
Chapter 4
Radiation Scattering on Atoms, Plasmas,
and Nanoparticles

Abstract Radiation scattering on free electrons, atoms, plasmas, and nanoparticles
is considered using various approaches both quantum and classical ones. Scattering
on atoms is described in dipole and non-dipole approximations while the
high-frequency limit is applied for elastic (Rayleigh) and Compton scattering. The
high-frequency limit is treated using the dynamical form factor (DFF), the Compton
profile, and the impulse approximation. The DFF of the plasma component is also
used for the description of the radiation scattering in plasmas, namely Compton
scattering, transient scattering, and scattering with plasmon generation and
absorption. Radiation scattering and absorption on nanoparticles placed in homo-
geneous media are presented within the framework of the Mie theory. Numerical
examples are given for radiation scattering and absorption on silver nanospheres
with different radii in glass in the vicinity of surface plasmon resonances.

4.1 Photon Scattering by a Free Electron

Scattering of a photon can be interpreted as virtual absorption of an incident photon
and simultaneous emission of a scattered photon. At first, let us consider the
simplest case, when a photon is scattered by a free electron. Strictly speaking, the
model of a free (not interacting with the environment) electron is always approx-
imate. Nevertheless, in a number of cases, this approximation is well satisfied.
Moreover, as we will see further, even a bound electron under certain parameter
conditions of scattering can be considered to be free.

Scattering of a photon with a frequency x and a wave vector k by a free electron
is accompanied by a change in frequency x ! x0 and in wave vector k ! k0. If the
angle of photon scattering h is introduced (Fig. 4.1), then due to the conservation of
energy–momentum it is possible to obtain the following relation between the fre-
quency change and the angle of photon scattering:

1
x0 �

1
x
¼ �h

m c2
1� cos hð Þ; ð4:1Þ
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where m is the electron mass and c is the velocity of light. The factor in front of the
parentheses in the right-hand side of (4.1) can be rewritten as kC=2pc, where
kC ¼ h=mc ffi 2:42� 10�10 cm is the Compton wavelength of an electron.

It is easily seen from the expression (4.1) that at zero-scattering angle h ¼ 0 the
change in photon frequency is equal to zero: x ¼ x0. If h 6¼ 0, the frequency of a
scattered photon is found to be less than its initial frequency x0\x since part of the
photon energy is transferred to a scattered electron (the “recoil” energy). A decrease
in frequency corresponds to an increase in radiation wavelength, so photon scat-
tering through a nonzero angle is accompanied by an increase in wavelength.

With the use of standard rules of quantum electrodynamics (Berestetskii et al.
1982), the following expression (the Klein-Nishina-Tamm formula) can be obtained
for the cross section of photon scattering by a free electron in the laboratory frame
of reference (connected with an electron):

dr ¼ r2e
2

x0

x

� �2 x
x0 þ

x0

x
� sin2 h

� �
dX0; ð4:2Þ

where re ¼ e2=mc2 ffi 2:82� 10�13 cm is the so-called classical electron radius,
dX0 is an element of the solid angle in the direction of the wave vector of a scattered
photon. If �hx � mc2, the frequency change is small (see (4.1)) in comparison with
the frequency itself: Dxj j � x, and in (4.2) it can be assumed x � x0. Then from
the expression (4.2), the well-known nonrelativistic Thomson formula is obtained
for the cross section of photon scattering by a free electron at rest that is differential
with respect to the angle:

drTh ¼ 1
2
r2e 1þ cos2 h
� � x0

x

� �2

dX0: ð4:3Þ

It is seen that in this case the value of the cross section is defined by the squared
of the classical electron radius, that is, a very small quantity.

Fig. 4.1 Scattering of a
photon by an electron at rest,
pe is the recoil momentum of
the electron
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The cross section integrated with respect to the angle of scattering in the case of
an arbitrary photon energy can be obtained from (4.2):

r xð Þ ¼ 2pr2e
1
x

1� 4
x
� 8
x2

� �
ln 1þ xð Þþ 1

2
þ 8

x
� 1

2 1þ xð Þ2
( )

; ð4:4Þ

where x ¼ 2�hx=mc2. The scattering cross section (4.4) normalized to the squared
classical electron radius is given in Fig. 4.2.

In the nonrelativistic limit of low photon energy, when x � 1, the first terms of
the expansion of the right-hand side of the (4.4) give

r ¼ rTh 1� 2�hx
mc2

� �
; �hx � mc2; ð4:5Þ

here, the Thomson cross section rTh ¼ 8pr2e=3 of photon scattering by an electron
integrated with respect to the angle is introduced. This fact is illustrated by Fig. 4.2,
in which it is seen that the normalized scattering cross section in the limit of low
photon energy is 8p=3 ffi 8:378. The inflection point of the curve shown in
Fig. 4.2 corresponds to the approximate equality of the photon energy and the
electron rest energy, when x = 1.

In the ultrarelativistic case x � 1, when the photon energy is much higher than
the electron rest energy �hx � mc2, we obtain from (4.4):

r ¼ pr2e
mc2

�hx
ln

2�hx
mc2

� �
þ 1

2

� �
; ð4:6Þ
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Fig. 4.2 The normalized cross section of photon scattering by a free electron in a wide range of
photon energies, x ¼ 2�hx=mc2
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that is, the scattering cross section decreases in inverse proportion to the photon
energy.

It should be noted that in the ultrarelativistic limit the differential scattering cross
section in the laboratory frame of reference has a sharp maximum in the direction of
the initial propagation of the photon. On the other hand in the nonrelativistic limit,
the distribution of scattered radiation is of dipole character [as can be seen from the
formula (4.3)].

4.2 Radiation Scattering on Atoms

Within the classical framework, when electromagnetic radiation acts on an atom,
bound electrons begin oscillation, which, according to known electrodynamic laws,
results in the emission of a secondary or scattered electromagnetic wave. In
quantum terms, this process represents a scattering of the photon by an atomic
electron: the atomic electron is virtually excited to some intermediate atomic state
and finally reaches the steady state. We note that by virtual excitation it is meant the
transition of an electron to a state with another energy: this transition is then
“instantly” followed by the reverse transition to a steady state with the initial or
another energy. If this final steady state coincides with the initial state, we encounter
the so-called Rayleigh scattering, and in the other case, there is Raman scattering.

Quite another situation is possible in X-ray scattering, namely when an atomic
electron in the course of photon scattering is ionized. This process is referred to as
Compton scattering of a photon by an atomic electron.

4.2.1 Classical Description

We will dwell first on Rayleigh scattering of radiation by an atom. In order not to
resort to the quantum mechanical formalism, we employ the spectroscopic principle
of correspondence for the description of this process. According to this principle, an
atom behaves as a set of oscillators with frequencies equal to eigenfrequencies of
atomic electrons when interacting with radiation. These oscillators are called
transition oscillators since each of them corresponds to some transition between two
steady states of an electron in an atom.

To calculate the Rayleigh scattering cross section, we proceed from the
expression for the power of dipole radiation induced by the action of an electro-
magnetic wave on an atom (Landau and Lifschitz 1975):

Q tð Þ ¼ 2
3c3

€d tð Þ�� ��2; ð4:7Þ
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where c is the speed of light, two dots above the dipole moment vector denote
differentiation with respect to time. The criterion of applicability of the dipole
approximation (formula (4.7)) can be formulated by the following inequality:

k � a; ð4:8Þ

where a is the size of the region of space responsible for radiation, k is the radiation
wavelength. In case of an atom, when a � 10�8 cm, the condition (4.8) covers a
wide range of wavelengths down to soft X-rays. We note that for modern X-ray
Free Electron Laser installations, where photon energies up to about 20 keV are
reached, the dipole condition (4.8) is not anymore valid.

The expression (4.7) describes the instantaneous power of radiation at a given
instant of time t. In experiments, the power averaged over the period of oscillation
of the field in an electromagnetic wave causing dipole moment oscillations
T ¼ 2p=x is measured. In case of monochromatic radiation, the formula for the
average radiation power follows from (4.7), i.e.,

Q tð Þh iT¼
X1
n¼1

Qn; ð4:9Þ

Qn ¼ 4
3c3

€d
� �

n

�� ��2; ð4:10Þ

where ð€dÞn is the nth Fourier harmonic of the second derivative of the dipole
moment. Using the periodicity of dipole moment oscillations, with the use of the
Fourier transform, it is possible to obtain the radiation power at a frequency of
periodic motion of an electron xðn ¼ 1Þ as

Q � Qn¼1 ¼ 4x4

3c3
dxj j2: ð4:11Þ

Substituting (2.37) in (4.11) and using the formula for the intensity of
monochromatic radiation in terms of the Fourier harmonic of the electric field
strength, i.e.,

I ¼ c
2p

Exj j2; ð4:12Þ

we obtain for the cross section of the Rayleigh scattering of radiation by an atom in
an ith state

r Rscð Þ
i xð Þ ¼ 8p

3
x2

c2
bi xð Þ

����
����
2

; ð4:13Þ
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where biðxÞ is the dynamic polarizability of an atom in an ith state. The detailed
consideration of the dynamic polarizability was presented in Chap. 2.

Let us consider for comparison the classical Thomson formula for the cross
section of radiation scattering by a free electron

r Thð Þ
sc xð Þ ¼ 8p

3
e2

mc2

� �2

: ð4:14Þ

In order to compare (4.13) and (4.14), we consider different limiting cases of the
expression for the cross section of radiation scattering by an atom (4.13). The first
case corresponds to the scattering of low-frequency radiation, when x � xni: the
radiation frequency is much less than the frequencies of the transition of an atom
from the initial state to excited states. In this limit, the scattering cross section is
given by a formula similar to (4.13), in which the frequency-independent static
polarizability of an atom b0 ¼ bðx ¼ 0Þ is dominating. Thus from the expression
(4.13), it follows that in the low-frequency limit the scattering cross section
increases as the fourth power of frequency, which, in particular, defines the blue
color of the sky (solar radiation scattered in the air).

Resonant scattering of radiation by an atom occurs if the radiation frequency is
close to one of the atomic eigenfrequencies. Then the previous formulas give

r resscð Þ
i x � xnið Þ ¼ 2p

3
f 2nir

2
e

x2
ni

x� xnið Þ2 þ dni=2ð Þ2 ; ð4:15Þ

where re � 2.8 � 10−13 cm is the electron classical radius. In case of an exact
resonance with natural broadening of a transition, when ðdniÞnat ¼ Ani (Ani is the
Einstein coefficient for spontaneous radiation), it follows from (4.15) that

r resscð Þ
i x ¼ xnið Þ � k2ni; ð4:16Þ

i.e., the resonant scattering cross section is proportional to the squared of the ra-
diation wavelength, which in the optical range exceeds the geometrical size of an
atom by several orders of magnitude.

Finally, in the high-frequency limit, when the eigenfrequencies of the atom can
be neglected in comparison with the radiation frequency, we obtain

r Rscð Þ
i x � xnið Þ ¼ 8p

3
r2eN

2
a ; ð4:17Þ

where Na is the number of atomic electrons. In derivation of (4.17), the sum rule for
oscillator strengths, i.e., X

n

fni ¼ Na ð4:18Þ
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was used. The condition of the high-frequency approximation x � xni can be
rewritten as x � IP=�h, where IP is the ionization potential of the atomic shell that
mostly contributes to the scattering cross section.

The Rayleigh scattering cross section in the high-frequency limit (4.17) obtained
in the dipole approximation is proportional to the squared number of atomic
electrons. This reflects the fact that if the dipole condition (4.8) is valid the elec-
tronic charge of an atom oscillates as a single entity under the action of an elec-
tromagnetic wave. As a result, secondary radiation leading to scattering is coherent
with respect to the contributions of all atomic electrons. It is the presence of the
factor N2

a in the cross section that manifests this coherence.
For atoms with only one electron, (4.17) coincides with the Thomson formula

(4.14), i.e., with the cross section of radiation scattering by a free electron. This
coincidence is not accidental since neglecting the binding energy of the atomic
electron corresponds to the condition x � xni.

The above cross sections describe photon scattering in total solid angle. These
are the so-called integrated cross sections. To obtain a differential cross section
describing photon scattering by a spherically symmetric system into a specified
solid angle X0 þ dX0, one has to multiply the integrated cross sections by the factor
of the angular dependence of dipole radiation, 3ð1þ cos2 hÞ=16p, where h is the
angle between the wave vector of incident radiation k and the wave vector of
scattered radiation k0. Then, instead of formula (4.17), we have

dr Rscð Þ
i x � xnið Þ

dX0 ¼ 1þ cos2 h
2

r2eN
2
a : ð4:19Þ

Hence, it is seen that the cross section maximum corresponds to forward ðh ¼ 0Þ
and backward ðh ¼ 180	Þ scattering of photons.

The expression (4.19) is valid for spherically symmetric systems in the dipole
approximation, when the change in the wave vector of radiation as a result of
scattering Dk ¼ k0 � k is small in comparison with the atomic momentum, i.e.,
rj
�� �� Dkj j � 1. It can be generalized to the non-dipole case via the replacement
Na ! nðDkÞ, where nðDkÞ is the spatial Fourier transform of the atomic electron
density. The latter statement means that radiation scattering “tests” the distribution
of the electron density inside an atom. Within the framework of the quantum
mechanical formalism, the Fourier transform nðDkÞ is equal to the atomic form
factor in a specified electronic state:

n Dkð Þ ! nii Dkð Þ � Fi Dkð Þ ¼ ih j
X
j

exp iDk rj
� �

ij i; ð4:20Þ

where the sum is calculated over all electrons of an atom, and the symbol ih j. . . ij i is
the Dirac notation for the matrix element (the integral of an operator …. calculated
with atomic wave functions wiðrjÞ). It immediately follows from (4.20) that in the
framework of the dipole approximation [see relation (4.8)] FiðDkÞ ffi Na since in
this case the exponents in the sum (4.20) are small.
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In the exponential screening approximation, the electron density decreases with
increasing distance to the nucleus on a characteristic scale length Ra (the average
atomic radius). The atomic form factor and accordingly the Fourier transform of the
electron density is given by

Fi Dkð Þ ¼ Na

1þDk2R2
a

: ð4:21Þ

The radius Ra for multielectron atoms can be assumed to be equal to the
Thomas–Fermi radius Ra ffi rTF ¼ b�h2=

ffiffiffi
Z3

p
mee2 (b ffi 0:8853, Z is the

nuclear charge).
From the given expression and the formulas (4.17), (4.19), it follows that if a

condition opposite to the dipole condition is fulfilled, i.e., Dkj j[R�1
a , the cross

section of the Rayleigh scattering of radiation by an atom starts to decrease because
of the loss of coherence between the contributions of different atomic electrons.
Thus in the general case, (4.19) is replaced by the expression for the differential
cross section of Rayleigh scattering in the high-frequency limit:

dr Rscð Þ
i x � xnið Þ

dX0 ¼ 1þ cos2 h
2

r2e nii k
0 � kð Þj j2: ð4:22Þ

As follows from (4.20)–(4.22), the dipole expression for the cross section (4.19)
works reasonably well for small scattering angles even if the dipole condition (4.8)
is violated.

Formula (4.22) is valid for radiation scattering by nonrelativistic electrons. It
should be noted that in Rayleigh scattering the radiation frequency remains the
same despite of the fact that a considerable momentum Dp ¼ �hDk is transferred
from the photon to the atom. This circumstance is connected with the fact that the
momentum excess Dp is finally absorbed not by an atomic electron, but by the
nucleus where the recoil energy is low (due to the heavy mass).

In the case of Raman scattering, when the state of an atom changes, the cross
section can be expressed in terms of the scattering tensor, a quantity being the
generalization of the dynamic polarizability. On the other hand, the radiation fre-
quency changes by an amount equal to the change in energy of the atom.

4.2.2 Quantum Description

The quantum description of radiation scattering by an atom is based on the formula
for the cross section of electromagnetic field scattering by a quantum system
(Berestetskii et al. 1982):
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dr scatð Þ
fi

dX0 ¼ x x0ð Þ3
�h2c4gi

X
n

e0
dfnð Þ ednið Þ
xni � x� icni

þ edfnð Þ e0
dnið Þ
xni þx0 � icni

� 	�����
�����
2

; ð4:23Þ

where x0 ¼ x� xfi, e and e′ are unit polarization vectors of incident and scattered
radiation, respectively. The formula (4.23) describes radiation scattering that can be
accompanied by simultaneous excitation/de-excitation of a quantum system.
Scattering in the case xfi 6¼ 0 is called Raman scattering, and if xfi ¼ 0, there is
Rayleigh scattering. It should be noted that the formula (4.23) was obtained by
Kramers and Heisenberg before the advent of quantum mechanics. It is convenient
to rewrite the expression (4.23) as

dr scatð Þ
fi

dX0 ¼ x x0ð Þ3
c4gi

el e0
ð Þsclsfi x0;xð Þ�� ��2; ð4:24Þ

where

clsfi x
0;xð Þ ¼ 1

�h

X
n

dfnð Þl dnið Þs
xni � x� icni

þ dfnð Þs dnið Þl
xni þx0 � icni

" #
ð4:25Þ

is the electromagnetic field scattering tensor of the quantum system; l; s are the
three-dimensional vector indices, over which summation in the formula (4.24) is
assumed.

In the case of Rayleigh scattering (when xfi ¼ 0), the scattering tensor changes
to a polarizability tensor:

clsfi ! blsi xð Þ ¼ 1
�h

X
n

dlind
s
ni

xni � x� icni
þ dsind

l
ni

xni þx� icni

� 	
: ð4:26Þ

Note that the polarizability tensor relates the electric dipole moment vector to the
strength of the electric field of frequency x:

dli xð Þ ¼ blsi xð ÞEs xð Þ: ð4:27Þ

Here, summation over the index s is implied.
In the case of a spherically symmetric state of a quantum system, the polariz-

ability tensor changes to a scalar: blsi xð Þ ¼ bi xð Þdls. Then it can be shown that the
expression (4.26) coincides with (2.41) if the explicit form for the oscillator strength
is used (2.18) and the relationship between the damping constants is taken into
account ðdin ¼ 2cinÞ. The differential cross section of Rayleigh scattering by a
quantum system in the spherically symmetric state is then given by
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dr scatð Þ
ii

dX0 ¼ x4

c4
bi xð Þj j2 e0
eð Þj j2: ð4:28Þ

We will sum this expression over the polarization directions of a scattered
photon with the use of the formula

2 e0
eð Þj j2
D E

¼ sin2 h: ð4:29Þ

In (4.29), averaging is carried out over all possible directions of the vector e0 at a
specified angle h between the vectors e and n0 (n0 is the unit vector in the direction
of the scattered photon). As a result, we have

dr scatð Þ
ii

dX0 ¼ x4

c4
bi xð Þj j2 1� n0eð Þ2


 �
: ð4:30Þ

For non-polarized incident radiation, formula (4.30) should be averaged over the
direction of the vector e, and we obtain

dr scatð Þ
ii

dX0 ¼ x4

c4
bi xð Þj j2 1þ n0nð Þ2

2
; ð4:31Þ

where n is the unit vector in the direction of an incident photon. In derivation of
(4.31), the averaging rule, i.e., eles

�  ¼ ðdls � nlnsÞ=2 was used.
The expression (4.31) describes the cross section of Rayleigh scattering of

radiation by a spherically symmetric system as a function of frequency x and
scattering angles h ¼ arccos n0nð Þ. At high frequencies x � xa (xa is the charac-
teristic frequency of transitions in a discrete spectrum), we obtain with (2.43) and
(4.31)

dr scatð Þ
ii

dX0 ¼ N2
e r

2
e
1þ cos2 h

2
; ð4:32Þ

where h is the angle of scattering, Ne is the number of electrons in the quantum
system, re ¼ e2=ðmec2Þ is the electron classical radius (re ¼ 2:8� 10�13 cm). It
should be noted that the expression (4.32) was obtained on the basis of the quantum
approach that is identical to the result of classical scattering in the high-frequency
approximation (4.19).

For Ne ¼ 1, the expression (4.32) coincides with the Thomson formula for the
cross section of radiation scattering by a free electron. This coincidence is not
accidental since there are no bound states for a free electron, i.e., xa ¼ 0, and the
condition of the high-frequency approximation is fulfilled automatically. The
squared number N2

e appearing in (4.32) corresponds to the coherence of photon
scattering by all electrons of the quantum system. Coherence of scattering is a
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consequence of the dipole approximation k � a used in derivation of all formulas
of this chapter. In the opposite limit, i.e., k � a, coherence is disturbed, and N2

e in
(4.32) is replaced by Ne.

In the opposite limit (low frequencies), when the dynamic polarizability can be
replaced by its static value, the Rayleigh scattering cross section increases with the
fourth power of frequency as it follows from formulas (4.28)–(4.31).

Let the frequency of scattered radiation be close to one of the eigenfrequencies
of a transition in the quantum system, where the following relation holds true:

x� xnij j � cni: ð4:33Þ

In this case, the sum over the intermediate states in (4.23) can be replaced by one
resonance summand:

dr scatð Þ
fi

dX0 ¼ x x0ð Þ3
�h2c4gi

P
Mn

e0
dfnð Þ ednið Þ
�����

�����
2

x� xnið Þ2 þ c2ni
: ð4:34Þ

Here, only the summation over the degenerate states of the resonance level is
left. The phenomenon described by the cross section (4.34) is called resonance
fluorescence. Let us consider a Rayleigh case, when xfi ¼ 0 and accordingly the
frequencies of incident and scattered photons coincide: x ¼ x0. We will assume for
simplicity that the initial state is non-degenerate: gi ¼ 1. Then (4.34) takes the
following form

dr RFð Þ
i

dX0 ¼ 1
16

c
xni

� �2 A2
ni e0
eð Þj j2

x� xnið Þ2 þ c2ni
; ð4:35Þ

where Ani is the Einstein coefficient of spontaneous radiation.
In the case of natural line broadening, when the half-width is defined by

spontaneous radiation, i.e., cni ¼ Ani=2 and of an exact resonance x ¼ xni, we
obtain from (4.35)

dr RFð Þ
i

dX0 / k2: ð4:36Þ

Hence it follows that the cross section of resonance fluorescence in the optical
range in the case of natural line broadening exceeds by many orders of magnitude
the scattering cross section far from the resonance. It should be noted that relation
(4.36) has already be obtained (see (4.19)) on the basis of a classical consideration.
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4.3 High-Frequency Radiation Scattering on Atoms

For scattering of electromagnetic radiation in the X-ray range k� 1 Å
(k ¼ 2p=k� 10 Å−1), the dipole approximation (4.8) is violated, and instead (4.23)
has to be used to take into account the wave vectors of incident and scattered
photons. This is of particular interest for modern X-ray Free Electron Laser (i.e.,
LCLS in USA, EU-XFEL in Germany, SACLA in Japan) driven scattering
experiments where photon energies larger than 10 keV can be generated.

4.3.1 Non-dipole Character of Scattering

The non-dipole scattering tensor defining the scattering cross section with the use of
(4.24) is given by

clsfi k
0; kð Þ ¼ e2

mx0x
m
�h

X
n

jlfn kð Þjsni k0ð Þ
xfn þx� i0

þ jsfn k0ð Þjlni kð Þ
xin � x� i0

� 	
� dlsnfi qð Þ

( )
; ð4:37Þ

where q ¼ k0 � k is the change in the photon wave vector, dlk is the Kronecker

symbol, jl kð Þ ¼ 1
2m

XN

j¼1
p̂lj exp �ikrj

� �þ exp �ikrj
� �

p̂lj
n o

and n̂ qð Þ ¼PN
j¼1 exp �iqrj

� �
are the Fourier transforms of the atomic electron current density

and electron density operators, ij i; fj i are the initial and final atomic states.
It should be noted that in the high-frequency limit that can be determined by the

inequality �hx � I (I is the characteristic atomic ionization potential) the main
contribution to the scattering tensor is made by the second summand in braces of
(4.37). The sum in square brackets has an order of magnitude of ðI=xÞ2. In the
high-frequency domain, the scattering tensor clsfiðk0; kÞ is found to be a scalar equal to

chffi k0; kð Þ ¼ � e2

mx0x
nfi q ¼ k0 � kð Þ: ð4:38Þ

It should be emphasized that the condition of the high-frequency limit �hx � I is
fulfilled for the majority of atomic electrons in the X-ray range of photon energies,
i.e. when �hx� 10 keV. Exceptions are electrons of inner shells (in particular K-
and L-shells) of heavy elements with a nuclear charge Z � 60.

Substituting the expression for the scattering tensor in the high-frequency limit
(4.38) into the formula for the scattering cross section (4.24) and averaging over
photon polarizations, we find

drhf ¼ 1
2
r2e 1þ cos2 #
� � x0

x

� �
nfi qð Þj j2dX0: ð4:39Þ
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The obtained expression differs from the classical Thomson formula (4.3) by the
presence of an additional factor that is proportional to the squared absolute value of
the matrix element of the Fourier transform of the atomic electron density operator
calculated for the wave vector q ¼ k0 � k.

4.3.2 Dynamic Form Factor of an Atom

The expression (4.39) should be supplemented with (4.24) expressing the law of
conservation of energy in scattering. It is convenient to write this equation in terms
of the delta function dðx� x0 þ ðEi � EfÞ=�hÞ. Using its integral representation
dðxÞ ¼ ð1=2pÞ R expðix tÞdt and the Heisenberg operator q̂ðtÞ ¼ expði Ĥ t=�hÞq̂
expð�i Ĥ t=�hÞ, it is possible to obtain the following frequency-angular cross section
of photon scattering by an atom in the initial state ih i in the high-frequency
approximation:

dri
dX0d Dxð Þ ¼

dr
dX0

� �Th x
x0

 �

Si Dx; qð Þ; ð4:40Þ

where ð dr
dX0ÞTh is given by the formula (4.3). SiðDx; qÞ is the dynamic form factor

(DFF) of an atom (Platzman and Wolf 1973), i.e.,

Si Dx; qð Þ ¼ 1
2p

Z1
�1

dte�iDxt ih jn̂ q; tð Þn̂ �qð Þ ij i: ð4:41Þ

As can be seen from (4.41), the DFF is a space-time Fourier transform of the
density–density correlation function for atomic electrons. The dynamic form factor
satisfies a number of sum rules. In the case of a hydrogen-like atom we have the
simple relations

Z1
�1

S x; kð Þdx ¼ 1;
Z1
�1

S x; kð Þxdx ¼ �hk2=2m: ð4:42Þ

Thus the frequency-angular distribution of photons scattered by an atom in the
high-frequency approximation �hx � I is determined by the formula (4.40). If
�hx\I, the expression (4.40) becomes, generally speaking, invalid. This is partic-
ularly the case, when the frequency of the scattered radiation approaches one of the
atomic eigenfrequencies (then, so-called resonant scattering arises and the cross
section has a pronounced maximum).

In case of Rayleigh scattering ð ij i ¼ fj iÞ by a ground state of a hydrogen-like
atom, the diagonal matrix element niiðqÞ included in the expression for the cross
section (4.39) is easily calculated analytically, and (4.39) is transformed to the form
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drii
dX0 ¼

dr
dX0

� �Th 1

1þ a2Hq2=4½ 4
; ð4:43Þ

where aH ¼ �h2=Z m e2 is the characteristic radius of a hydrogen-like ion. From the
given expression, it follows that the Rayleigh scattering cross section sharply
decreases ð/ ð1=aHqÞ8Þ if q[ a�1

H .
Thus for high recoil momenta (in comparison with the characteristic atomic

momentum) scattering proceeds with a change of the atomic state. In this case, if an
atom is ionized, there is Compton scattering; if it is excited to the state of a discrete
spectrum, scattering is combinational (Raman). It should be noted that the Raman
scattering cross section increases at small q from zero, reaches its maximum at
q � 1=a, and then decreases. The calculation for the ground state of a hydrogen-like
atom shows that the value of this cross section is always less than the value of its
Rayleigh analog. At maximum, it reaches a value about 20% of the Thomson cross
section.

In the opposite case ðq\a�1
H Þ, photon scattering proceeds with no changes in the

atomic states. This can be ascertained with the use of the formulas (4.40)–(4.41).
Really, in case of small changes in the wave vector of the scattered photon, the
Fourier transform of the electron density operator is equal to the number of atomic
electrons n̂ðq\a�1

H Þ ffi N. Then from (4.41), it follows that the DFF of an atom
looks like Si ¼ N2dðx� x0Þ, that is, x ¼ x0 and accordingly Ei ¼ Ef. Hence, in
the case of small transfered momenta, the scattering is of coherent character with
respect to the contribution of atomic electrons and the cross section is proportional
to the squared number of electrons. On the contrary, in the case of high transferred
momenta q[ 1=a, scattering is incoherent, and its cross section is proportional to
N. In view of these dependencies, the following approximate expression for the
DFF of an atom can be proposed:

S Dx; qð Þ � h 1=a� qð ÞN2d Dxð Þþ h q� 1=að ÞNd Dxþ �hq2=2m
� �

: ð4:44Þ

The first summand in the right-hand side of this equation describes coherent
processes occurring in the case of small recoil. The second summand in the
right-hand side of (4.44) relates to incoherent phenomena, when an energy–mo-
mentum excess (that appears in the course of scattering) is carried away by an
ionized electron.

4.3.3 Impulse Approximation in the Theory
of Compton Scattering

It was indicated above that (leaving out the contribution of inner K-shells) for the
description of the X-ray scattering by an atom, the high-frequency approximation
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(4.40) can be used, where the dynamic properties of an atom are essential for
photon scattering (defined by its dynamic form factor (4.41)). As a rule, the DFF of
an atom can not be calculated in the general form. The qualitative formula for the
DFF (4.44) does not take into account the details of the electronic structure of an
atom and is not precise enough for comparison with experimental data. However,
there exist an approximate method for the calculation of the cross section of X-ray
scattering by an atom that was used at the very early days for the analysis of
experimental data. This is the so-called impulse approximation (IA) assuming that
atomic electrons in the course of X-ray scattering behave as free electrons to a
greater extent than as bound electrons. The exact definition of the IA will be given
below.

The impulse approximation for the description of the Compton scattering of
X-rays by an atom, as was shown by Platzman and Wolf (1973), can be obtained
from the first principles. For this purpose, it is necessary to use the expression for
the DFF (4.41) and the explicit form of the spatial Fourier transform of the electron
density operator n̂ðqÞ ¼PN

j¼1 expð�i qrjÞ. In the expression for the Heisenberg

operator n̂ðq; tÞ ¼ expði Ĥ t=�hÞn̂ðqÞ expð�i Ĥ t=�hÞ, the complete Hamiltonian of the
system Ĥ is the sum of the operators of kinetic T̂ and potential V̂ energies: Ĥ ¼
T̂ þ V̂ (Note that the potential energy operator commutes with the electron density
operator, whereas the kinetic energy operator does not commute). Then we will
write down the known expansion of the operator exponent included in the deter-
mination of the DFF:

exp
iĤt
�h

� �
¼ exp

iT̂t
�h

� �
exp

iV̂ t
�h

� �
exp

�i T̂; V̂
� �
�h2

t2

2

 !
. . .; ð4:45Þ

where Â; B̂
� �

is the commutator of the operators Â and B̂, the dots at the end of
(4.45) denote exponents with multiple commutators containing higher powers of
the time parameter t. In fact, (4.45) is a power expansion of the time interval t. The
value of this interval is given by the value 1=Dx as it follows from (4.41). Really,
the contribution to the time integral in the determination of the DFF for large values
of the variable t is small due to strong oscillations of the exponent. The IA con-
dition is given by the equation

exp �i T̂ ; V̂
� �

t2=2�h2
� � ¼ 1; ð4:46Þ

according to which the non-commutativity of the operators T̂ and V̂ can be
neglected for times responsible for the process. Physically, this means that during
photon scattering, the potential in which an atomic electron moves practically does
not change. If (4.46) is valid, the contribution of exponents with multiple com-
mutators to the expansion (4.45) can be neglected and the expression for the DFF in
the impulse approximation looks simply like
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SIAi Dx; qð Þ ¼ 1
2p

Z1
�1

dte�iDxt ih jeiT̂t=�hn̂ qð Þe�iT̂ t=�hn̂ �qð Þ ij i; ð4:47Þ

where q ¼ k0 � k. From this equation, it follows that in the framework of the IA the
potential V̂ vanishes from the determination of the DFF. However, it should be
emphasized that this does not mean to neglect the binding of atomic electrons to a
nucleus. As was already noted, in the impulse approximation, the potential V̂ is
assumed to be constant, and therefore it cancels out in the expressions for the energy
of initial and final atomic states. In other words, the energy of the initial and final
states of an ionized electron within the framework of the IA is measured with respect
to a constant instantaneous value of the potential V̂ . The expression (4.47) can be
evaluated approximately replacing the sum over the complete set of wave functions
by plane waves. Using the fact that a plane wave is an eigenfunction of the operator
exp �i T̂ t=�h
� �

we then obtain for the DFF of a ðnlÞth electron subshell of an atom

SIAnl Dx; qð Þ ¼
Z

dp
4p�h3

d Dxþ p� �hqð Þ2
2m�h

� enl
�h

 !
Rnl pð Þj j2; ð4:48Þ

enl is the subshell binding energy, RnlðpÞ is the radial wave function of the electron
subshell in the momentum representation that is determined by the expression

Rnl pð Þ ¼
ffiffiffi
2
p

r Z1
0

Rnl rð Þjl prð Þr2dr; ð4:49Þ

here jl p rð Þ is the spherical Bessel function of the first kind, RnlðrÞ is the normalized
radial wave function of the electron subshell. If the relation between a momentum
and the energy of atomic electrons in the quasi-free approximation is used, i.e.,

p2=2m ¼ enl; ð4:50Þ

we have instead of (4.48)

SIAnl Dx; qð Þ ¼
Z

dp
4p�h3

d Dxþ �hq2

2m
� pq

m

� �
Rnl pð Þj j2: ð4:51Þ

As can be seen from this formula, the frequency shift in Compton scattering
within the framework of the impulse approximation is related to the Doppler shift in
photon scattering due to a moving atomic electron (the summand pq under the sign
of the delta function in (4.51)). In this case, the spectrum of scattered photons is
defined by the distribution of atomic electrons by momenta given by the function
RnlðpÞj j2.

164 4 Radiation Scattering on Atoms, Plasmas, and Nanoparticles



The cross section of Compton scattering of X-rays by an atom is usually
expressed in terms of the Compton profile (CP) of an electron subshell. The CP is
determined by the formula

Jnl Qð Þ ¼ 1

2�h3

Z1
Q

Rnl pð Þj j2pdp: ð4:52Þ

In view of this determination, the dynamic form factor of an electron subshell
within the framework of the impulse approximation (4.51) can be expressed in
terms of the CP as follows:

SIAnl qð Þ ¼ m
qj j Jnl Q ¼ m Dxj j � �hq2=2

qj j
� �

: ð4:53Þ

It should be noted that the CP satisfies the normalizing condition:

2
Z1
0

Jnl Qð ÞdQ ¼ 1: ð4:54Þ

Since Compton scattering is an incoherent process, the atomic CP is equal to the
sum of CPs of all electron subshells.

Using the relation (4.40) and the formula (4.53), we find for the cross section of
Compton scattering of X-rays by an atom:

drIA

dX0d Dxð Þ ¼
dr
dX

� �Th x
x0

 �m

q
J Qð Þ; ð4:55Þ

where Q ¼ m Dxj j � �hq2=2
qj j : Thus the expression (4.55), together with the formula

(4.3) for dr=dX0ð ÞTh, gives the frequency-angular distribution of X-rays scattered
by an atom within the framework of the high-frequency and impulse approxima-
tions. It is seen that the frequency distribution for a specified angle of scattering is
defined by the Compton profile of an atom (4.52) that in turn depends on the wave
functions Rnl rð Þ of the atomic electron. The corresponding frequency dependence is
a bell-shaped curve. Its width is defined by the width of the distribution of the
atomic momenta wave functions. Let us give the expression for the CP of the
ground state of a hydrogen-like ion:

JH1s Qð Þ ¼ 8p5H
3p p2H þQ2ð Þ3

; ð4:56Þ
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where pH ¼ Z m e2=�h is the characteristic momentum of a hydrogen-like ion.
Substituting (4.56) in (4.55), we find the frequency function of the distribution of
X-rays within the framework of the IA for a fixed angle of scattering by a
hydrogen-like ion in the 1s-state:

drH1s
dDx

¼ r1s qð Þ q6p6H

q2p2H þ m Dxj j � �hq2=2ð Þ2
h i3 ; ð4:57Þ

where q ¼ k0 � kj j is the magnitude of the photon wave vector change in scattering.
From this formula, it follows that the central frequency of scattered radiation is
determined by the equation m x� x0ð Þ ¼ �h q2=2. This equation represents the law
of conservation of energy–momentum for the process of radiation scattering by a
free electron at rest. The width of the frequency distribution (4.57) is proportional to
the parameter q pH=m, which corresponds to a Doppler broadening of the spectrum
of radiation scattered by an electron moving with the velocity
tH ¼ pH=m ¼ Z e2=�h.

Presented in Fig. 4.3 are the spectral cross sections of Compton scattering (in
relative units) by a hydrogen-like ion in the 1s-state calculated in the
high-frequency approximation with the use of the exact wave functions (curves 1,
3) and within the framework of the impulse approximation (curves 2, 4) according
to formulas (4.55)–(4.56). Two values of ionic charges are considered: Z = 1
(curves 1, 2) and Z = 2 (curves 3, 4). The incident photon energy is �hx ¼ 17:4
keV (639.7 a.u.) (which corresponds to the line Ka1 in a molybdenum atom), the
angle of radiation scattering is # ¼ 133:75	. As can be seen from Fig. 4.3, the

Fig. 4.3 The spectral cross section of Compton scattering of X-rays (�hx ¼ 17:4 keV, the angle of
scattering is # ¼ 133:75	) by a ground state hydrogen-like ion calculated in the high-frequency
approximation with the use of the exact functions (curves 1, 3) and within the framework of the
impulse approximation (curves 2, 4) for different ionic charges: curves 1, 2—Z = 1, curves 3, 4—
Z = 2
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maximum of the spectral cross section corresponds to a scattered photon energy of
�hx ¼ 605 a.u. (16.456 keV) and a recoil energy of ER ¼ �h Dxj j ¼ 944 eV.

It should be noted that the recoil energy in scattering by a free electron at rest for
otherwise same parameters is 949 eV, being in good agreement with the above
value ER at the maximum of the spectral cross section. It should be emphasized that
for the case of a free electron there is a univocal correspondence between the
scattering angle and the frequency of the scattered photon and the spectral cross
section represents a delta function of the frequency detuning x� x0 � ER=�h.
Binding of an electron to a nucleus results in a finite spectral width dx of the
frequency distribution of the scattered photons at a specified angle of scattering h.
Naturally, the stronger the binding to a nucleus is, the higher the value of the
parameter dx is. This also follows from Fig. 4.3: for larger charge values, the
frequency dependence is broader. Figure 4.3 also demonstrates that the accuracy of
the IA decreases with increasing binding energy EB (EB ¼ Z2Ry for a
hydrogen-like ions) at fixed recoil energy ER. Thus the value of the ratio n ¼
EB=ER can serve as a criterion for the applicability of the IA; with decreasing
parameter n the IA accuracy increases. Figure 4.3 shows also an asymmetry of the
frequency distribution of the scattered photons when the exact wave functions are
employed (curves 1, 3). In the high-frequency wing of the line, the intensity of the
scattered radiation decreases more slowly than in the low-frequency wing. This
asymmetry increases with the binding energy EB. At the same time, the calculation
within the framework of the IA gives a symmetric (for the present case “Lorentz”)
profile. It should be noted that the asymmetry could be to some extent taken into
account within the framework of the impulse approximation if in the right-hand side
of (4.45) succeeding expansion terms are taken into account.

4.4 Scattering on Plasmas

We now consider the scattering of electromagnetic radiation by electrons in plas-
mas. The cross section of radiation scattering by ions is negligible because of the
heavy mass of an ion. In contrast to atomic electrons, plasma electrons execute an
infinite motion, that is, they are delocalized throughout the plasma volume.
Therefore, strictly speaking, the condition for the application of the dipole
approximation (4.8) is not fulfilled for plasma electrons because the radius of the
area of their localization is very large. Since plasma electrons are quasi-free, the
potential of their ionization IP is equal to zero, the condition of the high-frequency
approximation is naturally fulfilled, and it is possible to use the expression for the
scattering cross section according to formula (4.22).

The adjective “quasi-free” is used in reference to plasma electrons is not acci-
dentally. The prefix “quasi” reflects the fact that plasma electrons interact with other
particles and collective plasma excitations. This interaction manifests itself in the
scattering of electromagnetic waves by plasma electrons in the vicinity of fre-
quencies of collective plasma excitations. For example, a momentum excess
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transferred from a photon in scattering can be absorbed by a plasma electron itself
but can be as well transferred to another particle or a quasi-particle. Depending on
these possibilities, the frequency of scattered radiation differs. Therefore, by
recording the spectrum of the scattered photons, it is possible to obtain information
on the plasma properties.

4.4.1 General Expression for the Cross Section of Radiation
Scattering in Plasmas

Let us generalize the scattering cross section (4.22) taking into account a possible
change in the state of a plasma electron in the course of scattering:

dr plasð Þ
fi k; k0ð Þ
dX0dx0 ¼ 1þ cos2 h

2
d Dxþxfið Þr2e nfi k0 � kð Þj j2dV ; ð4:58Þ

where Dx ¼ x0 � x is the change in radiation frequency, dV is the element of the
volume in which the scattering plasma electrons are located (the volume of inter-
action). The given expression describes radiation scattering with the transition of a
plasma electron from the state ij i to the state fj i (here Dirac ket vectors are used to
designate electronic states). Expression (4.58) gives the cross section of photon
scattering in the frequency interval x0 þ dx0 and is therefore differential not only
with respect to the angle, but also with respect to the frequency of the scattered
radiation. The delta function in the right-hand side of (4.58) expresses the con-
servation law of energy in the scattering process.

Since in the experiment the initial and final states of a plasma electron are not
fixed, formula (4.58) should be summed over the final states and averaged over the
initial ones. As a result, we obtain

dr plasð Þ
R k; k0ð Þ
dX0dx0 ¼ 1þ cos2 h

2
r2eS Dk;DxÞð ÞdV ; ð4:59Þ

where the function S Dk;Dxð Þ is the so-called electron dynamic form factor
(DFF) of the plasma or the spectral density function. The DFF reflects the influence
of plasma characteristics on the radiation scattering cross section. In the general
case, the determination of the DFF in terms of the Fourier component of the plasma
density time-domain correlator looks like (Platzman and Wolf 1973).

S Dk;Dxð Þ ¼ 1
2p

Z1
�1

dt eiDxt n̂ Dk; tð Þn̂ �Dkð Þh i; ð4:60Þ

where n̂ is the electron density operator, the angle brackets include quantum
mechanical and statistical averaging. Equation (4.58) can be obtained from the
formula
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S Dk;Dxð Þ ¼
X
f ;i

w ið Þd Dxþxfið Þ nfi Dkð Þj j2; ð4:61Þ

in which averaging over initial states and summation over final states of plasma
electrons are carried out explicitly (w ið Þ is the probability of a plasma electron being
in the ith state).

Physically, the electron DFF defines the probability of absorption of a
four-dimensional energy–momentum wave vector Dk ¼ Dk;Dxð Þ by a plasma in
terms of the action of external disturbance on an electronic component. It should be
emphasized that in case of a homogeneous distribution of charges in plasmas this
probability would be equal to zero since then the Fourier transform of the electron
density is given by the delta function n Dkð Þ ! d Dkð Þ, that is, Dk ¼ 0 and k ¼ k0.
Radiation scattering is therefore a result of plasma density fluctuations. These
fluctuations can be due to various reasons. A typical cause of electronic charge
fluctuations is Debye screening of ions by plasma electrons, when the electron
density is increased in the vicinity of a positive ion. Another type of fluctuations is
connected with collective excitations in plasmas, for example, plasmons. Then,
electronic charge fluctuations are of nonstationary character: they oscillate at a
plasma frequency xpe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2ne=me

p
(ne is the density of the plasma electrons).

Scattering by nonstationary fluctuations changes the radiation spectrum. Thus, from
the observed scattered radiation spectrum the fluctuation spectrum of the electron
density in a plasma that is given by the DFF (4.60)–(4.61) can be deduced.

To calculate the DFF, it is possible to use the formula relating the DFF of a
plasma component to the function of plasma response to external electromagnetic
disturbance (a fictitious external potential). This relation is known as the fluctua-
tion–dissipative theorem (Platzman and Wolf 1973):

S Dk;Dxð Þ ¼ Im Fee Dk;Dxð Þf g
pe2 exp ��hDx=Tð Þ � 1½  ; ð4:62Þ

where Fee Dk;Dxð Þ is a linear function of the response of the electronic component
to a fictitious external potential that acts on plasma electrons, T is the plasma
temperature (in energy units). The imaginary part of the response function
appearing in (4.62) describes energy dissipation in plasmas. For this reason, the
theorem is called the fluctuation–dissipation theorem. The response function is
expressed in terms of the dielectric permittivity of the plasma and describes the
propagation of various electromagnetic disturbances. After a number of mathe-
matical transformations, the following result can be obtained from (4.62) for the
dynamic form factor of an electronic component in a plasma:

S Dkð Þ ¼ el ið Þ

el

����
����
2

dnej j2 þ Zi
1� el eð Þ

el

����
����
2

dnij j2; ð4:63Þ
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where

dne;i
�� ��2¼ ne;iffiffiffiffiffiffi

2p
p

tTe Dkj j exp � Dx2

2Dk2t2T;ie

 !
ð4:64Þ

are the Fourier transforms of the squared thermal fluctuations of the electronic and
ionic components of the plasma, el ¼ el Dkð Þ is the longitudinal part of the plasma
dielectric permittivity that describes the propagation of longitudinal plasma waves
(corresponding to the density fluctuations), tT is the thermal velocity of the plasma
particles. The indices ið Þ and eð Þ designate for the dielectric permittivity and the
thermal velocity that these quantities belong to an ionic or electronic plasma
component.

Hereafter, the expressions for the longitudinal part of the electronic and ionic
dielectric plasma permittivities appearing in the right-hand side of the (4.63) are
needed. Their explicit form depends on the relationship between the spatial and
time components of the four-vector Dk ¼ Dk;Dxð Þ, that is, between the spatial and
time characteristics of the electronic and ionic components of the plasma. Thus, the
electronic part of the function el eð Þ, for which the relation Dxj j\tTe Dkj j holds true,
describes the effect of charge screening in a plasma. The corresponding expression
looks like

el eð Þ Dkð Þ ffi 1þ 1

d2e Dkj j2 ; ð4:65Þ

where de is the Debye screening radius of the electronic component. On the con-
trary, the reverse inequality Dxj j[ tTi Dkj j is characteristic for the ionic component
of the longitudinal dielectric permittivity (because of the low velocity of ions). This
results in the frequency-dependent relation

el ið Þ Dxð Þ ffi 1� x2
pi

Dx2 ; ð4:66Þ

where xpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p e2ni=mi

p
is the ion plasma frequency.

4.4.2 Radiation Scattering by Plasma Electrons

Substituting the DFF of (4.63)–(4.64) into the expression for the cross section of
radiation scattering in a plasma (4.59), it is possible to obtain a cross section being a
sum of two terms. The first of them is related to the first summand in braces of
(4.63). It looks like
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dr plasð Þ
e k; k0ð Þ
dX0dx0 ffi

exp � Dx2

2Dk2t2Te

 !
ffiffiffiffiffiffi
2p

p
tTe Dkj j

Dk2d2e
1þDk2d2e

" #2
1þ cos2 h

2
r2enedV : ð4:67Þ

The above cross section is connected with radiation scattering by an electronic
charge that screens the electron density fluctuation. The electron density fluctuation
is described by the factor in the first row of (4.67) containing the thermal velocity of
plasma electrons. The factor in square brackets is responsible for screening. It is
small in the case of small transferred wave vectors Dkj j\ d�1

e and tends to one in
the opposite limit. Thus scattering by electron density fluctuations is suppressed for
small angles of scattering h\2 arcsin k=4p deð Þ (this inequality is valid for suffi-
ciently short wavelengths k\4p de).

As can be seen from the frequency dependence in the formula (4.67), the width
of the radiation spectrum (scattered by the electron density fluctuations) is defined
by the thermal velocity of plasma electrons that in turn is a measure of plasma
temperature. The higher the temperature, the wider is the spectrum of scattered
photons. The value of the cross section is proportional to the concentration of
plasma electrons. Therefore, measuring the intensity and the spectrum of scattered
radiation, it is possible to judge such important characteristics of plasma as the
temperature and the electron concentration.

The process described by the cross section (4.67) is similar to Compton scat-
tering since a momentum excess is transferred to a plasma electron that carries away
considerable recoil energy as in case of the Compton effect with an atom. If the
change in wave vector is larger than the reciprocal of the Debye radius, a photon is
scattered by each plasma electron “separately”, and collective plasma effects can be
neglected. Compton scattering of radiation in a plasma is shown in Fig. 4.4, in
which the recoil momentum of a plasma electron pe ¼ �h � Dk is presented.

Fig. 4.4 Radiation scattering by a plasma electron
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The value of the radiation scattering cross section for one electron is proportional
to the squared electron classical radius r2e ffi 7:84� 10�25 cm2, i.e. a very small
quantity. Note that an atomic unit of cross section that defines, for example, the
cross section of electron scattering by atoms is equal to 2:8� 10�17 cm2 .
Therefore, the possibility to study plasma characteristics with the use of radiation
scattering appeared only after the development of laser radiation sources of high
spectral radiance (Kunze 1968; Sheffield 1975).

4.4.3 Transient Scattering of Radiation in Plasmas

The cross section of radiation scattering by an electronic charge screening ion
density fluctuations looks like

dr plasð Þ
i k; k0ð Þ
dX0dx0 ffi

exp � Dx2

2Dk2t2Ti

 !
ffiffiffiffiffiffi
2p

p
tTi Dkj j

Zi
1þDk2d2e

" #2
1þ cos2 h

2
r2enidV ; ð4:68Þ

Zi is the charge of a plasma ion, ni ¼ ne=Zi is the concentration of ions in
an electrically neutral plasma. Here the first factor describes ion fluctuations, and
the expression in square brackets represents the electronic charge of a Debye sphere
that scatters radiation with a specified value Dk. In the case Dkj j\ d�1

e , the scat-
tering cross section is proportional to the squared charge of an ion, in which the
coherent character of the process with respect to the contribution of electrons inside
the Debye sphere manifests itself. In case of fulfillment of the reverse inequality,
coherence is disturbed, and the scattering cross section decreases as Dk�4d�4

e . For
sufficiently long wavelengths of scattered radiation k[ de, coherence takes place
for all angles of scattering. In the opposite limit of short-wavelength radiation, the
scattering cross section is maximum in the range h\2 arcsin k=4p deð Þ and sharply
decreases with increasing angle of scattering.

Radiation scattering by a Debye sphere (4.68) is called transient scattering
(Ginzburg and Tsytovich 1990). This process is represented schematically in
Fig. 4.5, in which the recoil momentum of an ion pi ¼ �h Dkj j arises in the course of
scattering.

Transient scattering is accompanied by the transfer of a momentum excess to a
heavy ion, so the change in photon energy is insignificant. The last fact can be
demonstrated with the use of the limiting transition

exp � Dx2

2Dk2t2Ti

 !
ffiffiffiffiffiffi
2p

p
tTi Dkj j ! d Dxð Þ ð4:69Þ
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that is valid if Dxj j � tTi Dkj j. From the relation (4.69), it follows that in this case
scattering proceeds practically with no change in radiation frequency: x0 ffi x. Thus
radiation scattering by a Debye sphere is an analog of Rayleigh scattering of
radiation by an atom, when the radiation frequency does not change.

4.4.4 Radiation Scattering by a Plasmon

So far, we have considered a photon momentum excess Dpph ¼ �hDk that was
transferred to individual plasma excitations: electrons and ions. A process involving
collective plasma excitation is also possible, when a momentum excess is trans-
ferred to a plasmon representing a coupled oscillation of an electronic charge and a
longitudinal electric field. This process is represented schematically in Fig. 4.6.

A plasmon is characterized by a corresponding dispersion law. It will be
remembered that the dispersion law describes the relation between a frequency and
a wave vector. For collective excitations (quasi-particles) in plasmas, the dispersion
can be obtained from the condition that the dielectric permittivity of a medium is
zero, that is, from the condition of the plasma wave propagation. In the case of
longitudinal electric field oscillations (a plasmon), the dispersion law is determined
by the equation

e lð Þ k;xð Þ ¼ 0; ð4:70Þ

where e lð Þ k;xð Þ is the longitudinal part of the dielectric permittivity of the medium.
In view of the explicit form of the dielectric permittivity of a plasma for kj j\d�1

e
according (4.65), we obtain from (4.70):

xpl kð Þ ffi xpe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 k2d2e

q
� xpe: ð4:71Þ

Fig. 4.5 Transient scattering
of radiation by a Debye
sphere in plasma
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Equation (4.71) represents the dispersion law for a plasmon. It corresponds to
the propagation of plasmons at the plasma frequency xpe. For sufficiently large
wave vectors kj j[ d�1

e , a plasmon is a not well-defined excitation since it disap-
pears during times of the order of the plasmon oscillation period.

In case of fulfillment of the plasmon resonance condition (4.70), a singularity
appears in the expression for the electron DFF (4.63) that corresponds to emission/
absorption of a plasmon. This singularity is caused by the presence of the function
e lð Þ Dk;Dxð Þ in the denominator of the formula (4.63). Due to the presence of the
imaginary part in the dielectric permittivity, it approaches a delta function of the
form d Dx� xpl Dkð Þ� �

describing the energy conservation law (the plus sign
corresponds to emission of a plasmon, the minus sign corresponds to absorption).
Omitting mathematical details, we will write down the expression for the electron
DFF with the transfer of an energy–momentum to an emitted plasmon:

Spl Dk;Dxð Þ ¼ Npl Dkð Þþ 1
� � �hxpl Dkð ÞDk2

8pe2
d Dxþxpl Dkð Þ� �

H 1� Dkj jdeð Þ;
ð4:72Þ

where H xð Þ is the Heaviside step theta function and

Npl Dkð Þ ¼ 1
exp xpl Dkð Þ�T� �� 1

ð4:73Þ

is the number of plasmons at a specified temperature in thermodynamic equilib-
rium. Substituting (4.72) into the formula (4.59), after integration with respect to the
scattered photon frequency, we obtain the cross section of radiation scattering with
generation of a plasmon:

Fig. 4.6 Radiation scattering
by a plasmon
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dr plasð Þ
pl

dX0 ¼ 1þ cos2 h
2

r2eH 1� Dkj jdeð Þ Npl Dkð Þþ 1
� � �hxpl Dkð ÞDk2

8pe2
dV : ð4:74Þ

The frequency of the scattered radiation is x0 ¼ x� xpl Dkð Þ.
For the scattering cross section with plasmon absorption, the expression is

similar to (4.74) and the replacement Npl Dkð Þþ 1 ! Npl Dkð Þ and x0 ¼
xþxpl Dkð Þ is quite accurate. From the calculations it follows that by recording the
dependence of the scattered photon frequency on the angle of scattering it is pos-
sible to determine experimentally the dispersion law for plasmons.

Similar expressions are valid for cross sections of radiation scattering at col-
lective plasma excitations of other types, such as ion-sound waves.

By recording the radiation spectrum (scattered by the plasma), it is possible to
study various quasi-particles in plasma. The width of the radiation spectrum scat-
tered by some collective excitation defines the damping constant and accordingly
the lifetime of the quasi-particle. Scattering by collective excitations in plasmas
accompanied by a change in radiation frequency is an analog of Raman scattering
of radiation by atoms and molecules.

Scattering in the X-ray spectral range became an important diagnostic tool for
high-energy density science (Glenzer and Redmer 2009; Sheffield et al. 2010) and
attracted in particular attention to study the so-called Warm Dense Matter regime
(Lee et al. 2003) produced by various means (Kozyreva et al. 2003; Soho et al.
2008; Tauschwitz et al. 2007; Sheffield et al. 2010). The small scattering cross
section, however, makes it rather difficult to obtain good signal-to-noise ratios for
spectrally resolved analysis unless X-ray scattering sources are not driven by
multikilojoule lasers (Glenzer and Redmer 2009; Gamboa et al. 2012).

The advent of the X-ray Free Electron Lasers installations, however, has entirely
changed the experimental landscape: dense plasmas are produced with powerful
optical lasers (that are built near the experimental XFEL facilities itself) and are
then diagnosed with the XFEL (Fletcher et al. 2013; MacDonald et al. 2016). The
first experiment where a dense plasma was created with an optical laser and then
probed by XFEL has been carried out in 2011 at LCLS (Seely et al. 2011): here,
X-ray pumping of inner-shell transitions in dense aluminum plasma has been
demonstrated for various charge states (Rosmej et al. 2016).

It should be noted, however, that the high intensity of the XFEL beam perturbs
considerably the material to be studied itself, in particular, via strong heating that
proceeds from inner-shell ionization followed by subsequent equilibration of pho-
toelectrons (kinetic energy being equal to the access energy of the ionization
potential) and Auger electrons in the valence band (so-called Auger electron heating)
(Galtier et al. 2011; Rosmej et al. 2012). Therefore, high-resolution X-ray spec-
troscopy remains a primary diagnostic tool (Renner and Rosmej 2019) although
many important parameters can be accessed with scattering diagnostics (e.g., tem-
perature, density, average charge number, collective plasma effects). The access to
atomic structure in dense plasmas via X-ray scattering diagnostics is only indirect
(via the dynamic form factor) and also therefore high-resolution X-ray spectroscopy
appears to be an important complementary diagnostic.
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4.5 Scattering on Nanoparticles

The color of the strongest colorants (organic dyes) is defined, as a rule, by
absorption of radiation by dye molecules. In interaction of radiation with metal
nanoparticles, we encounter a different situation. For small nanosphere radii
rs\15� 35 nm absorption dominates, for large radii radiation scattering begins to
play a decisive role. The combined effect of absorption and scattering on the
passage of a light beam through a substance is described by the extinction cross
section rext ¼ rscat þ rabs. The quantity rextI0 represents the power removed from a
light beam of intensity I0 due to absorption and scattering. The ratio of the scat-
tering cross section to the extinction cross section is called quantum efficiency
g ¼ rscat=rext. The quantum efficiency characterizes the relative value of power
removed from a light beam that goes into radiation scattering, that is, can be
recorded by a photodetector. From the aforesaid, it follows that the quantum effi-
ciency increases with nanoparticle size, but, as it will be seen from further con-
sideration, another important characteristic come into play, namely the quality
factor of resonant scattering that decreases with increasing radius.

An important specific feature of photoprocesses with metal nanoparticles is the
absence of luminescence under the action of radiation (characteristic of targets with
strong optical transitions in the discrete spectrum). As a result, radiation of metal
nanoparticles is completely driven by the scattering of the electromagnetic waves.
This results, in particular, in a narrow radiation spectrum, when a metal nanosphere
is excited by a laser in narrow spectral range.

Spherical nanoparticles of noble metals (gold and silver) find wide application in
various fields of research and technologies. In particular, gold nanospheres are used
as active nanomarkers in medicine and biology. Besides, the use of metal
nanoparticles in various sensors shows promising results.

From the fundamental point of view, the advantage of the spherical form of a
nanoparticle consists first of all in the fact that there is no dependence of its optical
properties (absorption and scattering cross sections) on the form, i.e. the optical
properties depend essentially only on size. This makes it possible to control the
characteristics of the electromagnetic response of a nanosphere by changing its
radius. Besides, cross sections of radiation scattering and absorption by metal
spheres can be described within the framework of a relatively simple analytical
approach.

4.5.1 Mie Theory of Radiation Scattering and Absorption

The Mie theory of radiation scattering by a metal sphere in a homogeneous medium
is based on the expansion of an electromagnetic field in terms of cylindrical har-
monics (due to the cylindrical symmetry of the problem) and “joining” of tangential
components of the strength of electric and magnetic fields at the boundary of the
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sphere (Jackson 2007). To satisfy these boundary conditions, it is necessary to take
into account the field irradiating the sphere. A field inside the sphere and a sec-
ondary wave field representing the scattered wave. The derivation of corresponding
formulas is rather cumbersome, but they are available in classical monographs on
optics (Van de Hulst 1981; Born and Wolf 1999), and we will give here only the
final result. The cross section of radiation scattering by a metal sphere according to
the Mie theory is

r Mieð Þ
scat ¼ 2pc2

emx2

X1
n¼1

2nþ 1ð Þ an x;mx;mð Þj j2 þ bn x;mx;mð Þj j2
n o

; ð4:75Þ

where an, bn are the Mie coefficients that are given by the formulas (2.78)–(2.81),
the parameters x and m are given by:

x ¼ krs ¼ ffiffiffiffiffi
em

p x
c
rs: ð4:76Þ

The variable x from (4.76) is the product of the wave vector of radiation in the
matrix with the nanosphere radius and

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
es xð Þ=em

p
ð4:77Þ

is the ratio of the refractive indices of the nanosphere and the matrix material.
Equation (4.75), in contrast to (4.74), takes into account not only the dipole

summand n ¼ 1ð Þ, but also the terms corresponding to the contribution of higher
order multipoles n[ 1ð Þ. This is essential for short wavelengths, when the
condition of the dipole approximation k � rsð Þ is not fulfilled.

The results of calculation of the cross section of radiation scattering by silver
spheres of different sizes within the framework of the Mie theory are presented in
Fig. 4.7 in the spectral range close to the plasmon resonance.

From Fig. 4.7, it follows that with increasing size of the metal nanosphere the
position of the scattering cross section maximum is shifted to the long-wavelength
region, and the width of the spectral maximum increases. For radii of 30 and 40 nm,
a second peak appears due to a quadrupole resonance in excitation of a surface
plasmon. The quadrupole term corresponds to n ¼ 2 in the sum (4.75).

A decrease in frequency and an increase in the spectral width of the plasmon
resonance with increasing nanosphere size result in a decrease of the quality factor
Q of plasmon excitation that by definition is Q ¼ xres=Dx. For a gold nanosphere,
the value of the quality factor decreases from 8 to 2.5 as the radius changes from 30
to 80 nm. In this case, the resonance energy decreases from 2.2 to 1.7 eV. In case
of a similar change in the radius of a silver nanosphere, the quality factor of a
surface plasmon decreases from 11 to 4, and the resonance energy decreases from
2.7 to 2.5 eV.

The quality factor of a plasmon resonance is very important since it is equal to
the coefficient of amplification of a local field, i.e., it defines the value of the
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strength of an electric field connected with a surface plasmon (this field is acting on
particles in the vicinity of the surface). As a result of this amplification, it is possible
to observe a whole class of nonlinear optical phenomena, such as Raman scattering
that are otherwise practically not observable (or would require otherwise super-
strong electromagnetic fields for their recording).

For the cross section of radiation extinction by a metal sphere, the Mie theory
gives (Van de Hulst 1981)

r Mieð Þ
ext ¼ 2pc2

emx2

X1
n¼1

2nþ 1ð ÞRe an x;mx;mð Þþ bn x;mx;mð Þf g: ð4:78Þ

The expressions for the expansion coefficients an, bn are given in
Chap. 2 [formulas (2.78)–(2.81)], the parameters x and m are given by (4.76)–
(4.77). The extinction describes the radiation intensity as a result of absorption and
scattering by the substance particles.

As was already mentioned, the cross section of radiation absorption is equal to
the difference of the cross sections of extinction and scattering rabs ¼ rext � rscat.
With the use of this relation and the expressions (4.75), (4.78), it is possible to
calculate the cross section of photoabsorption by a metal sphere. The calculations
for silver spheres in a medium with em ¼ 2:25 (glass) of different radii are presented
in Fig. 4.8. It is seen that in contrast to the scattering cross section the absorption
cross section has a considerably more strong quadrupole resonance that even
dominates over the dipole resonance even at a sphere radius of 30 nm.

The numerical analysis within the framework of the Mie theory shows that in the
case of silver nanospheres the cross sections maxima of absorption and scattering of
radiation at a plasmon become equal for a radius of 15 nm; for larger radii, scat-
tering dominates over absorption. In the case of gold nanospheres, scattering

Fig. 4.7 Cross sections of radiation scattering by silver nanospheres of different radii (10, 20, 30,
40 nm) in a medium with em ¼ 2:25 and in the vicinity of a plasmon resonance; the abscissa is the
photon energy in eV, the ordinate is the cross section in nm2
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becomes equal to absorption for a radius of 37 nm and the maximum of the spectral
cross section of scattering is shifted (with respect to the absorption maximum) to the
region of lower photon energies by about 0.1 eV. The ratio of scattering and
absorption cross sections is related to the quantum efficiency of scattered radiation
that is an important parameter for the practical application of nanoparticles.

It should be emphasized that the strong dependence of spectra of radiation
scattering and absorption in the vicinity of a plasmon resonance on the sphere
radius results in inhomogeneous broadening for an ensemble of nanoparticles with
an appreciable spread of radii. This should be taken into account in the analysis of
corresponding experimental data.

Naturally, the Mie theory has a certain range of applicability. This is connected
first of all with the phenomenological description of a nanoparticle material by the
use of the dielectric permittivity. Such an approach is valid for sufficiently large
nanoparticles and radiation wavelengths, when the substance can be considered as a
continuum. In the case of small-sized nanoparticles, local effects become important
that are not taken into account when using the bulk dielectric permittivity of a
metal. Finally, the Mie theory assumes the presence of a sharp boundary of a metal
sphere, which is also an approximation.

References

V.B. Berestetskii, L.P. Pitaevskii, E.M. Lifshitz, Quantum Electrodynamics (Elsevier, Oxford,
1982)

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999)
L.B. Fletcher, E. Galtier, P. Heimann, H.J. Lee, B. Nagler, J. Welch, U. Zastrau, J.B. Hastings, S.

H. Glenzer, Plasmon measurements with a seeded x-ray laser. J. Instrum. 8, C11014 (2013)

Fig. 4.8 The cross section of radiation absorption by silver spheres of different radii (10, 20,
30 nm) calculated within the framework of the Mie theory in the region of a plasmon resonance.
The abscissa is the photon energy in eV, the ordinate is the cross section in nm2

4.5 Scattering on Nanoparticles 179



E. Galtier, F.B. Rosmej, D. Riley, T. Dzelzainis, F.Y. Khattak, P. Heimann, R.W. Lee, S.M.
Vinko, T. Whitcher, B. Nagler, A. Nelson, J.S. Wark, T. Tschentscher, S. Toleikis, R. Fäustlin,
R. Sobierajski, M. Jurek, L. Juha, J. Chalupsky, V. Hajkova, M. Kozlova, J. Krzywinski,
Decay of crystaline order and equilibration during solid-to-plasma transition induced by 20-fs
microfocused 92 eV free electron laser pulses. Phys. Rev. Lett. 106, 164801 (2011)

E.J. Gamboa, C.M. Huntington, M.R. Trantham, P.A. Keiter, R.P. Drake, D.S. Montgomery, J.F.
Benage, S.A. Letzring, Imaging x-ray Thomson scattering spectrometer design and demon-
stration. Rev. Sci. Instrum. 83, 10E108 (2012)

V.L. Ginzburg, V.N. Tsytovich, Transition Radiation and Transition Scattering (CRC Press,
1990)

S.H. Glenzer, R. Redmer, X-ray Thomson scattering in high energy density plasmas. Rev. Mod.
Phys. 81, 1625 (2009)

J. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 2007)
A. Kozyreva, M. Basko, F.B. Rosmej, T. Schlegel, A. Tauschwitz, D.H.H. Hoffmann, Dynamic

confinement of targets heated quasi-isochorically with heavy ion beam. Phys. Rev. E 68,
056406 (2003)

H.J. Kunze, in The laser as a tool for plasma diagnostics, Plasma Diagnostics ed. by W.
Lochte-Holtgreven) (North-Holland Publishing Company, Amsterdam, 1968)

L.D. Landau, E.M. Lifschitz, The Classical Theory of Fields, 4th edn. (Pergamon, New York,
1975)

R.W. Lee, S.J. Moon, H.-K. Chung, W. Rozmus, H.A. Baldis, G. Gregori, R.C. Cuable, O.L.
Landen, J. Wark, A. Ng, S.J. Rose, C.L. Lewis, D. Riley, J.-C. Gauthier, P. Audebert, Finite
temperature dense matter studies on next-generation light sources. J. Opt. Soc. Am B 20, 770
(2003)

M.J. MacDonald, T. Gorkhover, B. Bachmann, M. Bucher, S. Carron, R.N. Coffee, R.P. Drake, K.
R. Ferguson, L.B. Fletcher, E.J. Gamboa, S.H. Glenzer, S. Göde, S.P. Hau-Riege, D. Kraus,
J. Krzywinski, A.L. Levitan, K.-H. Meiwes-Broer, C.P. O’Grady, T. Osipov, T. Pardini, C.
Peltz, S. Skruszewicz, M. Swiggers, C. Bostedt, T. Fennel, T. Döppner, Measurement of
high-dynamic range x-ray Thomson scattering spectra for the characterization of nano-plasmas
at LCLS. Rev. Sci. Instrum. 87, 11E709 (2016)

P.M. Platzman, P.A. Wolf, Waves and Interactions in Solid State Plasmas (Academic Press, 1973)
O. Renner, F.B. Rosmej, Challenges of X-ray spectroscopy in investigations of matter under

extreme conditions. Matter Radiat. Extrem. Rev. 4, 024201 (2019)
F.B. Rosmej, Exotic states of high density matter driven by intense XUV/X-ray Free Electron

Lasers, in Free Electron Laser, ed. by S. Varró (Tech 2012), pp. 187–212, ISBN
978-953-51-0279-3. Free download: http://www.intechopen.com/books/free-electron-lasers/
exotic-states-of-high-density-matter-driven-by-intense-xuv-x-ray-free-electron-lasers

F.B. Rosmej, A. Moinard, O. Renner, E. Galtier, H.J. Lee, B. Nagler, P.A. Heimann, W. Schlotter,
J.J. Turner, R.W. Lee, M. Makita, D. Riley, J. Seely, XFEL resonant photo-pumping of dense
plasmas and dynamic evolution of autoionizing core hole states, in Proceedings of the 12th
International Conference on Fusion Science and Applications—IFSA-2013, Nara, Japan.
J. Phys.: Conf. Ser. 688, 012093 (2016)

S. Sahoo, G.F. Gribakin, G. Shabbir Naz, J. Kohanoff, D. Riley, Compton scatter profiles for warm
dense matter, Phys. Rev. E 77, 046402 (2008)

J. Seely, F.B. Rosmej, R. Shepherd, D. Riley, R.W. Lee, Proposal to Perform the 1st High Energy
Density Plasma Spectroscopic Pump/Probe Experiment, approved LCLS proposal n° L332
(carried out in 2011)

J. Sheffield, Plasma Scattering of Electromagnetic Radiation, 1st edn. (Academic Press, 1975)
J. Sheffield, D. Froula, S.H. Glenzer, N.C. Luhmann, Plasma Scattering of Electromagnetic

Radiation, 2nd edn. (Academic Press, 2010)
A. Tauschwitz, J.A. Maruhn, D. Riley, G. Shabbir Naz, F.B. Rosmej, S. Borneis, A. Tauschwitz,

Quasi-isochoric ion beam heating using dynamic confinement in spherical geometry for X-ray
scattering experiments in WDM regime. High Energy Density Phys. 3, 371 (2007)

H.C. Van de Hulst, Light Scattering by Small Particles (Dover Publications, New York, 1981)

180 4 Radiation Scattering on Atoms, Plasmas, and Nanoparticles

http://www.intechopen.com/books/free-electron-lasers/exotic-states-of-high-density-matter-driven-by-intense-xuv-x-ray-free-electron-lasers
http://www.intechopen.com/books/free-electron-lasers/exotic-states-of-high-density-matter-driven-by-intense-xuv-x-ray-free-electron-lasers

	4 Radiation Scattering on Atoms, Plasmas, and Nanoparticles
	Abstract
	4.1 Photon Scattering by a Free Electron
	4.2 Radiation Scattering on Atoms
	4.2.1 Classical Description
	4.2.2 Quantum Description

	4.3 High-Frequency Radiation Scattering on Atoms
	4.3.1 Non-dipole Character of Scattering
	4.3.2 Dynamic Form Factor of an Atom
	4.3.3 Impulse Approximation in the Theory of Compton Scattering

	4.4 Scattering on Plasmas
	4.4.1 General Expression for the Cross Section of Radiation Scattering in Plasmas
	4.4.2 Radiation Scattering by Plasma Electrons
	4.4.3 Transient Scattering of Radiation in Plasmas
	4.4.4 Radiation Scattering by a Plasmon

	4.5 Scattering on Nanoparticles
	4.5.1 Mie Theory of Radiation Scattering and Absorption

	References




