
Chapter 10
Methods for the Simulation of Coupled
Electronic and Nuclear Motion
in Molecules Beyond
the Born-Oppenheimer Approximation

Erik Lötstedt, Tsuyoshi Kato and Kaoru Yamanouchi

Abstract We review theoretical methods which can be used for the simulation of
time-dependent electronic and nuclear dynamics of gas-phase molecules beyond
the Born-Oppenheimer approximation. We concentrate on methods which allow
for a description of extensive electronic excitation and ionization. Particular em-
phasis is placed on the extended multiconfiguration time-dependent Hartree-Fock
(Ex-MCTDHF) method. We provide a derivation of the equations of motion of the
Ex-MCTDHF method, and discuss its advantages and disadvantages over the meth-
ods based on the Born-Huang expansion.

10.1 Introduction

When molecules are irradiated with intense laser light, one or more electrons in the
molecule absorb energy from the laser pulse. The motion of electrons is excited and
the electrons can be ejected from molecules, and the molecules as well as the result-
ing molecular ions can be electronically and/or vibrationally excited. The acquired
energy is subsequently transferred to the nuclei, which triggers a variety of nuclear
motion within the molecule: vibrational motion, structural deformation, and disso-
ciation. An interesting example is a process called hydrogen migration, in which a
hydrogen atom or a proton in an excited molecule moves in the wide spatial range
within the molecule on a fast time scale. In [1, 2], the hydrogen migration process
in methanol was studied. In [1], it was revealed that, after the ionization CH3OH
→ CH3OH+ of a methanol molecule by an 800 nm, 60 fs laser pulse, a hydrogen
atom moves within a molecule, so that CH+

2 and OH+
2 fragments are formed af-
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ter a double ionization. The hydrogen migration was found to proceed within the
laser pulse, that is, on a time scale shorter than 60 fs. By employing a pump-and-
probe scheme, the time scale of the hydrogen migration was found to be shorter than
25 fs [2].

Another example is the experiments on the asymmetric dissociation of H2 into H
+ H+ or H+ + H [3, 4], in which H2 is first ionized to H

+
2 by a short laser pulse, and

then, in the course of the dissociation of H+
2 , the remaining electron is driven by the

later part of the laser field so that it ends up with being caught by either one of the
two protons. It was shown that the final position of the electron (on the left proton or
on the right proton) could be controlled by varying the carrier-envelope phase of the
driving laser field. We stress that ionization, electronic excitation and dissociation in
this case proceed within the same laser pulse.

The complex interplay between electronic excitation, ionization, and nuclear mo-
tion has also been shown in experiments on other molecular species, such as I2 [5],
N2 [6], H

+
3 [7], and C4H6 [8, 9].

In order to interpret the experimental results showing that laser-driven molecules
undergo complex dynamical processes such as electronic excitation, ionization, nu-
clear vibration and dissociation, we need to develop a theoretical framework inwhich
both electronic and nuclear motion are included in a general way without imposing
any constraints on the electronic motion and the nuclear motion, so that arbitrary
electronic excitation (including ionization) and nuclear motion (including dissocia-
tion) can be simulated. Presently, an efficient quantum mechanical method fulfilling
fully these requirements has not been known. However, a few attempts have been
made along this direction in these years. In this article, we first review in Sect. 10.2
the standard theoretical method for dealing with laser-molecule interaction based on
the Born-Oppenheimer (BO) approximation. After discussing the advantages and
the disadvantages of the BO approximation, we will review several attempts at going
beyond the BO approximation. In Sect. 10.3, we give a detailed account of the ex-
tendedmulticonfiguration time-dependent Hartree-Fock (Ex-MCTDHF)method, in-
cluding a derivation of the equations ofmotion. In the remaining sections, we provide
brief overviews of three related methods, i. e., the multiconfiguration time-dependent
Hartree (MCTDH) method (Sect. 10.4.1), the multi-configuration electron-nuclear
dynamics (MCEND) method (Sect. 10.4.2), and the MCTDHF method for diatomic
molecules (Sect. 10.4.3).

10.2 Born-Oppenheimer Approximation

The BO approximation is the standard method for simulating laser-molecule inter-
action. In order to derive the working equations for the BO approximation [10], we
start with the Hamiltonian of a general molecule consisting of Ne electrons with
mass me and NN nuclei with masses Mk and charge numbers Zk (k = 1, . . . , NN),

H = TN + VNN +UN(t) + He +Ue(t), (10.1)
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where

TN =
NN∑

k=1

−�
2

2Mk
∇2

Rk
(10.2)

is the nuclear kinetic energy operator with Rk denoting the spatial coordinate of
nucleus k,

VNN =
NN∑

k=1

∑

l<k

Zk Zle2

4πε0|Rk − Rl | (10.3)

is the nuclear-nuclear repulsive Coulomb potential,

UN(t) = −
NN∑

k=1

ZkeE(t) · Rk (10.4)

is the nuclear-laser interaction expressed in the dipole approximation with the laser
field E(t),

He =
Ne∑

k=1

(
−�

2

2me
∇2

rk −
NN∑

l=1

Zle2

4πε0|rk − Rl | +
∑

l<k

e2

4πε0|rk − rl |

)
(10.5)

is the electronic Hamiltonian with rk denoting the spatial coordinate of electron k,
and

Ue(t) =
Ne∑

k=1

eE(t) · rk (10.6)

is the electron-laser interaction. In the following discussion, we introduce for conve-
nience a collective coordinate R = (R1, R2, . . . , RNN) to denote the spatial coordi-
nates of all the nuclei, and similarly r = (r1, r2, . . . , rNe) for the electrons. We also
define the spin coordinate of electron k as sk , the combined spatial-spin coordinate
as xk = (rk, sk), and the collective spin-spatial coordinate as x = (x1, x2, . . . , xNe)

In theBOapproximation,wefirst construct a set of LBO electronic statesΦ j (x; R),
j = 1, 2, . . . , LBO, which parametrically depends on the nuclear coordinate R. The
electronic states are calculated by solving the eigenvalue equation

E j (R)Φ j (x; R) = He(R)Φ j (x; R), (10.7)

where R is treated as a set of parameters (R1, . . . , RNN) taking fixed values. Because
He isHermitian, the electronic states are orthogonal.Wehave

∫
Φ∗

j (x; R)Φk(x; R)dx
= δ jk after appropriate normalization. Equation (10.7) has to be solved at each value
of the nuclear coordinate R, which may become a difficult task for large molecules.
This point is discussed more in detail later at the end of this section.

We make the ansatz here



200 E. Lötstedt et al.

Ψ (R, x, t) =
LBO∑

j=1

χ j (R, t)Φ j (x; R) (10.8)

for the total wave function. The expansion (10.8) is commonly referred to as the
Born-Huang (BH) expansion [11]. The time-dependence of the wave function is
contained in the nuclear wave functions χ j (R, t). Inserting the ansatz (10.8) into the
time-dependent Schrödinger equation (TDSE)

i�
∂Ψ (R, x, t)

∂t
= HΨ (R, x, t) (10.9)

and integrating out the electronic degrees of freedom leads to a set of coupled equa-
tions for the nuclear wave functions,

i�
∂χ j (R, t)

∂t
= (

TN +UN(t) + V BO
j (R)

)
χ j (R, t)

+
LBO∑

k=1

(−E(t) · µ jk(R) + A jk + Bjk
)
χk(R, t), (10.10)

where
V BO
j (R) = E j (R) + VNN(R) (10.11)

is a BO potential energy surface defined using the electronic eigenenergy in (10.7),

µ jk(R) = −e
∫

dxΦ∗
j (x; R)

(
Ne∑

l=1

rl

)
Φk(x; R) (10.12)

is the transition dipole matrix element, and

A jk = −�
2
∫

dxΦ∗
j (x; R)

(
NN∑

l=1

∇Rl

Ml

)
Φk(x; R) · ∇Rl (10.13)

and

Bjk = −�
2

2

∫
dxΦ∗

j (x; R)

(
NN∑

l=1

∇2
Rl

Ml

)
Φk(x; R) (10.14)

are non-adiabatic coupling terms.
The BO approximation consists in neglecting the non-adiabatic coupling terms

A jk and Bjk . This neglection can be rationalized by (i) the small value of the 1/Ml

nuclear-mass factors in the expressions (10.13) and (10.14), and (ii) the small value
of ∇RlΦk(x; R), which is assured as long as the electronic states Φk(x; R) change
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Fig. 10.1 a Potential energy
curves for the ground and
first excited state of H+

2 .
b Transition dipole moment
between the 1sσg state and
the 2pσu state
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slowly with R. If we also neglect the term UN(t) in (10.10) by considering that it
only affects the center-of-mass motion, we arrive at the BO TDSE,

i�
∂χ j (R, t)

∂t
= (

TN + V BO
j (R)

)
χ j (R, t) − E(t) ·

LBO∑

k=1

µ jk(R)χk(R, t). (10.15)

The physical picture of (10.15) is that each nuclearwave packetχ j (R, t)moves on
a potential energy surface V BO

j (R). Transitions between different electronic states are

described by theR-dependent transition dipole matrix elementsµ jk(R). In Fig. 10.1,
we show an example of the BO potential energy curves and transition dipole moment
for a hydrogen molecular ion, H+

2 . In H+
2 , there is only one internal nuclear coordi-

nate, the internuclear distance. The potential energy curves shown in Fig. 10.1 were
calculated by solving (10.7) with the finite-difference method at each value of the
internuclear distance.

It is true that the BH expansion together with the BO approximation works well
for many cases of laser-molecule interaction, and is a standard method for the simu-
lation and interpretation of experimental results, but there are of course some limits.
We would like to point out a few of the disadvantageous points of the BO approx-
imation, which serve as a motivation for developing methods which go beyond the
BO approximation.

(i) The magnitude of the A jk and Bjk operators may become unrealistically large
at a nuclear geometry R where j-th and k-th BO potential energy surfaces are close
in energy to satisfy E j (R) ≈ Ek(R). By using (10.7), we can derive
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∫
dxΦ∗

j (x; R)

(
NN∑

l=1

∇Rl

Ml

)
Φk(x; R) =

∫
dxΦ∗

j (x; R)
(∑NN

l=1
(∇Rl

He)

Ml

)
Φk(x; R)

Ek(R) − E j (R)
,

(10.16)

fromwhich it becomes clear that both A jk and Bjk becomeextremely large ifEk(R) −
E j (R) approaches zero.

(ii) The calculation of potential energy curves is a very difficult task for large
molecules. A general, non-linear molecule with N atoms has 3N − 6 vibrational
degrees of freedom. If we assume that K points along the coordinate of each vi-
brational degree of freedom are required for a sufficiently accurate description of
the potential energy surface, (10.7) has to be solved K 3N−6 times, which increases
exponentially as N increases. Even for a tetratomic molecule (N = 4), we have
3N − 6 = 6, so that the complete potential energy surface would have to be repre-
sented as a 6-dimensional array. Although there are sophisticated methods for fitting
high-dimensional potential energy surfaces (see for example [12]), the accurate rep-
resentation of high-dimensional potential energy surfaces is a difficult problem.

(iii) Omission of electron excitation and ionization. In the BH expansion, we al-
ways have to limit the number of electronic states LBO included in the expansion of
thewave function (see (10.8)). Typically, LBO is set to be LBO < 5,meaning that only
the electronic states with the lowest energy (ground state + a few excited states) are
included. Extensive excitation to Rydberg states, doubly excites states, continuum
electronic states, which would be required to describe ionization, are difficult to be
treated. The omission of such highly excited states and continuum states becomes
particularly problematic when we describe the interaction of molecules with ultra-
short and intense laser pulses, because ionization and excitation occur with a high
probability. In the simplest case of a hydrogen molecule H2, there exist models by
which potential energy curves are calculated for quasi-stable doubly excited elec-
tronic states as well as for electronic states corresponding to the ionization [13, 14],
but for a general, polyatomic molecule, this approach is not practically applicable.

10.3 Extended Multiconfiguration Time-Dependent
Hartree-Fock Method

10.3.1 Basic Concepts

In this section, we describe one promising attempt to go beyond the BO approxi-
mation, called the extended multiconfiguration time-dependent Hartree-Fock (Ex-
MCTDHF) method [15]. The Ex-MCTDHF method is an extension of the multicon-
figuration time-dependent Hartree-Fock (MCTDHF) method for electron dynamics
[16, 17] (see also [18] for an overview of the method), which is a natural exten-
sion of themulticonfiguration time-dependent Hartree (MCTDH)method for nuclear
dynamics [19, 20].
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The basic idea of all the methods mentioned above is to introduce time-dependent
single-particle (or single-mode) functions for the description of the time-dependent
dynamics. This means that each degree of freedom is described by its own time-
dependent basis set. In this way, any kind of excitation can be described in a flexible
manner.

In the Ex-MCTDHF method, the total time-dependent wave function for both
nuclei and electrons is written as

Ψ (R, x, t) =
Le∑

J=1

χJ (R, t)ΦJ (x, t), (10.17)

using the same notation for the nuclear and electronic coordinates as adopted in
Sect. 10.2. In (10.17), χJ (R, t) is a time-dependent nuclear wave function, ΦJ (x, t)
is a time-dependent electronic wave function, and Le is the number of terms in-
cluded in the wave function expansion. In order to make the total wave function
antisymmetrized with respect to an exchange of electrons, ΦJ (x, t) is represented
as a Slater determinant, constructed from a set of time-dependent electronic spin-
orbitals φk(x, t) (k = 1, . . . , Ke),

ΦJ (x, t) = |φJ1(t) . . . φJNe (t)|, (10.18)

where the label J is a composite index J = (J1, . . . , JNe). We should have at least
as many spin-orbitals as the number of electrons in the molecule, that is, Ke ≥ Ne.
It is assumed that at all times, the spin-orbitals are orthonormal, 〈φ j (t)|φk(t)〉 = 0.

We point out here that the meanings of the electronic wave function ΦJ (x, t) in
(10.17) and the electronic wave function Φ j (x; R) in the Born-Huang expansion
(10.8) are different. In (10.8), Φ j (x; R) represents an electronic state, an eigenfunc-
tion of the electronic Hamiltonian He(R) at fixedR, which is usually expanded into a
linear combination of several Slater determinants, but in (10.17),ΦJ (x, t) is a single,
time-dependent Slater determinant.

It is frequently assumed that the same spatial orbitals are used to construct spin-
orbitals of both spin types. That is, we assume a set of Me spatial orbitals ϕk(r, t),
k = 1, . . . , Me, and construct Ke = 2Me spin-orbitals according to

φk(x, t) =
{

ϕk(r, t)α(s) if k ≤ Me,

ϕk−Me(r, t)β(s) if k > Me.
(10.19)

In (10.19), α(s) and β(s) denote spin-up and spin-down spin functions, respec-
tively. In this case, eachSlater determinant is labeled by a double index J = (Jα, J β),
with Jα = (Jα

1 , . . . , Jα
Nα
e
) and J β = (J β

1 , . . . , J β

Nβ
e
). The numbers Nα

e of α electrons

and Nβ
e of β electrons satisfy Nα

e + Nβ
e = Ne, and we assume that all Slater deter-

minants have the same value of Nα
e and Nβ

e . A determinant is written as
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ΦJ (x, t) = |ϕJα
1
(t)α . . . ϕJα

Nα
e
(t)α ϕJβ

1
(t)β . . . ϕJβ

N
β
e

(t)β|. (10.20)

The total number of electronic Slater determinants that can be constructed in this
way is Le = (Me

Nα
e

)(Me

Nβ
e

) = Me!2/[Nα
e !Nβ

e !(Me − Nα
e )!(Me − Nβ

e )!].
The wave function defined by (10.17) looks very similar to the BO wave function

in (10.8). The important difference is that the electronic wave function ΦJ (x, t) in
(10.17) does not depend on the nuclear coordinates R, but instead depends on time t .
This means that each electronic wave functionΦJ (x, t) is no longer associated with a
certain electronic state with a certain energy. At some moment in time,ΦJ (x, t)may
be a superposition of a bound part (consisting of both ground-state and excited-state
components) and a continuum part. This featuremakes it possible for awave function
of the type (10.17) to describe arbitrary electronic excitation, including ionization,
with a limited number of terms Le in the sum over J in (10.17). Moreover, because
the electronic wave functions do not depend on R, there is no need to calculate
potential energy surfaces in the Ex-MCTDHF method. The major drawback of an
ansatz like the one in (10.17) is that the equations governing the time-evolution of the
time-dependent orbitals become non-linear, as we will see below in (10.31), (10.46),
and (10.54).

In [15], the ansatz (10.17) was further adapted to describe “diatomic-like”
molecules, which refers to molecules consisting of two heavy atoms like O or C
and Np light hydrogen atoms. Explicit examples are C2H2 and CH3OH. The idea
proposed in [15] was that the protonic part of the wave function can be expanded in
terms of Slater determinants, because protons are also fermions whose wave function
needs to be properly antisymmetrized. The motivation of using Slater determinants
also for the description of the protonic motion is to make the structure of the wave
function as flexible as possible, which can allow us to simulate highly distorted
molecular structures such as those appearing in the course of hydrogen migration.

In order to describe the protonic part of thewave functionwith Slater determinants,
the wave function χJ (R, t) for the nuclear coordinate is expanded as

χJ (R, t) =
Lp∑

I=1

CI J (Rh, t)ΛI (X , t), (10.21)

where Rh is the collective coordinate for the two heavy atoms, X is the collective
spatial-spin coordinate for the Np protons, and Lp is the number of terms included
in the expansion of the nuclear wave function. The proton coordinate X is defined as
X = (X1, . . . , XNp)with Xk = (Rpk, Sk) expressed in terms of the spatial coordinate
Rpk and the spin coordinate Sk of the proton k. Similarly to the electronic part of
the wave function, ΛI (X , t) is taken to be a Slater determinant constructed from the
time-dependent protonic orbitals λi (X, t),

ΛI (X , t) = |λI1(t) . . . λINp (t)|, (10.22)
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with I = (I1, . . . , INp). In the same way as for the electronic Slater determinants,
it is convenient to assume that the same spatial orbitals are used both for α and β

spin-orbitals, that is,

λ j (X, t) =
{

κ j (R, t)α(S) if j ≤ Mp,

κ j−Mp(R, t)β(S) if j > Mp,
(10.23)

where we have assumed that there are Mp spatial protonic orbitals. The protonic
Slater determinants are in this case written as

ΛI (X , t) = |κI α
1
(t)α . . . κI α

Nα
p
(t)α κI β

1
(t)β . . . κI β

N
β
p

(t)β|, (10.24)

where there are Nα
p α-spin protons and Nβ

p β-spin protons in eachdeterminant. The to-

tal number of protons is Np = Nα
p + Nβ

p . Similarly to the electronic determinants, we

have a total number of Lp = (Mp

Nα
p

)(Mp

Nβ
p

) = Mp!2/[Nα
p !Nβ

p !(Mp − Nα
p )!(Mp − Nβ

p )!]
protonic Slater determinants.

Substituting (10.21) into (10.17), we find for the total wave function,

Ψ (Rh, X , x, t) =
Le∑

J=1

Lp∑

I=1

CI J (Rh, t)ΛI (X , t)ΦJ (x, t). (10.25)

Due to the similarity of (10.25) to the configuration-interaction expansion of a
many-electron wave function [21], we refer to the CI J (Rh, t) as time-dependent
configuration-interaction (CI) coefficients.

Because all factors [CI J (Rh, t), ΛI (X , t), and ΦJ (x, t)] depend on t , we have
to derive appropriate evolution equations. In order to derive the evolution equations,
also referred to as the equations ofmotion, we employ the time-dependent variational
principle [22, 23],

〈δΨ (t)|H − i�
∂

∂t
|Ψ (t)〉 = 0, (10.26)

where δΨ (t) is the variation of the total wave function with respect to parameters
CI J (Rh, t),ΛI (X , t), andΦJ (x, t), and the bra-ket in (10.26) implies the integration
over all variables Rh, X , and x . Orthogonality of the electronic and protonic orbitals,
〈ϕ j (t)|ϕk(t)〉 = 〈κ j (t)|κk(t)〉 = δ jk , is assumed by introducing suitable Lagrange
multipliers in (10.26).

Before we derive the equations of motion for the Ex-MCTDHF method, we first
define the single-proton Hamiltonian,

hp(R, t) = − �
2

2mp
∇2

R − eE(t) · R, (10.27)

where mp is the mass of the proton, the single-electron Hamiltonian,
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he(r, t) = − �
2

2me
∇2

r + eE(t) · r, (10.28)

and the Hamiltonian for the Nh = NN − Np heavy particles,

Hh(Rh, t) =
Nh∑

k=1

(
− �

2

2Mk
∇2

Rhk
− eE(t) · Rhk +

∑

l<k

Zl Zke2

4πε0|Rhk − Rhl |

)
, (10.29)

where Zk here represents the charge number of the heavy nucleus k. In [15], it was
assumed that Nh = 2. Then, the total Hamiltonian can now be written as

H =
Np∑

k=1

hp(Rpk , t) +
Np∑

k=1

∑

l<k

e2

4πε0|Rpk − Rpl |

+
Ne∑

k=1

he(rk , t) +
Ne∑

k=1

∑

l<k

e2

4πε0|rk − rl |

−
Np∑

k=1

Ne∑

l=1

e2

4πε0|Rpk − rl | −
Nh∑

k=1

Ne∑

l=1

Zke
2

4πε0|Rhk − rl | +
Nh∑

k=1

Np∑

l=1

Zke
2

4πε0|Rhk − Rpl |
+ Hh(Rh, t). (10.30)

We note that the Hamiltonian (10.30) is the same as that in (10.1), but the form is
rewritten so that the different interaction terms appear more clearly.

10.3.2 Equations of Motion

In order to obtain the equation of motion for the electronic orbitals, we take the
variation δΨ with respect to one spatial orbital ϕk in (10.26). The result is

i�
∂ϕk(r, t)

∂t
= Qe(t)

∑

lm

De−1
kl (t)

(
De

lm(t)he(r, t) + W ee
lm(r, t) + W ep

lm(r, t)

+ W eh
lm (r, t)

)
ϕm(r, t), (10.31)

where

De
lm(t) =

∑

I PQ

∫
dRhC

∗
I P(Rh, t)CIQ(Rh, t)E

e
PQlm (10.32)

is the spin-summed electronic first-order density matrix,
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W ee
lm(r, t) =

∑

pq

de
lmpq(t)g

ee
pq(r, t) (10.33)

is the electron-electron interaction defined using the spin-summed electronic second-
order density matrix,

de
klmn(t) =

∑

I PQ

∫
dRhC

∗
I P(Rh, t)CIQ(Rh, t)F

e
PQklmn, (10.34)

and the repulsive electron-electron Coulomb potential

geepq(r, t) = e2

4πε0

∫
dr′ ϕ

∗
p(r

′, t)ϕq(r′, t)
|r − r′| , (10.35)

the electron-proton interaction is

W ep
lm(r, t) =

∑

I J PQrs

∫
dRhC

∗
I P(Rh, t)CJQ(Rh, t)E

e
PQlmE

p
I Jrsg

ep
rs (r, t) (10.36)

defined with the attractive electron-proton Coulomb potential

geppq(r, t) = − e2

4πε0

∫
dR

κ∗
p(R, t)κq(R, t)

|r − R| , (10.37)

and the attractive electron-heavy nuclei interaction is

W eh
lm (r, t) = − e2

4πε0

∑

I PQ

E e
PQlm

∫
dRhC

∗
I P(Rh, t)CIQ(Rh, t)

(
Nh∑

k=1

Zk

|Rhk − r|

)
.

(10.38)

In (10.32), (10.34), (10.36) and (10.38), we have used the following matrix ele-
ments of the spin-summed excitation operators Êpq and F̂pqrs [21],

E e
PQlm = 〈ΦP(t)|Êlm |ΦQ(t)〉, (10.39)

E
p
I Jrs = 〈ΛI (t)|Êrs |ΛJ (t)〉, (10.40)

and
F e

PQklmn = 〈ΦP(t)|F̂klmn|ΦQ(t)〉. (10.41)

For later use, we additionally define

F
p
I Jklmn = 〈ΛI (t)|F̂klmn|ΛJ (t)〉. (10.42)
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The spin-summed excitation operators are defined using the creation and annihi-
lation operators â†pσ and âqσ as [21]

Êpq =
∑

σ=α,β

â†pσ âqσ (10.43)

and
F̂pqrs = Êpq Êrs − δqr Êps . (10.44)

Upon the operation of the creation operator â†pσ on a Slater determinant (either
electronic or protonic), the spatial orbital p with spin σ (=α or β) is created. On the
other hand, upon the operation of the annihilation operator âqσ , the spatial orbital
q with spin σ is annihilated if it exists in the determinant. The matrix elements
defined in (10.39)–(10.42) are equal to either 0,−1, or 1. We can derive their explicit
values for different combinations of indexes by using the orthonormality of the
spatial orbitals and by taking into account the sign change of a determinant upon the
permutation of the order of the orbitals. The matrix elements, E e

PQlm and E p
PQlm , can

take non-zero values only when the two determinants involved differ by at most one
orbitals, and the matrix elements, F e

PQklmn and F
p
PQklmn , are non-zero only when

the two determinants differ by at most two orbitals. We also note that E e
PQlm , E

p
PQlm ,

F e
PQklmn andF

p
PQklmn defined (in (10.39)–(10.42)) as matrix elements composed of

time-dependent determinants, are independent of time.
The symbol Qe in the equation of motion (10.31) is a projection operator whose

action on an arbitrary function f (r) is defined as

Qe(t) f (r) = f (r) −
∑

k

f (r)〈 f |ϕk(t)〉. (10.45)

The projection operator Qe(t) appears in the equation of motion (10.31) because
of the restriction of 〈ϕ j (t)|ϕk(t)〉 = δ jk imposed by the Lagrange multipliers. By
multiplying the equation of motion (10.31) by ϕ∗

j (r, t) and integrating over r, we
may confirm that 〈ϕ j |(∂/∂t)|ϕk〉 = 0 holds for arbitrary j and k if 〈ϕ j (t)|ϕk(t)〉 = δ jk

because of the presence of Qe(t), and therefore, 〈ϕ j (t)|ϕk(t)〉 = δ jk is satisfied for
all t provided that the orbital set {ϕ j (t)} is orthonormal at t = 0.

The equation ofmotion for the protonic orbitals κ j (R, t) is calculated by taking the
variation δΨ in (10.26) with respect to κ j on the condition that 〈κ j (t)|κk(t)〉 = δ jk .
We obtain the following equation of motion, similar to that for the electronic orbitals,
(10.31),

i�
∂κk(R, t)

∂t
= Qp(t)

∑

lm

Dp−1
kl (t)

(
Dp

lm(t)hp(R, t) + W pp
lm (R, t) + W pe

lm(R, t)

+ W ph
lm (R, t)

)
κm(R, t), (10.46)
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where

Dp
lm(t) =

∑

I J P

∫
dRhC

∗
I P(Rh, t)CJ P(Rh, t)E

p
I Jlm (10.47)

is the spin-summed protonic first-order density matrix,

W pp
lm (R, t) =

∑

pq

dp
lmpq(t)g

pp
pq(R, t) (10.48)

is the proton-proton interaction with the spin-summed protonic second-order density
matrix,

dp
klmn(t) =

∑

I J P

∫
dRhC

∗
I P(Rh, t)CJ P(Rh, t)F

p
I Jklmn, (10.49)

and the proton-proton Coulomb potential,

gpppq(R, t) = e2

4πε0

∫
dR′ κ

∗
p(R

′, t)κq(R′, t)
|R − R′| . (10.50)

Furthermore,

W pe
lm(R, t) =

∑

I J PQrs

∫
dRhC

∗
I P(Rh, t)CJQ(Rh, t)E

e
PQlmE

p
I Jrsg

pe
rs (R, t) (10.51)

is the proton-electron interaction defined using the attractive proton-electron
Coulomb potential,

gpepq(R, t) = − e2

4πε0

∫
dr

ϕ∗
p(r, t)ϕq(r, t)

|r − R| , (10.52)

and

W ph
lm (R, t) = e2

4πε0

∑

I J P

E
p
I Jlm

∫
dRhC

∗
I P(Rh, t)CJ P(Rh, t)

(
Nh∑

k=1

Zk

|Rhk − R|

)

(10.53)
is the repulsive proton-heavy nuclei interaction.

Finally, we take the variation with respect to the coefficients CI J (Rh, t), which
results in the equation of motion,

i�
∂CI J (Rh, t)

∂t
= Hh(Rh, t)CI J (Rh, t)

+
∑

K L

(
W he

I J K L(Rh, t) + W hp
I J K L(Rh, t) + W 0

I J K L(t)
)
CKL(Rh, t).

(10.54)
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In (10.54), Hh(Rh, t) is given by (10.29),

W he
I J K L(Rh, t) = −δI K

e2

4πε0

∑

lm

E e
J Llm

(
Nh∑

k=1

Zk

∫
dr

ϕ∗
l (r, t)ϕm(r, t)

|Rhk − r|

)
(10.55)

is the heavy nuclei-electron interaction,

W hp
I J K L(Rh, t) = δJ L

e2

4πε0

∑

lm

E
p
I Klm

(
Nh∑

k=1

Zk

∫
dR

κ∗
l (R, t)κm(R, t)

|Rhk − R|

)
(10.56)

is the heavy nuclei-proton interaction, and

W 0
I J K L (t) = δI K

⎛

⎝
∑

kl

E e
J Lkl 〈ϕk(t)|he(t)|ϕl (t)〉 + 1

2

∑

klmn

F e
J Lklmn〈ϕm(t)|geekl (t)|ϕn(t)〉

⎞

⎠

+ δJ L

⎛

⎝
∑

kl

E
p
I Kkl 〈κk(t)|hp(t)|κl (t)〉 + 1

2

∑

klmn

F
p
I Kklmn〈κm(t)|gppkl (t)|κn(t)〉

⎞

⎠

+
∑

lmrs

E e
J LlmE

p
I Krs〈ϕl (t)|g

ep
rs (t)|ϕm(t)〉 (10.57)

is an Rh-independent matrix. The CI coefficients CI J (Rh, t) are not orthonormal in
general, that is,

∫
dRhC∗

I J (Rh, t)CKL(Rh, t) �= 0 for I J �= K L . However, the total
wave function is normalized as

Le∑

I=1

Lp∑

J=1

∫
dRhC

∗
I J (Rh, t)CI J (Rh, t) = 1. (10.58)

We remark here that the equations of motion (10.31), (10.46), and (10.54) pre-
sented above are the same as those given in the original publication [15] even though
the notations are different.

The interaction potentials Wxy
lm (where x, y = e, p, h) in general arise from the

inter-particleCoulombpotentials (repulsive or attractive), but theCoulombpotentials
always appear as those averaged over the particle distributions. For example, in
the case of the electron-proton interaction term W ep

lm(r, t) defined in (10.36), the
Coulomb potential geppq(r, t) (defined in (10.37)) is not the bare Coulomb potential
−e2/(4πε0|r − R|), but is that averaged over the protonic orbitals κp(R, t) and
κq(R, t).

Even thoughwe have presented the general equations of motion forRh-dependent
CI coefficients as seen in (10.54), we can assume that the heavy nuclei, i. e., all nu-
clei except for the protons, in the molecule are immobile, which corresponds to
the clamped-nuclei approximation. In this case, the coordinates of the heavy nu-
clei should be treated as a parameter, and the heavy-nuclei Hamiltonian Hh(Rh, t)
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in (10.30) should be omitted. As a result, the first line of (10.54) involving the
term Hh(Rh, t)CI J (Rh, t) disappears, and the equation of motion for the CI coeffi-
cients becomes an ordinary differential equation (in t) instead of a partial differential
equation. Moreover, all integrations over the heavy nuclei coordinates Rh should be
dropped, so that the electron-heavy nuclei potential (10.38) and the proton-heavy-
nuclei potential (10.53) depend on a parameter Rh.

We can find the ground state wave function, that is, the Ex-MCTDHF wave func-
tion Ψ that minimizes the total energy E = 〈Ψ |H |Ψ 〉, by integrating the equations
of motion (10.31), (10.46), and (10.54) in imaginary time [17]. This means that the
time t is replaced by −iτ , resulting in i∂/∂t → −∂/∂τ , so that the TDSE takes the
form of a diffusion equation.

10.3.3 Applications of the Ex-MCTDHF Method

Thus far, only two reports [24, 25] have been published on the application of the
Ex-MCTDHF method. Both of these applications deal with the stationary properties
of ground-state wave functions. The equations of motion derived in the preceding
Sect. 10.3.2 are used in this section to obtain the optimal ground state via the imag-
inary time propagation.

10.3.3.1 CH3OH

In [24], the Ex-MCTDHF method was applied to the calculation of the electro-
protonic ground state wave function of methanol, CH3OH. The oxygen atom and
the carbon atom were treated as heavy nuclei, and rotation of the molecule was
neglected, whichmeans thatRh = RCO, the C–O internuclear distance. Furthermore,
the clamped nuclei approximation was assumed for C and O, so that RCO was treated
as a parameter. Since the C atom and the O atom define a molecular axis, and the
total Hamiltonian for the electrons and the protons is symmetric under rotations
around this axis, cylindrical symmetry around the C–O axis can be assumed for
the electronic and protonic orbitals. If we take the C–O axis to be the z-axis in the
cylindrical coordinate system, we have rk = (zek, ρek, φek) for the coordinate of the
electron k, and Rpl = (zpl, ρpl , φpl) for the coordinate of the proton l. We have

ϕk(re, t) = fk(ze, ρe, t)e
imekφe (10.59)

for the electronic spatial orbitals, and

κk(Rp, t) = gk(zp, ρp, t)e
impkφp (10.60)

for the protonic spatial orbitals. Both the electronic orbitals and the protonic orbitals
were discretized using the grid method. In (10.59) and (10.60), the quantum numbers
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mek and mpk determine the angular momentum around the molecular axis of the
respective orbital. In [24], the values |mek | ≤ 1 and |mpk | ≤ 3 were adopted. For the
electronic structure, a single closed-shell Slater determinant was adopted, meaning
that Le = 1 in (10.25). For the protonic wave function, a total of Mp = 16 spatial
orbitals were employed, and determinants with the highest possible protonic spin,
S = 2, were constructed. This means that Nα

p = 4 and Nβ
p = 0 in (10.24), and Lp =(16

4

) = 1820 in (10.25).
The main result obtained in [24] is that the molecular structure of a polyatomic

molecule such as CH3OH in the absence of a laser field can indeed be described by
the Ex-MCTDHF ansatz given in (10.25). This is a remarkable result, because the
spatial distribution of the protons is not determined from the energy minimum of a
potential energy surface, but is the result of the optimization of the Ex-MCTDHF
ground state wave function.

The protonic structure of CH3OH was elucidated first by calculating the 2-proton
spatial distribution,

Γp(Rp1, Rp2) = 1

2

∑

klmn

dp
klmnκ

∗
k (Rp1)κl(Rp1)κ

∗
m(Rp2)κn(Rp2), (10.61)

expressed in terms of the spin-summed protonic second-order density matrix dp
klmn

defined in (10.49). Γp(Rp1, Rp2) represents the probability distribution of find-
ing one proton at Rp1 and another one at Rp2. We can now define a conditional
1-proton distribution Dp(Rp|R0) = Γp(Rp, R0) by fixing one of the proton positions
in Γp(Rp1, Rp2) to R0. Dp(Rp|R0) represents the spatial proton distribution of the
three remaining protons, given that the position of the fourth proton is fixed to R0.

In Fig. 10.2, we show the conditional 1-proton distribution Dp(xp, yp|R0) =∫
dzpDp(Rp|R0) in the xy-plane, integrated along the z-axis (the C–O axis). The

fixed position R0 of one of the protons is taken to be the most probable position of
the proton in the hydroxyl group, R0 = (z0, ρ0, φ0) = (−2.02 a0, 1.78 a0, 0), where
a0 ≈ 0.53 Å denotes Bohr’s radius. As expected, the proton distribution in the xy-
plane exhibits three maxima, consistent with the protonic structure of the methyl
group in CH3OH. For comparison, we also show in Fig. 10.2 the conventional ball-
and-stick representation of CH3OH, corresponding to the positions of the nuclei
yielding the lowest total energy on the BO potential energy surface.

The results presented in [24] show that the spatial correlation among protons
in a molecule containing several protons can be correctly reproduced with an Ex-
MCTDHF wave function, provided that the number of protonic orbitals included
in the wave function expansion is sufficiently large. It was shown in [24] that the
spatial correlations among the four protons in CH3OHwere properly described when
Mp = 16 and |mpk | ≤ 3 as shown in Fig. 10.2a, and that the three distinct peaks seen
in Fig. 10.2a, corresponding to the methyl-group protons, were not reproduced when
a smaller set of Mp = 12 protonic orbitals including orbital angular momentum
|mpk | ≤ 2 was adopted.
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Fig. 10.2 a Conditional probability distribution Dp(xp, yp|R0), taken from [24]. One proton is
fixed at the point marked with a cross ×, corresponding to the most probable position of the proton
in the OH group. The peaks in the distribution labeled with α, β, and β′ correspond to the protons
in the methyl group on the side of the C atom. b Ball-and-stick model of CH3OH. The C–O axis
defines the z-axis, while the xy-plane is perpendicular to the C–O axis. c Ball-and-stick model of
CH3OH oriented so that the C–O axis (z-axis) becomes perpendicular to the plane of the paper. The
rightmost proton is the proton on the O atom side, corresponding to the position of the cross × in
panel (a)

10.3.3.2 H2

In [25], the Ex-MCTDHF method was applied to a one-dimensional model of an H2

molecule. The one-dimensional model means that all particles, that is, two protons
and two electrons, are restricted to move along one spatial dimension. A soft-core
potential

VSC(r) = ± e2

4πε0

1√
r2 + a2

(10.62)

with soft-core parametera is used for describing the attractive and repulsive potentials
instead of the Coulomb potential. This model of H2 contains only three degrees of
freedom, that is, one for the vibrational motion, and two for the motion of the two
electrons. Therefore, it is feasible to compute the total wave function of the system
directly in a numerically exact way without making a product expansion as in the
Ex-MCTDHF method. We may therefore compare the results of the numerically
exact calculation and the results obtained by the Ex-MCTDHF method and examine
the accuracy of the Ex-MCTDHF method in a rigorous way.

In the case of H2, it is not necessary to use Slater determinants for the description
of the protonic motion because there is only one vibrational degree of freedom
represented by the internuclear distance R. Therefore, we can set Lp = 1, Λl = 1,
Rh = R, and CI J (Rh, t) = CI (R, t) in (10.25), so that the total wave function for
H2 is written as
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Ψ (R, x, t) =
Le∑

I=1

CI (R, t)ΦI (x, t), (10.63)

where x is the collective spatial and spin coordinate for the two electrons, andΦI (x, t)
is a two-electron Slater determinant. If we assume a singlet state, we should have
one α and one β electron, and each Slater determinant is written as ΦI (x, t) =
|ϕI α (t)α ϕI β (t)β|. Therefore, once Me electronic spatial orbitals are given, we can
construct Le = M2

e different Slater determinants.
One of the main results of [25] was that a well-converged ground state of one-

dimensional H2 can be obtained already with Me = 3 spatial orbitals, corresponding
to Le = 9 determinants. The ground state wave function was obtained by imaginary
time-propagation, and the electronic orbitals were numerically discretized using the
grid method. At Me = 3, the difference between the numerically exact ground state
energy E (exact)

0 = −39.34 eV and the Ex-MCTDHF energy E (Ex−MCTDHF)
0 was found

to be E (Ex−MCTDHF)
0 − E (exact)

0 ≈ 10 meV, and at Me = 5, E (Ex−MCTDHF)
0 − E (exact)

0 ≈
0.5 meV.

Another feature of the Ex-MCTDHF wave function pointed out in [25] is that the
expansion (10.63) allows us to represent the total wave function in a compact form, in
the sense that the number of parameters needed to represent the wave function can be
smaller than the number of parameters needed for describing a wave function using
the Born-Huang expansion. If we assume for simplicity that both an electronic spatial
orbital ϕk(r, t) and a CI coefficient CI (R, t) are discretized using N grid points,
the total number of parameters needed to specify the Ex-MCTDHF wave function
becomes Ntot = LeN + MeN = MeN (Me + 1). On the other hand, in the case
of one-dimensional H2, when we employ a Born-Huang expansion to describe the
total wave function,

ΨBH(R, x, t) =
Le∑

I=1

CBH
I (R, t)ΦBH

I (x; R), (10.64)

we would need N BH
tot = LeN + MeN 2 = MeN (Me + N ) parameters, because

each spatial orbital ϕk(r; R) is a function of both r and R, and therefore needs N 2

grid points for the discretization. In practical calculations, the number of grid points is
typicallyN > 102, and the number of orbitals is typically Me ≤ 10. Therefore, the
number of parametersN BH

tot required in the Born-Huang expansion (10.64) is much
larger than the number of parameters Ntot required in the Ex-MCTDHF expansion
(10.63). If we assume thatN 
 1 and Me � N , then N BH

tot /Ntot ≈ N 
 1.

10.4 Related Methods

In this section, we give a brief account on methods similar to the Ex-MCTDHF
method, describing the coupled, time-dependent motion of both electrons and nuclei
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in a molecule in order that electronic and vibrational excitation are treated with a
larger extent of flexibility than the BO approximation.

10.4.1 Multiconfiguration Time-Dependent Hartree Method

The multiconfiguration time-dependent Hartree (MCTDH) method [19, 20, 26] is
a method originally invented for the simulation of vibrational motion of polyatomic
molecules. The total vibrational wave function is written as

Ψ (q1, . . . , qn, t) =
∑

i1,...,in

Ci1...in (t)η
(1)
i1

(q1, t) . . . η
(n)
in

(qn, t), (10.65)

where q j represents the coordinate for the vibrational mode j , and there is a set of
time-dependent basis functions {η( j)

k (qk, t)} for each mode. We have assumed that
there are a total of nmodes. The equations of motion for the coefficientsCi1...in (t) and
the basis functions η

( j)
k (qk, t) can be derived using the time-dependent variational

principle [20], similarly to the procedure described in Sect. 10.3.2. The MCTDH
method can be used to simulate the vibrational motion of large, many-dimensional
systems, as has beendemonstrated in the simulation of the 15-dimensional vibrational
motion of H5O

+
2 [27] and the 21-dimensional vibrational motion of C3H4O2 [28].

An extension of the MCTDH method is called the multi-layer MCTDH method
[26, 29, 30]. In the multi-layer MCTDH method, the vibrational coordinates are
combined into K groups of combined coordinates Q j as [26]

Q1 = (q1, . . . , qk1), Q2 = (qk1+1, . . . , qk1+k2), . . . , QK = (qn−kK+1, . . . , qn),
(10.66)

where k j is the number of coordinates in group j . The wave function is written
in the same way as in the original MCTDH method, but in terms of the combined
coordinates Q j ,

Ψ (q1, . . . , qn, t) =
∑

i1,...,iK

Ci1...iK (t)ζ (1)
i1

(Q1, t) . . . ζ
(K )
iK

(QK , t). (10.67)

The idea of the multi-layer MCTDH method is to express each time-dependent
basis function ζ

( j)
m (Q j , t) as a time-dependent multiconfiguration expansion,

ζ ( j)
m (Q j , t) =

∑

l1,...,lk j

C ( j)
m,l1...lk j

(t)η(1)
l1

(qaj+1, t) . . . η
(k j )

lk j
(qaj+k j , t), (10.68)

where a j = ∑ j−1
l=1 kl . Using the multi-layer MCTDH method, we can simulate the

vibrational motion of very large systems. For example, in [31], it was shown for
CH3I embedded in calix[4]resorcinarene (C28H24O8) that the full 189-dimensional
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vibrational wave function as well as its electronic absorption spectra can be obtained
by the multi-layer MCTDHF method.

In [32], it was shown that the expansion (10.65) can be applied to the coupled
electro-nuclear motion of H+

2 , if q1 represents the internuclear distance R and q2
represents the coordinate r of the electron. If we assume a one-dimensional model
like that described in Sect. 10.3.3.2, the total wave function becomes

Ψ (R, r, t) =
∑

I J

cI J (t)χI (R, t)ϕJ (r, t), (10.69)

where χI (R, t) and ϕJ (r, t) are orbitals describing the nuclear and the electronic
motion, respectively, and cI J (t) is a time-dependent expansion coefficient. If we
define an R-dependent CI coefficient by

CJ (R, t) =
∑

I

cI J (t)χI (R, t), (10.70)

(10.69) can take the same form as (10.63),

Ψ (R, r, t) =
∑

J

CJ (R, t)ϕJ (r, t). (10.71)

Thedifference of (10.71) and (10.63) is that the electronicwave functionϕJ (r, t) is
a single-particle orbital in (10.71),whileΦI (x, t) is a two-electron Slater determinant
in (10.63).

In [32], it was concluded that an accurate time-dependent wave function of H+
2

could be obtained when Me ≥ 8 electronic spatial orbitals with the same number
of protonic orbitals were included in the expansion (10.69). By comparing with
numerically exact wave functions obtained by a direct solution of the TDSE, it
was confirmed that both the time-dependent electronic and nuclear densities as well
as the high-harmonic spectra were well reproduced by the MCTDH method. This
conclusion was independently confirmed in [33, 34], in which methods based on the
same type of multiconfiguration expansion of the wave function shown in (10.69)
were used for investigating the strong-field induced dynamics in H+

2 .

10.4.2 Multi-Configuration Electron-Nuclear Dynamics
Method

Themulti-configuration electron-nuclear dynamics (MCEND)method wasproposed
by Nest in [35] for describing time-dependent coupled electron-nuclear motion. The
ansatz for the total wave function is written as
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Ψ (R, x, t) =
∑

I J

CI J (t)ξI (R, t)ΦJ (x, t), (10.72)

where R = (q1, . . . , qn) is a collective coordinate for the n vibrational modes of the
molecule,whereq j represents the coordinate of one vibrationalmode, andΦJ (x, t) is
a Slater determinant described as a function of the collective electronic coordinate x
and t . The Slater determinant is constructed from time-dependent electronic orbitals
ϕk(r, t) as in (10.20). Similarly to the MCTDH method introduced in Sect. 10.4.1,
the vibrational wave functions ξI (R, t) are written as a product of time-dependent
basis functions for representing the respective vibrational modes as

ξI (R, t) = η
(1)
I1

(q1, t) . . . η
(n)
In

(qn, t). (10.73)

The MCEND wave function ansatz (10.72) is similar to the Ex-MCTDHF ansatz
(10.25) if we regard the coordinate Rh of the heavy nuclei as a constant. However, it
should be noted that the nuclear motion is described in terms of vibrational modes
in the MCEND method, whereas the motion of the protons is described by protonic
orbitals in the Ex-MCTDHF method. For this reason, the Ex-MCTDHF method is
considered to be suited for the simulation ofmolecules containingmany (>3) protons
as well as for the discussion of quantum effects arising from the fermionic nature
of the protons, while the MCEND method could be suited for the simulation of
small molecules having only a few vibrational modes. For diatomic molecules with
only one vibrational degree of freedom, the nuclear motion is treated in exactly the
same manner in the MCEND method and the Ex-MCTDHF method. In [36], the
MCEND method was applied to investigate the time-dependent dynamics of LiH in
an ultrashort laser pulse.

10.4.3 MCTDHF Method for Diatomic Molecules

Haxton et al. [37] presented a modified version of the MCTDHF method, in which
the vibrational motion in a diatomic molecule is treated quantum mechanically in
addition to the electronic degrees of freedom. The total wave function is written in
a form similar to the Born-Huang expansion (see (10.8)) as

Ψ (R, x, t) =
∑

J

χJ (R, t)ΦJ (x, t; R), (10.74)

where R is the internuclear distance, χJ (R, t) is a nuclear wave function, and
ΦJ (x, t; R) is a time-dependent Slater determinant, which depends parametri-
cally on the internuclear distance R. This parametric dependence on R makes this
method different from the Ex-MCTDHF method, as can be seen from the compar-
ison of (10.74) with (10.63). The Slater determinants are constructed from time-
dependent electronic orbitals as in (10.20), but the spatial orbitals ϕk(r, t; R) depend
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parametrically on R in this case. However, differently from the Born-Huang expan-
sion, where the electronic orbitals are used to construct electronic eigenfunctions of
the electronic Hamiltonian at each R (see (10.7)), in the method presented in [37],
the R-dependence of the electronic spatial orbitals arises from the R-dependent basis
set adopted in the expansion of the orbitals. This means that each spatial electronic
orbital can be written as

ϕk(r, t; R) =
∑

i

cki (t)Fi (r; R), (10.75)

where cki (t) is a time-dependent coefficient which is independent of R, and Fi (r; R)

is an R-dependent basis function. The finite element method and the discrete variable
representation [38] in the prolate spheroidal coordinate systemwere used to construct
the basis functions Fi (r; R) in [37].

The MCTDHF method for diatomic molecules was employed in [37] to calculate
accurate vibronic eigenstates of HD+, HD, H2, and LiH. In [39], this method was
applied to the calculation of the cross section of dissociative photoionization of H+

2 .
It was found that the cross section at photon energies around 30 eV, corresponding to
vertical ionization, could not be well reproduced, although the cross section for large
photon energies was reproduced well. To the best of our knowledge, this method has
not yet been applied to coupled electro-nuclear motion in molecules in strong laser
fields.

10.5 Summary

We have presented several methods that have been developed for the simulation of
the coupled time-dependent motion of electrons and nuclei in molecules. In the case
of the Ex-MCTDHF method, the equations of motion were derived and presented in
a compact form. The two examples to which the Ex-MCTDHF method was applied
have been introduced, that is, the calculations of the ground state electro-protonic
wave functions of CH3OH and H2. In the case of CH3OH, it was shown that the
spatial proton distribution corresponding to three protons around the C atom and one
proton around the O atomwas reproduced well by the Ex-MCTDHFmethod without
using a potential energy surface. Brief overviews were also given on the three related
methods, the MCTDH method, the MCEND method, and the MCTDHF method for
diatomic molecules.

The real advantage of the Ex-MCTDHF method is expected to appear in the real-
time propagation of molecular wave functions under the influence of short and strong
laser pulses. Because the Ex-MCTDHF ansatz provides a very flexible form of the
total wave function, this method is suited for the simulation of extensive structural
change and dissociation of a molecule in the time domain. It is expected that the Ex-
MCTDHF method will be a powerful and general method for simulating ultrafast
dynamics of polyatomic molecules in intense laser fields.
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