: Demand > Supply
4 500 25–50 75–100 Examines: Supply > Demand
5 5000 25–75 25–75 Dataset 1 with larger volume
6 5000 SAGV 25–75 Dataset 2 with larger volume
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importation levels, but opens the system to possible expiration, however this phe-
nomenon did not occur due to the 30 shelf life of WB units as well as the First-In-First-
Out (FIFO) issuing system.

The studies conducted in [3, 4, 6, 7] used constant percentage bounds ranging
between 27–75% in order to generate values for demand. These bounds were used
across the entire testing range of 365 days. The current study allocates specific per-
centage ranges to each month with the aim of generating more accurate demand levels
in accordance to the South African monthly schooling terms and public holidays.
Ideally, the best source of generating demand percentage bounds would preferably be
statistics based on actual demand for WB units within South Africa, however, these
statistics was not available.

Table 2. Averages obtained for each dataset per blood type using the hybrid SOS algorithm to
work the BAP

Dataset A+ A− B+ B− AB+ AB− O+ O−

1 Supply 192.81 88.67 78.67 35.41 15.27 6.36 131.83 87.8
Demand 40 6.25 15 2.5 3.75 1.25 48.75 8.75
Import 0 0 0.08 0.01 0.28 0.01 0.02 0
Expiry 0 0 0 0 0 0 0 0

2 Supply 222.87 43.48 76.14 24.06 19.19 9.34 294.67 52.15
Demand 19.08 2.98 7.15 1.19 1.79 0.6 23.25 4.17
Import 0.11 0 0.03 0 0.01 0 0.08 0
Expiry 0 0 0 0 0 0 0 0

3 Supply 68.9 28.51 27.04 11.63 3.08 2.4 72.98 30.71
Demand 37.16 5.81 13.93 2.32 3.48 1.16 45.29 8.13
Import 1.2 0.01 0.39 0.01 1.51 0.1 0.68 0
Expiry 0 0 0 0 0 0 0 0

4 Supply 3419.58 565.67 1308.53 209.98 326.2 98.9 4172.27 746.18
Demand 18.84 2.94 7.07 1.18 1.77 0.59 22.96 4.12
Import 0 0 0 0 0 0 0 0
Expiry 0 0 0 0 0 0 0 0

5 Supply 2404.66 1184.73 882.15 438.4 238.29 86.86 1639.28 1220.06
Demand 397.86 62.17 149.2 24.87 37.3 12.43 484.89 87.03
Import 0 0 0 0 0.62 0 0 0
Expiry 0 0 0 0 0 0 0 0

6 Supply 5157.35 914.22 2439.9 430.83 549.99 206.36 7621.29 1389.61
Demand 354.62 55.41 132.98 22.16 33.25 11.08 432.2 77.57
Import 0 0 0 0 0.18 0 0 0
Expiry 0 0 0 0 0 0 0 0
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5 Conclusion

This paper presents a hybrid metaheuristic algorithm, which combines symbiotic
organism search algorithm with a blood assignment heuristic method to solve the
BAP. Based on the results discussed in this paper, it is obvious that the hybrid SOS
implementation was able to provide good quality solutions to the BAP. The imple-
mentation had very low amounts of importation, and no form of expiration when
subjected to any of the datasets. The low importation levels can be attributed to the
effects of using the bottom-up technique which promoted the use of compatible blood
types, and the lack of expiration can be linked to the FIFO issuing system. Using
dataset 1 as a control, it was possible to establish how effective the demand generation
was in relation to using SAGV. Dataset 2 experienced a 42.5% overall decrease in the
total levels for importation, whilst dataset 5 and 6 used the same percentage bounds as
dataset 1 and 2, but had a much larger initial volume of WB units. Dataset 6 (which
used SAGV for generating demand), also experienced a lower importation level by

(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

(e) Dataset 5 (f) Dataset 6

Fig. 2. SOS implementation of all datasets over a period of 365 days
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44%. In relation to dataset 1 and 2 in terms of demand generation, dataset 2 used the
SAGV approach, and experienced a 52% decrease in overall demand, whilst supply
increased by 14%, which was to be expected due to the act of stock-piling.
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