
Chapter 5
Electron–Atom Collisions

Abstract The theory of electron–atom collisions including excitation, ionization,
and recombination is presented in the framework of Fermi’s equivalent photon
method, the similarity function approach, and semi-empirical analytical formulas.
Collisional excitation is described via a quasi-classical consideration.
Dipole-allowed, dipole-forbidden, and intercombination electron transitions are
considered including intermediate coupling effects. Comparisons between different
theoretical approaches and experimental data for excitation cross-sections are
provided for various atoms and type of electronic transitions. Semi-empirical
analytical formulas for excitation, de-exciation, ionization, and three-body recom-
bination are given. Complex dielectronic recombination rates in dense plasmas are
presented with account for density and electric field effects. Extensive numerical
data for dielectronic recombination into H-, He-, and Li-like ions taking into
account multi-channel Auger and radiative decay are given for all elements with
nuclear charge Zn = 2–42 together with easy to use scaled semi-empirical formulas.
The theory of excited states coupling and collisional redistribution for dielectronic
recombination is developed.

5.1 Fermi Equivalent Photon Method

The radiative–collisional processes appear to be a wide domain for the application
of Kramers electrodynamics (KrED). These are processes in which the electron
participates while moving along a classical highly curved quasi-parabolic orbit
(Kogan et al. 1992). The most natural domain for the application of the KrED is the
physics of multicharged ions (MCI).

According to the Fermi concept (Fermi 1924) of equivalent photons (EPh), the
electromagnetic field produced by an external particle (e.g., an electron) in the
vicinity of a MCI location may be interpreted as a flux of equivalent photons
incident on the MCI. It can be shown that this description is applicable provided the
dipole approximation for describing the interaction between the bound electron of
the MCI and the incident electron of the plasma holds true. In this case, the dipole
approximation describes in an universal manner all the processes of energy loss
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induced by the incident electron (either due to radiation emission during a collision
with an ion or due to an inelastic non-radiative collision with an ion) as the pro-
cesses of the emission of real or equivalent photons. The probability of both pro-
cesses is determined by the dipole matrix element for the corresponding inelastic
(radiative or non-radiative) transition of the incident electron.

The spectral intensity distribution of the EPh may be described on the basis of
the classical radiation theory. In this case, the intensity of the EPh flux is simply
determined by the Fourier transforms of the electron coordinates determined in turn
by its classical trajectory. This approach makes it possible to treat several important
radiative–collisional processes:

(a) excitation of an ion by electron impact treated as an absorption of the EPh by
this ion,

(b) the same excitation as in a) but with subsequent re-emission of a real photon as
a resonance fluorescence of the EPh,

(c) dielectronic recombination as a resonance fluorescence of the EPh, which
results in a recombination of the incident electron.

An essential advantage of the EPh method is related to applications of purely
radiative processes to the description of non-radiative processes (both, collisional
and radiative–collisional). Several processes are of resonant character with respect
to the absorption of the EPh by the ion and of non-resonant character, for which the
intermediate state of a two-step “absorption–re-emission” process is not real and
consequently is not obeying the energy conservation law (this state is formed by the
process of virtual excitation with the energy E 6¼ �hx0, where x0 is the frequency of
a resonant transition). These non-resonant processes are known as polarization
radiation (Thytovich and Oiringel 1991) and can be treated as the non-resonant
scattering of the EPh by the ion. The polarization radiation is determined by the
dynamical polarizability of ion in the domain of non-resonant frequencies.

For the application of the Fermi method, it is necessary that effective distances
reff which are responsible for the main contribution to the inelastic collision
cross-section are much greater than the characteristic size of the bound electron
orbit. This requirement is especially well fulfilled for MCI. Let us illustrate this for
the excitation of a Dn ¼ 0 transition. The electron orbit size is of the order 1=Z (in
atomic units), transition energies DE for Dn ¼ 0 transitions in MCI are typically of
the order of Z, and the values of reff for the corresponding cross-section can be
estimated as

reff � rx¼DE=�h �ðZ=DE2Þ1=3 � Z�1=3 � Z�1: ð5:1Þ

This inequality justifies the use of the dipole approximation for the potential V of
interaction between bound and incident electrons (with space coordinate vectors ri
and re, respectively), V ¼ e2ri � re=r3e . In this framework, the static Coulomb
interaction between the bound and incident electrons transforms to the processes of
emission and absorption of the EPh by electrons, and the corresponding proba-
bilities are determined by the conventional dipole matrix elements.
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The electric field produced by the incident electron at the location r ¼ 0 of the
ion is equal to

Fð0; tÞ ¼ �ereðtÞ=r3eðtÞ; ð5:2Þ

where the dependence reðtÞ describes the classical trajectory of the incident elec-
tron. Using the equation of the motion of the incident electron in the field of the
MCI m€re ¼ �Ze2re=r3e , it is convenient to transform (5.2) into the form

FðtÞ ¼ €reðtÞm=Ze: ð5:3Þ

The spectral distribution for the EPh flux Ix of the electric field of the incident
electron can be expressed in terms of the Fourier transforms:

Ix ¼ c
4p2

1
x

jFx;xj2 þ jFy;xj2
n o

¼ cx3

4p2Z2 xxj j2 þ yxj j2
n o

; ð5:4Þ

where x and y are the coordinates of the incident electron in the plane of its motion.
The Fourier transforms of the electron space coordinates in the Coulomb field are
well known (Berestetskii et al. 1982; Landau and Lifschitz 2003; Jackson 1998).
Thus, we obtain

Ix ¼ cx2

4t4
Hð1Þ0

im ðimeÞ
h i2

� e2 � 1
e2

Hð1Þ
im ðimeÞ

h i2� �
; ð5:5Þ

where t is the electron initial velocity, Hð1Þ
im is the Hankel function, e is the orbital

eccentricity;

e ¼ 1þ 2EM2=Z2; m ¼ xZ=t3; E ¼ mt2=2; ð5:6Þ

E and M are the energy and angular momentum of the incident electron, respec-
tively. In the limit of low EPh frequencies, m � 1, the main contribution to the
spectral distribution of the EPh flux integrated over the electron impact parameters
q is due to the distance from the field center trajectories, (q � a � Z=2E), which
are nearly rectilinear, with eccentricity e � 1. In this case, (5.5) is transformed to

Ix ¼ cx=2p2t4
� �

K2
0ðxq=tÞþK2

1ðxq=tÞ
� �

; ð5:7Þ

where K0ðxÞ and K1ðxÞ are the Macdonald functions. Fermi (1924) used (5.7) to
describe atomic excitation by a rectilinearly moving particle.

For the description of the processes resulting in a loss of a considerable part of
the incident electron energy, it is necessary to consider the EPh with high fre-
quencies, namely m � 1. The main contribution to the emission of such EPh comes
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from the strongly curved electron trajectories, e� 1 � 1, which are close to the
field center, q � a. In this Kramers domain, we arrive at the result (see Chap. 3)

Ix ¼ p�2Z�2cMG0ðxM3=3Z2Þ ð5:8aÞ

with [see also (3.47)]

G0ðxÞ ¼ x K2
1=3ðxÞþK2

2=3ðxÞ
h i

: ð5:8bÞ

5.1.1 Excitation by Electron Impact as Absorption
of Equivalent Photons by an Ion

The equivalent photons method makes it possible to obtain a simple analytical
description of the collisional processes and treat them as purely radiative. Within
this framework, the excitation of multicharged ions (MCI) by electron impact may
be clearly considered as absorption of the equivalent photons (EPh) with a resonant
frequency x0 ¼ DEif=�h. The relationship between the collisional cross-section rexc
and the cross-section rabs for the absorption of the EPh can be obtained by means of
equating the number of excitation events, during the time interval dt (caused by the
collisions of the MCI with the electron flux) with a space density ne and a particle
velocity te to the corresponding number of transitions caused by the absorption of
the EPh produced by a single electron, i.e., dNexc ¼ neterexcdt. This is multiplied
by the total number of electrons in the volume dV corresponding to the time interval
dt, dV ¼ 2pqdqtedt,

dNabs ¼
Z

2pqdqnetedt
Z

dx cE2
x=4p

2�hx
� �

rabsðxÞ; ð5:9Þ

where the expression in brackets corresponds to the spectral distribution of the EPh
flux (5.4) produced by a single electron with a fixed value of the impact parameter
q. Assuming rexc ¼

R
rlexcdl for the relation of the total and partial (with respect to

the orbital quantum number l) cross-sections, we arrive at the result

rlexc ¼ 2pð�h=mteÞ2ðlþ 1=2Þ
Z

rabsðxÞ cE2
x=4p

2�hx
� �

dx: ð5:10Þ

Furthermore, the expression for the EPh flux can be taken out of the integral at
the frequency x0 of the radiative transition in the MCI core because of its weak
frequency dependence in comparison with the absorption cross-section. The
resulting integral over x gives the well-known expression
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Z
rabsðxÞdx ¼ p2ðc=xÞ2gf4x2

0jdif j2=3�hc3; ð5:11Þ

where dif is the dipole moment matrix element of the transition and gf is the
statistical weight of the upper level.

Substituting the spectral distribution (5.5) into (5.10) for the EPh flux, produced
by the electron in the Coulomb field of the MCI, we finally obtain

rlexc ¼
8p3

3
ð�h=mteÞ2x2

0jdif j2gft�4
e ðlþ 1=2Þ

� Hð1Þ0
im ðimeÞ

h i2
�ðe2 � 1Þe�2 Hð1Þ

im ðimeÞ
h i2� �

:

ð5:12Þ

The transition in (5.12) to the Kramers electrodynamics (KrED) domain (m � 1)
corresponds to the transition from (5.5) to (5.8). Thus, we obtain the result in the
KrED domain:

rlexc ¼ ð8p=3Þð�h=mteÞ2ðgf=giÞfifZ�2ðlþ 1=2Þ2G0½xðlþ 1=2Þ3=3Z2�; ð5:13Þ

where fif is the oscillator strength for the transition considered and gi is the sta-
tistical weight of the lower level.

Equation (5.13) manifests explicitly the interrelation between the independence
of the radiation characteristics on the energy (see also Chap. 3) and the well-known
fact of the finiteness of the excitation cross-section at threshold. Thus, we face once
more the phenomenon, inherent to the KrED, of the independence of the spectral
distribution on the energy, which leads to a smooth transition between the discrete
and continuous energy spectra for the processes with both real (from the BR to the
PR) and equivalent photons (the transition from the Born approximation domain for
the excitation to its threshold and further to the DR).

The total excitation cross-section is obtained by summing up the partial cross-
section (5.10) over l, yielding an expression in terms of the well-known spectral
distribution for the Coulomb bremsstrahlung Gaunt-factor gðmÞ (Kogan et al. 1992)

rifexc ¼
8p2ffiffiffi
3

p jdif j2g�1
i t�2

e g½Zx0=ð2EÞ3=2�: ð5:14Þ

The function gðmÞ has a simple analytic approximation:

gðmÞ 	
ffiffiffi
6

p

p
� ln 2

c � m
	 
1=

ffiffi
2

p

þ exp
pffiffiffi
6

p
	 
" #

: ð5:15Þ

The result (5.14) was derived earlier (Bazylev and Chibisov 1981) in a some-
what different way. It should be noted that (5.14) is valid up to the excitation
threshold where Kramers EPh spectrum (5.8) does not depend on the incident
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electron energy at all. In the opposite limit of a fast-incident particle, the
cross-section (5.14) exhibits a logarithmic (Born-type) structure. It is this result that
was derived by Fermi for atomic excitation and ionization by fast particles.
Equation (5.14) is in good agreement with quantum numerical calculations as well
as with experimental data (Bazylev and Chibisov 1981; Gau and Henry 1977).

It should be also noted that for the first time, the interrelation between the
excitation cross-section for allowed dipole transitions and the Gaunt factor for
bremsstrahlung in a Coulomb field for the general quantum case (Sommerfeld
formula) was investigated by Gailitis (1963). So far we have restricted ourselves to
the case of quasi-classical incident electron motion; however, the applicability of
the KrED approach to the calculation of excitation cross-sections remains valid also
for an arbitrary (not necessarily purely Coulombic) ionic potential (e.g., of a
Thomas–Fermi ion). The description of these excitation cross-sections may be
achieved by the replacement of the Coulomb EPh intensity by the corresponding
EPh spectral intensity in (5.5).

5.1.2 Autoionization Decay and Dielectronic Capture

Let us recall the essence of the dielectronic recombination (DR) process. An
incident electron with the energy Ei excites an ion core with an excitation energy
DE ¼ �hx0. In this case, if the energy Ei is smaller than DE, the electron is finally
captured by the ion into a state with the energy Ef ¼ �Ry=n2f obeying the condition

Ei � Ef ¼ Ei þ 1=2n2f ¼ DE ¼ �hx0: ð5:16Þ

This capture results in a double excited state of the ion, namely the ion core
electron is excited with energy DE while the captured electron occupies a highly
excited level of the ion. This state of the ion can decay in two possible ways:

(i) by relaxation of the ion core electron into the initial ground state with the
simultaneous ejection of the captured electron from the ion: This process is
known as autoionization;

(ii) by radiative decay of the ion core electron, resulting in its return to the initial
state after the emission of a photon of energy �hx ’ �hx0 ¼ DE, whereas the
captured electron remains in the ion.

For illustration, Fig. 5.1 shows the relevant energy level diagram for the He-like
2l2l′-satellites close to the H-like Lyman-alpha transition (so-called Lya-satellites).
The energy of the 2l2l′-satellites is approximately (in the H-like approximation)
Esat 	 2 � Z2Ry=4 ¼ Z2Ry=2 which is half of the ionization potential of the H-like
ground state (Z2Ry). The series limit of the autoionizing levels 2lnl′ is the first
excited state 2l. Radiative decay from the 2l2l′-levels populates the single excited
levels 1s2l 1,3L, from which radiative decays (W- and Y-line) populate finally the
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ground state 1s2. The chain of processes, dielectronic capture (1s + e − 2l2l′),
radiative decay to single excited levels (2l2l′ − 1s2l + hm) and radiative decay to the
ground state (1s2l 1,3L − 1s2 + hm′), is called dielectronic recombination (DR
channel) because an effective recombination has taken place (from the H-like
ground state 1s to the He-like ground state 1s2).

Thus, the DR process as well as the photorecombination (PhR) process result in
the capture of an incident electron and its simultaneous photon emission. The
difference is that the photon is emitted by the ion core electron in the DR process
rather than by the incident electron as in the PhR process. The relationship between
the PhR and the DR is analogous to the interrelation between conventional and
polarization bremsstrahlung (Astapenko 2013).

As a rule, the DR rate is large for ions with a complex core which possesses
transitions between the levels with the same quantum number n (the transitions with
Dn ¼ 0, e.g., 2s ! 2p transitions in lithium-like and more complex ions). The
transition energy DE ¼ �hx0 for Dn ¼ 0 and Z � 1 is of the order of Z � Ry, while
the ionization energy is of the order of Z2 � Ry � DE. Since the energy E of the
incident recombining electron is in any case smaller than the excitation energy, this
implies the following inequality

ðZ2Ry=EÞ1=2 � Ze2=�ht � 1; ð5:17Þ

Fig. 5.1 Energy level
diagram relevant for the
He-like autoionizing levels
2l2l′, so-called Lya-satellites
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which justifies the application of a quasi-classical approach to the description of
dielectronic recombination process.

An application of the proposed approach to the DR implies the treatment of a
DR process as a resonance fluorescence with a complicated intermediate state
which appears after the capture of the incident electron by an ion and possesses an
additional channel of decay via the autoionization. The resonance fluorescence thus
involves three types of quantum states:

– an initial state with total energy E1 of a non-excited ion and an initial spectral
distribution I0 of equivalent photons;

– an intermediate state with total energy E2 of an excited ion with a captured
incident electron on a highly excited ionic level (double excited ion with an ion
charge reduced by unity) and an EPh distribution I0 reduced by one EPh of
energy xeq;

– a final state with total energy E3 of a single excited ion with a charge reduced by
unity, an EPh of energy x and a EPh distribution I0. The state energies are
connected by conservation laws:

E3 � E1 ¼ x� xeq; E3 � E2 ¼ x� x0: ð5:18Þ

The resonance fluorescence probability has the form (Heitler 1984)

wRF ¼ jV21j2jV32j2
½ðx� xeqÞ2 þC2=4�½ðx� x0Þ2 þ c2=4� ; ð5:19Þ

where V21 and V32 are the matrix elements that correspond to the absorption of an
EPh at frequency xeq and the emission of a real photon at frequency x, respec-
tively; c and C are the total probabilities (per unit time) of photon absorption and
emission, i.e.,

cðEÞ ¼ 2p
X
k

jV32j2dðE � E3Þ; ð5:20Þ

CðEÞ ¼ c
X
keq

jV21j2 1

½ðE � E2Þ2 þ c2=4�: ð5:21Þ

The quantities CðEÞ and cðEÞ in (5.21) should be taken at the energy E ¼ E3, but in
fact they depend only weakly on energy.

It is noteworthy to recall an implication of (5.19): For the elementary process of
absorption–emission, the energies of the absorbed and emitted photons are equal
(within the very small width C). This “memory” about the absorbed photon by
the ion (atom) manifests itself in the probability (5.19) which does not reduce to the
product of absorption and emission probabilities. Indeed, the first factor in the
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denominator of (5.19) does not bind (approximately via the corresponding d
function) the energies of the initial (xeq) and exactly resonant (x0) photons, but
only the energies of the initial and final (x) photons. It is the continuity of the
incident photon spectrum that reduces the resonance fluorescence to the two
independent processes of absorption and subsequent emission. Thus, the DR width
CDR is formed by the width c (5.20) and by the probability (per unit time) of the
autoionization process of the intermediate state:

CDR ¼ cþCA : ð5:22Þ

This relation implies the possibility of the return of the recombined electron to
the continuum energy state with the simultaneous equivalent photon re-emission by
the ion core.

The matrix element V21 is determined by the oscillator strength of the radiative
transition in an ion (V21 � d21, where d21 is the matrix element of the dipole
moment of a bound radiating electron in an ion) and is proportional to the flux
density of the EPh incident on an ion. For the continuous EPh spectrum, the total
probability of absorption CRF is expressed in terms of I0:

CRF ¼ 2pI0;x V21j j2; ð5:23Þ

where the bar ( V21j j2) denotes the averaging over the angles of the absorbed photon
wave vector. As applied to the specific conditions of the model for the DR con-
sidered, the summation over keq in (5.21) should be supplemented by a summation
over the final states of the captured electron. This procedure combined with the
conservation law for the incident electron energy leads to the result:

CDR ¼ CRFZ
2=n3: ð5:24Þ

Using then the expression for the DR total probability summed over the EPh
frequencies

X
x

wDR ¼ cCA

cþCA
ð5:25Þ

we obtain the rate of the autoionization process

CA ¼ f12
pn3

lG0
x0M3

3Z2

	 

; ð5:26Þ

where f12 is the oscillator strength of the excited radiative transition in the ion core,
and the function G0ðxÞ is given by (5.8b). Equation (5.26) coincides with the result
which may be obtained from the exact quantum calculation (Beigman et al. 1981;
Sobelman and Vainshtein 2006) of autoionization rate in Kramers domain
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(quasi-classical motion of the incident electron along a quasi-parabolic orbit,
Ze2=�ht � 1, q � a). The total DR rate corresponding to the capture of an electron
into an ionic nl state is then given by the expression

aDR ¼ 2p
T

	 
3=2gð2Þ
gð1Þ

ð2lþ 1ÞcCA

ðcþCAÞ exp �x
T

þ Z2

2n2T

� �
; ð5:27Þ

where T is the electron temperature, and gð1Þ and gð2Þ are the statistical weights for
the ground and excited ion levels, respectively.

The result (5.26) may also be derived on the basis of the relation between the
autoionization probability and the cross-section for the ion excitation by electron
impact near the ionization threshold. This relation follows from the detailed balance
equation for the mutually inverse processes of autoionization and electron capture
into an ion nl-level with the excitation of the 1 ! 2 transition in an ion core, i.e.,

ð2lþ 1Þg2CAðnlÞ ¼ Z2n�3xg1rexcðlÞ=p2a20: ð5:28Þ

Substituting the KrED result (5.13) for the excitation cross-section rexc, we obtain
(5.26).

All the methods for the derivation of autoionization, dielectronic capture, and
dielectronic recombination are equivalent in the sense that they are based on the
dipole approximation for the interaction between an incident and a bound electron.
It is exactly this approximation that allows us to treat all of the processes related to
an energy loss of the incident electron as processes of effective radiation of either
real (bremsstrahlung and photorecombination radiation) or equivalent (excitation,
dielectronic recombination, polarization bremsstrahlung, and polarization recom-
bination) photons.

5.2 Ionization by Electron Impact

5.2.1 Thomson Formula

Ionization of atoms by electron impact is one of the most important elementary
processes defining the characteristics both of laboratory and astrophysical plasmas.
A consistent description of this phenomenon involves the quantum mechanical
approach; however, its main qualitative features can be determined also within the
framework of classical mechanics. A corresponding formula for the cross-section
was first proposed by J. Thomson in 1912, even before the development of the
quantum theory. The classical consideration of ionization of an atom by electron
impact
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eþA ! Aþ þ 2 e ð5:29Þ

carried out by Thomson is based on the assumption of elastic scattering of the
projectile by bound electrons of the target. In this case, ionization results from
the transfer of energy to an atom, that is, higher than the ionization potential of the
electron subshell under consideration (as a result of projectile scattering). The
applicability of the classical method to estimate the atomic ionization cross-section
is based on the exact coincidence of quantum mechanical and classical
cross-section of elastic electron–electron scattering.

Without considering the binding of atomic electrons to the nucleus, the
expression for the integrated (with respect to the angle of scattering) cross-section
of collisional ionization can be represented as (Astapenko and Lisitsa 2007)

ri ¼
Z

DE[ I

dr; ð5:30Þ

where dr is the differential cross-section of electron–electron scattering, DE is the
energy transferred from a projectile, I is the atomic ionization potential. Neglecting
the change of the energy of the incident electron in comparison to its initial energy,
we can derive the cross-section dr with the help of the Rutherford formula (that
describes the cross-section of elastic scattering of a charged particle in the Coulomb
potential):

dr Rð Þ

dX
¼ Z e2

2mt2 sin2ðh=2Þ

	 
2

: ð5:31Þ

dX is an element of the solid angle, into which a projectile is scattered, h is the angle
of scattering, and t is the velocity of the incident electron. For electron–electron
scattering, we have Z ¼ 1. Assuming that the value of energy transferred to an
atomic electron DE is equal to the recoil energy, it is easy to find that

DE ¼ 4E sin2 h=2ð Þ: ð5:32Þ

For the derivation of (5.32), the relation for a transmitted pulse that neglects the
binding of an atomic electron to the nucleus was used, i.e.,

Dp ¼ 2mt sin h=2ð Þ; ð5:33Þ

that follows from elementary consideration of elastic scattering (Landau and
Lifschitz 2005). With the use of (5.32), it is possible to express the angle of
scattering in terms of energy transferred to an atomic electron DE. As a result, we
obtain from (5.31) for a one-electron atom
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dr ¼ p e4 dDE

E DEð Þ2 ; ð5:34Þ

where E ¼ mt2=2 is the energy of the incident electron. Substituting the expression
(5.34) in (5.30) and integrating over the possible values of the transferred energy
DE, we obtain the so-called Thomson formula for the cross-section of collisional
ionization of a one-electron atom:

ri ¼
ZE
I

dr ¼ pe4

E
1
I
� 1
E

	 

; E[ I: ð5:35Þ

If the dimensionless parameter x ¼ E=I is introduced, the right-hand side of
(5.35) can be rewritten as

r Thð Þ
i Eð Þ ¼ p e4

I2
x� 1
x2

; x
 1: ð5:36Þ

It is clear that the value xth ¼ 1 (Eth ¼ I) is the threshold value: At x\1, the
process cross-section is equal to zero since the energy of an incident electron is
insufficient for ionization of an atom.

5.2.2 Similarity Function Method for the Ionization
Cross-Section

Qualitatively, the Thomson formula (5.36) renders properly the features of the
collisional ionization of a one-electron atom. However, from the quantitative point
of view the formula is not very precise. To obtain a realistic description, it is
advisable to represent the expression (5.36) as follows (Astapenko and Lisitsa
2007):

r Thð Þ
i Eð Þ ¼ p a2I f

Thð Þ E=Ið Þ: ð5:37Þ

Here the dimensionless Thomson similarity function f Thð Þ xð Þ ¼ x� 1ð Þ=x2
describing the dependence of the collisional ionization cross-section on a projectile
energy and the “ionization radius” are introduced:

aI ¼ e2

I
: ð5:38Þ

As one can easily see from (5.38), the ionization radius is equal to the distance
between incident and atomic electrons, at which the energy of the Coulomb
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interaction is equal to the atomic ionization potential. The radius aI defines the
cross-section rI ¼ p a2I that characterizes the cross-section of collisional ionization
of a one-electron atom by an order of magnitude.

From formula (5.37), it follows that the projectile energy enters in the expression
for the collisional ionization cross-section only in terms of the ratio E=I. This
circumstance forms the basis for the similarity function method that assumes that
the ratio of the ionization cross-section to the value rI ¼ p a2I is a universal function
of the dimensionless variable x ¼ E=I. Thus, the formula (5.36) is generalized by
(5.37): The similarity function f xð Þ can be determined either within the framework
of a chosen theoretical or empirical approach.

The Thomson similarity function gives a value for the cross-section maximum of
1=4 at xmax ¼ 2, i.e., at Emax ¼ 2 I. The comparison with experimental data shows
that this value xmax is too low. In other words, the Thomson formula shifts the true
position of the cross-section maximum closer to the threshold value Eth ¼ I. In fact,
the maximum of the collisional ionization cross-section is found from Emax ¼ 3 I to
Emax ¼ 4 I (see the next section).

Curiously, the Thomson formula gives a value for the cross-section maximum of

collisional ionization of a hydrogen atom of r Hð Þ
i Emaxð Þ ¼ p a2B 	 0:88 Å2 (aB is the

Bohr radius) that is equal to the area of the first Bohr orbit. According to (5.36), the

energy at cross-section maximum is Emax ¼ 2I Hð Þ
1s ffi 27:2 eV, which coincides with

the atomic unit of energy.
For more realistic descriptions of the cross-section of atomic ionization by

electron impact, it is necessary to develop other similarity functions. For ionization
potentials I[ 10 eV, good agreement with experimental data is obtained by the
Gryzinski similarity function (Gryzinski 1959, 1965a, b, c)

f Gryzð Þ xð Þ ¼ 1
x

x� 1
xþ 1

	 
3=2

1þ 2
3

1� 1
2x

	 

ln 2:7þ

ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p �� �
ð5:39Þ

derived within the framework of classical consideration but taking into account the
velocity distribution function of the bound electrons. For completeness, we mention
also the Eletskii–Smirnov similarity function

f ESð Þ xð Þ ¼ 10 x� 1ð Þ
p x xþ 8ð Þ ; ð5:40Þ

obtained empirically (on the basis of comparison with experimental data). It should
be noted that the functions (5.39) and (5.40) are similar to each other.

The formulas (5.36), (5.37) were obtained for a one-electron atom. For the
calculation of collisional ionization of multielectron atoms, the expression (5.37)
should be generalized so that the contribution of different subshells of an atom (in
particular the number of electrons in each subshell) to the total cross-section is
taken into account. The resultant formula looks like
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ri Eð Þ ¼
X
nl

Nnl p a2Inl f ðE=InlÞ h E � Inlð Þ; ð5:41Þ

where Nnl is the number of equivalent electrons, Inl the ionization potential of a nl-
subshell (n, l are the principal and orbital quantum numbers), and h xð Þ is the
Heaviside step function that describes the “inclusion” of inner atomic subshells in
the process at E[ Inl.

The comparison with experimental data shows that the similarity functions
(5.39), (5.40) give the best result for atoms with ionization potentials I[ 10 eV
(remember that I ¼ min Inlf g). In case of multielectron atoms with a moderate value
of I (10 eV[ I[ 6 eV), the Born–Compton similarity function is more adequate
for the description of collisional ionization (Astapenko 2001):

f BCð Þ xð Þ ¼ 2:5
p

1
x

Zym
1

dy
Zffiffixp þ ffiffiffiffiffiffi

x�y
p

ffiffi
x

p � ffiffiffiffiffiffi
x�y

p

dt

t2 t2 þ y� t2ð Þ2=0:64
h i; ð5:42Þ

where ym ¼ xþ 1ð Þ=2. The similarity function (5.42) is obtained in the first Born
approximation for the interaction of a projectile with atomic electrons. For its
derivation, the analogy between collisional ionization and Compton scattering of
the projectile eigenfield by an atom was used, and the electron shell of the atom was
described within the framework of the Thomas–Fermi model.

In the case that a significant contribution to the ionization process is made by
atomic subshells with large orbital quantum numbers (l ¼ 2; 3), the use of the
similarity functions (5.42) may be insufficient. In this case, the similarity function
of the so-called Binary Encounter Bethe (BEB) approximation can be used (Kim
and Rudd 1994):

f BEBð Þ x; uð Þ ¼ 1
1þ xþ u

ln xð Þ
2

1� 1
x2

	 

þ 1� 1

x
� ln xð Þ
1þ x

� �
: ð5:43Þ

In (5.43), the additional parameter u is introduced that represents the ratio of the
average kinetic energy of a subshell to its ionization potential. It should be noted
that for a hydrogen atom (in view of the virial theorem) u ¼ 1. The parameter u
takes into account the decrease of the cross-section of collisional ionization of
atomic subshells with high orbital momenta. This decrease is connected with the
fact that at equal ionization potentials, a subshell with a higher orbital moment has a
smaller radius, which results in a decrease of process cross-section.

Figure 5.2 shows the similarity functions (5.39), (5.40) as well as (5.42), (5.43).
A common feature of the similarity functions presented in Fig. 5.2 is their identical
near-threshold dependence: f xð Þ / x� 1. This dependence is a consequence of the
common quantum mechanical regularity connected with the behavior of the sta-
tistical weight of the final state of an ionized electron as a function of the projectile
energy. On the other hand, the asymptotic behavior of the similarity functions at

194 5 Electron–Atom Collisions



high-incident electron energies E � I (x � 1) is different. From formulas (5.39),
(5.40) and (5.42), (5.43) and x � 1, we obtain: f Gryzð Þ; BEBð Þ / ln xð Þ=x,
f ESð Þ; BCð Þ / 1=x. The first asymptote coincides with the high-energy limit of the
inelastic cross-section of the Bethe quantum mechanical theory, the second
asymptote deviates from it, but provides better agreement with experimental data at
not too high projectile energies.

The similarity function method favorably differs from other methods of calcu-
lation of the collisional ionization cross-section by its simplicity and reliability; it is
often used for fast evaluation of the cross-sections (in particular for bulky complex
configurations).

5.2.3 Comparison with Experimental Data

At present days, electron impact ionization cross-sections of neutral atoms have
been measured for the majority of elements from the periodic table. The experi-
mental measurements are carried out with the help of the so-called crossed-beam
technique that consists of several steps:

(a) the beam of fast neutrals is produced by neutralization of fast (with an energy
of several keV) ions in a chamber with low-pressure gas (about 10−4 torr),

(b) the ion beam is then pre-extracted from a DC gas discharge, focused, and
passed through a special filter that sorts ions with respect to their velocities,

(c) the resultant beam of fast neutrals with specified energy retains the collimation
of the initial ion beam, which is mandatory for high-precision measurements,

(d) the absolute neutral atom flux is measured with the help of a calibrated
detector,
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Fig. 5.2 Comparison of
different similarity functions
for the collisional ionization
cross-section of an atom:
Gryz—Gryzinski; ES—
Eletskii–Smirnov; BC—
Born–Compton; BEB—BEB
approximation
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(e) the measurement of the collisional ionization cross-section is then carried out
intersecting the neutral beam of atoms with the electron beam,

(f) ions resulting from electron–atom collisions are focused on an electrostatic
analyzer extracting ions with a given charge number that are then recorded by
an electron multiplier,

(g) based on the measured data, the experimental value of the ionization
cross-section is finally calculated by the formula

r expð Þ
i Eð Þ ¼ Ji Eð Þ te tn

Je Eð ÞRF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2e þ t2n

p ; ð5:44Þ

where Ji;e are the ion and electron currents, tn;e are the velocities of neutrals and
electrons, R is the neutral flux, F is the value characterizing the degree of inter-
section of the neutral beam and the electron beam.

Thus, the measurement of the absolute value of the collisional ionization
cross-section consists in the measurement of each value appearing in the right-hand
side of (5.44).

Figure 5.3 shows the comparison of the experimental cross-section of collisional
ionization of a hydrogen atom with the results of calculations by the similarity
function method.

It is seen that in this case, the Eletskii–Smirnov similarity functions and the BEB
approximation provide better agreement with the experiment than the Born–
Compton method that considerably overestimates the cross-section. This circum-
stance is connected with the fact that the formulas for the Born–Compton method
were obtained in the Thomas–Fermi approximation for an electron shell of an

Fig. 5.3 Ionization cross-sections of a hydrogen atom by electron impact: 1—experiment,
2—Born–Compton method, 3—Eletskii–Smirnov formula, 4—BEB approximation for u = 1
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ionized atom that is only valid for multielectron atoms. Moreover, in this case the
ionization potential of a hydrogen atom (13.6 eV) is overestimated and the use of
the Born–Compton similarity function is beyond its range of applicability.

From Fig. 5.3, it follows that the maximum of the ionization cross-section of a
hydrogen atom by electron impact is reached at an incident electron energy Emax 	
50 eV in contrast to the value Emax 	 27:2 eV following from the Thomson formula
(5.36). The value of the cross-section at the maximum is about 0.6 Å2, which is
somewhat less than the prediction of the Thomson theory (0.88 Å2). Thus in the
case of a hydrogen atom, the classical approach of J. Thomson strongly shifts the
position of a maximum to a too low energy range, but gives a satisfactory value of
the maximum cross-section.

It is of interest to compare the cross-section of photoionization of a hydrogen atom
rph xð Þ with the cross-section of ionization by electron impact. The cross-section of
photoionization of a hydrogen atom reaches its maximum at threshold, i.e., at a photon
energy of 13.6 eV, whereas the maximum of the photoionization cross-section
(0.064 Å2) is about an order of magnitude less. Different asymptotic behavior of the
cross-sections can also be noted: rph xð Þ / x�7=2, while ri Eð Þ / ln Eð Þ=E, i.e., the
photoionization cross-section decreases much more rapidly.

As an example we compare experimental data with different theories of colli-
sional ionization of a multielectron atom. Figure 5.4 shows an example for the
tellurium atom (atomic number Z ¼ 52): The configurations of outer electron shells
are 4dð Þ10 5sð Þ2 5pð Þ4, and their ionization potentials are I4d ¼ 47 eV, I5s ¼ 18 eV,
I5p ffi 9 eV. As follows from these energies and formulas (5.37)–(5.38), the
cross-section maximum of collisional ionization of the 5p-subshell is about an order
of magnitude higher than the corresponding value for the 5s-subshell, indicating
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Fig. 5.4 Cross-section of ionization of a tellurium atom by electron impact: 1—experiment,
2—Born–Compton method, 3—Eletskii–Smirnov formula, 4—Gryzinsky formula
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that the main contribution to the ionization process stems from the outer atomic
subshell. This situation is typical: As a rule, the cross-section of collisional ion-
ization of an atom is defined by its outer subshell since it has the smallest ionization
potential.

From Fig. 5.4, it is seen that in this case the best agreement with experimental
data is achieved by the Born–Compton similarity function (5.42). The Eletskii–
Smirnov and Gryzinsky formulas somewhat underestimate the cross-section.

The value of the cross-section of collisional ionization of neutral atoms in the
ground state varies in a relatively narrow range: from 0.5 Å2 (for helium) to about
10 Å2 for heavy atoms such as tellurium. Atoms in excited states with low ion-
ization potential have large collisional ionization cross-sections that at the maxi-
mum can make up several hundreds of squared angstroms. For multiply charged
positive ions with a high ionization potential, the cross-section can be rather small
because r / 1=I / 1=Z2.

The cross-section of ionization of atoms by electron impact defines an important
parameter for atomic population kinetic equations that is called the rate coefficient
[typical employed units are (cm3 s−1)] that is determined by the expression

ki Teð Þ ¼
Z

ri Eð Þ te Eð ÞFe E; Teð Þ dE; ð5:45Þ

where Fe E; Teð Þ is the energy distribution function of plasma electrons at a given
temperature Te of an electron subsystem, te Eð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E=me

p
is the velocity (non-

relativistic) of an electron.
With the use of the universal expression (5.41) for the atomic ionization

cross-section, it is easy to estimate the rate coefficient for a Maxwellian electron
energy distribution function:

FeðE; TeÞ ¼ 2ffiffiffi
p

p
ffiffiffiffi
E

p

ðTeÞ3=2
exp � E

Te

� �
; ð5:46Þ

where Te is expressed in energy units. Substituting the formulas (5.41) and (5.46) in
the expression (5.45), we obtain

ki Teð Þ ¼ 2
p

X
nl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2meInl

p e2

Inl

	 
2

H Inl=Teð Þ; ð5:47Þ

where electron temperature is included in the dimensionless function

H yð Þ ¼ y3=2
Z1
1

f xð Þ e�x y x dx; ð5:48Þ
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that depends itself on the similarity function f xð Þ. H yð Þ reaches a maximum at
about values y = 0.06–0.08, i.e., at a temperature of Tmax 	 12� 15ð Þ I. It should
be noted that at such temperatures, an atom is already ionized. The functions
H I=Tð Þ calculated with the Eletskii–Smirnov and Born–Compton similarity func-
tions for the ionization potential of a hydrogen atom are shown in Fig. 5.5.

5.3 Analytical Empirical Formulas for Ionization, Single,
and Total Recombination Rates

5.3.1 Ionization

Among a vast amount of fitting formulas and numerical calculations (Sobelman and
Vainshtein 2006; Voronov 1997; Lotz 1970; Kato et al. 1991), we point out here
one of the most used formulas from Lotz providing a modified explicit analytic
expression for the ionization from shell “n” of an ion with charge state “Z” (i.e.,
XZðnÞþ e ! XZþ 1ðmÞþ eþ e) averaged over a Maxwellian electron energy
distribution function:

IZ;Zþ 1ðn;mÞ 	 6� 10�8 Pn
Ry

EZ;Zþ 1ðn;mÞ
	 
3=2 ffiffiffiffiffiffiffiffi

bnm
p

e�bnm a bnmð Þ ½cm3 s�1�;

ð5:49aÞ

a bnmð Þ 	 ln 1þ 0:562þ 1:4 bnm
bnm 1þ 1:4 bnmð Þ

� �
; ð5:49bÞ
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Fig. 5.5 Dependence of the
function H(I/Te) [the formulas
(5.47), (5.48)] on electron
temperature calculated with
the Eletskii–Smirnov (solid
curve) and Born–Compton
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functions for a ionization
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bnm ¼ EZ;Zþ 1ðn;mÞ
kTe

: ð5:49cÞ

kTe is the electron temperature in [eV], EZ,Z+1(n,m) is the ionization energy in [eV]
from state “n” of ion “Z” to state “m” of ion “Z + 1”, and Pn is the number of
equivalent electrons in the state “n”. Note, that detailed ionization rate coefficients
for H I, He I and He II are presented in Annex 2 and 3.

5.3.2 Three-Body Recombination in Dense Plasmas

Three-body recombination (i.e., XZþ 1ðmÞþ eþ e ! XZðnÞþ e) is the inverse
process of ionization and can be approximated by the following analytical
expression:

TZþ 1;Z m; nð Þ 	 2� 10�31 Ry
EZ;Zþ 1ðn;mÞ
	 
3 Pn gZðnÞ

gZþ 1ðmÞ b2nm a bnmð Þ ½cm6 s�1�;

ð5:50Þ

with a bnmð Þ and bnm given by (5.49b, c). gZþ 1ðmÞ is the statistical weight of the
state before recombination (usually the strongly populated ground state) and gZðnÞ
is the statistical weight of the recombined state. Note, that detailed three-body
recombination rate coefficients for H I, He I and He II are presented in Annex 2
and 3.

Of particular interest for the calculation of the ionic fraction and radiation losses
is the total three-body recombination rate, i.e., the summation over principal
quantum number “n” until Nmax in (5.50):

TZþ 1;Z ¼
XNmax

n¼1

TZþ 1;Z nð Þ: ð5:51Þ

The summation over the principal quantum number “n” in (5.51) has to be taken
out with care. In fact, (5.51) assumes that all recombination into excited states
finally populate the ground state via radiative cascades. At large quantum numbers,
however, collisional processes become so important that that the recombination
flow to an excited state might even be transferred back before it can decay to the
ground state by radiative cascades. As collisional rates strongly increase with
principal quantum number “n” but radiative decay rates decrease with principal
quantum number “n”, there exist a critical electron density ne;crit where collisional
processes are equally important as radiative decay for a given principal quantum
number n ¼ ncrit. A rough guideline for the selection of the maximum principal
quantum number in (5.51) is therefore
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Nmax 	 ncrit: ð5:52Þ

If the atomic structure is such that the atomic ground state has the principal
quantum number n = 1, critical electron density and critical principal quantum
number are related by:

ne; crit 
 6� 1019 Z7 ncrit � 1ð Þ2ncrit�2

n3crit ncrit þ 1ð Þ2ncrit þ 2

kTe eVð Þ
Z2
eff Ry

	 
1=2

cm�3� �
: ð5:53Þ

kTe is the electron temperature in [eV], Zeff is the effective ionic charge and
Ry = 13.6 eV. With the help of (5.53), for each given electron density ne;crit, the
critical principal quantum number ncrit can be calculated. Equation (5.53) has a
well-defined asymptote for large quantum numbers:

lim
ncrit!1

ncrit � 1ð Þ2ncrit�2

n3crit ncrit þ 1ð Þ2ncrit þ 2

( )
¼ lim

n!1
1

n3crit ncrit þ 1ð Þ4
ncrit � 1
ncrit þ 1

	 
2ncrit�2
( )

	 0:0183
n7crit

ð5:54Þ

because

lim
ncrit!1

ncrit � 1
ncrit þ 1

	 
2ncrit�2
( )

	 1
54:6

: ð5:55Þ

Therefore, we can write

ne;crit 	 6� 1019Z7
eff

1
n3crit

0:0183
n4crit

kTe eVð Þ
Z2
effRy

	 
1=2

	 1018
Z7
eff

n7crit

kTe eVð Þ
Z2
effRy

	 
1=2

cm�3� �
:

ð5:56Þ

Equation (5.56) shows that the critical electron density scales with the seventh
power of the principal quantum number and with the seventh power of the effective
charge. Equation (5.52) can therefore be estimated as follows:

ncrit 	 373
Zeff

n1=7e;crit

kTe eVð Þ
Z2
effRy

	 
1=14

: ð5:57Þ

The maximum principal quantum number is not a very critical issue for radiative
and dielectronic recombination, as both processes decrease rapidly with the prin-
cipal quantum number itself. For the three-body recombination, however, the
recombination rates increase strongly with principal quantum number and Nmax has
to be chosen with care. Monte Carlo simulations (Mansbach and Keck 1969) that
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take into account the complex movement of the electron in the excitation–ionization
among the numerous excited states indicate the following:

TZþ 1;Z 	 2� 10�27f
Z3
eff

kTeð Þ9=2
cm6 s�1� � ð5:58Þ

with f = 1. Most of the results obtained with different methods propose expressions
similar to (5.58) but differ by the numerical coefficient f = 0.1–10 (Hahn 1997;
Mayorov et al. 1994). Note that if all three-body recombination rates are summed
up and the upper limit is identified with the collisional ionization limit, f = 3.1
(Hahn and Li 1996) (note that the ionization limit employed in (Hahn and Li 1996)
does not depend on density).

In dense and cold plasmas, the classical three-body recombination rate is
diverging because the Maxwell electron distribution function becomes very narrow.
This is unphysical, because it can be shown that this violates the Pauli principle.
A recent investigation based on a consistent use of the Fermi–Dirac distribution
function and Pauli-blocking factors has shown (Deschaud et al. 2014, 2015) that the
three-body recombination rate is then well defined for all transitions from the hot
dense plasma to the warm dense matter (WDM), to the hot solid, and to the cold solid.

5.3.3 Radiative Recombination in Dense Plasmas

In a similar manner, the total radiative recombination is the sum of all radiative
recombination into the ground and excited states (Nmax is the largest principal
quantum number to be taken into account):

RZþ 1;Z ¼
XNmax

n¼1

Xn�1

l¼0

RZþ 1;Z nlð Þ: ð5:59Þ

In the optical electron model (hydrogenic approximation), the radiative recom-
bination can be directly represented by a sum over the orbital l-quantum numbers
(Baker and Menzel 1938; Sobelman and Vainshtein 2006):

RZþ 1;Z nð Þ ¼
Xn�1

l¼0

RZþ 1;Z nlð Þ; ð5:60Þ

R nð Þ 	 5:2� 10�14QnZeffb
3=2
n c bnð Þ ½cm3 s�1�; ð5:61aÞ

Zeff ¼ ngr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EZ;Zþ 1ðngrÞ

Ry

s
; ð5:61bÞ
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c bnð Þ 	 ln 1þ 0:562þ 1:4 bn
bn 1þ 1:4 bnð Þ

� �
; ð5:61cÞ

bn ¼
EZ;Zþ 1ðnÞ

kTe
; ð5:61dÞ

Qn 	 1� N
2 n2

: ð5:61eÞ

kTe is the electron temperature in [eV], EZ;Zþ 1ðnÞ is the ionization energy of the
state “n” of ions “Z” into state “m” of ion “Z + 1” in [eV], Zeff is the effective
charge of the ion before recombination, ngr is the principal quantum number of the
ground state, Ry = 13.6 eV and Qn is an angular factor which takes into account the
Pauli principle (means the reduced probability to be captured into a certain level
that is already partially occupied with electrons), (5.61e) is the corresponding
hydrogenic approximation. For example, for radiative recombination into He-like
neon (i.e., Ne9þ ð1sÞþ e ! Ne8þ ð1s2Þ), we have Qn ¼ 1� 1=ð2 � 12Þ ¼ 0:5 and
Zeff ¼ 1 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1195:81 eV=Ry
p ¼ 9:4. Note, that detailed radiative recombination rate

coefficients for H I, He I and He II are presented in Annex 2 and 3.
Using (5.61) and Qn = 1, the sum of (5.60) over the n-quantum numbers can be

approximated by the following analytic expression:

Rtot n
 n1ð Þ ¼ 2:6� 10�14 Zeff n1b
1=2
1

� ln 1:78b1ð Þ þ g b1ð Þ 1þ b1=n1ð Þf g cm3 s�1� �
; ð5:62aÞ

b1 ¼
Z2
eff Ry
n21kTe

; ð5:62bÞ

g b1ð Þ 	 ln 1þ 0:562þ 1:4 b1
b1 1þ 1:4 b1ð Þ

� �
: ð5:62cÞ

n1 is the principal quantum number from which the sum is taken (usually over all
higher lying excited states with n > ngr). In practice, the calculations of the total
radiative recombination rate employ detailed calculations for the recombination into
the ground state and states that have the same principal quantum number as the
ground state, i.e., Rðn ¼ ngrÞ (either via (5.61) or more advanced detailed quantum
mechanical calculations) and employ (5.62) for the excited states with an effective
charge given by (5.61b). In this case, n1 ¼ ngr þ 1. In other words, one employs
detailed calculations for the states with the same principal quantum number as the
ground state and the hydrogenic approximation with effective charge for the excited
states.

In the framework of the hydrogenic approximation for the contribution of the
excited states, dense plasma effects can be estimated with the help of (5.52) and
(5.62) assuming that all recombination is suppressed for quantum numbers larger
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than the critical quantum number, i.e., n[ ncrit. In this case, n1 ¼ ncrit in (5.62) and
the total radiative recombination in dense plasmas is given by

Rtot
dense 	 Rtot n ncritð Þ 	 Rðn ¼ ngrÞþ Rtotðn
 ngr þ 1Þ � Rtotðn
 ncrit þ 1Þ� �

:

ð5:62dÞ

5.4 Classical Consideration of Collisional Excitation
of an Atom

5.4.1 Fermi Photon Equivalent Method
and Oscillator Strength Method

Excitation of atoms in collisions with electrons is another example of an inelastic
collisional process that plays an important role in various fields of physics and
technology. In contrast to collisional ionization, when an atomic electron is excited
to the continuous energy spectrum (corresponding to infinite motion), excitation of
an atomic electron goes to the discrete spectrum, that is (within the framework of
the classical picture), to another atomic orbit with higher energy. This phenomenon
is responsible for emission of photons in plasmas resulting from a transition of an
atomic excited state to the ground state. It is also one of the mechanisms to achieve
population inversion in gas lasers (so-called electron beam pumping). Also the
population inversion of the soft X-ray Ne-like and Ni-like lasers is based on col-
lisional excitation in plasmas (Sobelman and Vinogradov 1985; Elton 1990). Note
that X-ray laser schemes without population inversion have also been proposed
(Braunstein and Shuker 2003) that is based on a complex interplay of the atomic
master equations that include the atomic coherences (Loudon 2000).

Electron collisional excitation is schematically described as

eþA ! A� þ e; ð5:63Þ

where the symbol A� denotes an atom in the excited state of a discrete spectrum. For
calculation of the reaction cross-section (5.63), we will use the spectroscopic
principle of correspondence between quantum physics and classical physics.
According to this principle, an atom in interaction with an electromagnetic field
behaves as a set of oscillators that are assigned to a pair of energy levels Ei and Ej of
the atomic spectrum. Let us assume that Ei\Ej. The eigenfrequencies of these
oscillators are equal to the eigenfrequency of the transition i ! j:
xji ¼ Ej � Ei

� �
=�h, and the efficiency of their interaction with an electromagnetic

field is defined by the oscillator strength:
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fji ¼
2mxji dji

�� ��2
3 �h e2 gi

; ð5:64Þ

where gi is the statistical weight of the initial state. In the quantum mechanical
description of the dipole moment of a transition oscillator, dji is a matrix element of
an electric dipole moment operator calculated between states ij i and jj i. In the case
of excitation of an atom, xji [ 0 and fji [ 0; for an electron transition with
decreasing energy (xij\0), fij\0. Since dji

�� �� ¼ dij
�� ��, we obtain from (5.64)

gi fji ¼ �gj fij.
Atomic excitation i ! j via collisions with an electron corresponds therefore to

the interaction between the electric field of the scattered electron and the transition
oscillator. Assuming a homogenous incident electron field close to the atom, it is
possible to write the following equation for the radius vector of the oscillator rji:

€rji þ cji _rji þx2
ji rji ¼ fji

e
m
E t; qð Þ; ð5:65Þ

where cij is the damping constant, E t; qð Þ is the strength of the electric field that is
produced by an incident electron moving along a trajectory with an impact
parameter q relative to the atom.

Let us assume fji 6¼ 0. Corresponding transitions are called dipole (or optically)-
allowed transitions. Otherwise, the transitions are called dipole or optically for-
bidden transitions.

The Fourier transform of (5.65) is given by:

vji xð Þ ¼ fji � e
m
� �ixð ÞE x; qð Þ
x2

ji � x2 � i cji x
; ð5:66Þ

where E x; qð Þ is the Fourier component of the electric field strength of a scattered
electron. In order to determine the excitation cross-section of an atom for the
transition i ! j, we calculate the work done on a transition oscillator by an incident
electron during the duration of the collision:

Aji qð Þ ¼
Z1
�1

e vji tð ÞE t; qð Þ dt ¼ 1
2 p

Z1
�1

e vji xð ÞE� x; qð Þ dx: ð5:67Þ

The second equality of (5.67) is a Fourier representation using the relation
E �x; qð Þ ¼ E� x; qð Þ and the integral representation of the delta function, i.e.,

Z1
�1

exp ix tð Þ dt ¼ 2 p d xð Þ: ð5:68Þ
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It should be emphasized that the expression (5.67) is valid only for sufficiently
high-impact parameters q[ a, where a is the “cutoff” length. If q[ a, penetration
of an incident electron into an atomic core can be neglected. The analysis shows
that essentially distant collisions contribute to the excitation cross-section of a
dipole-allowed transition. Hereafter, we assume Aji q\að Þ ¼ 0. The cutoff param-
eter a is of the order of several Bohr radii; its exact value depends on the atom and
the specific transition.

Substituting (5.66) in (5.67) and transforming the integration over positive fre-
quencies only, we obtain

Aji qð Þ ¼ fji
e2

2m

Z1
0

G hð Þ
ji x� xji
� �

E x; qð Þj j2 dx: ð5:69Þ

G hð Þ
ji Dxð Þ ¼ cji=2 p

Dx2 þ cji=2
� �2 ð5:70Þ

is the spectral line shape of a transition for homogeneous broadening.
Equation (5.70) shows that the damping constant cji defines the spectral width of a
line. The function (5.70) satisfies the asymptotic relation

G hð Þ
ji Dx; cji ! 0
� �! d Dxð Þ: ð5:71Þ

The spectral width of the function E x; qð Þj j2 in (5.69) is defined by the ratio
t=q. This value is much larger than the width of the spectral line of an atomic

transition cji for q[ a and t[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �hxji

�
m

q
. Therefore, the asymptotic formula

(5.71) can be used.
The probability of excitation of the transition i ! j is equal to the ratio

Wji qð Þ ¼ Aji qð Þ
�hxji

; ð5:72Þ

where �hxji ¼ DEji is the atomic excitation energy. The analysis shows that Wji\1
for the considered range of impact parameters q and impact velocities t as it should
be according to the physical meaning of the probability.

The cross-section integrated with respect to the impact parameter is given by

rji ¼ 2 p
Z1
a

Wji qð Þ q dq: ð5:73Þ
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Here the upper limit of integration with respect to the impact parameter is
assumed to be equal to infinity according to the classical picture. Substituting the
formulas (5.72) and (5.69) in (5.73), we find in view of (5.71):

rji ¼ p fji
e2

mDEji

Z1
a

E xji; q
� ��� ��2 q dq: ð5:74Þ

To proceed further, let us consider the approximation of straight trajectories. In
this case, it is easy to obtain an expression for the Fourier component of an incident
electron field:

E x; qð Þ ¼ 2 e
q t

F
xq
t

 �
en � iF0 xq

t

 �
es

n o
; ð5:75Þ

where en; s are the normal and tangent (with respect to the velocity vector v ¼ const)
unit vectors and

F fð Þ ¼
Z1
0

cos f xð Þ
1þ x2ð Þ3=2

dx ð5:76Þ

(the prime in (5.75) denotes differentiation with respect to the argument).
Substituting (5.75)–(5.76) in (5.74), we obtain an expression for the collisional

excitation cross-section as a function of the incident electron energy E ¼ mt2=2:

rji Eð Þ ¼ 2 p fji
e2

DEji

	 
2 DEji

E

Z1
1

H
xji a ~qffiffiffiffiffiffiffiffiffiffiffiffiffi
2E=m

p
 !

d~q
~q
: ð5:77Þ
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H(ν)Fig. 5.6 Spectrum of the
electric field of an incident
electron (5.78) as a function
of the dimensionless
frequency: 1—total, 2—
normal component of the
field, 3—tangential
component of the field
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H mð Þ ¼ F2 mð ÞþF02 mð Þ ð5:78Þ

is the spectral function of the electric field strength of an incident electron (see
Fig. 5.6). In (5.77), integration with respect to the dimensionless variable ~q ¼ q=a
is introduced. From (5.77) to (5.78), it follows that the spectrum of the electric field
of the scattered electron depends only on the dimensionless parameter m ¼ xq=t.

Figure 5.6 shows that the main contribution to the spectral function H mð Þ near its
maximum is essentially only due to the normal component of the electric field of the
electron. In this parameter region, the spectrum width is of the order of magnitude
of the ratio t=q.

It is convenient to rewrite formula (5.77) for the collisional excitation
cross-section of an atom according

rji Eð Þ ¼ 2 p fji
e2

DEji

	 
2

/
E

DEji
; g

	 

; ð5:79Þ

/ x; gð Þ ¼ 1
x

Z1
1

H
g ~qffiffiffi
x

p
	 


d~q
~q

ð5:80Þ

is a dimensionless function that depends on the ratio E=DEji and on the dimen-
sionless parameter

g ¼ 1ffiffiffi
2

p a
aB

ffiffiffiffiffiffiffiffiffi
DEji

2Ry

s
; ð5:81Þ

where Ry ¼ 13:6 eV, aB ¼ 0:53� 10�8 cm is the Bohr radius. The numerical
value g depends on the value of the cutoff length a.

The expression (5.72) for the excitation probability of an atom can be rewritten
as

Wji qð Þ ¼
Z1
0

r phð Þ
ji xð Þ dN x; qð Þ

dS dx
dx; ð5:82Þ

where

r phð Þ
ji xð Þ ¼ fji

2 p2 e2

mc
G hð Þ

ji xð Þ ð5:83Þ

is the cross-section of photoabsorption of an atom for the transition i ! j. The
expression
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dN x; qð Þ
dS dx

¼ c

2pð Þ2
E x; qð Þj j2

�hx
ð5:84Þ

can be interpreted as the number of photons (per unit area in a unit frequency
interval) contained in the electric field of an incident electron during the collision
time. Based on the formulas (5.82)–(5.84), the process of atomic collisional exci-
tation can be represented as an atomic absorption of photons forming the eigenfield
of a scattered charged particle. Such photons are called equivalent photons. The
knowledge of the photoabsorption cross-section (e.g., from experimental data) and
the number of equivalent photons allow to obtain the transition probability
according (5.82). This approach was used by E. Fermi in 1924 (even before the
development of quantum mechanics) for the calculation of the atomic excitation
induced by fast-charged particles (Fermi 1924). This theory is called the Fermi
equivalent photon method (discussed in Sect. 5.1).

5.4.2 Similarity Function Method for Collisional Excitation
of an Atom

The formulas (5.79)–(5.81) for the cross-section of collisional excitation of a
dipole-allowed transition in an atom in the approximation of straight trajectories are
valid for sufficiently high-incident electron energies E � DEji. In the vicinity of the
excitation threshold, i.e., E 	 DEji, an electron loses practically its whole of kinetic
energy and the approximation v ¼ const becomes obviously incorrect. The analysis
shows that the expression (5.79) can be extended to the whole range of incident
electron energies if the function u ðE=DEjiÞ is properly chosen. This choice can be
made either empirically on the basis of comparison with experimental data or on
general theoretical considerations. The basis of this approach is the assumption that
the ratio

u E=DEji � x
� � ¼ rji Eð Þ

2 p fji e2=DEji
� �2 ð5:85Þ

is a universal function of the dimensionless variable x ¼ E=DEji only.
Equation (5.85) expresses the essence of the similarity function method for the
calculation of the cross-section of collisional excitation of an atom. Quantum
mechanical consideration shows that the similarity function u xð Þ should satisfy two
asymptotic relations:

u x ! 1ð Þ /
ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p
and u x � 1ð Þ / ln xð Þ

x
: ð5:86Þ

In view of (5.86), u xð Þ can be approximated by Astapenko et al. (2000)
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u xð Þ ¼ ln 1þ a
ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p� �
xþ b

: ð5:87Þ

The values of the parameters a and b can be obtained from experimental data:
a 	 0:5, b 	 3. Let us note the difference of the near-threshold behavior of the
similarity function for the excitation of an atom, i.e., u x 	 1ð Þ / ffiffiffiffiffiffiffiffiffiffiffi

x� 1
p

from the
corresponding dependence for ionization of an atom by electron impact, i.e.,
f x 	 1ð Þ / x� 1.

It is of interest to compare the similarity function (5.87) with the expression
obtained in the approximation of straight trajectories (5.80), (5.78). This compar-
ison for g ¼ 1:7 is given in Fig. 5.7. From this figure, it follows that for x[ 3 both
functions practically coincide. In particular, the position of maxima xmax ffi 3:45
and the maximum values umax ffi 0:09 coincide. A noticeable difference exists only
in the near-threshold region 1\x\2, where the approximation of straight trajec-
tories is inadequate.

Therefore, the cross-section of collisional excitation of a dipole-allowed tran-
sition in an atom for arbitrary energies of an incident electron, including the
near-threshold region, can be represented as

rji Eð Þ ¼ 2 p ra fji
2Ry
DEji

	 
2

u
E

DEji

	 

; ð5:88Þ

where the similarity function u xð Þ is given by the formula (5.87). Note that (5.88) is
expressed in atomic units (e ¼ 1, Ea ¼ 2Ry ffi 27:2 eV, and ra ¼ a2B ffi 2:8�
10�17 cm2). In view of the above values for xmax, umax, the formula (5.88) gives for
the maximum cross-section
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0

0.02

0.04

0.06

0.08

0.1
(  )xϕ

1

jix ΔΕΕ=

2

Fig. 5.7 Empirical similarity
function (1) and the similarity
function calculated in the
approximation of straight
trajectories (2) for the
cross-section of collisional
excitation of a dipole-allowed
transition in an atom
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rji Emax ¼ 3:45DEji
� � ffi 0:63� 10�16 fji

Ry
DEji

	 
2

½cm2�: ð5:89Þ

Thus, the cross-section of collisional excitation of a dipole-allowed transition is
directly proportional to the transition oscillator strength and inversely proportional
to the squared excitation energy. A characteristic value for the transition energies in
a neutral atom is 1–10 eV. The oscillator strengths vary in a more wide range: from
10−6 to 2. At fji\10�6, an electron transition in an atom can be considered to be
forbidden. The maximum value fji ffi 2 is reached for transitions with no change in a
principal quantum number in atoms of alkaline-earth elements.

Figure 5.8 shows the experimental (curve 1) and calculated (curve 2) excitation
cross-sections for the transitions 2s ! 2p in the lithium atom. Because there is no
change in principal quantum number, the oscillator strength is rather high
(f2p!2s ¼ 0:75) and the excitation energy rather low (DE2p!2s 	 1:85 eV).
Therefore, the maximum value of the cross-section is rather large: rmax ffi
4:3� 10�15 cm2. The position of the maximum corresponds to an energy of about
7.5 eV. Figure 5.8 demonstrates rather good agreement between theory and
experiment, especially in the vicinity of threshold.

Fig. 5.8 Cross-section of
excitation of a lithium atom
by electron impact for the
transition 2 s ! 2 p:
1—experimental data of the
American National Standards
Institute (NIST 2019),
2—calculation by the
similarity function method
according (5.88)
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5.4.3 Analytical Empirical Formulas for Excitation
and De-excitation Rates

5.4.3.1 Dipole Excitation and De-excitation of Ions

For dipole-allowed transitions (i.e., Dl ¼ �1), one of the most used general for-
mulas has been proposed by Van Regemorter (1962). The corresponding excitation
rates (integration of the cross-section over a Maxwellian energy distribution
function) can be cast in the following analytical form:

tr a ! a0ð Þh i :¼ Caa0 ¼ 3:15� 10�7 faa0
Ry

DEaa0

	 
3=2

�
ffiffiffi
b

p
� e�b � pðZ[ 0Þ bð Þ; ð5:90aÞ

DEaa0 ¼ Ea � Ea0 ; ð5:90bÞ

b ¼ DEaa0

Te
: ð5:90cÞ

faa0 is the oscillator strength for the dipole transition from state a to state a′, and
pðZ[ 0Þ bð Þ is an effective Gaunt factor. The required oscillator strength faa0 is easily
obtained from the spontaneous transition probability Aa0a

faa0 ¼ 1

4:339� 107 Ea � Ea0ð Þ2
ga0

ga
Aa0a ð5:91Þ

with Ea and Ea expressed in [eV], ga and ga0 are the statistical weights of the lower
and upper states, respectively. Note that (5.91) expresses the absorption oscillator
strength in terms of the spontaneous emission coefficient. The effective
Gaunt-factor pðbÞ can be approximated by an analytical expression:

pðZ[ 0Þ bð Þ ¼ 0:2757 e�1:3b b� b2

4
� ln bð Þ � 0:5772

	 

þ 0:2 1� e�4:5b� �

:

ð5:92Þ

This formula provides the correct asymptotic behavior for low and high energies
and an accuracy better than 5% for all values of b.

De-excitation rates are obtained from the principle of detailed balance, i.e.,

Ca0a ¼ Caa0
ga
ga0

expðbÞ ð5:93Þ
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providing

Ca0a ¼ 3:15� 10�7 faa0
ga
ga0

Ry
DEaa0

	 
3=2

�
ffiffiffi
b

p
� p bð Þ: ð5:94Þ

Equation (5.94) demonstrates that de-excitation rates do not contain the expo-
nential factor from the Maxwellian average. For low temperatures, i.e., for
parameters b[ 10, the effective Gaunt-factor approaches pðZ[ 0ÞðbÞ ! 0:2 (ap-
proaching a finite value for the Gaunt factor is due to the attraction of the electron
via the Coulomb potential of the atoms, i.e., the electron practically falls into the
potential of the ion and excites the ion) and we find formally the following
asymptotic expressions:

Caa0 ! 6:3� 10�8faa0
Ry

DEaa0

	 
3=2 ffiffiffi
b

p
� expð�bÞ / e�DEaa0=Teffiffiffiffiffi

Te
p ; ð5:95Þ

Ca0a ! 6:3� 10�8 faa0
ga
ga0

Ry
DEaa0

	 
3=2 ffiffiffi
b

p
/ 1ffiffiffiffiffi

Te
p : ð5:96Þ

It should be noted that (5.95), (5.96) provide only approximate values because
for low temperatures, the Born approximation is not valid anymore and normal-
ization of the transition probability becomes of importance. Equations (5.95) and
(5.96) demonstrate that for small temperatures, the excitation rate vanishes whereas
the de-excitation rate is rather large. Therefore, in low-temperature recombining
plasmas, the collisional processes are dominated by the de-excitation of the pop-
ulated levels. For high temperatures, i.e., b\10, we find the following asymptotic
expressions:

Caa0 ! 8:7� 10�8 faa0
Ry

DEaa0

	 
3=2 ffiffiffi
b

p
� ln 1=bð Þ / ln Teffiffiffiffiffi

Te
p ; ð5:97Þ

Ca0a ! 8:7� 10�8 faa0
ga
ga0

Ry
DEaa0

	 
3=2 ffiffiffi
b

p
� ln 1=bð Þ / ln Teffiffiffiffiffi

Te
p : ð5:98Þ

Therefore, for high temperatures (i.e., hot electrons), excitation and de-excitation
rates have the same asymptotic behavior and are identical except the ratio of the
statistical weights.
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5.4.3.2 Dipole Excitation and De-excitation of Neutral Atoms

Dipole excitation and de-excitation by collisions between electrons and neutral
atoms can likewise be described by the formulas (5.90), (5.91), (5.93), however,
with a modified effective Gaunt factor. The following analytical formula is
proposed:

pðZ¼0Þ bð Þ ¼
if b 0:4 : 0:27566� b� b2

4
þ b3

12
� ln bð Þ � 0:57722

	 


else 0:066

ffiffiffiffiffiffiffiffiffiffiffi
bþ 2

p
bþ 0:127

8>><
>>:

9>>=
>>;:

ð5:99Þ

These formulas provide the correct asymptotic behavior for low and high energies
and an accuracy better than 3% for all values of b.

For low temperature, we find formally the following asymptotic expressions:

Caa0 ! 2:1� 10�8 faa0
ga
ga0

Ry
DEaa0

	 
3=2expð�bÞffiffiffi
b

p / ffiffiffiffiffi
Te

p � expð�DEaa0=TeÞ;

ð5:100Þ

Ca0a ! 2:1� 10�8 faa0
ga
ga0

Ry
DEaa0

	 
3=2 1ffiffiffi
b

p / ffiffiffiffiffi
Te

p
: ð5:101Þ

It should likewise be noted here that (5.100), (5.101) provide only very
approximate values because for low temperatures, the Born approximation is not
valid, and normalization of the transition probability becomes of importance.
Equations (5.100), (5.101) indicate that, unlike for the case of electron excitation of
ions, the excitation and de-excitation rates vanish both for low temperatures. For
high temperatures, the following asymptotes are obtained:

Caa0 ! 8:7� 10�8 faa0
Ry

DEaa0

	 
3=2 ffiffiffi
b

p
� ln 1=bð Þ / ln Teffiffiffiffiffi

Te
p ; ð5:102Þ

Ca0a ! 8:7� 10�8 faa0
ga
ga0

Ry
DEaa0

	 
3=2 ffiffiffi
b

p
� ln 1=bð Þ / ln Teffiffiffiffiffi

Te
p : ð5:103Þ

Comparing (5.102), (5.103) with (5.97), (5.98), we find that the
high-temperature asymptotes of neutral atoms and ions are identical.

Finally we note that numerous variants of the effective Gaunt factors pðZ[ 0ÞðbÞ
and pðZ¼0ÞðbÞ are proposed in the literature, see, e.g., (Fischer et al. 1996). They
practically do all not differ very much.
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5.5 Excitation of Dipole-Forbidden Transitions in Atoms

5.5.1 Intercombination Transitions

The previous section considered collisional excitation of dipole-allowed transitions
in atoms that can be described classically with the use of the concept of a transition
oscillator. For dipole-forbidden transitions, this approach is not applicable because
fji ¼ 0. In this case, the interaction between an incident electron and an atom/ion is
of non-dipole nature.

Dipole-forbidden transitions can be of two types: (1) no change in an atomic spin
and (2) with a change in an atomic spin. In the first case, there is no dipole moment
of a transition because of non-fulfillment of selection rules (in pure LS-coupling) for
the orbital quantum number L: Lj � Li

�� ��[ 1 or Li ¼ Lj ¼ 0. Excitation for these
atomic transitions is due to direct Coulomb interaction of an incident electron with
quadrupole or other more higher multipole moments.

The dependences of the cross-section of collisional excitation of transitions of
the first type on the incident electron energy E in the near-threshold region
(x ¼ E=DEji 	 1) and for high energies (x � 1) are the same as for dipole-allowed
transitions [see (5.86)]. In view of this fact, the most simple approximation of the
excitation cross-section of a dipole-forbidden transition with no change in spin can
be represented as

rji x ¼ E=DEji
� � ¼ c

ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p

aþ x3=2
; ð5:104Þ

where a, c are the parameters that define the incident electron energy at the
cross-section maximum (Emax ¼ DEji xmax) and the value of the cross-section max-
imum rmax itself. It should be noted that formula (5.104) can be used for an
approximate description of the cross-section of a dipole-allowed transition. As a rule,
the maximum cross-section rmax for dipole-forbidden transitions with no change in
atomic spin is much less than a corresponding dipole-allowed transition. The max-
imum of the cross-section of dipole-forbidden transitions is shifted to the region of
lower energies in comparison with dipole-allowed transitions (in the majority of
cases 1:5\xmax\2, whereas with increasing excitation energy xmax decreases).

Now let us consider collisional excitation of dipole-forbidden transitions with a
change in atomic spin, the so-called intercombination transitions (see also
Sect. 1.2.2). In this case, excitation of an atom occurs due to exchange interaction
between incident and atomic electrons. Exchange interaction is essentially of
quantum mechanical nature. At a qualitative level, the process can be described as
follows. An incident electron transfers a considerable part of its energy DE to an
atomic electron that is in a state with energy Ei. As a result, the incident electron is
captured into an atomic orbit with an energy Ej [Ei, and the atomic electron is
ionized. Thus, the incident and atomic electrons seem to exchange their roles that
are based on the indistinguishability of electrons.
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The energy transfer, at which exchange excitation of an atom at the transition
i ! j occurs, is determined by the inequality

Eþ Ej

�� ��DEEþ Eij j: ð5:105Þ

We note that bound states of atomic electrons correspond to negative energies
Ei;j\0. The simple classical consideration is valid far from threshold x � 1 when
[according to (5.105)] the energy transferred from an incident electron to an atomic
electron is much larger than the excitation energy: DE � DEji. Therefore, exchange
interaction is more strong than direct interaction if DE ¼ DEji. It occurs at small
distances from the atomic nucleus (of the order of the size of an excited electron
orbit), in contrast to the electron–dipole interaction for the excitation of
dipole-allowed transitions that occur at long distances from an atom.

According to the above-developed physical picture of cross-section calculation,
it is possible to use the expression (5.34) for the cross-section of electron energy
transfer in Rutherford scattering. Integrating this formula within the limits deter-
mined by the relation (5.105), we find

r interð Þ
ji E � DEji

� � ¼ p e4

E
DEji

Eþ Ej

�� ��� �
Eþ Eij jð Þ : ð5:106Þ

It is convenient to rewrite this equation in terms of the dimensionless variable
x ¼ E=DEji. From (5.106), it follows then the asymptotic expression for the
intercombination transition cross-section in the high-energy domain, i.e., E � Eij j:

r interð Þ
ji E � Eij jð Þ ¼ p e4

DEji
� �2 1

x3
: ð5:107Þ

Therefore at high-incident electron energies, the excitation cross-section of an
intercombination transition decreases more rapidly than the cross-section with no
change in spin (5.104). This fact is connected with the necessity of transfer of a
large quantity of energy in exchange interaction [see the relations (5.105)] resulting
in intercombination excitation.

In the near-threshold region of energies, i.e. x ¼ E=DEji 	 1, the same asymp-
totic is valid for the intercombination cross-section as for the dipole case
[r / ffiffiffiffiffiffiffiffiffiffiffi

x� 1
p

, see (5.86)]. Combining the limiting cases [see analogy for the
derivation of (5.104)], the following simple approximation can be obtained for the
excitation cross-section of an intercombination transition in an atom by electron
impact (Astapenko et al. 2000):

r interð Þ
ji x ¼ E

DEji

	 

¼ c

ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p

aþ x7=2
; ð5:108Þ
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where a and c are the parameters characterizing the transition under consideration.
The obtained expression is valid in a wide range of projectile energies up to
relativistic values. Figure 5.9 shows the cross-section of collisional excitation of the
intercombination transition 3 s 1S ! 3 p 3P in a magnesium atom calculated by
(5.108) for c ¼ 2� 10�14 cm2 and a ¼ 10 together with experimental data.

In the initial state, there are two valence electrons with antiparallel spins in the
3s-subshell of a magnesium atom, i.e., the total spin is zero. In a collision with an
incident electron, one of the 3s-valence electrons is excited to the 3p-subshell due to
exchange interaction with a spin flip, resulting in a total atomic spin of one. From
Fig. 5.9, it is seen that the cross-section is rather large and that
xmax ¼ Emax=DEji 	 1:85, which is considerably less than for the case of a
dipole-allowed transition, when xmax ffi 3:45. It follows from it that the large value
of the cross-section maximum is caused by a relatively low value of the excitation
threshold (DEji ffi 2:7 eV).

5.5.2 Intermediate Coupling Effects

The asymptotic behavior of the intercombination cross-sections for high-energy is
strictly valid only in the LS-coupling scheme. In general, however, intermediate
coupling admixes spin-allowed cross-sections to the exchange cross-section thereby
changing entirely the asymptotic behavior. As has been shown by Vainshtein
(Sobelman and Vainshtein 2006), the excitation cross-section can be expressed in
terms of products of radial cross-sections and angular factors. In the intermediate
coupling scheme, this can be formulated for the mixed states a0 and a1 in the
following way:

Fig. 5.9 Excitation
cross-section by electron
impact of the
intercombination transition
3 s 1S ! 3 p 3P in a
magnesium atom:
1—experimental data (NIST
2019), 2—model
cross-section (5.108)
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ra0a1 ¼
X
j

Qd
jða0; a1Þrdjðn0l0; n1l1ÞþQe

jða0; a1Þrejðn0l0; n1l1Þ
�

þQe
jþ 1ða0; a1Þrejþ 1ðn0l0; n1l1Þ

� : ð5:109Þ

rdjðn0l0; n1l1Þ, rejðn0l0; n1l1Þ, and rejþ 1ðn0l0; n1l1Þ are the radial parts of the
one-electron cross-sections of direct and exchange contributions of multiplicity j
(the multiplicity can vary in the interval j ¼ jmin; jmin þ 2; . . .; jmax with jmin ¼
l0 � l1j j and jmax ¼ l0 þ l1), Qd

jða0; a1Þ, Qe
jða0; a1Þ, and Qe

jþ 1ða0; a1Þ are the cor-
responding angular factors of direct and exchange terms. If the mixed state is
represented by

WðaÞ ¼
X
LS

a j aLSh iWðaLSÞ; ð5:110Þ

where a j aLSh i are the mixing coefficients, the angular factors are given by

Qd
j ¼ 2l0 þ 1

2J0 þ 1
� b2jða0; a1Þ; ð5:111Þ

Qe
j ¼

2l0 þ 1
2J0 þ 1

� b2jða0; a1Þ
4

þ
X
x

b2j;xða0; a1Þ
 !

: ð5:112Þ

The respective amplitudes in intermediate coupling can be expressed in terms of
the known mixing coefficients and amplitudes in LS-coupling:

bj;xða0; a1Þ ¼
X

L0S0L1S1

a0
�� a0;L0S0� �

bðLSÞj;x ða0;L0S0 ; a1;L1S1Þ a1;L1S1
�� a1� �

; ð5:113Þ

bjða0; a1Þ ¼
X

L0S0L1S1

a0
�� a0;L0S0� �

bðLSÞj ða0;L0S0 ; a1;L1S1Þ a1;L1S1
�� a1� �

: ð5:114Þ

bðLSÞj ða0;L0S0 ; a1;L1S1Þ and bðLSÞj;x ða0;L0S0 ; a1;L1S1Þ are the amplitudes in LS-coupling that
have analytical solution in terms of the 3j and 6j symbols, the quantum numbers of
the atomic core LPSP and of the optical electron l0 and l1, the number of equivalent
electrons m, and the fractional parentage coefficient GL0S0

LPSP :

bðLSÞj ða0;L0S0 ; a1;L1S1Þ ¼ dS0S1 � ð�1ÞJ1�S0 � J0J1½ � � j J0 J1
S0 L1 L0

� �
� ~bðLSÞj ðL0L1Þ;

ð5:115Þ
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bðLSÞj;x ða0;L0S0 ; a1;L1S1Þ ¼
ffiffiffiffiffiffiffiffi
3=2

p
� ð�1ÞSP�S1 þ 1=2þ L1 � J0J1S0S1x½ ��

j J0 x

S0 L1 L0

� �
x J1 1

S1 S0 L1

� �
1 S0 S1
SP 1=2 1=2

� �
� ~bðLSÞj ðL0L1Þ;

ð5:116Þ

~bðLSÞj ðL0L1Þ ¼
ffiffiffiffi
m

p � ð�1ÞLP � L0L1½ � � j L0 L1
LP l1 l0

� �
� GL0S0

LPSP ; ð5:117Þ

J0J1. . .½ � ¼ ð2J0 þ 1Þ � ð2J1 þ 1Þ � . . .½ �1=2: ð5:118Þ

Table 5.1 Intermediate coupling angular coefficients and fitting parameters for rate coefficients

Transition Qd Qe Ad/Ae vd/ve Dd/De

1s2 1S0 – 1s2s 1S0
LS-coupling 2 0.5

Zn = 9 2 0.5 3.31/2.09 0.782/0.608 0.350/0.00

Zn = 18 2 0.5 3.40/2.18 0.641/0.665 0.30/0.00

Zn = 42 2 0.5 3.33/2.48 0.933/1.18 1.00/0.05

1s2 1S0 – 1s2s 3S1
LS-coupling 0 1.5

Zn = 9 0 1.5 2.13/1.83 0.0651/0.587 -0.80/0.00

Zn = 18 0 1.5 2.83/2.07 0.287/0.657 -0.40/0.00

Zn = 42 0 1.5 3.33/2.48 0.933/1.18 1.00/0.05

1s2 1S0 – 1s2p 1P1

LS-coupling 2 0.5

Zn = 9 2.00 0.5 5.90/12.7 0.378/1.08 4.50/0.00

Zn = 18 1.97 0.5 8.91/12.6 0.217/1.07 2.10/0.00

Zn = 42 1.52 0.5 9.35/14.3 0.392/1.69 3.25/0.05

1s2 1S0 – 1s2p 3P0

LS-coupling 0 1.67 � 10−1

Zn = 9 0 1.67 � 10−1 6.19/13.5 0.386/1.07 4.50/0.00

Zn = 18 0 1.67 � 10−1 9.03/13.0 0.222/1.06 2.15/0.00

Zn = 42 0 1.67 � 10−1 9.35/14.3 0.392/1.69 3.25/0.05

1s2 1S0 – 1s2p 3P1

LS-coupling 0 0.5

Zn = 9 6.27 � 10−4 0.5 6.19/13.5 0.386/1.07 4.50/0.00

Zn = 18 3.21 � 10−2 0.5 9.02/13.0 0.221/1.07 2.15/0.00

Zn = 42 4.85 � 10−1 0.5 9.35/14.3 0.392/1.69 3.25/0.05

1s2 1S0 – 1s2p 3P2

LS-coupling 0 8.33 � 10−1

Zn = 9 0 8.33 � 10−1 6.19/13.5 0.386/1.07 4.50/0.00

Zn = 18 0 8.33 � 10−1 9.06/1.29 0.218/1.06 2.10/0.00

Zn = 42 0 8.33 � 10−1 9.35/14.3 0.392/1.69 3.25/0.05

The fitting coefficients for Zn = 42 can be used for any ion with Zn > 10. The precision of the
fitting coefficients b, v, D is typically better than 10% in a large temperature interval of
1/8 < b < 64
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It is difficult to obtain general expressions for the cross-sections in intermediate
coupling because the calculation of the mixing coefficients a j aLSh i requests
numerical calculations of the atomic structure and the sums in (5.109), (5.111)–
(5.114) are rather cumbersome.

In order to provide some insight into the intermediate coupling effects on
excitation cross-sections, let us consider the excitation of the He-like excited levels
a1 ¼ 1s2l LSJ from the ground state a0 ¼ 1s2 1S0. In this case, formulas (5.109)–
(5.114) can be considerably simplified (n0 ¼ 1; l0 ¼ 0; n1 ¼ 2; l1 ¼ 0; 1; j ¼ 1):

ra0a1 ¼ Qd
jr

d
jðn0l0; n1l1ÞþQe

jr
e
jðn0l0; n1l1Þ: ð5:119Þ

Table 5.1 shows the angular Q-factors for LS-coupling and intermediate cou-
pling for various elements. The angular factors for the intercombination transition
1s2 1S0 – 1s2p 3P1 show that in LS-coupling the contribution of the direct
cross-section is zero (Qd ¼ 0) and gradually increases with increasing nuclear
charge (see bold values in Table 5.1). For molybdenum (Zn = 42), the intermediate
coupling effect is so strong that the angular factor reaches a value of Qd ¼ 0:485
which is about one-third of the angular factor for the resonance transition 1s2
1S0 − 1s2p 1P1. Therefore, the high-energy asymptote is entirely dominated by the
direct cross-section rather than by the exchange cross-section, i.e.,

rð1s2 1S0 � 1s2p3P1Þ ¼ Qd
1r

d
1ð1; 0; 2; 1Þ þ Qe

1r
e
1ð1; 0; 2; 1Þ !

E�DE
Qd

1r
d
1ð1; 0; 2; 1Þ:

ð5:120Þ

For completeness, Table 5.1 provides also the fitting parameters for the explicit
calculation of the corresponding rate coefficients averaged over a Maxwellian
distribution function.

The adopted fitting formulas are as follows:

Cij

ðcm3 s�1Þ ¼
10�8

Z3

Ej

Ei

	 
3=2 ffiffiffi
b

p
� exp �DEij

Te

	 


� Qd � Ad � ðbþ 1þDdÞ
bþ vd

þ Qe � Ae � ðbþDeÞ
bþ ve

� �
; ð5:121Þ

b ¼ Z2Ry
Te

; ð5:122Þ

DEij ¼ Ei � Ej; ð5:123Þ
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where Z is the spectroscopic symbol and Ry = 13,606 eV. Let us consider an
example for molybdenum and the intercombination transition 1s2 1S0 – 1s2p 3P1

for an electron temperature of Te = 20,000 eV: Z ¼ 42� 2þ 1 ¼ 41,
Ei¼1s2 1S0 ¼ 23; 810:6 eV, Ej¼1s2p 3P1

¼ 5903:7 eV, DEij ¼ 17; 906:9 eV, b ¼ 1:277:
Cij 	 1:5� 10�13 cm3 s�1. This is the intermediate coupling cross-section whereas
in pure LS-coupling CLS

ij 	 2:6� 10�14 cm3 s�1. This example demonstrates not
only the importance of intermediate coupling on the high-energy asymptotes of
cross-sections and rates but also its impact on the total rate coefficient for rather
moderate temperatures (b—values of the order of one). We note that the fitting
coefficients in Table 5.1 do not include resonance contributions. These contribu-
tions are most pronounced for the excitation of the 1s2s 3S1 state (some 10%) and
the 1s2p 3P2 state (about 10%). For applications in plasma atomic physics, reso-
nance contributions can be rather well included in atomic kinetics via explicit
inclusion of multiple excited autoionizing states as suggested by Cowan (1980,
1983).

It should be noted that the decreasing of the cross-section rj with decreasing j is
not connected with any small parameter. This differs radically from the interaction
of an atom with an electromagnetic field where higher multipoles contain the factor
ðZ � aÞ2jþ 1 making each successive term smaller by a factor of about 5� 10�5 � Z2.
In the case of electron–atom collisions, such small parameter does not exist.
Numerical calculations show that the multipole cross-section rjþ 2 is usually about
ten times smaller than rj (Sobelman and Vainshtein 2006) but might be in some
cases have even larger contributions than the lowest one (Rosmej 2000). Finally we
note that unlike radiative transitions, non-dipole transitions (e.g., monopole,
quadrupole) can have rather large cross-section values and are not at all negligible
for high-precision calculations.

For rapid calculations of large transition arrays, the Regemorter approach pro-
vides a reasonable estimate of the collisional cross-sections for the total emission
group. For similar purposes, the plane wave Born PWB approximation attracts
interest up to present days, because this approach can be easily incorporated in
atomic structure codes and allows to estimate also monopole and quadrupole
transitions and shows a correct high-energy behavior (which is difficult to obtain in
more complex numerical methods like the R-matrix and the convergent-close-
coupling method). The pathological behavior at threshold of the PWB approxi-
mation can be removed by the empirical Robb–Cowan approach (Cowan 1981) that
has recently been improved by the so-called Elwert–Sommerfeld correction factor
(Kilcrease and Brookes 2013).

Other important corrections to the first-order cross-sections have been proposed
by Vainshtein (Sobelman and Vainshtein 2006): one-channel normalization,
K-matrix, inclusion of exchange and intermediate coupling effects (note that the
above fitting parameters of Table 5.1 are based on numerical calculations of the
one-channel normalized Coulomb–Born approximation including exchange and
intermediate coupling effects). For example, it has been demonstrated for neutral
helium HeI (Beigman et al. 2000) that the application of the K-matrix method to
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pure Born cross-sections results in rather good agreement with the numerically very
complex convergent-close-coupling calculations CCC. Detailed electron collisional
exciation and deexciation rate coefficients (including intercombination transitions)
for H I, He I and He II are presented in Annex 2 and 3.

Finally we note that the application of PWB collisions strengths to line polar-
ization provides reasonable numerical values as essentially ratios of cross-sections
enter to the line polarization formulas (Cowan 1981; Percival and Seaton 1958).

5.6 Analytical Empirical Formulas for Dielectronic
Recombination in Dense Plasmas

Dielectronic recombination is a combination of dielectronic capture and subsequent
radiative stabilization competing with multi-channel autoionization. In non-LTE
plasmas, excited states coupling, angular momentum changing collisions, colli-
sional depopulation and ionization potential depression strongly alter the stabi-
lization processes. A consistent description of non-LTE dielectronic recombination
involves therefore atomic kinetics and electric field perturbations of the atomic
structure and related matrix elements (Rosmej et al. 2020).

5.6.1 Autoionization, Dielectronic Capture, and Dielectronic
Recombination

Dielectronic recombination can easily be calculated from the autoionizing rate of a
certain atomic state with the help of the principle of detailed balance. The first step
is the application of the principle of detailed balance to dielectronic capture, i.e.,

nZj � CZ;Zþ 1
jk ¼ nZþ 1

k � ne � DCh ikj; ð5:124Þ

where nZj is the atomic population of the upper state, CZ;Zþ 1
jk is the autoionizing rate

from the upper state to a state k with population nZþ 1
k , and DCh ikj is the dielectronic

capture rate from state k to the upper state j. In thermodynamic equilibrium, the
populations nZj and nZþ 1

k are linked via the Saha–Boltzmann equation because the
states j and k belong to different ionic states, Z and Zþ 1 respectively, i.e.,

nZj
nZ þ 1
k

¼ ne �
gZj

2gZþ 1
k

� 2p�h2

mekTe

	 
3=2

� exp DEZþ 1;Z
k;j

kTe

 !
: ð5:125Þ
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gZj and gZþ 1
k are the statistical weights of the states j and k, ne is the electron

density, me the electron mass, and Te the electron temperature. The energy differ-
ence DEZþ 1;Z

k;j is related to the so-called dielectronic capture energy EDC
kj by

DEZþ 1;Z
k;j ¼ �EDC

kj : ð5:126Þ

EDC
kj is the energy of the Auger electron, if the autoionizing state j decays via

autoionization to state k. Combining (5.124)–(5.126), we find the general expres-
sion for the dielectronic capture rate:

DCh ikj¼
gZj

2gZ þ 1
k

� 2p�h2

me

	 
3=2

�CZ;Zþ 1
jk � expð�EDC

kj =kTeÞ
ðkTeÞ3=2

ð5:127aÞ

or, in convenient units

DCh ikj¼ 1:656� 10�22 � gZj
gZ þ 1
k

� CZ;Zþ 1
jk �

exp �EDC
kj ðeVÞ=TðeVÞ

 �
TeðeVÞð Þ3=2

cm3

s

� �
: ð5:127bÞ

If PZ
j;gr is the probability that the autoionizing state j of charge state Z decays to

the ground state gr of the same charge state, the quantity PZ
j;gr � DCh ikj is called the

dielectronic recombination rate coefficient [cm3 s−1] into state k via the interme-
diate state j:

DRh iZþ 1;Z
kj ¼ PZ

j;gr � DCh iZþ 1;Z
kj : ð5:128Þ

In general, the probability PZ
j;gr is a function of density and temperature, i.e.,

PZ
j;gr ¼ PZ

j;grðne; TeÞ: ð5:129Þ

The probability function (5.129) has to be determined from numerical calcula-
tions of a multilevel, multicharge state atomic population kinetics that explicitly
involves all necessary autoionizing states as “active levels” (means the populations
of the autoionizing levels are calculated on the same footing as ground and single
excited states). If collisions are negligible compared to spontaneous radiative decay
rates as well as autoionizing rates, the probability PZ

j;gr can be approximated by the
so-called satellite branching factor

PZ
j;gr !

X
i

BZ
ji ¼

X
i

AZ
jiP

l A
Z
jl þ

P
k C

Z;Z þ 1
jk

( )
: ð5:130Þ

Let us illuminate the situation with the help of the most simple autoionizing states
2l2l′, in particular the state j ¼ 2p2 1D2 of He-like argon. In this case, Z ¼ 16,
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k ¼ 1s 2S1=2, and i ¼ 1s2p 1P1; i0 ¼ 1s2p 3P1; i00 ¼ 1s2p 3P2: CZ;Zþ 1
kj ¼ 3:09�

1014 s�1, AZ
ji ¼ 1:22� 1014 s�1, AZ

ji0 ¼ 1:92� 109 s�1, AZ
ji00 ¼ 6:21� 1012 s�1.

Therefore, PZ¼16
j;gr 	Pi B

Z¼16
ji ¼ 2:78� 10�1 þ 4:38� 10�6 þ 1:42� 10�2 ¼

2:92� 10�1. The approximation PZ
j;gr 	

P
i B

Z
ji assumes that all single excited states,

namely i ¼ 1s2p 1P1; i0 ¼ 1s2p 3P1; i00 ¼ 1s2p 3P2, decay entirely to the ground
state gr ¼ 1s2 1S0 via the radiative transitions 1s2p 1P1 ! gr, 1s2p 3P1 ! gr, and
1s2p 3P2 ! gr. Because Að1s2p 1P1 ! grÞ ¼ 1:07� 1014 s�1, Að1s2p 3P1 !
grÞ ¼ 1:82� 1012 s�1, Að1s2p 3P2 ! grÞ ¼ 3:16� 108 s�1, the assumption that
the excited state j decays to the ground state via the intermediate states i; i0; i00 is a
good assumption because the sum in (5.130) is dominated by the strongest transition
j ! i where collisional “competition” starts to be important only for near-solid
density plasmas (and contributions j ! i0 and j ! i00 are small). Therefore, the
dielectronic recombination rate can be approximated by the following expression:

DRh iZ þ 1;Z
kj 	

X
i

AZ
jiP

l A
Z
jl þ

P
k C

Z;Zþ 1
jk

� DCh iZþ 1;Z
kj

( )
: ð5:131Þ

With the help of (5.125), (5.131) can be written as follows:

DRh iZþ 1;Z
kj 	 1

2gZþ 1
k

� 2p�h2

me

	 
3=2

� expð�EDC
kj =kTeÞ

ðkTeÞ3=2
�
X
i

gZj � CZ;Zþ 1
jk � AZ

jiP
l A

Z
jl þ

P
k C

Z;Zþ 1
jk

( )
:

ð5:132Þ

The term in parenthesis is the so-called dielectronic satellite intensity factor

QZþ 1;Z
k;ji ¼ gZj � CZ;Zþ 1

jk � AZ
jiP

l A
Z
jl þ

P
k C

Z;Zþ 1
jk

: ð5:133Þ

Therefore, under the assumptions made in (5.130), the dielectronic recombina-
tion due to the autoionizing states 2l2l′ is given by the sum of the dielectronic
satellite intensity factors, for the present example of Ar, numerical calculations
(including intermediate coupling and configuration interaction) provide

P
j;i Qk;ji ¼

8:29� 1014 s�1 and EDC
k;ji¼2l2l0 	 2:302� 103 eV. For the autoionizing states 2l3l′,

we obtain
P

j;i Qk;ji ¼ 7:95� 1014 s�1 and EDC
k;ji¼2l3l0 	 2:875� 103 eV, for the 2l4l′

states
P

j;i Qk;ji ¼ 4:77� 1014 s�1 and EDC
k;ji¼2l4l0 	 3:072� 103 eV, for the 2l5l′

states
P

j;i Qk;ji ¼ 2:96� 1014 s�1 and EDC
k;ji¼2l5l0 	 3:16� 103 eV, for the 2l6l′

states
P

j;i Qk;ji ¼ 1:89� 1014 s�1 and EDC
k;ji¼2l6l0 	 3:21� 103 eV, for the 2l7l′

states
P

j;i Qk;ji ¼ 1:29� 1014 s�1 and EDC
k;ji¼2l7l0 	 3:24� 103 eV. One can see that

the convergence for high n-spectator electrons is not quite rapid and follows
approximately the scaling law

P
j Q

DC
k;ji¼2lnl0 / 1=n3.
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Despite of the most simple configurations 2lnl0 for the dielectronic recombina-
tion, one can see that the numerical calculations are rather cumbersome: Very large
quantum numbers nl0 have to be involved in the numerical calculations to reach
convergence. For large quantum numbers, however, convergence is difficult to
achieve in purely quantum numerical calculations and quasi-classical approaches
are mandatory to practically solve the problem.

Next, to obtain the total dielectronic recombination rate from H-like to He-like
ions, one needs to invoke all possible intermediate states j ¼ 3lnl0; 4lnl0; 5lnl0; . . .
One can easily understand that for more complex configurations, the number of
autoionizing states to be involved becomes rapidly numerically prohibitive for
purely quantum mechanical numerical calculations.

Moreover, dielectronic recombination is not only related to corresponding
atomic structure calculations, but also to the collisional radiative interplay for the
calculation of the probability Pj;gr. In general, one needs to include explicitly all
relevant autoionizing states in a collisional radiative model in order to correctly
predict the ionic fractions for given temperature and density. In this case, however,
the atomic state population kinetics is entirely dominated by the number of
autoionizing high-n-states and numerically prohibitive. It likewise looks rather
strange, to dominate an atomic state population kinetics by autoionizing states just
for the purpose to calculate one recombination coefficient. It is essentially for these
reasons that numerical calculations of ionic fractions are still under controversial
discussion up to present days (and in particular for high-Z elements) (NIST 2019;
Rubiano et al. 2007; Chung et al. 2013; Colgan et al. 2015).

Moreover, dielectronic recombination is therefore not only a theoretical subject in
atomic physics, but it has important impact to the radiative properties of atoms and
ions, plasma spectroscopy, and technical applications (e.g., radiation sources). Note
also that historically, dielectronic recombination has been invented to understand the
order of magnitude discrepancies in the ionic abundance between calculations and
spectroscopic observation from the solar corona emission (Burgess 1964).

5.6.2 Total Rates of Dielectronic Recombination
and Multichannel Approach

In order to obtain the total dielectronic recombination rate DRh iZþ 1;Z
tot , all dielec-

tronic recombination rates DRh iZþ 1;Z
kj ¼ PZ

j;gr � DCh iZþ 1;Z
kj have to be summed with

respect to the initial state k and also with respect to the intermediate states j, i.e.,

DRh iZþ 1;Z
tot ¼

X
k

X
j

DRh iZþ 1;Z
kj ¼

X
k

X
j

PZ
j;gr � DCh iZþ 1;Z

kj : ð5:134Þ

Because the probability PZ
j;gr is a function of density and temperature [see dis-

cussion related to (5.129)], it is difficult to obtain general and closed formulas for
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the dielectronic recombination rate coefficient. Only in the low-density approxi-
mation, where relation (5.130) approximately holds true, general formulas in terms
of dielectronic recombination rate coefficients that depend only on temperature can
be obtained.

5.6.2.1 Burgess Formulas

One of the most used general approximate empirical formula in this framework is
the so-called Burgess formula (Burgess 1964) that assumes that the nl-spectator
electron which is not interacting with the core is treated in the hydrogenic
approximation and that the capture cross-section can be expressed in terms of the
excitation cross-section for transitions a0 ! a using the principle of correspon-
dence discussed above:

DRh iZþ 1;Z
kj :¼ DZþ 1;Z a0 ! a; nlð Þ: ð5:135Þ

For the total dielectronic recombination rate, we have

DRh iZþ 1;Z
tot :¼ DZþ 1;Z ¼

X
a0

X
a

X
n

Xn�1

l¼0

DZþ 1;Z a0 ! a; nlð Þ: ð5:136Þ

For the simplest example of autoionizing states 2l2l′ outlined above, a0 ¼ 1s and
a1 ¼ 2p, i.e., the transition a0 ! a corresponds to the Ly-alpha transition in H-like
ions. For these configurations, dielectronic recombination into the ground state is
the most important one, i.e., there exists a single state k ¼ a0 ¼ 1s. a0 coincides
therefore with the atomic ground state and the sum over a0 can be suppressed, i.e.,

DZþ 1;Z 	
X
a

X
n

Xn�1

l¼0

DZþ 1;Z a0 ! a; nlð Þ: ð5:137Þ

The dielectronic recombination rate coefficient DZþ 1;Z a0 ! a; nlð Þ can then be
expressed via the following analytical empirical expression (Burgess 1964)

DZþ 1;Z a0 ! a; nlð Þ ¼ 4:8� 10�11 fa0 a Bd b
3=2 e�bvd ½cm3 s�1�; ð5:138Þ

where

b ¼ zþ 1ð Þ2 Ry
kTe

; ð5:139Þ

vd ¼
v

1þ 0:015
z3

zþ 1ð Þ2
; ð5:140Þ
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v ¼ DE a0 ! að Þ
zþ 1ð Þ2 Ry : ð5:141Þ

z is the so-called spectroscopic symbol of the double excited ion after recombi-
nation. The spectroscopic symbol is given by z = Zn − Nbound + 1, where Nbound is
the number of bound electrons. For example, for neutral helium the spectroscopic
symbol is z = 1 (He I), singly ionized helium has z = 2 (He II).

If the first resonance transition is a Dn = 0 transition, the branching factor Bd is
given by Cowan (1981):

Bd ¼ zv
z2 þ 13:4

	 
1=2 1

1þ 0:105 zþ 1ð Þvþ 0:015 zþ 1ð Þ2v2 : ð5:142Þ

For Δn 6¼ 0, the branching factor is approximated by Cowan (1981):

Bd ¼ zv
z2 þ 13:4

	 
1=2 0:5

1þ 0:210 zþ 1ð Þvþ 0:030 zþ 1ð Þ2v2 : ð5:143Þ

The branching factor Bd has the following meaning: After dielectronic capture, a
double excited state is formed that can decay via autoionization or radiative decay.
For the dielectronic recombination, only the radiative decays contribute finally to
recombination as autoionization returns the autoionizing state to the original state.

According to (5.138), a0 is the ground state and therefore fa0a is the dipole
oscillator strength for the resonance transition a0 ! a with transition energy
DE a0 ! að Þ in [eV]. As the oscillator strength drops rapidly with principal quan-
tum number, it is usually sufficient to consider only the first two a-terms in the sum
of (5.137) and we finally obtain the desired expression for the total dielectronic

recombination [DZþ 1;Z a0 ! að Þ :¼P
n

Pn�1

l¼0
DZþ 1;Z a0 ! a; nlð Þ]:

DZþ 1;Z 	 DZþ 1;Z a0 ! a1ð ÞþDZþ 1;Z a0 ! a2ð Þ: ð5:144Þ

Let us consider the dielectronic recombination into neutral helium as an
example:

He1þ ð1sÞþ e ! He0þ��ðnln0l0Þ ! He0þ ð1s2Þ: ð5:145Þ

For this example, a0 ¼ 1s, a1 ¼ 2p, a2 ¼ 3p, …. Therefore, the oscillator
strength fa0a1 corresponds to the oscillator strength of the resonance line, namely the
H-like Lyman-alpha line of singly ionized helium, fa0a2 corresponds to the
Lyman-beta line. The oscillator strengths are f1s!2p ¼ 0:4164 and
f1s!3p ¼ 0:07914, respectively, and their transition energies are DE 1s ! 2pð Þ ¼
40:81 eV and DE 1s ! 3pð Þ ¼ 48:37 eV, respectively. The spectroscopic symbol is
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z = 1 and Dn 6¼ 0 (therefore (5.143) applies). As one can see, higher n oscillator
strengths provide almost negligible contribution to the total dielectronic recombi-
nation rate. From (5.139)–(5.143), we obtain b ¼ 4Ry=kTe, Bd 1s ! 2pð Þ ¼
0:0825, Bd 1s ! 3pð Þ ¼ 0:0846, vd 1s ! 2pð Þ ¼ 0:747, and vd 1s ! 3pð Þ ¼ 0:886.
More precise quantum mechanical calculations (Sobelman and Vainshtein 2006;
Wang et al. 1999) provide Bd;ref 1s ! 2pð Þ ¼ 0:155, Bd;ref 1s ! 3pð Þ ¼ 0:0144,
vd;ref 1s ! 2pð Þ ¼ 0:744, and vd;ref 1s ! 3pð Þ ¼ 0:888. For the rate coefficient at
kTe = Ry (b = 4), we obtain: DHe1þ ;He0þ 1s ! 2pð Þ ¼ 1:65� 10�12 cm3 s�1½ �,
DHe1þ ;He0þ 1s ! 3pð Þ ¼ 3:2� 10�13 cm3 s�1½ � and for the more precise quan-

tum mechanical calculations, DHe1þ ;He0þ
ref 1s ! 2pð Þ ¼ 3:10� 10�12 cm3 s�1½ �,

DHe1þ ;He0þ
ref 1s ! 3pð Þ ¼ 5:46� 10�14 cm3 s�1½ �. This confirms that the leading

terms for the dielectronic recombination are indeed given by (5.144).

5.6.2.2 Multichannel Approach

The comparison of the results from formulas (5.138)–(5.143) with more precise
calculations (Sobelman and Vainshtein 2006; Wang et al. 1999; Kato and Asano
1999) shows that the vd-values are in quite good agreement, whereas the Bd values
differ strongly. For the resonance transition 1s ! 2p, the Bd-value obtained from
(5.143) is about a factor of 2 smaller than more precise values. This is a general
observation: The precision of formulas (5.142), (5.143) is about a factor of 2 for the
resonance transition.

For the transition 1s ! 3p, the Bd-value obtained from (5.143) is about a factor
of 6 larger than the more precise values. This large overestimation is also a general
observation and related to the fact that formulas (5.142), (5.143) take into account
only one autoionizing channel. For the 3lnl′-configurations (that are related to the
transition a0 ! a2 ¼ 1s ! 3p), however, autoionization decays not only to the
ground state but to excited states too:

3lnl0 ! 1sþ eAuger
2lþ eAuger

� �
: ð5:146Þ

Numerical calculations show (Rosmej et al. 1998; Petitdemange and Rosmej
2013) that the autoionizing rates to the excited states “2l” are even more important
than to the ground state “1s”. This reduces considerably the branching factor for the
dielectronic recombination [the Bd-factor in (5.143)]. As the more precise calcu-
lations take into account many channels of Auger decay, the branching factor is
therefore systematically smaller that those of (5.142), (5.143). In fact, as one can
see from (5.143) very similar branching factors are provided for the transitions
a0 ! a1 ¼ 1s ! 2p and a0 ! a2 ¼ 1s ! 3p due to the consideration of one
autoionizing channel only.
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Table 5.2 Fitting coefficients according (5.147) for the dielectronic recombination into H-like
ions originating from the 2lnl′- and 3lnl′-autoionizing levels, Z = Zn, m = 1, l0 = 0 in (5.147)

2lnl′: a0 ¼ 1s ! a ¼ 2p 3lnl′: a0 ¼ 1s ! a ¼ 3p

Element Bd vd Bd vd
He 3.12 � 10−4 0.744 5.48 � 10−6 0.888

Li 3.72 � 10−4 0.736 6.41 � 10−6 0.887

Be 3.67 � 10−4 0.727 6.53 � 10−6 0.885

B 3.42 � 10−4 0.718 6.47 � 10−6 0.883

C 3.13 � 10−4 0.709 6.32 � 10−6 0.881

N 2.85 � 10−4 0.700 6.31 � 10−6 0.879

O 2.58 � 10−4 0.691 5.92 � 10−6 0.877

F 2.33 � 10−4 0.682 5.70 � 10−6 0.874

Ne 2.11 � 10−4 0.673 5.48 � 10−6 0.872

Na 1.90 � 10−4 0.665 5.26 � 10−6 0.870

Mg 1.72 � 10−4 0.657 5.04 � 10−6 0.868

Al 1.56 � 10−4 0.649 4.84 � 10−6 0.866

Si 1.41 � 10−4 0.642 4.63 � 10−6 0.863

P 1.27 � 10−4 0.636 4.43 � 10−6 0.861

S 1.15 � 10−4 0.630 4.24 � 10−6 0.859

Cl 1.05 � 10−4 0.624 4.05 � 10−6 0.857

Ar 9.50 � 10−5 0.620 3.87 � 10−6 0.856

K 8.61 � 10−5 0.616 3.69 � 10−6 0.854

C 7.82 � 10−5 0.612 3.52 � 10−6 0.852

Sc 7.09 � 10−5 0.609 3.35 � 10−6 0.851

Ti 6.45 � 10−5 0.606 3.19 � 10−6 0.849

V 5.85 � 10−5 0.604 3.04 � 10−6 0.848

Cr 5.33 � 10−5 0.602 2.89 � 10−6 0.847

Mn 4.85 � 10−5 0.601 2.74 � 10−6 0.846

Fe 4.42 � 10−5 0.599 2.60 � 10−6 0.845

Co 4.03 � 10−5 0.598 2.47 � 10−6 0.844

Ni 3.68 � 10−5 0.598 2.34 � 10−6 0.843

Cu 3.37 � 10−5 0.597 2.22 � 10−6 0.842

Zn 3.08 � 10−5 0.597 2.10 � 10−6 0.842

Ga 2.83 � 10−5 0.596 1.99 � 10−6 0.842

Ge 2.60 � 10−5 0.596 1.88 � 10−6 0.841

As 2.39 � 10−5 0.596 1.78 � 10−6 0.841

Se 2.20 � 10−5 0.596 1.68 � 10−6 0.841

Br 2.03 � 10−5 0.596 1.59 � 10−6 0.841

Kr 1.88 � 10−5 0.596 1.50 � 10−6 0.841

Rb 1.74 � 10−5 0.597 1.42 � 10−6 0.841

Sr 1.61 � 10−5 0.597 1.34 � 10−6 0.842

Y 1.50 � 10−5 0.597 1.27 � 10−6 0.842
(continued)
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Due to the existence of multichannel autoionization decay, the multichannel
radiative decay and the complexity of configurations involved, quantum numerical
calculations of the dielectronic recombination are very complex and the precision of
the Burgess formula is difficult to determine. This is another reason why the
recourse to quasi-classical methods appears to be mandatory for a comprehensive
description of the dielectronic recombination phenomenon.

Below, we provide numerical data for dielectronic recombination into H-, He-,
and Li-like ions taking into account multichannels for Auger and radiative decay
(Beigman 1981; Shevelko and Vainshtein 1993; Vainshtein and Shevelko 1996).
The numerical results have been fitted to a simple analytical expression in order to
facilitate the application of these complex calculations:

DZþ 1;Z a0 ! a; nlð Þ ¼ 10�8 � m
2l0 þ 1

� Bd � b3=2 � e�bvd ½cm3 s�1�; ð5:147aÞ

b ¼ Z2 � Ry
kTe

; ð5:147bÞ

where Ry = 13,606 eV, kTe is the electron temperature in [eV], m is the number of
equivalent electrons of state a0, Z is the charge of the ion where the core transition
a0 ! a takes place (e.g., for the 2lnl′-autoionizing states of He-like argon the core
transition is the 1s ! 2p transition in H-like argon, Z = 18), l0 is the corresponding
orbital momentum of state a0. The physical meaning of the parameter vd is related
to the fact that all contributions of the configuration with different spectator elec-
trons nl have to be summed up for the total dielectronic recombination rate with
different energies [see (5.16)]. The parameter vd provides a fit to the numerical
results to replace the sum of different energies in a best manner by an average
energy vd � b. Finally, the total sum is replaced by an average amplitude Bd to
provide a simple analytical expression without any summation.

Table 5.2 presents the numerical calculation of the total dielectronic recombi-
nation rate into H-like ions for the core transitions 1s–2p and 1s–3p for all elements
from He (Z = 2) (see also Annex 3) until Mo (Z = 42) and the corresponding fitting
parameters according (5.147). It can be seen that for low-Z elements, the dielec-
tronic recombination related to the core transition 1s–2p is dominating, for large
Z-values, the relative contribution of the dielectronic recombination with the core

Table 5.2 (continued)

2lnl′: a0 ¼ 1s ! a ¼ 2p 3lnl′: a0 ¼ 1s ! a ¼ 3p

Element Bd vd Bd vd
Zr 1.39 � 10−5 0.598 1.20 � 10−6 0.842

Nb 1.30 � 10−5 0.599 1.13 � 10−6 0.843

Mo 1.21 � 10−5 0.599 1.07 � 10−6 0.843

The numerical data include corrections for multidecay channels (two channels for 2l2l′ and four
channels for 3lnl′)
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Table 5.3 Fitting coefficients according to (5.147) for the dielectronic recombination into He-like
ions originating from the 1s2lnl′- and 1s3lnl′-autoionizing levels, Z = Zn − 1, m = 2, l0 = 0 in
(5.147)

1s2lnl′: a0 ¼ 1s2 ! a ¼ 1s2p 1s3lnl′: a0 ¼ 1s2 ! a ¼ 1s3p

Element Bd vd Bd vd
Li 3.39 � 10−5 1.11 1.57 � 10−6 1.27

Be 9.94 � 10−5 0.961 2.12 � 10−6 1.14

B 1.53 � 10−4 0.891 2.51 � 10−6 1.07

C 1.93 � 10−4 0.848 2.98 � 10−6 1.03

N 2.17 � 10−4 0.818 3.40 � 10−6 1.00

O 2.34 � 10−4 0.795 3.92 � 10−6 0.983

F 2.17 � 10−4 0.775 4.23 � 10−6 0.967

Ne 2.05 � 10−4 0.757 4.50 � 10−6 0.956

Na 1.88 � 10−4 0.740 4.56 � 10−6 0.945

Mg 1.72 � 10−4 0.726 4.54 � 10−6 0.937

Al 1.57 � 10−4 0.713 4.47 � 10−6 0.929

Si 1.43 � 10−4 0.701 4.36 � 10−6 0.922

P 1.30 � 10−4 0.690 4.22 � 10−6 0.916

S 1.18 � 10−4 0.681 4.07 � 10−6 0.910

Cl 1.07 � 10−4 0.672 3.92 � 10−6 0.905

Ar 9.72 � 10−5 0.664 3.76 � 10−6 0.901

K 8.83 � 10−5 0.658 3.61 � 10−6 0.897

C 8.02 � 10−5 0.652 3.45 � 10−6 0.893

Sc 7.28 � 10−5 0.647 3.30 � 10−6 0.889

Ti 6.62 � 10−5 0.642 3.15 � 10−6 0.886

V 6.02 � 10−5 0.638 3.01 � 10−6 0.883

Cr 5.47 � 10−5 0.635 2.87 � 10−6 0.880

Mn 4.98 � 10−5 0.632 2.73 � 10−6 0.877

Fe 4.54 � 10−5 0.629 2.60 � 10−6 0.875

Co 4.14 � 10−5 0.627 2.47 � 10−6 0.873

Ni 3.78 � 10−5 0.625 2.35 � 10−6 0.871

Cu 3.46 � 10−5 0.623 2.23 � 10−6 0.869

Zn 3.16 � 10−5 0.622 2.11 � 10−6 0.868

Ga 2.90 � 10−5 0.620 2.00 � 10−6 0.867

Ge 2.67 � 10−5 0.619 1.90 � 10−6 0.865

As 2.45 � 10−5 0.619 1.80 � 10−6 0.864

Se 2.26 � 10−5 0.618 1.70 � 10−6 0.864

Br 2.08 � 10−5 0.617 1.61 � 10−6 0.863

Kr 1.93 � 10−5 0.617 1.52 � 10−6 0.862

Rb 1.78 � 10−5 0.616 1.44 � 10−6 0.862

Sr 1.65 � 10−5 0.616 1.36 � 10−6 0.861
(continued)
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transition 1s–3p increases. The Burgess formula provides amplitudes Bd that are
about a factor of 3 smaller than the present numerical calculations. For the 3lnl′-
states, the Burgess formula considerably overestimates the dielectronic recombi-
nation rate because it does not take into account the multichannel radiative and
Auger decay. This is of particular importance for low-Z elements. The one channel
approximation, e.g., for C provides Bd ¼ 6:75� 10�5, whereas the four-channel
approximation provides Bd ¼ 6:32� 10�6, i.e., a reduction by a factor of 10. The
multichannel decay is much less important for higher Z-values, e.g., for Fe Bd ¼
5:13� 10�6 whereas the four-channel approximation provides Bd ¼ 2:60� 10�6.

Table 5.3 presents the numerical calculation of the total dielectronic recombi-
nation rate into He-like ions for the core transitions 1s-2p and 1s-3p for all elements
from He (Z = 2) until Mo (Z = 42) and the corresponding fitting parameters
according (5.147). It can be seen that for low-Z elements, the dielectronic recom-
bination related to the core transition 1s-2p is dominating, for large Z-values, the
relative contribution of the dielectronic recombination with the core transition
1s-3p increases. The Burgess formula provides amplitudes Bd that are about a factor
of 3 smaller than the present numerical calculations. For the 1s3lnl′-states, the
Burgess formula considerably overestimates the dielectronic recombination rate
because it does not take into account the multichannel radiative and Auger decay.
This is of particular importance for low-Z elements. The one channel approxima-
tion, e.g., for C provides Bd ¼ 6:76� 10�5, whereas the four-channel approxi-
mation provides Bd ¼ 2:98� 10�6, i.e., a reduction by a factor of 20. The
multichannel decay is much less important for higher Z-values, e.g., for Fe Bd ¼
5:34� 10�6 whereas the four-channel approximation provides Bd ¼ 2:60� 10�6.

Table 5.4 provides the numerical results of dielectronic recombination into
Li-like ions related to a core transition 2s-2p, i.e., the core transition is a Dn ¼ 0
transition. Therefore, the fitting parameter vd is rather small and the associated
exponential factor for the dielectronic recombination does not vary much. In
addition, the configurations 1s22lnl′ are only autoionizing for rather high principal
quantum numbers. This is quite different for the dielectronic recombination related
to the core transition 2s–3p: The states are autoionizing for rather low quantum
numbers nl and the temperature dependence is much different due to an order of

Table 5.3 (continued)

1s2lnl′: a0 ¼ 1s2 ! a ¼ 1s2p 1s3lnl′: a0 ¼ 1s2 ! a ¼ 1s3p

Element Bd vd Bd vd
Y 1.53 � 10−5 0.616 1.29 � 10−6 0.861

Zr 1.43 � 10−5 0.616 1.22 � 10−6 0.861

Nb 1.33 � 10−5 0.616 1.15 � 10−6 0.861

Mo 1.24 � 10−5 0.616 1.09 � 10−6 0.861

The numerical data include corrections for multidecay channels (two channels for 1s2lnl′ and four
channels for 1s3lnl′)
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Table 5.4 Fitting coefficients according to (5.147) for the dielectronic recombination into Li-like
ions originating from the 1s22lnl′- and 1s23lnl′-autoionizing levels, Z = Zn − 2, m = 1, l0 = 0 in
(5.147)

1s22lnl′: a0 ¼ 1s22s ! a ¼ 1s22p 1s23lnl′: a0 ¼ 1s22s ! a ¼ 1s23p

Element Bd vd Bd vd
Be 8.09 � 10−5 0.0571 1.97 � 10−6 0.197

B 6.86 � 10−5 0.0400 2.85 � 10−6 0.173

C 5.18 � 10−5 0.0306 6.61 � 10−6 0.161

N 3.95 � 10−5 0.0248 1.06 � 10−5 0.153

O 3.09 � 10−5 0.0207 1.47 � 10−5 0.149

F 2.47 � 10−5 0.0179 1.85 � 10−5 0.145

Ne 2.02 � 10−5 0.0156 2.17 � 10−5 0.142

Na 1.69 � 10−5 0.0139 2.41 � 10−5 0.140

Mg 1.43 � 10−5 0.0126 2.57 � 10−5 0.138

Al 1.23 � 10−5 0.0115 2.67 � 10−5 0.136

Si 1.07 � 10−5 0.0105 2.71 � 10−5 0.135

P 9.43 � 10−6 0.00981 2.69 � 10−5 0.133

S 8.41 � 10−6 0.00914 2.60 � 10−5 0.131

Cl 7.57 � 10−6 0.00858 2.53 � 10−5 0.130

Ar 6.87 � 10−6 0.00809 2.42 � 10−5 0.128

K 6.25 � 10−6 0.00772 2.31 � 10−5 0.127

C 5.76 � 10−6 0.00736 2.19 � 10−5 0.126

Sc 5.35 � 10−6 0.00704 2.09 � 10−5 0.124

Ti 5.00 � 10−6 0.00677 1.97 � 10−5 0.123

V 4.67 � 10−6 0.00658 1.86 � 10−5 0.122

Cr 4.42 � 10−6 0.00637 1.76 � 10−5 0.120

Mn 4.20 � 10−6 0.00620 1.66 � 10−5 0.119

Fe 4.02 � 10−6 0.00605 1.57 � 10−5 0.118

Co 3.86 � 10−6 0.00592 1.48 � 10−5 0.117

Ni 3.72 � 10−6 0.00581 1.40 � 10−5 0.116

Cu 3.61 � 10−6 0.00571 1.32 � 10−5 0.115

Zn 3.51 � 10−6 0.00564 1.25 � 10−5 0.114

Ga 3.42 � 10−6 0.00558 1.18 � 10−5 0.113

Ge 3.35 � 10−6 0.00553 1.11 � 10−5 0.112

As 3.25 � 10−6 0.00556 1.05 � 10−5 0.111

Se 3.20 � 10−6 0.00554 9.96 � 10−6 0.110

Br 3.20 � 10−6 0.00546 9.43 � 10−6 0.109

Kr 3.17 � 10−6 0.00546 8.92 � 10−6 0.108

Rb 3.15 � 10−6 0.00547 8.45 � 10−6 0.107

Sr 3.13 � 10−6 0.00548 8.01 � 10−6 0.106

Y 3.12 � 10−6 0.00551 7.59 � 10−6 0.105

Zr 3.11 � 10−6 0.00554 7.20 � 10−6 0.105

Nb 3.11 � 10−6 0.00558 6.83 � 10−6 0.104

Mo 3.11 � 10−6 0.00563 6.48 � 10−6 0.103

The numerical data include corrections for multidecay channels (one channel for 1s22lnl′ and four
channels for 1s23lnl′)
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magnitude different vd-factor. Unlike the dielectronic recombination into H- and
He-like ions (Tables 5.2 and 5.3), the dielectronic recombination related to the
n = 3 core transition is very important compared to the 2s–2p related recombina-
tion. Due to this reason, the temperature dependence of the total recombination rate
(being the sum of the 2s–2p, 2s–3p,… transitions) is complex and differs qualita-
tively from the dielectronic recombination into H- and He-like ions that are dom-
inated by a single exponential factor.

The influence of multichannel Auger and radiative decay on the dielectronic
recombination related to the 2s–3p core transition is likewise important for low-Z
elements. For Be atoms, the multichannel decay reduces the Bd—factor by more
than a factor of 10, whereas for Ar the multichannel decay decreases the dielec-
tronic recombination only by a factor of 2.

It is interesting to discuss the influence of the various mechanisms related to the
dielectronic recombination with the core hole transition 2s–4p. The single channel
approximation leads to a wrong estimation of the importance of high-order

Table 5.5 Bd-factors according to (5.147) for the dielectronic recombination into Li-like ions
originating from the 1s2nln′l′-autoionizing levels, Z = Zn − 2, m = 1, l0 = 0 in (5.147)

Element 1s22lnl′: a0 ¼ 1s22s ! a ¼ 1s22p

Bd (one channel) Bd (multichannel) Bd (Burgess)

Be 8.09 � 10−5 – 1.34 � 10−4

C 5.18 � 10−5 – 7.99 � 10−5

Mg 1.34 � 10−5 – 1.94 � 10−5

Ar 6.87 � 10−6 – 8.65 � 10−6

Fe 4.02 � 10−6 – 4.88 � 10−6

Mo 3.11 � 10−6 – 3.87 � 10−6

1s23lnl′: a0 ¼ 1s22s ! a ¼ 1s23p

Be 3.44 � 10−5 1.97 � 10−6 2.88 � 10−5

C 6.45 � 10−5 6.61 � 10−6 6.98 � 10−5

Mg 6.43 � 10−5 2.57 � 10−5 6.96 � 10−5

Ar 4.55 � 10−5 2.42 � 10−5 5.15 � 10−5

Fe 2.61 � 10−5 1.57 � 10−5 3.54 � 10−5

Mo 8.61 � 10−6 6.48 � 10−6 1.89 � 10−5

1s24lnl′: a0 ¼ 1s22s ! a ¼ 1s24p

Be 1.60 � 10−5 3.47 � 10−7 1.10 � 10−5

C 2.52 � 10−5 3.39 � 10−7 2.23 � 10−5

Mg 2.06 � 10−5 1.30 � 10−6 1.87 � 10−5

Ar 1.29 � 10−5 2.05 � 10−6 1.27 � 10−5

Fe 6.54 � 10−6 2.00 � 10−6 8.01 � 10−6

Mo 1.87 � 10−6 1.17 � 10−6 3.82 � 10−6

The numerical data show single- and multiple-channel approximation as well as corresponding
factors according the theory of Burgess (note that the different numerical coefficients in (5.138)
compared to (5.147a) have been included in the value for Bd-Burgess for comparison of the
different methods)
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Table 5.6 Fitting coefficients according to (5.147) for the dielectronic recombination into excited
states of Li-like ions originating from the 1s23lnl′- and 1s24lnl′-autoionizing levels, Z = Zn − 2,
m = 1, l0 = 1 in (5.147)

1s23lnl′: a0 ¼ 1s22p ! a ¼ 1s23d 1s24lnl′: a0 ¼ 1s22p ! a ¼ 1s24d

Element Bd vd Bd vd
Be 1.78 � 10−4 0.140 1.88 � 10−5 0.190

B 2.99 � 10−4 0.137 2.01 � 10−5 0.189

C 3.74 � 10−4 0.135 2.04 � 10−5 0.188

N 4.44 � 10−4 0.133 2.18 � 10−5 0.187

O 5.15 � 10−4 0.131 2.35 � 10−5 0.187

F 5.52 � 10−4 0.130 2.53 � 10−5 0.186

Ne 5.65 � 10−4 0.128 2.67 � 10−5 0.185

Na 5.76 � 10−4 0.127 2.88 � 10−5 0.181

Mg 5.73 � 10−4 0.125 3.28 � 10−5 0.174

Al 5.61 � 10−4 0.124 3.32 � 10−5 0.172

Si 5.39 � 10−4 0.122 3.33 � 10−5 0.171

P 5.19 � 10−4 0.120 3.48 � 10−5 0.167

S 4.96 � 10−4 0.119 3.46 � 10−5 0.165

Cl 4.71 � 10−4 0.117 3.44 � 10−5 0.164

Ar 4.48 � 10−4 0.115 3.41 � 10−5 0.163

K 4.25 � 10−4 0.114 3.38 � 10−5 0.161

C 4.04 � 10−4 0.112 3.34 � 10−5 0.160

Sc 3.83 � 10−4 0.110 3.30 � 10−5 0.159

Ti 3.64 � 10−4 0.109 3.25 � 10−5 0.158

V 3.45 � 10−4 0.107 3.20 � 10−5 0.157

Cr 3.27 � 10−4 0.105 3.14 � 10−5 0.156

Mn 3.11 � 10−4 0.104 3.08 � 10−5 0.156

Fe 2.95 � 10−4 0.102 3.02 � 10−5 0.155

Co 2.80 � 10−4 0.101 2.95 � 10−5 0.154

Ni 2.66 � 10−4 0.0992 2.88 � 10−5 0.154

Cu 2.53 � 10−4 0.0978 2.80 � 10−5 0.153

Zn 2.40 � 10−4 0.0964 2.72 � 10−5 0.153

Ga 2.28 � 10−4 0.0951 2.64 � 10−5 0.153

Ge 2.17 � 10−4 0.0939 2.56 � 10−5 0.152

As 2.06 � 10−4 0.0927 2.47 � 10−5 0.152

Se 1.96 � 10−4 0.0916 2.39 � 10−5 0.152

Br 1.86 � 10−4 0.0905 2.30 � 10−5 0.152

Kr 1.77 � 10−4 0.0895 2.22 � 10−5 0.152

Rb 1.68 � 10−4 0.0885 2.14 � 10−5 0.152

Sr 1.60 � 10−4 0.0876 2.05 � 10−5 0.152

Y 1.52 � 10−4 0.0867 1.97 � 10−5 0.152

Zr 1.45 � 10−4 0.0859 1.89 � 10−5 0.152

Nb 1.38 � 10−4 0.0851 1.82 � 10−5 0.152

Mo 1.31 � 10−4 0.0844 1.74 � 10−5 0.152

The numerical data include corrections for multidecay channels (three channels for 1s23lnl′ and six
channels for 1s24lnl′)
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dielectronic recombination rates. For example, the numerical calculations in the

single channel approximation for Be atoms give Bð1ChannelÞ
d ð2s� 3pÞ ¼ 3:4� 10�5,

whereas Bð1ChannelÞ
d ð2s� 4pÞ ¼ 1:6� 10�5, i.e., 2s-4p transitions are only reduced

by a factor of about 2 compared to the 2s-3p transitions. Numerical calculation
including the multichannel decay provide an entirely different picture:

Bð6ChannelÞ
d ð2s� 3pÞ ¼ 2:0� 10�6 but Bð6ChannelÞ

d ð2s� 4pÞ ¼ 3:5� 10�7, i.e., the
numerical calculations including the multichannel decay indicate that higher-order
dielectronic recombination rates are strongly suppressed.

This is a general observation that multichannel decay reduces the dielectronic
recombination. Table 5.5 shows the numerical calculation for the dielectronic
recombination Bd-factors for single- and multiple- channel decay into Li-like ions
for different orders and elements in comparison to the standard Burgess formula.
One observes that the Burgess formula is in reasonable agreement with the
numerical results for the one-channel decay although it might differ up to a factor of
3 in some cases. Comparing, however, the numerical calculations for the multi-
channel decay (which is the most correct approach as discussed above) discovers
extremely large overestimations of the dielectronic recombination by the Burgess
formula. In particular for light elements, the overestimation might be as large as 1–2
orders of magnitude, e.g., for the dielectronic recombination related to the

autoionizing states 1s24lnl′ of Be, we have Bðmulti�channelÞ
d ð2s� 4pÞ ¼ 3:47� 10�7,

whereas BðBurgessÞ
d ð2s� 4sÞ ¼ 1:10� 10�5, i.e., an overestimation by more than

factor of 30 compared to the Burgess formula. It is therefore not recommended
(Rosmej et al. 2020) to calculate higher-order contributions to the dielectronic
recombination via the Burgess approach.

5.6.2.3 Excited State-Driven Dielectronic Recombination

Table 5.6 shows the dielectronic recombination rates related to the excited states
1s22p of Li-like ions. It can be seen from a comparison of the numerical data from
Tables 5.4 and 5.6 that the excited state contribution is even more important than
the ground state contribution. For example, for Be, Bdð2s� 3pÞ ¼ 1:97� 10�6,
whereas Bdð2p� 3dÞ ¼ 1:78� 10�4 and Bdð2p� 4dÞ ¼ 1:88� 10�5. This means
the excited state contribution is up to 2 orders of magnitude more important than the
ground state contribution. Therefore, even for rather moderate densities with small
population of the excited states, their contribution to dielectronic recombination can
be important.

Particular important cases are encountered if the first excited states are related to
Dn ¼ 0 radiative transitions. Because these transition probabilities are by orders of
magnitude lower than those for Dn[ 0 transitions, Boltzmann populations with
respect to the ground state are already achieved for rather low electron densities.
For example, for Be, at densities of about 1015 cm−3, the population of the excited
states 1s22p is more important than those of the ground state 1s22s (Rosmej 1994).
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Therefore, all excited state contributions of Beryllium, e.g., for tokamaks at typical
divertor densities have larger contribution than the ground state.

The excited state contribution could be even important for very low densities if
the excited states are metastable states. Therefore, in heavy ions, where we met
excited states that are close to ground states, either related by a dipole-allowed
radiative transition or by multipole transitions, the dielectronic recombination is
extremely complex even for rather low densities. This is the main reason that up to
present days, ionic balance calculations of heavy elements differ strongly from one
method to another and that dielectronic recombination remains an active field of
research and of considerable interest for applications (nuclear fusion, astrophysics,
radiation sources, and spectroscopic diagnostics).

In conclusion, the excited state contribution is driven by atomic kinetics that can
have much more important impact, than any other sophisticated effects related to
ground state contributions. This points again to the great practical importance of
quasi-classical methods (albeit of limited precision) that provide the possibility to
obtain numerical data even for large quantum numbers that are important for the
dielectronic recombination. It is important to emphasize that the inclusion of
excited state contributions for the dielectronic recombination up to high quantum
numbers for the corresponding core transitions may exceed ground state contri-
butions by many orders of magnitude and it is for this reason that it is more precise
to include as much as possible excited state contributions with the limited precision
rather than improve via sophisticated atomic structure calculations the simplest
core-transition-related dielectronic recombination but ignoring higher-order and
excited states contributions.

5.6.3 Dense Plasma and Electric Field Effects
on Dielectronic Recombination

Dense plasma effects are of multiple origins. The first one (as discussed above in
relation with Table 5.6) is related to the atomic population kinetics where highly
populated excited states directly contribute to the recombination process (Rosmej
1994). The second one is related to the shift of bound states into the continuum, and
the third one concerns the change of atomic processes itself (cross-sections) due to
the plasma electric microfield.

5.6.3.1 Atomic Population Kinetics

Let us begin with the atomic population kinetics and the existence of a critical
principal quantum number, where collisional processes start to dominate over
radiative ones [see discussion related to (5.52)–(5.57)]. The physical meaning of this
critical quantum number Nmax (5.52) is that above this principal quantum number,
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the population kinetics is essentially governed by the Saha–Boltzmann relation
between highly excited states and the next ionization stage and any single recom-
bination processes (whatever its magnitude is) are rapidly assimilated via collisions
that effectively suppress the recombination processes. In fact, the analytical formulas
for total dielectronic recombination and also for total radiative recombination
assume that finally all excited states effectively recombine (via radiative cascading to
the ground state). As has been demonstrated (Rosmej et al. 2006; Rosmej 2012),
even the large rates of charge exchange recombination processes from excited states
are effectively assimilated by collisions [although the collision limit itself changes
(Rosmej 2012)] so that there exists a critical quantum number where the Saha–
Boltzmann relations hold true and where recombination into higher states does not
effectively contribute to recombination (see also Sect. 10.3.1).

5.6.3.2 Limitation of Bound States

The second phenomenon is related to the fact that the plasma electric microfield
limits the number of bound states. Electric field ionization starts at the critical field
strength Fcrit that is given by Bethe and Salpeter (1977)

Fcrit ¼ 6:8� 108
V
cm

� Z
3
eff

n4F
; ð5:148Þ

where Zeff is the effective ion charge and nF the principal quantum number from
which on field ionization starts. In order to estimate the limited number of quantum
states that take effectively part in the recombination process, we identify the critical
field strength Fcrit with the Holtsmark field

F ¼ 1:3� 10�6 � Zi � N2=3
i ðcm�3Þ V

cm
; ð5:149Þ

and the principal quantum number nF with the maximum quantum number, i.e.,

nmax 	 4:8� 103 � Z3=4
eff

Z1=4
i � N1=6

i ðcm�3Þ
: ð5:150Þ

Let us compare the maximum quantum number from (5.150) with the critical
quantum number of (5.57) assuming that ne;crit ¼ Ni � Zi and kTe eVð Þ ¼ a � Z2

effRy,
where a is a constant (of the order of a 	 0:1� 1):

ncrit 	 373 � a1=14 � Zeff

Z1=7
i � N1=7

i

: ð5:151Þ

With the help of (5.149) and (5.150), we find
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nmax

ncrit
	 13

a1=14
� 1

Z1=4
eff � Z3=28

i � N1=42
i ðcm�3Þ

: ð5:152Þ

Let us illuminate the relation (5.152) with a typical example: near-solid density
high-temperature H-like aluminum, i.e., Zeff ¼ 13, Zi ¼ 12, a ¼ 0:3, Ni ¼
1022 cm�3 providing nmax=ncrit 	 1:7. Therefore, for almost all practical applica-
tions, we encounter the relation

nmax

ncrit
[ 1: ð5:153Þ

The physical interpretation of relation (5.153) means that the collisional ther-
malization and the associated effective suppression of single recombination rates
into excited states are therefore related to a large ensemble of high-n quantum
numbers below those that merge into the continuum. For this reason, a detailed
quantum mechanical treatment of high-n-states and their merging into the contin-
uum appears to be not critical and quasi-classical estimates seem to be well adapted
to the problem.

5.6.3.3 Effects of Angular Momentum Changing Collisions

It is evident that a strict consideration of angular momentum changing collisions
requests a very extended atomic level system that includes all details of the
autoionizing states in order to treat properly the collisional population redistribution
effects. We restrict here ourself to a principle discussion with the help of the most
frequently employed formula for dielectronic recombination proceeding from
dielectronic capture from channel k and with radiative transition j ! i [see also
(5.131)–(5.133)]:

DRh iZþ 1;Z
k;ji 	 1

2gZþ 1
k

� 2p�h2

me

	 
3=2

� gZj � CZ;Zþ 1
jk � AZ

jiP
l A

Z
jl þ

P
k C

Z;Zþ 1
jk

� expð�EDC
kj =kTeÞ

ðkTeÞ3=2
:

ð5:154Þ

Let us now consider a simple illustrative example, namely the Ly-alpha
dielectronic 2l2l′-satellites of He-like ions and depict two levels, one that has very
large autoionizing rate and one that has a negligible ones. For the first case, we
consider the level j0 ¼ 2p2 1D2, k ¼ 1s 2S1=2 and the radiative transition
j0 ¼ 2p2 1D2 ! i0 ¼ 1s2p 1P1. Atomic structure calculations for carbon (Zn = 6)
deliver: CZ;Zþ 1

j0k ¼ 2:5� 1014 s�1, AZ
j0i0 ¼ 1:4� 1012 s�1,

P
l A

Z
jl ¼ 1:4� 1012 s�1,P

k C
Z;Zþ 1
j0k ¼ 2:5� 1014 s�1. For the second case, we consider the autoionizing
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configuration j ¼ 2p2 3P1, k ¼ 1s 2S1=2 and the radiative transition
j ¼ 2p2 3P1 ! i ¼ 1s2p 3P2. Atomic structure calculations (Zn = 6) provide:
CZ;Zþ 1
jk ¼ 0, AZ

ji ¼ 6:0� 1011 s�1,
P

l A
Z
jl ¼ 1:4� 1012 s�1,

P
k C

Z;Zþ 1
jk ¼ 0 from

which it follows QZþ 1;Z
k;ji ¼ 0.

Assuming a two-level system where only dielectronic capture and angular
momentum changing collisions (characterized by the rate coefficient Cj0j) con-
tribute, the atomic populations nZj and nZj0 are given by

nZj0
X
l

AZ
j0l þ

X
k

CZ;Zþ 1
j0k þ neCj0j

 !
¼ nZþ 1

k � ne � DCh iZþ 1;Z
k;ji0 þ ne � nZj � Cjj0 ;

ð5:155Þ

nZj
X
l

AZ
jl þ

X
k

CZ;Zþ 1
jk þ neCjj0

 !
¼ nZþ 1

k � ne � DCh iZþ 1;Z
k;ji þ ne � nZj0 � Cj0j;

ð5:156Þ

where

DCh iZþ 1;Z
k;q ¼ 1

2gZþ 1
k

� 2p�h2

me

	 
3=2

�gZq � CZ;Zþ 1
qk �

exp �EDC
kq =kTe

 �
ðkTeÞ3=2

ð5:157Þ

with q ¼ j; j0. In the absence of collisions, (5.154)–(5.156) transform to

nð0Þ; Zq

X
l

AZ
ql þ

X
k

CZ;Zþ 1
qk

 !
¼ nZ þ 1

k � ne � DCh iZ þ 1;Z
q;k ; ð5:158Þ

providing

nð0Þ; Zq ¼ nZþ 1
k � ne � 1

2gZþ 1
k

� 2p�h2

me

	 
3=2

� gZq � CZ;Zþ 1
qkP

l A
Z
ql þ

P
k C

Z;Zþ 1
qk

�
exp �EDC

kq =kTe
 �
ðkTeÞ3=2

;

ð5:159Þ

where the index “(0)” indicates the low-density case.
In order to understand the effect of angular momentum changing collisions on

the total dielectronic recombination rate, we need to consider the sum for the two
levels, i.e.,
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DRcollh iZþ 1;Z
tot ¼ DRcollh iZþ 1;Z

k;ji þ DRcollh iZþ 1;Z
k;j0i0 ; ð5:160Þ

where the index “coll” for the single dielectronic recombination rates DRcollh iZþ 1;Z
k;ji

and DRcollh iZþ 1;Z
k;j0i0 indicates that these rates include the collisional processes. This

has to be distinguished from (5.154) which is a low-density approximation. It is of
principal interest to understand the change of the dielectronic recombination due to
collisions with reference to the low-density case, i.e., we consider the ratio

DRcollh iZþ 1;Z
tot

DRh iZþ 1;Z
tot

¼
DRcollh iZþ 1;Z

k;ji þ DRcollh iZþ 1;Z
k;j0i0

DRh iZþ 1;Z
k;ji þ DRh iZþ 1;Z

k;j0i0
: ð5:161Þ

The collisional dielectronic recombination rates cannot be determined from
relations like (5.154) but need to be determined directly from the populations, i.e.,

DRcollh iZþ 1;Z
k;ji / nZj � AZ

ji ; ð5:162Þ

because the product of the level population with the radiative decay is the rate at
which the excited state decays to the ground state which is equivalent to dielec-
tronic recombination (note that the usual branching ratios that appear in formulas
like those of (5.154) are already included via the equilibrium population) if the
right-hand side of (5.155), (5.156) is driven by dielectronic capture and angular
momentum changing collisions between the autoionizing levels under considera-
tion. Combining the relations (5.161) and (5.162), we obtain

DRcollh iZþ 1;Z
tot

DRh iZ þ 1;Z
tot

¼
nZj � AZ

ji þ nZj0 � AZ
j0i0

nð0Þ; Zj � AZ
ji þ nð0Þ;Zj0 � AZ

j0i0
; ð5:163Þ

i.e.,

DRcollh iZþ 1;Z
tot

DRh iZþ 1;Z
tot

¼

nZj0

nð0Þ; Zj0
þ nZj � AZ

ji

nð0Þ; Zj0 � AZ
j0i0

nð0Þ; Zj � AZ
ji

nð0Þ; Zj0 � AZ
j0i0

þ 1

: ð5:164Þ

Because EDC
kj 	 EDC

kj0 , we have for the population ratio in the low-density case
(for the example given above)
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nð0Þ; Zj

nð0Þ; Zj0
	 gZj � CZ;Zþ 1

jk

gZj0 � CZ;Zþ 1
j0k

�
P

l A
Z
j0l þ

P
k C

Z;Zþ 1
j0kP

l A
Z
jl þ

P
k C

Z;Z þ 1
jk

	 0; ð5:165Þ

because CZ;Zþ 1
jk � CZ;Zþ 1

j0k . Therefore, population is essentially transferred by
angular momentum changing collision form level j0 to level j but not vice versa. Let
us now specify the above example for the populations of (5.155), (5.156):

nZj
X
l

AZ
jl þ neCjj0

 !
	 ne � nZj0 � Cj0j; ð5:166Þ

and

nZj0
X
l

AZ
j0l þ

X
k

CZ;Zþ 1
j0k

 !
	 nZ þ 1

k � ne � DCh iZþ 1;Z
k;j0 ; ð5:167Þ

Equations (5.155), (5.156), (5.158) indicate that for autoionizing levels with
very large autoionizing rates, the populations are close to the low-density case.
Equation (5.167) corresponds therefore to the case of low density (5.158), i.e.,

nZj0 	 nð0Þ; Zj0 : ð5:168Þ

Injecting relations (5.165), (5.166), (5.168) into (5.164), we obtain

DRcollh iZþ 1;Z
tot

DRh iZþ 1;Z
tot

	 1þ ne � Cj0jP
l
AZ
jl þ neCjj0

� A
Z
ji

AZ
j0i0
: ð5:169Þ

Because gj0 � Cj0j 	 gj � Cjj0 for closely spaced levels, relation (5.169) takes the
form

DRcollh iZþ 1;Z
tot

DRh iZþ 1;Z
tot

	 1þ
gZj0

gZj
� A

Z
ji

AZ
j0i0

� 1
1þ P

l A
Z
jl=neCjj0

 !
: ð5:170Þ

If
P

l A
Z
jl 	 neCjj0 , the term in parenthesis of relation (5.170) is about one half

and the relation indicates that the total dielectronic recombination rate is enhanced
(i.e., DRcollh iZþ 1;Z

tot = DRh iZþ 1;Z
tot [ 1) due to angular momentum changing colli-

sions. This can be understood in a transparent qualitative picture: For the level j0

with high autoionization rate, the dielectronic capture is high and due to the large
autoionizing rate, the branching factor for radiative de-excitation is small. If,
however, a certain fraction of population is collisionally transferred to another level
before autoionization and radiative decay disintegrate the upper level j0, the level j is
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effectively populated by collisions from j0 ! j (because the population of the
level j is small as dielectronic capture is small due to small autoionization rate).
The transferred population, however, has a very favorable branching factor for

the level j (e.g., in the above example AZ
ji=

P
l A

Z
jl þ

P
k C

Z;Zþ 1
jk

 �
¼ 6:0�

1011=1:4� 1012 ¼ 0:43) compared to the level j0 (AZ
j0i0=

P
l A

Z
j0l þ

P
k C

Z;Zþ 1
j0k

 �
¼

1:4� 1012=2:6� 1014 ¼ 0:0088) and the transferred population is more effectively
transferred to the ground state to finally contribute to the dielectronic
recombination.

5.6.3.4 Electric Field Effects on Cross-Sections

The influence of the electric field on autoionization and corresponding dielectronic
recombination rates was studied by (Davis and Jacobs 1975; Jacobs et al.
1976; Jacobs and Davis 1979) with the simplest atomic system of He-like
autoionizing states 2l2l′. It was realized that forbidden autoionizing processes
(forbidden in LS-coupling scheme) become allowed by electric field mixing of
autoionizing bound state wave functions. The allowed autoionization width is given
by the first-order transition rate

Cðd ! cÞ ¼ 2p
�h

� dh jV cj ij j2d Ed � Ecð Þ; ð5:171Þ

where V is the electrostatic interaction. Because V is a scalar operator, the
autoionization vanishes unless there are available adjacent continuum states c with
the same angular momentum and parity as the discrete levels d (Cowan 1981).
Because of the absence of even parity P states below the second ionization
threshold, the 2p2 3P-state of He-like ions is metastable against autoionization
decay. In the presence of perturbing electric fields, however, autoionization of the
state a ¼ 2p2 3P may occur by a second-order process involving the field-induced
transition to the nearby autoionizing state d ¼ 2s2p 3P. In a quasi-static ion field,
the field-induced autoionization rate is given by

Table 5.7 Field-free autoionization decay rates in [s−1] including intermediate coupling,
configuration, and magnetic interaction

State Zn = 3 Zn = 6 Zn = 13 Zn = 18 Zn = 26 Zn = 42

2p2 1S0 8.4 � 1010 5.1 � 1012 1.3 � 1013 1.9 � 1013 3.4 � 1013 7.0 � 1013

2p2 1D2 1.5 � 1014 2.5 � 1014 3.1 � 1014 3.1 � 1014 2.3 � 1014 2.1 � 1014

2p2 3P0 2.9 � 107 2.3 � 109 2.3 � 1011 1.2 � 1012 3.7 � 1012 2.8 � 1012

2p2 3P1 0 0 0 0 0 0

Breit
interaction

2.6 � 107 6.8 � 108 1.9 � 1010 7.2 � 1010 3.2 � 1011 2.2 � 1012

2p2 3P2 1.1 � 109 3.1 � 1010 3.0 � 1012 2.1 � 1013 1.1 � 1014 1.5 � 1014
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Cða ! cÞ ¼ 2p
�h

�
X
d

ah jQ!� E! dj i dh jV cj i
ðEa � EdÞþ i�hðCd þAdÞ=2

�����
�����
2

d Ea � Ecð Þ; ð5:172Þ

where ~Q is the electric dipole moment operator, Cd and Ad are the autoionization
and radiative width of the state d, respectively. Therefore, the first-order contri-
bution from the field-induced transition decays directly into the non-resonant
continuum c ¼ 1s�p 3P.

It should be noted that for practical applications, not only field-induced transi-
tions have to be considered, but intermediate coupling, configuration, and magnetic
interactions too. In particular for highly charged ions, these “non-electric field
effects” may have likewise a considerable contribution to the forbidden autoion-
ization width, as is demonstrated in the following Table 5.7. In addition, the Breit
interaction induces an autoionization rate for the 2p2 3P1—state (see second line for
the state 2p2 3P1 in Table 5.7).

Table 5.7 shows also the general effect that if the nuclear charge increases, the
autoionizing widths are more and more distributed over the levels. Therefore,
electric field effects are best studied for low-Z elements.

From the relationship between the corresponding capture and autoionizing rates,
it follows that the electric field can induce dielectronic recombination through
normally inaccessible high angular momentum states which have large statistical
weights (Jacobs et al. 1976). In fact, in a plasma, the angular momentum l is no
longer a good quantum number, because the presence of an electric field destroys
the spherical symmetry. However, the projection m which is defined with respect to
the direction of the electric field remains a good quantum number. For nonzero
quantum numbers m, this results in a twofold degeneracy of the outer electron in
addition to the twofold degeneracy due to the spin. The appropriate transformation
of the field-free substates l has the form

nkmj i ¼
Xn�1

l¼ mj j
nlmj i nlm j nkmh i; ð5:173Þ

where the quantum number k, which replaces l in the presence of the electric field,
can have integer values from k ¼ 0. . . n� mj j � 1ð Þ. The calculations demonstrate
(Jacobs et al. 1976; Jacobs and Davis 1979; Bureyeva et al. 2001, 2002) that the
dependence of the autoionization rates on the quantum number k is rather smooth in
contrast to the field-free case where the autoionization rates decrease rapidly with
quantum number l. Due to this reason, dielectronic capture in the presence of
electric field increases because it is proportional to the autoionizing rate and the
statistical weight, i.e., DCh iZþ 1;Z

k;j / gZj � CZ;Zþ 1
jk . Because the dielectronic recom-

bination is proportional to the dielectronic capture [see (5.154)], this results in a
considerable increase of the total dielectronic recombination rate. For example, for
the autoionizing states 1s22pnl in Be-like Fe22+ an about threefold increase of the
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dielectronic recombination rate was found even for densities as low as 1014 cm−3

(Jacobs et al. 1976). This dramatic increase for rather low densities is particularly
connected with the fact that for the 1s22pnl-configuration, the resonance sponta-
neous transition probability 2p–2s is not very large and high-n-states have
autoionizing rates larger than radiative decay rates for n-quantum numbers up to
about 100. In consequence, high-n-states contribute considerably to the dielectronic
recombination rate. As high-n-states are likewise strongly affected by rather small
electric fields, a considerable impact on the total recombination rate is encountered
even for rather low plasma densities (being of importance for typical densities of
solar corona or magnetic fusion plasmas).

The interaction with an electric field makes atomic structure calculations
extremely complex, and it is difficult to derive general conclusions. It has been,
however, demonstrated (Bureyeva et al. 2001, 2002) that the quasi-classical
approach combined with a transformation to parabolic quantum numbers (5.173)
provides results that are in surprisingly good agreement with extremely complex
numerical calculations (Robicheaux and Pindzola 1997). Moreover, the
quasi-classical approach combined with the transformation to parabolic quantum
numbers allowed deriving a closed expression for the autoionization rate in an
electric field:

Cðn; k;mÞ ¼
Zlmax

lmin

Pðnl; kmÞ � CðnlÞ � dl; ð5:174Þ

with

l2min ¼
1
2

ðn� 1Þ2 þm2 � k2
h i

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ2 þm2 � k2
h i2

�4ðn� 1Þ2m2

r( )

ð5:175Þ

and

l2max ¼
1
2

ðn� 1Þ2 þm2 � k2
h i

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ2 þm2 � k2
h i2

�4ðn� 1Þ2m2

r( )
:

ð5:176Þ

CðnlÞ is the standard autoionizing rate in spherical coordinates and Pðnl; kmÞ is a
joint probability (with normalization equal to one) for the appearance of spherical
(nl) and parabolic (km) quantum numbers that can be expressed in terms of
Clebsch–Gordan coefficients. For large quantum numbers and the condition
m\l � n (quasi-classical limit of Clebsch–Gordan coefficients that is of practical
interest), the joint probability can be approximated by Bureyeva et al. (2002)
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Pðnl; kmÞ 	 1
p
� 2lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � l2min

� � � l2max � l2
� �q

8><
>:

9>=
>;: ð5:177Þ

Substituting quasi-classical values for the autoionization rate CðnlÞ into (5.174)
and using (5.173), we obtain an autoionizing rate in parabolic quantum numbers
expressed in terms of universal functions (t = l/leff, leff = (3Z2/x)1/3):

Cðn; k;mÞ ¼ fij
p � n3 � Iðtmin; tmaxÞ; ð5:178Þ

Iðtmin; tmaxÞ 	 2
lmax

� 3Z2

x

	 
2=3

�Y lmin � ðx=3Z2Þ1=3
 �

; ð5:179Þ

YðxÞ 	 0:284 � exp �2x3
� �

: ð5:180Þ

fij is the oscillator strength of the core transition with charge Z (e.g., the oscillator
strength corresponding to the transition 1s� 2p in H-like Al for the He-like 2lnl0-
satellites, Z = 13). The formulas (5.174)–(5.180) demonstrate likewise a broad
distribution over the electric quantum number k that finally results in an increase of
the dielectronic recombination rate.
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