
Chapter 12
Effects of Hyperfine Interaction
in Atomic Photoionization

Elena V. Gryzlova and Alexei N. Grum-Grzhimailo

Abstract The chapter is devoted to theoretical consideration of the role of hyperfine
interaction in atomic photoionization. The interaction between nuclear spin and an
atomic shell considered to give a small correction in a variety of phenomena may
have significant effects on polarization and correlation parameters of a process. We
outline a theoretical approach based on statistical tensors and density matrices for
determination of photoelectron angular distribution in two-colour atomic ionization
accounting for their evolution caused by nuclear spin. As a practical example we
consider double resonant ionization of Xe through excitation via discrete and Ryd-
berg autoionizing states, as in the first isotope-selective experiment in VUV domain
(O’Keeffe et al in Phys Rev Lett 111:243002(1)–243002(5), 2013 [44]). Variations
in the angular pattern for the different isotopes and light polarization are shown. The
possibility to determine the hyperfine constant is discussed.

12.1 Introduction

One of the commonest and widely used technique in quantum mechanics, starting
fromBorn-Oppenheimer approximation inmolecular physics [9] up to single-particle
shell model [23] in nuclear physics is the separation of degrees of freedom. In atomic
physics scientists commonly separate nuclear and atomic-shell parameters by treating
their interaction as a hyperfine correction.

Even though the hyperfine interaction is widely considered to have only a small
effect or correction, it is crucially important for understanding of the interplay
between atomic and nuclear degrees of freedom aswell as formany applications. The
transition between hyperfine structure (HFS) levels of the ground state of a hydro-
gen atom produces famous 21cm radiation (Fig. 12.1) which is used for imaging
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Fig. 12.1 The Pioneer
plaques: a gold-anodized
aluminium plaques which
were placed on board the
1972 Pioneer 10 and 1973
Pioneer 11 spacecraft,
featuring a pictorial
message, to be intercepted
by extraterrestrial life. The
scaling is based on the
hyperfine transition of a
hydrogen atom whose
wavelength is 21cm

galaxies [10, 31, 39] and for serving as a metric to distance determination. Pumping
of HFS levels is of importance in generation of coherent radiation starting from the
first maser [47] to X-ray lasers [48]. The hyperfine interaction affects polarization of
spectral lines used in plasma diagnostics [30]; it may change a forbidden transition
to an allowed one [51, 55], or change the transition type [14], sometimes drastically
decreasing life-time of an excited state [7, 52]. The atomic clocks are based on tran-
sitions between the HFS levels since the early beginning [16] and up to now [11,
21, 58]. Investigations of hyperfine interaction are actively developing because of
possible implementation to quantum entanglement and quantum computations.

If an atomic nucleus possesses a nonzero spin, I , the interaction of the total angular
momentum of the electronic shell, J , with the magnetic field created by the atomic
nucleus leads to the hyperfine splitting. The HFS level is described by the state
vector | (J I )FMF 〉, where F, MF denote the total angular momentum of atom and
its projection, respectively. Each F-sublevel evolves with a frequency corresponding
to complex quasienergy EF − iΓF/2, where the real part corresponds to the energy
and the imaginary part describes the width of the HFS level. The density matrix of
the electron-shell momentum J , ρJM,J ′M ′ ≡ 〈JM | ρ | J ′M ′〉, is defined according to
the standard prescriptions by a trace of the density matrix of the total atomic angular
momentum, ρFMF ,F ′M f ′ ≡ 〈(J I )FMF | ρ | (J I )F ′MF ′ 〉, over the quantum numbers
of the unobserved subsystem, i.e., the atomic nucleus. We consider here an isotope
with a nuclear spin I . The decoupling of F and J leads to

ρJM,J ′M ′ =
∑

FF ′MFM ′
F MI

(JMJ , I MI | FMF )
(
J ′M ′

J , I MI | F ′M ′
F

)
ρFMF ,F ′M ′

F
, (12.1)

where the Clebsch-Gordan coefficients are introduced. The diagonal density matrix
elements evolve as ρFMF ,FMF ∼ exp(−ΓF t), decaying with time, while the non-
diagonal elements evolve as ρFMF ,F ′M ′

F
∼ exp

(
iωFF ′ t − 1

2 (ΓF + Γ ′
F )t

)
, decaying

and oscillating with time. Then each element of the density matrix of the electronic
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Fig. 12.2 Classical
interpretation of hyperfine
interaction. Projection MF of
the total angular momentum
is a well-defined quantum
number, presented as the
cone or rotation of F around
the quantization axis (gray
arrow). At any moment
F=J+I , but neither MJ or
MI is well-defined and
measurements at different
times give different values
for MJ and MI . (See text for
notations)

shell (12.1) oscillates with the number of frequencies, ωFF ′ = EF − EF ′ defined by
the energy splittings1 of the HFS levels.

When HFS levels of an atom are coherently excited, a beating in electronic shell
arises as result of the precession of the total angular momentum of the electronic
shell in magnetic field created by the atomic nucleus (Fig. 12.2). A typical evolution
of the density matrix elements of the electronic shell is shown in Fig. 12.3. The effect
is similar to the zero-field beating observed due to coherent excitation of different
magnetic sublevels split by an external magnetic field (Zeeman effect), and has been
known since the middle of 1960s. Alexandrov and Kulyasov [1] and Hadeishi and
Nierenberg [28] observed modulation of the fluorescence from atoms excited by
electron impact. Alexandrov and his colleagues also observed modification of spec-
tral profiles of the fluorescence lines after the excitation using optical laser [2, 3].
Resolving the time modulation of the fluorescence after photoexcitation was a much
more demanding experimental task and the first experiment was performed later by
Haroch, Paisne and Shawlow [29], two of them becoming later the Nobel laure-
ates (Shawlow in 1981; Haroch in 2012). Investigations of the quantum beats were
further stimulated by the development of time- and angular-resolved photoelectron
spectroscopy after the measurements of the photoelectron angular distributions in
two-photon resonant ionization became possible. In a series of papers by Berry with
coauthors, a general approach for description of the quantum beats was formulated
in terms of statistical tensor formalism and applied to lithium and alkaline earth met-
als [12, 40]. The applications finally became so numerous and various that the new
types of spectroscopy were developed into a broad research field named “quantum
beat spectroscopy” [27, 53].

The relative population evolution ofmagnetic substates | JMJ 〉 is the evolution of
the polarization of the atomic state with the total angular momentum of the electronic

1Atomic units are used hereafter � = e = me = 1, unless otherwise specified.
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Fig. 12.3 The evolution of
(unnormalized) density
matrix element ρ11,11 of the
electronic shell,
corresponding to the
population of state with
J = 1, M = 1 of a model
atom with nuclear spin
I = 1/2. The value
ω3/2,1/2 = E3/2 − E1/2 is
the energy splitting between
HFS levels F = 3/2 and
F ′ = 1/2. It is assumed that
Γ3/2 = Γ1/2 = Γ

shell J . To characterize this polarization and to obtain observable quantities, such
as photoelectron angular distributions, the density matrix and statistical tensor (state
multipole) technique is applied [6, 8]. The statistical tensor of the angularmomentum
J (which can take different values) is related to the density matrix of this momentum
as

ρkq(J, J
′) =

∑

MM ′
(−1)J

′−M ′(
JM, J ′ − M ′ | kq)

ρJM,J ′M ′ , (12.2)

where k = |J − J ′|, |J − J ′| + 1, ..., J + J ′ − 1, J + J ′ and −k ≤ q ≤ k. For
isotropic system only zero-rank tensor (12.2) (k = q = 0) is non-vanishing. The
angular momentum is polarized when at least one of the statistical tensors with
k �= 0 is nonzero.

Polarization of an atomic state can be produced by different means. One of the
methods is optical excitation, for example, by laser. The advantage of this method
is that polarization of optical and IR lasers is easy to control. Excitation of an atom
by light with definite polarization produces aligned or oriented state: in the dipole
approximation linearly polarized radiation excites an atom from a state with J = 0
to the magnetic substate with J = 1, M = 0 (quantization axis along the electric
vector of the radiation) and right(left) polarized radiation excites the same state to the
substate J = 1, M = +1 (J = 1, M = −1) (quantization axis along the radiation
beam).

Polarization of an atomic state may manifest itself, sometimes crucially, in dif-
ferent ways, for example, in the complicated angle dependence of electron emission
and fluorescence, generated by the higher rank (k > 2) statistical tensors (12.2) [43,
56], or in the modification of ionization probability and creation of inverse popula-
tion [57]. The quantum beats decrease the effect of the polarization (12.2) as time
goes on and can make the polarization disappear, on which a good overview can be
found in [18]. An interesting graphical approach was applied in [33, 35] to analysis
of the hyperfine quantum beats. It should be mentioned that depolarization occurs
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due to the collisions in the reaction volume and the radiation trapping in addition
to the HFS-caused depolarization. The former will not be discussed here: although
their influence may be strong [15, 37, 49], it will not be the case in the experiments
discussed below [44, 46].

Evolution of atomic polarization due to HFS can be determined in experiments
with two conjugate polarizations, for instance, in experiment on circular magnetic
dichroism [13, 20, 45]. The hyperfine interactions play a crucial role in realization of
different schemes of optical pumping [19, 36, 42]. The development of synchrotron
and free-electron laser facilities, producing brilliant XUV radiation, allows us to
change typical targets in the experimental studies on the effects of the hyperfine
interaction on the atomic processes from alkali and alkali earth elements to noble
gases. Experimental techniques are progressing, and recently, even the direct obser-
vation of the quantum beats in this energy domain became feasible [22].

Naturalmixtures of isotopes for neon and argon are dominated by the isotopeswith
zero nuclear spin, which do not generate the hyperfine splitting. Xenon containing
nine stable isotopes with the nuclear spins I = 0, 1/2, 3/2 with the corresponding
abundance ratios 53 : 26 : 21 is an appropriate target for the studies described below.
Conventional experiments on measurements of the photoelectron angular distribu-
tions in resonant ionization were performed with the Xe isotopes with the natural
abundance ratios [4, 38, 54]. The first measurements of photoelectron angular dis-
tributions for the selected isotopes [44] were performed at the French synchrotron
SOLEIL. The first VUV photon excited Xe∗(5p5 2P3/2)5d[3/2]1 state,2 and then,
a photon from the optical laser excited it into the Xe∗∗(5p5 2P1/2)4 f [5/2]2 Ryd-
berg autoionizing state, which subsequently decays with emission of an electron.
The key point is that these emitted electrons were detected in coincidence with a
mass-selected ion from which its spin (I = 0, I = 1/2, or I = 3/2) can be speci-
fied. The experiment was done using the photon beams with various polarizations.
The analysis of the experiment was given in [26]. Later, a similar joint experimen-
tal and theoretical investigation was performed using Kr [46] for the sequence of
discrete states [2P3/2]4d[1/2]1, [2P3/2]5d[1/2]1, [2P1/2]4d[3/2]1, [2P3/2]5d[3/2]1,
[2P1/2]6s[1/2]1 with the natural isotope mixture containing 11.5% of the isotope
with I = 9/2.

12.2 Formal Description

Weare going to present here detailed description of ourmethodon a practical example
of two-photon resonant ionization of xenon. The method has also been applied to
krypton [46] and can be applied to any initially unpolarized atoms or ions. The

2In the jK-coupling scheme, the nl[K ]J indicates, for the Xe atom, that the total angular momentum
j of the 5p5j core is first coupled to the orbital momentum of the excited electron �, j + � = K ,
with subsequent coupling of spin of this electron, K + s = J .
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theoretical approach is based on the formalism of the statistical tensors and the
polarization density matrix [6, 8].

In the first step, the atom is excited by a photon with ω1

ω1 + Xe (5p6) → Xe∗(5p5 2P3/2)5d[3/2]1 . (12.3)

Initially unpolarized atoms with the total angular momentum J0 (here J0 = 0)
become polarized after excitation into the intermediate state Xe∗ with the electron-
shell angular momentum Ji (here Ji = 1). The excited atom is further excited by the
photon ω2, followed by the autoionizing decay and emission of a photoelectron,

ω2 + Xe∗(5p5 2P3/2)5d[3/2]1 → Xe∗∗(5p5 2P1/2)4 f [5/2]2 ,

→ Xe+ (5p5 2P3/2) + e−(�j) . (12.4)

We emphasize that the method is applicable either with or without autoionizing
states at the second step, but it is important that the final state is described in the
representation | (L f S f )J f ; �j : J 〉, where L f , S f , J f are orbital, spin and total
angular momenta of the residual ion, respectively, and � and j are orbital and total
angular momenta of the photoelectron.

The scheme of the process is depicted in Fig. 12.4. It should be noted that, while
the discrete intermediate state can have either non-generate or degenerate HFS levels,
the HFS of the final continuum state can be considered to be degenerate.

Such a scheme in which HFS effects take place only in the intermediate stage for
the instantaneous and coherent excitation with long observation times allows us to
represent its polarization as a product3 of the resultant polarization of the electronic
shell,

ρk1q1(Ji ; J ′
i ) = Ĵ−1

0 (−1)J0+Ji+k1+1 Ĵi Ĵ
′
i ρ

(γ )

k1q1

{
1 Ji J0
J ′
i 1 k1

}
DJ0,Ji D

∗
J0,J ′

i
(12.5)

and the depolarization factor originating from the nuclear spin precession

hk(I ) = H
1

Î 2

∑

FF ′
F̂2 F̂ ′2

{
F F ′ k
J ′
i Ji I

}2

×
∫ ∞

−∞

∫ t2

−∞
E1(t1)E2(t2) exp[−iωFF ′ (t2 − t1) − Γ (t2 − t1)] dt1dt2 , (12.6)

3The easiest way to obtain this is to consider the system in the initial state as a product of two
subspaces, the electronic shell momentum and the nuclear spin Ĵ

⊗
Î , and then, couple them to

the total angular momentum F̂ only after the excitation.
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Fig. 12.4 Scheme of two-colour resonant ionization of xenon isotopes with different nuclear spin
in the region of the Xe∗∗(5p5 2P1/2)4 f [5/2]2 Rydberg autoionizing state

where the sum is taken over HFS levels F, F ′; E1(t) and E2(t) are envelopes of the
first (ω1) and second (ω2) laser fields, and the width Γ is supposed to be common for
all HFS levels. In the reduced dipole matrix element, DJ0 Ji = 〈αi Ji || D̂ || α0 J0〉, the
initial (excited) state is characterized by the total angularmomentum of the electronic
shell J0 (Ji ) and a set of other quantum numbers α0 (αi ); ρ

(γ )

k1q1
is a statistical tensor

of the photon (see Sect. 12.2.2). We have introduced the abbreviation â = √
2a + 1

and the standard notations for nj-symbols. The depolarization factor (12.6), which
includes also the depolarization induced by collisions (H ≈ 1), depends on the
nuclear spin, atomic angular momentum, energy, time and splitting (see Sect. 12.2.3
for further discussion).

The photoelectron angular distribution in the two-step resonant ionization4 can
be cast into the form [5].

dσ

dΩ
= πω

c

∑

kqk1q1
k2q2

hk1(I ) B(k1, k, k2) ρ
(γ )

k2q2
ρk1q1(Ji , J

′
i )

× (k1q1, k2q2 | kq)
1√
4π k̂

Ykq(ϑ, ϕ) , (12.7)

4The statistical tensor (12.5) has a dimension of probability per second, while the dimension of the
two-photon cross section (12.7) is cm2/s.
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where c−1 is the fine-structure constant. The parameters B(k1, k, k2) contain infor-
mation about the dynamics of the electron emission, including the interference of
direct and resonant ionization paths [17], and is given by:

B(k1, k, k2) = k̂1k̂2
∑

��′ j j ′
J J ′

(−1)J f +J+k−1/2�̂�̂′ ĵ ĵ ′ Ĵ Ĵ ′(�0, �′0 | k0)

×
{

k J J ′

J f L ′ L

}{
j � 1/2

�′ j ′ k

}
⎧
⎪⎨

⎪⎩

Ji 1 J

J ′
i 1 J ′

k1 k2 k

⎫
⎪⎬

⎪⎭
D�j JD

∗
�′ j ′ J ′ . (12.8)

where J is total angularmomentumof the systemafter photoemission.Thedynamical
parameters (12.8)5 satisfy the relationship B(k1, k, k2) = (−1)Ji−J ′

i +k1+k2+k B∗(k1,
k, k2). Discussion of the amplitudesD�j J of photoemission into a particular channel
is given in Sect. 12.2.1.

12.2.1 Role of Autoionization

Assume that discrete and continuum configurations of atom are mixed by inter-
action V , which is usually the Coulomb interaction. The decay of the autoioniz-
ing state with total angular momentum of the electronic shell Ja and other quan-
tum numbers αa is then described by the reduced matrix elements (’decay ampli-
tudes’) V�j J = 〈α f J f �j J || V̂ || αa Ja〉. The full autoionization width is given by
Γa = 2π

∑
�j J |V�j J |2, provided only one final ionic state α f J f is possible. The

interference between the direct and the resonant ionization paths in the region of an
isolated autoionizing state may be taken into account by presenting the dipole matrix
elements in (12.8) in the form [5, 32],

D�j J = eiδ�j J

(∑
�′ j ′ J ′ D�′ j ′ J ′V�′ j ′ J ′
∑

�′ j ′ J ′ |V�′ j ′ J ′ |2 V�j J
q − i

ε + i
+ D�j J

)
, (12.9)

where q is the Fano profile index [17], ε = 2(E − Ea)/Γa is the detuning from the
resonance position Ea , δ�j J is the scattering phase in the corresponding ionization
channel, and the reduced amplitudes of the direct ionization is denoted as D�j J =
〈α f J f �j J || D̂ || αi Ji 〉 (see (12.4) and (12.5) of [25]). The amplitude (12.9) turns into
the reduced dipole direct ionization amplitude far from the resonance (ε → ±∞):
D�j J → eiδ�j J D�j J .

5The first 6 j-symbol was missed in (6) of [26].
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z k1,2
(a) (b)

y k1,2

e- e-

y xE1 2

x
E

z E1,2

E1,2

Fig. 12.5 The coordinate system for arbitrary polarization of two collinearly propagating field (a)
and for particular case when both fields are linearly polarized in the same direction (b). Dashed
black lines mark the projection of the direction of electron emission on the xy-plane

12.2.2 Statistical Tensors of Photon

We choose z-axis along the radiation beams k1,2, see Fig. 12.5a, the direction of
the x-axis will be specified in the Sect. 12.3.1 (whether along synchrotron or laser
polarization vector, E1 or E2, respectively). In this coordinate system a general
form of the photon statistical tensors in the dipole approximation,6 expressed via the
Stocks parameters p1, p2, p3 was presented, for example, in [6]:

ρ
(γ )

00 = 1/
√
3 , ρ

(γ )

10 = p3/
√
2 , (12.10)

ρ
(γ )

20 = 1/
√
6 , ρ

(γ )

2±2 = −(p1 ∓ i p2)/2 . (12.11)

For the radiation linearly polarized in the direction determined by the angle φ

(see Fig. 12.5a), its statistical tensors with nonzero projection take the form ρ
(γ )

2±2 =
− exp(−2iφ)/2. There is one geometrically specified case when both fields are lin-
early polarized in the same direction. For this case it is convenient to choose the z-axis
along the polarization vectors (see Fig. 12.5b). Then, only two statistical tensors are
nonvanishing:

ρ
(γ )

00 = 1/
√
3 , ρ

(γ )

20 = −√
2/3 . (12.12)

6Statistical tensors of photon in the dipole approximation are defined according to (12.2) for a par-
ticle with the angular momentum J = 1 having zero projection on the direction of the propagation.
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12.2.3 Depolarization Factors

Suppose that all HFS levels are excited coherently and their decay does not affect
internal motions in the nucleus. Assuming that fields are monochromatic with con-
stant amplitudes and taking integrals in (12.6) one gets for the depolarization factor

hk(I ) = 1

Î 2

∑

FF ′
F̂2 F̂ ′2

{
F F ′ k
J ′
i Ji I

}2 (
1 + ω2

FF ′

Γ 2

)−1

. (12.13)

For the degenerate HFS (ωFF ′ = 0), the sum in (12.13) can be taken analytically with
the result hk(I ) = 1. Thus, there is no depolarization for overlapping HFS levels. In
the opposite limit, when the HFS levels are well separated (ωFF ′ � Γ ) only diagonal
terms with F = F ′ survive.

The main term of hyperfine energy correction may be expressed as A (F(F + 1)
−I (I + 1) − J (J + 1)) /2 [34], where A is the HFS coupling constant for the level
under consideration. For our case Ji = 1 and nuclear spin I = 1/2, 3/2 the depo-
larization factors are

h1(1/2) = 7

9
+ 2

9
· 1

1 + 2.25α
→ 7/9 , (12.14)

h2(1/2) = 1

3
+ 2

3
· 1

1 + 2.25α
→ 1/3 ,

h1(3/2) = 19

45
+ 5

18
· 1

1 + 2.25α
+ 3

10
· 1

1 + 6.25α
→ 19

45
, (12.15)

h2(3/2) = 37

150
+ 1

30
· 1

1 + 2.25α
+ 3

10
· 1

1 + 16α
+ 21

50
· 1

1 + 6.25α
→ 37

150
.

We introduced the parameter α = (A/Γ )2. Limits in (12.14), (12.15) are indicated
for the case when the energy splitting between the HFS levels are much larger than
the width Γ (α � 1). It is worth noting that these limits give lowest possible values
for the depolarization produced by the HFS. Partial overlapping of the HFS levels
reduces depolarization and increases the factors hk(I ). For a larger nuclear spin the
limiting values of hk(I ) are lower and the depolarization is more efficient.

12.3 Observable Quantities

The experiments were performed at the vacuum ultraviolet variable polarization
beam line DESIRS [41], the French synchrotron source, SOLEIL, whose scientific
scope includes the study of photoionization dynamics and circular dichroism. For
more experimental details see [26, 44], here we concentrate on theoretical analysis of
the experimental results. As mentioned above, the natural mixture of xenon contains
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Table 12.1 Natural abundance (%) of the xenon isotopes and their nuclear spin I
124Xe 126Xe 128Xe 129Xe 130Xe 131Xe 132Xe 134Xe 136Xe

I 0 0 0 1/2 0 3/2 0 0 0

0.00095 0.00089 0.0191 0.264 0.0407 0.212 0.269 0.104 0.088

two valuable species of stable isotopes with non-zero spins, 129Xe (I = 1/2) and
131Xe (I = 3/2) (see Table12.1).

Photoelectron angular distributions were measured in coincidence with a mass
(nuclear isotope) selected ion in the following five different combinations of the
polarizations of two collinearly propagating light beams: (i) two linearly polarized
light beams having the same polarization direction, (ii) two linearly polarized beams
whose polarization directions are perpendicular to each other, (iii) two left-handed
circularly polarized light beams, (iv) two right-handed circularly polarized light
beams, and (v) a left-handed circularly polarized light beam and a right-handed
circularly polarized light beam. In addition, two dichroisms integrated over the angles
of the electron emission, that is, integrated circular magnetic dichroism (CMD) and
integrated linear dichroism (LD) were measured.

12.3.1 Linear and Circular Dichroism and Determination
of Hyperfine Constant

When both of the fields are linearly polarized, we take z ‖ E1 and φ is the angle
between E1 and E2. For the angle-integrated photionization cross section one can
obtain from (12.7)–(12.8)

σ LL = πω

c

⎛

⎝
[
1 + h2

1 + 3 cos 2φ

20

] ∑

�j

|D�j J=2|2 +
[
1 − h2

1 + 3 cos 2φ

4

] ∑

�j

|D�j J=1|2+

+
[
1 + h2

1 + 3 cos 2φ

2

]∑

�j

|D�j J=0|2
⎞

⎠ . (12.16)

Linear dichroism is the difference in the cross-sections measured for parallel (φ = 0)
and perpendicular (φ = 90◦) polarization directions. One obtains from (12.16):

LD = σ ‖ − σ⊥

σ ‖ + σ⊥ (12.17)

= 3h2

∑
�j

(
1
20 |D�j J=2|2 − 1

4 |D�j J=1|2 + 1
2 |D�j J=0|2

)
∑

�j

(
(1 + h2

20 )|D�j J=2|2 + (1 − h2
4 )|D�j J=1|2 + (1 + h2

2 )|D�j J=0|2
) .
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Whenbothfields are circularly polarizedwith equal (++) or opposite (+−) helicities,
the angle-integrated cross section is

σ+± = πω

c

⎛

⎝
[
1 ± 3

4
h1 + h2

20

]∑

�j

|D�j J=2|2 +
[
1 ∓ 3

4
h1 − h2

4

] ∑

�j

|D�j J=1|2+

+
[
1 ∓ 3

2
h1 + h2

2

]∑

�j

|D�j J=0|2
⎞

⎠ . (12.18)

The circular magnetic dichroism follows from (12.18):

CMD = σ++ − σ+−

σ++ + σ+− (12.19)

= 3h1

∑
�j (|D�j J=2|2 + |D�j J=1|2 + 2|D�j J=0|2)

4
∑

�j

(
(1 + h2

20 )|D�j J=2|2 + (1 − h2
4 )|D�j J=1|2 + (1 + h2

2 )|D�j J=0|2
) .

Equations (12.17) and (12.19) allow to set limits for both of the two types of
dichroism. As a rule, autoionization significantly amplifies the channels with J =
Ja . In our case of resonant ionization in the vicinity of the autoionizing state
Xe∗∗(5p5 2P1/2)4 f [5/2]2, channels with J = 2 should be enhanced. Neglecting
channels with J = 0, 1, we obtain from (12.17) and (12.19),

LD = 3 h2
20 + h2

, (12.20)

CMD = 15 h1
20 + h2

. (12.21)

Measured values of dichroism are expected to be lower than defined by (12.20),
(12.21), because resonant approximation is not well satisfied on tails of the resonance
profile. Nevertheless, the resonance Xe∗∗(5p5 (2P1/2)4 f [5/2]2 chosen here is quite
strong with q-index from 4 to 10 in different models [26, 50]. Thus we believe that
comparison of the measured dichroism with the limit values is useful. It is seen from
Table12.2 that the agreement for CMD is surprisingly good for isotopes with I =
0, 1/2. As expected from (12.20), (12.21), and (12.14), (12.15), the experimental
values of CMD is much larger than of LD, therefore, meaningful conclusions may
be drawn only from the CMD values.

The accurate consideration of the weak channels with J = 0, 1 performed in
multiconfiguration Hartree-Fock approximation [26] gives only a little lower values
than in the resonance model. The agreement of the measured dichroism with the
algebraic expectation for 129Xe (I = 1/2) isotope means that the HFS levels for this
isotope are well separated and their depolarization are the strongest.

Surprisingly, the measured dichroism for 131Xe (I = 3/2) isotope is noticeably
above the expected value. This means that the HFS levels overlap, decreasing the
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Table 12.2 Measured and calculated linear and circular dichroism. Numbers in parenthesis give
experimental uncertainties

Experiment Theory

I 0 1/2 3/2 0 1/2 3/2

LD 0.11 (2) 0.03 (3) 0.04 (3) 1
7 ≈ 0.14 3

61 ≈ 0.05 111
3037 ≈
0.037

CMD 0.67 (2) 0.54 (4) 0.43 (4) 5
7 ≈ 0.71 35

61 ≈ 0.57 950
3037 ≈ 0.31

effect of depolarization. Based on this observation, we proposed a method to deter-
mine the hyperfine structure constant A for partly overlapping HFS levels, which
cannot be resolved spectroscopically. By substituting (12.15) into (12.21) and by
using the measured CMD, one can obtain a simple equation for α. Our estimate
gives A/Γ = 0.85 ± 0.14 and the depolarization factors, h1(3/2) = 0.58 ± 0.04
and h2(3/2) = 0.35 ± 0.04.

12.3.2 Photoelectron Angular Distribution

In this sectionwe consider three possible geometries: bothfields are linearly polarized
in the same direction, both fields are circularly polarized with equal helicities and
with opposite helicities. The last two cases imply collinearly propagating fields. For
these polarization sets the photoelectron angular distribution is axially symmetric
with respect to the polarization vector or propagation direction and, in each case, can
be determined by two corresponding dimensionless angular anisotropy parameters,
βν
2 and βν

4 as:

dσ

dΩ
= σ ν

4π

(
1 + βν

2 P2(cos θ) + βν
4 P4(cos θ)

)
, (12.22)

index ν = lin, ++, +− indicates cases when both of the fields are either linearly
polarized in one direction, or circularly polarized with equal or opposite helicities;
Pn(x) is the Legendre polynomial and θ measured from the symmetry axis. The
second-rank polynomial produces an ‘eight’-like form of the photoelectron angular
distribution, while the fourth-rank polynomial is responsible for its ‘butterfly’-like
component. The depolarization leads to the reduction of the value of β4.

For convenience,we introducemodified dynamical parameters instead of (12.8) as
follows:B000 = 1

3 B(0, 0, 0),B202 =
√
5
6 B(2, 0, 2),B022 =

√
10
12 B(0, 2, 2),B220 =√

10
12 B(2, 2, 0), B222 = 5

√
14

42 B(2, 2, 2), B242 =
√
70

672 B(2, 4, 2), B122 =
√
30
12 B

(1, 2, 2),B221 =
√
30
12 B(2, 2, 1),B101 =

√
3
2 B(1, 0, 1),B121 =

√
6
2 B(1, 2, 1). Then,

the angular anisotropy parameters can be presented in the following forms:
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Fig. 12.6 Angular anisotropy parameters as function of second (ionizing) laser energy measured in
coincidence with nuclear isotopes of the residual ion. Both fields are linearly polarized in the same
direction. Multiconfiguration Hartree-Fock results (red solid) are obtained by assuming that HFS
states for the isotopes with nonzero spin I = 1/2, 3/2 are well isolated (α � 1). Blue dashed curves
in the panels I = 3/2 present results with α obtained in Sect. 12.3.1. The dashed curves in panels
(a) and (b) show the results obtained when only the resonant channels with J = 2 are included.
The profile of the Xe∗∗(5p5 2P1/2)4 f [5/2]2 resonance in the angle-integrated cross section σ is
shown in panel (a) for comparison (black dotted line)

βlin
2 = −4

h2(B220 + B022) + B222

B000 + 4h2B202
,

βlin
4 = 192 h2B242

B000 + 4h2B202
, (12.23)

β+±
2 = 2B022 + h2(2B220 − B222) ± h1B121

B000 ∓ h1B101 + h2B202
,

β+±
4 = 48 h2B242

B000 ∓ h1B101 + h2B202
. (12.24)

Figures12.6 and 12.7 present the asymmetry parameters (12.23) and (12.24) in
the region around the Xe∗∗(5p5 2P1/2)4 f [5/2]2 resonance for isotopes with different
nuclear spins. The parameter βν

4 would vanish for an unpolarized intermediate Xe∗
(5p5 2P3/2)5d[3/2]1 state. The high values reached by βν

4 indicate high anisotropy
of this state.
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Fig. 12.7 The same as in Fig. 12.6, for circularly polarized fields. Red curves mark equal helicities
(++), blue curves mark opposite helicities (+−)

In the panels (a) and (d) of Figs. 12.6 and 12.7 we present angular anisotropy
parameters calculated in the complete model [26] and in the model when only the
resonant channels with J = 2 (“resonant model”) are included, with h1 = h2 = 1.
In the panels (a) and (d) of the same figures, the curves are closer in the vicinity of
the resonance, but deviate from each other significantly at tails of the resonance. For
opposite helicities, β2 in the resonant and the complete model even inverts the shape
(blue dashed and solid curves inFig. 12.7). For equal helicities theweak channelswith
J = 0, 1 are not excited for the isotope with I = 0 (i.e. without the depolarization)
due to the selection rules for the magnetic quantum number. Therefore only β+−

2,4 are
changed by inclusion of the weak channels and their influence is crucial (panels (a)
and (d) of Figs. 12.6 and 12.7). The resonance behavior of the β2 parameter changes
completely from the window-type to the resonance-type.

The calculation of the electronic structure does not differ for the different isotopes
and the results for the anisotropy parameters for the isotopes should be automatically
consistent once the depolarization factors due to the coupling between the electronic
and nuclear angular momenta are properly included (see Sects. 12.2.3, 12.3.1). As
can be seen in the panels (c)–(f) of Figs. 12.6 and 12.7, one do may use the same
atomic spectroscopic model for all the isotopes.

For the 131Xe (I = 3/2) isotope, the depolarization coefficients found above from
the analysis of the CMD data (see Sect. 12.3.1), lead to slightly better agreement
between theory and experiment than when the assumption of the separated HFS
levels (panels (e) and (f) of Figs. 12.6 and 12.7) is made. Note that the profiles for
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Fig. 12.8 Calculations for the isotope 131Xe (I = 3/2): Angular anisotropy parameters as function
of second (ionizing) laser energy and the depolarization factor α when both fields are linearly
polarized in the same direction (a, b); one field is right and other field is left polarized (c, d) and
both fields are right polarized (e, f). The position of the Xe∗∗(5p5 2P1/2)4 f [5/2]2 state is indicated
on the ω2 axis by a long tick, marked as 4f
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βν
2,4 for all isotopes are equally broadened and shifted with respect to the profile of

the resonance in the angle-integrated cross section in accordance with the scaling
theorem [24].

To further illustrate the sensitivity of the asymmetry parameters to the hyperfine
interaction, Fig. 12.8 presents the resonance profiles of βν

2 and βν
4 as function of

laser energy and the parameter α for the isotope with I = 3/2. As we have men-
tioned in Sect. 12.2.3, even for infinite α the HFS depolarization is restricted, there-
fore, βk does not change with further increasing α. From the limit value of h2(3/2)
(see (12.15)) one may expect that βν

4 decreases 4 times because of depolarization
(Fig. 12.8b, d, f), but does not vanish. Therefore only collisional depolarization may
completely demolish β4. Besides decreasing of high-rank anisotropy parameters, the
depolarization also opens some forbidden channels. In the case under considera-
tion, these are channels Xe+(5p5 2P3/2ε� : J = 1) for linearly polarized fields and
Xe+(5p5 2P3/2ε� : J = 0, 1) for circularly polarized light beams with equal helic-
ity. The values of βν

2 at the tails of the resonance are determined by a complicated
interplay of the contributing channels (Fig. 12.8a, c, e).

12.4 Future Directions

Recent rapid progress in generation of VUV and X-Ray light pulses as well as their
detection introduced an evolution in experimental studies on the effects of the hyper-
fine interactions from alkali and alkali earth atoms to noble gases. Even the inves-
tigation of positively charged ions became possible through sequential ionization
(see chapter [25] in this book). The free-electron laser facilities, which are currently
in operation, as well as those to be in operation in the near future can generate
pulses with good longitudinal coherence, high brightness and short duration, with
which we can investigate a variety of phenomena strongly affected by HFS by time-
and angular-resolved photoelectron spectroscopy in the high-frequency domain. For
example, by controlling and monitoring properties of the high-frequency radiation,
we can investigate the effect of hyperfine interactions in the decay process of inner-
shell vacancies.
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