
Chapter 3
Probabilities of Radiative Transitions

Abstract In this chapter, we consider the probability of photoprocesses including
bound–bound, bound–free, and free–free electronic transitions. This concerns
atomic radiation transitions in the discrete energy spectrum, radiative recombina-
tion, Bremsstrahlung including polarization channel, photoionization, photode-
tachment of negative ions, and phase control of photoprocesses by ultrashort laser
pulses. Considerable attention has been paid to various types of broadening of the
spectral lines of atomic radiative transitions, including plasma broadening mecha-
nisms. The rotational approximation of the Kramers electrodynamics is presented
which is suitable for describing both free–free and free–bound electronic transitions
in the high frequency limit. The photoionization of atoms is described both within
the framework of a rigorous quantum mechanical approach and with the help of a
number of approximate methods. Analytical generalized photoionization
cross section formulas from K-, L-, M-, N-, and O-shell that include also possible
inner-shell photoionization are presented. Finally, generalized scaled formulas
for radiation recombination rates into all states with principal quantum numbers
n = 1–9 and orbital quantum numbers l = 0–8 are given that can be applied for a
large variety of practical cases.

3.1 Radiative Transition Cross Sections

To calculate the probability per unit time (rate) for a phototransition between atomic
energy levels, together with the Einstein coefficient for an induced process (2.29), a
radiative transition cross section is widely used. In a monochromatic field of fre-
quency x it is determined by the equation

rjnðxÞ ¼ wjn

jðxÞ ; ð3:1Þ
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where

jðxÞ ¼ cE2
0

8p�hx
ð3:2Þ

is the photon flux density at a specified frequency and E0 is the amplitude of the
strength of the electric field of monochromatic radiation. Since the dimensionality
of the probability per unit time wjn is [s

−1] and the dimensionality of the photon flux
density is [s−1m−2], it follows from (3.1) that the cross section has the dimen-
sionality [m2], i.e., the dimensionality of an area. Thus, we can say that the cross
section describes some effective area of a hard sphere: If the projectile trajectory
touches the hard sphere, a transition takes place, and if the trajectory lies outside, no
transition occurs.

Using the formulas (2.28), (2.30), we find from (3.1) to (3.2) the following
expression for the cross section of the transition n ! j:

rjnðxÞ ¼ 2p2e2

mc
fjnG

ðhÞ
jn ðxÞ; ð3:3Þ

where GðhÞ
jn ðxÞ is the spectral form of a line of the homogeneously broadened

transition, and fjn is the transition oscillator strength (2.18). From the expression
(3.3), it follows in particular that a large oscillator strength implies a large cross
section. For dipole-forbidden transitions, when fjn ¼ 0, the cross section is equal to
zero.

Substituting the expression for the oscillator strength (2.18) into (3.3), we obtain
the expression for the phototransition cross section in terms of the matrix element of
the dipole moment djn:

rjnðxÞ ¼ 4p2xjn

3�hcgn
nh jd jj ij j2GðhÞ

jn ðxÞ: ð3:4Þ

gn is the statistical weight (the degeneracy factor) of a nth atomic energy level.

Because GðhÞ
jn ðxÞ has it maximum value at x ¼ xjn, the maximum value of the

cross section corresponds to the frequency x ¼ xjn (the resonance condition):

r maxð Þ
jn ¼ rjn x ¼ xjn

� � ¼ 8p
3�hcgn

nh jd jj ij j2 xjn

Dxjn
; ð3:5Þ

that is, it is proportional to the ratio of the eigenfrequency to the spectral charac-
teristic width of an atomic transition line. This ratio is similar to the resonator Q-
factor and is equal to the number of free oscillations of the oscillator until their total
damping. It should be noted that in the early works of M. Planck and A. Einstein on
the quantum theory of electromagnetic interaction atoms and molecules of a sub-
stance were called resonators.
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In case of natural broadening, when Dxjn ¼ Anj, (3.5) is transformed with (2.26)
to the form:

r maxð Þ
jn ¼ gj

2pgn
k2jn: ð3:6Þ

Hence, it follows that the resonance cross section of a phototransition in case of
natural broadening of a line is proportional to the squared of the resonant wave-
length kjn ¼ 2pc=xjn; that is, in a wide spectral range, it exceeds by many orders of
magnitude the geometrical cross section of an atom (equal to its area). It should be
noted that the maximum cross section does not depend on the matrix element of the
dipole moment.

For an atom under the action of radiation with a finite spectral width Dx 6¼ 0, the
probability per unit time for the excitation of an atomic transition n ! j is given by
the integral

wjn ¼
Z

rjn x0ð Þj x0ð Þdx0: ð3:7Þ

If the radiation spectrum considerably exceeds the spectral width of the transi-
tion line, i.e. Dx � Dxjn, as it is the case, for example, for the thermal radiation,
the spectral form of a transition line in the definition of the cross section can be

replaced by the delta function GðhÞ
jn x0ð Þ ! d x0 � xjn

� �
, and the integral (3.7) gives:

wjn ¼ 4p2xjn

3�hcgn
nh jd jj ij j2j xjn

� � ¼ Bjnq xjn
� � ð3:8Þ

since jðxÞ ¼ cqðxÞ=�hx, qðxÞ is the spectral radiation density. The second equality
in formula (3.8) coincides with the relation that was used by A. Einstein to describe
the interaction of thermal radiation with a two-level atom.

In the general case of an arbitrary relation between the widths of radiation
spectra and the atomic transition in an atom, the expression (3.7) should be used for
the calculation of the photoexcitation rate. It should be noted that for the calculation
of the probability per unit time for a phototransition, instead of a cross section, the
concept of a spectral Einstein coefficient

DjnðxÞ ¼ BjnGjnðxÞ ð3:9Þ

is sometimes used. The formula (3.7) can be rewritten in terms of the spectral
Einstein coefficient (3.9) with replacement of the photon flux density jðxÞ by the
spectral radiation energy density qðxÞ.

The atomic transition n ! j induced by the action of radiation corresponds to
photon absorption, if En\Ej. The reverse transition j ! n corresponds to photon
radiation that can be both induced (under the action of an external field) and
spontaneous. The cross section of induced radiation rnjðxÞ is described by formulas
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similar to (3.3)–(3.4) because the matrix element of the dipole moment can be made

symmetric by selection of the wave functions, i.e. nh jd jj i ¼ jh jd nj i and GðhÞ
jn ðxÞ ¼

GðhÞ
nj ðxÞ and the difference in expressions for the cross sections of induced radiation

and absorption consists only in different statistical weights of states. Therefore, the
expression for the cross section of induced radiation rnjðxÞ for the transition j ! n
is obtained from (3.4) by the replacement gn ! gj.

It is easy to express the absorption coefficient kjn in terms of the absorption cross
section in order to describe electromagnetic wave damping in the propagation in a
medium with resonant atoms. The damping is a result of a transition in an atom
from a lower to a higher energy state, i.e. n ! j ðEn\EjÞ: kjn ¼ Nnrjn, where Nn is
the concentration of atoms in the state n. It is obvious that the absorption coefficient
has the dimensionality of reciprocal length [m−1]. By analogy with the absorption
coefficient, it is possible to introduce an amplification coefficient for the reverse
transition j ! n corresponding to induced radiation of a photon and an increase in
radiation intensity: knj ¼ Njrnj. Therefore, the effective amplification coefficient
taking into account induced radiation and absorption can be expressed as follows:

k totð Þ
nj ¼ knj � kjn ¼ gjrnj xð Þ Nj

gj
� Nn

gn

� �
: ð3:10Þ

If k totð Þ
nj [ 0 (induced radiation dominates), radiation is amplified by the medium

of resonant atoms. Otherwise radiation is attenuated since photon absorption
dominates over induced radiation. Since the atomic transition cross section is a
positive number, then, as follows from the formula (3.10), amplification of radiation
is given by the condition:

Nj

gj
� Nn

gn
[ 0; En\Ej: ð3:11Þ

The relation (3.11) is called the population inversion condition. It is widely used in
quantum electronics, laser physics, and analogous to the study of possible radiation
amplification. In thermodynamic equilibrium, when the Boltzmann formula for
energy level populations holds true, an inequality reverse to (3.11) is fulfilled. Thus,
to obtain population inversion, it is necessary to disturb a substance considerably
from its thermal equilibrium state. This is usually achieved by the action of external
photons on a medium being called pumping.

The concept of a cross section is used not only for the description of absorption
and induced radiation, but it also characterizes other photoinduced processes such
as photon scattering, photorecombination, and bremsstrahlung. The cross section
concept is likewise used in calculations of the interaction of other elementary
particles (electrons, protons, neutrons) with atoms and molecules. In all cases, the
cross section is determined by a formula similar to (3.1), with replacement of the
photon flux density by the flux density of particles that induce the process under
consideration.
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It should be noted that the concept of probability per unit time for a photoin-
duced process loses its physical meaning for ultrashort electromagnetic pulses
where the duration of radiation is of the order of the period of the electric field
oscillations at the carrier frequency. Ultrashort pulses can be produced with the use
of special methods of time compression of laser radiation (CPA: chirped pulse
amplification). To ultrashort pulses in the optical range there corresponds a duration
of several femtoseconds. At present, in the visible range of laser wavelengths of
well-controlled shapes with durations of only 1.5 periods of the optical frequency
have been produced. In the UV range, pulse durations down to several hundreds of
attoseconds have been achieved. To describe the interaction of ultrashort radiation
pulses with a substance, it is more adequate to use the concept of the total prob-
ability for a process (i.e., during the total action of a pulse) that can be expressed in
terms of a cross section (Rosmej et al. 2014, 2016, 2021).

3.2 Spectral Line Shapes of Atomic Radiative Transitions

The relations (2.28)–(2.29) were obtained in the limit of radiation with a broad
spectrum (the so-called broadband illumination). In the general case, using the same
approach as for the derivation of (2.37), it is possible [using (2.27)] to find the
following expression for absorbed power by the transition n ! j:

Pjn ¼ 2p2e2

3m
fjn

Z1
0

GðhÞ
jn x0ð Þq x0ð Þdx0; ð3:12Þ

where

GðhÞ
jn x0ð Þ ¼ djn=p

� �
xjn � x0� �2 þ djn

� �2 ð3:13Þ

is the spectral form (profile) of a line transition in case of homogeneous broadening.
The function (3.13) is called the Lorentz function or Lorentzian. From (3.12) to
(3.13), it follows that external field frequencies are most effectively absorbed in the
vicinity of the transition eigenfrequency xjn. The characteristic frequency interval,
in which the interaction between radiation and the atom is most intensive, is given
by the damping constant: xjn � x0�� ��� djn. Hence, it follows that a characteristic
width of an atomic transition line (in view of both detuning signs) is given by

Dx hð Þ
jn ¼ 2djn. Substituting the damping constant from the last equation into (3.13),

we obtain the form of a line of a homogeneously broadened transition in an atom or
in any other quantum system.
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Instead of the characteristic width DxðhÞ
jn , a characteristic time can be introduced

according to

T2 ¼ 2

DxðhÞ
jn

: ð3:14Þ

The parameter T2 is called the transverse relaxation time or the phase relaxation
time. It is related to the damping constant of a transition oscillator according to
T2 ¼ 1=djn and therefore, as it follows from (3.14), defines the lifetime of a tran-
sition oscillator in the mode of free oscillation. The time T2 (as will be shown
below) is called the irreversible phase relaxation time.

Thus, from the point of view of the spectroscopic principle of correspondence,
homogeneous broadening of a spectral line is defined by the damping of a transition
oscillator occurring in free oscillation without external field.

An important particular case of homogeneous broadening is natural broadening

of a line due to spontaneous radiation: DxðhÞ
jn ¼ Anj. In this case, transition oscillator

damping is caused by the interaction of an atomic electron with the vacuum fluc-
tuations of an electromagnetic field. Natural broadening for an atom in free space is
the minimum possible, and it defines the degree of radiation monochromaticity that
is in principle achievable.

Another type of broadening occurs in interaction of radiation with an ensemble

of atoms when the transition eigenfrequency is spread over DxðinhÞ
jn for different

atoms. This means that every atom has a specific frequency shift and the observed
frequency spread belongs to the ensemble of atoms. This spread defines inhomo-
geneous broadening of a line. The spectral form (shape) is determined by the
distribution function of the frequency shifts. In the case of a Gaussian distribution
function, one has (Gaussian):

GðinhÞ
jn x0ð Þ ¼ 1ffiffiffiffiffiffi

2p
p

DxðinhÞ
jn

exp �
x0 � x cð Þ

jn

� 	2
2 DxðinhÞ

jn

� 	2
8><
>:

9>=
>;; ð3:15Þ

where xðcÞ
jn is the central frequency of a transition in an ensemble of atoms.

The spectral forms of lines for homogeneous (Lorentzian) and inhomogeneous

(Gaussian) broadening are presented in Fig. 3.1 for xðcÞ
jn ¼ xjn and DxðinhÞ

jn ¼
DxðhÞ

jn ; the coordinate axes are plotted in relative units, i.e. ðx0 � xðcÞ
jn Þ=DxðinhÞ

jn .
It is seen that the spectral form of a homogeneous broadened line has more

extended “wings” compared to inhomogeneous Gaussian broadening. The func-
tions (3.13), (3.15) have two common properties: (1) normalization to unity and
(2) both functions tend to the Dirac delta function in the limit of zero width.

Different causes can produce inhomogeneous broadening of a line depending on
the concrete realization of the radiative transition. For atoms in a gas and ions in
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a plasma, an important mechanism of inhomogeneous broadening is the Doppler
effect. According to this effect, the radiation frequency from the intrinsic frame of
reference is connected with an atom in the laboratory frame of reference by the
formula

x ¼ cx0 1� t
c
cos h

� 	
� cx0 1� tk

c

� 	
; ð3:16Þ

where x0 is the frequency in the frame of reference of the radiating atom, c ¼

1� t=cð Þ2
� 	�1=2

is the Lorentz factor, h is the angle between the atomic velocity

vector and the photon wave vector (the angle of radiation), and tk is the projection
of the atomic (ionic) velocity on the direction of photon radiation. In gases and
low-temperature plasmas t � c and c ffi 1. Since the velocity of atoms/ions in
thermal equilibrium has a distribution, the width that is defined by the thermal
velocity tT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2T=M
p

(M is the mass of an atom/ion) and the radiation frequency
in the laboratory frame of reference [see (3.16)] will also have a distribution. The
Doppler profile can be represented in terms of the integral

GðDÞ
ki ðxÞ ¼

Z1
�1

d x� xki 1� tk
c

� 	� 	
f tkð Þdtk; ð3:17Þ

where f tkð Þ is the function of distribution of atomic (ionic) velocity projections on a
specified direction. The delta function in the right-hand side of (3.17) marks out
those values of velocity projections, at which, according to the Doppler effect (3.16),
the frequency in the laboratory frame of reference is equal to a specific value x. The
formula (3.17) corresponds to an interpretation of inhomogeneous broadening as a
distribution function of atomic eigenfrequencies. We can say that the Doppler effect

0 2 4 6 8 10
0,0

0,3

0,6

G
jn

homogeneous broadening
inhomogeneous broadening

ω

Fig. 3.1 Homogeneous and
inhomogeneous broadening
of a spectral line

3.2 Spectral Line Shapes of Atomic Radiative Transitions 91



maps the velocity distribution of atoms onto their eigenfrequency distribution. It
should be noted that using the second equality in the right-hand side of (3.16)
considerably simplifies the derivation of the expression for the Doppler profile.

In case of a Maxwellian velocity distribution, i.e.

f tkð Þ ¼ 1ffiffiffi
p

p
tT

exp � tk
tT


 �2
 !

; ð3:18Þ

the calculation of the integral (3.17) gives

GðDÞ
ki ðxÞ ¼ 1ffiffiffiffiffiffi

2p
p

DxðDÞ
ki

exp � x� xkið Þ2

2 DxðDÞ
ki

� 	2
2
64

3
75; ð3:19Þ

where

DxðDÞ
ki ¼ 1ffiffiffi

2
p tT

c
xki �

ffiffiffiffiffi
T
M

r
xki

c
ð3:20Þ

is the Doppler line width (note that the FWHM is given by 2
ffiffiffiffiffiffiffi
ln 2

p � DxðDÞ
ki ; see also

(1.22)).
The right-hand side of (3.20) includes a temperature defining the translational

velocity of atoms (ions) in the plasma and is called the ion temperature. As can be
seen from (3.20), the measurement of the Doppler line width for radiation with a
specified central frequency allows determining the ion temperature of the plasma if
the mass of the radiating atom (ion) is known. According to the formula (3.20), the
Doppler line width is proportional to the central radiation frequency, so the role of
the Doppler effect increases with energy of an atomic transition. For the optical
range and room temperatures, Doppler broadening is of the order of 10 GHz.

A Doppler profile being of the form (3.19) assumes an unchanged velocity of the
atom during radiation emission. This condition is realized if the free path of an
atom/ion in a gas or a plasma is larger than the wavelength of the radiation.
However, it can be violated for sufficiently dense and hot plasmas such as
laser-produced plasmas. Then, the line profile is close to be a Lorentz profile (3.13),
with a line width that is inversely proportional to the atomic collision frequency. In
rarefied low-temperature plasmas, the line profile is described by the formula
(3.19).

Another mechanism of inhomogeneous line broadening characteristic to atoms/
ions in plasma is connected with the Stark effect (Griem 1974, 1997; Sobelman
et al. 1995). The Stark effect represents a shift (and, generally speaking, splitting) of
the spectral line radiation of an atom under the action of an external electric field.
Inhomogeneous broadening under the action of the Stark effect occurs in case of a
static (or sufficiently slowly varying with time) electric field. Such fields are
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produced by plasma ions due to relatively low (in comparison with electrons)
velocity (because the mass of ions is much larger than the electron mass). The
expression for the Stark effect that is linear with respect to the electric field looks
like

x� xik ¼ CikF; ð3:21Þ

where F is the magnitude of the electric field strength at the location of an atom
(ion) and Cik is the Stark constant for the atomic transition. The linear Stark effect is
characteristic for hydrogen-like ions where we encounter degeneracy in orbital
quantum number.

Let us consider the influence of the Stark effect on the form of a spectral line in
the static case when the electric field that acts on the radiating atom is a result of a
large number of plasma ions. Then for the strength of the total electric field, we
have

F ¼
XN0

j¼1

Fj ¼
XN0

j¼1

e
rj
r3j
; ð3:22Þ

where the summation is carried out over all plasma ions, with N0 being the number
of ions. For simplicity, we assumed Z ¼ 1 in (3.22). The relation (3.21) establishes a
univocal correspondence between the electric field and the frequency shift.
Therefore, if the distribution function for the electric field strengthW Fð Þ is known, it
is easy to find with the help of the formula (3.21) the frequency distribution function
that is a line profile for inhomogeneous broadening. This function looks like

GðStÞ
ik ðxÞ ¼ 1

Cik
W

x� xik

Cik


 �
: ð3:23Þ

The factor in front of the ion field distribution function results from the relation
dF=dx ¼ 1=Cik being the frequency transformation of the field distribution.

Thus, a key problem is the determination of the ion field distribution function
W Fð Þ. Following Holtsmark, simple expressions can be obtained in the approxi-
mation of negligible correlation between the plasma ions. Then, the probability for
ions having a radius vector in the interval ðrj; rj þ drjÞ is proportional to the product
V�N0

QN0
j¼1 drj, where V is the plasma volume. The probabilityW Fð Þ is proportional

to that part of the N0-dimensional space in variables rj, in which (3.22) is fulfilled.
According to this, the formula for the ion field distribution function is given by:

W Fð Þ ¼ d F�
XN0

j¼1

e
rj
r3j

 !* +
; ð3:24Þ
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where averaging is done over the above distribution of ion radii. The explicit form
of the function WðFÞ can be obtained when using the integral representation of the
delta function and going to the limit N0; V ! 1 at constant concentration of the
ions N ¼ N0=V . As a result, the following expression is obtained (Unsöld 1955):

WðFÞdF ¼ WðFÞdF ¼ H
F
F0


 �
dF
F0

; ð3:25Þ

where

H bð Þ ¼ 2
p
b
Z1
0

x sin b xð Þ exp �x3=2
� 	

dx ð3:26Þ

is the so-called Holtsmark distribution, b ¼ F=F0, F0 ¼ aeN2=3 is a scaling factor

of the electric field strength and a ¼ 2 p 4=15ð Þ2=3ffi 2:603. From (3.25), it follows
that the ion field distribution depends only on the field strength. The plot of the
Holtsmark function is presented in Fig. 3.2. The maximum of this function corre-
sponds to a value b ¼ 1:607.

The Holtsmark distribution function is normalized according to
R1
0 H bð Þdb ¼ 1.

In the vicinity of zero, HðbÞ increases as b2, and at b � 1 it decreases as b�5=2. The
Holtsmark distribution differs essentially from the Gaussian distribution (3.15) that
describes spectral line broadening as a result of the Doppler effect. It is close to the
Gaussian velocity distribution for low b � 1, when the contribution to the field
originates from a large number of ions. As is known, statistical regularities in
ensembles of particles are described just by the Gaussian distribution. For strong
fields, the Holtsmark distribution coincides with the distribution of a field from one
nearest particle (the binary approximation). Thus, the Holtsmark function describes
the transition from the Gaussian distribution for weak fields to the binary

0 1 2 3 4 5 6
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0,3

0,4
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β

Fig. 3.2 Holtsmark function
according to (3.26)
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distribution for strong fields. Curiously, the scaled field strength of the Holtsmark
distribution F0 ¼ 2:603 eN2=3 differs from the field at an average interionic distance
�F ¼ e 4pN=3ð Þ2=3	 2:61 eN2=3 by less than one percent.

In plasma, a change of the phase of a transition oscillator (an equivalent oscil-
lator) leading to homogeneous broadening can be a result from a collision between
an atom and a charged particle. Let us consider this process for the case of inter-
action of electrons with a hydrogen-like atom. Then, an instantaneous change of the
oscillator frequency xðtÞ under the action of the electric field FðtÞ of a plasma
electron can be represented as

xðtÞ ¼ C
e
FðtÞ; ð3:27Þ

where C is the Stark constant. The change of the phase of an equivalent oscillator
during the time of electron transit close to the atom (ion) is given by

D/ ¼
Z1
�1

xðtÞdt ¼
Z1
�1

C
q2 þ t2t2

dt ¼ p
C
qt

; ð3:28Þ

q is the impact parameter, t is the velocity of the perturbing particle assumed to be
moving uniformly on a straight trajectory. From (3.28), it follows that a phase
change Du ¼ p is achieved at

qW ¼ C
t
: ð3:29Þ

This value is called the Weisskopf radius; it defines the region of impact parameters
corresponding to an essential change of the equivalent oscillator phase. To the
radius qW, there is related the Weisskopf cross section

rW ¼ pq2W ¼ p
C2

t2
ð3:30Þ

and the Weisskopf frequency

X ¼ t
qW

¼ t2

C
: ð3:31Þ

The parameter qW defines the effective volume of interaction of an atom with
perturbing particles. If there is one particle in this volume, the binary interaction
takes place. Otherwise many particles interact simultaneously with an atom
(non-binarity).
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The Weisskopf frequency (3.31) separates impact and static limits for the
spectral line shape. The profile of a line broadened by collisions with electrons can
be represented in the form

G Dxð Þ ¼ 1
2p

Dx x� xikð Þ
x� xikð Þ2 þ Dx x ¼ xikð Þ=2ð Þ2 ð3:32Þ

that would coincide with the Lorentz profile (3.13) if the line width Dx in the
numerator of the right-hand side of the (3.32) would be a constant value (as in the
denominator). In fact, the line width in the numerator depends on frequency
detuning. If this detuning is much less (in magnitude) than the Weisskopf frequency
(the impact limit), it can be considered that Dx x� xikð Þ ¼ Dx x ¼ xikð Þ, and the
Lorentz profile of a line (3.13) is realized. In the impact case, interaction of a
quantum system with a perturbing particle is of instantaneous nature. As a result,
the phase of oscillations of a transition oscillator “jumps”. A typical value of impact
broadening in gas at normal pressure and room temperature is about 100 GHz, so in
the optical range it far exceeds natural broadening of a line, that has characteristic
values of 100 MHz.

In the opposite case x� xikj j � X (the far wing of a line), it is necessary to take
into account the frequency dependence of the line width in formula (3.32). Then,
static broadening is realized, and the line profile (in the binary approximation) looks
like

GðstÞ
ik ðxÞ ¼ 2pNC3=2

x� xikj j5=2
: ð3:33Þ

The dependence on frequency detuning in the right-hand side of (3.33) coincides
with the result of the Holtsmark approximation in the strong field limit, when
Hðb � 1Þ / b�5=2. As was already noted, this coincidence is connected with the
fact that in the strong field limit the static Holtsmark distribution coincides with the
distribution of a field from one particle nearest to an atom; that is, the binary
approximation is valid.

The condition x� xikj j � X means that in the static limit the time of inter-
action qW=tð Þ should be much larger than the time of spectral line formation
ð	 1= x� xikj jÞ. In the impact limit, on the contrary, the time of formation of a line
is long, and perturbation can be considered to be instantaneous.

The expression for a line broadening in the static limit and the binary approx-
imation (3.33) was obtained for an interaction charge-dipole. In the general case,
when the energy of interaction of “broadening particles” with an atom (ion) looks
like UðRÞ ¼ Cn=Rn (R is the distance between particles), the line profile in the static
limit is described by the expression
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GðstÞ
ik ðxÞ ¼ 4pN Cn=�hð Þ3=n

n x� xikj j nþ 3ð Þ=n : ð3:34Þ

The obtained expression is valid in the spectral range x� xikj j � X. From the
formula (3.34), it follows that the frequency dependence in the static wing of a line
coincides with the Lorentz dependence (3.13) only for n ¼ 3, that is, for dipole–
dipole interaction.

3.3 Quasi-classical and Quantum Radiative Transition
Probabilities

3.3.1 Kramers Electrodynamics

The foundations of radiation theory for a classically moving particle (electron) in a
given potential UðrÞ are described in numerous books on classical electrodynamics
(Jackson 2007; Landau and Lifschitz 2003). In accordance with Gervids and Kogan
(1975, 1991), Kogan and Kukushkin (1984), Kogan et al. (1992) we shall dwell on
a number of classical spectral peculiarities connected with the attractive potential
UðrÞ ¼ �jUðrÞj playing an important role in the applicability of classical
mechanics to atomic physics. The essence of the problem involves the situation
when an emitting electron in an attractive field experiences an acceleration and may
obtain a kinetic energy W ¼ Eþ jUðrÞj, that considerably exceeds its initial energy
E at infinity. In this case, the classical nature of the electron motion is even pre-
served when the quantum energy �hx emitted by the electron exceeds its initial
energy E. This circumstance essentially expands the domain of applicability of the
classical methods to atomic processes, including the inelastic domain �hx
E.
Below, we will focus on the Coulomb field case playing an important role for the
atomic processes in plasmas. Atomic potentials of more general type are investi-
gated in (Kogan and Kukushkin 1984). The results of the following considerations
will be used later in the quasi-classical approximation for radiation transitions
probabilities.

Classical electrodynamics (CED) operates with an effective spectral radiation
yield dkðxÞ, cross section drðxÞ and energy dEðq;xÞ emitted during the time of
the collision with an impact parameter q in a frequency domain dx. These values
are connected by the relation

dkðxÞ
dx

¼ �hx
dr
dx

¼
Z1
0

2pqdq dE q;xð Þ=dx½ �: ð3:35Þ

The spectral distribution of the emitted energy is defined by the Fourier coef-
ficients _xðq;xÞ and _yðq;xÞ of the electron velocity components _xðq; tÞ and _yðq; tÞ:
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dEðq;xÞ
dx

¼ e2

3pc3
x2 _xðq;xÞþ i _yðq;xÞj j2 þ _xðq;xÞ � i _yðq;xÞj j2
h i

: ð3:36Þ

These Fourier components for a motion in a Coulomb field are expressed in

terms of the Hankel functions Hð1Þ
im ðimeÞ and their derivatives Hð1Þ0

im ðimeÞ:

dEðq;xÞ
dx

¼ 2pZ2e6x2

3m2t4c3
f ðm; eÞ; ð3:37Þ

f ðm; eÞ ¼ Hð1Þ0
im ðimeÞ

h i2
� 1� 1

e2


 �
Hð1Þ

im ðimeÞ
h i2� �

: ð3:38Þ

Here, m ¼ x=~x is a dimensionless frequency in units of the “classical” Coulomb
frequency, ~x ¼ t=a ¼ mt3=Ze2 (a ¼ Ze2=mt2 is the Coulomb length), e2 ¼
1þ q2=a2 is the eccentricity of the hyperbolic trajectory (q is the impact parameter):
parameters Ze, m, t, and c are the standard designations for nuclear charge, mass,
electron velocity, and the speed of light, respectively.

The function f ðm; eÞ is well known (Landau and Lifschitz 2003) being the
complete derivative of the function

gðmÞ ¼ p
ffiffiffi
3

p

4
imHð1Þ

im ðimeÞHð1Þ0
im ðimeÞ; ð3:39Þ

that makes it possible to perform the integration over dq in (3.35) and to obtain the
cross section

drðxÞ ¼ 16pe2t2

3
ffiffiffi
3

p
�hc3

a2
dm
m
gðmÞ: ð3:40Þ

The function gðmÞ is named the Gaunt factor. For large radiation frequencies
x=~x � 1, the factor gðmÞ approaches unity, and the numerical factor before gðmÞ in
(3.40) is the so-called Kramers bremsstrahlung cross section.

The total (integral over x) effective radiation k is expressed in terms of the total
radiation energy loss DEðqÞ during the collision:

k ¼
Z

�hx
dr
dx

dx ¼
Z1
0

2pqdqDEðqÞ: ð3:41Þ

The magnitude DEðqÞ may be expressed, in turn, with the help of a time integral
from the square of electron acceleration wðq; tÞ:

98 3 Probabilities of Radiative Transitions



DEðqÞ ¼ 2e2

3c3

Z1
�1

w q; tð Þ½ �2dt: ð3:42Þ

For the central field, (3.42) is rewritten in the form

DE qð Þ ¼ 4e2

3m2c3

Z1
r0 qð Þ

dU
dr


 �2 dr
tr
; ð3:43Þ

trðqÞ is the radial velocity, and r0ðqÞ is the classical turning point defined from the
relation

1 ¼ q2

r20
� Uðr0Þj j

E
: ð3:44Þ

Let us write down the spectral distributions of the emitted energy in the domain
of large and small frequencies. Following (Kogan and Kukushkin 1984; Gervids
and Kogan 1991), let us use the normalized spectral functions being the ratio of the
spectral distribution dE q;xð Þ to the total radiation DEðqÞ

m � 1; q � a:
dEðq;xÞ
DEðqÞ ¼ 8

p2
sK0 sð Þ½ �2 þ sK1 sð Þ½ �2

n o
ds; ð3:45Þ

s ¼ Mx=2E;

m � 1; q � a:
dE q;xð Þ
DEðqÞ ¼ 12

p2
GðuÞudu; ð3:46Þ

u ¼ M3x=3Z2me4; GðuÞ ¼ u K2
1=3ðuÞþK2

2=3ðuÞ
h i

; ð3:47Þ

where M ¼ mtq is the electron orbital momentum, and KmðxÞ are the Mcdonald
functions.

Let us analyze in more detail the high-frequency case (3.46), (3.47). First, it is
obvious that the spectral distribution described by the variable u does not depend on
the initial electron energy E. This suppression of the energy integral is due to the
aforementioned electron acceleration in an attractive potential UðrÞ ¼ �Ze2=r. As a
matter of fact, the radiation of large frequencies x � ~x ¼ t=a originates from the
part of sharp curvature of the impact electron trajectory where its acceleration is
maximum. It is obvious that the largest acceleration is observed near the trajectory
turning point r0 (3.43), (3.44). In this domain, the potential energy Uðr0Þ is much
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larger compared with the initial energy U r0ð Þj j � Eð Þ and that is the reason why
the latter does not influence the spectral distribution of the emitted energy. This
domain for the Coulomb field was first indicated by Kramers (1923). The
non-Coulomb generalization of the approximation to suppress the energy integral
forms the basis of the so-called Kramers electrodynamics introduced by Kogan
et al. (1992).

According to (3.36), the energy spectral distribution consists of the two polar-
izations corresponding to the rotation directions along and against the electron
trajectory. In accordance with the total intensity (3.46, 3.47), the sum of two
contributions from two polarizations mentioned is

dE q;xð Þ
DEðqÞ ¼ 6

p2
u2 K1=3ðuÞþK2=3ðuÞ
� 2 þ ½K1=3ðuÞ � K2=3ðuÞ�2
n o

du

/ F2
�ðuÞþF2

þ ðuÞ
� 

:

ð3:48Þ

It is easy to see that in almost all domains, the change of the function F�ðuÞ
(corresponding to the sum of functions K1=3 and K2=3) substantially exceeds the
function Fþ ðuÞ (corresponding to their difference). This particular circumstance is
caused mathematically by the compensation of the functions K1=3 and K2=3 and
reflects an important feature of radiation formation in the high-frequency domain;
namely, the radiation is basically caused by the electron rotation near the turning
point r0 of the trajectory. The angular velocity of such a rotation xRðr0Þ is defined
by the relation:

xRðr0Þ ¼ M=mr20 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Eþ U r0ð Þj jð Þ=mr20

q
¼ tmax

r0
; ð3:49Þ

where tmax is the maximum electron velocity.
The aforementioned nature of the spectral formation becomes apparent if one

writes down the functions F�ðx;E;MÞ for an arbitrary potential UðrÞ in the form
of the Fourier components of the electron trajectory (Kogan and Kukushkin 1984;
Kogan et al. 1992):

F�ðx;E;MÞ ¼
Z1

r0ðE;MÞ

cos
R1

r0ðE;MÞ
x� xR r0ð Þ½ � 2

m
Eþ UðrÞj j �MxR r0ð Þ

2

� �� ��1=2

dr0
 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ UðrÞj j �MxRðrÞ

2

r rdr:

ð3:50Þ

For large frequencies x � ~x the integrated expressions in (3.50) promptly
oscillate everywhere, excluding the points of oscillation compensation x 	 xR rxð Þ.
The compensation takes place only for the function F� (which explains the defini-
tion of its index) but not for the function Fþ . Therefore, the more differ the F� and
Fþ contributions to the intensity I xð Þ, the higher the frequency x becomes. This
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circumstance follows from pure classical mechanics and also manifests itself in
quantum calculations of transitions probabilities, known as the Bethe rule.

The above analysis of the radiation mechanism in the high-frequency domain
reveals a means for an universal spectra description (Kogan et al. 1992). The
description is reached by the replacement of the real electron motion by its rotation
along a circle with angular velocity xRðrÞ. This approximation is obtained by the
introduction of the delta function d x� xRðrÞ½ � into (3.43), leading to the following
spectral distribution (Kogan and Kukushkin 1984; Gervids and Kogan 1991):

dk
dx


 �
R
’ 8pe2

3c3m2t

Z1
0

@U
@r


 �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� U rð Þ

E

r
r2d x� xR rð Þ½ �dr: ð3:51Þ

Calculation of the integral in (3.51) leads to the following expression for the
Gaunt factor (3.40) of the bremsstrahlung (Kogan and Kukushkin 1984; Kogan
et al.1992; Gervids and Kogan 1991)

grotðxÞ ¼ 6
Z2e4

D2
x

2þDx

Eþ UðrxÞj j½ �3
mx2 ; ð3:52aÞ

Dx ¼ �d ln Eþ UðrxÞj j½ �=d ln rx: ð3:52bÞ

In correspondence with the ideas presented above, the radiation radius rx is
defined by the relation

xRðrxÞ ¼ x ð3:53aÞ

or

Eþ UðrxÞj j
r2x

¼ mx2

2
: ð3:53bÞ

The rotational approximation (3.52), (3.53) is of high precision. For example, for
a Coulomb potential the error of the approximation does not exceed 5% even for a
frequency as low as x ¼ ~x=2. The detailed analysis of the rotational approximation
results in a more general class of atomic potentials (Kogan and Kukushkin 1984;
Kogan et al. 1992; Gervids and Kogan 1991).

The supression of the energy integral in the Kramers electrodynamics and the
peculiarities of the radiation spectra connected with it work well in the
high-frequency domain x � ~x. This domain makes the main contribution to the
total bremsstrahlung intensity. As far as the low-frequency domain x � ~x is
concerned, (3.45) shows that there is no compensation of K0 and K1 and conse-
quently there is no domination of the spectral function F� with respect to Fþ .

The independence of the radiation characteristics on the energy indicates the
universal nature of the radiation spectral dependence on the frequency, not only for
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the infinite motion ðE[ 0Þ considered above but also for the finite motion ðE\0Þ
of the electron along an elliptical trajectory, as well. This is easy to verify by
analyzing the finite motion intensity distribution InðxÞ, being the sum of harmonics
n ¼ x=x0, where

x0 ¼ 2 Ej jð Þ3=2=Ze2 ffiffiffiffi
m

p ð3:54Þ

is the typical frequency of the finite motion (the analog of the frequency ~x in a
continuum spectrum). The intensity In of a given harmonic is equal to (Gervids and
Kogan 1991):

In / n2E4 1� ~e2
� �2

 K2
1=3

n
3
ð1� ~e2Þ3=2

h i
þK2

2=3
n
3

1� ~e2
� �3=2h in o

;
ð3:55Þ

where ~e ¼ 1� 2jEjM2=Z2me4ð Þ1=2 is the eccentricity of elliptical trajectory. It is
simple to ensure that the argument of the K-functions in (3.55) is reduced, as in the
continuum spectrum case, to the universal variable u�M3x=Z2. Independence of
the spectrum on the energy is realized for the radiation intensity of the classical
motion averaged over the period T ¼ 2p=x0, namely for the quantity (Gervids and
Kogan 1991):

TdI ¼ TIndn ¼ 2p
x0

In
dx
x0

/ In
x2

0
dx: ð3:56Þ

One can see that the quantity (3.56) becomes independent of the electron energy
after substitution of (3.55). To summarize, it should be noted that Kramers
high-frequency spectral domain possesses a universal intensity distribution for
transitions in both continuum and discrete spectra. The universality is connected
with the supression of the energy integral for attractive atomic potentials.

3.3.2 Discrete Energy Spectrum

Let us consider the results of Kramers electrodynamics (KrED) in the application to
transitions in the discrete energy spectrum. As it follows from the general properties
of the KrED, the dependencies of spectral characteristics of the radiation remain the
same as in the case of a continuous energy spectrum. The only additional fact to be
taken into account is the discrete nature of the energy spectrum which corresponds
to the following relation between the emitted photon frequency x and the difference
between the initial Enl and final En0l0 atomic state energies:
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x ¼ Enl � En0l0ð Þ=�h: ð3:57Þ

The values for the energies Enl should be taken from the results of quantum
mechanical calculations or from corresponding experimental data.

Equation (3.57) leads to the relationship between the spectral interval dx of the
emitted photon frequencies and the density dn0 of final states:

dx=dn0 ¼ 2p=Tn0l0 : ð3:58Þ

Here, Tn0l0 is the period of classical motion (in the general case being only the
radial period) of the electron with the energy equal to the energy En0l0 of the final
state. The value Tnl is determined by the conventional formulae of classical
mechanics (Landau and Lifschitz 2005; Naccache 1972; Kogan and Kukushkin
1984; Kogan et al. 1992) for the case of the central potential UðrÞ.

The general expression for the probability of the transition C ! C0 ðC � fnlgÞ
may be obtained from the classical spectral distribution for the emitted energy
whose terms are to be separated with respect to the increase and decrease of the
electron angular momentum:

DExðqÞ� ¼ 2e2mx4

3pc3
F�½ �2; ð3:59Þ

where the functions F� defined by (3.50) correspond to the radiation emission pro-
cesses with the increase ðFþ Þ and decrease ðF�Þ of the electron angular momentum.

In order to obtain the probability WðC ! C0Þ of a radiative transition per unit
time, we divide the quantity (3.59) by the energy �hx of an emitted photon and by
the period Tnl of the classical motion with given initial energy and then multiply the
result by the final state density (3.58). Thus, we obtain

WC!C0 ¼ DEx qð Þ
�hx

dx
dn0

����
���� 1Tnl ¼

2p
TnlTn0l0

DExðqÞ
�hx

: ð3:60Þ

Equation (3.60), with account of (3.59) and relation M ¼ �hðlþ 1=2Þ ¼ mtq,
takes the form

Wðnl ! n0l� 1Þ ¼ 4
3

x
c

� 	3 me2
�h

1
TnlTn0l0

F2
�ðx; lÞ: ð3:61Þ

This result coincides with the result of the corresponding quasi-classical cal-
culation (Gantsev et al. 1985; Kogan et al. 1992), in the limit of n � 1, l � 1. The
periods Tnl and Tn0l0 in the latter calculation originate from the normalization con-
stants of quasi-classical wave functions (for the relations between the functions F�
and quasi-classical matrix elements, see Goreslavski et al. (1982), Gantsev et al.
(1985), Landau and Lifschitz (1977), Naccache (1972), Kogan and Kukushkin
(1984), Kogan et al. (1992)).
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The KrED result for a bound–bound transition corresponds to the
high-frequency domain where the emitted frequency x largely exceeds the fre-
quency of the electron revolution around the field center on its classical trajectory:

xnn0Tnl � 1: ð3:62Þ

The KrED method for the description of an electron bound–bound radiative
transition in a central potential UðrÞ may be considered as some alternative to the
well-known quantum defect method (Bates and Damgaard 1949; Davydkin and
Zon 1981; Sobelman 1972, 2006; Cowan 1981). The latter is based on the fol-
lowing relation for the final state density

@x=@n0 ¼ Z2
i ðmn0l0 Þ�3; mn0l0 ¼ n0 � ll0 ; ð3:63Þ

where l10 is the quantum defect value. Equation (3.63) originates from the corre-
sponding dependence in the Coulomb potential generalized onto the case of
non-integer quantum number mnl. The essential feature of the quantum defect
method is the use of the Coulomb results for the spectral distribution of the tran-
sition probabilities with the subsequent replacement of the originally integer
quantum number n by the non-integral quantity mnl. This approach may be ulti-
mately interpreted as a Coulomb-type approximation for the potential UðrÞ.

It should be noted that the KrED approach does not require such an approxi-
mation for the potential. Thus, for free–free radiative transitions (bremsstrahlung) in
the field of a many-electron atom, the use of the Thomas–Fermi (TF) potential in
(3.39) leads to a successful description of the radiation spectral distribution. The
validity of the TF model for the description of bound–bound transitions and the
comparison of corresponding results of the KrED with the quantum defect method
(Bates and Damgaard 1949) [and its classical analog (Davydkin and Zon 1981)] for
the case of an arbitrary deviation of the potential from the Coulomb-type are to be
investigated in future.

The most detailed comparison of quasi-classical results for bound–bound tran-
sitions with the corresponding quantum numerical calculations has been carried out
for the case of the Coulomb field (Gantsev et al. 1985):

X
i0¼l�1

W nl ! n0l0ð Þ ¼ 2 lþ 1=2ð ÞG0 x lþ 1=2ð Þ3=3Z2
h i

=3p2c3 nn0ð Þ3; ð3:64Þ

where

G0ðxÞ � x K2
1=3ðxÞþK2

2=3ðxÞ
h i

¼ x
2

K1=3ðxÞþK2=3ðxÞ
� 2 þ K1=3ðxÞ � K2=3ðxÞ

� n o2
/ x F2

�ðxÞþF2
þ ðxÞ

� 
:

ð3:65Þ
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The integration of the spectral probability (3.65) over frequencies gives the total
probability (per unit time) of the radiative decay of the state fnlg:

W totðnlÞ ¼ 4Z4=p
ffiffiffi
3

p
c3n3l2: ð3:66Þ

The quantity inverse to (3.66) determines the mean lifetime of this state.
Equation (3.66) weighted by the factor ð2lþ 1Þ and averaged over the values of
angular momentum l gives the probability

WðnÞ ¼ 8Z4 lnðnÞ
p
ffiffiffi
3

p
c3n5

ð3:67Þ

which is close to the results of quantum numerical calculations (Goreslavsky et al.
1982; Gantsev et al. 1985; Bethe and Salpeter 1977) that give (for n > 20):

WðnÞ 	 7:89 109 � Z
4

n5
� 3 lnðnÞ � 0:247 ½s�1�� �

.

Using explicit expressions for the functions F� and Fþ in the case of the
Coulomb potential, it appears possible to trace the origin of the success of the KrED
approach. These functions determine the probabilities of transitions with the
decrease and increase of the electron angular momentum, respectively. This fact can
be proven in the framework of classical radiation theory by calculating the rate of
angular momentum loss dM=dxdt caused by the classical emission of radiation
with frequency x [e.g., (Landau and Lifschitz 2003; Jackson 2007)]. Though the
net rate of the angular momentum change is negative, as it should be, the term
containing the function Fþ is positive and therefore corresponds to the increase of
the electron angular momentum. Note that the relation between the functions Fþ
and F� indicated is especially transparent within the framework of the
quasi-classical approach. In this case, these functions correspond to the transitions
with a positive and negative change of the electron orbital quantum number
ðDl ¼ �1Þ, respectively (3.64), (3.65).

In the Coulomb case, the values of the function F2
�ðxÞ largely exceed the values

of the function F2
þ ðxÞ in a wide range, x
 10�2. The predominance of the tran-

sition with Dl ¼ �1 over a transition with Dl ¼ þ 1 and the growth of this pre-
dominance with the growth of the transition frequency ðx / xM3Þ constitutes the
essence of the well-known Bethe empirical rule (Bethe and Salpeter 1977) derived
originally from the results of quantum numerical calculations in the Coulomb case.
However, it follows from our consideration (Kogan et al. 1992) that the physical
nature of this rule is purely classical. Indeed, this phenomenon can entirely be
interpreted classically in terms of the correlation between the angular momentum
and polarization of classical radiation. The qualitative explanation can be based on
the fact that the intensity of the emission of the radiation, circularly polarized along
the direction of the radiating electron rotation, largely exceeds the intensity cor-
responding to the case of opposite directions of the electron and radiated electric
field rotation (the situation is similar, e.g., to the cyclotron radiation emission). The
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degree of predominance discussed evidently predetermines the accuracy of the
“rotational approximation” (RA). For a Coulomb field, a quantitative estimate of
the accuracy of the RA can be found from a comparison of the corresponding
contributions of the Dl ¼ �1 transitions. Their ratio is equal to (Gantsev et al.
1985):

Z1
0

xF2
�ðxÞdx=

Z1
0

xF2
þ ðxÞdx ¼

1þ p
ffiffiffi
3

p
=6

1� p
ffiffiffi
3

p
=6

	 20:5 : ð3:68Þ

Thus, the accuray (integral in x) of the RA is of the order of 5% that agrees with
the results of the classical calculations. A detailed numerical comparison of the
results of the quantum and quasi-classical calculations for the transition probabil-
ities has been carried out (Gantsev et al. 1985). The result of this calculations of the
quantum corrections to the classical limit of the transition probabilities in the
Kramers domain is presented in Kogan and Kukushkin (1984).

The degree of deviation of the transition probability from the Bethe rule can be
clearly characterized by the function

DðxÞ � xF2
þ ðxÞ ¼ x K2=3ðxÞ � K1=3ðxÞ

� 2
: ð3:69Þ

It is appropriate to designate this quantity as the Bethe rule defect. A useful
analytic approximation of this function is presented in Kogan et al. (1992). The
aforementioned predominance of F�ðxÞ over Fþ ðxÞ can be written according to
(3.69) in the form of the ratio DðxÞ=G2ðxÞ (for G2 see (3.74) below), which is small
in the domain of the applicability of the Bethe rule.

Thus, the KrED method provides the clues for an universal description of the
transitions between those discrete spectral energy states which dominantly con-
tribute to the total integral of radiation emission rates. Even for the Coulomb case,
in spite of its detailed investigation in the literature (Landau and Lifschitz 1977;
Bethe and Salpeter 1977), the KrED approach yields simple analytic results. Thus,
the replacement of the Gordon formulae (Bethe and Salpeter 1977) for the transition
probabilities by the corresponding KrED formulae appreciably reduces the number
of variables since these classical formulae contain a smaller number of independent
variables. An application of the KrED method to the non-Coulomb case and a
comparison with already existing methods (e.g., the quantum defect method) are
subjects for research.
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3.4 Radiative Recombination

3.4.1 Kramers Photorecombination Cross Section

The suppression of the energy integral that is fundamental for the KrED approach
manifests itself most strongly in the process of photorecombination radiation
emission. Indeed, this process is strongly inelastic since the energy �hx of an emitted
photon is in any case larger than the initial energy E of the recombining electron:

�hx ¼ Eþ Enlj j; ð3:70Þ

where Enl is the energy of electron bound (final) state.
The possibility to suppress the energy integral (see Sect. 3.3) permits the use of

the classical approach even for the description of such strongly inelastic process.
We shall use the universal classical formula (3.59) for the spectral distribution of
the emitted energy to describe the photorecombination cross section. It may be
achieved by means of the continuation of the corresponding results for the
bremsstrahlung radiation (BR) cross section onto the domain of negative values of
the final electron energy with account of its quantization law (3.58).

For the PhR, in contrast to the BR, not only the cross section of the integral over
the orbital momentum l is of essential interest, but the cross section rPhRðE ! n0l0Þ,
differential with respect to l, as well. In order to obtain rPhRðE ! n0l0Þ, one has to
replace the integration over the impact parameters q in the BR formulae by a
summation over the final state orbital momentum l0 ¼ l� 1:

rPhR E ! n
0
l
0

� 	
¼ �h2pl0

mE
DEx l0ð Þ
�hx

2p
Tn0l0

; ð3:71Þ

where the relation �hðl0 þ 1=2Þ ¼ qmt is to be used in DExðqÞ. The cross section
(3.71) is a functional of the atomic potential UðrÞ which enters to the spectral
functions F�ðxÞ and Fþ ðxÞ and for the period Tn0l0 . A detailed comparison of the
quasi-classical result (3.71) with exact quantum computations for the non-Coulomb
potentials has not yet been performed. The Coulomb potential (3.71) has been
investigated by Kukushkin and Lisitsa (1985), Kim and Pratt (1983). In this case,
the spectral dependence of the PhR cross section is described in terms of the
universal spectral function G0ðxÞ (3.65):

rPhR E ! nlð Þ ¼ 8Z2 lþ 1=2ð Þ2G0 x lþ 1=2ð Þ3=3Z2
h i

=3c3n3E: ð3:72Þ

Note that (3.72) shows a universal dependence of the cross section on the
classical parameter in the argument of the function G0 similar to the case of the BR.

The total (integral over q or l) PhR cross section rPhRðE ! nÞ obtained by
integration of (3.72) for the Coulomb case is given by
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rPhR E ! nð Þ ¼ 8p

3
ffiffiffi
3

p Z4

c3n3
1
Ex

; ð3:73Þ

where x ¼ Eþ Z2=2n2 (in atomic units). Equation (3.73) is known as Kramers
formula.

3.4.2 Radiative Recombination Rates

The analytic result (3.72) allows a derivation of a simple formula for the pho-
torecombination rate qnl into the state with given quantum numbers n and l for a
Maxwellian energy distribution with temperature T . Multiplying (3.72) by the
electron velocity and then averaging over the Maxwellian velocity distribution, we
obtain (Kukushkin and Lisitsa 1985) (in atomic units):

qnlPhR ¼ 4
2

2þ xT
G2 xmð Þþ xT

2þ xT
W xm; xTð ÞexmxT

� �
=p2n3c3l2: ð3:74aÞ

Here, the universal dimensionless parameters are introduced:

xm ¼ EnM
3=3 ¼ ðlþ 1=2Þ3=6n2; xT ¼ 3=TM3; ð3:74bÞ

which determine the dependencies of the rate q on the level with energy E ¼ 1=2n2

and angular momentum M ¼ �hðlþ 1=2Þ. The function G2 is related to the universal
function G0 by the equation

G2 ¼
Z1
x

G0ðx0 Þdx0 ¼ xK1=3ðxÞK2=3ðxÞ ð3:74cÞ

and the function W is expressed in terms of the above-defined “Bethe rule defect”
DðxÞ (3.69):

Wðxm; xTÞ ¼
Z1
xm

DðyÞ expð�xTyÞdy: ð3:74dÞ

It follows from (3.74d) that the photorecombination rate is determined by two
different terms. In the first term described by the G2 function, the Bethe rule defect
is neglected, whereas the second term is caused exclusively by the Bethe rule defect
and becomes appreciable for small xm and large xT.

Thus in the KrED, the PhR rate into the energy state with given n and l quantum
numbers is described by an universal function of two parameters. This universal
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dependence of the PhR rate in the Kramers domain is in agreement with the exact
quantum numerical calculations (as discussed below).

The accuracy of the quasi-classical calculations of the PhR rate turns out to be
fairly good (within � 20%, according to the results obtained from exact numerical
calculations). Detailed tables for the PhR rate in the Coulomb case, obtained in
quasi-classical approximation, are presented in Gantsev et al. (1985).

The applicability of KrED analytical results for the Coulomb field case to the
description of PhR cross sections for an ion with a core was investigated in detail
(Kim and Pratt 1983). The authors use the approximation for the potential of such
an ion in the form of a modified Coulomb potential with an effective charge Zeff . It
has been shown (Kim and Pratt 1983) that in a wide range of electron energies and
ion charges, this Coulomb-type approximation of the potential yields a satisfactory
description of the PhR cross sections provided the value Zeff is taken equal to the
mean value of the charges of the nuclei Z and of the ion Zi, Zeff ¼ ðZ þ ZiÞ=2.

The cross section for the recombination as a function of the Kramers parameter
xl3=Z2

eff for ions with various values of atomic number Z, ion charge Zi and
electron energy EðkeVÞ and different sets of parameters Z, Zi, E prove to be
satisfactorily described by an universal classical formula with the aforementioned
value of Zeff . The same agreement between classical and quantum results occurs
also for the dependencies of the cross section on nð/ n�3Þ which follows from
(3.73). The substitution of the Zeff value in this equation gives the following simple
analytic approximation for the PhR cross section summed over l (Kim and Pratt
1983):

reffPhRðnÞ ¼
8p

3
ffiffiffi
3

p Z4
eff=c

3n3E Eþ Z2
eff=2n

2
� �

: ð3:75Þ

The total PhR cross section is obtained by the summation of (3.75) over all
allowed (non-occupied) quantum states according to the following equation:

reffPhR ¼ Wn0rn0 þ
X

n
 n0 þ 1

rn: ð3:76Þ

Here, n0 is the value of the principal quantum number of the filled atomic shell,
and Wn0 is the statistical weight determined by the ratio of the number of free places
in this shell to their total number. The results for the total PhR cross section (3.76)
are in good agreement with the results of quantum numerical calculations.

The agreement between the quasi-classical and quantum results may be
improved by means of a proper choice of the lower limit of summation n0eff in
(3.76) which depends on the effects of screening and correlations of the electrons in
the filled atomic shell. In this case, the value n0eff will be an universal parameter for
a given isoelectronic sequence. Modifying the Kramers formula (3.75), it is easy to
obtain an analytical approximation for the total PhR cross section by replacing the
summation over n by an integration Kim and Pratt (1983):
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rtot 	
Z1
n0eff

rndn ¼ 8pZ2
eff

3
ffiffiffi
3

p
c3E

ln 1þ Z2
eff=2En

2
0eff

� �
: ð3:77Þ

The values of the cutoff parameter s ¼ 1=2n20eff , obtained from the comparison of
(3.77) with the results of quantum calculations, are as follows: s ¼ 1:1 for fully
stripped ions (bare nuclei), s ¼ 0:065 for Ne-like shells, s ¼ 0:045 for Ar-like shells.
The numerical quantum results are described satisfactorily by a linear dependence of
the logarithm argument on s, namely ð1þ sZ2

eff=EÞ for Zeff ¼ ðZþ ZiÞ=2.
The simple approximations (3.75), (3.77) for the partial and total PhR cross

sections lead to a simple and reliable analytical result (Kim and Pratt 1983) for
some important characteristics of a plasma. The rate of photorecombination a ¼
\ trtoth i[ is given by

a ¼ 16
3

ffiffiffiffiffiffi
2p
3

r
Z2c�3ffiffiffiffi

T
p expðbÞE1ðbÞþCþ lnðbÞ½ �; b ¼ sZ2

T
: ð3:78Þ

3.4.3 Radiative Losses

The rate of electron energy loss b ¼ Etrtoth i can be approximated by

b ¼ T
c2

1� 16
3

ffiffiffiffiffiffi
2p
3

r
Z4

cT3=2
expðbÞE1ðbÞ

" #
: ð3:79Þ

The total rate of radiation losses of plasma due to photorecombination c ¼P
n cn ¼

P
xntrtotn

� �
requires a computation of the sum over n with the aid of

approximations for partial cross sections:

c ¼ 16
3

ffiffiffiffiffiffi
2p
3

r
s

Z4

c3T1=2
: ð3:80Þ

The brackets denote the averaging over the Maxwellian velocity distribution
function, C ¼ 0:577 is the Euler constant, E1ðxÞ is the integral exponential function.
Comparison with numerical calculations show (Kim and Pratt 1983) that the pre-
cision of (3.78, 3.79, 3.80) are considerably improved is one sets Z ¼ Zeff .
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3.4.4 Generalized Scaled Empirical Formulas for Radiative
Recombination Rates

Quantum mechanical numerical calculations have been performed for the pho-
toionization cross sections. In order to obtain radiative recombination rates, these
photoionization cross sections have been transformed with the help of the Milne
relation to radiative recombination cross sections:

gir
ðphiÞ
ij ðxÞ ¼ 2mec2E

�h2x2
gjr

ðRRÞ
ji ðEÞ; ð3:81aÞ

�hx ¼ �hx0 þE ¼ Ei þE; ð3:81bÞ

where E is the energy of the photoelectron. Note that the energy level i corresponds
to charge state Z, whereas the level j belongs to charge state Z + 1. The rate
coefficients of the spontaneous radiative recombination are then given by:

Rspon
ji ¼ ne

Z1
0

dErðRRÞji ðEÞtðEÞFðEÞ; ð3:82aÞ

where F(E) is the electron energy distribution function of the continuum electrons,
ne is the electron density, and tðEÞ is the electron velocity given by

tðEÞ ¼
ffiffiffiffiffiffiffi
2E
me

r
: ð3:82bÞ

Numerical results have been scaled with respect to charge Z and temperature
parameter b and fitted to the following analytical formula for convenient application
(P1, P2, and P3 are fitting parameters) (Rosmej et al. 2022):

t � rðRRÞ
D E

¼ 10�8 � Zeff � Q � P1 �
ffiffiffi
b

p
� bþP2

bþP3
cm3 s�1� 

; ð3:83aÞ

b ¼ Z2
eff � Ry
kTe

: ð3:83bÞ

Ry = 13.606 eV, kTe is the electron temperature in [eV], Zeff is the effective
charge determined by Zeff = n(En(eV)/Ry)

1/2 where En is the ionization potential of
the state n of the ion before recombination and Q is a factor depending on the
quantum numbers of angular momentum for the considered transition:
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Q n0l
m�1
0 SL ! n0l

m
0 S0L0

� � ¼ m � GS0L0
SL

�� ��2� 2S0 þ 1ð Þ 2L0 þ 1ð Þ
2 � 2l0 þ 1ð Þ 2Sþ 1ð Þ 2Lþ 1ð Þ : ð3:83cÞ

m is the number of equivalent electrons, GS0L0
SL is the fractional parentage coefficient.

For example, for radiative recombination into the 4d-shell from the bare nuclei, we
have n0 ¼ 4, l0 ¼ 2, S0 ¼ 0:5, L0 ¼ 2, m ¼ 1, S ¼ 0, L ¼ 0, GS0L0

SL ¼ 1 from which
it follows Q bare nuc ! 4d 2Dð Þ ¼ 1. For the radiative recombination into the
He-like ground state 1s 2S ! 1s2 1S, n0 ¼ 1, l0 ¼ 0, S0 ¼ 0, L0 ¼ 0, m ¼ 2,
S ¼ 0:5, L ¼ 0, GS0L0

SL ¼ 1, it follows Q 1s 2S ! 1s2 1Sð Þ ¼ 0:5, and for the radiative
recombination into the triplet n = 2 P-state, i.e. the transition 1s 2S ! 1s2p 3P,
n0 ¼ 2, l0 ¼ 1, S0 ¼ 1, L0 ¼ 1, m ¼ 1, S ¼ 0:5, L ¼ 0, GS0L0

SL ¼ 1, it follows
Q 1s 2S ! 1s2p 3Pð Þ ¼ 0:75.

Table 3.1 shows the numerical result for hydrogen for all nl-states from n = 1–9
and l = 0–8. The before last line provides the sum of the recombination rates over
all states with n = 1–9 and l = 0–8 obtained from detailed numerical quantum
calculations, whereas the last line provides the sum of the numerical results for
n = 1–9 and l = 0–8 and the Kramers approximation for n > 9.

Table 3.1 Numerical calculation of the radiative recombination into hydrogen, Q = 1, Zeff = 1 in
(3.83)

nl P1 P2 P3

1s 4.07  10−6 0.05 0.516

2s 6.03  10−7 0.04 0.530

2p 1.57  10−6 0.04 2.59

3s 2.03  10−7 0.06 0.666

3p 5.94  10−7 0.03 2.56

3d 6.52  10−7 0.01 7.39

4s 9.31  10−8 0.06 0.727

4p 2.86  10−7 0.04 2.79

4d 4.10  10−7 0.01 7.49

4f 3.00  10−7 0.01 17.5

5s 5.10  10−8 0.07 0.822

5p 1.57  10−7 0.03 2.78

5d 2.51  10−7 0.01 7.63

5f 2.64  10−7 0.01 17.6

5g 1.39  10−7 0.00 32.4

6s 3.09  10−8 0.07 0.869

6p 9.66  10−8 0.03 2.89

6d 1.61  10−7 0.01 7.79

6f 1.97  10−7 0.01 17.8
(continued)
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Table 3.2 shows the numerical result for H-like molybdenum for all nl-states
from n = 1–9 and l = 0–8. The before last line provides the sum of the recombi-
nation rates over all states with n = 1–9 and l = 0–8 obtained from detailed quantum
mechanical calculations, whereas the last line provides the sum of the numerical
results for n = 1–9 and l = 0–8 and the Kramers approximation for n > 9.

The numerical data have been scaled with respect to Z and b and finally fitted
with three parameters. The fitting parameters of Table 3.2 can be used for all ions
with Z > 1 due to the scaled representation of numerical results. Let us demonstrate
an example for application of (3.83), namely radiative recombination into the
6g-state from fully stripped carbon at kTe = 15.3 eV: n0 ¼ 6, l0 ¼ 4, S0 ¼ 0:5,

Table 3.1 (continued)

nl P1 P2 P3

6g 1.58  10−7 0.00 32.5

6h 6.74  10−8 0.00 55.8

7s 2.03  10−8 0.08 0.954

7p 6.37  10−8 0.03 2.98

7d 1.09  10−7 0.01 7.94

7f 1.44  10−7 0.01 17.9

7g 1.39  10−7 0.00 32.6

7h 9.44  10−8 0.00 55.7

7i 3.33  10−8 0.00 88.5

8s 1.41  10−8 0.08 0.989

8p 4.43  10−8 0.03 3.06

8d 7.71  10−8 0.01 8.09

8f 1.06  10−7 0.01 18.1

8g 1.14  10−7 0.00 32.8

8h 9.58  10−8 0.00 55.9

8i 5.53  10−8 0.00 88.1

8k 1.48  10−8 0.00 115

9s 1.01  10−8 0.08 1.02

9p 3.20  10−8 0.03 3.14

9d 5.64  10−8 0.01 8.21

9f 8.02  10−8 0.01 18.3

9g 9.16  10−8 0.00 32.9

9h 8.70  10−8 0.00 56.1

9i 6.32  10−8 0.00 87.7

9k 3.18  10−8 0.00 131

9l 5.85  10−9 0.00 127

Total (1s...9 l) 1.09  10−5 0.16 1.69

Total (1s...∞) 1.28  10−5 0.18 2.14

Fitting parameters approximate the numerical results typically accurate better than 10% in the large
temperature range 1/8 < b < 64
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L0 ¼ 4, m ¼ 1, S ¼ 0, L ¼ 0, GS0L0
SL ¼ 1 from which it follows

Q bare nuc ! 6g 2Gð Þ ¼ 1, Z ¼ Zeff ¼ 6, b ¼ 32 and (from Table 3.2)
P1 ¼ 1:58 10�7, P2 ¼ 0:00, P3 ¼ 32:5, from which it follows from (3.83a)
t � rðRRÞð6 gÞ� � ¼ 2:66 10�14 cm3 s�1. The exact numerical quantum mechanical
result calculated specifically for carbon provides
t � rðRRÞð6 gÞ� � ¼ 2:65 10�14 cm3s�1. This example demonstrates the high pre-
cision of the fitting formulas (3.83) and the advantageous representation of
numerical results in Z- and b-scaled representation.

Let us now consider the application of Table 3.2 to estimate the radiative
recombination rates for non-hydrogen-like ions with the help of an effective charge
Zeff. One of the most difficult tests is the radiative recombination into the ground
state of neutral helium, i.e. the transition 1s 2S ! 1s2 1S. The ionization potential of
the helium ground state is Ei 1s2 1Sð Þ ¼ 24:587 eV from which it follows an
effective charge Zeff ¼ n0 �

ffiffiffiffiffiffiffiffiffiffiffiffi
Ei=Ry

p ¼ 1 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24:587=13:606

p ¼ 1:3443, Q ¼ 0:5
and (from Table 3.2) P1 ¼ 4:37 10�6, P2 ¼ 0:06, P3 ¼ 0:574. Let us consider
radiative recombination at kTe = 0.425 eV from which it follows (3.83b) b ¼
Z2
effRy=kTe ¼ 57:85 and from (3.83a) t � rðRRÞ 1s2 1Sð Þ� � ¼ 2:21 10�13 cm3 s�1.

The exact numerical quantum mechanical result calculated specifically for the
Helium ground state V � rðRRÞ 1s2 1Sð Þ� � ¼ 2:53 10�13 cm3 s�1.

Let us finish with a consideration of the recombination into the triplet n = 2 S-
state of He I, i.e. the transition 1s 2S ! 1s2s 3S: n0 ¼ 2, l0 ¼ 0, S0 ¼ 1, L0 ¼ 0,
m ¼ 1, S ¼ 0:5, L ¼ 0, GS0L0

SL ¼ 1 it follows Q 1s 2S ! 1s2s 3Sð Þ ¼ 0:75,
Zeff ¼ n0 �

ffiffiffiffiffiffiffiffiffiffiffiffi
Ei=Ry

p ¼ 2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:7677=13:606

p ¼ 1:1839, Q ¼ 0:75 and (from
Table 3.2) P1 ¼ 6:53 10�7, P2 ¼ 0:06, P3 ¼ 0:642. Let us consider radiative
recombination at kTe = 3.4 eV from which it follows (3.83b) b ¼ Z2

effRy=kTe ¼
4:738 and from (3.83a) t � rðRRÞð1s2 1SÞ� � ¼ 0:951 10�14 cm3 s�1. The exact
numerical quantum mechanical result calculated specifically for the Helium triplet
1s2s 3S-state provides t � rðRRÞ 1s2s 3Sð Þ� � ¼ 1:03 10�14 cm3 s�1. These exam-
ples demonstrate that the use of the generalized scaled fitting parameters of

Table 3.2 Numerical calculation of the radiative recombination into H-like ions, Q = 1, Zeff = Zn

nl P1 P2 P3

1s 4.37  10−6 0.06 0.574

2s 6.53  10−7 0.06 0.642

2p 1.63  10−6 0.04 2.65

3s 2.13  10−7 0.06 0.704

3p 6.19  10−7 0.04 2.74

3d 6.61  10−7 0.01 7.44

4s 9.69  10−8 0.07 0.798
(continued)
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Table 3.2 (continued)

nl P1 P2 P3

4p 2.97  10−7 0.04 2.85

4d 4.15  10−7 0.01 7.54

4f 3.01  10−7 0.01 17.5

5s 5.23  10−8 0.07 0.848

5p 1.62  10−7 0.04 2.96

5d 2.53  10−7 0.01 7.68

5f 2.66  10−7 0.01 17.7

5g 1.39  10−7 0.00 32.4

6s 3.16  10−8 0.07 0.891

6p 9.81  10−8 0.03 2.93

6d 1.63  10−7 0.01 7.83

6f 1.98  10−7 0.01 17.8

6g 1.59  10−7 0.00 32.5

6h 6.76  10−8 0.00 55.8

7s 2.07  10−8 0.08 0.973

7p 6.45  10−8 0.03 3.01

7d 1.10  10−7 0.01 7.98

7f 1.45  10−7 0.01 18.0

7g 1.40  10−7 0.00 32.7

7h 9.47  10−8 0.00 55.7

7i 3.33  10−8 0.00 88.6

8s 1.42  10−8 0.08 1.01

8p 4.47  10−8 0.03 3.09

8d 7.76  10−8 0.01 8.12

8f 1.07  10−7 0.01 18.2

8g 1.15  10−7 0.00 32.8

8h 9.61  10−8 0.00 56.0

8i 5.54  10−8 0.00 88.2

8k 1.48  10−8 0.00 115

9s 1.02  10−8 0.08 1.03

9p 3.23  10−8 0.03 3.16

9d 5.67  10−8 0.01 8.25

9f 8.05  10−8 0.01 18.3

9g 9.19  10−8 0.00 33.0

9h 8.72  10−8 0.00 56.1

9i 6.33  10−8 0.00 87.7

9k 3.18  10−8 0.00 131

9l 5.86  10−9 0.00 127

Total (1s…9l) 1.09  10−5 0.16 1.69

Total (1s…∞) 1.28  10−5 0.18 2.14

Fitting parameters can also be used for any non-H-like ion with Zeff > 1 in the large temperature
range 1/8 < b < 64 because the numerical results have been scaled not only with respect to Z but
at the same time with respect to b too. Typical accuracy of fitted rates is 10%
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Table 3.2 provide likewise a good accuracy for non-hydrogen-like ions (if the
H-like approximation holds true reasonably well) if the charge Z is replaced by the
effective charge Zeff. Note, that detailed radiative recombination rates for H I, He I
and He II are presented in Annex A.2 and A.3.

3.4.5 Enhanced Radiative Recombination in Storage Rings

Several observations in storage rings have identified enhanced radiative recombi-
nation by about a factor of 10 at very low energies (Gao et al. 1995, 1997). The
essence of the effect is an anomalous increase of recombination rates when the
relative energy of the electron–ion collision becomes of comparable value with the
transverse electron beam temperature that is of the order of 0:1 meV. The first
observations have been made with multicharged ions with a core, and it was
suggested that dielectronic recombination might contribute. However, also mea-
surements with bare nuclei indicated enhanced radiative recombination rates by a
factor of 4 (Gao et al. 1995). It was found that the excess rates defined as a
difference between the measured and standard ones increase sharply as a function of
an ion charge (as Z2:8) and fall with the increase of the electron energy (Gao et al.
1997). However, for very highly charged ions, the Z2.8-scaling could not be con-
firmed (Hoffknecht et al. 2001).

It has been discussed (Heerlein et al. 2002, 2004a) that three-body recombina-
tion can be excluded as an explanation of enhanced rates, as the typical density
dependence was not observed. Also Zeeman and Stark effects, stimulated emission,
multiphoton effects and QED effects could finally not be made responsible for the
enhanced rates, and it was proposed that the observations are driven by an electron
distribution function that includes electrons with negative energy when the ions
merge the electron beam (Heerlein et al. 2002). However, the modification of the
electron distribution function has been controversely discussed (Hörndl et al. 2004;
Heerlein et al. 2004b).

In further investigations (Hörndl et al. 2005), dense plasma screening effects as
well as B-field effects on the cross sections have been excluded as an explanation
for the enhanced rates. In fact, the B-field cross section calculations did not
reproduce the observed B0.5-field dependence. Finally, transient electric-field-
induced enhanced recombination (Hörndl et al. 2005) has been proposed. In this
scenario, radiative decay of transiently formed Rydberg states inside the solenoid
can stabilize a fraction of these bound electrons by preventing field ionization in the
toroidal demerging section. Thus, sufficiently deeply bound electrons with principal
quantum numbers contribute, in addition to the RR channel, to the observed
electron ion recombination rate. This model is also geometry dependent, but at
present, respective observations have not been possible as all experimental setups
are very similar and therefore enhanced radiative recombination rates seem to
request further investigations.
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3.5 Two-Channel Bremsstrahlung in Electron–Atom
Collisions

Photon radiation in scattering of a charged particle by an atom (ion, molecule,
cluster, etc.) is called bremsstrahlung. The initial and final states of a radiating
particle in this process belong to the continuous spectrum, and radiation energy
originates from its kinetic energy. Let us consider at first a simple case when a
nonrelativistic electron is scattered by a “bare” nucleus (that is, a nucleus without
bound electrons) with a charge number Z. We use the classical expression for the
dipole radiation power Q in terms of acceleration w of a scattered electron (an
acceleration of a nucleus can be neglected because of its heavy mass):

QðtÞ ¼ 2e2

3c3
w2ðtÞ: ð3:84Þ

The total energy of the bremsstrahlung is

E ¼ 4e2

3c3

Z1
0

wðxÞj j2 dx
2p

: ð3:85Þ

In derivation of (3.85), the following relation was used:

Z1
�1

f 2ðtÞdt ¼ 2
Z1
0

f ðxÞj j2 dx
2p

; ð3:86Þ

where f ðtÞ is a real function of time and f ðxÞ is its Fourier component. To calculate
the Fourier component of the acceleration wðxÞ, it is necessary to concretize the
character of motion of the particle. It is well known that in the case of a central force
field the momentum of an electron M ¼ m t q (note that jtj ¼ tÞ is conserved,
where t is the electron velocity (at an infinite distance from a nucleus) and, q is the
impact parameter (see Fig. 3.3).

ρ
v

Z e

r(t)

En

Eτv t

Fig. 3.3 Diagram of electron
scattering by a nucleus in the
approximation of straight
trajectories, q is the impact
parameter
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Thus, the motion of a particle in the potential U r ¼ rj jð Þ is characterized by two
values: the initial velocity and the impact parameter, so the Fourier component of
acceleration depends also on q: wðxÞ ! wqðxÞ. For the last value, we have:

wqðxÞ ¼ e
m
Eðx; qÞ; ð3:87Þ

where Eðx; qÞ is the Fourier component of the strength of the electric field of a
nucleus acting on a scattered electron with a specified impact parameter. Let us
calculate Eðx; qÞ in the approximation of straight trajectories of electron motion.
This approximation is valid for “distant” collisions, when q[ aC (aC ¼ Z e2=m t2

is the Coulomb length). It should be noted that this approach was used by E. Fermi
for the calculation of excitation of atoms by charged particles. Using elementary
electrodynamic formulas, we find for the Fourier component of the strength of the
electric field of a nucleus:

Eðx;qÞ ¼ 2Ze
qt

F
xq
t

� 	
en � iF0 xq

t

� 	
es

n o
; ð3:88Þ

where en;s are the normal and tangent (with respect to the velocity vector t) unit
vectors (see Fig. 3.3) and

F fð Þ ¼
Z1
0

cos fxð Þ
1þ x2ð Þ3=2

dx; ð3:89Þ

where the prime (F′(x)) denotes differentiation with respect to the argument.
In view of (3.87), it follows from (3.85) an expression for the bremsstrahlung

energy differential with respect to photon frequency:

dEq

dx
¼ 2e4

3pm2c3
E x; qð Þj j2: ð3:90Þ

The probability of bremsstrahlung in a scattering process of an electron with
specified impact parameter and frequency is related to the energy of (3.90) by the
relation:

dWq

dx
¼ 1

�hx
dEq

dx
; ð3:91Þ

and the differential (with respect to frequency) cross section is therefore

dr
dx

¼ 2p
Zqmax

qmin

dWq

dx
qdq: ð3:92Þ
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qmin and qmax are the minimum and maximum impact parameters. Gathering the
formulas (3.90)–(3.92) together, we obtain:

dr
dx

¼ 4e4

3m2c3�hx

Zqmax

qmin

E x; qð Þj j2qdq: ð3:93Þ

Hence, in the approximation of straight trajectories, we have obtained for the
spectrally resolved cross section for the electron bremsstrahlung in the field of a
“bare” nucleus:

dr
dx

¼ 16Z2e6

3m2t2c3�hx

Zqmax

qmin

dq
q

F2 xq
t

� 	
þF02 xq

t

� 	n o
; ð3:94Þ

where the function FðfÞ is given by the formula (3.89).
Classical consideration is found to be insufficient for the determination of the

limits of integration qmin, qmax in (3.94). For this purpose, it is necessary to invoke
quantum considerations. For example, the minimum value qmin is defined by the de
Broglie wavelength of a scattered electron:

qmin 	 kDB=2p ¼ �h
mt

: ð3:95Þ

The relation (3.95) reflects the fact that the location of a quantum particle cannot
be determined more exactly than spatial “diffusiveness” of its wave function that is
characterized by the de Broglie wavelength. To determine the maximum impact
parameter qmax, it is necessary to use the law of conservation of energy and the
relation between the change of momentum Dp of an incident electron and the
impact parameter q: Dp 	 �h=q. Then, it can be obtained:

qmax 	
t
x
: ð3:96Þ

In derivation of (3.96), the energy conservation law was used in the form
�hx ¼ tDp that is true for small changes of an electron momentum Dpj j � p, which
corresponds to the approximation of straight trajectories. This approximation
realized in case of distant collisions q[ aC implies the weakness of interaction of a
projectile with the target (nucleus). Naturally, in weak interaction mainly
low-frequency photons will be emitted. It can be shown that a corresponding
condition looks like: x\xC, where xC ¼ t=aC is the Coulomb frequency. In the
low-frequency region, the argument of the function FðfÞ and of its derivative F0ðfÞ
is less than one: f ¼ xq=t\1, so, as it follows from the definition (3.89), the
following approximate equalities can be used: FðfÞ 	 1 and F0ðfÞ 	 0. As a result,
instead of (3.94) we have:
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dr
dx

¼ 16Z2e6

3m2t2c3�hx
ln

qmax

qmin


 �
: ð3:97Þ

It is easy to generalize the obtained expression to an arbitrary scattered particle,
for which the used approximations are fulfilled. For this purpose, it is necessary to
make replacements in the formulas (3.84) and (3.87) according to e ! ep, m ! mp,
where ep and mp are the charge and the mass of the projectile. Then, in view of
(3.95) and (3.96) we obtain from (3.97) the expression for the spectral brems-
strahlung of a nonrelativistic charged particle on a “bare” nucleus in the
low-frequency approximation ð�hx � mpt2=2Þ:

dr
dx

¼ 16Z2e2e4p
3m2

pt
2c3�hx

ln
mpt2

�hx


 �
: ð3:98Þ

From the obtained equation, it follows that the bremsstrahlung cross section is
inversely proportional to the squared mass of the projectile. Thus, in going from
light charged particles (electron, positron) to heavy particles (proton, alpha particle,
etc.), the cross section of the process under consideration decreases more than
million times. This conclusion led to the well-known statement that heavy charged
particles do not emit bremsstrahlung photons. As it will be clear from the following,
this statement needs considerable correction.

The spectral intensity of radiation is equal to the process cross section multiplied
by the projectile flux and the energy of an emitted photon, so (3.98) gives:

dI
dx

¼ 16Z2e2e4p
3m2

ptc
3 ln

mpt2

�hx


 �
: ð3:99Þ

As discussed above, the formulas (3.98), (3.99) were obtained in the approxi-
mation of distant collisions corresponding to emission of low-frequency photons.
The contribution of high-frequency photons x[xC to the bremsstrahlung is made
by close collisions q\aC corresponding to strongly curved trajectories. The
spectral cross section and intensity of the electron bremsstrahlung in this case are
described by the Kramers formulas:

dr Kramð Þ

dx
¼ 16pZ2e6

3
ffiffiffi
3

p
m2t2c3�hx

; ð3:100Þ

dI Kramð Þ

dx
¼ 16pZ2e6

3
ffiffiffi
3

p
m2tc3

: ð3:101Þ

The right-hand side of the (3.101) does not include the Planck constant, which is
indicative of a purely classical nature of this expression.
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It is interesting to note that the Kramers formulas describe not only brems-
strahlung, but also photorecombination, when the final state of a radiating electron
belongs to the discrete ion spectrum. This circumstance follows from the fact that
radiation in the high-frequency limit x[xC is “gathered” from a section of the
trajectory of closest approach to the nucleus, so a radiating electron “does not
know” where it is scattered after emission of a photon.

The expressions (3.98)–(3.99) were obtained within the framework of classical
consideration with quantum “insertions” (3.95), (3.96). It is clear that such an
approach is not consistent, but its important advantage is physical transparency and
mathematical simplicity. It is pertinent to note here that the use of the quantum
mechanical formalism within the framework of the Born approximation results in
the same formulas for the cross section and intensity of bremsstrahlung of
low-frequency photons as (3.98), (3.99).

The criterion of the Born approximation is given by the relation:

Z eep
�� ��
�ht

� 1; ð3:102Þ

Relation (3.102) corresponds to sufficiently fast projectiles. The condition
(3.102) allows calculation of the scattering cross section according to the pertur-
bation theory; the ratio Z eep

�� ��=�ht serves as a small parameter in the theory. The
possibility of classical consideration is given by an inequality that is reverse to
(3.102), so the above coincidence of results is to a certain extent by accident.
A similar accidental coincidence of classical and quantum results holds true for the
Rutherford cross section of electron scattering by a nucleus.

3.6 Bremsstrahlung in Many Electron–Atom Collisions
and Mass-Independent Radiation

When going to bremsstrahlung on an atom, it is necessary to take into account the
screening effect of bound electrons, resulting in the replacement

qmax ! min t=x; rað Þ; ð3:103Þ

(ra is the atomic radius) in the expressions for the cross section and intensity. In
fact, for impact parameters q[ ra the atomic field is equal to zero, so the accel-
eration of a projectile vanishes, and, according to (3.84), the bremsstrahlung van-
ishes too. It is obvious that screening is essential for sufficiently low frequencies
x\t=ra; otherwise, a projectile should pass sufficiently close to the nucleus to emit
a photon at specified frequency.

In case of bremsstrahlung on multielectron atoms, when the Thomas–Fermi
model is valid, the Thomas–Fermi radius can be used as an atomic radius:
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ra 	 rTF ¼ aBb=
ffiffiffi
Z3

p
, where aB 	 0:53 Å is the Bohr radius, Z is the charge number

of the atomic nucleus, and b ffi 0:8553 is a constant.
The replacement (3.103) corresponds to the screening approximation in the

bremsstrahlung theory used by H. Bethe and W. Heitler to generalize the cross
section formulas to the atomic case. Physically, the screening approximation means
the replacement of atomic electrons by a nucleus with effective charge. Thus, bound
electrons are excluded from consideration as a dynamical degree of freedom that
might occur during bremsstrahlung. In fact, during emission of high-energy photons
an energy–momentum excess can be transferred to atomic electrons, resulting in
their excitation and ionization.

Besides a real excitation, atomic electrons can be excited virtually in a collision
of an atom with a charged particle. Virtual excitation corresponds to the occurrence
of a variable dipole moment in an atom that, according to the fundamentals of
electrodynamics, should radiate electromagnetic waves. Such a process is called
polarization bremsstrahlung since it is connected with the dynamic polarizability of
an atom defining a radiating dipole moment.

Polarization bremsstrahlung can be interpreted also as a process of scattering of
the eigenfield of a projectile (a virtual photon) contributing to the radiation field (a
real photon) of atomic electrons. Polarization bremsstrahlung is therefore an
additional radiation channel in charge scattering by a target with a system of bound
electrons. We will call a bremsstrahlung that exists also on a “bare” nucleus
ordinary or static bremsstrahlung. The latter term implies that this channel is the
only channel in the model of static distribution of the electron charge of bound
electrons.

Let us derive formulas for the polarization bremsstrahlung of a fast charged
particle on an atom, considering the atom to be an elementary dipole with polar-
izability bðxÞ. For the description of the projectile motion, we use, as above, the
classical approach and the approximation of straight trajectories. We proceed from
the formula for dipole radiation power, but this time we will formulate it in terms of
the dipole moment of the radiating system:

QðtÞ ¼ 2
3c3

€dðtÞ�� ��2: ð3:104Þ

Here, two dots denote the second time derivative. Integrating the (3.104) with
respect to time and using the formula (3.87) for the squared second derivative of the
dipole moment, we come to the expression for the total energy of polarization
bremsstrahlung for the time of a collision corresponding to the impact parameter q:

E ¼ 4e2

3c3

Z1
0

x4 bðxÞE pð Þðx; qÞ�� ��2dx
2p

; ð3:105Þ

where EðpÞðx; qÞ is the Fourier component of the strength of the electric field of a
charged projectile at the location of an atom. In derivation of this formula, the
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relation €dðxÞ ¼ �x2dðxÞ was used that follows from the definition of the Fourier
components.

Going from the total radiated energy to the spectral cross section as was done in
derivation of the formula (3.93), we obtain the following expression for the
polarization bremsstrahlung:

drPB

dx
¼ 4x3 b xð Þj j2

3c3�h

Z~qmax

~qmin

EðpÞðx; qÞ�� ��2q dq: ð3:106Þ

The upper limit of integration in this formula follows from the energy conser-
vation law (3.96), being of the same value as for static bremsstrahlung. But the
lower limit of integration is essentially different. In the elementary dipole
approximation under consideration, it is defined by the size of an atom:

~qmin ¼ ra: ð3:107Þ

As the analysis shows, scattering with small impact parameters q\ra makes
small contributions to the polarization bremsstrahlung cross section since in this
case the coherence in re-emission of the projectile eigenfield by atomic electrons to
a real photon is lost.

From Fig. 3.3, it is easy to see that the Fourier component of the strength of the
electric field of a projectile in the approximation of straight trajectories can be
calculated by a formula similar to (3.88), with replacement of the nuclear charge by
the projectile charge. As a result, for the strength EðpÞðx; qÞ we have:

EðpÞðx;qÞ ¼ 2ep
qt

�F
xq
t

� 	
en þ iF0 xq

t

� 	
es

n o
; ð3:108Þ

where en and es are the normal and tangent unit vectors, and the function FðfÞ is
given by the (3.89). Substituting (3.108) in (3.106), we obtain the spectral cross
section of polarization bremsstrahlung:

drPB

dx
¼ 16e2px

3 b xð Þj j2
3t2c3�h

Zt=x
ra

dq
q

F2 xq
t

� 	
þF02 xq

t

� 	n o
dq: ð3:109Þ

Hence, we find for the intensity:

dIPB

dx
¼ 16e2px

4 b xð Þj j2
3tc3

Zt=x
ra

dq
q

F2 xq
t

� 	
þF02 xq

t

� 	n o
dq: ð3:110Þ
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It should be noted that the formula (3.110) does not contain the Planck constant,
which is indicative of the classical nature of the polarization bremsstrahlung.

In the low-frequency limit, when FðfÞ 	 1 and F0ðfÞ 	 0, the formula (3.109)
gives:

drPB

dx
¼ 16e2px

3 bðxÞj j2
3t2c3�h

ln
t

xra


 �
: ð3:111Þ

This expression is valid for frequencies x\t=ra; otherwise, it is necessary to
employ formula (3.109). However, the calculation shows that in the frequency
range x[ t=ra polarization bremsstrahlung is low.

The cross section (3.111) can be obtained within the framework of the quantum
approach in the domain of validity of the Born approximation (3.92), that means for
fast (but nonrelativistic) projectiles.

It should be emphasized that the polarization bremsstrahlung cross sections
(3.109), (3.111) do not depend on the projectile mass in contrast to the static
bremsstrahlung cross section (3.99). Thus, the long existing statement in physics
that heavy charged particles do not emit bremsstrahlung photons does not extend to
the polarization channel. This circumstance is connected with the fact that the static
bremsstrahlung cross section is proportional to the squared acceleration of a pro-
jectile, while the polarization cross section does not depend on this acceleration.

The polarization bremsstrahlung cross section (3.111) can be obtained from the
static cross section (3.98) via the replacements mp ! m, e4p ! e2e2p, qmin ! ~qmin

and

Z ! ZpolðxÞ; ð3:112Þ

where

ZpolðxÞ ¼ mx2

e2
bðxÞj j2 ð3:113Þ

is the effective polarization atomic charge (in units of the electron charge
e) (Rosmej et al. 2017). A polarization charge characterizes the ability of the
electron core of an atom to emit a photon under the action of an ac field. In contrast
to an ordinary charge, a polarization charge depends on radiation frequency. The
frequency dependence of polarization charges of silver and krypton atoms is pre-
sented in Fig. 3.4.

From Fig. 3.4, it is seen that in the high-frequency range the polarization charge
is equal to the number of bound electrons of an atom (or the charge number of its
nucleus). This fact follows from the definition (3.113) and the formula for
high-frequency polarizability (2.43). In the low-frequency region x ! 0 a polar-
ization charge, according to (3.113), decreases quadratically since in this case atomic
polarizability is equal to its static value (2.42) that does not depend on frequency.
Finally, in the intermediate spectral range the polarization charge is a non-monotonic
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function that reflects the features of the energy spectrum of an atom. For example, a
wide “dip” in the dashed curve of Fig. 3.4 in the range of 1600–1750 eV corre-
sponds to the binding energy for 2p-electrons in the krypton atom. A minimum in the
low-frequency region corresponds to virtual excitation of atomic subshells with
principal quantum number n ¼ 3. Thus, the spectral cross section of polarization
bremsstrahlung reflects the atomic core dynamics as a function of frequency.

In the high-frequency limit, when x � xa(xa is the characteristic frequency of
excitation of an atom in the discrete spectrum), but still x\t=ra, b xð Þ 	
�Ze2=mx2 ðZpol xð Þ ¼ ZÞ the formula (3.111) gives:

drPB

dx
¼ 16Z2e4e2p

3m2t2c3�hx
ln

t
xra


 �
: ð3:114Þ

Curiously, in case of an incident electron (positron), the obtained expression
differs from the formula for the static bremsstrahlung cross section only by the
logarithmic factor.

Let us now consider the resonance case, when the bremsstrahlung frequency is
close to one of the eigenfrequencies of an atom, i.e. x 	 x0. The dynamic polar-
izability looks like

b x 	 x0ð Þ ffi e2

m
f0

x2
0 � x2 � 2ixc0

: ð3:115Þ

This expression for the resonance polarizability follows from the general formula
(2.41) if only the resonance summand is considered for which xnm � x0, fnm � f0,
and cnm � c0. Substituting the formula (3.115) in (3.111), we obtain:

Fig. 3.4 Spectral
dependence of the
polarization charges of silver
and krypton atoms
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drres

dx
¼ 4

3

e2p
�hc

c
t

� 	2 r2e f
2
0x0

x0 � xð Þ2 þ c20
ln

t
xra


 �
; ð3:116Þ

where re ¼ e2=mc2 	 2:8 10�13 cm is the classical radius of an electron.
From the expression (3.116), it is seen that resonance polarization brems-

strahlung has a sharp maximum at the frequency x ¼ x0 if c0 � x0. The last
inequality is satisfied in case of excitation of electrons of the outer atomic shell into
the discrete spectrum. For neutral atoms, energies of the resonant photons are about
10 eV. In case of multiply charged ions with a system of bound electrons (an
electron core), these energies can be much higher and reach values of the order of
several keV. However, in this case the transition damping constant being equal to
the Einstein coefficient Amn is also large, and therefore, the resonance is not sharp
anymore. At frequencies corresponding to virtual excitation of inner atomic shells,
the resonance structure in the spectral dependence of the dynamic polarizability
bðxÞ disappears. In the spectral curves, “dips” appear that correspond to the
beginning of the photoionization of an atomic subshell (see Fig. 3.4).

Thus, resonance effects in the above-considered spontaneous polarization
bremsstrahlung are essential only in a narrow frequency interval in the vicinity of a
resonance and are ill-defined in the integral characteristics of radiation. The situ-
ation changes when going to the induced bremsstrahlung (also called the induced
bremsstrahlung effect).

3.7 Photoionization

3.7.1 General Relations

Let us consider at first a bound–free transition of a quantum system with photon
absorption under the action of electromagnetic radiation of moderate intensity,
when the condition of applicability of the perturbation theory is satisfied. Let the
atom be excited as a result of absorption of a photon of an external field.
Photoabsorption is characterized by the spectral cross section that is connected with
the probability per unit time for excitation of a bound electron under the action of
electromagnetic radiation with a specified frequency x. For the photoabsorption
cross section rðxÞ, there exist a number of general relations that are used for the
construction of approximate models to quantitatively describe the photoeffect. For
example, it is convenient to express the value rðxÞ in terms of the spectral function
of dipole excitations gðxÞ according to the formula (Amusia 1990):

rðxÞ ¼ 2p2

137
aBtagðxÞ; ð3:117Þ
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where aB is the Bohr radius, and ta ffi 2:18 108 cm/s is the velocity of an electron
in the first Bohr orbit in a hydrogen atom (an atomic unit of velocity). Hereafter, the
number 137 resulted from writing the velocity of light in atomic units: c=ta ffi 137.
The function gðxÞ is very convenient because it satisfies the sum rule:

Z
gðxÞdx ¼ Nn; ð3:118Þ

where Nn is the total number of electrons in an atomic shell n. Besides, the spectral
function gðxÞ satisfies also the equation:

gðxÞ ¼
X
j

fijd x� xij
� �

; ð3:119Þ

where fij is the strength of an oscillator for the transition i ! j and xij is the
eigenfrequency of this transition. It should be noted that if we are dealing with the
photoionization of an electron in subshell nl with specified principal n and orbital l
quantum numbers, the expressions (3.117)–(3.119) should be related to this sub-
shell and designated with corresponding indices: Xnl.

The above formulas (3.117)–(3.119) concern not only photoionization, but also
photoabsorption that is accompanied by electron transitions in the discrete spec-
trum, i.e. photoexcitation. In case of a photoionization, the summation in (3.119) is
replaced by an integration over states of the continuous spectrum, the integrand
being a differential oscillator strength for transition to the continuum df =de, where e
is the energy of a state of the continuous spectrum of an electron. The differential
oscillator strength is expressed in terms of the matrix element die of a transition
dipole moment operator for transitions to the continuum in the same manner as for
transitions to the discrete spectrum:

df
de

¼ 2x diej j2
3e2a2B

; ð3:120Þ

where e is the elementary charge.
It is useful to introduce the concept of an oscillator strength density for transi-

tions into the discrete spectrum too. The oscillator strength of such transitions has to
be divided by the energy interval from the given level to the nearest energy level. It
can be shown that in this case the following relation is valid (Cowan 1981;
Sobelman 1972, 2006):

lim
n0!1

4p2Rya2B
137

fnl;n0l0

En0 þ 1l0 � En0l0
¼ rnl;el0 Inlð Þ: ð3:121Þ

This means, the normalized oscillator strength density for infinitely large prin-
cipal quantum numbers goes over to the threshold value of the partial (corresponding
to a given value of orbital quantum number l0) cross section of photoionization of an
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electron subshell nl. The limiting transition (3.121) is a demonstration of a smooth
conjugation of optical characteristics of discrete and continuous spectra.

The most general expression for the cross section of photoionization of an
electron subshell in the one-electron approximation (that is, with neglect of inter-
electron correlations) looks like

rnlðxÞ ¼ 4p2Nnlta
3e2aBx137 2lþ 1ð Þ dnl;e lþ 1ð Þ

�� ��2 þ dnl;e l�1ð Þ
�� ��2h i

; ð3:122Þ

where Nnl is the number of equivalent electrons, that is, electrons with the same
values of principal and orbital quantum numbers. Here, there are introduced the
matrix elements of a dipole moment operator for transitions to states of the con-
tinuous spectrum with orbital quantum numbers allowed by selection rules. These
matrix elements can be expressed in terms of radial wave functions of the initial
ðRnlðrÞÞ and final ðRel0 Þ states as follows:

drnl;el0 ¼
exta
aB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1ð Þ 2l0 þ 1ð Þ

p l 1 l0

0 0 0


 �Z1
0

Rnl rð ÞrRel0 rð Þr2dr; ð3:123Þ

where
l 1 l0

0 0 0


 �
is the so-called 3j-symbol. It results from integration with

respect to angular variables in the definition of the matrix element of the dipole
moment. The 3 j symbol describes the selection rules for dipole radiation,
according to which l0 ¼ l� 1. Naturally, in the case l ¼ 0 there is one allowed
value of a quantum number of an orbital moment in the final state: l0 ¼ 1. As a rule,
the main contribution to the photoionization cross section is made by a transition
with increasing quantum number of an orbital moment l ! lþ 1. Exceptions to this
rule occur if for some specific reasons the matrix element dnl;n0lþ 1 is small or goes to
zero. On the other hand for the angular distribution of ionized electrons (that we do
not consider here), the transition l ! l� 1 can play an important role.

3.7.2 Hydrogen-like Approximation

As was shown for the first time by Sommerfeld (1978), the total (integrated with
respect to the electron escape angle) photoionization cross section for the ground
1s-state of a hydrogen-like ion is

rH�like
ph 1s ðxÞ ¼ 29p2

3Z2137
I1s
�hx


 �4

a2B
exp �4farcctgfð Þ
1� exp �2pfð Þ ; ð3:124Þ
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where x is the ionizing radiation frequency, Z is the nuclear charge, I1s ¼ Z2Ry is
the ionization potential of the 1s-state (Ry=13.6 eV), p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m �hx� I1sð Þp
is the

momentum of the ionized electron, and f ¼ Zme2=p�h is the so-called Born
parameter. The Born parameter (see also (3.102)) is a dimensionless quantity
characterizing the force of interaction between an electron and a charged particle.
This parameter is introduced in the electron scattering theory and usually written in
terms of the electron velocity: f ¼ Ze2=�ht. The dependence of the Sommerfeld
photoeffect cross section (3.124) on the photon energy is presented in Fig. 3.5
(solid curve).

It should be noted that photoionization is a process of the first order with
a smallness parameter being the electromagnetic interaction constant (e2=�hc ffi
1=137 in ordinary units). This manifests itself in the presence of the velocity of light
(the number 137) to the first power in the denominator of the formula (3.124).

In the vicinity of the photoionization threshold, when p ! 0; f ! 1, we
obtain from the formula (3.124) the following approximate expression for the
photoeffect cross section:

r1sðxÞ 	 29p2a2B
3e4Z2137

1� 8
3

�hx� I1sð Þ
I1s


 �
	 0:23a2B

Z2 1� 8
3

�hx� I1sð Þ
I1s


 �
; ð3:125Þ

where e is the base of the natural logarithm (not to be confused with an elementary
charge). Thus, the photoeffect cross section for a hydrogen atom ðZ ¼ 1Þ at the
threshold ð�hx ¼ RyÞ is equal to 0.063 Å2 or 6.3 Mb. It should be noted that the
cross section of photoionization of atoms is often given in megabarns:
1 Mb = 10−18 cm2.

An important feature of the photoeffect of hydrogen-like atoms follows from
formulas (3.124)–(3.125): The maximum of the cross section value is achieved at
threshold, that is, at the minimum radiation frequency, at which photoionization is
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Fig. 3.5 Sommerfeld,
Kramers, and Born cross
sections of photoionization of
the ground state of a hydrogen
atom and the cross section in
the Rost approximation
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still possible. For higher frequencies, the cross section monotonically decreases.
This property is caused by the fact that an ionized electron experiences Coulomb
attraction of a nucleus that increases the cross section.

From the formula (3.125), it follows that the cross section of photoionization of
the ground state of a hydrogen-like ion decreases at the threshold inverse propor-
tionally to the squared nuclear charge. Such a behavior of the cross section has a
simple qualitative interpretation: With increasing nuclear charge the radius of the
ground state of a hydrogen-like ion decreases r1s / Z�1, whence (on the assump-
tion that r1s / r21s) there follows the threshold dependence of the photoionization
cross section that can also be represented as rthres1s / 1=I1s. Hence, it follows that the
threshold value of the photoeffect cross section for ns-states (with another principal
quantum number n) can be represented as

rthresns ¼ I1s=Insð Þrthres1s : ð3:126Þ

Thus, the threshold value of the photoionization cross section increases with
principal quantum number. Curiously, this relation is validated by experimental
cross sections even in the case of non-hydrogen-like atoms. For example, for an
argon atom we have I1s : I2s : I3s 	 150 : 10 : 1, while the ratio of experimental
threshold cross sections for these shells is 300 : 30 : 1.

In the high-frequency mode �hx � I1s we obtain from (3.124)

r1sðxÞ 	 28p
3

a2B
Z2137

I1s
�hx


 �7=2

1� p

ffiffiffiffiffiffi
I1s
�hx

r" #
: ð3:127Þ

The formula (3.127) reflects the well-known asymptotic decrease in the
hydrogen-like photoeffect cross section with increasing frequency: x�7=2. It makes
sense to emphasize that the photoionization cross section (3.124) goes to its
asymptotic behavior (3.127) only at rather high values of frequency, i.e. about
x[ 40I1s=�h since the expansion parameter ð�2 pfÞ of the exponent in (3.124)
becomes much less than unity only at such high frequencies.

For the photoionization of nl-subshells (with l 6¼ 0), the photoeffect cross section
decreases also monotonically with increasing frequency, and for x � Inl=�h we
have

rnl xð Þ / 1=xlþ 7=2; ð3:128Þ

that is, the cross section decrease is more rapid.
As discussed above in relation with the Sommerfeld formula (3.124), there

follow characteristic features for the cross sections of photoionization of a
hydrogen-like ion, i.e. a maximum at threshold, a monotonic decrease with
increasing frequency. These characteristic features, when going to multielectron
atoms, are, generally speaking, violated. Nevertheless, the hydrogen-like formula
for the photoionization cross section is a starting point for construction of an
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approximate method of description by an order of magnitude. For example, if the
high-frequency dependence (3.128) is employed from the threshold and combined

with the sum rule
137

2p2aBta

Z 1

Inl

rnlðxÞdx ¼ Nnl, we obtain the following pho-

toionization cross section in the hydrogen-like approximation:

rnlðxÞ ¼ 4p2a2B
137

Nnl
5
2
þ l


 �
I5=2þ l
nl Ry

�hxð Þ7=2þ l
: ð3:129Þ

The cross section (3.129) applied for the 1 s-electron gives a 3.2-fold excess
over the exact value near the threshold, and far from the threshold an underesti-
mation of 2.7 times. Therefore, (3.129) defines the cross section within an order of
magnitude (in the hydrogen-like approximation).

For semiquantitative characterization of radiative phenomena, simple formulas
obtained by Kramers within the framework of classical physics are often used. They
describe cross sections for radiative processes in electron scattering in the field of a
point charge. These formulas are valid for non-small values of the Born parameter
f ¼ Z e2=�ht
 1, that is, for large charge numbers and low electron velocities. In
this case, the electron motion is quasi-classical and can be described to a good
degree of accuracy as a motion along a classical trajectory.

Within the framework of the Kramers approach for the cross section of pho-
toionization of an atomic subshell with quantum numbers nl, the following
expression can be obtained (see Sect. 3.3):

rðKrÞnl ðxÞ ¼ 64p

3
ffiffiffi
3

p Nnl
a2B

137Z2

ffiffiffiffiffiffi
Ry
Inl

r
Inl
�hx


 �3

: ð3:130Þ

Hence, the formula (3.130) corresponds to the cross section of photoionization
of a hydrogen atom in the ground state if it is assumed that Z ¼ Nnl ¼ 1 and
Inl ¼ Ry. Figure 3.5 presents these results (dashed line) that demonstrate that,
despite its simplicity, the Kramers formula adequately describes the cross section of
photoionization of a hydrogen atom. The most distinction from the exact cross
section is at threshold. The Kramers formula overestimates the Sommerfeld
threshold value of the cross section by about 30%. In the high-frequency mode, the
expression (3.130) gives another asymptotics than the Sommerfeld formula (3.124):
x�3 instead of x�3:5. However, since the cross section goes to the high-frequency
asymptotics only very far from the threshold (more than ten times), this distinction
has little effect in the actual region of photon energies where the cross section is
high.
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3.7.3 Photoeffect Cross Section in the Born Approximation

In the mode of small values of the Born parameter f ¼ Z e2=�ht � 1, the influence of
an atomic core on the motion of an ionized electron can be considered to be a small
perturbation. This is the case for high velocities and low nuclear charges. In this case,
in calculation of the matrix elements dnl;elþ 1 appearing in the general formula for the
photoeffect cross section (3.122), plane waves corresponding to free motion can be
used as a wave function of an ionized electron. Then for the cross section of pho-
toionization of an atomic subshell, the following expression can be obtained:

rnlðxÞ ¼ 8p2

3 � 137Nnla
2
B
Ry
�hx

pðxÞ
�h


 �3

gnl
pðxÞ
�h


 �����
����
2

; ð3:131Þ

where pðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m �hx� Inlð Þp

is the momentum of the ionized electron, Inl is the

potential of ionization of an electron subshell, gnlðkÞ ¼
ffiffiffi
2
p

r R1
0 jl krð ÞRnlðrÞr2dr is

the Fourier transform of the radial wave function of the initial state of an atom,
RnlðrÞ is the radial wave function of the initial state of an atomic electron nor-
malized according to

R1
0 RnlðrÞj j2r2dr ¼ 1, and jl krð Þ is the spherical Bessel

function of the lth order.
Let us give for reference several spherical Bessel functions: j0ðxÞ ¼ sin x=x,

j1ðxÞ ¼ sin x=x2 � cos x=x, j2ðxÞ ¼ 3x�3 � x�1ð Þ sin x� 3 cos x=x2. Spherical
Bessel functions describe the radial dependence of a spherical wave with a specified
value of an orbital quantum number l.

In case of photoionization of the ground state of a hydrogen atom, we have:

R10ðrÞ ¼ 2=
ffiffiffiffiffi
a3B

p� 	
exp �r=aBð Þ and g10ðkÞ ¼

ffiffiffi
2
p

r
4a3=2B

1þ k2a2Bð Þ2
, Nnl ¼ 1, Inl ¼ Ry.

Substituting these equations in the formula (3.131), we find the following expres-
sion for the cross section of photoionization of a hydrogen atom in the Born
approximation:

rðBÞ1s ðxÞ ¼
28p

3 � 137 a
2
B
Ry
�hx

pðxÞaB=�hð Þ3

1þ pðxÞaB=�hð Þ2
h i4 : ð3:132Þ

The plot of the function rðBÞ1s ðxÞ is presented in Fig. 3.5 as a dashed-dotted line.

From Fig. 3.5 a characteristic feature of the Born cross section is seen: It goes to
zero at the threshold in contrast to the exact Sommerfeld cross section and the
approximate Kramers cross sections that have a maximum at the threshold. This is
connected with the fact that the Born approximation does not take into account
nuclear attraction that increases the cross section value. At the same time, the

function (3.132) has correct high-frequency asymptotics r Bð Þ
1s �hx � Ryð Þ / x�7=2

132 3 Probabilities of Radiative Transitions



since in the mode of high photon energies an ionized electron can be considered to
be free, which corresponds to the condition of applicability of the Born approxi-
mation. Nevertheless, the ratio of the Born cross section to the exact cross section
for �hx ¼ 100 eV is 2.1, at �hx ¼ 1 keV it is 1.38, and only for �hx ¼ 10 keV, this
ratio is equal to 1.12; that is, the convergence is rather slow.

Thus for not too high photon energies the Kramers photoeffect cross section for a
hydrogen atom describes the real situation better than the Born cross section.

3.7.4 Local Plasma Frequency Model

So far the photoionization cross section was calculated with neglect of interelectron
interaction; that is, it was assumed that photon absorption occurs as a result of inter-
action of an electromagnetic field with individual electrons, the contributions of which
are additively summed, giving the total cross section. There is a rather simple alter-
native approach to the description of an atomic photoeffect based on purely classical
considerations. It is the local plasma frequency model or the Brandt–Lundqvist
approximation (Brandt and Lundqvist 1965) that was considered in Sect. 2.6. Within
the framework of this approach, an atom is approximated by an inhomogeneous dis-
tribution of electron density with concentration nðrÞ (plus nucleus) [Rosmej et al.
2020]. Each spatial point corresponds to its own local plasma frequency
xpðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2n rð Þ=mp

, and interaction of an external electromagnetic field of fre-
quency x with atomic electrons is defined by the plasma resonance condition

x ¼ xpðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2n rð Þ

m

r
: ð3:133Þ

From this equation, it follows that absorption of electromagnetic field energy by
atomic electrons occurs at those distances from a nucleus where the local plasma
frequency coincides with the ionizing radiation frequency. This model results in the
following simple expression for the spectral function:

gðxÞ ¼
Z

d3r nðrÞ d x� xpðrÞ
� �

: ð3:134Þ

It is easy to see that the spectral function (3.134) satisfies the sum rule (3.118).
For the photoionization cross section, according to (3.117), we have

rðxÞ ¼ 2p2

137
aBta

Z
d3r nðrÞ d x� xpðrÞ

� �
: ð3:135Þ

The presence of the delta function in (3.135) allows easy integration with respect
to spatial variables. As a result, we obtain the so-called Brandt–Lundqvist
approximation for the photoionization cross section:
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rB�L
ph ðxÞ ¼ 4p2x

137ta
r2x

n rxð Þ
n0 rxð Þj j ; ð3:136Þ

where rx is the solution of (3.133). This value corresponds to the radial distance
(from the nucleus) of the plasma resonance, and the prime denotes differentiation
with respect to the radius. Thus, within the framework of the model, the photoeffect
cross section is defined only by the distribution of the electron density nðrÞ. For the
last value, it is convenient to use the statistical model of an atom, in which
nðrÞ ¼ Z2=a3B

� �
f x ¼ r=rTFð Þ, where f ðxÞ is the universal function of the reduced

distance x ¼ r=rTF, Z is the nuclear charge, rTF ¼ baB=Z1=3 is the Thomas–Fermi
radius, and b ffi 0:8853. Substituting the above expression for electron density in
the formula (3.136), we find

rB�L
ph ðxÞ ¼ s m ¼ �hx

2Z Ry


 �
¼ 9p4m

32 � 137 x
2
m
f xmð Þ
f 0 xmð Þj j a

2
B; ð3:137Þ

here the reduced frequency m ¼ �hx= 2Z Ryð Þ is introduced, and xm is the solution of
the equation m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

4pf ðxÞp
being a result of (3.133).

As seen from (3.137), the photoionization cross section in the Brandt–Lundqvist
approximation is found to be a universal function, that is, independent of nuclear
charge but a function of the reduced frequency: sðmÞ. The formula (3.137) reveals a
corresponding scaling law for the cross section with respect to the variable m. The
universal function sðmÞ is defined by the type of the statistical model of atom, that is,
by the dependence of f ðxÞ.

Figure 3.6 shows the calculation of the photoionization cross section of a krypton
atom carried out within the framework of two alternative approaches: the quantum
hydrogen-like approximation (3.129) (solid curve), and the classical local plasma
model (3.137) that employs the Thomas–Fermi electron density (dotted curve).

Fig. 3.6 Cross section of
photoionization of a krypton
atom: solid red curve—
hydrogen-like approximation
(3.129); dotted blue curve—
local plasma model (3.137)
with electron density
according to the Thomas–
Fermi model
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It is seen that the first dependence is a saw-toothed curve with jumps at fre-
quencies corresponding to the ionization potentials of electron subshells. The value
of a jump decreases with increasing potential of subshell ionization according to the
formula (3.126). The cross section of photoionization of an atom in the local plasma
model (for the Thomas–Fermi electron density) is a smooth monotonically
decreasing curve that describes in a smooth manner the quantum jumps of the
hydrogen-like approximation.

The main advantages of the Brandt–Lundqvist approximation are simplicity,
clearness, and universality. It gives the worst description of the process in spectral
intervals in the vicinity of thresholds of ionization of electron subshells as it is seen
from Fig. 3.6. In the original work of Brandt and Lundqvist (1965), it was noted that
the local plasma model is adequate to physics of electromagnetic field photoabsorp-
tion by an atom not throughout the frequency range, but at frequencies x 	 Z Ry=�h
ðRy ¼ 13:6 eVÞ, when collective interactions dominate over one-particle interactions.
For such frequencies, the distance to a nucleus, at which the plasma resonance con-
dition (3.133) is satisfied (in the Thomas–Fermi model), coincides with the Thomas–
Fermi radius, that is equal to the distance where the electron density is maximum.
Therefore, the assumption of domination of collective phenomena in the photoeffect at
frequencies x 	 Z Ry=�h seems to be reasonable, at least at a qualitative level.

The use of the exponential screening model for the normalized function of the
electron density f x ¼ r=rTFð Þ, i.e.

fexp xð Þ ¼ 128
9p3

e�2x ð3:138Þ

allows obtaining a simple analytical expression for the photoeffect cross section. In
this case, then the transcendental (3.133) is easily solved, and we obtain with the
use of (3.137)

rB�L expð Þ
ph x ¼ 2Z Ry=�hð Þmð Þ ¼ 9p4a2Bm

64 � 137 ln
2 16

ffiffiffi
2

p

3pm


 �
; m� 16

ffiffiffi
2

p

3p
ffi 2:4: ð3:139Þ

A characteristic feature of the cross section (3.139) is the existence of a “cutoff
frequency”, which is connected with limited radial electron density near a nucleus
in the model (3.138). Therefore, there exists a radiation frequency, for which the
plasma resonance condition is not satisfied. Another characteristic feature of the
photoeffect cross section calculated with the function (3.138) is the presence of a

pronounced maximum at �hx expð Þ
max ffi 8:8Z eV.

The atomic photoeffect cross section calculated within the framework of the
Brandt–Lundqvist approximation (3.137) while employing different statistical
atomic models is presented in Fig. 3.7. We note, that the comparison of the local
plasma frequency approach employing various atomic models shows often sur-
prisingly good agreement with experimental photoionization cross section data
(Rosmej et al. 2020).
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3.7.5 Approximate Quantum Methods of Calculation
of Photoabsorption Cross Sections

Along with the above classical method of consideration of interparticle correlations
in photoabsorption, there are approximate quantum methods taking into account
multiparticle effects, in which the photoionization cross section is calculated with
the use of somewhat more simplified approaches in comparison with consistent
quantum mechanical consideration, such as the random phase exchange approxi-
mation (RPEA).

One of such methods is based on the local electron density functional
(DFT) formalism. The simplification of calculation is achieved due to introduction
of a local effective potential for the determination of one-particle wave functions of
the ground state of a system. For this purpose, a non-local exchange-correlation
energy is calculated in the local density approximation according to the equations

VxcðrÞ ¼ � 0:611e2

rsðrÞ � 0:1e2

3aB
ln 1þ 11:4aB

rsðrÞ

 �

;
4
3
pr3s ðrÞ ¼ n�1ðrÞ: ð3:140Þ

Equation (3.140) is the so-called exchange-correlation potential. As a result, the
solutions of the corresponding equations are found to be no more difficult than the
solution of the Hartree differential equations. The effects of interelectron interaction
are taken into account with the use of the introduction of a self-consistent field
representing the sum of external and induced fields and being a solution of an
integral equation.

The results of such calculations are in excellent agreement with available experi-
mental data. Besides, they are indicative of an important role of multiparticle effects in
photoionization of atoms with filled electron shells. These effects result (except for the
case of neon) in a considerable shift of the photoionization cross section maximum to

Fig. 3.7 Photoeffect cross
section in the Brandt–
Lundqvist approximation
employing different statistical
atomic models: 1—Thomas–
Fermi, 2—Lenz–Jensen, 3—
exponential screening
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the region of higher frequencies in comparison with the independent electron approx-
imation, when the position of a maximum practically coincides with the threshold
energy of a photon. For example, the maximum of the cross section of photoionization
of a xenon atom in the vicinity of the 4d-threshold is shifted by about 2.5 Ry in the
direction of high frequencies. In this case, there is no strong resonance connected
(within the framework of one-particle consideration) with transition from the 4d-
subshell to the virtual f-state located in the continuous spectrum.

It is interesting to note that the local DFT method predicts a lower (by several
electron-volts) value of the photoeffect threshold in comparison with its observed
value. At the same time, this method does not describe highly excited states of the
discrete spectrum of an atom. It should be emphasized that in this case the sum rule
for the photoabsorption cross section is fulfilled because the “non-physical” con-
tribution of the continuous spectrum to the cross section is compensated by the
contribution of the discrete spectrum adjacent to the photoionization threshold that
is not taken into account. This fact is present in a much more pronounced form in
the above versions of classical description of the atomic photoeffect. As can be seen
from Fig. 3.6, the Thomas–Fermi model for the atomic electron density gives a
photoionization cross section that is strongly pulled into the low-frequency region,
though the sum rule for corresponding cross sections is fulfilled. Within the
framework of statistical models, naturally, there is no discrete energy spectrum of
an atom at all, so the “non-physical” region of the continuous spectrum below
photoionization threshold simulates to a certain extent the contribution of bound
states not taken into account.

3.7.6 Rost Hybrid Method

Let us consider a simple model of an atomic photoeffect that admits the analytical
representation of the process cross section, known as the Rost hybrid method (Rost
1995). From the formal point of view, this approach is based on the approximate
operator equation:

exp � i Ĥ0 þD1
� �

t

�h

( )
exp

iĤ0t
�h

� �
	 exp � iD1t

�h


 �
; D1 ¼ e2aB

r2
; ð3:141Þ

where H0 is the unperturbed Hamiltonian of the atom. Hence, the expression for the
cross section is given by

rph xð Þ 	 2pZ2t2a
3 � 137x

Zþ1

�1
dt wh j exp �iD1t=�hð Þ wj ieixt ð3:142Þ
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The representation of the cross section via (3.142) is called the “hybrid”
approximation: It is quantum mechanically due to the general operator approach
and at the same time has classical features since the approximate commutation of
operator exponents (3.141) is used. It should be noted that the formula (3.142) can
be rewritten in terms of the electron density if the following replacement is made:

w rð Þj j2! 4pr2n rð Þ: ð3:143Þ

After integration with respect to time, the remaining integral (due to the presence
of the delta function) can be represented as

rph xð Þ ¼ 8p3Z2

3 � 137 a
5
B

2Ry
�hx


 �7=2

n r ¼
ffiffiffiffiffiffiffiffiffi
aBta
x

r
 �
: ð3:144Þ

In particular, from (3.144) it follows the hydrogen-like high-frequency asymp-
totics of the photoionization cross section if n r ! 0ð Þ ! const. The dependence
(3.144) is presented in Fig. 3.5 as a dotted curve.

Thus, as in the Brandt–Lundqvist approximation, the photoeffect cross section in
the Rost hybrid approximation is found to be an electron density functional. But in
this case the characteristic distance of the radiative process rx is not defined by the
plasma resonance condition (3.133), but by the difference of the atomic
Hamiltonians Hl with orbital quantum numbers differing (according to the dipole
selection rules) by one:

�hx ¼ H1ðrÞ � H0ðrÞ: ð3:145Þ

Equation (3.145) immediately follows from (3.141) in view of the energy
conservation law. Based on (3.145), it is possible to give a physical interpretation of
the Rost approximation. From this equation, it follows that photon absorption
occurs with a fixed electron coordinate as in the Born–Oppenheimer approximation,
where the values of coordinates of molecular nuclei do not change during an
electron transition. It should be noted that the formula (3.141) is just a mathematical
expression of this fact. So the Rost hybrid approximation can be considered as a
generalization of the adiabatic principle to the case of electron transitions in atoms.

It should be emphasized that the Rost model does not fulfill the sum rule for the
photoabsorption cross section (3.118) in contrast to the Brandt–Lundqvist
approximation. This hints to the inconsistency of the hybrid approach used in the
derivation of the expression for the photoeffect cross section within the framework
of this model.
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3.7.7 Generalized Scaled Empirical Photoionization Cross
Sections from K-, L-, M-, N- and O-Shell

Quantum mechanical numerical calculations for the photoionization cross sections
of different subshells have been performed in a Z- and energy threshold-scaled
representation that allow to establish a generalised scaled photoionization model
GSPM (Rosmej et al. 2020):

rðphiÞ ¼ pa20
Z2
eff

� m
2l0 þ 1

� P1 � uþP2

uþP3
� 1

uþP4ð Þ7=2þ l0
; ð3:146aÞ

u ¼ E � En0l0
~Z2 � Ry ; ð3:146bÞ

Zeff ¼ n0

ffiffiffiffiffiffiffiffiffi
En0l0

Ry

s
; ð3:146cÞ

~Z ¼ Zeff þðZeff � zÞ for single electrons in outer shell n0l0; ð3:146dÞ
~Z ¼ Zn � Nbound þNnl
 n0l0 for inner-shell ionization: ð3:146eÞ

a0 is the Bohr radius ðpa20 ¼ 8:79 10�17cm2Þ, m is the number of equivalent
electrons in the subshell n0l0, n0 and l0 are principal and orbital quantum number,
respectively, Ry = 13.606 eV, Zn is the nuclear charge, En0l0 is the ionization
potential, Nbound is the number of bound electrons, z ¼ Zn � Nbound þ 1 is the spec-
troscopic symbol,Nnl
 n0l0 is the number of electrons in subshells higher or equal than

Table 3.3 Numerical quantum mechanical calculations of the photoionization cross section from
H-like ions from the n0l0-subshells

n0l0 P1 P2 P3 P4

1s 4.667  10−1 2.724  100 9.458  100 1.189  100

2s 5.711  10−2 6.861  10−1 7.768  100 3.644  10−1

2p 8.261  10−2 1.843  10−1 7.340  100 2.580  10−1

3s 1.682  10−2 1.436  10−1 7.356  100 1.436  10−1

3p 2.751  10−2 1.742  10−1 7.162  100 1.742  10−1

3d 3.788  10−3 1.566  10−1 7.880  100 1.566  10−1

4s 7.096  10−3 8.799  10−2 7.308  100 8.799  10−2

4p 1.493  10−2 1.197  10−1 1.027  101 1.197  10−1

4d 1.769  10−3 1.205  10−1 6.346  100 1.205  10−1

4f 1.092  10−4 1.055  10−1 9.231  100 1.055  10−1

5s 3.956  10−3 5.846  10−2 8.651  100 5.846  10−2

For H-like ions, ~Z ¼ Zeff ¼ Zn. Fitting parameters are generally accurate within 20% in the large
energy range from 10−3< u < 32(i.e., from threshold to about 30 times threshold)
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the subshell n0l0, and P1;P2;P3;P4 are fitting parameters that are given in Table 3.3.
The scaled formula (3.146) provides a precision of about 20% of the photoionization
cross sections of H-like ions when employing the parameters given in Table 3.3. The
particular advantage of the developed formula (3.146) is that it shows the right
high-energy and low-energy asymptotics that have been discussed above.

Let us first consider the application of formulas (3.146) to the threshold value of
hydrogen discussed above (Sect. 3.7.2). From (3.146) and the parameters for the
1s state in Table 3.1, it follows with l0 ¼ 0, m ¼ 1, Zeff ¼ 1, rðphiÞ 1sð Þ 	 6:4
10�20cm2. This is in excellent agreement with the exact value of the Sommerfeld
formula (3.124) that gives rðphiÞ 1sð Þ ¼ 6:3 10�20cm2.

Now, we consider photoionization from the 2p-shell of H-like helium, i.e. the
transition 2pþ �hx ! nucþ e at a photon energy of 122 eV: Zeff ¼ 2, u ¼ 2,
l0 ¼ 1, m ¼ 1 and the fitt-parameters for the 2p state in Table 3.1 it follows
rðphiÞð2pÞ 	 3:7 10�21cm2 whereas the exact quantum mechanical numerical
result is rðphiÞ 2pð Þ ¼ 3:7 10�21cm2.

Thefitt-parametersmight also be used to estimate the photoionization cross section
for non-H-like ions in the framework of the H-like approximation with effective
charges. Let us consider for demonstration of the application of (3.146) the pho-
toionization from Li-like aluminum: (a) transition 1s22sþ �hx ! 1s2 þ e at a photon
energy of 7020 eV: E2s 	 442 eV form which it follows Zeff 	 11:4. Because the
considered 2s-electron corresponds to the photoionization of a single outer electron
~Z ¼ 11:8 and u ¼ 3:47.With l0 ¼ 0 andm ¼ 1 and the fitt-parameters for the 2s state

in Table 3.1 it follows r phið Þ
fit ð2sÞ 	 1:3 10�22cm2. The quantum mechanical

numerical result is rðphiÞð2sÞ ¼ 1:3 10�22cm2, (b) transition 1s23dþ �hx !
1s2 þ e at a photon energy of 1010 eV: E3d 	 183 eV form which it follows
Zeff 	 11:0. Because the considered “d-electron” corresponds to the photoionization
of a single outer electron ~Z ¼ Zeff and u ¼ 0:5. With l0 ¼ 2 and m ¼ 1 and the

fitt-parameters for the “d-state” in Table 3.1, it follows rðphiÞfit ð3dÞ 	 4:3 10�22cm2.
The quantum mechanical numerical result is rðphiÞð3dÞ ¼ 4:4 10�22cm2, (c) let us
consider a more complicated ground state, the transition 1s22s22p2 þ �hx !
1s22s22p1 þ e in B-like neon at a photon energy of 2117 eV: E2p 	 158eV from
which it follows Zeff 	 6:81, ~Z ¼ 7:62 and u 	 2:48. With l0 ¼ 1 andm ¼ 2 and the
fitt-parameters for the 2p state in Table 3.1, it follows rðphiÞ 2pð Þ 	 1:5 10�22cm2.
The quantum mechanical numerical result is rðphiÞ 2pð Þ ¼ 2:3 10�22cm2. These
examples have general character: The H-like approximation is valid for excited states,
whereas for ground and close to ground state excited states, specific numerical cal-
culations are requested and in these cases (3.146) might be used only for an order of
magnitude estimate.

We now apply the parameters of Table 3.1 to non-hydrogen-like ions and
inner-shell photoionization (of primary interest for X-ray Free Electron Laser
applications) with the help of the rescaling relation (3.146b, e). We consider the
photoionization of the 1s- and 2s-shells of B-like Neon at a photon energy of
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2000 eV: (a) the ionization potential for the transition 1s22s22p1 þ �hx !
1s12s22p1 þ e is E1s 	 1050 eV from which it follows Zeff 	 8:78. Because the
ionization of the 1s-electron corresponds to inner-shell ionization, Zn ¼ 10,
Nbound ¼ 5, Nnl
 n0l0ð1sÞ ¼ 5 and ~Z ¼ 10� 5þ 5 ¼ 10 from which it follows
u ¼ 0:70. With l0 ¼ 0 and m ¼ 2 and the fitt-parameters for the 1s state in
Table 3.1, it follows rðphiÞð1sÞ 	 3:8 10�20cm2. The quantum mechanical
numerical result is rðphiÞð1sÞ ¼ 3:9 10�20cm2; (b) we now consider the transition
1s22s22p1 þ �hx ! 1s22s12p1 þ e for a photon energy of 2132 eV: E2s 	 173 eV
from which it follows Zeff 	 7:13;Nnl [ n0l0ð2sÞ ¼ 3, ~Z ¼ 10� 5þ 3 ¼ 8 and
u 	 2:10. With l0 ¼ 0, m ¼ 2 and the fitt-parameters for the 2s state in Table 3.1 it
follows rðphiÞð2sÞ 	 2:0 10�21cm2. The quantum mechanical numerical result is
rðphiÞð2sÞ ¼ 2:3 10�21cm2. The general precision for inner-shell photoionization
is difficult to estimate, but (3.146) might estimate inner-shell photoionization cross
sections within a factor of 2 or so but might be only an order of magnitude estimate
in more complex cases (Rosmej et al. 2020).

3.8 Photodetachment from Negative Ions

Several atoms and molecules, having captured an electron, can form negative ions.
As a result of such a capture, energy is released that is called electron affinity
energy. In Table 3.4, the electron affinity energy ea is given for a number of atoms
and molecules.

An affinity energy means that energy is necessary to move an outer electron from
the negative ion to infinity. This energy can be transferred to an ion as a result of
absorption of a photon of sufficiently high frequency x[ ea=�h. The process of
detachment of an outer electron of a negative ion under the action of an electro-
magnetic field is called photodestruction. In case of photodestruction of a negative
ion, a detached electron is in a neutral atom field that is much more weak than the
long-range Coulomb field of an ion. So in the first approximation, it is possible to
neglect the influence of an atom on a detached electron, assuming it to be free, and
to use a plane wave for its wave function. In other words, for description of
photodestruction of a negative ion the Born approximation is adequate, so the
formula (3.131) should be valid. The specific photodestruction cross section is then
defined by the form of the functions gnlðkÞ representing the Fourier transform of a
wave function of an outer electron of a negative ion. The simplest model that can be
used for the radial wave function RnlðrÞ of a negative ion is called the zero radius

Table 3.4 Electron affinity energies

Ion H Li O F S Cl O2 H2O

ea, eV 0.75 0.58 1.47 3.45 2.08 3.6 0.45 0.9
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potential approximation. In this approximation, we have:

Rð0Þ
10 rð Þ ¼ ffiffiffiffiffi

2c
p

exp �crð Þ=r, where c ¼ ffiffiffiffiffiffiffiffiffiffi
2mea

p
=�h is the parameter of the reciprocal

characteristic length of the potential. Using this wave function, we obtain from
(3.131):

rð0Þph ðxÞ ¼
4p

3 � 137 a
2
B

ffiffiffiffiffiffi
ea
Ry

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m �hx� eað Þp
maBx

 !3

: ð3:147Þ

The spectral dependence of the cross section (3.147) is shown in Fig. 3.8.

It is seen that at threshold the cross section goes to zero as it should be in the Born
approximation. The maximum of the spectral dependence is reached at a photon
energy approximately equal to the double affinity energy of a hydrogen atom
(0.75 eV). The value of the cross section itself at maximum is 2.6 times higher than
the maximum cross section of photoionization of the neutral hydrogen.

From the formula (3.147), there follows the high-frequency asymptotics of the cross
section of photodestruction of a negative hydrogen ion in the zero radius potential

approximation: rð0Þph ðxÞ / x�1:5, that is, with increasing frequency the cross section
decreases much more slowly than in case of photoionization of neutral hydrogen.

The zero radius potential approximation is favorably distinguished by its sim-
plicity but gives results differing essentially from those of more accurate models.
Besides, in case of negative ions of atoms with high polarizability, in calculation of
the photodestruction cross section it is necessary to take into account variable
polarization of the atomic core that appreciably changes the cross section.

The polarization of a core can also play an essential role in the process of
ionization of neutral multielectron atoms. This multiparticle effect at a quantum
level is taken into account in the random phase exchange approximation, and within
the framework of the classical picture, it is considered in the local plasma frequency
approximation.
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3.9 Phase Control of Photoprocesses by Ultrashort Laser
Pulses

For ultrashort laser pulses, we have to consider the total probability W for the
elementary atomic physics processes instead of the probability per unit time
(Rosmej et al. 2014, 2016, 2021):

W ¼ c
4p2

Z1
0

rðx0Þ E x0; sð Þj j2
�hx0 dx0; ð3:148Þ

where c – velocity of light, Eðx0Þ – Fourier transform of electric field in the
pulse, s – pulse duration, and rðx0Þ – cross section of the elementary process under
consideration. Let us apply the so-called corrected Gaussian pulse to obtain explicit
expressions for the probabilities for the photoexcitation. The Fourier transform of
this pulse has the form (Rosmej et al. 2014):

ECGP x0;x; s;uð Þ ¼ iE0s

ffiffiffi
p
2

r
x02s2

1þx2s2
e�iu� x�x0ð Þ2s2=2 � eiu� xþx0ð Þ2s2=2
n o

;

ð3:149Þ

where E0, x, and s are the pulse amplitude, carrier frequency, and duration, respec-
tively, and u is the initial phase. An important feature of (3.149) is the absence of an
electric field component at zero current frequency in contrast with the widely used
expression of the standard Gaussian shape. Let us apply the formula (3.148) for
calculation of the photoexcitation of a multielectron atom by an ultrashort Gaussian
pulse (3.149) in the local plasma frequency model. Within the framework of this
model, the expression for the photoabsorption cross section looks like

rðBLÞph x0ð Þ ¼ 2p2e2

mc

Z
nðrÞd x0 � xplðrÞ

� �
dr; ð3:150Þ

where xplðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2nðrÞ=mp

is the local plasma frequency, and nðrÞ is the spatial
distribution of electron density in an atom. Substituting (3.150) in (3.148), we find

W ðphÞ
tot ¼

ffiffiffi
p

p
effiffiffiffi

m
p

�h

Z1
0

E xpl rð Þ;u� ��� ��2 ffiffiffiffiffiffiffiffiffi
n rð Þ

p
r2dr; ð3:151Þ

where E xplðrÞ;u
� ��� ��2 is the squared absolute value of the Fourier transform of the

electric field calculated at the local plasma frequency, in which the carrier envelope
phase dependence is clearly indicated. To analyze phase effects in the total
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probability of photoexcitation by ultrashort laser pulses, we will introduce a phase
modulation factor according to

KðphÞ
tot ¼ 2

W ðphÞ
tot u ¼ 0ð Þ �W ðphÞ

tot u ¼ p=2ð Þ
W ðphÞ

tot u ¼ 0ð ÞþW ðphÞ
tot u ¼ p=2ð Þ

: ð3:152Þ

The phase modulation factor for the total probability of photoabsorption by an
atom with the charge Z ¼ 30 calculated within the framework of the statistical
model for electron density is presented in Fig. 3.9 for three pulse durations as a
function of carrier frequency. The dimensionless parameter nc is the number of
periods in the radiation pulse at given carrier frequency.

It is seen that an appreciable dependence of the photoabsorption probability on
the carrier envelope phase exists only for nc\0:5. The phase modulation factor for
the fixed parameter nc increases with carrier frequency. It should be noted that the
photoabsorption probability at the high-frequency boundary of Fig. 3.9 is 15% of its
maximum value (that in this model corresponds to the frequency xmax ¼ 0:4 a.u.).

The expression for the total photoabsorption probability (3.148) can be used to
study the interaction of an ultrashort pulse with a metal nanosphere in a dielectric
medium. If the radiation wavelength far exceeds the nanoparticle radius rs, the
dynamic polarizability of a nanoparticle can be described by the Lorentz formula:

bsðxÞ ¼
esðxÞ � em
esðxÞþ 2em

r3s ; ð3:153Þ

esðxÞ is the dielectric permittivity of a nanoparticle metal, and em is the dielectric
permittivity of the matrix. Hence, with the use of the optical theorem (2.52), it is
possible to find the photoabsorption cross section in the dipole approximation and
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with the help of the formula (3.148) the total photoabsorption probability during the
action of the pulse.

The photoabsorption probabilities of an ultrashort pulse by a silver nanoparticle
in a glass matrix are given in Fig. 3.10 for two values of carrier envelope phase.
The frequency dependence of the dielectric permittivity of silver is restored with the
use of data on the real and imaginary parts of the refractive index.

It is seen that for the present case ðnc ¼ 0:25Þ there is an essential dependence of
photoabsorption on the carrier envelope phase, especially for photon energies at the
carrier frequency exceeding the energy at the maximum. With increasing radiation
pulse duration, the dependence of the probability on the carrier envelope phase
becomes less appreciable and for nc [ 0:5 practically disappears (see Fig. 3.9).

In a number of cases, for excitation of a quantum system a sequence of identical
pulses separated by a time interval T (not to be confused with the oscillation period
designation) is used. It is not difficult to obtain the Fourier transform of the electric
field strength for such a sequence consisting of N identical pulses in terms of the
Fourier transform of a single pulse EðxÞ:

ENðxÞ ¼ sin xTN=2ð Þ
sin xT=2ð Þ exp i

N � 1ð ÞxT
2

� �
E xð Þ: ð3:154Þ

Substituting (3.154) in the right-hand side of the (3.148), we find the probability
of photoexcitation of a quantum transition under the action of N identical pulses:

W21 Nð Þ ¼ c
4p2�h

Z
r21 xð Þ

x
sin xTN=2ð Þ
sin xT=2ð Þ

� �2
E xð Þj j2dx: ð3:155Þ

Fig. 3.10 Total probability
of photoabsorption of an
ultrashort pulse ðnc ¼ 0:25Þ
on a silver sphere (rs ¼ 5:3
nm) as a function of carrier
frequency for two values of
the carrier envelope phase
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Let us use these expressions for the description of the photoionization of a
hydrogen atom under the action of a train of short pulses. In this case, the process
cross section r21ðxÞ is given by the Sommerfeld formula that can be written as [see
(3.124)]:

rH m ¼ �hx
Ry


 �
¼ 29p2a2B

3 � 137 � m4
exp � 4arctg

ffiffiffiffiffiffiffiffiffiffiffi
m� 1

pffiffiffiffiffiffiffiffiffiffiffi
m� 1

p

 �

1� exp �2p=
ffiffiffiffiffiffiffiffiffiffiffi
m� 1

p� � ; ð3:156Þ

where aB ffi 0:53 Å is the Bohr radius, and Ry ffi 13:6 eV is the Rydberg constant.
The photoionization probabilities of a hydrogen atom due to the action of N laser

pulses with duration equal to two cycles in dependence of the carrier frequency are
presented in Fig. 3.11 [using formulas (3.155)–(3.156)]. The abscissa is expressed
in terms of the dimensionless parameter m ¼ e=Ryþ 1, where e ¼ �hx� Ry is the
energy of ionized electron.

One can see from Fig. 3.11 that the spectral dependence of the photoionization
probability shows a narrowing that increases with the number N of laser pulses. The
value of the parameter m at maximum is determined by the equation xT ¼ 2pk
(here k is a natural number). Since the energy of the ionized electron is equal to
Ry m� 1ð Þ and the number of these electrons is proportional to the probability
WðNÞ, one can conclude that it is possible to manipulate considerably the energy
spectrum of the photoelectron by changing the laser pulse parameters.
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