
Chapter 3
Spatio-Temporal and Spectral
Transformation of Femtosecond Pulsed
Beams with Phase Dislocation
Propagating Under Conditions
of Self-action in Transparent Solid-State
Dielectrics

S. A. Shlenov, E. V. Vasilyev and V. P. Kandidov

Abstract Self-action of a femtosecond optical vortex in fused silica at a wavelength
of 1900nm is analyzed bymeans of numerical simulations. The formation of a multi-
focus ring structure is demonstrated.We show that self-focusing in a ring of relatively
large radius occurs without plasma generation. The frequency spectrum of the pulse
is broadening mainly into the Stokes band.

3.1 Introduction

Self-focusing of femtosecond pulses may result in formation of extended filaments
with high fluence [1]. The parameters of such structures are quite stable. In partic-
ular, stable peak intensity values of the order of magnitude 5 × 1013 W/cm2 can be
observed in the femtosecond pulse at distances significantly greater than the length
of the beam waist [2, 3].

Femtosecond filamentation has beenwidely studied for Gaussian and other beams
with a smooth phase. In such beams, a single filament is usually formed on the
axis. In media with anomalous group velocity dispersion self-focusing in space is
accompanied by self-compression in time, which leads to the formation of localized
in space and time “light bullets” [4, 5]. In fused silica samples, such conditions arise
for IR radiation at wavelengths greater than 1.3µm [6].
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On the other hand, there are beamswith phase singularity, inwhich the spiral phase
dislocation prevents the appearance of the light field on the beam axis, retaining its
ring structure. These donut shaped laser beams, which are often called spiral laser
beams or optical vortices, can be promising for such applications as tubular refractive
index micromodifications, electrons accelerations, etc. [7]. Self-focusing of spiral
laser beams in a medium with cubic nonlinearity was considered theoretically in
[7, 8], where the dependence of critical power on the optical vortex topological
chargem was obtained. The presence of phase dislocation significantly increases the
value of the critical power. For example, the critical power for an optical vortex with
topological charge m = 1 is four times higher than the critical power of a Gaussian
beam. As the topological charge increases, the critical power becomes even higher.

The experimental observation of self-focusing of vortex beams, maintaining ring
structure,was done in awater cell for 100 fs pulses at awavelength of 800nm [8, 9]. In
studies of the self-action of femtosecond vortex beams, considerable attention is paid
to the emergence of multiple filamentation. The fact is that the vortex beam is quite
stable with respect to its radius, but in a nonlinear medium with cubic nonlinearity it
undergoes azimuthalmodulational instability. As far aswe know, the first observation
of the set of filaments in vortex beams was performed in [10]. The annular beamwith
phase singularity on the axis during self-focusing in sodium vapor formed a high-
intensity ring, which then disintegrated into separate hot spots due to azimuthal
instability. In [9] on the basis of experimental and theoretical studies, a formula
was proposed for estimating the number of filaments arising after the collapse of
a singular beam, depending on the excess of the peak power over the critical one
and the value of the topological charge. The possibility of increasing the distance
to the start of multiple filamentation of high-power femtosecond radiation in vortex
beams was considered in [11]. It is shown numerically that in relatively wide beams
propagating in atmosphere it is possible to transfer high fluence annular structure at a
distance of hundreds of meters before it decays into a set of filaments. Improvement
of longitudinal stability and reproducibility of filaments in vortex beams with energy
of 2–30 mJ formed by special phase plates and propagating in atmosphere was
demonstrated in [12]. Experimental studies of the behavior of optical vortices during
filamentation in gases and numerical analysis in a stationary approximation without
taking into account plasma generation showed the possibility of obtaining stable
multiple filamentation regimes in beams with a lattice of optical vortices [13].

A detailed picture of the spatiotemporal dynamics of a femtosecond pulse in a
vortex beam in fused silica at a wavelength of 800nm was obtained in our paper
[14]. It is shown that a tubular structure with a radius of 3–4µm can be formed in
the nonlinear focus, and the length of this structure significantly exceeds the length
of the beam waist under linear propagation.

A number of papers are devoted to the study of frequency spectrum transformation
of femtosecond pulses in vortex beams. Experimental spectra of supercontinuumdur-
ing filamentation of beams with phase singularity in a variety of media (BK7, silica,
water, CaF2) were obtained in [15]. It was registered that in the process of super-
continuum generation, the profile of the annular beam practically did not change,
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and the arising of a small number of filaments resulted in characteristic interference
fringes in the supercontinuum radiation.

Transformation of optical vortices into newly emerging spectral components due
to phase modulation and four-wave mixing was demonstrated in [16]. The influence
of inertia of plasma formation on the propagation stability of optical vortices was
studied numerically in [17] under filamentation of beams with phase singularity in
fused silica. It is shown that it leads to a quasi-soliton regime of the beampropagation,
which is stable to perturbations destroying symmetry, and the multi-focus behavior
of optical vortices was revealed.

It should be noted that currently experimental and numerical studies of fem-
tosecond filamentation in vortex beams are mainly performed at wavelengths corre-
sponding to the normal group velocity dispersion in a medium considered. On the
other hand, tunable parametric amplifiers allow obtaining high-intensity femtosec-
ond pulses in the mid-IR range, where group velocity dispersion of many transparent
solid-state dielectrics is anomalous and where there is a self-compression of pulses.
Self-action of pulses with spiral phase dislocation qualitatively changes the mani-
festation of self-focusing in a nonlinear medium, provoking the formation of tubular
filaments.

In this paper, we investigate numerically the spatiotemporal dynamics and spectral
characteristics of femtosecond optical vortices under self-action in fused silica glass
at a wavelength of 1900nm. In the first part of the paper, the mathematical model
based on the approximation of slowly varying wave [18] is discussed in detail. This
allows describing self-steepening of the optical pulse and corresponding transfor-
mation of its frequency spectrum. No less important for the correct description of
the spatiotemporal dynamics of the pulse is taking into account the delayed response
of the Kerr medium, for the description of which a damped oscillator model can
be used [19]. The features of the self-action of optical vortices are discussed in the
second part of the paper. In particular, the possibility of nonlinear self-focusing into
a narrow ring structure without the appearance of plasma is shown.

3.2 Mathematical Model for Numerical Simulations
of Optical Vortex Self-action

3.2.1 Nonlinear Wave Equation

The numerical simulation of optical vortex propagation is based on nonlinear wave
equation, which could be obtained starting with Maxwell’s system of equations.

Considering medium is dielectric (ρf(r, t) = 0) and nonmagnetic (B(r, t) =
μ0H(r, t)) we get:
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ΔE(r, t) − ∇(∇ · E(r, t)) = 1

ε0c2
∂j(r, t)

∂t
+ 1

c2
∂2E(r, t)

∂t2
+ 1

ε0c2
∂2P(r, t)

∂t2
,

(3.1)
where E is electric field, j is current density and P is polarization, c = 1/

√
ε0μ0. We

examine each of (3.1) members one by one using several further approximations.
Assuming paraxiality, that is transverse wave number is much smaller than lon-

gitudinal one, k⊥ � kz , and linear polarization of the electric field E, we can use
method of slowly varying amplitude E and current density j:

E(r, t) = 1

2
eA(r, t) exp{i(ω0t − k0z)} + c.c. (3.2)

j(r, t) = 1

2
eJ (r, t) exp{i(ω0t − k0z)} + c.c. (3.3)

where A(r, t) and J (r, t) are complex slowly varying amplitudes, e is a unit vector.
Using dipole approximation (χ(i)(r, t) = χ(i)(t)) we can write (⊗ means convo-

lution) polarization as:

P(r, t) = P(1)(r, t) + P(2)(r, t) + P(3)(r, t) + · · · = ε0χ
(1)(t) ⊗ E(r, t)+

+ ε0χ
(2)(t) ⊗ E(r, t)E(r, t) + ε0χ

(3)(t) ⊗ E(r, t)E(r, t)E(r, t) + · · ·
(3.4)

where χ(i)(t)—permittivity tensor of i-th order. We consider isotropic medium
(P(2m)(r, t) = 0, m ∈ N). Each (n + 2)-th term of the polarization series (3.4) refers
to n-th one as ∼∣

∣I (r, t)
∣
∣
/∣
∣Ia

∣
∣, where Ia ∼ 5 × 1016 W/cm2 is atomic intensity. Peak

intensity inside the filament is about 5 × 1013 W/cm2, so the ratio is of the order of
∼10−3. We can neglect nonlinearities of higher orders and write:

P(r, t) = P(1)(r, t) + P(3)(r, t). (3.5)

Therefore we will limit our consideration only to linear and cubic polarizations.
Linear polarization can be written as

P(1)(r, t) = ε0χ
(1)(t) ⊗ E(r, t) = ε0

+∞∫

−∞
χ(1)(τ )E(r, t − τ)dτ =

= 1

2
e exp{i(ω0t − k0z)}ε0

+∞∫

−∞
χ(1)(τ )A(r, t − τ) exp{−iω0τ }dτ. (3.6)

Using inverse Fourier transform of slowly varying electric field amplitude
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A(r, t) = 1

2π

+∞∫

−∞
Ã(r,Ω) exp{iΩt}dΩ, (3.7)

forward Fourier transform of electric susceptibility

χ̃ (1)(ω) =
+∞∫

−∞
χ(1)(t) exp{−iωt}dt (3.8)

and relation between susceptibility and wave vector χ̃ (1)(ω) = k2(ω)c2/ω2 − 1, we
obtain

P(1)(r, t) = 1

2
e exp{i(ω0t − k0z)}ε0c2 1

2π

+∞∫

−∞

k2(ω0 + Ω)

ω2
0 + 2ω0Ω + Ω2

Ã(r,Ω)×

× exp{iΩt}dΩ − ε0E(r, t),

(3.9)

where k(ω) = ωn(ω)/c, n(ω)—index of refraction. The linear part of the last term
in (3.1) takes the form:

1

ε0c2
∂2P(1)(r, t)

∂t2
= −1

2
e exp{i(ω0t − k0z)}×

× 1

2π

+∞∫

−∞
k2(ω0 + Ω) Ã(r,Ω) exp{iΩt}dΩ − 1

c2
∂2E(r, t)

∂t2
. (3.10)

The expression for cubic polarization consists of two terms related to the first and
third harmonics:

P(3)(r, t) = ε0χ
(3)(t) ⊗ E(r, t)E(r, t)E(r, t) =

= 1

8
e exp{i(3ω0t − 3k0z)}ε0

∫∫∫

χ(3)(τ1, τ2, τ3)A(r, t − τ1)A(r, t − τ2)A(r, t − τ3)×

× exp{−iω0(τ1 + τ2 + τ3)}dτ1dτ2dτ3+

+3

8
e exp{i(ω0t − k0z)}ε0

∫∫∫

χ(3)(τ1, τ2, τ3)A(r, t − τ1)A(r, t − τ2)A
∗(r, t − τ3)×

× exp{−iω0(τ1 + τ2 − τ3)}dτ1dτ2dτ3. (3.11)
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Due to strong violation of wave synchronism, Δk = 3k(ω0) − k(3ω0) �= 0, we
neglect the third harmonic generation. Fourier transform of 3-th order electric sus-
ceptibility (similarly to (3.8)) and well-known relation between intensity and electric
field amplitude I (r, t) = cn0ε0|A(r, t)|2/2 yield

P(3)(r, t) = 3

4
e exp{i(ω0t − k0z)}ε0 χ̃ (3)

cn0ε0
I (r, t)A(r, t). (3.12)

The second time derivative of nonlinear polarization in (3.1) takes the form

1

ε0c2
∂2P(3)(r, t)

∂t2
= −1

2
e exp{i(ω0t − k0z)}2k

2
0

n0
T̂ 2Δnk(r, t)A(r, t), (3.13)

where

T̂ = 1 − i

ω0

∂

∂t
(3.14)

is the operator of wave-nonstationarity [18], which provides more accurate descrip-
tion of short pulse propagation compared to commonly used approximation of this
operator by unit.

In case of instant response the nonlinear (Kerr) addition to the refractive index
Δnk(r, t) = n2 I (r, t), where n2 = 3χ̃ (3)

/

4cn20ε0.
Delayed (Raman) response can be taken into account by special convolution with

oscillating kernel H(τ ) [19]:

Δnk(r, t) = (1 − g)n2 I (r, t) + gn2

+∞∫

0

H(τ )I (r, t − τ)dτ, (3.15)

where

H(t) = Θ(t)
1 + Ω2

Rτ 2
k

ΩRτ 2
k

sin(ΩRt) exp{−t/τk} (3.16)

and g—weighting factor, H(t)—convolution kernel,Θ(t)—Heaviside step function,
ΩR—rotating frequency of molecules, τk—characteristic response time.

Conduction current density j depends on plasma appearing in filamentation
regime. Using simple Drude’s model we can write motion equation for electron
gas including elastic electron-ion interactions with collision frequency νei:

dj(r, t)
dt

= e2

me
E(r, t)Ne(r, t) − νeije(r, t), (3.17)

where Ne is free electron concentration; e and me—charge and mass of electron.
Substituting (3.3) into (3.17), we obtain:
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J (r, t)ω0

(

i + νei

ω0
+ 1

ω0

∂

∂t

)

= e2

me
Ne(r, t)A(r, t). (3.18)

Note that i + νei
/

ω0 + ω−1
0 ∂

/

∂t = i T̂ + νei
/

ω0. Factor νei
/

ω0 is small, because for
dielectrics νei ∼ 1014 s−1 and central frequency for near infrared radiation is about
ω0 ∼ 5 × 1014 s−1. After some algebra we obtain expressions for conduction current
density:

j(r, t) = 1

2
e
e2

me

1

iω0 + ∂
∂t

(

1 + i
νei

ω0
T̂−1

)

Ne(r, t)A(r, t) exp{i(ω0t − k0z)}
(3.19)

and its derivative:

1

ε0c2
∂j(r, t)

∂t
= 1

2
e exp{i(ω0t − k0z)}×

×
(

−2k20
n0

Δnpl(r, t) − i T̂−1σ(r, t)
)

A(r, t), (3.20)

where we denoted ω2
pl(r, t) = e2Ne(r, t)

/

meε0 as plasma frequency, Δnpl(r, t) =
−ω2

pl(r, t)
/

2n0ω2
0 as nonlinear plasma addition to refractive index and σ(r, t) =

−ω2
pl(r, t)

/

c2 × νei
/

ω0 as bremsstrahlung cross-section.
Substituting the expressions (3.10), (3.13) and (3.20) to (3.1), assuming ∇ ·

E(r, t) = 0 and expanding the Laplace operator to transverse and longitudinal parts
Δ = Δ⊥ + ∂2/∂z2 we obtain nonlinear wave equation, which can be written in
retarded time t ′ = t − k1z and z′ = z coordinates as

∂2A(r, t ′)
∂z′2 − 2ik0

(

1 − ik1
k0

∂

∂t ′

)
∂A(r, t ′)

∂z′ + Δ⊥A(r, t ′) =

= −2k20
n0

Δnpl(r, t)A(r, t ′) − i T̂−1σ(r, t)A(r, t ′)−

− 1

2π

+∞∫

−∞

(

k2(ω0 + Ω) − (k0 + k1Ω)2
)

Ã(r,Ω) exp{iΩt ′}dΩ−

− 2k20
n0

T̂ 2Δnk(r, t ′)A(r, t ′), (3.21)

where k1 = dk/dω|ω=ω0 . We neglect the second derivative of the field A on z′ due
to slowly varying amplitude approximation, assume the factor k1/k0 in brackets
approximately equals to 1/ω0 and redesignate t ′, z′ back to t , z.

Equation (3.21) lacks dissipation terms. We can account for the energy loss due
to plasma generation by adding the following equation:
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− ∂ I (r, t)
∂z

= ∂Ne(r, t)
∂t

K�ω0, (3.22)

where K = 〈

Ui
/

�ω0 + 1
〉

—number of photons on frequency ω0 needed to put elec-
tron out from the ionization potential Ui .

Passing from intensity I to field amplitude A after some algebra we obtain:

2ik0
∂A(r, t)

∂z
= −ik0

∂Ne(r,t)
∂t K�ω0

I (r, t)
A(r, t). (3.23)

On the right-hand side of the (3.23)wecandistinguish the nonlinear absorption coeffi-
cient as α(r, t) = (∂Ne(r, t)/∂t)K�ω0

/

I (r, t). Adding linear extinction coefficient
δ we finally obtain the nonlinear wave equation for simulation of optical vortex
self-action:

2ik0
∂A(r, t)

∂z
= T̂−1Δ⊥A(r, t)+

+ T̂−1 1

2π

+∞∫

−∞

(

k2(ω0 + Ω) − (k0 + k1Ω)2
)

Ã(r,Ω) exp{iΩt}dΩ+

+ 2k20
n0

T̂Δnk A(r, t) + 2k20
n0

T̂−1ΔnplA(r, t) + i T̂−2σ A(r, t)−
− ik0(α + δ)A(r, t). (3.24)

Obtained wave equation contains several operators of wave nonstationarity T̂ as
in [18], but the important feature of this equation is the presence of terms responsible
for medium ionization, depending on concentration of generated electrons. To cal-
culate electron concentration Ne we need cinetic equation for plasma electrons. The
increment of electron concentration is proportional to difference between neutrals
concentration N0 and current electron concentration Ne with ionization rate W (I ):

∂Ne(r, t)
∂t

= W (I )(N0 − Ne(r, t)). (3.25)

Electrons generationmay be enhanced by the avalanchewith nonlinear coefficient
νi [20]:

νi (I ) = 1

Ui

e2νei
me(ω

2
0 + ν2

ei)

I

cn0ε0
. (3.26)

Recombination of plasma electrons is taken into account as a negative term which is
proportional to current electrons concentration with some constant coefficient β.

Finally we obtain the cinetic equation for plasma electrons:

∂Ne(r, t)
∂t

= W (I )(N0 − Ne(r, t)) + νi (I )Ne(r, t) − βNe(r, t). (3.27)
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It should be noticed that ionization rateW (I ) is calculated according to the Keldysh
model [21].

3.2.2 Problem Statement and Initial Conditions

Numerical simulations of optical vortex self-action are connected with experimental
setup shown in Fig. 3.1.

Femtosecond laser systemgeneratesGaussianbeam,which travels through special
vortex lens, providing annular beam with topological charge m at the focal plane,
where the input face of the silica glass sample is at z = 0. Femtosecond pulse with
vortex beam propagates further in the bulk fused silica experiencing self-action.

General case of the problem is computationally complex. If we consider pulse
propagation before it breaks up due to azimuthal instability, we can save computing
resources using axial symmetry of the beam and introducing one spatial coordinate
r = √

x2 + y2 instead of two cartesian coordinates x and y. It should be noticed that
described approach forbids initialization of asymmetric vortex phase. But we can
make a substitution A(r, z, t) = A′(r, z, t) exp{imϕ} in (3.24) and obtain a nonlin-
ear wave equation for A′(r, z, t). The only difference from (3.24) will be the new
expression for the transverse laplacian:

Δ⊥ = ∂2

∂r2
+ 1

r

∂

∂r
− m2

r2
. (3.28)

We suppose that at the focal plane of vortex lens there is an annular beam with
topological charge m in a bandwidth-limited Gaussian pulse:

AV(r, t) = A0

(
r

r0

)2

exp

{

− r2

2r20

}

exp

{

− t2

2t20

}

exp

{

imϕ

}

, (3.29)

where r0 = 120µm, t0 = 60 fs, ϕ = arctan(y/x). Intensity and phase profiles of this
vortex beam are shown in Fig. 3.2.

Fig. 3.1 Schematic experimental setup for numerical simulations of optical vortex self-action
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Fig. 3.2 Intensity (a) and phase (b) spatial distribution and spatiotemporal intensity distribution
(c) for optical vortex with topological charge m = 1 at z = 0. Line profiles are shown by dashed
lines

Self-action of optical vortex in fused silica is studied in the region of anomalous
group velocity dispersion at the wavelength of 1900nm, where k2 = −80 fs2/mm.
The critical power of self-focusing for vortex beam with topological charge m can
be calculated by formula [9]:

P (m)
V = 22m+1Γ (m + 1)Γ (m + 2)

2Γ (2m + 1)
PG, (3.30)

where PG = 3.77λ2/8πn0n2 is a critical power of self-focusing for Gaussian beam.
We consider topological chargem = 1 and P (1)

V = 4PG. The peak power of the pulse
was taken substantially higher than critical power, P = 6P (1)

V , which corresponds to
the pulse energy of E = 27µJ. For comparison reasons we also considered propaga-
tion of two other beams: annular AR(r, t) and Gaussian AG(r, t) pulsed beams with
the same excess of peak power on respective critical power. They can be described
by the following formulas:

AR(r, t) = A0

(
r

r0

)2

exp

{

− r2

2r20

}

exp

{

− t2

2t20

}

, (3.31)
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Fig. 3.3 Spatiotemporal profiles for annular (a) and Gaussian (b) beams at z = 0

AG(r, t) = A0 exp

{

− r2

2r20

}

exp

{

− t2

2t20

}

. (3.32)

Note that AR = AG(r/r0)2 and AV = AR exp
{

imϕ
}

. Spatiotemporal intensity dis-
tributions of annular and Gaussian beams are shown in Fig. 3.3.

3.3 Spatiotemporal Dynamics and Spectral Broadening
of Optical Vortex in Fused Silica at 1900 nm

3.3.1 Evolution of Intensity Distribution in Vortex, Annular
and Gaussian Beams

Figure3.4 shows intensity distributions for different beams on the logarithmic scale
with initial intensity I0 = 2.81 × 1011 W/cm2 at distances corresponding to local
maxima along z axis.

In the initial stage of vortex beam propagation, the self-action yields narrowing
ring of practically the same radius. This is clearly seen in Fig. 3.4a at z = 1.41 cm,
when the first local maximum of intensity 1.5 × 1013 W/cm2 is reached, its localiza-
tion in time domain being shifted to the pulse tail. Two mechanisms are responsible
for the pulse delay. Both of them are connected with Kerr effect. These are delayed
nonlinear response and operator of the wave-nonstationarity. The further propagation
of the pulse is accompanied by a decrease in the radius of the ring structure contain-
ing the focusing part of the pulse energy. The next intensity maximum of almost the
same value is reached at z = 4.68 cm (Fig. 3.5). The global maximum is reached in
a few millimeters. It exceeds 5 × 1013 W/cm2 and the radius of the ring structure
is reduced to approximately 10 µm. On the one hand, phase dislocation prevents
energy localization on the optical axis. On the other hand, the achieved intensity val-
ues are sufficient for plasma generation, which defocuses pulse tail. Together these
factors lead to the cessation of the emergence of high-intensity ring structures in the
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IIIIII

z = 1.41 cm z = 4.68 cm z = 4.96 cm

z = 7.72 cm z = 7.89 cm z = 8.42 cm

z = 1.85 cm z = 2.49 cm z = 3.20 cm

(a)

(b)

(c)

Fig. 3.4 Spatiotemporal intensity distributions for vortex (a), annular (b) and Gaussian (c) beams

Fig. 3.5 Maximum intensity dependence on coordinate z along propagation distance for vortex,
annular and Gaussian beams

beam profile and widening of the pulse (Fig. 3.4a III). Note that a noticeable plasma
concentration (Fig. 3.6) is achieved only in the last narrowest ring with maximum
intensity. Defocusing of the two previous high-intensity rings occurs without plasma
generation.
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Fig. 3.6 Peak plasma concentration dependence on coordinate z along propagation distance for
vortex, annular and Gaussian beams

The spatiotemporal dynamics of annular beam in the initial stage of self-action
is qualitatively similar. Again we can see a narrowing ring in the cross section due
to self-focusing (Fig. 3.4b I). However, because the critical power for the annular
beam is significantly less than for the optical vortex (it is about 1.2 times higher than
the critical power for the Gaussian beam), the absolute value of its peak power is
also less. This leads to the fact that the maximum intensity in the narrowing ring
is achieved at the significantly greater distance z = 7.72 cm. The absence of phase
singularity ultimately leads to the appearance of the maximum intensity on the beam
axis (Fig. 3.4b II). After that, the self-focusing of the annular beam becomes similar
to the self-focusing of the Gaussian beam (Fig. 3.4c).

Intensity increases up to 5 × 1013 W/cm2, plasma with concentration 0.6 ×
10−3N0 appears. Peak plasma concentration is 6 times higher than in the vortex
beam, intensity maximum being on the level of optical vortex, but it remains on
longer time interval. Parts of this high-intensive structure self-focus, deviding it to
two light bullets, which start to compete for pulse energy. Light bullets’ life cycle is
connected with movement towards pulse tail, so the last bullet finally extinguishes
the first one, after which we can see approximately typical for gauss pulse evolution.
Specified bullet dies at the tail of the pulse, background energy forms the new one
at the front and the process repeats until there is enough power (Fig. 3.4b III).

Gaussian beam propagation starts with self-focusing at the optical axis at time
slices slightly shifted to pulse tail due to delayed response of Kerr nonlinearity and
influence of operator T̂ (Fig. 3.4c I). The intensity reaches values 6 × 1013 W/cm2,
plasma electrons appear at the trail of the pulse (Figs. 3.5 and 3.6). Ring structure
in the pulse cross-section is formed due to interference of radiation moving towards
and backwards the optical axis. Nonlinear focus drifts backwards on time coordinate
while there is enough power and then disappears (Fig. 3.4c II). Such relatively stable
in space and time domain structures are usually cited as a “light bullets”. Background
energy gives the birth to new light bullet on the pulse front and the process repeats
several times (Figs. 3.4c III and 3.7a). Anomalous group velocity dispersion keeps
these spatiotemporal bullets from splitting into sub-pulses. The number of light bul-
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Fig. 3.7 Spatiotemporal evolution of light bullets in Gaussian (a) and vortex (b) beams

Fig. 3.8 Maximum intensity dependence on coordinate z along propagation distance for vortex
with topological charge m = 1 (green line), m = 2 (black line) and m = 2 in the model without
operator T̂ in instant Kerr effect (dashed line)

Fig. 3.9 Peak plasma concentration dependence on coordinate z along propagation distance for
vortex with topological chargem = 1 (green line),m = 2 (black line) and withm = 2 in the model
without operator T̂ in instant Kerr effect (dashed line)

lets in the vortex beam is significantly less than inGaussian one. They have an annular
structure and quickly shift to the tail of the pulse (Fig. 3.7b).

The propagation of an optical vortex with a higher topological charge (m = 2)
has the peculiarity that the maximum intensity along the propagation direction z is
approximately twice less than that of a vortexwith a chargem = 1.This is clearly seen
in Fig. 3.8, which shows the maximum intensity for beams with different topological
charges. This is enough for the maximum plasma concentration in a beam with
m = 2 to be 30 times less than in a beam with m = 1 (Fig. 3.9). This case can be
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considered as an ionization free mode of self-focusing of the optical vortex. The peak
intensity and concentration of the plasma can be “returned” to the “ionization values”,
if we cross out the operator of the wave-nonstationarity T̂ from the mathematical
model in the term describing Kerr nonlinearity (Figs. 3.8 and 3.9, dashed curve).
This demonstrates the importance of this operator for the correct description of the
self-action of a femtosecond optical vortex.

3.3.2 Fluence of Optical Vortex and Gaussian Beams

The spatial distribution of light energy is characterized by fluence

F(r, z) =
+∞∫

−∞
I (r, z, t)dt (3.33)

Linear divergence of optical vortex beam is the same as Gaussian beam [22]. The
diffraction length in fused silica glass for both beams is 6.8cm. At smaller distances,
the divergence of the optical vortex is weak (Fig. 3.10).

Fluence distributions for vortex and Gaussian beams in nonlinear medium are
shown in Fig. 3.11.

Initial self-focusing of optical vortex taking place on z = 1.4 cm is characterized
by ring narrowing. Its radius doesn’t practically change, fluence inside the ring being
increased. We can see the first nonlinear focus as a hot point in Fig. 3.11a at z =
1.4cm. The intensity in this non-linear focus does not exceed I = 1.5 × 1013 W/cm2,
despite the fact that the plasma defocusing lens in this place is not formed. After
passing the first nonlinear focus, most of the pulse energy flows to the beam axis.
However, the pace of this flowing is different. Thus, two rings are formed in the
cross section. The inner ring reaches the minimum radius in the vicinity of z = 2cm.

Fig. 3.10 Fluence distribution for optical vortex in case of linear propagation
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Fig. 3.11 Fluence distribution for optical vortex (a) and Gaussian beam (b)

However, the energy in it is not enough to form pronounced hot spots. Then the
radius of this inner ring begins to grow, and fluence inside it decreases. The outer
fluence ring at the same distances continues to shrink at a gradually increasing rate.
Ultimately, this ring is narrowed to the smallest radius up to 10 µm, providing the
nonlinear focus with the highest fluence F = 0.31 J/cm2 at approximately z = 5cm.
The peak intensity in this location sufficient for plasma generation, which defocuses
the tail of the pulse. Note that at a short distance before this point there is another
local maximum of fluence in the ring of the intermediate radius. Thus, in the process
of self-action of the optical vortex, a multi-focus structure is formed consisting of
several rings of different radius arising at different distances z.

This multi-focus structure is significantly different from the self-focusing of a
Gaussian beam inwhich a collapse occurs on the beamaxis (Fig. 3.11b). In aGaussian
beam, moving foci and refocusing form a sequence of almost continuous hot spots
with fluence F = 0.48 J/cm2, in each of them a noticeable plasma concentration is
reached. Note that the distance between the first and the last hot spots in both beams
turns out to be the same. Recall that despite the significant energy difference, the
excess over the critical power in both pulses is also the same.
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3.3.3 Evolution of Frequency Spectrum and Energy
Transformation in Optical Vortex

Spectral dynamics as a function of the propagation distance z for vortex beam is
shown in Fig. 3.12 in logarithmic scale. It is clearly seen as due to self-phase modu-
lation the spectrum begins to gradually expand mainly into the Stokes region. Sharp
broadening of the spectrum occurs when the beam reaches a nonlinear focus at
z = 1.4cm. At this point, an annular light bullet is formed, which implies strong
pulse self-steepening, and a noticeable broadening of the spectrum in the anti-Stokes
region is observed. With further propagation, this process is repeated when other
nonlinear foci are reached in the vicinity z = 5cm.

To describe pulse spectrum dynamics quantitatively, we devided spectrum with
full energy E0 to three bands: central (λ = 1900 ± 145nm with energy Ec), anti-
Stokes (λ < 1755nm with energy Ea) and Stokes (λ > 2045nm with energy Es).
Thus, the width of the central band is 5 times greater than the width of the input pulse
spectrum (1/e level). So, initially pulse energy E0 is located entirely in the central
band (Fig. 3.13).

Fig. 3.12 Evolution of frequency spectrum for optical vortex in logarithmic scale

Fig. 3.13 Energy transformation from central spectral band (1745 – 2045nm) towards anti-Stokes
(<1745nm) and Stokes (>2045nm) regions
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First centimeters of propagation distance are characterized by energy transforma-
tionmostly from central to Stokes region. After the first nonlinear focus at z = 1.4cm
most of the pulse energy is in the Stokes region, 5–10% of the total energy being
transformed into the anti-Stokes region. In the end more than 70% of the energy is
converted into Stokes region and less than 10% into anti-Stokes region.

3.4 Conclusions

In this paper, we considered the self-action in fused silica glass at a wavelength of
1900nm of a femtosecond optical vortex—annular beam with a phase singularity
under conditions of preserving the axial symmetry of its intensity profile. In com-
puter simulations, we used the model including slowly varying wave approximation
for propagation equation with the operator of wave-nonstationarity T̂ and delayed
response of Kerr nonlinearity. This turns out to be critical for correct describing the
multi-focus structure of an optical vortex in a nonlinear medium.

It is shown that for a six-fold excess of the pulse peak power over the critical
one, rings with high fluence are formed sequentially in nonlinear foci along the opti-
cal axis. At the beginning of the propagation, these rings have a larger radius. The
maximum intensity in these nonlinear foci is several times lower than in filament of
Gaussian beam. This is not sufficient to produce appreciable plasma concentration
that results in ionisation free propagation of the pulse through nonlinear focus. The
frequency spectrum of the pulse is broadening mainly into the Stokes band. A rela-
tively strong broadening of the spectrum into the anti-Stokes region is observed in
nonlinear foci.

This research was supported by the Russian Foundation for Basic Research, grant
18-02-00624.Calculationswerepartly conductedusingSupercomputer “Lomonosov”
in MSU.
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