
Chapter 14
Theoretical Aspects of Laser-Assisted
(e, 2e) Collisions in Atoms

Konstantin A. Kouzakov

Abstract An overview of theoretical approaches to ionization of atomic systems
by electron impact in the presence of laser radiation is given. Basic approximations
for calculating multiphoton (e, 2e) transition amplitudes are discussed, with special
emphasis on the first Born approximation in the projectile-target interaction. Various
methods for the treatment of the dressing of initial and final (ionized) atomic-target
states by a laser field are brought into focus, ranging respectively from the Floquet
theory to the time-dependent perturbation theory and two-level approximation and
from the Coulomb-Volkov models to the Sturmian-Floquet approach.

14.1 Introduction

The advance in laser technologies stimulates laser applications in various fields of
atomic physics [1–3]. One of such promising developments is laser-assisted elastic
and inelastic electron-atom scattering [4], which also includes an ionization channel,
namely, the (e, 2e) ionization of atoms in the presence of laser radiation. The latter
wasmeasured for thefirst timebyHöhr et al. [5, 6] in the case of a heliumatomic target
and a Nd:YAG laser beam (λ = 1064nm) with intensity I = 4 × 1012W/cm2.While
the pioneering experiment was performed not so long ago, theoretical investigations
of laser-assisted (e, 2e) processes on atoms began much earlier, dating back to the
1970s (see, for instance, [7]). A number of results concerning the dependence of the
multiphoton (e, 2e) cross sections on laser-field parameters, such as polarization,
frequency and intensity, have been obtained (see [4] for a reviewof some earlierworks
and also more recent articles [8–18]). The main theoretical findings can be briefly
summarized as follows: (i) the cross sections are seriously modified even by the
presence of low-intensity laser radiation and (ii) they strongly depend on the dressing
of the atomic target states. The aforementioned experiment of Höhr et al. [5, 6]
confirmed the existence of distinct differences in the (e, 2e) differential cross sections
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between laser-on and laser-off conditions. This indicates the importance of further
developing the theory of laser-assisted (e, 2e) collisions for future experiments.

The present contribution aims at outlining a general formalism along with the
main methods and approximations, which are typically employed in the theoretical
treatment of laser-assisted (e, 2e) collisions in atoms. Atomic units (a.u., � = e =
me) are used throughout unless otherwise specified.

14.2 General Formulation

We consider the process

e− + A + �ω → 2e− + A+, (14.1)

where, in the presence of a laser field, an electron impinges on an atomic target A
and induces an ionizing collision, in which a net number � of photons with frequency
ω is exchanged between the colliding system and the field. As a result, an outgoing
electron pair emerges which is formed by the scattered and ejected electrons. In
what follows, the incident, scattered, and ejected electron energies and momenta are
specified respectively by (E0,p0), (Es, ps), and (Ee,pe).

The laser field is assumed to switch on and off adiabatically at t → −∞ and
t → +∞, respectively. More specifically, the turn on and off time δT of the laser
pulse as well as the laser pulse duration T are very long on a time scale typical for the
target and much longer than the (e, 2e) collision duration. We consider the case of a
monochromatic elliptically polarized laserwavewith awave vectork (k = ω/c). The
frequencyω and intensity I of thewave are such that the laser electric-field amplitude
F0 is much less than the typical intra-atomic field FA and the Keldysh parameter [19]
is γ = ωFA/(2EI F0) � 1, where EI is the atomic ionization energy. This means
that the ionization due to the laser electric field occurs in the perturbative regime
via multiphoton transitions and hence it does not produce any appreciable effect
compared to that due to the electron-atom collision. Without loss of generality we
suppose that the z axis is directed along k. A typical situation is when the laser
wavelength λ = 2π/k is much greater than the spatial extent both of the target and
of the region where the electron-electron collision takes place. This validates the use
of the dipole approximation for the electric component of the laser field:

F(t) = Fxex cosωt + Fyey sinωt, (14.2)

where Fx > 0 and Fy > 0 (Fy < 0) for right (left) polarization. The vector potential
corresponding to (14.2) is

A(t) = Axex sinωt + Ayey cosωt, (14.3)
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with Ax = −cFx/ω, Ay = cFy/ω. Note that the case of linear polarization derives
from (14.2) upon setting Fx = F0 and Fy = 0, while that of circular polarization
amounts to Fx = |Fy| = F0/

√
2.

14.2.1 S Matrix

The rate of the discussed laser-assisted (e, 2e) reaction is governed by the matrix
element of the scattering operator, which is usually called the S operator. Using the
Furry representation [20], in which the effect of an external field is included in the
asymptotic Hamiltonians of the initial and final channels of the reaction, the S matrix
can be presented as

S(e,2e) = −i

∞∫

−∞
dt
〈
Ψ

(−)
f (ps,pe; t)|VeA|χp0(t)Φi (t)

〉
, (14.4)

where VeA is the projectile-atom potential, Φi (t) is the laser-dressed initial atomic
state, and Ψ

(−)
f (ps,pe; t) is the final (time-reversed) scattering state of the colliding

system in the presence of the laser field. The incident electron state χp0(t) is given
by the Gordon-Volkov function, which solves the following Schrödinger equation:

i
∂

∂t
χp0(r, t) = 1

2

[
p̂ + 1

c
A(t)

]2
χp0(r, t). (14.5)

For the vector potential given by (14.3) one has (see, for instance, [2])

χp0(r, t) = exp
{
i
[
p0r − αp0 sin(ωt + δp0) − E0t − ζ(t)

]}
, (14.6)

where E0 = p20/2 and

αp0 =
√
F2
x p

2
0,x + F2

y p
2
0,y

ω2
, δp0 = arcsin

⎛
⎝ Fx p0,x√

F2
x p

2
0,x + F2

y p
2
0,y

⎞
⎠ ,

ζ(t) = 1

2c2

t∫

−∞
A2(t ′)dt ′.

Bydefinition, the Smatrix remains invariant under unitary transformations. There-
fore, (14.4) is gauge-invariant, since the gauge transformation of the vector and scalar
potentials of the laser field is equivalent to the unitary transformation in quantum
mechanics (see [21] for detail).
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14.2.2 Cross Sections

It can be shown that, after integrating over time in (14.4), the Smatrix has the general
form

S(e,2e) = −2π i
∞∑

�=−∞
T (�)
f i δ(E0 + Ei − E f − Es − Ee −Up + �ω), (14.7)

where Ei and E f are the quasienergies (see below) of the laser-dressed initial atomic
and final ionic states, respectively, Up = F2

0 /4ω2 is a ponderomotive potential, and
T (�)
f i are the �-photon transition amplitudes. For the fully differential cross section

(FDCS), which provides the most detailed information about the scattering process,
one thus has

d4σ

dEsdEedΩsdΩe
=

∞∑
�=−∞

d3σ (�)

dEedΩsdΩe
δ(E0 + Ei − E f − Es − Ee −Up + �ω),

(14.8)
where the �-photon triple differential cross section (TDCS) is

d3σ (�)

dEedΩsdΩe
= ps pe

(2π)5 p0
|T (�)

f i |2. (14.9)

14.3 Theoretical Methods and Approximations

For calculating the S matrix and cross sections one has to know the two states: (i) the
initial laser-dressed atomic stateΦi (t) and (ii) the final scattering stateΨ

(−)
f (ps,pe; t)

of the colliding system in the presence of the laser field. The first is the solution of
the time-dependent Schrödinger equation (TDSE) for an atom in the laser field, and
the second solves the TDSE for the interacting projectile-target system in the laser
field and obeys the proper asymptotic behavior (when t → ∞ and relative positions
of the final ion and two outgoing electrons tend to infinity). Since both Hamiltonians
are periodic in time, the TDSE can be solved employing the Floquet theory [22].

14.3.1 Initial Laser-Dressed Atomic State

In the Floquet theory, one seeks the solution to the TDSE for the initial state,

i
∂

∂t
|Φi (t)〉 = [HA + Hint(t)]|Φi (t)〉, (14.10)
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where HA is the field-free atomicHamiltonian and Hint(t) is the atom-field interaction
Hamiltonian, in the form of the following (Floquet-Fourier) expansion:

|Φi (t)〉 = e−iE i t
∞∑

n=−∞
e−inωt |Φ(n)

i (Ei )〉. (14.11)

The Floquet-Fourier components |Φ(n)
i (Ei )〉 satisfy the system of coupled time-

independent equations

(HA − nω − Ei )|Φ(n)
i (Ei )〉 +

∞∑
k=−∞

(Hint)n−k |Φ(k)
i (Ei )〉 = 0, n = 0,±1,±2, . . .

(14.12)
Here (Hint)n−k are the components of the Fourier expansion

Hint(t) =
∞∑

n=−∞
e−inωt (Hint)n. (14.13)

It can be seen that the solution of the system (14.12) does not define the quasienergy
Ei uniquely, since the latter can be changed to Ei + mω, where m is an arbitrary
integer. The customarywayof defining the quasienergy consists in using the boundary
condition at t → −∞,

|Φi (t → −∞)〉 → e−i E (i)
A t |Φ(i)

A 〉, (14.14)

where E (i)
A is the energy of the field-free atomic state |Φ(i)

A 〉, and requiring that only
the n = 0 component of the expansion (14.11) remains nonvanishing in the limit
t → −∞.

14.3.1.1 Time-Dependent Perturbation Theory

If the laser field is nonresonant with atomic transitions, the laser-atom interaction
Hint(t) appears to be weak due to the imposed condition F0 � FA and, hence, can
be treated as a perturbation. It is efficient to develop the time-dependent perturbation
theory in the length gauge (L-gauge), where

HL
int(t) = F(t) · R, R =

Z∑
k=1

rk, (14.15)

with Z being the number of atomic electrons (or the nuclear charge) and rk being their
positions. The choice of the L-gauge is based on the observation that over the atomic
region the electron-laser interaction (14.15) is much weaker than the intra-atomic
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potential experienced by electrons. Developing the time-dependent perturbation the-
ory for

|ΦL
i (t)〉 = exp

(
i

c
A(t) · R

)
|Φi (t)〉 (14.16)

to first order, one obtains

|ΦL
i (t)〉 = e−i E (i)

A t

⎡
⎣|Φ(i)

A 〉 − 1

2

∑
j 	=0

(
eiωt

M+
j i

ω j i + ω
+ e−iωt

M−
j i

ω j i − ω

)
|Φ( j)

A 〉
⎤
⎦ ,

(14.17)
where ω j i = E ( j)

A − E (i)
A are the field-free atomic transition energies, and

M±
j i =

〈
Φ

( j)
A |Fx Rx ∓ i Fy Ry |Φ(i)

A

〉

are the dipole transition matrix elements.
Whenω � |ω j i | for all j 	= i (the low-frequency regime), one can readily perform

the n summation in (14.17) using the low-frequency (ω j i ± ω ≈ ω j i ) and closure
(ω j i ≈ ωcl) approximations. This yields

ΦL
i (X, t) = e−i E (i)

A t

[
1 − 1

ωcl

(
Fx Rx cosωt + Fy Ry sinωt

)]
Φ

(i)
A (X), (14.18)

where X = {r1, r2, . . . rZ }.

14.3.1.2 Two-Level Approximation

When the laser frequency ω is close to or coincides with a particular atomic transi-
tion energy ω j i , the perturbation theory (14.17) is not applicable anymore. A more
appropriate theoretical approach in such a case consists in using the two-level approx-
imation1

|ΦL
i (t)〉 = e−i E (i)

A t ai (t)|Φ(i)
A 〉 + e−i E ( j)

A t a j (t)|Φ( j)
A 〉, (14.19)

where the coefficients ai (t) and a j (t) are determined by solving the TDSE (14.10) in
the L-gauge with ansatz (14.19). The latter can be done using the so-called rotating
wave approximation (RWA) [1]which neglects the fast oscillating terms∝ e±i(ω j i+ω)t

and ∝ e±iωt in comparison with the slow oscillating terms ∝ e±i(ω j i−ω)t . This proce-
dure yields

1Here the field-free atomic states are assumed to be nondegenerate. Generalization to the case of
degenerate states is straightforward (see, for instance, [13]).
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a±
i (t) =

√ |Δ| + Ω

2Ω
exp

[
− i

2
(Δ ∓ Ω)t

]
,

a±
j (t) = ∓ M−

j i√
2Ω(|Δ| + Ω)

exp

[
i

2
(Δ ± Ω)t

]
. (14.20)

Here
Δ = ω j i − ω, Ω =

√
Δ2 + χ2

j i (14.21)

are the resonance detuning and the generalized Rabi frequency, respectively, while

χ j i = |M−
j i |

stands for the Rabi frequency. Note that according to (14.20) the following relations
hold true:

|a±
i (t)|2 + |a±

j (t)|2 = 1, |a±
i (t)|2 ≥ 1

2
, |a±

j (t)|2 ≤ 1

2
. (14.22)

The laser-dressed target state is thus given by

ΦL±
i (X, t) = exp

{
−i

[
E (i)
A t + 1

2
(Δ ∓ Ω)t

]}

×
√ |Δ| + Ω

2Ω

[
Φ

(i)
A (X) ∓ e−iωt

M−
j i

|Δ| + Ω
Φ

( j)
A (X)

]
. (14.23)

The target wave function evolves intoΦL+
i (X, t) orΦL−

i (X, t) according to whether
Δ ≥ 0 or Δ < 0.

14.3.2 Final Laser-Dressed Scattering State

In general, finding the final state Ψ
(−)
f (ps,pe; t) is a more difficult task than in

the Φi (t) case. Apart from dealing with a system that has an additional interacting
electron (i.e., the projectile electron), one faces the three-body scattering problem
involving Coulomb-tail potentials in the presence of a laser field. Since the solution
is not known already in the field-free case [23], one has to resort to approximate
treatments.
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14.3.2.1 Asymptotic Behavior

Due to specifics of scattering on long-range potentials, such as Coulomb-tail poten-
tials, a nontrivial issue which arises in the case of the presence of a laser field
consists in imposing a proper asymptotic condition on the solution of the TDSE for
Ψ

(−)
f (ps,pe; t) when rs, re, and rse = |rs − re| → ∞. This issue is convenient to

address in the accelerated, or Kramers-Henneberger (KH), frame [24]:

Ψ
KH(−)
f (ps,pe; X0, t) = exp

[
a(t) ·

Z+1∑
k=0

∇k + i(Z + 1)ζ(t)

]
Ψ

(−)
f (ps,pe; X0, t),

(14.24)
where X0 = {r0, X}, and

a(t) = 1

c

t∫

−∞
dt ′ A(t ′) = axex cosωt + ayey sinωt (14.25)

is the displacement vector of a classical electron in the laser field, with ax(y) =
Fx(y)/ω

2. When working within the KH frame, a laser field is effectively absent,
and the scattered and ejected electrons move in a Coulomb-tail potential of an ion
A+ that oscillates in time (the oscillations are equivalent to those of a classical free
electron in a laser field in the laboratory frame). At large distances from the ion, the
role of its oscillating motion vanishes: the outgoing electrons experience therefore a
usual, time-independent,Coulomb-tail force and, accordingly, the leading asymptotic
behavior of the wave function (14.24) is

〈
rs, re|Ψ KH(−)

f (ps,pe; t)
〉
−−−−−−→
rs ,re,rse→∞ ei(ps ·rs−Es t)ei(pe ·re−Eet)C (−)

ps (ηs, rs)

×C (−)
pe (ηe, re)C (−)

pse (ηse, rse)|Φ̃KH
f (t)〉. (14.26)

Here the Coulomb-distortion factors are given by

C (−)
p (η, r) = exp

[−iη ln(pr + p · r)] ,

with the Sommerfeld parameters ηs(e) = −1/ps(e) and ηse = 1/pse (pse = |ps −
pe|), and Φ̃KH

f (t) is the laser-dressed ionic state satisfying the boundary condition

|Φ̃KH
f (t → ∞)〉 → e−i E ( f )

A+ t |Φ̃( f )
A+ 〉, (14.27)

where E ( f )
A+ and |Φ̃( f )

A+ 〉 are the field-free energy and state of the final ion.
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14.3.2.2 3C-Volkov Wave Function

The approximate final-state wave function that accounts for the proper asymptotic
behavior (14.26) can be formulated on the basis of the 3C model [25], which proved
to be useful in the theoretical treatment of field-free (e, 2e) collisions in atoms, and
Coulomb-Volkov approximation [26]. In the KH frame, it reads [27]

〈
rs, re|Ψ KH(−)

f (ps,pe; t)
〉
= e−i(Es+Ee)te−i(ps+pe)·a(t)e−ipse ·rseψc(−)

ps (ηs, rs + a(t))

×ψc(−)
pe (ηe, re + a(t))ψc(−)

pse (ηse, rse)|Φ̃KH
f (t)〉, (14.28)

where ψc(−)
p (η, r) stands for a stationary Coulomb wave function with incoming

spherical wave behavior (see, for instance [28]):

ψc(−)
p (η, r) = e− 1

2 πη�(1 − iη)eip·r
1F1(iη, 1;−i(pr + pr)), (14.29)

where 1F1 is the confluent hypergeometric function. In the field-free case, (14.28)
reduces to the field-free 3C model [25]. It should be also noted that the laser-dressed
final ionic state in (14.28) can be calculated using the methods and approximations
outlined above in regard to the laser-dressed initial atomic state.

14.4 First Born Approximation

One of the most frequently used approaches in the theory of (e, 2e) collisions is the
first Born approximation (FBA), which treats the projectile-atom interaction VeA in
the S matrix (14.4) only to first order. It is supposed to be generally applicable if
both the incident and scattered electrons are fast. In the FBA, the laser-dressed final
scattering state of the colliding system is approximated as

|Ψ (−)
f (ps,pe; t)〉 = |χps (t)Φ

(−)
f (pe; t)〉, (14.30)

where |Φ(−)
f (pe; t)〉 is the laser-dressed final atomic state with one (ejected) electron

in continuum having the asymptotic momentum pe. Note that the final state (14.30)
can be derived from the 3C-Volkov model (14.28) upon setting ηs = ηse = 0.

Using (14.30) and the explicit form of the Gordon-Volkov functions (14.6), one
obtains for the S matrix the following expression:

SFBA(e,2e) = −i
4π

Q2

∞∫

−∞
dt e−i[ΔEt+αQ sin(ωt+δQ)]

〈
Φ

(−)
f (pe; t)|

Z∑
k=1

eiQ·rk − Z |Φi (t)

〉
,

(14.31)
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where ΔE = E0 − Es and Q = p0 − ps are the energy and momentum transfers.
Provided the momentum-transfer value is small, the contributions due to exchange
between the projectile and atomic electrons are typically omitted in (14.31) due to
large p0 and ps values (on the atomic scale) in the case of fast incident and scattered
electrons.

If neglecting the dressing of the initial and final atomic states by the laser field, one
can readily perform the time integration in (14.31) using the following formula [29]:

ei z cos ξ =
∞∑

�=−∞
J�(z) e

i�z,

where J� are the Bessel functions of integer order. As a result, one obtains the �-
photon TDCS (14.9) in the form [7]

d3σ (�)
FBA

dEedΩsdΩe
= |J�(αQ)|2 d3σFBA

dEedΩsdΩe
, (14.32)

where d3σFBA is the field-free TDCS in the FBA approach, where, however, the
energy balance is

E0 + E (i)
A + �ω = E ( f )

A+ + Es + Ee,

i.e., it takes into account the transfer of � photons in the laser-assisted (e, 2e) collision.
From the properties of the Bessel functions it follows that the cross section (14.32)
turns to zero for all � 	= 0 if αQ = 0 or, in other words, if the momentum transfer is
perpendicular to the laser polarization.

14.4.1 Laser-Dressed Final Atomic State

The asymptotic behavior of the state Φ
(−)
f (pe; t) is also convenient to formulate in

the KH frame:

〈re|ΦKH(−)
f (pe; t)〉 −−−→

re→∞ ei(pe ·re−Eet)C (−)
pe (ηe, re)|Φ̃KH

f (t)〉. (14.33)

Below the approaches are described, in which the laser-dressed final atomic state is
constructed to obey the proper asymptotic behavior.

14.4.1.1 Coulomb-Volkov Approximation

The condition (14.33) can be fulfilled by neglecting correlations between the ejected
and ionic electrons and using the Coulomb-Volkov wave function [26] for the laser-
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dressed ejected electron state, namely,

|ΦKH(−)
f (pe; t)〉 = |ψKH(−)

CV (pe, ηe; t)Φ̃KH
f (t)〉, (14.34)

where the Coulomb-Volkov function in the KH frame is given by

ψ
KH(−)
CV (pe, ηe; re, t) = e−i[Eet+pe ·a(t)]ψc(−)

pe (ηe, re + a(t)). (14.35)

If now using the approximation (14.34) in the FBA S-matrix (14.31) and neglect-
ing the dressing of the initial atomic Φi (t) and final ionic Φ̃ f (t) states by the laser
field, it is also possible to relate the multiphoton TDCS to the field-free FBA cross
section. In particular, in the case of a circular polarized laser beam or when

|αQ| �
∣∣∣∣∣
F2
x − F2

y

8ω3

∣∣∣∣∣ , (14.36)

one derives [30]
d3σ (�)

FBA

dEedΩsdΩe
= |J�(αqion)|2

d3σ̃FBA

dEedΩsdΩe
, (14.37)

where the field-free FBA cross section d3σ̃FBA is calculated with the model field-free
final atomic state

|Φ( f )
A 〉 = |ψc(−)

pe Φ̃
( f )
A+ 〉

and for the energy balance

E0 + E (i)
A + �ω = E ( f )

A+ + Es + Ee +Up,

and qion = Q − pe is the recoil-ion momentum. The cross section (14.37) has a
similar structure as that given by (14.32). However, it turns to zero for all � 	= 0 if
the laser polarization is perpendicular to the recoil-ion momentum qion rather than
the momentum transfer Q.

The approximation (14.35) can be further improved by taking into account the role
of all unperturbed electron states in the dressing of the ejected-electronwave function
by the laser field. This can be done within the first-order time-dependent perturbation
theory as was initially proposed by Joachain et al. [31]. For atomic hydrogen and
a linearly polarized laser beam such a modification of the Coulomb-Volkov wave
function in the laboratory frame reads

ψ
(−)
MCV(pe, ηe; re, t) = e−i[Eet+a(t)·re+αpe sinωt]

[
(1 + iαpe sinωt)ψc(−)

pe (ηe, re)

−i
F0

2

∑
j

(
eiωt

ω jke + ω
− e−iωt

ω jke − ω

)
Mjkeψ j (re)〉

]
, (14.38)
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where
Mjke = −〈ψ j |x |ψc(−)

pe (ηe)〉

are the dipole matrix elements, with ψ j being the unperturbed hydrogen wave func-
tions.

14.4.1.2 Sturmian-Floquet Approach

An alternative, nonperturbative method for calculating the laser-dressed ejected-
electron state consists in using the Hermitian Floquet theory and employing the
basis set of Sturmian functions, which proved to be efficient in the treatment of the
laser-assisted scattering processes [3, 33–36]. The dynamics of the ejected electron
in the KH frame is governed by the following TDSE:

i
∂

∂t
ψKH(−)

pe (re, t) =
(

−1

2
Δ + V [re + a(t)]

)
ψKH(−)

pe (re, t), (14.39)

where V [re + a(t)] is a space-translated electron-ion potential, which has the
Coulomb tail

V [re + a(t)] −−−→
re→∞ − 1

re
.

Using the Floquet-Fourier expansion

ψKH(−)
pe (re, t) = e−i Eet

∞∑
n=−∞

e−inωtFKH(−)
n (pe, re), (14.40)

one arrives at an infinite set of coupled time-independent equations:

(
Hn + Ṽ0(ax , ay; re) − Ee

)
FKH(−)

n (pe, re)

+
∑
ν 	=n

Vn−ν(ax , ay; re)FKH(−)
ν (pe, re) = 0, n = 0,±1,±2, . . . (14.41)

Here

Hn = HC − nω, HC = −1

2
Δ − 1

re
, Ṽ0(ax , ay; re) = V0(ax , ay; re) + 1

re
,

(14.42)
and Vn are the Fourier components of V [re + a(t)],

Vn(ax , ay; re) = 1

T

T∫

0

dt exp(inωt) V [re + a(t)] , (14.43)
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with T = 2π/ω being the optical cycle.
The solutions FKH(−)

n must satisfy the incoming boundary conditions in the
form [32]

FKH(−)
n (pe, re) −−−→

re→∞ δn0 exp
[
ipe · re − iηe ln(pere + pe · re)

]

+ f (−)
n (pe, r̂e)

exp
[−i p(n)

e re + iη(n)
e ln(2p(n)

e re)
]

re
, (14.44)

where η(n)
e = −1/p(n)

e , and

p(n)
e =

{√
2(Ee + nω), Ee + nω ≥ 0,

±i
√−2(Ee + nω), Ee + nω < 0.

(14.45)

The Coulomb-specific asymptotic behavior (14.44) can be taken into account by
recasting the system of Floquet equations into the Lippman–Schwinger form

FKH(−)
n (pe, re) =δn0ψ

c(−)
pe (ηe, re)

+
∑

ν

∫
dr′

eG
(−)
c (p(n)

e ; re, r′
e)Vn−ν(ax , ay; r′

e)F
KH(−)
ν (pe, r′

e),

n = 0,±1,±2, . . . (14.46)

Here the notation Vn = δn0Ṽ0 + (1 − δn0)Vn is introduced, and G(−)
c is the advanced

Coulomb Green’s function, which satisfies the equation

(
p(n) 2
e

2
+ 1

2
Δ + 1

re

)
G(−)

c

(
p(n)
e ; re, r′

e

) = δ(re − r′
e). (14.47)

The solution of the system of the Lippmann–Schwinger–Floquet equations (14.46)
can be sought using the expansion of the Floquet-Fourier components in terms of
Sturmian functions. Recently, a new efficient method has been proposed [37] based
on employing the basis set of quasi-Sturmian functions [38] in parabolic coordinates.
Amarked advantage of the quasi-Sturmians is that they possess an appropriate incom-
ingCoulomb asymptotic behavior, thus providing the proper asymptotic form (14.44)
of the solution.

14.4.2 Laser-Assisted Electron Momentum Spectroscopy

The (e, 2e) reactions involving large momentum transfer under kinematical condi-
tions close to a free electron-electron collision are usually referred to as electron
momentum spectroscopy (EMS) [39, 40]. EMS is a well-known method for explor-
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ing the electronic structure of various systems ranging from atoms and molecules to
clusters and solids.

The theoretical formulation of EMS in the presence of laser radiation was given
in [13]. According to this formulation, the S matrix of the laser-assisted (e, 2e) EMS
process can be presented as

SEMS
(e,2e) = −i

4π

Q2

∞∫

−∞
dt exp

[
−i

(
ε − q2

2

)
t

]
〈χq(t)|ϕ f i (t)〉, (14.48)

where ε = Es + Ee − E0, q = −qion, and

|ϕ f i (t)〉 = 〈Φ̃ f (t)|Φi (t)〉 (14.49)

is the laser-dressed Kohn-Sham orbital. The expression (14.48) follows from the
FBA result (14.31) using the binary-encounter approximation, which accounts only
for the interaction between the colliding electrons in the projectile-atom potential
VeA, and the laser-dressed final atomic state in the form

|Φ(−)
f (pe; t)〉 = |χpe(t)Φ̃ f (t)〉. (14.50)

The time integration in (14.48) can be readily performed using the Floquet expansion
of the laser-dressed Kohn-Sham orbital

|ϕ f i (t)〉 = e−iE f i t
∞∑

n=−∞
e−inωt |ϕ(n)

f i (E f i )〉, (14.51)

where E f i is the Kohn-Sham quasienergy.
If the laser-dressing effect in (14.51) is negligible, then

|ϕ f i (t)〉 = e−i E f i t |ϕ f i 〉, (14.52)

where E f i = E (i)
A − E ( f )

A+ andϕ f i are the field-free (unperturbed)Kohn-Shamenergy
and orbital. In such a case, provided the laser beam is circularly polarized or the
inequality (14.36) holds, one derives the �-photon TDCS as (cf. 14.37)

d3σ (�)
EMS

dEedΩsdΩe
= |J�(αq)|2 d3σEMS

dEedΩsdΩe
, (14.53)

where d3σEMS is the field-free EMS cross section2 [39]

2The exchange between the colliding electrons is taken into account, for in the EMS kinematics
both outgoing electrons (scattered and ejected) are fast.
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d3σEMS

dEedΩsdΩe
= ps pe

2π3 p0

(
1

|p0 − ps |4 + 1

|p0 − pe|4 − 1

|p0 − ps |2|p0 − pe|2
)

|ϕ f i (q)|2
(14.54)

which is calculated for the energy balance

Ei f + �ω = ε +Up.

If the laser-dressing effect in (14.51) is substantial, one can minimize the role of
the interaction of the fast ingoing and outgoing electrons with the laser field by con-
sidering such laser-field orientations that αq = 0 [15]. Assuming again a circularly
polarized laser beam or the validity of (14.36), the resultant �-photon TDCS is given
by

d3σ (�)
EMS

dEedΩsdΩe
= ps pe

2π3 p0

(
1

|p0 − ps |4 + 1

|p0 − pe|4 − 1

|p0 − ps |2|p0 − pe|2
)

|ϕ(�)
f i (q)|2,
(14.55)

and the energy balance is
Ei f + �ω = ε +Up.

Thus, the cross section (14.55) contains the direct information about the �th Floquet-
Fourier component of the laser-dressed Kohn-Sham orbital in momentum space.

14.5 Concluding Remarks

In this work an account of the basic theoretical methods and approximations in the
field of laser-assisted (e, 2e) collisions in atoms has been given. At the same time, a
number of issues related to the theory of laser-assisted (e, 2e) processes inevitably
remained beyond the scope of the present contribution. In particular, the high-order
Born approximations, for example, such as the second Born approximation, has not
been discussed here. The reason is that no theoretical study of the Born series in the
laser-assisted (e, 2e) case has been carried out so far, except for the second-Born
calculations performed in [14, 17]. Owing to the long-range Coulomb-tail poten-
tials involved in the (e, 2e) scattering processes, the higher Born approximations
are known to diverge in the field-free case. There are theoretical methods allowing
to cope with these divergences (see [41] and references therein), but they are not
directly applicable to the laser-assisted case. It should be noted that the authors of
the works [14, 17] left the problem of divergences unaddressed, and therefore it still
awaits a rigorous theoretical analysis.

Some comments should be made about testing the presented theoretical
approaches. Currently the laser-assisted (e, 2e) measurements are lacking: only
one experimental study [5] has been conducted so far. Notable discrepancies were
found [6] between the experimental data and the FBA calculations using the ini-
tial laser-dressed atomic wave function in the form (14.18) and the Coulomb-
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Volkov model (14.34) for the final laser-dressed atomic state. The disagreement
was attributed in [6] mainly to the deficiencies of the Coulomb-Volkov approxi-
mation, thus suggesting that more advanced non-perturbative treatments (for exam-
ple, such as the R-matrix-Floquet theory [42]) are needed. One of novel advanced
non-perturbative approaches, namely, the quasi-Sturmian-Floquet approach [37], has
been outlined above. It might be expected that the further progress in laser-assisted
(e, 2e) experimental studies, including the improvement of energy and momentum
resolutions and investigation of the atomic targets other than helium, will provide
more stringent tests for the current theoretical understanding.
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