
Chapter 2
Radiative Characteristics of Polarized
Atoms and Ions

Abstract The chapter is devoted to an introduction of the main radiative charac-
teristics of atoms and ions to describe the light-matter interaction. The presentation
is based on the correspondence principle between classical and quantum physics in
order to derive the basic radiative properties, including the Einstein coefficients and
the dynamic polarizability of the atom. Attention is also paid to the description of
the dynamic polarizability of atoms and ions including the static, high-frequency
and resonance case. The innovative concept of local plasma frequency is introduced
for the atom that allows describing the polarizability of many-electron systems at a
semi-quantitative level. Finally, the prospective interesting polarizability of metal
nanoparticles placed in a solid-state matrix is considered within the framework of
the Mie theory and the dipole approximation.

2.1 Oscillator Strengths

The Bohr theory is not only a theory applicable to the hydrogen atom, but also a
theory of interaction of electromagnetic radiation with an atom since important
features of this interaction are described by the second and third Bohr postulates.
Moreover, the theory of interaction of radiation with atoms can be studied without
recourse to the consistent quantum-electrodynamic formalism, but with the help of
the so-called correspondence principle in the spirit of the semiclassical Bohr
approach. A starting point of such a consideration is the expression for dipole
radiation power known from classical electrodynamics (Amusia 1990):

Q tð Þ ¼ 2
3c3

€d tð Þj2;�� ð2:1Þ

where

dðtÞ ¼ erðtÞ ð2:2Þ
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is the dipole moment of a particle with charge e (understood hereafter to be an
electron). The dots above the dipole moment symbol in the formula (2.1) denote the
second time derivative. The criterion of applicability of the dipole approximation
[framework of formula (2.1)] can be formulated as

k � a; ð2:3Þ

where a is the size of the spatial region for radiation, k is the radiation wavelength.
In case of an atom, when a � 10�8 cm, the condition (2.3) covers a wide range of
wavelengths down to X-rays.

The second time derivative of the dipole moment appearing in the right-hand
side of (2.1) can be expressed in terms of the electron acceleration w : €d ¼ ew and
formula (2.1) can be rewritten as

Q ¼ 2e2w2

3c3
: ð2:4Þ

Thus within the framework of classical physics, an accelerated charged particle
will lose its energy by dipole radiation with a rate determined by the formula (2.4).
It should be noted that energy loss by a charge in the Coulomb field results not in a
decrease, but in an increase of its kinetic energy. Increased kinetic energy of a
charge is accompanied by a twofold decrease in its potential energy, which is
connected with decreasing distance to the center of the Coulomb field. As a result,
the total electron energy decreases.

In case of periodic motion of a charge with a circular frequency x0, as it occurs
with an atomic electron, the radiation power of interest is those averaged over the
period of motion T ¼ 2p=x0. To perform this averaging in the formula (2.1), we
will use the following equation that is valid for a real periodic function f tð Þ:

f tð Þ2
D E

T
� 1

T

ZT=2
�T=2

f tð Þ2dt ¼ 2
X1
n¼1

fnj j2; ð2:5Þ

where

fn ¼ 1
T

ZT=2
�T=2

f tð Þ exp �nx0tð Þdt ð2:6Þ

is the nth harmonic of the Fourier expansion of the function f tð Þ. In derivation of
the formula (2.5), it was assumed that the average over the period of the function
under consideration is equal to zero, that is, f0 ¼ 0. It should be noted that the factor
2 in the right-hand side of the (2.5) is connected with taking into account the
contribution of negative harmonics of the Fourier series ðn\0Þ.
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Using (2.5), in which it is assumed that f tð Þ ¼ €d tð Þ, we obtain from (2.1) the
following expression for dipole radiation power averaged over the period:

Q tð Þh iT¼
X1
n¼1

Qn; ð2:7Þ

where

Qn ¼ 4
3c3

€dÞn
� ��2:��� ð2:8Þ

In view of

ð€dÞn ¼ � nx0ð Þ2 dð Þn; ð2:9Þ

we find with the help of (2.8)

Qn ¼ 4 nx0ð Þ4
3c3

dð Þn
�� ��2: ð2:10Þ

The formula (2.10) describes the dipole radiation power at the nth harmonic
frequency xn ¼ nx0. In particular, the radiation power at the frequency of periodic
motion of an electron x0 (n = 1) is

Q x0ð Þ ¼ 4x4
0

3c3
d x0ð Þj j2: ð2:11Þ

Here, we re-designated the first Fourier harmonic of the dipole moment:
d1 ¼ dðx0Þ.

Now let us replace in the formula (2.11) the Fourier harmonic of the dipole
moment with its matrix element calculated between the states mj i and nj i (Wm;n rð Þ
are the corresponding state wave functions):

d x0ð Þ ! dmn � mh jd nj i ¼
Z

drW�
m rð Þ � d �Wn rð Þ; ð2:12Þ

where the frequency of the periodic motion x0 will be replaced by the frequency of
the transition nj i ! mj i:

x0 ! xmn ¼ En � Em

�h
: ð2:13Þ
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As a result, instead of the formula (2.11), we will obtain

Qmn ¼ 4x4
mn

3 c3
dmnj j2: ð2:14Þ

The quantity (2.14) can be called electromagnetic radiation power in transition
of an atomic electron from the stationary state nj i to the stationary state mj i. It
describes the intensity of radiation of different spectral series of a hydrogen atom:
the Lyman series (m = 1), the Balmer series (m = 2), the Paschen series (m = 3),
etc. However, it should be remembered that, in contrast to the classical radiation
power (2.1), the quantity (2.14) should be understood statistically, that is, as a result
of averaging over an ensemble of atoms.

If now the radiation power (2.14) is divided by the energy of the transition under
consideration DEmn ¼ �hxmn, we obtain a quantity with dimension of reciprocal
time coinciding with the Einstein coefficient for spontaneous radiation Amn:

Qmn

DEmn
¼ 4x3

mn

3 �h c3
dmnj j2¼ Amn ¼ 1

smn
: ð2:15Þ

In the last equality of the formula (2.15), there is introduced the lifetime smn of
the state nj i with respect to its spontaneous decay to the lower state mj i. This time
for the transition 2j i ! 1j i in a hydrogen atom is s12 � 1:6� 10�9 s.

Thus the use of the formula of classical electrodynamics (2.1) and replacements
in (2.12)–(2.13) allowed to obtain a quantum result for the power of radiation of
spectral lines (2.14) and the probability of spontaneous radiation (2.15). This
reflects the principle of correspondence between classical and quantum physics.
This principle can be formulated as follows: Quantum-mechanical expressions are
obtained from classical expressions if in the latter the Fourier components of
physical quantities are replaced by the corresponding matrix elements. In this case,
the quantum transition frequency should coincide with the Fourier component
frequency (Brandt and Lundqvist 1965).

Curiously, the existence of a finite lifetime of the excited state nj i can be
interpreted in the spirit of the correspondence principle as “falling” of an electron
into the nucleus due to photon radiation—which is just the process, against which
the second Bohr postulate “struggles”. This “falling” goes on until the electron
reaches the ground state m ¼ 1 with the lowest possible (from the point of view of
quantum physics) energy.

To clear up the physical justification of the second Bohr postulate, we will
introduce a classical period of electron revolution for the orbit with principal
quantum number n, radius rn and velocity tn:

Tn ¼ 2prn
tn

¼ n3 2psa: ð2:16Þ
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Now let us estimate the ratio of the period (2.16) to the lifetime smn. Using
(2.15), (2.16) and assuming that rmn � aB Rðm; nÞ, where Rðm; nÞ is a function of
the order of unity, we have approximately

Tn
smn

� Tn
s1n

� anð Þ3 R2 1; nð Þ � 4� 10�7 n3R2 1; nð Þ; ð2:17Þ

where n3R2ð1; nÞ ! 1 for large numbers n (see the asymptotic formula in
Table 2.1). The second approximate equality in (2.17) reflects the fact that the
lifetime of the excited state of a hydrogen atom is dominated by its transition to the
ground state.

From the obtained relation (2.17), it follows that the period of electron revolution
in the classical orbit is several orders of magnitude less than the lifetime in this state
nj i. Thus these states may be considered to a good degree of accuracy to be
stationary according to the first two Bohr postulates. This stationary is a conse-
quence of the small value of the fine structure constant a that is responsible for the
electromagnetic interaction.

The principle of correspondence between classical and quantum physics con-
cretized for radiative transitions in an atom is called the spectroscopic principle of
correspondence. It can be formulated as follows: an atom in interaction with an
electromagnetic field behaves as a set of classical oscillators with eigenfrequencies
equal to frequencies of transitions between atomic energy levels. This means that to
each transition between atomic states jj i and nj i is assigned an oscillator with an
eigenfrequency xnj. Let us call these oscillators transition oscillators. The contri-
bution of transition oscillators to the response of atoms to electromagnetic inter-
action is proportional to a dimensionless quantity called oscillator strength. The
higher the value of the oscillator strength, the stronger is the corresponding tran-
sition. The oscillator strength for the transition between the discrete spectrum states

Table 2.1 Oscillator strengths for a hydrogen atom

Initial state 1s 2s 2p 3s 3p 3d

Final state np np ns nd np ns nd np nf

n = 1
2
3
4
5
6
7
8P1

n¼9 fn0
Asymptotic formula

–

0.4162
0.0791
0.0290
0.0139
0.0078
0.0048
0.0032
0.0109
1.6n–3

–

–

0.4349
0.1028
0.0419
0.0216
0.0127
0.0081
0.0268
3.7n–3

−0.139
–

0.014
0.0031
0.0012
0.0006
0.0003
0.0002
0.0007
0.1n–3

–

–

0.696
0.122
0.044
0.022
0.012
0.008
0.023
3.3n–3

–

−0.141
–

0.484
0.121
0.052
0.027
0.016
0.048
6.2n–3

−0.026
0.145
–

0.032
0.007
0.003
0.002
0.001
0.002
0.3n–3

–

–

–

0.619
0.139
0.056
0.028
0.017
0.045
6.1n–3

–

−0.417
–

0.011
0.0022
0.0009
0.0004
0.0002
0.0007
0.07n–3

–

–

–

1.016
0.156
0.053
0.025
0.015
0.037
4.4n–3

Discrete spectrum
Continuous spectrum

0.5650
0.4350

0.6489
0.3511

−0.119
0.008

0.928
0.183

0.707
0.293

−0.121
0.010

0.904
0.207

−0.402
0.002

1.302
0.098

Total sum 1.000 1.000 −0.111 1.111 1.000 −0.111 1.111 −0.400 1.400
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jj i ! nj i, fnj (in quantum mechanics, it is the practice to write the state indices from
right to left—corresponding to absorption), is determined by the formula

fnj ¼ 2me xnj nh jd jj ij j2
3 e2 �h gj

; ð2:18Þ

where gj is the statistical weight of the state j. From the formula (2.18), it follows
the relation gj fnj ¼ �gn fjn since the oscillator strength for a transition with
decreasing energy is negative. According to its physical meaning, the oscillator
strength of a one-electron atom is always less than one.

The formulation of the correspondence principle via the oscillator strength in the
form of (2.18) corresponds to the dipole approximation if the criterion of (2.3) is
fulfilled. Otherwise, the definition (2.18) should be generalized to include also the
non-dipole part of the interaction of electromagnetic radiation with atomic elec-
trons. The non-dipole nature of interaction is found to be essential if the matrix
element of the dipole moment in the formula (2.18) is equal to zero. Such transi-
tions are called dipole-forbidden transitions in contrast to dipole-allowed transi-
tions, when nh jd jj i 6¼ 0. Equality or inequality with respect to zero of the dipole
moment of a transition can be predicted from an analysis of the symmetry of states
involved in the transition. The relations between characteristics of atomic states
allow predictions of a nonzero value of nh jd jj i are called selection rules for dipole
radiation. These rules have the simplest form for the hydrogen-like ion where the
systematics of its electronic states (neglecting the spin–orbit interaction) is rather
simple. An energy level with a principal quantum number n has a 2 n2-fold
degeneracy that occurs as follows. First, there is a degeneracy with respect to the
orbital quantum number l that is specific for a hydrogen-like ion: states of an atomic
electron with l ¼ 0; 1; . . . n� 1 designated as n; lj i have energy En. We note that to
numerical designations l ¼ 0; 1; 2; 3; 4; 5; 6. . . there correspond letter designa-
tions: s; p; d; f ; g; h; i. . . Then, each state n; lj i is degenerated with respect to the
value of the projection of an electron orbital moment on a dedicated axis. This
degeneracy is of general character and is connected with the spherical symmetry of
the atomic potential. The quantum number of the projection of a moment of
momentum ml runs over 2 lþ 1 values: ml ¼ �l;�lþ 1; . . .; l� 1; l, to which the
states n; l; mlj i correspond. Finally, the electronic states n; l; mlj i are doubly
degenerated with respect to the electron spin projection, which results in a 2 n2-fold
degeneracy of an energy level of a hydrogen-like ion with a principal quantum
number n. It should be noted that this classification is valid for discrete spectrum
states. In the case of a continuous spectrum, there is an additional degeneracy of
states resulting from different directions of electron momentum.

In terms of the given state classification, selection rules for dipole radiation of a
hydrogen-like ion come into play as follows. Allowed transitions are transitions, for
which an orbital quantum number changes by one: l ! l	 1. In this case, the
magnetic quantum number changes by no more than one: ml ! ml;ml 	 1. In
particular, if the magnetic quantum number does not change, linearly polarized
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radiation is emitted (absorbed), whereas in the opposite case circularly polarized
radiation is emitted (absorbed). A particular case of the selection rules is the average
dipole moment of an atom in the absence of external fields. It is equal to zero, i.e.,
dh i ¼ 0 as a consequence of the spherical symmetry of an atom.
Besides electron transitions in a discrete spectrum (bound–bound transitions),

there are also transitions from bound states to continuous ones (bound-free tran-
sitions), for which the concept of oscillator strength by a formula similar to (2.18)
can also be introduced. Physically, to a bound-free transition, there corresponds
atomic ionization. In contrast to the case of a bound–bound transition, the oscillator
strength fej for a bound–free transition to a state with an energy e is no longer a
dimensionless quantity. The dimensionality of fej is equal to a reciprocal energy,
which corresponds to the normalization of the wave function of the continuous
spectrum to the energy delta function. Therefore, for a bound–free transition,
instead of oscillator strength, the concept of oscillator strength density is used:
fej ! dfj=de.

The oscillator strengths for bound–bound and bound–free transitions in an atom
satisfy the so-called golden sum rule. For transitions from the ground state it is
expressed by the equation

X
n

fn0 þ
Z1
IP

df0
de

de ¼ Ne; ð2:19Þ

where Ip is the atomic ionization potential, Ne is the number of electrons of the
atom.

The oscillator strengths for a number of electron transitions in a hydrogen atom
are given in Table 2.1 taken from Bethe and Salpeter (1977).

From this table, we observe the following. First, for transitions with increasing
energy, the oscillator strength is larger in the case of increasing orbital quantum
number, i.e., the transition n; l ! n0; lþ 1 is stronger than the transition n; l !
n0; l� 1 if n\n0. Secondly, the sum of oscillator strengths for transitions to the
continuous spectrum decreases with increasing orbital quantum number of the
initial state, that is, states with higher orbital moments are more difficult to ionize.
Third, transitions to a state with a nearest principal quantum number have the
highest oscillator strength. Fourthly, oscillator strengths for transitions from lower
levels to states with large quantum numbers n
 10 decrease as n�3. These regu-
larities define the probabilities of corresponding radiative transitions in a hydrogen
atom.

An important property of the oscillator strength for a hydrogen-like ion is its
independence of the nucleus charge Z. This is easily seen from the definition (2.18).
Here two values appear that depend on the nuclear charge: the transition frequency
xjn and the matrix element of the dipole moment of a transition dnj. If it is
remembered that xjn / Z2 and dnj / Z�1, we immediately obtain fnj / Z0.
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It is instructive to calculate oscillator strengths for transitions between energy
levels of a quantum harmonic oscillator. In this case, the formula (2.18) can be
rewritten as

fN0N ¼ 2mx0 N 0h ĵz Nj ij j2
�h

; ð2:20Þ

where hN 0 ĵz Nj i is the matrix element to be determined of the harmonic oscillator
with an eigenfrequency x0 and mass m. The oscillator coordinate operator is
expressed in terms of the annihilation operator â and the creation operator âþ as
follows: ẑ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�h=2mx0

p
âþ âþð Þ. Using the definitions and the property of

orthogonality of the state vectors Nj i, we obtain for the required matrix element:

N 0h ĵz Nj i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�h
2mx0

r ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
d N 0;Nþ 1ð Þþ

ffiffiffiffi
N

p
d N 0;N � 1ð Þ

h i
; ð2:21Þ

where dðm; nÞ is the Kronecker symbol. Substituting (2.21) into the definition
(2.20), we find the simple relation

fN0N ¼ Nþ 1ð Þ � d N 0;Nþ 1ð Þ � N � d N 0;N � 1ð Þ: ð2:22Þ

Hence, it follows in particular that oscillator strengths are nonzero only for
transitions to nearest energy states (the selection rule for a linear harmonic oscil-
lator). From formula (2.22), it is likewise shown how the sum rule (2.19) is fulfilled
(with Ne ¼ 1). Finally, the considered case is an example of the situation when an
oscillator strength can be an arbitrarily large quantity.

2.2 Classical and Quantum Expressions for Einstein
Coefficients

Einstein coefficients were introduced phenomenologically for the description of the
probability per unit time for three fundamental photoprocesses (photoabsorption,
spontaneous radiation, and induced radiation) in interaction of thermal radiation with
a two-level system. The consistent derivation of expressions for these coefficients is
possible only within the framework of quantum electrodynamics, a complex phys-
ical discipline considering radiation and a substance on the quantum basis.
Nevertheless, if the correspondence principle and the oscillator strength concept are
used, corresponding formulas can be also obtained in a classical manner.

The spectroscopic principle of correspondence makes it possible to represent an
atom and its interaction with radiation as a set of charged harmonic oscillators
corresponding to transitions between atomic energy levels n ! j ðEj [EnÞ. These
oscillators describing the system response to electromagnetic disturbance are called
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transition oscillators. Their coordinate xnj satisfies a damped oscillator equation
with external force, in the right-hand side of which the oscillator strength fjn 6¼ 0 (a
dipole-allowed transition) is substituted as a factor:

€xjn þ 2 djn _xjn þx2
jn xjn ¼ fjn

e
m
E tð Þ: ð2:23Þ

Here xjn ¼ ðEj � EnÞ=�h is the transition frequency, dnj is the damping constant,
e is the oscillator charge, dots above the coordinate symbol denote differentiation
with respect to time, the electric field strength EðtÞ is assumed to be independent of
the coordinate [the dipole approximation (2.3)].

In the absence of a radiation field, the transition oscillator is at rest: xjn ¼ 0 and
_xjn ¼ 0. An external field begins to “swing” the oscillator, imparting energy; forced
oscillations of the transition oscillator occur, the time dependence of which, xjnðtÞ,
can be found from the (2.23).

We obtain the following expression for forced oscillations of an oscillator for the
transition j ! n:

xjn tð Þ ¼ fjn
e
m

Z1
�1

E x0ð Þ exp �ix0tð Þ
x2

jn � x02 � 2ix0djn

dx0

2p
; ð2:24Þ

where Eðx0Þ is the Fourier transform of the electric field strength EðtÞ.
An oscillating charged oscillator radiates electromagnetic waves according to the

formula for the radiation power of a dipole (2.1). In case of oscillations under the
action of an external field, this radiation is induced radiation. If the pulse of the
external field ceases, and the charged oscillator still oscillates, corresponding
radiation is spontaneous. The probability per unit time for spontaneous radiation at
the transition between atomic energy levels j ! n is given by the Einstein coeffi-
cient Anj. The explicit form of this coefficient can be obtained on the basis of
classical consideration with the use of the spectroscopic principle of
correspondence:

Anj ¼
2 fjn e2x2

jn

3mc3
: ð2:25Þ

The formula (2.25) gives the expression for the Einstein coefficient for sponta-
neous radiation in terms of the oscillator strength for a corresponding transition. It
should be noted that the oscillator strength can be calculated theoretically or
determined experimentally.

If now in the right-hand side of the (2.25) the expression for the oscillator
strength (2.18) is substituted, we come to the following formula for the Einstein
coefficient for spontaneous radiation:
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Anj ¼
4x3

jn dnj
�� ��2

3gj�hc3
; ð2:26Þ

where dnj is the matrix element of the electric dipole moment (see also Chap. 7).
To derive the formula for the Einstein coefficient for absorption Bjn while

remaining within the framework of classical physics, we proceed from the (2.24),
from which the expressions for the transition oscillator rate can be obtained:

_xjn tð Þ ¼ �ifjn
e
m

Z1
�1

x0E x0ð Þ exp �ix0tð Þ
x2

jn � x02 � 2ix0djn

dx0

2p
: ð2:27Þ

From (2.27), we find for the period-averaged power absorbed by the transition
under the action of radiation with a spectral energy density qðxÞ:

Pjn ¼ fjn
2 p2 e2

3m
q xjn
� �

: ð2:28Þ

It will be remembered that in obtaining this relation it was assumed that the
radiation spectrum width is much larger than the spectrum width for a transition in
an atom which is true, for example, for thermal radiation.

By definition, the Einstein coefficient for absorption (in case of transition of an
atom from the state nj i to the state jj i) is

Bjn ¼ wjn

q xjn
� � : ð2:29Þ

According to the physical picture of the process, the photoabsorption probability
per unit time, wjn, is equal to the ratio of absorbed power to the transition energy:

wnj ¼ Pnj

�hxnj
: ð2:30Þ

Gathering the formulas (2.28)–(2.30), we obtain:

Bjn ¼ 2p2e2fjn
m �hxjn

: ð2:31Þ

In view of the explicit form of the oscillator strength (2.18), we find from (2.31)
the expressions for the Einstein coefficient in terms of the matrix element of the
transition dipole moment:
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Bjn ¼
4 p2 djn

�� ��2
3 gn�h2

: ð2:32Þ

The formula for the Einstein coefficient describing induced radiation follows
from (2.32):

Bnj ¼
4 p2 dnj

�� ��2
3 gj �h2

: ð2:33Þ

It should be noted that the matrix element of the dipole moment can be con-
sidered to be symmetric with respect to its indices: dnj ¼ djn (see also Chap. 7).

It is worth noting that the presented approach is valid if the external field is not
too strong, i.e., when the amplitude of oscillations of a transition oscillator is linear
with respect to the strength of the electric field in an electromagnetic wave.
Otherwise, it is necessary to take into account nonlinear effects, and more complex
considerations are required. It should be noted that the Einstein coefficient for
spontaneous radiation can be represented as

Anj ¼ Bnj qvac xnj
� �

; ð2:34Þ

where

qvac xð Þ ¼ �hx3

p2 c3
ð2:35Þ

is a quantity that can be interpreted as the spectral density of energy of vacuum
fluctuations of an electromagnetic field. Equations (2.34), (2.35) correspond to an
interpretation of spontaneous radiation as radiation induced by vacuum fluctuations.

2.3 Dynamic Polarizability of Atoms

The expression for dynamic polarizability of an atom can likewise be obtained
without recourse to quantum mechanics with the use of the spectroscopic principle
of correspondence. Let us calculate the dipole moment of an atom d in the
monochromatic field EðtÞ ¼ 2Re Ex expð�ix tÞf g that is by definition equal to

d tð Þ ¼ 2Re b xð ÞEx exp �ix tð Þf g: ð2:36Þ
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The Fourier component of the dipole moment is given by the expression

dx ¼ b xð ÞEx: ð2:37Þ

In the formulas (2.36)–(2.37), Ex is the complex electric field vector for
monochromatic radiation that is a Fourier component of EðtÞ.

It will be remembered that the dipole moment of an atom in the absence of
external fields is equal to zero due to spherical symmetry, so the value of an induced
dipole moment can really be a measure of perturbation of an atom by external
action. The linear dependence of dðtÞ on the electric field strength (2.36) is valid for
small values of E (smallness of perturbation of an atomic electron state as a result of
interaction with an electromagnetic field). Thus for sufficiently weak fields, the
response of an atom to electromagnetic disturbance can be characterized by its
polarizability bðxÞ.

According to the spectroscopic principle of correspondence, the change of an
atomic state is made up of changes of motion of oscillators that correspond to
transitions between atomic states (transition oscillators). Thus the deviations of
transition oscillators from the equilibrium position under the action of the field EðtÞ
can be considered to be small. For the nth oscillator, the equation of motion in the
harmonic approximation is given by:

€rn þ d0n _rn þx2
0n rn ¼

e
m

f0n E tð Þ; ð2:38Þ

where rn is the radius vector corresponding to the deviation of a transition oscillator
from the equilibrium position, d0n, x0n, f0n are the damping constant, the eigen-
frequency, and the oscillator strength. For simplicity, we consider a one-electron
atom in the ground state and its dipole moment d ¼ e r . In case of a multielectron
atom, the dipole moment is equal to the sum of dipole moments of atomic electrons.
In view of the correspondence principle, an induced dipole moment of an atom is
made up of the induced dipole moments dn of oscillators of transitions to the nth
state: d ¼ P

n
dn ¼ e

P
n
rn. Going to Fourier components in this equation, we have

dx ¼ e
X
n

rnx; ð2:39Þ

where rnx is the Fourier transform of the radius vector deviation (from the equi-
librium position) of the transition oscillator. From the equation of motion (2.38), it
follows:

rnx ¼ e
m

f0n
x2

0n � x2 � ixd0n
Ex: ð2:40Þ

Substituting formula (2.40) into the (2.39) and using the definition of polariz-
ability (2.37), we find
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b xð Þ ¼ e2

m

X
n

f0n
x2

0n � x2 � ixd0n
: ð2:41Þ

Hence it follows that the dynamic polarizability of an atom, generally speaking,
is a complex value with the dimensionality of a volume. The imaginary part of the
polarizability is proportional to the damping constants of the transition oscillators.
The sum in the right-hand side of the (2.41) includes both summations over the
discrete energy spectrum and integration over the continuous energy spectrum. The
imaginary part of the polarizability is responsible for absorption of radiation, and
the real part defines the refraction of an electromagnetic wave in a medium. The
expression (2.41) describes not only a one-electron atom, but also a multielectron
atom. The multielectron nature of an atom is taken into account by the fact that in
the definition of the oscillator strength (2.18) the dipole moment of an atom is equal
to the sum of dipole moments of each of its electrons.

From the (2.41), several important limiting cases can be obtained. For example,
if the frequency of an external field is equal to zero, the formula (2.41) gives the
expression for the static polarizability of an atom:

b0 � b x ¼ 0ð Þ ¼ e2

m

X
n

f0n
x2

0n
: ð2:42Þ

Hence it is seen that static polarizability is a real and positive value. It has large
numerical values if in the spectrum transitions high oscillator strengths and low
eigenfrequencies are encountered.

In the opposite (high-frequency) limit, when �hx � IP; (IP is the atomic ion-
ization potential) and the eigenfrequencies in the denominators of (2.41) can be
neglected, in view of the golden sum rule (2.19), we obtain from the formula (2.41):

b1 xð Þ ¼ � e2 Ne

mx2 : ð2:43Þ

The high-frequency polarizability of an atom (2.43) is a real and negative value.
If the frequency of an external field is close to one of the eigenfrequencies of the

transition oscillators, so that the resonance condition

x� x0nj j � d0n ð2:44Þ

is fulfilled, and only one resonance term can be left in the sum (2.41), we obtain the
following expression for the resonance polarizability:

bres xð Þ ¼ e2

2mx0n

� �
� f0n
x0n � x� i d0n=2

: ð2:45Þ
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In derivation of (2.45) from (2.41), in non-resonance combinations, the dis-
tinction of the external field frequency from the transition eigenfrequency was
neglected. Resonance polarizability is a complex value, and the real part of which
can be both positive and negative.

Equation (2.37) defines the dynamic polarizability. Taking the inverse Fourier
transform, we obtain

d tð Þ ¼
Z1
�1

b sð ÞE t � sð Þ ds; ð2:46Þ

where bðsÞ is a real function of time where its Fourier transform is equal to the
dynamic polarizability bðxÞ. The simplest expression for bðsÞ follows from the
formula (2.45):

bres sð Þ ¼ �i
e2 f0n

2mx0n
� h sð Þ � exp �ix0n s� d0n s=2ð Þ; ð2:47Þ

where hðsÞ is the Heaviside step function. The time dependence of the induced
dipole moment dðtÞ coincides with the time dependence of the right-hand side of
(2.47) for a delta pulse of the field: EðtÞ ¼ E0 dðtÞ, where dðtÞ is the Dirac delta
function. In the general case, the expression for bðsÞ can be obtained by replace-

ment of the frequency x0n !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0n � ðd0n=2Þ2
q

and summation over all transition

oscillators. It should be noted that a decrease in the oscillation eigenfrequency in
view of damping that follows from this replacement is quite natural since friction
(the analog of damping) decreases the rate of motion.

2.4 General Relations of Atomic Polarizability

From the formula (2.47), it follows in particular that the function b sð Þ is zero for
times s\0, which is a reflection of the causality principle. Really, as seen from
(2.46), in order for the effect to appear after its cause, the fulfillment of the con-
dition bðs\0Þ ¼ 0 is necessary. The causality principle imposes certain restrictions
on the form of the function bðxÞ, from which the Kramers–Kronig relations follow
that connect the real and imaginary parts of dynamic polarizability:

Re b xð Þf g ¼ 1
p
V :P:

Z1
�1

Im b x0ð Þf g
x0 � x

dx0; ð2:48Þ
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Im b xð Þf g ¼ 1
p
V :P:

Z1
�1

Re b x0ð Þf g
x� x0 dx0; ð2:49Þ

where the principal-value integral is given by:

V :P:
Zþ1

�1

f xð Þ
x� a

dx ¼ lim
D!0

Za�D

�1

f xð Þ
x� a

dx þ
Zþ1

aþD

f xð Þ
x� a

dx

8<
:

9=
;: ð2:50Þ

With the use of (2.48), (2.49), it is possible to obtain the real part of the po-
larizability via the imaginary part and vice versa. For practical purposes, it is
convenient to integrate (2.48) over positive frequencies and to represent the prin-
cipal value of the integral as a “punctured” integral:

Re b xð Þð Þ ¼ 2
p

Z1
0

x0Im b x0ð Þð Þ � x Im b xð Þð Þ
x02 � x2 dx0: ð2:51Þ

In derivation of (2.51), it was assumed that the imaginary part of the polariz-
ability is an odd function of frequency.

There is an important relation connecting the imaginary part of the dynamic
polarizability and the photoabsorption cross section rphðxÞ. This relation is called
the optical theorem and looks like

Im b xð Þð Þ ¼ c
4 px

rph xð Þ: ð2:52Þ

With the use of the optical theorem we find with (2.51)

Re b xð Þð Þ ¼ c
2p2

Z1
0

rph x0ð Þ � rph xð Þ
x02 � x2 dx0: ð2:53Þ

Equation (2.53) expresses the real part of polarizability in terms of the pho-
toabsorption cross section. In particular, for static polarizability, we have:

b 0ð Þ ¼ c
2 p2

Z1
0

rph xð Þ
x2 dx: ð2:54Þ

From (2.53), it is possible to obtain the sum rule for the photoabsorption cross
section when going to the limit x ! 1 and using the expression (2.43) for the
high-frequency polarizability:
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mc
2 p2 e2

Z1
0

rph xð Þ dx ¼ N;
2m
p e2

Z1
0

x Im b xð Þf g dx ¼ N: ð2:55Þ

The second equality in (2.55) follows from the first equality in view of the
optical theorem (2.52).

As it was noted, the above formulas for the polarizability are valid for a
spherically symmetric atomic state. In the general case, the polarizability bij is a
tensor. For an atom being in the state n l mj i, where n, l, m are the principal, orbital,
and magnetic quantum numbers, the tensor can be represented as (Amusia 1990)

bij ¼
bsnl �

1
2
P2 b

a
nl

i
2
P1 b

a
nl 0

� i
2
P1 b

a
nl bsnl �

1
2
P2 b

a
nl 0

0 0 bsnl þP2 b
t
nl

2
6664

3
7775: ð2:56Þ

Here bsnl; b
a
nl; b

t
nl are the scalar, antisymmetric, and tensor components of the

polarizability. The functions of magnetic and orbital quantum numbers P1; 2ðmÞ for
l 6¼ 0 are

P1 mð Þ ¼ m
l
; P2 mð Þ ¼ 3m2 � l lþ 1ð Þ

l 2l� 1ð Þ : ð2:57Þ

For a spherically symmetric state, when l ¼ m ¼ 0, P1 ¼ P2 ¼ 0, formula (2.56)
shows that the atomic polarizability becomes a scalar.

With the use of (2.56), it is possible to write the shift and splitting of magnetic
sublevels of the state n l mj i in the ac field E tð Þ ¼ E Re e expð�ix tÞf g (in the
general case, e is a complex vector, and ej j ¼ 1) far from the resonance as

DEnlm ¼ � 1
4
E2 bsnl xð ÞþP2 mð Þ btnl xð Þ� 	 ð2:58Þ

for linear polarization of the electric field and

DEnlm ¼ � 1
4
E2 bsnl xð Þ 	 P1 mð Þ banl xð Þ � 1

2
P2 mð Þ btnl xð Þ


 �
ð2:59Þ

for right-hand ðþ Þ and left-hand ð�Þ circular polarizations of the unit vector e. The
components of the polarizability tensor bsnl; b

a
nl; b

t
nl are

bsnl xð Þ ¼ 1
3 2lþ 1ð Þ l rl�1 xð Þþ lþ 1ð Þ rlþ 1 xð Þ½ �; ð2:60Þ

banl xð Þ ¼ 1
2 lþ 1

r�l�1 xð Þ � r�lþ 1 xð Þ� 	
; ð2:61Þ
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btnl xð Þ ¼ � 1
3 2 lþ 1ð Þ � rl�1 xð Þþ 2 l� 1

2 lþ 3
rlþ 1 xð Þ


 �
; ð2:62Þ

where

rl0 xð Þ ¼
X
n0

f n
0l0

nl

x2
n0n � x2 � ixdn0n

; ð2:63Þ

r�l0 xð Þ ¼ x
X
n0

f n
0l0

nl

xn0n x2
n0n � x2 � ixdn0n

� � ð2:64Þ

are the corresponding spectral sums. Thus the formulas (2.56)–(2.64) generalize the
concept of dynamic (dipole) polarizability of an atom to the general non-spherical
case of the state n l mj i (l 6¼ 0) when polarizability is a tensor.

In the foregoing, we were dealing with dipole polarizability that describes the
response of the atom to a spatially homogeneous electric field. If the characteristic
dimension of the spatial homogeneity of a field is less than the size of the atom, the
dipole polarizability should be replaced by the generalized polarizability of an atom
bðx; qÞ that depends also on the impulse �h q transmitted to the atom as a result of
the atom–field interaction. With the use of bðx; qÞ, the dipole polarizability of the
atomic core due to an external electric field is given by

D xð Þ ¼
Z

b x; qð ÞE x; qð Þ dq

2 pð Þ3; ð2:65Þ

where Eðx; qÞ is the space-time Fourier transform of the electric field. For the
spatially homogeneous field Eðx; qÞ ¼ EðxÞ dðqÞ and bðxÞ ¼ bðx; q ¼ 0Þ
(2.65) turns (in case of a spherically symmetric atomic state) into an entirely local
approximation DðxÞ ¼ EðxÞ � bðxÞ.

2.5 Static Polarizability of Atoms and Ions

The static polarizability b0 of a hydrogen-like ion in the ground 1s-state is

b0 ¼
9
2
a3B
Z4 ; ð2:66Þ

where aB is the Bohr radius. The value of the static polarizability b0 rapidly
decreases with increasing nuclear charge and increases sharply with principal
quantum number n. These regularities are easily understood at the qualitative level
if it is remembered that static polarizability is proportional to the volume of an atom
that decreases with increasing Z and increases strongly with n.
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For multiply charged ions (N 
 Z, N is the number of electrons in the ion core,
Z is the nuclear charge), the following approximate expression for the static
polarizability can be obtained:

b0 ¼
63
16

N3

Z4 a
3
B: ð2:67Þ

The dependence of the static polarizability of a multiply charged ion on the
nuclear charge is the same as for a hydrogen-like ion (2.66). This follows from
quantum considerations for ions with filled shells. In this case, if Z � N, the
minimum frequency of a virtual transition is proportional to the squared nuclear
charge. Then from the general quantum-mechanical expression for the polarizability
(2.41), it follows the above Z-dependence.

For ions with partially filled electron shells, the main contribution to static
polarizability is made by a virtual transition with no change in principal quantum
number Dn ¼ 0. In this case, b0 / Z�3.

For ions with a filled outer shell, rather good agreement with experimental data
is provided by the simple empirical formula for the static dipole polarizability of an
outer shell with principal quantum number n:

b0 ¼ Nn
n6

Z4
eff

a3B; ð2:68Þ

where Nn and Zeff are, respectively the number of electrons in the outer electron
shell and the effective nuclear charge. The latter value can be determined from
Zeff ¼ n

ffiffiffiffiffiffiffiffiffiffiffi
In=Ry

p
, where In is the ionization potential of the outer shell. The formula

(2.68) provides particular good results for neon-like ions n ¼ 2; Nn ¼ 8ð Þ. This can
be seen from Table 2.2.

2.6 Local Plasma Frequency Model of Polarizability
of Many Electron Systems

The local plasma model was proposed by Brandt and Lundqvist in the mid-1960s
(Brandt and Lundqvist 1965) for the description of the photoabsorption by multi-
electron atoms in the spectral range x� Z a.u. (here 1 a.u. = 27.2 eV is the atomic

Table 2.2 Static dipole polarizability: The value of static polarizability is given in atomic units

Ion Ca+10 Ti+12 Fe+16 Co+17 Ni+18

In, eV 558.2 737.8 1168 1293 1419

Zeff 12.8 14.73 18.54 19.5 20.43

bexp0 1.74 � 10−2 1.04 � 10−2 4.44 � 10−3 3.69 � 10−3 3.08 � 10−3

b0 1.89 � 10−2 1.09 � 10−2 4.33 � 10−3 3.53 � 10−3 2.94 � 10−3

An atomic unit of polarizability is equal to 0.149 Å3 (1 Å = 10−8 cm)
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unit of energy). In this case, in contrast to ranges of high (x� Z2 a.u.) and low
(x� 1 a.u.) frequencies, photon absorption is defined more by collective effects
rather than by one-particle interaction. Based on these qualitative considerations,
the electron core of an atom is approximated by the inhomogeneous distribution of
the charge and the interaction which an electromagnetic field is defined by the
plasma resonance condition:

x ¼ xp rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 p n rð Þ e2

m

r
; ð2:69Þ

where nðrÞ is the local electron density and xpðrÞ is its associated local plasma
frequency. It can be shown that to the condition (2.69) there corresponds the
following expression for the dipole dynamic polarizability that satisfies the
Kramers–Kronig relations (2.48), (2.49) and the sum rule (2.55):

bBL xð Þ ¼
ZR0

0

x2
p rð Þr2 dr

x2
p rð Þ � x2 � i � 0 ¼

Z
bBL r;xð Þ dr: ð2:70Þ

Here, the value bBLðr;xÞ is introduced that corresponds to a so-called spatial
polarizability density in the Brandt–Lundqvist approximation, R0 is the size of the
atom (ion). In the denominator of the integrand of (2.70) an infinitesimal imaginary
additive (designated as “i � 0”) is introduced that indicates the rule of pole bypass
in calculation of the integral.

The expression (2.70) has correct high-frequency asymptotics (2.43). In the
low-frequency limit, it gives

bBL x ! 0ð Þ ! R3
0=3; ð2:71Þ

that is, static polarizability is found to be proportional to the volume of an atom.
Despite of its apparent simplicity, the formula (2.71) well describes available

experimental data. First of all, this concerns multielectron atoms with filled shells
since in this case the main contribution to polarizability is made by the continuous
energy spectrum of an atom, and the local plasma frequency approximation (2.70)
is the most adequate. This fact is demonstrated by Table 2.3, where the values

Table 2.3 Static polarizability

Atom
(ion)

Kr I Xe I KI I Rb II Cs II Sr III Ba III

bexp0 17 27 7.5 12 16.3 6.6 11.4

bvar0 26.8 30.9 9.1 14.3 17.8 8.7 11.4

bUSh0
21.1 25.5 6.6 11.9 15.3 7.5 9.7

bStZ0
17.2 27.3 5.25 8.5 14.6

bBL0 24 27 8.6 11.6 13.5 7 8.4
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(in atomic units) of the static polarizability of atoms and ions with filled electron
shells are calculated within the framework of different models as well as experi-
mental data. For the calculations of the static polarizability in the framework of the
Brandt–Lundqvist model, the used atomic/ionic radius was calculated from the
Thomas–Fermi–Dirac model including correlation allowance.

bvar0 is the calculation from the variational method, bUSh0 is the calculation of
Shevelko and Ulanzev (1994), bStZ0 is the calculation of Stott and Zaremba (1980)
within the framework of the electron density formalism, bBL0 ¼ R3=3 is the calcu-
lation in the framework of the Brandt-Lundqvist model.

With the use of the formula (2.70) and the statistical model of an atom, the
following expression for the dynamic polarizability can be obtained:

b x; Zð Þ ¼ r3TF ~b
x
Z

� 

¼ b3 a3B

Z
~b

x
Z ma

� �
;

~b mð Þ ¼
Zx0
0

4 p f xð Þ x2 dx
4 p f xð Þ � m2 � i � 0 ;

ð2:72Þ

where rTF ¼ b aB=Z1=3 is the Thomas–Fermi radius, Z is the atomic nucleus charge,
aB is the Bohr radius, b ffi 0:8853, ~bðmÞ is the dimensionless polarizability as a
function of the reduced frequency m ¼ x=Z ma, x0 ¼ R0=rTF is the reduced atomic
radius, f ðxÞ is the universal function describing the distribution of the electron
density nðrÞ in an atom according to the formula nðrÞ ¼ Z2 f ðr=rTFÞ, ma ffi
4:13� 1016 s�1 is the atomic unit of frequency.

It should be emphasized that the dimensionless polarizability ~bðmÞ does not
depend on the atomic nuclear charge. Thus, the representation of the dynamic
polarizability of a statistical atom (2.72) reveals a scaling law with respect to the
parameter m ¼ x=Z ma.

The results of calculation of the real and imaginary parts of the dipole dynamic
polarizability of a krypton atom within the framework of the local plasma frequency
method by the formula (2.70) using the Slater and Lenz–Jensen electron densities
are presented in Fig. 2.1. Given in the same figure (curve 3) are the results of
calculation for the corresponding values in the random phase exchange approxi-
mation that is today the most consistent quantum-mechanical method of description
of the electronic structure of atoms. It is seen that the dynamic polarizability of a
krypton atom calculated in the local plasma frequency model for the Lenz–Jensen
electron density renders in a smoothed manner the quantum-mechanical features of
the frequency behavior of dynamic polarizability. These are most pronounced in the
vicinity of potentials of ionization of electron subshells. The use of Slater wave
functions allows to some extent to resolve the spectral fluctuations of the polariz-
ability in the vicinity of the ionization potentials of the electron subshells. However,
in this case, we loose the universality of the description like in the statistical model.
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Let us present the high-frequency asymptotics of dimensionless polarizability
that follows from the formula (2.72) in view of the explicit form of the function f ðxÞ
for distribution of the Thomas–Fermi and Lenz–Jensen electron densities. For the
imaginary part ~bðmÞ, we have

Im ~bT�F m ! 1ð Þ
n o

! 4:35
m4

; ð2:73aÞ

Im ~bL�J m ! 1ð Þ
n o

! 4:615
m4

: ð2:73bÞ

From the formulas (2.73), it is seen that the above statistical models give a
similar result for the imaginary part of polarizability. It should be noted that in the
hydrogen-like approximation (for a spherically symmetric atomic state) the imag-
inary part of polarizability decreases as m�4:5. The high-frequency asymptotics of
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Fig. 2.1 Frequency
dependences of the real
(a) and imaginary (b) parts of
the polarizability of a krypton
atom calculated in different
approximations: in the local
plasma frequency
approximation for the Lenz–
Jensen electron density (1), in
the local plasma frequency
approximation for the Slater
electron density (2), in the
random phase exchange
approximation (3) (Korol
et al. 1998)
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the real part of the dimensionless polarizability ~bðmÞ in both models of atomic core
electron density looks like

Re ~b m ! 1ð Þ
n o

! � b�3

m2
; ð2:74Þ

which is in qualitative agreement with the general formula (2.43). From comparison
of the expressions (2.73) and (2.74), it follows in particular that at high frequencies
the imaginary part of polarizability decreases much more rapidly than its real part.

2.7 Dynamic Polarizability of Nanoparticles

Let us calculate the dynamic polarizability of a sphere placed in a dielectric
medium. We assume that the sphere radius is much larger than the distance between
atoms in the substance. In this case, for the description of the interaction of the
sphere with an electromagnetic field the concept of the dielectric permittivity can be
used.

Using the Mie theory for calculation of the cross section of radiation scattering
by a spherical particle of radius rs, it is possible to obtain the following expression
for the polarizability of a spherical particle in terms of the Mie coefficients:

bs ¼
3
2
em

rs
x

� 
3
� �i a1 x;mx;mð Þþ b1 x;mx;mð Þ½ �; ð2:75Þ

where

x ¼ k rs ¼ ffiffiffiffiffi
em

p x
c
rs; ð2:76Þ

m ¼
ffiffiffiffiffiffiffiffiffiffiffi
es xð Þ
em

s
: ð2:77Þ

m is the relative refractive index; em, esðxÞ are the dielectric permittivities of the
matrix and the material of the sphere; an and bn are the Mie coefficients in the
Legendre polynomial and spherical Hankel function expansions of a scattered wave
outside the sphere.

Hereafter, we assume that the dependence of the value em on the radiation
frequency x can be neglected. With the use of boundary conditions (for a more
detailed description, see Sect. 4.5.1), the following formulas for the Mie coefficients
can be obtained (Van der Hulst 1981):
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an x; y;mð Þ ¼ w0
n yð Þwn xð Þ � mw0

n xð Þwn yð Þ
w0
n yð Þ fn xð Þ � m f0n xð Þwn yð Þ ; ð2:78Þ

bn x; y;mð Þ ¼ mw0
n yð Þwn xð Þ � w0

n yð Þw0
n xð Þ

mw0
n yð Þ fn xð Þ � f0n xð Þwn yð Þ ; ð2:79Þ

where

wn zð Þ ¼ z jn zð Þ ¼
ffiffiffiffiffiffi
p z
2

r
Jnþ 1=2 zð Þ; ð2:80Þ

fn zð Þ ¼ z h 1ð Þ
n zð Þ ¼

ffiffiffiffiffiffi
p z
2

r
H 1ð Þ

nþ 1=2 zð Þ ð2:81Þ

are the functions introduced by Debye in 1909; jnðzÞ is the spherical Bessel func-

tion, Jnþ 1=2ðzÞ and H 1ð Þ
nþ 1=2ðzÞ are the Bessel and Hankel functions of half-integer

order. For n ¼ 1, we have

j1 zð Þ ¼ sin zð Þ
z2

� cos zð Þ
z

; ð2:82Þ

h 1ð Þ
1 zð Þ ¼ sin zð Þ

z2
� cos zð Þ

z
� i

sin zð Þ
z

þ cos zð Þ
z2


 �
: ð2:83Þ

In the limit of small parameters x ¼ k rs, the following expansions for the Mie
coefficients can be obtained from the formulas (2.78)–(2.83) (Van der Hulst 1981):

a1 ffi i s x3 1þ t x2 � i s x3
� �

; b1 ¼ i s u x5; ð2:84Þ

where

s ¼ 2
3
m2 � 1
m2 þ 2

; t ¼ 3
5
m2 � 2
m2 þ 2

; u ¼ 1
30

m2 þ 2
� � ð2:85Þ

are the auxiliary functions of the relative refractive index. In view of the formulas
(2.84), (2.85), in the limit x ¼ k rs 
 1 we obtain

bs x; rsð Þ ¼ r3s em
es xð Þ � em
es xð Þþ 2 em

; ð2:86Þ

the so-called Lorentz formula for the polarizability of a small spherical particle of
radius rs 
 k=2 p

ffiffiffiffiffi
em

p
and dielectric permittivity es xð Þ that is placed in a matrix

with a dielectric permittivity em.
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The expression (2.86) is valid for a sufficiently small nanosphere radius
rs 
 2 p

ffiffiffiffiffi
em

p
k, where k is the wavelength of a scattered photon. The analysis

shows that for a metal sphere in glass the formula (2.86) for the optical spectral and
adjacent spectral ranges works well for nanosphere radii less than 20 nm.

It should be noted that the expression (2.86) can be obtained to an accuracy of

the factor em with the use of the Clausius–Mossotti formula
eðxÞ � 1
eðxÞþ 2

¼ 4
3
pNabðxÞ

if in the latter it is assumed that e xð Þ ¼ esðxÞ=em and Na ¼ 1=Vs, where Vs is the
sphere volume. From the formula (2.86), it follows that the dynamic polarizability
of a sphere with small radius has a maximum for the frequency xr defined by
setting the real part of the denominator in the right-hand side of the (2.86) to zero:

Re es xrð Þþ 2 emf g ¼ 0: ð2:87Þ

The resonance (2.87) is connected with excitation of plasmons at the surface of the
sphere.

The dielectric permittivity esðxÞ appearing in (2.86) can be expressed in terms of
the real ns and imaginary js parts of the refractive index of the sphere material by
the known formula:

es xð Þ ¼ e1 xð Þþ i e2 xð Þ ¼ ns xð Þ½ �2� js xð Þ½ �2 þ 2 ins xð Þ js xð Þ: ð2:88Þ

The spectral dependences of the refractive index components nsðxÞ and jsðxÞ
for a number of metals are determined experimentally in the work of Johnson and
Christy (1972) in a range of photon energies �hx from 0.64 to 6.6 eV. Experiments
were carried with thin films with thickness’ ranging from 18.5 to 50 nm. In doing
so, it was found that the complex refractive index does not depend on the film
thickness in the range from 25 to 50 nm. Corresponding plots for silver and gold
are given in Fig. 2.2.

From the plots in Fig. 2.2, it follows that practically throughout the presented
range of photon energies the condition nsðxÞ\jsðxÞ is fulfilled, which corre-
sponds to a negative value of the real part of dielectric permittivity. Negative
dielectric permittivity means the impossibility of propagation of an electromagnetic
wave in a volumetric sample as well as reflection of radiation from such a medium.

The results of calculation from the formula (2.86) of the real and imaginary parts
of the polarizability of a silver nanosphere placed in glass em ¼ 2:25 with the use of
the data on the refractive index of silver of Fig. 2.2a are presented in Fig. 2.3. From
the figure, there follows the presence of a polarizability resonance at a photon
energy of about 3.1 eV. Within the framework of the simplest model, when the
dielectric permittivity of a metal is described by the plasma formula esðxÞ ¼
1� x2

p=x
2 (xp is the plasma frequency), the position of the maximum of the

imaginary part of the metal sphere polarizability is given by the equation following
from the resonance condition (2.87):
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Fig. 2.2 Experimental dependences of the real (solid curve) and imaginary (dotted curve) parts of
the refractive index of silver (a) and gold (b) films as functions of the photon energy (Johnson and
Christy 1972); the photon energy in electron–volts is plotted on the abscissa
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Fig. 2.3 The real and imaginary parts of the polarizability of a silver sphere with radius of 30 nm
in a glass matrix; the abscissa is plotted in electron–volts, the ordinate is plotted in atomic units

2.7 Dynamic Polarizability of Nanoparticles 83



xres ¼ xpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 em

p : ð2:89Þ

In derivation of (2.89), it was assumed that the dielectric permittivity of a matrix
in the frequency range under consideration does not depend on frequency. It should
be noted that in vacuum the resonance frequency of a plasmon at the sphere surface
is xres ¼ xp=

ffiffiffi
3

p
.

For silver �hxp � 9 eV, so in case of a glass matrix, it follows from (2.89) that
�hxres � 3:8 eV. The difference of this value from the data of Fig. 2.3 is connected
with the fact that the plasma formula for the dielectric permittivity used in
derivation of (2.89) has an appreciable error due to neglect of the contribution of
bound electrons.

A resonance increase in the polarizability of a metal nanosphere results in a
number of important optical effects caused by increasing the electric field strength
of the electromagnetic wave near the nanosphere if the condition (2.87) is fulfilled.
It should be noted that one of such effects is an increase (by more than 10 orders of
magnitude) in the probability of spontaneous Raman scattering of light by mole-
cules attached to metal nanoparticles. This effect was observed experimentally now
several times, and it has great prospects for applications.
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