
Chapter 9
The Plasma Atom

Abstract In this chapter the statistical description of atomic radiative-collisional
processes for complex heavy ions in electron atomic collisions is developed. The local
plasma frequency model and the Thomas-Fermi electron density distribution are
applied for the description of collisional processes making it possible to express the
atomic characteristics (energy structure and oscillator strengths) as well as transition
probabilities in terms of a functional of the electron density distribution inside atoms
and ions. TheFermimethod of equivalent photons allows to express the collisional rates
in terms of photo-excitation or ionization cross sections. The statistical description is
applied for efficient calculations of ionization cross sections and rates for different
highly charged ions demonstrating a very good correspondence with detailed quantum
mechanical calculations. Likewise, the dielectronic recombination rates obtained from
statistical models are compared with quantum results for different ionization states of
many chemical elements. The statistical method is in very good agreement with
sophisticated detailed level-by-level quantum calculations and is of much higher pre-
cision than the usually applied Burgess formula. Finally, the statistical approach is
applied for calculations of radiative energy losses of tungsten ions in hot thermonuclear
plasmas. The results for the low-density case (coronal condition) of magnetically
confined plasmas demonstrate a rather good correspondence with more detailed
numerical calculations and measurements. In addition, the transition from the
low-density corona condition to the high-densityBoltzmann limit can be described via a
simple application of detailed balance in the two-state approximation. In general, quite
reasonable precision of the statistical model for different kinds of radiative-collisional
processes is demonstrated. Moreover, general formulae and scaling relations can be
obtained from the statistical approach that would otherwise difficult to obtain.

9.1 The Thomas–Fermi Statistical Approach

From the earliest days of quantum mechanics, it has been clear that one could not
hope to solve exactly most of the physically interesting systems, especially those
with three or more particles. This has stimulated the development of a large variety
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of approximate methods such as the time-dependent and time-independent pertur-
bation theory, variational methods, and the Hartree method. The improvements of
the Hartree method, namely the Hartree–Fock–Slater and the Dirac–Hartree–Fock–
Slater (including the multiconfiguration Hartree–Fock (MCHF) method that
incorporates configuration interaction and intermediate coupling, or its relativistic
version MCDF—multiconfiguration Dirac–Fock method), are currently the most
general and widely used methods to study the atomic structure of atoms and ions
(Cowan 1981; Grant et al. 1980).

The theoretical description of multielectron systems and in particular the
structure of heavy atoms and ions is still challenging, and one of the traditional
approaches to this problem is the use of the Thomas–Fermi statistical theory (Fermi
1928; Gombas 1943, 1949, 1963; Lieb and Simon 1977; Kemister and Nordholm
1982). The Thomas–Fermi model represents the simplest way to take into account
not only the Pauli principle, but also the mutual electrostatic repulsion of the
electrons, at least in a general way, in a many-electron system. The starting point is
the only approximately correct idea that there is a fixed potential well and that it is
the same for all electrons. The model therefore gives a similar electron density for
all atoms. Although the model does not permit to provide very detailed information
about the atomic structure, it provides general insight into the properties of heavy
atoms, e.g., the electron density distribution, ionization energies, size of the atom/
ion, polarizability. The Thomas–Fermi model is also used to describe the equation
of state of highly compressed and ionized matter, has stimulated the development of
the density functional theory, and provides often a good starting point for more
complex self-consistent field calculations.

Apart the atomic structure itself, the study of the interaction of multielectron
atoms and ions with an electromagnetic field is of great practical interest due to
applications in material science, atomic physics, plasma physics, radiative proper-
ties of matter, spectroscopy. The statistical model provides the possibility of a
universal description of elementary processes (Astapenko et al. 2002, 2003) and
radiative properties (Demura et al. 2013, 2015a, b) and to extract general scaling
laws for all nuclear charges using the Thomas–Fermi density distribution nðrÞ. This
is of particular interest for the fusion science: In magnetic fusion, high-Z divertor
material (tungsten) is employed while in inertial fusion, high-Z materials (gold) are
used as a hohlraum material. The determination of the detailed atomic structure
(MCHF or MCDF) and corresponding radiative properties of these high-Z elements
is, however, very challenging. Therefore, approximate and/or general methods are
of great interest to derive the variety of requested properties. Moreover, more
general methods and scaling relations are particularly useful for implementation of
heavy element atomic physics in integrated simulations.

In the framework of the Thomas–Fermi model, the electron density distribution
of a particular element and charge state is given by
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Zn is the nuclear charge, Z the ion charge, q characterizes the ionization degree and
rTF is the Thomas–Fermi radius. The Thomas–Fermi function u x; qð Þ can be
approximated by the Sommerfeld method (Sommerfeld 1932; Gombas 1949) which
is an exact particular solution of the Thomas–Fermi differential equation:

u x; qð Þ ¼ u xð Þ � 1� 1þ z xð Þ
1þ z0 xð Þ
� �k1=k2

" #
; ð9:5Þ
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; ð9:8Þ
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p� �
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The reduced radius x0 qð Þ is determined from the boundary condition

x0
du x0ð Þ
dx

¼ �q: ð9:11Þ

In high-temperature plasma, i.e., when the ionization degree q ¼ Z=Zn is not too
low, the reduced radius can be approximated by

9.1 The Thomas–Fermi Statistical Approach 427



x0 qð Þ ¼
2:96 � 1� q

q

� �2=3

if 0:2\q� 1

6:84 � 1
q3

if q\0:05

8>><
>>: : ð9:12Þ

The ionization energy of an atom or ion is then given by

IZ ¼ Z2
nRy �

128
9p2

� �1=3

� 2 � Z
Z5=3
n � x0 q; Znð Þ

( )
: ð9:13Þ

As can be seen from (9.13), the hydrogenic approximation Z2
n � Ry of the ion-

ization potential of an ion with charge Zn is corrected via the Thomas–Fermi
electron density distribution that depends on nuclear charge and ionic charge [factor
in parenthesis in (9.13)]. The comparison of the ionization energies obtained from
(9.13) with detailed Hartree–Fock calculations shows a reasonable agreement for
heavy elements over a wide range of ionization degrees (Demura 2015a, b). We
note that certainly more accurate descriptions of the ionization potentials can be
obtained from a direct fit to the vast amount of ionization potentials in dependence
of Z and Zn (Kirillow et al. 1975):

IZ � 0:221 � Ry � 1þ Zð Þ4=3

1� 0:96 � 1þ Z
Zn

� �0:257 : ð9:14Þ

Many modifications of the Thomas–Fermi model have been proposed in order to
include shell structure, improve ionization energies, and in particular to approach the
Hartree–Fock results for the electron density distribution (Dmitrieva and Plindov
1984; Fromy et al. 1996; Dyachkov et al. 2016). Also, modifications to derive the
average degree of ionization in a dense plasma have been proposed (Ying andKalman
1989). In addition, in order to improve the studies of the interaction of multielectron
atoms with an electromagnetic field the classical kinetic Vlasov equations with
self-consistent field has been proposed (Vinogradov and Tolstikhin 1989). It leads to
improvement for the calculation of elementary processes, e.g., photoionization cross
sections, and permits the calculation of the real part of the polarizability.

In the further developments to improve the statistical approach, one must not
lose sight of the requirement that the fundamental equations of the statistical model
of atoms, including the various corrections terms, should not be too complicated
and, in any case, not more complicated than the basic equations of the quantum
mechanical many-body approximation, e.g., the multiconfiguration Hartree–Fock
methods. One must always bear in mind that the statistical theory of atoms is only a
rough approximation of the quantum atom, and its advantage is its extreme sim-
plicity both in structure and application to determine the electron and potential
distributions of atoms, derive elementary processes in collisional–radiative regimes,
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to shed light into the detailed atomic structure calculations (in particular for heavy
atoms) and to derive general scaling laws that could be hardly obtained otherwise. It
is this practical philosophy that we bear in mind when we consider (9.1)–(9.13) for
the statistical framework of the atom/ion and the framework of the local plasma
frequency (to be discussed further below) in order to enlarge the standard statistical
Thomas–Fermi model also to elementary collisional–radiative processes and to the
radiative properties of heavy atoms and ions in plasmas.

9.2 The Local Plasma Frequency Approximation

9.2.1 Oscillator Strengths Distribution and Photoabsorption

The response of an atom to an external field of given frequency x can be conve-
niently discussed in terms of the properties of its differential oscillator strength
distribution f xð Þ that is directly related to the photoabsorption cross section of the
atom:

r xð Þ ¼ 2p2e2

mec
� f xð Þ: ð9:15Þ

The function f xð Þ may be considered to comprise all the fundamental infor-
mation on the quantum dynamics of atoms, but its quantum mechanical calculation
is rather challenging and laborious. The distribution of the local atomic density
determines a variety of elementary excitations with the classical plasma frequency.
Concerning the Zn- and frequency-dependence, we can identify three regions of
interest. In the low-frequency range, where

0� �hx
Ry

� 1; ð9:16Þ

the function f xð Þ essentially consists of the sharp lines familiar from optical
spectroscopy separated by frequency ranges of low absorption while it changes
irregularly with Zn and reflects in its details the atomic binding. In the
high-frequency range, where

�hx� Z2
nRy; ð9:17Þ

the function f xð Þ exhibits characteristic X-ray absorption edges. In the intermediate
frequency range, where

1� �hx
Ry

� Z2
n ; ð9:18Þ
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the contribution from intermediate shells of the atom is expected to overlap strongly
and f xð Þ becomes a smooth function on frequency. In this regime, excitations from
intermediate atomic shells can be coupled rather strongly: new collective reso-
nances of the atom as a whole become possible and a statistical approximation
should apply best to the dynamics of the atom.

In the framework of the statistical approximation, the spectral distribution
function f xð Þ is derived from the general dynamic equations describing the density
fluctuations induced in the atom by an external field. Using a local form of this
framework, it is found that coherences between the motion in different parts of the
atom causes modifications in f xð Þ that can be formulated in terms of a dispersion
denominator that identifies enhanced absorption as collective resonances of the
atom as a whole (Brandt and Lundqvist 1965). The oscillation frequency is
determined by the well-known formula for the electron plasma frequency

x rð Þ ¼ xp rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2ne rð Þ

me

s
; ð9:19Þ

where ne rð Þ is the local atomic electron density. xp rð Þ is called the local plasma
frequency LPF (see also Sect. 2.6). Comparison with the more general Vlasov
approach shows that the LPF model does not take into account the polarization field
induced by the external perturbation of the atomic electron density distribution
(Vinogradov and Tolstikhin 1989). However, it turns out that the discrepancy
between the LPF-statistical model for the photoionization cross sections is within
the accuracy of calculations of radiative and collisional processes for multielectron
ions by standard quantum mechanical codes and population kinetics (to be dis-
cussed below).

9.2.2 Fermi Equivalent Photon Method and Local Plasma
Oscillator Strength

The interaction of the plasma electrons with a heavy atom can be considered within
the framework of the Fermi approximation of equivalent photons (see Sect. 5.1).
The electric field of the equivalent photon flux is determined by the Fourier
expansion of the electric field of an electron, moving along with the classical
trajectory in the field of the ion being excited. In this formulation, for example, the
excitation of bound electrons in a multielectron ion is expressed in terms of the
photoabsorption cross section of (9.15).

In quantum mechanics of atoms, almost all plasma physics relevant atomic
characteristics can be approximated or expressed via the dipole oscillator strengths
(see also Chaps. 2 and 7). It is therefore of particular interest for the generalization
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of the applications of the plasma atom to derive an “effective plasma oscillator
strengths.” The determination of the classical oscillator strength follows from the
correspondence principle (see also Chap. 2). In fact, if we consider the atom as a
classical oscillator with an eigenfrequency equal to the local plasma frequency, we
can readily derive its response on periodic (harmonic) perturbations. This deter-
mines the dynamic response of the classical oscillator and via correspondence with
the quantum radiation emission we can identify a “plasma oscillator strength.”

The simplest relation between the induced dipole moment and the local electrical
field is given by

~pinduced ¼ a �~Elocal ð9:20Þ

(Note that the polarizability according to (9.20) is related to the quadratic Stark
constant, see Sects. 7.4.2, 7.8.2). In the classical description, the frequency
dependence of the oscillating atom under the action of a local electric field is given
by

me � €~xþme � c � _~xþme � x2
0 �~x ¼ q �~Elocal � exp �ixtð Þ; ð9:21Þ

where ~x is the amplitude, m the mass, c the damping constant, x0 the eigenfre-
quency of the oscillator, i.e., transition frequency, q the electric charge, and x is the
frequency of the local oscillating electric field. The stationary solution of (9.21) is
given by

~x tð Þ ¼ 1
x2

0 � x2 � icx
� q
me

�~Elocal � exp �ixtð Þ: ð9:22Þ

Because the induced dipole moment is given by

~pinduced ¼ q �~x tð Þ; ð9:23Þ

we obtain with the help of (9.20), (9.22), (9.23) for the dynamic polarizability

a xð Þ ¼ q2

me
� 1
x2

0 � x2 � icx
: ð9:24Þ

Generalizing (9.24) to several oscillation frequencies, we obtain

a xð Þ ¼ q2

me
�
X
n

1
x2

0n � x2 � ic0nx
: ð9:25Þ
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If we separate the dynamic polarizability (9.24) in the real and imaginary part,
i.e.,

a xð Þ ¼ <e að Þþ i=m að Þ; ð9:26Þ

we obtain
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me
�
X
n

x2
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x2
0n � x2

	 
2 þ c20nx
2
; ð9:27Þ

=m að Þ ¼ q2

me
�
X
n
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x2
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2 þ c20nx

2
: ð9:28Þ

For x ¼ 0; the real part of the polarizability (9.25) corresponds to the static
polarizability because the imaginary part (9.28) vanishes. In the local plasma fre-
quency model, (9.25) has to be transformed to the continuous case (see also
Sects. 2.3–2.6). In the spherical shell of thickness dr; we encounter a confined
charge of quantity dq ¼ e � 4pneðrÞ r2dr and we obtain instead of (9.25):

a xð Þ ¼ 4pe2

me
�
ZRatom

0

ne rð Þr2dr
x2

0n � x2 � ic0nx
; ð9:29Þ

where Ratom is the size of the atom. From (9.29), it follows with (9.19)

a xð Þ ¼
ZRatom

0

x2
p � r2 � dr

x2
0n � x2 � ic0nx

: ð9:30Þ

Equation (9.29) can be readily compared with the quantum mechanical result for
the polarizability, i.e.,

a xð Þ ¼ e2

me
�
X
n

f0n
x2

0n � x2 � ic0nx
ð9:31Þ

from which it follows that the term 4pneðrÞr2 dr can be interpreted as a local
strengths in the LPF model, i.e., the local plasma oscillator strength

fpðrÞ ¼ 4pneðrÞr2 dr ¼ fij: ð9:32Þ

The plasma oscillator strengths fpðrÞ are a central plasma atomic property that
allows to deal with collisional–radiative elementary processes that are usually
expressed in terms of the oscillator strengths fij for the transition i ! j. The
Regemorter formula of electron collisional excitation according to (5.90)–(5.94) is
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a typical example. In the LPF model, the indexes i; j are represented by the radial
coordinate r and the radial interval dr [see right part of (9.32)]. From (9.32), it
follows immediately that the plasma oscillator strengths fulfills the sum rule, i.e.,Z

dfij ¼ Zn � Z ¼ NðboundÞ
e : ð9:33Þ

9.3 Radiative Losses

9.3.1 General Relations

At low-density conditions, collisional excitation from the ground state to excited
states decays readily by spontaneous radiative transitions (Corona model, see also
Chap. 6) and the radiation losses are therefore determined by the collisional exci-
tation rates itself. In the framework of the Fermi equivalent photon method, the
radiation loss can therefore be expressed in terms of the photoexcitation rates in the
field of equivalent photons (Demura et al. 2013, 2015a):

Q ¼ nðfreeÞe

ZI=2ZnRy
0

dsRy � rphðsÞ � dIðCoulombÞðsÞ
ds

� �
E

¼ nðfreeÞe
4a0c Ry2ffiffiffiffiffiffi
3p

p � e2 �
ffiffiffiffiffiffiffiffiffiffi
Z2
nRy
kTe

s
�
ZI=2ZnRy
0

ds � rphðsÞ �
Z1

2RyZn
kTe

�s

du � e�u � gðs; uÞ
ð9:34Þ

with

s ¼ �hx
2Zn � Ry ; ð9:35Þ

u ¼ E
kTe

; ð9:36Þ

where a0 is the Bohr radius, c the speed of light, e the electron charge, Ry the
Rydberg energy, kTe the thermal electron energy, ne

(free) is the free electron density
(note, that the atomic electron density is designated with ne(r)), I is the ionization
potential of the ion with charge Z; and nuclear charge Zn, rph is the photoexcita-
tion–photoionization cross section, dIðCoulombÞðsÞ=ds �

E is the intensity of equiva-
lent photon flux per unit of reduced frequency interval ds averaged over the energy
E of the electron projectile scattered by the target and gðs; uÞ is the Gaunt factor,
describing the curvature of electron trajectory under its motion in the self-consistent
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field of the heavy ion or atom. In the Coulomb approximation, the Gaunt factor
becomes a function of the unique variable (Kogan et al. 1992):

m ¼ Zeff � Zn � Ry
kTe

� �3=2

� s
u3=2

; ð9:37Þ

g mð Þ ¼ p
ffiffiffi
3

p

4
� imHð1Þ0

im ðimÞ � Hð1Þ
im ðimÞ

n o
�

ffiffiffi
6

p

p
� ln 2

cm

� �1=
ffiffi
2

p

þ exp p=
ffiffiffi
6

p� �" #
;

ð9:38Þ

where Hð1Þ
im ðimÞ and Hð1Þ0

im ðimÞ are Hankel functions and its first derivative with the
argument im, c is the Euler constant (c ¼ expðCÞ � 1:78).

In the local plasma frequency model, the effective charge Zeff from (9.37) is
determined from the condition of equality of the Thomas–Fermi potential and the
local Coulomb potential at the point rs ¼ xs � rTF (rTF is the Thomas–Fermi radius
from (9.3)) that corresponds to the resonance condition of (9.19) expressed in terms
of the reduced frequency s of (9.35):

Zeff ¼ Zn � u xs; qð Þþ qxs
x0

� �
; ð9:39Þ

where u xs; qð Þ, q and x are defined in (9.1)–(9.11). For low frequencies, the
effective charge is equal to the ion charge Z, while in the high-frequency limit the
effective charge is the nuclear charge Zn. These limits are typically approximately
approached for s\0:1 (low-frequency limit) and s[ 30 (high-frequency limit).

Taking into account only bound states, the first integration over frequencies in
(9.34) extends up to the ionization threshold of the ion with charge Z while the
second integration over energies of the incident electron corresponds to the exci-
tation thresholds of atomic transitions in the statistical model. In the
LPF approximation, the photoabsorption cross section is given by (see also (3.136)
and (Rosmej et al. 2020a))

rph xð Þ ¼ 2p2e2

mec
� 4pr2x � neðrxÞ

dxpðrÞ
dr

����
����

ð9:40Þ

or, expressed in terms of the Thomas–Fermi electron density:

rph xð Þ ¼ pa20 �
3p3e2

16�hc
� s � x2s � uðxs; qÞ
u0ðxs; qÞ � uðxs; qÞ=xsj j : ð9:41Þ

Inserting (9.41) into (9.34), we obtain the final expression for the radiation loss
in the Corona limit:
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ffiffiffiffiffiffi
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4
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ffiffiffiffiffiffiffiffiffiffi
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nRy
kTe

s
�
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0

s � x2s � uðxs; qÞ � ds
u0ðxs; qÞ � uðxs; qÞ=xsj j

�
Z1

2RyZn
kTe

�s

du � e�u � gðs; uÞ:
ð9:42Þ

The radiation losses determined by (9.42) have been compared with detailed
collisional–radiative modeling of tungsten over a wide range of temperatures
(Demura 2015a), and it is found that (9.42) reproduces the rise of the radiation loss
at small temperatures as well as the minima and maxima in the emission (that
corresponds to the shell structure) at intermediate temperatures and the decrease at
very high temperature. As concerns the absolute values of radiation loss, it is found
that reasonable agreement is obtained setting gðs; uÞ � 2. At low temperatures,
however, the agreement is limited because the Corona model is not quite valid due
to the proximity of levels in low charged ions. Finally, we note that in order to
compare (9.42) with the detailed collisional–radiative modeling it is necessary, to
sum up the emission from (9.42) for every charge state and multiply with the
respective relative population (normalized to one) of this charge state.

9.3.2 Density Effects

The Corona approximation of the radiation loss (9.42) described above is valid in the
low-density high-temperature limit. As density increases and temperature decreases,
the Corona approximation becomes invalid and has to be replaced by the general
collisional–radiative model described in Chap. 6. In order to establish more general
expressions for the radiation loss in the framework of the local plasma frequency
approximation, let us first consider the Boltzmann limit (i.e., high-density limit). In the
Boltzmann limit, direct and inverse processes are related to the principle of detailed
balance that contains in the local plasma frequency approximation an equivalent
Boltzmann exponential factor with the plasma frequency, i.e., expð�hxP=kTeÞ.

Let us begin with the radiative terms expressed via the Einstein coefficients and
the Fermi equivalent photon method. The Einstein coefficients describing the
emission probability in terms of the emission oscillator strengths fif of particular
transitions i ! j are given by

Aij ¼ �2
e2

mc3
x2 fij: ð9:43Þ

The oscillator strengths in emission fif\0 and absorption fji [ 0 are connected
by the well-known relation
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�gi fij ¼ gj fji: ð9:44Þ

We also need to evaluate the contribution of induced emission or absorption,
using correspondingly the following relations for the Einstein coefficients of
induced emission

Bij ¼ p2c3

�hx3 Aij ð9:45Þ

and induced absorption

Bji ¼ gi
gj
� p

2c3

�hx3 Aij: ð9:46Þ

Let NEQPðxÞ the EQP number for a given frequency x per unit frequency
interval, Bij � NEQPðxÞ and Bji � NEQPðxÞ are the stimulated de-excitation and
excitation rates corresponding to the EQP flux. Then from the equality for the direct
and reverse processes, we obtain

Bij NEQPðxÞNi ¼ Bji NEQPðxÞNj; ð9:47Þ

where Ni; Nj are the populations of levels i; j. For the Boltzmann distribution of
level populations, i.e.,

Ni ¼ Nj exp½��hxij=kTe� ð9:48Þ

we obtain the following relation between direct and reverse processes

Bij NEQPðxÞ exp½��hxij=kTe� ¼ Bji NEQPðxÞ: ð9:49Þ

On the other hand, the excitation rate under the influence of the EQP flux could
be represented as the photoexcitation rate in terms of the photoabsorption cross
section. The probability of induced radiation is determined by the product of the
Einstein coefficient for induced radiation BijðxÞ and the radiation energy density
UrðxÞ (erg/cm3) with the polarization r. It is connected with the integral over solid
angles X of the radiation spectral intensity Irðx; kÞ with polarization r in the
direction, determined by the wave vector ~k and divided by the speed of light c:

Z
dx � UrðxÞ � BijðxÞ ¼

Z
dx � UrðxÞ � p

2c3

�hx3 � AijðxÞ

¼
Z

dx
1
c

Z
dX Irðx;~kÞ

� �
� p2c3

�hx3 � AijðxÞ:
ð9:50Þ

Assuming that the electrons have an unpolarized isotropic Maxwellian veloc-
ity distribution, the intensity of the EQP flux in the frequency interval
ds ¼ dx � ð�h=2Zn � RyÞ (see (9.35)) produced in the elastic scattering of the electron
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flux nðfreeÞe � te (te is the electron thermal velocity of the free electrons) by the
Coulomb center and averaged over the electron energy distribution could be
expressed as

Z
dX Irðx;~kÞ

� �
� dx ¼

Z
dX IðxÞ

� �
� dx

¼ nðfreeÞe � 4a0cRy
2ffiffiffiffiffiffi

3p
p � e2

Z2
nRy
kTe

� �1=2 Z1
2RyZn
kTe

� s

du exp½�u� g s; uð Þ

2
6666664

3
7777775
� ds:

ð9:51Þ

The photoabsorption cross section in the plasma model is given by (see also
(3.135))

rabs xð Þ ¼ 2 p2e2

me c

Z
ne rð Þ � d x� xp rð Þ	 
 � d3r: ð9:52Þ

The integral in (9.52) is the sum over the oscillator strengths of all transitions, while
a separate transition could be represented through the differential d3r [see also
comments related to (9.31)]:

drabs xð Þ ¼ 2 p2e2

me c
ne rð Þ d x� xp rð Þ	 


d3r: ð9:53Þ

Let us now derive the probability of EQP induced absorption within the LPF
model with the help of (9.43)–(9.53). We first transform the Einstein coefficient for
induced radiation to the LPF model with the help of (9.19), (9.33), (9.43)–(9.51):

Bij ¼ p2c3

�hx3 Aij ¼ 2p2e2

mex
neðrÞ d3r � d½x� xpðrÞ� � dx: ð9:54Þ

From (9.54), we obtain the Einstein coefficient of spontaneous emission:

AijðxÞ ¼ 2
e2

mec3
x2 neðrÞ d½x� xpðrÞ� d3r � dx: ð9:55Þ

Therewith all Einstein coefficients could be represented in the statistical model in
terms of the integral operators like in (9.52)–(9.55).

Then, in the two-state approximation for each pair of levels, we derive a pop-

ulation density balance equation for arbitrary free electron density nðfreeÞe , equating
the excitation rate via the EQP photoabsorption (from the lower state j) to the
de-excitation rate via the spontaneous and EQP-induced radiative decay (from the
upper state i):
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2a30ffiffiffiffiffiffi
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p Ry
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� �1=2 xa

xpðrÞ
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2
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3
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p Ry
kTe
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þ 2e2
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#

with

spðrÞ ¼ xpðrÞ
Znxa

; ð9:57Þ

xa ¼ 2Ry
�h

; ð9:58Þ

uminðrÞ ¼ �hxpðrÞ
kTe

: ð9:59Þ

Note that nðfreeÞe is the total electron density of the free electrons that are scattered
by the atom while neðrÞ is the bound atomic electron density. Then the excited state
population Ni depends on density and is expressed via the lower state one Nj as
follows

NiðrÞ ¼ NjðrÞ �
R1
uminðrÞ e

�ug spðrÞ; u
	 


du

euminðrÞ
R1
uminðrÞ e

�ug spðrÞ; u
	 


duþ
ffiffiffiffiffiffiffiffiffiffiffiffi
3pkTe

p

nðfreeÞe p2a30
ffiffiffiffiffiffi
Ry

p � e2

mec3
� x

3
pðrÞ
x2

a

:

ð9:60Þ

From (9.60), we can see that it generalizes (9.48) for arbitrary densities. If the

free electron density nðfreeÞe is very large, the second term in the denominator of
(9.60) is very small compared with the first term and we obtain

NiðrÞ ¼ NjðrÞ � exp �uminðrÞð Þ ¼ NjðrÞ � exp � �hxpðrÞ
kTe

� �
: ð9:61Þ

According to (9.19), the plasma frequency depends on the atomic density;
therefore, according to (9.61) the Boltzmann relation NiðrÞ=NjðrÞ of levels depends
on radius. The radiation losses due to the transitions i ! j (corresponding to the
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local emission in the LPF model) can then be presented as an integral over fre-
quencies using (9.55):Z

Qijðx; rÞ � dx ¼
Z

�hx � NiðrÞ � Aijðx; rÞ � dx

¼ 2�he2

mec3
� NiðrÞ � x3

pðrÞ � neðrÞ � d3r:
ð9:62Þ

In order to obtain the radiation loss for one ion with nuclear charge Zn and
charge state Z; we express the excited state density in terms of the ground state
density to relate the radiative emission to a certain number of ions in the spherical
shell at radius r with thickness dr. Assuming that the excited state densities are
negligible compared to the ground state densities, we can assume that

P
j Nj � NZ

where NZ is the total density of ions with nuclear charge Zn and charge state Z.
Next, the total radiation loss QðZn; ZÞ is obtained from the sum of the contributions
from all possible transitions. In the statistical model, the summation over contri-
butions from the different transitions i ! j consists in summing over the level
populations Nj of different levels and integration over d3r. Therefore, the total
radiation losses QðZn; ZÞ in the framework of an effective two-state approximation
plasma model and Coulomb center effective charge take the form:

QðZn; ZÞ ¼ 2�he2

mec3
�
X
i

ZRatom

0

NiðrÞ � x3
pðrÞ � neðrÞ � d3r: ð9:63Þ

Substituting (9.60) into (9.62) and switching to the Thomas–Fermi dimension-
less reduced radius x and expressing neðxÞ and xpðxÞ via the Thomas–Fermi
function uðx; qÞ (e.g., (9.5)), we obtain a generalized analytical formula for the total

radiation loss per ion for arbitrary free electron density nðfreeÞe and electron tem-
perature Te:

Q Zn; Zð Þ
NZ � nðfreeÞe

¼ 4RyZ3xa

nðfreeÞe

e2

�hc

� �3 128
9p2

� �3=2

�
Zx0ðqÞ
0

x2 � uðx; q
x

� �15=4

� GðxÞ � RðxÞ dx

ð9:64Þ

with

GðxÞ ¼
Z1

uminðxÞ

e�u � gðx; uÞ � du; ð9:65Þ
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RðxÞ ¼ 1R1
uminðxÞ e

uminðxÞ�u � gðx; uÞ � duþD x; nðfreeÞe ; Te; Zn; q
� � ; ð9:66Þ

D x; nðfreeÞe ; Te; Zn; q
� �

¼ 1
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� e2
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ffiffiffiffiffiffiffiffiffiffiffiffi
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; ð9:67Þ

gðx; uÞ ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffi
Z2
effRy
kTe

s
� uminðxÞ
2u3=2

0
@

1
A; ð9:68Þ

uminðxÞ ¼ Zn � 128
9p2

� �1=2

� uðx; qÞ
x

� �3=4

� 2Ry
kTe

� �
: ð9:69Þ

Note that in (9.64)–(9.69), we have employed for consistency the Thomas–Fermi
model for the ionization potential (9.13). In the limit of low free electron densities,
(9.64)–(9.69) reproduce the result for the corona equilibrium; while in the opposite
limit of high densities, the result corresponds to the Boltzmann distribution of
atomic level populations.

The radiation losses of tungsten ions calculated from (9.64)–(9.69) are presented
in Fig. 9.1 for different values of free electron density: 1014, 1016, 1018, 1020 cm−3.
It is seen in Fig. 9.1 that these radiation losses are strongly suppressed with increase
of plasma density in the region of low temperatures. This actually corresponds to
the Boltzmann distribution of populations of excited states. When the second term

Fig. 9.1 Comparison of
radiation losses from tungsten
ions within the universal
statistical approach with the
numerical data from the
AIM-ADPAK and ADPAK
models
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D x; nðfreeÞe ; Te; Zn; q
� �

(9.67) in RðxÞ from (9.66) (that corresponds to spontaneous

emission), is much larger than the first one (corresponding to collisional
de-excitation), we return to the results of the corona limit, shown in Fig. 9.1 by the
solid black curve. In the opposite limit, when the de-excitation rate is much larger
than the rate of spontaneous emission, (9.62)–(9.67) take the form:

Q Zn; Zð Þ
NZ � nðfreeÞe

¼ 4RyZ3xa

nðfreeÞe

e2

�hc

� �3 128
9p2

� �3=2

�
Zx0ðqÞ
0

x2 � uðx; q
x

� �15=4

� e�uminðxÞ dx:

ð9:70Þ

This limit in the statistical approach is represented in Fig. 9.1 by “dashed-dot”
curves for various densities 1014, 1016, 1018, 1020 cm−3. Such dependence corre-
sponds to a near exponential increase of Q in the Boltzmann limit versus increasing
electron temperature Te. Asymptotically the “dotted” curves approach the
Boltzmann limit at lower temperatures and the coronal limit at higher temperatures.
This behavior is physically transparent. At low temperatures, the collisional
de-excitation rate coefficients are rather high. Then, with density increase the
de-excitation rates become larger than the spontaneous radiative decay, establishing
the Boltzmann type of equilibrium. On the other hand, for large temperatures, the
de-excitation rate coefficients decrease and then, with sufficiently low densities, the
de-excitation rates become smaller than the spontaneous radiative decay rate. In this
way, the coronal distribution of atomic populations is restored.

Let us now compare the results for the radiation loss calculated with the sta-
tistical approach with the detailed collisional–radiative model (see Chap. 6).
Figure 9.1 depicts the results from collisional–radiative model calculations for
tungsten (Kogan et al. 1992; Summers 1994; Post et al. 1977, 1995), blue crosses
and solid blue curve indicated as “AIM-ADPAK”. As already discussed in relation
with the corona approximation of (9.42), the comparison of the total radiation losses
with different models requests to sum up the line emission for every charge state.
This implies a need for the calculation of the ionic charge state distribution (see also
Chap. 6) to properly weight the radiation emission for each charge stage. In order to
compare the statistical model of (9.64)–(9.69) with detailed collisional–radiative
models, we employ the charge state distribution proposed by Post (1977). It can be
seen that the corona limit of the universal statistical approach (9.64)–(9.69) pro-
vides a reasonable approximation of the radiation losses within a factor of two in
the temperature interval from about 50–30.000 eV. For lower temperatures, the
emission peak near about 20 eV is not well reproduced. In this temperature range,
the atomic configurations are very complex and important deviations from the
corona model are encountered as discussed in relation with (9.70). It should be
noted that the precise determination of the ionic populations and the total loss rates
for heavy elements in dependence of temperature and density is a very complex
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problem that is controversy discussed up to present days in particular if M- and N-
shells are involved (Beiersdorfer et al. 2012; Scott and Hansen 2010; Piron et al.
2017). For example, average charge states Zh i of gold at about 1 keV temperature
at densities around 1021 cm−3 may differ as much as 10 for different calculations
(Scott and Hansen 2010) while it should be remembered that a change in average
charge state of only DZh i ¼ 1 results in an entirely different spectral distribution.
Moreover, high precision experiments are likewise very difficult, as independent
temperature, density, and charge state measurements are requested. For demon-
stration, Fig. 9.1 contains the experimental measurement of the radiation loss of
tungsten (Pütterich et al. 2010). The experimental error bars are of the same order as
the differences of different model calculations (Demura et al. 2015a; Pütterich et al.
2010).

Radiation loss related to radiative recombination and dielectronic recombination
is much lower than the total radiation loss in the depicted temperature interval
(Pütterich et al. 2010). Although the direct radiation loss related to dielectronic
recombination is not very important for the total radiation loss, it is very important
for the correct account of the ionization charge state distribution that in turn
influences on the total radiation loss.

The statistical model for arbitrary density according to (9.64)–(9.69) represents
therefore a useful approximation of the radiation loss for each charge state. Due to
the Thomas–Fermi model approximation, (9.64)–(9.69) provide a generalized
unified analytical description of the radiation loss for any heavy ion and allow to
study in a transparent manner several physical properties of the line radiation loss.
However, currently there exists no well-established theory to extend the statistical
model to a generalized analytical description that includes also the ionic charge
state distribution (resulting in a self-consistent total radiation loss calculation).
Below, we discuss their essential ingredients, namely the statistical approach to
ionization and dielectronic recombination.

Finally we note that for very high densities, the Thomas–Fermi atom size can
become comparable of the ionic interparticle distance, such that the boundary
condition at the periphery of the atomic electron density distribution could change.
This would change the behavior of the distribution itself. This effect is strongly
related to the ionization potential depression discussed in Chap. 8 and Annex A.4
and not specific to the statistical model but related to all types of collisional–
radiative modeling.

9.4 Statistical Ionization Cross Sections and Rates

We now show that the statistical approach allows one to obtain the expressions for
the total electron impact single ionization cross sections of multielectron ions and
related ionization rates. Indeed, instead of the intensity of equivalent photons we

can operate with the number of equivalent photons
dNðxÞ
dðx=xaÞ at given frequency x
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in the unit frequency interval dx in unit time interval at the fixed incident electron
energy E, which in the dimensionless form could be determined by the expression
(compare with (9.40), (9.41))

dNðxÞ
dðx=xaÞ ¼

c�h
e2

� �
� 1

2
ffiffiffi
3

p � xa

x
� Ry

E

� �
� g Z;

Ry
E

� �3=2

;
x
xa

; Zn

 !
: ð9:71Þ

Multiplying the number of EQP (9.51) by the photoionization cross section and
integrating over s from the reduced ionization potential IZ=ð2RyZnÞ up to the
reduced energy of electron projectile E=ð2RyZnÞ, we arrive in the Coulomb
approximation (9.37), (9.38) to the following expression for the electron ionization
cross section

ri Eð Þ ¼ p4a20
ffiffiffi
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32
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�
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�s
" #

� x2suðxs; qÞ � ds
u0ðxs; qÞ � uðxs; qÞ=xsj j :

ð9:72Þ

The corresponding statistical ionization rates are obtained by averaging the
ionization cross section of (9.72) over the Maxwellian energy distribution. This can
conveniently be performed by changing the sequence of integration and firstly
integrate over energies of the incident plasma electrons. This average concerns in

fact only the total flux of EQP number neffe te
dNðxÞ
dx

(nðfreeÞe is the plasma electron

density, and te is the corresponding thermal electron velocity). Then, the ionization
rate could be expressed as

RiðZn; q; TeÞ ¼ nðfreeÞe
a30xap3
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ð9:73Þ

where m is defined by (9.37).

9.4 Statistical Ionization Cross Sections and Rates 443



Figure 9.2 shows the ionization cross section for an open 4f-shell of a heavy
element, the tungsten W9+ ion, calculated with the statistical model of (9.72). Also
presented in Fig. 9.2 are the experimental data from (Stenke et al. 1995) and
relativistic excitation–autoionization distorted wave calculations (Loch et al. 2005).

Figure 9.2 demonstrates that the statistical model describes the experimental
data within a factor of two from threshold to high energies. The threshold for heavy
elements requests particular attention because excitation–autoionization as well as
excitation from metastable levels is of importance. It is very cumbersome to include
all necessary excitation–autoionization channels in a fully quantum approach, as
branching factors (for radiative and autoionization decay) have to be involved. In
this respect, the statistical model is very convenient because the statistical model
includes both direct and indirect contributions to ionization. Moreover, it is likewise
difficult in experiment, to measure pure direct excitation cross sections because the
electron beam results likewise in the excitation of metastable levels (highly pop-
ulated) from which ionization can also proceed.

Let us now consider ionization rates from open 4d-shell and open 4p-shell
configurations of Xe12+ and Xe20+, respectively, and compare the statistical ion-
ization rate coefficients of (9.73) with quantum mechanical calculations in the
Coulomb–Born exchange approximation of the direct ionization rate using
Vainshtein’s ATOM code (Vainshtein and Shevelko 1986; Sobelman and
Vainshtein 2006; Povyshev et al. 2001).

As can be seen from Fig. 9.3, also quite good agreement between the statistical
model and the quantum calculation are obtained. For low electron temperatures, i.e.,
when the effective ionization cross sections are near threshold, the quantum cross
sections provide systematically lower rates than the statistical model because the
depicted quantum calculations do include only the direct cross section.

Numerous comparisons with experimental data and different methods of rather
complex quantum mechanical ionization cross sections have been performed
(Demura et al. 2015b) and it is found that the statistical approach to ionization cross
sections constitutes an efficient and rather precise method for heavy elements and
permits easily inclusion of direct and indirect ionization contributions.

Fig. 9.2 Comparison of the
ionization cross section of
tungsten W9+ ions with
experimental data (Stenke
et al. 1995) and complex
collisional excitation–
autoionization distorted wave
calculations (Loch et al. 2005)
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9.5 Statistical Dielectronic Recombination Rates

Dielectronic recombination (see also Chap. 5 and review (Rosmej et al. 2020b)) is
the most effective recombination channel in electron–heavy ion collisions. Due to
the complex electronic structure of multielectron ions, the proper account of all
necessary channels is a very difficult task, in particular for open shell configura-
tions. In addition, in dense plasmas, dielectronic capture might effectively proceed
from excited states (see also Chap. 5) that considerably increases the quantum
channels for the dielectronic capture. Moreover, in heavy ions, numerous meta-
stable states may play the role of excited states even in rather low-density plasmas,
thereby increasing the numerical complexity of fully quantum calculations con-
siderably. At present, the dielectronic recombination of heavy ions is still under
controversial discussion and is one of the main sources of discrepancies between
different methods of calculations for radiation loss and ionic charge state distri-
butions. It is therefore of great interest to develop different methods for the cal-
culation of the dielectronic recombination in heavy ions that permit more general
studies including the analysis of scaling laws. As has been demonstrated in the
foregoing paragraphs, the statistical approach provides reasonable approximations
not only for the atomic structure, but for the calculations of elementary processes
too. We are therefore seeking to extend the approach of the local plasma frequency
approximation also to the dielectronic recombination.

9.5.1 General Formula

The general formula for the total dielectronic recombination rates DR can be written
as Sobelman and Vainshtein (2006)

Fig. 9.3 Comparison of the ionization cross section of Xeon ions with the quantum mechanical
calculations in Coulomb–Born exchange approximation for the direct ionization rate
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QDRðTÞ ¼ 4pRy
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� �3=2
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gi

�WR �
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WAðn; lÞ
WR þWAðn; lÞ � exp � �hx

kTe
þ Z2

i Ry
n2kTe

� �� �
;

ð9:74Þ

where kTe is the electronic temperature in [eV], Ry ¼ 13:61 eV, gi and gf are the
statistical weights of the initial and final states of the atomic core, respectively. WR

is the radiative transition probability inside the core, WA is the autoionization decay
rate of an excited atomic energy level, �hx is the transition energy inside the core, Zi
is the ion charge, a0 is the Bohr radius, and n; l are the principle and orbital quantum
numbers of the captured electron, respectively. The radiative decay rate is expressed
simply in terms of the oscillator strength fij for the transition inside the core (c is the
speed of light):

WR ¼ 2x2fif
c3

: ð9:75Þ

In order to obtain the expression for the autoionization decay rate WAðn; lÞ, we
use a relationship between the decay rate WAðn; lÞ and the partial electron excitation
cross section rexðlÞ at threshold in the semiclassical representation. The quantities
WAðn; lÞ and rexðlÞ describe the mutually inverse processes, so the relationship
between them can be obtained from the detailed balance (see also Sect. 7.7.2)
between ions XZi þ 1 and XZi . Thus, we obtain

ð2lþ 1ÞgfWAðn; lÞ ¼ Z2
i

n3
xgi

rexðlÞ
p2a20

: ð9:76Þ

The electron excitation cross section in the semiclassical approximation takes the
form

rexcðlÞ ¼ 8p
3

�h
mete

� �2gf
gi
fifZ

�2
i ðlþ 1=2Þ2G xðlþ 1=2Þ3

3Z2
i

 !
; ð9:77Þ

where the function GðuÞ is given by (K1=2 and K3=2 are the Mcdonald functions)

GðuÞ ¼ u � K2
1=3ðuÞþK2

2=3ðuÞ
� �

: ð9:78Þ

Taking into account that the essential values of the argument of the GðuÞ function
are never close to zero, it is possible to replace GðuÞ by its asymptotic expansion:

G uð Þ � 3:4 � expð�2uÞ: ð9:79Þ
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Within these approximations, the autoionizing decay rate takes the form:

WAðn; lÞ ¼ 0:72 � xðlþ 0:5Þfij
n3

� exp � 2xðlþ 0:5Þ3
3Z2

i

 !
: ð9:80Þ

The sum of the oscillator strengths satisfies the Thomas–Reiche–Kuhn sum rule, i.e.,

Nbound
e ¼

X
f

fif : ð9:81Þ

As discussed in the foregoing paragraphs, the oscillator strengths in the statistical
model are expressed in terms of the atomic electron density neðr; q; ZnÞ (9.32) and
the statistical sum rule is given by ðNbound

e is the total number of bound electrons)

Nbound
e ¼

Z
neðr; q; ZnÞdV : ð9:82Þ

The application of the semiclassical statistical model to the general formula
(9.72) for the total DR is achieved by application of the relationships

X
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Zr0
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p
: ð9:84Þ

After all substitutions, we obtain for the DR rates:

QDRðcm3=sÞ ¼ 0:61� 10�8 � QDRða:uÞ; ð9:85Þ
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xðxÞ ¼ 1:2 � Zn � uðxÞ
x

� �3=4

ð9:88Þ

with Teða:u:Þ ¼ TeðeVÞ=27:21 and t ¼ n=n1, where n1 is a minimal possible
quantum number. n1 is the lowest level, on which electron capture is possible and
corresponds to an energy of an incident electron Ei

Ei ¼ x� Z2
i

2n2
ð9:89Þ

that is equal to zero, i.e.,

0 ¼ x� Z2
i

2n21
: ð9:90Þ

From (9.90), it follows

n1 ¼ Ziffiffiffiffiffiffi
2x

p : ð9:91Þ

9.5.2 Orbital Quantum Number Averaged Dielectronic
Recombination Rates

In the simplest version of the statistical model, the atomic density, excitation
energies, and oscillator strengths do not depend on the orbital momentum quantum
number l. If we average the branching factor over orbital momentum we obtain for
the total dielectronic recombination rate:
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ð9:92Þ

where the function Aðx; lÞ is given by (9.87), (9.88). Instead of averaging over the
branching factor, we may investigate averaging the autoionization decay rate ³ from
(9.80) over orbital quantum number, i.e.,
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For the corresponding total dielectronic recombination rate, we then obtain
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9.5.3 Statistical Burgess Formula

It is of great interest to apply the statistical approach to the Burgess-Mertz formula
(Burgess 1964; Cowan 1981) for dielectronic recombination because this formula is
widely employed and cast into an entirely analytical expression (z is the spectro-

scopic symbol z ¼ Zn � NðboundÞ
e þ 1; while Zi ¼ Zn � NðboundÞ

e is the ion charge, see
also eqs. (5.138)–(5.143)):

QDR ðcm3=sÞ ¼ 10�13Bd � b3=2 � e�b�vd ; ð9:96Þ

Bd ¼ 480 fif
zv

z2 þ 13:4

� �3=2
½1þ 0:105ðzþ 1Þvþ 0:015ðzþ 1Þ2v2��1; ð9:97Þ

b ¼ ðzþ 1Þ2Ry
kTe

; ð9:98Þ

vd ¼
v

1þ 0:015
z3

ðzþ 1Þ2
; ð9:99Þ

v¼ Eif

ðzþ 1Þ2Ry : ð9:100Þ
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The statistical version of the Burgess-Mertz formula is obtained, going from the
oscillator strength in (9.97) to the electron density and from the energy difference in
(9.100) to the plasma frequency employing (9.83) and (9.84), respectively. After
transformation to dimensionless variables, we obtain:

QDRðcm3=sÞ ¼ 10�13b3=2
Zx0
0

dx � x2BdðxÞe�bvdðxÞ; ð9:101Þ

BdðxÞ ¼ 135p3

Zn
nðx; q; ZnÞ zvðxÞ

z2 þ 13:4

� �1=2 1
A xð Þ ; ð9:102Þ

AðxÞ ¼ 1þ 0:105ðzþ 1ÞvðxÞþ 0:015ðzþ 1Þ2v2ðxÞ; ð9:103Þ

vðxÞ ¼ 2

ðzþ 1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pneðx; q; ZÞ

p
; ð9:104Þ

vdðxÞ¼
vðxÞ

1þ 0:015
z3

ðzþ 1Þ2
: ð9:105Þ

9.5.4 Statistical Vainshtein Formula

Several improvements to the Burgess formula have been proposed in the literature
(see also Chap. 5). In this respect, it should be remembered that the Burgess for-
mula is of interest due to its generality and great simplicity. The main drawback of
the Burgess formula is the single channel approach that could result in considerable
overestimation of the total dielectronic recombination rate (see Sect. 5.6.2.1). The
multichannel approach requests usually complex atomic structure calculations that
are very difficult to realize for heavy atoms. One of the most efficient general
improvements of the Burgess formula including a simplified multichannel approach
has been proposed by Vainshtein (Beigman et al. 1981; Sobelman and Vainshtein
2006) (see also Chap. 5). In the single channel approach, the Vainshtein formula
can be summarized as follows:

QDR ðcm3=sÞ ¼ 10�13Bdb
3=2e

�
DEfi

T ; ð9:106Þ

Bd ¼ C0 z
n41

fif
X
n[ n1

edb
X
l\n

2lþ 1

1þ n
ns

� �3; ð9:107Þ
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ns ¼ nsðlÞ ¼ 137
n21rifðlÞ

p2a20ð2lþ 1Þfif

� �1=3
; ð9:108Þ

db ¼ z2Ry
n2kTe

; ð9:109Þ

C0 ¼ 1013
4p3=2a0�h

ð137Þ3me

z
zþ 1

� �3

¼ 0:53
z

zþ 1

� �3

; ð9:110Þ

where DEfi is the energy difference between initial i and final f levels, and rifðlÞ is
the partial excitation cross section at threshold. Implementation of the multichannel
approach results into a modification of the Bd factor, i.e.,

Bðmulti�channelÞ
d ¼ C0 z

n41
fif
X
n[ n1

edb
X
l\n

2lþ 1

Bþ n
ns

� �3 ð9:111Þ

with

B ¼
X
f 0

DEff 0

DEfi
� gf 0
gi

� rf 0fðlÞ
rifðlÞ ð9:112Þ

that results into an effective reduction of the branching factor (Beigman et al. 1981).
Undertaking the substitutions of (9.83), (9.84) and replacing the sum over nl by
integrations, we obtain from (9.106)–(9.110):

QDRða:u:Þ ¼ 13:6

T3=2
e

Zn
Zi

� �2Zx0
0

dx � x2 uðxÞ
x

� �9=4 Z1
1

dt exp �xðxÞ
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1� 1
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� �� �

�
Zlmax¼t�n1�1

0

dl

ðlþ 0:5Þ2exp � 2xðxÞðlþ 0:5Þ3
3Z2

i

 !

t3 þAðx; lÞ ;

ð9:113Þ

Aðx; lÞ ¼ 1:3� 106ðlþ 0:5Þ
exp �2xðxÞðlþ 0:5Þ3=3Z2

i

h i
Z3
i

ffiffiffiffiffiffiffiffiffiffi
xðxÞp ; ð9:114Þ

xðxÞ ¼ 1:2Zn
uðxÞ
x

� �3=4

: ð9:115Þ
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If we average (9.102)–(9.114) over the orbital angular electron momentum l and
replace the sum over l by an integration, we obtain:

QDRða:u:Þ ¼ 98:1

T3=2
e

Zn
Zi

� �2Zn
Z2
i

Zx0
0

dx � x2 uðxÞ
x

� �3 Z1
1

dt
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exp �xðxÞ

T
1� 1
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� �� �

�
Zlmax¼t�n1�1

0

dl

ðlþ 0:5Þ3 exp � 2xðxÞðlþ 0:5Þ3
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ð9:116Þ

Aðx; lÞ ¼ 5:2� 106ðlþ 0:5Þ
exp �2xðxÞðlþ 0:5Þ3=3Z2

i

h i
Z3
i

ffiffiffiffiffiffiffiffiffiffi
xðxÞp ; ð9:117Þ

xðxÞ ¼ 1:2Zn
uðxÞ
x

� �3=4

: ð9:118Þ

9.5.5 Numerical Comparison of Different Dielectronic
Recombination Models

For heavy ions, the quantum mechanical level-by-level calculations are very
complex and have so far mainly been carried out for closed shell configurations.
Only recently, also open shell configurations have been considered (Balance et al.
2010; Wu et al. 2015). In open shell configuration (such as the open 4p-, 4d-, 4f-
shells or even higher ones like the 5p-, 5d-, 5f-, 5g-shells), excitation–autoioniza-
tion channels are very complex and the overall completeness of quantum
mechanical level-by-level calculations should still be considered with care. The
analysis shows that order of magnitude disagreements can be excepted for low
temperatures while for high temperatures, different level-by-level quantum
mechanical models differ by about a factor of 2 while the Burgess-Mertz approach
may deviate by many orders of magnitude providing also an entirely inadequate
temperature dependence (Behar et al. 1996).

Let us compare first the various statistical approaches with detailed quantum
level-by-level calculations. Figure 9.4 shows statistical dielectronic recombination
rates nl-resolved according to (9.85)–(9.88), curve designated as “Statistical nl”; the
statistical DR rate with orbital average of the branching factor according to (9.92),
curve designated as “Statistical n”; the statistical approach with orbital average of
the autoionization rate according to (9.94), (9.95), curve designated as “Statistical
W(n)”; the Burgess DR rate according to (9.96)–(9.100), (9.101)–(9.105), curve
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designated as “Burgess”; the Vainshtein approach according to (9.106)–(9.110),
(9.113)–(9.115), curve designated as “Vainshtein nl”; the Vainshtein formula
averaged over orbital quantum number according to (9.116)–(9.118), curve des-
ignated as “Vainshtein n”; detailed quantum level-by-level calculations (Behar et al.
1996), curve designated as “quantum.” It can be seen that the statistical orbital
averaged method compares quite well with the detailed quantum calculations, as
does the l-averaged Vainshtein approach, in particular, these approaches describe
very well the critical low-temperature dielectronic recombination while the
Burgess-Mertz approach entirely fails in this region. Figure 9.4 demonstrates also
that the difference between the l-averaged branching factor and autoionization rate
in the statistical approach is rather small; only at very low temperatures, some
difference becomes visible.

The great advantage of the statistical model is its generality that also provides an
easy means to study scaling laws. Figure 9.5 shows the analysis of the scaling in
nuclear charge number Zn for fixed kTe ¼ 100 eV for the total dielectronic
recombination rate obtained from the various approaches discussed in Fig. 9.4. It
can be seen that the statistical l-averaged approaches as well as the l-averaged
Vainshtein approach provide a reasonable agreement with the numerical data from
complex quantum calculations.

As Figs. 9.4 and 9.5 demonstrate, the l-averaged approaches of the statistical and
the Vainshtein approach seem to correspond better with the complex quantum
mechanical level-by-level calculations, while the statistical and Vainshtein

Fig. 9.4 Comparison of
different statistical approaches
with quantum level-by-level
calculations for the Ni-like
sequence 3s23p63d10 of
tungsten W46+
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nl-approach provides systematically larger total dielectronic recombination rates.
The physical origin of this observation is difficult to explore and has not yet been
discussed in the literature. In fact, in the current statistical approaches (Leontyev
and Lisitsa 2016) multichannels as depicted by (9.111), (9.112) are not included.
Multichannels, however, as have been demonstrated in detail in Sect. 5.6.2.2 may
result in a decrease of total dielectronic recombination rate.

Below, we compare the different approaches with detailed quantum mechanical
level-by-level calculations of the dielectronic recombination rates. Figure 9.6
shows the total dielectronic recombination rates of Xenon Xe26+ and Gold Au51+

(Ni-like 3s23p63d10-configuration into which dielectronic capture proceeds) calcu-
lated with the l-averaged statistical model from (9.85), (9.93), (9.94) that employs
the Thomas–Fermi model of (9.1)–(9.13), the Burgess formula from (9.101)–
(9.105) and the quantum level-by-level calculations of Behar et al. (1996).

The statistical model compares quite well (within a factor of two) over a very
large temperature interval until very low temperatures while the Burgess approach
entirely fails to describe the total dielectronic recombination rate of heavy ions.
Similar observations are made for other isoelectronic sequences. Figure 9.7 shows a
comparison of the Sr-like and Zn-like dielectronic recombination of tungsten and a
comparison with detailed quantum mechanical level-by-level calculations (Wu et al.
2015).

Fig. 9.5 Scaling properties
in dependence of nuclear
charge Zn for kTe = 100 eV
for the various statistical
approaches compared to
quantum level-by-level
calculations for the Ni-like
sequence 3s23p63d10
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It is particular impressive that the statistical model provides a rather good
approximation of the total dielectronic recombination rate in the low-temperature
region that is numerically exceedingly difficult to treat by fully quantum
level-by-level calculations. Therefore, the statistical model in its simplest version of
(9.1)–(9.13), (9.85)–(9.91), (9.92)–(9.95) seems to provide even the possibility to
estimate the order of magnitude correctness of very complex quantum
level-by-level calculations. Moreover, it should be remembered that currently even
the most sophisticated quantum level-by-level calculations (Wu et al. 2015) have
been obtained only in the low-density limit (corona approximation) where the

Fig. 9.6 Comparison of the l-averaged statistical approach with the Burgess and quantum
level-by-level calculations for the Ni-like sequence 3s23p63d10 of Xenon Xe26+ and Gold Au51+

Fig. 9.7 Comparison of the l-averaged statistical approach with the Burgess and quantum
level-by-level calculations for the Sr-like sequence 4s24p64d2 of Tungsten W36+ and the Zn-like
sequence 4s2 of tungsten W44+

9.5 Statistical Dielectronic Recombination Rates 455



branching factors are entirely determined by radiative and autoionization decay
rates while dielectronic capture is proceeding from the respective ground states of
the various charge states only. In high-density plasmas, however, collisional
depopulation due to electron collisional ionization or collisional transfer to other
levels (in particular of high nl-levels) strongly influences on the branching factors
(see Sect. 5.6). In addition, excited states are highly populated from which very
efficient channels of dielectronic recombination may proceed (Rosmej et al. 2020b).
This may entirely change the properties of the total dielectronic recombination
because dielectronic capture into excited states can be even more important than
corresponding capture to the ground state (Sect. 5.6.3.2). This effect has explicitly
been confirmed by high-resolution X-ray spectroscopy of dense laser-produced
plasmas where it was shown that dielectronic recombination into excited states
might exceed by many orders of magnitude the corresponding dielectronic
recombination into ground states (Rosmej et al. 1998; Petitdemange and Rosmej
2013; Rosmej et al. 2020b). As for high-Z elements and open M-, N- and O-shells,
excited states might be highly populated even at rather moderate electron densities.
Therefore, all current detailed quantum level-by-level calculations to determine the
dielectronic recombination have to be considered with care with respect to the
particular application. In this respect, the properties and the innovation potential of
the statistical model look very advantageous for the determination of the total
dielectronic recombination rates for heavy elements.

Finally we note that the inclusion of more levels in the detailed quantum
mechanical level-by-level calculations may not necessarily result only in an
increase of the dielectronic recombination rate, but can also lead to a decrease as
discussed in Sect. 5.6.2.1 and described by (9.111), (9.112). Therefore, at present,
the simple above-presented statistical method compares quite well with other
available much more complex methods of calculations and has the advantage of
generality and ease of application. In addition, there is much room for improve-
ments of the statistical model via improvements of the Thomas–Fermi model
(ionization energies, l-quantum number dependence, Vlasov approach instead of
the local plasma frequency, etc.).
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