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Preface

The emission of light is one of the most fascinating phenomena in nature.
Everybody feels the beauty when looking at the colors appearing at sunset, when a
bolt of lightning illuminates the night, or when the emission of the aurora moves
like magic in the dark heaven. And since the discovery of the spectral analysis, no
one doubted that the problems of describing atoms and matter would be solved once
we had learned to understand the language of atomic spectra and the emission of
light.

The book is devoted to the various aspects of light emission and the analysis
of the radiative properties of matter and, in particular, the emission and absorption
properties of atoms and ions in plasmas. It is based on lectures that we have given at
the Sorbonne University in France and the Moscow Institute of Physics and
Technology and the National Research Nuclear University in Russia.

The purpose of the presented material is to assist students and scientists inves-
tigating the complex atomic processes in different kinds of plasmas, by developing
relatively simple but effective models. These models allow more generalized con-
siderations and make it possible to extract also universal dependences (e.g., scaling
laws) including both atomic and plasma parameters.

A characteristic feature of this book, therefore, is that, along with the presen-
tation of strict quantum theories for the various electromagnetic and collisional
processes, considerable attention is paid to a number of qualitative models that
allow one to obtain an adequate comprehensive description, appealing more to
physical intuition than to mathematical formalism. A distinctive feature of the
approaches presented is the wide use of qualitative analogies, which makes it
possible to transfer techniques and methods developed for particular processes to
other phenomena that are important but have rarely been studied due to their
complexity. There are a number of examples: the generalized quasi-classical
Kramers approach for radiation transition probabilities, the Enrico Fermi method of
equivalent photons as a unification of radiative and collisional processes, the local
plasma frequency approximation (the so-called plasma atom) for multi-electron
atomic processes, the Born–Compton model in the theory of ionization of an atom
by electron impact, the quasi-classical methods for population kinetics of Rydberg
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atomic states and the very recent fascinating developments of quantum kinetics in
dense plasmas. The advantage of these simplified models lies not only in the fact of
a transparent presentation of the essential physical phenomena but also makes it
possible to calculate atomic processes along with their necessary combination of a
complex environment like plasma structure, transport, and turbulence.

The monograph also presents recent trends in atomic processes such as reduced
population kinetics for the huge numbers of radiative–collisional transitions
between autoionizing atomic states, the quantum mechanical interference effects in
dense plasma atomic kinetics, hot electron effects, ionization potential depression in
near-solid-density plasmas, description of exotic atomic states induced via the
interaction of XFEL radiation with solid matter (warm dense matter, hollow ions,
etc.) and the interaction of radiation with nanoparticles.

We believe that a description of both the general methods, the specific appli-
cation and the presentation of a large number of experimental data, will be useful
for wide readership including postgraduate, masters, and undergraduate students.
The book will also be an important text and reference for teachers and scientists.

Paris, France Frank B. Rosmej
Moscow, Russia Valery A. Astapenko

Valery S. Lisitsa
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Chapter 1
Introduction to Atomic Physics
in Plasmas

Abstract This introductory chapter provides an overview on various elementary
atomic physics processes and the general characteristics of radiation processes. The
interrelation between radiation and matter is discussed in the framework of radiation
trapping and the radiation transport theory. Simple, but efficient analytical approaches
are presented to discuss the main effects of opacity and differential plasma motion on
the spectral distribution. Particular attention is paid to autoionizing states together
with corresponding Fano theory and dielectronic satellite emission. Novel properties
like dielectronic satellite accumulation, transient three-body recombination, Stark
broadening, nonlinear interference effects, and spatial properties are discussed along
with many experimental data and spectroscopic applications. Finally, hollow ion
X-ray emission of autoionizing states is presented that is still amystery in high-current
Z-pinch plasmas and dense laser-produced plasmas.

1.1 Atomic Physics and Plasma Physics

The plasma state (Chen 1984; Krall and Trivelpiece 1973; Schmidt 1979; Ichimaru
1973, 2004a, b; Zel’dovich and Raizer 2002) is characterized by a large degree of
freedom for free and bound atomic particles. As a consequence, numerous atomic
processes emerge (Griem 1964; Cowan 1981; Mihalas 1978; Sobelman et al.
1995; Sobelman 2006; Salzman 1998; Zel’dovich and Raizer 2002) that play an
important role for the plasma evolution itself as well as for its diagnostics (Griem
1964, 1974, 1997; Fujimoto 2004; Kunze 2009; McWhirter 1965; Boiko et al.
1985; Michelis and Mattioli 1981; Mihalas 1978). Below, we will briefly sum-
marize the main atomic processes in plasmas.

A characteristic feature of radiation processes is their interaction with matter and
their eventual escape from the radiating matter, thereby contributing to an energy loss
and the transmission of information (plasma diagnostics). These two features are of
particular importance for astrophysical objects. Themainmechanisms responsible for
most of the radiation processes are related to the acceleration of charged particles
(usually electrons) in external fields (electric and magnetic), whereas some of these
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processes are linked to the individual properties of the radiating particles itself. The
various radiation–collisional processes can be summarized as follows:

(1) bremsstrahlung radiation (BrR) due to free–free radiative transitions of elec-
trons in the fields of ions (or quadruple radiation in electron–electron collisions)

AþZ þ e ! Aþ Z þ eþ �hx;

where AþZ is the ion of type A with a charge Z;
(2) radiative (or photo) recombination (RR or PhR) due to free–bound transitions

of electrons in the field of ions

AþZ þ e ! AþðZ�1ÞðnÞþ �hx;

where AþðZ�1ÞðnÞ designates the captured electron into an atomic level with
principal quantum number n;

(3) line radiation (LR) due to bound–bound transitions of electrons between upper
and lower energy levels inside atoms or ions

A�ðnÞ ! A� n0ð Þ þ �hx:

*means an excited atomic state;
(4) polarization radiation (PR) due to free–free, free–bound, and bound–bound

transitions of the electron with a virtual excitation of atomic cores

Aþ Zðc�Þþ e ! AþZðcÞþ eþ �hx;

Aþ Zðc�Þþ e ! AþðZ�1Þðc; nÞþ �hx;

Aþ Zðc�;mÞþ e ! Aþ Zðc; nÞþ �hx;

where c� designates the polarized core;
(5) cyclotron (or synchrotron) radiation (CR)

eþB ! eþBþN�hx;

where N�hx denotes the emission of one or more quanta (N) of cyclotron
radiation in a magnetic field B;

(6) radiation during dielectronic recombination (DR) that is a capture of an electron
with simultaneous excitation of an atomic core leading to radiative stabilization
of the core and the capture of the electron

AþZðcÞþ e ! AþðZ�1Þ�� c0; nð Þ ! AþðZ�1Þ�ðc; nÞþ �hx;

where AþðZ�1Þ��ðc0; nÞ denotes a double-excited atomic state.
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In plasmas, all the processes mentioned above are accompanied by a number of
atomic–radiation interaction processes that are related to the radiation transport in a
medium, namely:

(7) photoionization (PhI) and photoabsorption of radiation by atoms

AþZ þ �hx ! AþðZ þ 1Þ þ e;

AþZðnÞþ �hx ! Aþ ZðmÞ;

(8) scattering (both elastic and inelastic) of radiation on atomic systems

Aþ ZðnÞþ �hx ! AþZðmÞþ �hx0:

Some of these processes are related to each other by the principle of detailed
balance [where the direct and inverse flows of a system in thermodynamic equi-
librium are exactly balanced (Reif 1965)]; e.g., photoabsorption is the inverse
process of bound–bound spontaneous emission.

Together with the radiative processes, a broad variety of atomic collisional
processes is involved in the calculation of the radiation emission:

(9) collisional ionization and excitation of atomic states

Aþ Z þ e ! AþðZþ 1Þ þ 2e;

A�þZðnÞþ e ! A�þZðmÞþ e;

(10) charge exchange between neutral (or low ionized) atoms and highly charged
ions

AþBþ Z ! Aþ þBþ Z�1:

1.1.1 General Characteristics of Radiation Processes

Let us consider briefly a general picture for radiative–collisional processes in
plasmas. An analysis of such processes must include three levels of description, that
are connected with the three characteristics of radiation emission, namely: (1) ra-
diation intensity driven by an elementary process; (2) spectral distribution of the
emission, that is a distribution over frequencies x of photons emitted in a unit
volume of an optically thin plasma layer; and (3) the total radiation flow of a plasma
system with accounting for reabsorption (numerous acts of emission and absorp-
tion) of the radiation in the volume (optically thick plasmas).
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Mechanisms of plasma radiation emission are determined both by the individual
properties of charged and neutral particles in the plasma itself and by its collective
properties that are oscillation wave characteristics.

Plasma radiation connected with individual properties of particles includes the
following types: spectral line radiation (LR) arising in electron radiative transitions
in atoms or ions between two discrete energy levels (bound–bound transitions);
radiative recombination (RR) radiation arising from radiative capture of a free
electron on one atomic discrete energy level (free–bound transition); brems-
strahlung radiation (BrR) of an electron in an atomic potential (free–free transi-
tions); cyclotron radiation (CR) of the electron during its rotation in a magnetic field
with field strength B. All these types of radiation have the same classical roots,

namely the acceleration ~_t
��� ���2:¼ w2 of the electron in external fields both electrical

and magnetic ones. The total intensity of the radiation emission is determined by
the value I ¼ 2e2w2=3c3 (e is the electron charge, and c is the velocity of light).
A spectral distribution Ix over frequencies x is determined by the Fourier com-
ponent Ix ¼ 2e2w2

x=3c
3. A difference in the field type that is responsible for the

electron acceleration results in sharp differences in both total intensity I and spectral
intensity Ix.

Thus for LR, xL ¼ E2 � E1ð Þ=�h (E1; E2 are level energies); for CR, xC ¼
neB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2=c2

p
=mc (n ¼ 1; 2; 3. . ., and m, t are the electron mass and velocity); for

BrR in the framework of classical electron motion, xBr �mt3=Ze2 (Ze is the ion
charge). If the rotation of the electron is periodical (as for LR and CR), the corre-
sponding spectra are discrete; in the opposite case, they are continuous. The presence
of jumps related to recombination on separate discrete atomic levels is typical for RR
spectra. The discrete nature of spectra may be violated due to the broadening of
separate spectral harmonics and lines leading to mutual overlapping. It is the case for
highly excited (Rydberg) atomic spectral lines and high harmonics of CR ðn � 1Þ.

Plasma radiation emission related to collective motion is due to electron accel-
eration with phase correlated motion in the fields of plasma oscillations and the
corresponding radiation may be coherent. Therefore, this radiation is connected
with characteristics of plasma oscillations and can be considered as resonances in
wave–particle, wave–wave, and wave–particle–wave interactions. This depends
strongly on the equilibrium plasma conditions and its stability with respect to the
excitation of specific waves. For stable plasmas close to thermodynamic equilib-
rium, the collective radiation is usually spontaneous and is determined by the
plasma dielectric properties as well as boundary conditions. The main types of
radiation under such conditions are:

(a) Cherenkov radiation of particles moving with a velocity ~t close to the phase
velocity of electromagnetic waves (helicons); the resonance condition in the
particle–wave system (Landau resonance) is written as x ¼~k �~t (x is the
frequency of electromagnetic wave, and k is its wave vector) and in a magnetic
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field as x� l � xB ¼~k �~t (l ¼ 0; 1; 2. . ., and x0
B ¼ eB=mc is the cyclotron

frequency);
(b) Transition radiation is also determined by a particle–wave interaction and appears

for transitions of a charged particle through boundaries with strong changes of
electromagnetic wave properties (e.g., the plasma–vacuum boundary);

(c) Radiation determined by a transformation of longitudinal wave into transverse
ones at a plasma boundary or inhomogeneities (linear wave–wave interaction).
The radiation frequency in this case coincides with the frequency of the initial

longitudinal wave (in the simplest case x � xpe ¼ 4pne2=mð Þ1=2, xpe is the
plasma frequency and n the particle density);

(d) Radiation arising in nonlinear interaction between longitudinal and transverse
waves; the conditions for such interaction are

P
i xi ¼ 0;

P
i ki ¼ 0;

i ¼ 1; 2; 3. . .. For waves with relatively small amplitudes, the main effect is
connected with the interaction of three waves. In the case of isotropic plasmas,
the process results in radiation emission on frequencies x � xpe and x ¼ 2xpe.
The emission at x � xpe is due to the “merging” of a Langmuir wave with a
low-frequency plasma oscillation (e.g., ion sound wave), whereas the emission
at the double frequency x ¼ 2xpe is due to the merging of two Langmuir
waves. The processes are due to a transformation of longitudinal waves into
transverse ones via plasma fluctuations; electron bremsstrahlung takes place not
in the field of a separate ion but in an electrical field of plasma density fluc-
tuations (emission due to particle–wave–radiation interaction). The intensity of
such transitions may increase by orders of magnitudes as compared with
standard bremsstrahlung. This effect is responsible for the increased continuum
radiation during solar flares. Intensities due to collective radiation emission
mechanisms increase sharply in the presence of plasma instabilities. While
usually induced radiation processes are observed, their corresponding intensi-
ties depend on the specific mechanisms of plasma instabilities.

1.1.2 Interrelation Between Radiation and Matter

The radiation–matter interrelation is typical for strongly radiating plasmas. In fact,
from one side the radiation emission is due to particle accelerations and the spec-
trum is formed by their thermal motion, but from other side plasma radiative losses
limit the matter temperature, that is in turn related to their motion. In a hot rarefied
plasma the radiation processes influence strongly on the distribution of ions over
ionization stages Zi (ionization equilibrium) and for the fixed Zi on the distribution
over excited atomic states. These distributions together with the Maxwellian elec-
tron velocity distribution (which is easily established due to the fast collisions that
dominate over the radiation) create the radiators responsible for LR, BrR, RR, and
CR. Plasma particles in their turn influence on the shapes of radiating spectra
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(leading to spectral line broadening) as well as on the radiation transfer in media.
The most important interrelation between plasma and radiation is for LR: here, the
discrete nature of radiated spectra makes them sensitive to various broadening
phenomena induced by electrons and ions, and the densities of radiating electrons
on excited atomic energy levels are essentially determined by radiative processes of
excitation and de-excitation.

The effect of the radiation emission on populations Nn of discrete atomic energy
levels n is characterized by the parameter

b ¼ Ne trdeexh is; ð1:1Þ

where rdeex is the cross section of electron de-excitation, s is the lifetime of the
excited energy level due to the radiation emission, and . . .h i denotes averaging over
the electron velocity distribution. In the case where b � 1 (dense and cold plas-
mas), the de-excitation is dominated by collision processes driving the plasma to
local thermodynamical equilibrium (LTE) where all level populations Nn are close
to Boltzmann ones NB. In the opposite case b � 1 (rarefied and hot plasmas), level
populations are determined by radiation processes, so that every collisional exci-
tation is accompanied by a radiative decay; this is the so-called coronal regime
typical for the Sun’s corona as well as for thermonuclear laboratory plasmas in the
magnetic confinement scheme.

The main effects responsible for line broadening phenomena in plasmas are
Doppler, Stark, and Zeeman effects. The thermal velocity distribution of the radi-
ating particle results in a distribution of radiating frequencies of Dx�x0 � t=c due
to the Doppler effect.

A slowly varying electric field of ions Ei results in a static broadening where the
spectral line shape is determined by the ion microfield distribution function W Eið Þ
and the line width by the ion density Ni. The rapidly varying electron field results in
an impact broadening where the spectral line shape has a dispersion (the
Lorentz-type) shape Cim= Dx2 þC2

im

� �
with a width Cim equal to the frequency of

impact collisions. The non-homogeneous distribution of a magnetic field results
also in broadening of CR lines which may exceed the Doppler broadening.

1.1.3 Radiative Emission and Volume Plasma Radiative
Losses

The main characteristics of plasma radiation is the radiative emission gðxÞ dx that
is the energy radiated by unit volume of an optically thin (transparent) plasma in a
unit time into a unit solid angle in a spectral frequency domain from x to xþ dx.
The dependence of g on x and temperature is rather specific for every mechanism
of radiation emission, whereas the dependence on plasma density for a number of
processes is of universal type; e.g., for CR, gðxÞ / Ne (a radiation emission creates
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a continuous flow from every electron); for BrR and RR, gðxÞ / NeNi (the
radiation emission is a result of pair collisions of electrons and ions). For LR, the
dependencies of gðxÞ on Ne and Ni are incorporated as parameters into the
expressions for the spectral line shapes. However, for the integral valueR1
0 gðxÞ dx both dependencies mentioned may take place; namely in the limit of
LTE ðb � 1Þ, the integral takes the formZ

gðxÞdx / NB=s; ð1:2Þ

whereas in the coronal limit ðb � 1Þ one hasZ
gðxÞdx / NeN0; ð1:3Þ

where N0 is the density of atoms (ions) in the ground state. For arbitrary b, we haveZ
gðxÞdx / NeN0=ð1þ bÞ: ð1:4Þ

The dependence of radiative emission on other plasma parameters for BrR takes the
form

gðxÞ / Z2T�1=2
e exp ��hx=kTeð Þg Te;xð Þ; ð1:5Þ

where Z is the nuclear charge, Te is the electron temperature, k is the Boltzmann
constant, and g is the Gaunt factor taking into account quantum effects [note that the
Gaunt factor is defined as the ratio of a certain process – usually cross section – treated
in the framework of the classical and quantum theory (Sobelman et al. 1995; Sobelman
2006; Griem 1964)], partially screenings of the nuclear charge by the electron core,
etc., for CR for large values of Te and n when the spectrum is already continuous,

gðxÞ / ðB=TeÞ1=4x3=4 exp � m2c3x=eBkTe
� �1=2h i

; ð1:6Þ

where B is the magnetic field strengths. For LR gðxÞ / uðxÞ, where the line
shapes uðxÞ are determined by different broadening mechanisms.

Radiative losses (RL) of optically thin plasmas are determined by the value

Q ¼ 4p
Z1
0

gðxÞ dx: ð1:7Þ

For BrR, RR as well as for LR, the RL in the coronal regime (typical also for LR in
optically transparent systems) are described by the universal formulae
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Q ¼ NeNi ter�hxh i ð1:8Þ

where r is the cross section of the corresponding inelastic process (bremsstrahlung,
radiative recombination, and collisional excitation), . . .h i denotes averaging over
velocities as well as the sum over ionization stages and energy levels. RL for these
three mechanisms are usually expressed in the form of partial RL q ¼ Q=NeNZ

W cm3ð Þ, where NZ is the density of the radiating highly charged ions.
Figure 1.1 shows the radiation loss of argon (Fournier et al. 1998) as a function

of temperature in the low-density approximation (Corona model) from 2 eV until
20.000 eV. The figure shows the total radiation loss (solid black curve) as well as

Fig. 1.1 Total and partial radiation losses of argon plasma in a low-density collisional–radiative
approximation

Fig. 1.2 Xenon EUV
emission from a
hollow-cathode-triggered
pinch plasma for applications
in EUV lithography
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the contributions from dielectronic recombination (DR), radiative recombination
(RR) and bremsstrahlung (BrR). It can clearly be seen that line radiation
(LR) dominates in the whole temperature interval. Only for very large temperatures,
the BrR dominates because the ionization is so high that bound states have negli-
gible population. The peaks in total radiation losses near 20, 300, and 2000 eV
correspond to the closed shell configuration of M-, L-, and K-shell.

Apart its fundamental interest in atomic physics, radiation emission of matter has
multiple interests for applications: (a) the spectral distribution can be used for a
unique characterization of the matter (spectroscopy); (b) it constitutes an important
energy loss that in turn influences on the plasma evolution (hydrodynamics); and
(c) radiation sources, e.g., for lithography (Krücken et al. 2004). Figure 1.2 shows
the radiation emission of a Xenon plasma in the EVU range obtained from a
hollow-cathode-triggered pinch plasma experiment designed to optimize the radi-
ation emission for lithography (Vieker and Bergmann 2017). Temperatures are of
the order of 50 eV, and electron densities are of the order of 1019 cm−3. Relativistic
Hartree–Fock calculations indicate that the bulk of emission is essentially due to
4d-4f and 4d-5p transitions (Fig. 1.2) of Xenon IX, X, XI, XII, and XIII.

1.1.4 Radiation Trapping and Plasma Radiation Losses
in the General Case

To determine real intensities irradiated by different plasma objects, it is necessary to
take into account possible absorption of the radiation inside the plasma itself
resulting in the imprisonment of radiation when it does not escape from the whole
plasma volume but rather from its external layers. Every radiating mechanism is
accompanied by its inverse absorption mechanism characterized by an absorption
coefficient jðxÞ at unity length. Under LTE conditions where the distribution of
particles responsible for a specific mechanism of emission-absorption is at thermal
equilibrium (it means for BrR and CR the Maxwellian distribution of electron
velocities, for RR—the same plus distribution over ionization stages according to
the Saha formula, for LR—Boltzmann distribution for population of excited atomic
energy levels, i.e. b � 1) the coefficient is connected with the radiative emission
gðxÞ by the Kirchhoff law:

gðxÞ=jðxÞ ¼ BPðxÞ; ð1:9Þ

where BPðxÞ is the equilibrium radiation blackbody intensity [energy/time/area/
solid angle/angular frequency] given by:

BPðxÞ ¼ �hx3

4p3c2
1

exp �hx=kTð Þ � 1
: ð1:10Þ
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Correspondingly, the spectral intensity IxðLÞ of the radiation of an uniform plane
layer with dimension L at thermal equilibrium is equal to

IxðLÞ ¼ BPðxÞ 1� exp �jðxÞL½ 	f g: ð1:11Þ

The integral intensity is given by

IðLÞ ¼
Z1
0

IxðLÞdx: ð1:12Þ

Let us define the frequency-dependent opacity according to

sxðLÞ ¼ jðxÞ � L ð1:13Þ

and the line center opacity according to

s0ðLÞ ¼ sx¼x0ðLÞ: ð1:14Þ

Equation (1.11) shows that if the opacity has reached values sxðLÞ[ 5, the
observed spectral intensity approaches the Planck intensity. As the line center
opacity (1.14) is always larger than the opacity for other frequencies, the approach
to the Planck curve starts at frequencies x ¼ x0. This demonstrates that the real-
ization of a Planck radiator requests not only LTE-atomic populations but also high
opacity; i.e., if jðxÞL � 1 (the optically thick layer), one has

IxðLÞ � BPðxÞ: ð1:15Þ

In this case, the plasma radiates as a blackbody from the surface. Surface radiation
requests therefore a volume radiation under imprisonment. On the opposite hand, in
spectral domains where jðxÞL � 1 (optically thin layer)

IxðLÞ � gðxÞL ð1:16Þ

that corresponds to the non-imprisonment volume radiation emission.
In the case of LR, a contribution of an imprisoned spectral line (reaching the

universal Planck curve) with a central frequency x0 into the total radiation intensity
IðLÞ is given by

IðLÞ ¼ BPðx0ÞDxeqðLÞ ð1:17Þ

where Dxeq is the so-called equivalent line width:

DxeqðLÞ ¼ exp �hx0=kTð Þ
x3

0
�
Z1
0

x3 � 1� expð�sxðLÞÞ
exp �hx=kTð Þ � dx: ð1:18Þ
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For small opacities, the equivalent line width is smaller than the Full Width at Half
Maximum (FWHM) of the original line shape because the emitted line intensity has
not yet reached the Planck curve. In order to obtain the correct asymptotic limit also
for the optically thin case, we obtain (V is the volume and F the surface)

Llimit ¼ 4 � V
F
; ð1:19Þ

and i.e., for a cylindrical plasma with radius R, Llimit ¼ 2 � R. In the spectral domain
where j x ¼ x0ð ÞL
 10, the intensity has dropped to the value a at frequency
Dxeq=2 from the central frequency, i.e.,

1� exp �j xeq=2
� �

L
� � ¼ a: ð1:20Þ

If we define the equivalent width as the width where the Planck intensity has
decreased by a factor of 2, i.e., a ¼ 2�1 (according to the general convention in line
shape theories to characterize the width of a spectral emission by the FWHM), we
obtain for a Doppler spectral line profile

uD xð Þ ¼ 1ffiffiffi
p

p
CD

exp � x� x0ð Þ2
CDð Þ2

 !
; ð1:21Þ

FWHMD ¼ 2
ffiffiffiffiffiffiffi
ln 2

p
� CD; ð1:22Þ

CD ¼ x0

ffiffiffiffiffiffiffiffiffiffiffi
2 k Ti
M c2

r
ð1:23Þ

the following equivalent width (e = 2.71828…):

Dxeq � 2 �
ffiffiffiffiffiffiffi
ln 2

p
� CD �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln s0 þ e½ 	

p
: ð1:24Þ

For a Lorentz profile

uL xð Þ ¼ CL

2p
1

x� x0ð Þ2 þ CL=2ð Þ2 ; ð1:25Þ

FWHML ¼ CL; ð1:26Þ

CL;ij ¼
X
k

Wik þ
X
l

Wjl ð1:27Þ
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(where Wij is the collisional–radiative population matrix) the equivalent line width
is given by

Dxeq �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln�1ð2Þ � 1

q
� Cimp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 þ lnð2Þ � ð1� ln�1ð2ÞÞ

q
: ð1:28Þ

CD, CL ¼ Cimp are Doppler and impact widths, and jðx0ÞL � 1 is the optical
thickness of the layer in the spectral line center. The equivalent line width can
therefore be entirely expressed in terms of the line center optical thickness (1.14).
The general expression for the equivalent line width (1.18) shows the following
asymptotics for small optical thickness

Dxeq;D / s0; if s0 � 1; ð1:29Þ

Dxeq;imp / s0; if s0 � 1 ð1:30Þ

and the following asymptotes pour large optical thickness:

Dxeq;D /
ffiffiffiffiffiffiffiffiffiffi
ln s0

p
; if s0 � 1; ð1:31Þ

Dxeq;imp / ffiffiffiffiffi
s0

p
; if s0 � 1: ð1:32Þ

It is interesting to note that the asymptotes (1.29)–(1.32) as well as intermediate
values deduced from the thermodynamical equilibrium situation are in good and
partially excellent agreement with exact non-LTE radiation transport numerical
calculations.

Due to these agreements, the concept of the equivalent line width permits
likewise to define a useful escape factor for bound–bound transitions i ! j
according to

Kji ¼
Dxeq;ji � ujiðx0Þ

s0;ji
ð1:33Þ

and an optically thick line shape according to

Uji xð Þ ¼
R sx z¼Lð Þ
0 Sx;ji exp �sx;ij

� �
dsx;ijR sx z¼Lð Þ

0

R1
0 Sx;ji exp �sx;ij

� �
dsx;ijdx

; ð1:34Þ

where the frequency-dependent opacity includes possible inhomogeneity

sx;ji z ¼ Lð Þ ¼
ZL
0

jx; jidz ¼
ZL
0

p2c2

x2
ji

gj
gi
Aji ni uji xð Þ 1� nj

ni

gi
gj

� �
dz: ð1:35Þ
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The expressions (1.33)–(1.35) are also very useful for non-LTE situations if single
emission lines scan still be identified. Accordingly, the optically thick line emission
[energy/time/area/solid angle/angular frequency] is given by

I xð Þ ¼ 1
4p

XN
i;j¼1

�hxji nj Aji Kji Uji xð Þ; ð1:36Þ

where xji is the transition frequency of the bound–bound transition j ! i, Uji xð Þ
the corresponding line profile, Aji is the spontaneous transition rate, Kji the corre-
sponding escape factor, and nj is the atomic population of the upper state j.

Equation (1.34) allows likewise to study the main effects on the line profile due
to radiation transport effects, namely opacity broadening, non-homogenous density
distribution, and differential plasma motion. Moreover, (1.34), (1.35) are extremely
useful for rapid simulations when employing analytical expressions for Kji (e.g., via
the usual escape factor technique) and the spatial distribution nj(z) because the
asymptotic expressions and also intermediate values are in good and partially in
excellent agreement with exact numerical calculation of the radiation transport
equation. For example, with the help of the asymptotic expression for the equivalent
line width at high opacities, we obtain the asymptotic expressions for the escape
factor for s0;ji � 1:

KD;ji /
ffiffiffiffiffiffiffiffiffiffiffiffi
ln s0;ji

p
s0;ji

; ð1:37Þ

KL;ji / 1ffiffiffiffiffiffiffi
s0;ji

p : ð1:38Þ

These asymptotic expressions are identical to the escape factors proposed by
Holstein (1947), Irons (1979) that have been obtained from the numerical inte-
gration of the Biberman–Holstein transport equation and from the evaluation of the
escape integral. For small optical thickness, i.e., s0;ji � 1 the escape factor is linear
dependent on the line profile and given by

KD;ji / 1� 1

2
ffiffiffi
2

p � s0;ji; ð1:39Þ

KL;ji / 1� 1
4
� s0;ji: ð1:40Þ

Of particular interest is a parabolic density distribution according to

n zð Þ ¼ n0 1� L=2� z
Ls

� 	2
 !

ð1:41Þ
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with

s ¼ 1
2
L
Ls

ð1:42Þ

(where Ls is a scaling length and s is a dimensionless scaling length parameter) and
a unique relative frequency shift according to

Dx ¼ xji
Vrel

c
ð1:43Þ

of emission and absorption profiles (Vrel is the relative velocity of emitting and
absorbing atoms, and c is the velocity of light), i.e.,

uij ¼ uij xji þDx;x
� �

; ð1:44Þ

uji ¼ uji xji;x
� �

: ð1:45Þ

Equations (1.41)–(1.45) allow to study almost all principal radiation transport
effects on the line profile and are particular well suited to provide fast simulations of
optically thick radiation sources (e.g., Fig. 1.2). Moreover, when employing (1.41)–
(1.45), the optically thick line profile (1.34) has an analytical solution that even can
include line-overlapping effects:

Uji xð Þ ¼
~Uji xð ÞR1

0
~Uji xð Þdx ; ð1:46Þ

~Uji xð Þ ¼ ~sx;ji
sx

1� exp �sxð Þþ Leff
Ls

� 	2

K sxð Þ
( )

; ð1:47Þ

K sxð Þ ¼ 1� exp �sxð Þð Þ � 1
4
þ 1

s2x

� 	
þ 1

s2x
1þ exp �sxð Þð Þ; ð1:48Þ

sx ¼
X
ji

j0;ij Leff uij xij þDx;x; aij
� �

; ð1:49Þ

~sx;ji ¼ j0;ij Leff uji xji; x; aji
� �

; ð1:50Þ

j0;ij ¼ p2c2

x2
ji

gj
gi
Aji ni 1� nj

ni

gi
gj

� �
: ð1:51Þ

The function K(s) describes inhomogeneity effects originating from the upper-level
populations. As can be seen from (1.49), even line-overlapping effects can be
included via the opacity sx that originates from all possible line transitions.
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Employing (1.46)–(1.48), even time-dependent simulations of the spectral distri-
bution of differentially moving optically thick plasmas can be performed with
reasonable numerical burden. We note that the remaining integral in (1.46) is just
the sum for all frequency points of a line transition that has already been calculated
for the spectral distribution of this transition.

Equation (1.47) shows that

~Uji xð Þ ! uji xji;x; aji
� �

uij xji þDx;x; aij
� � 1� exp �sx;ji

� �
 � ð1:52Þ

if the scaling lengths Ls is much larger than the effective photon path length L and
line-overlapping effects are neglected. If also no differential plasma motion is
encountered (Vrel = 0, i.e., Dx = 0), we obtain the well-known result for a constant
source function and complete frequency redistribution:

~Uji xð Þ ! 1� exp �sx;ji
� �
 �

: ð1:53Þ

Figure 1.3 shows the effects of non-homogenous plasma density employing the
parabolic expression according to (1.41), (1.42) and the analytical expressions
according to (1.46)–(1.48). For s < 2, strong self-reversal effects are seen.

The simulation of Fig. 1.3 has been carried out for the He-like resonance line of
titanium at k0 = 0.261 nm, kTe = kTi = 2000 eV, ne = 1022 cm−3 and a line center

Fig. 1.3 Effects of an
inhomogenous plasma on the
optically thick line profile in
dependence of the scaling
parameters of (1.42)
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optical thickness of s0 = 100. A Voigt profile has been assumed as a local emission
profile, and a convolution with an apparatus profile with k/dk = 5000 has been made.
We note that a homogeneous plasma is represented by a scaling length parameter
s ! ∞, maximal non-homogeneity, and strong self-reversal is obtained for s = 1.

Figure 1.4 shows the effects of differential plasma motion (other parameters are
like in Fig. 1.3). The line profile is strongly asymmetric due to the relative fre-
quency shift of emission and absorption profiles. An impressive impact of this
differential plasma motion on the He-alpha resonance line of magnesium has been
observed (Rosmej et al. 2000) in a high-contrast ultra-high-intensity laser-produced
plasma experiment. A Nd-Glass laser with pulse duration of 400 fs, 1 J energy,
wavelength 0.53 nm, focal spot diameter 10 lm, and intensity of 5 � 1018 W/cm3

was brought to interaction with a solid magnesium target at normal incidence for
different irradiation conditions. Figure 1.5 shows the spectral interval of Hea and
satellites for a high contrast 1:1010–1011 experiment (solid blue curve in Fig. 1.5),
and an experiment where a prepulse with energy of 0.03 J separated from the main
pulse by 150 ps (solid black curve in Fig. 1.5) has been used. For the case of
prepulse, the resonance line emission is dominating and the dielectronic satellite
intensities are relatively small. With high contrast, however, the situation is dra-
matically different. A new type of spectra develops: Resonance lines seem to dis-
appear and the dielectronic satellites become the most pronounced emission
features in the spectrum. This phenomenon is known as dielectronic satellite
accumulation DSA and will be discussed in detail below (Sect. 1.4.3). Also shown
in Fig. 1.5, the simulation carried out with the MARIA code (Rosmej 1997, 2001,

Fig. 1.4 Effects of
differential plasma motion in
inhomogeneous plasma on the
optically thick line profile in
dependence of differential
plasma motion [velocities are
defined according to (1.43)]
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2006) indicates near-solid-density plasmas: electron density ne � 4� 1023 cm�3,
electron temperature kTe � 0:3 keV, and expansion velocities of V � 3� 107 cm/s.
The high density results in a high ion–ion coupling parameter (C � 3) and mani-
fests itself in a strongly developed DSA, line broadening and line shift while the
expansion velocity is responsible for the steep rise of Hea intensity on the blue wing
(see red flash in Fig. 1.5) induced via asymmetric radiation transport in expanding
plasmas as demonstrated in Fig. 1.4.

If two or more emission lines are very close to each other (means their spectral
separation is less than about Dxeq from (1.18), the photon from one line might be
strongly absorbed by another transition leading to “asymmetric re-pumping” and a
corresponding strong distortion of line ratios (Rosmej et al. 1990). The inclusion of
these effects in the escape factor approach is difficult. Figures 1.3, 1.4, and 1.5
demonstrate strong modifications of the line profiles in dense optically thick
plasmas and subtle analysis of Stark broadening effects on the line profile appears to
be difficult.

If free–free and bound–free absorption (the so-called continuum opacity) is
important, (1.36) is no longer useful to approximate the spectral distribution
because photons which are emitted from a spectral line may be redistributed with
high probability elsewhere in the continuum. Therefore, photons from a
well-defined bound–bound emission are lost for the particular line emission when
they are reemitted far away from the line profile. Whether continuum absorption is
important or not can be estimated from the following expressions:

Fig. 1.5 K-shell X-ray emission of Hea and satellites of magnesium for different irradiation
conditions: extremely high contrast 1010–1011 and prepulse. The MARIA simulations indicate
near-solid density ne = 4 � 1023 cm−3, kTe = 300 eV and expansion velocities of the order of
V = 3 � 107 cm/s. The expansion velocity combined with radiation transport results in a
characteristic steep rise of the Hea-intensity on the blue line wing (see red flash)

1.1 Atomic Physics and Plasma Physics 17



sff � 2:4� 10�37�gff
n2e Zeffffiffiffiffiffiffiffi
kTe

p
E3
x

1� exp ��hx=kTe½ 	ð ÞLeff ; ð1:54Þ

sfb � 2:9� 10�17�gfb
E5=2
i ni

Zeff E3
x

1� exp ��hx=kTe½ 	ð ÞLeff : ð1:55Þ

sff is the free–free opacity, sfb is the bound–free opacity, Ex is the photon energy in
[eV], Ei is the ionization potential in [eV], kTe is the electron temperature in [eV], ne
is the electron density in [cm−3], ni [cm

−3] is the population density from which
photoionization proceeds, Zeff is the effective charge of the plasma, Leff is an
effective photon path lengths in [cm], and �gff and �gfb are the Gaunt factors for the
free–free transitions (Bremsstrahlung) and the free–bound transitions (radiative
recombination radiation). In order to operate in a meaningful manner with diag-
nostic line ratios, the continuum opacities sff and sfb should be less than 1. Under
quite many experimental conditions for dense laser-produced plasmas, the line
center optical thickness of resonance lines is large, whereas the continuum opacities
(1.54) and (1.55) are negligible. The line center opacity of a bound–bound tran-
sition can be estimated according to

s0;ij � 2p2e22
ffiffiffiffiffiffiffi
ln 2

p

mec
ffiffiffi
p

p
xji

xji

FWHM
fij ni Leff 1� e

�
�hxji

kTe

8><
>:

9>=
>;

¼ 8:32� 10�15 xji

FWHM

� 
fij

ni
ðm�3Þ

Leff
ðmÞ 1� e

�
�hxji

kTe

8><
>:

9>=
>;

: ð1:56Þ

FWHM is the full width of the line profile at half maximum, xji is the transition
frequency, fij is the absorption oscillator strength, ni is the density of the absorbing
ground state “i” in [m−3], and Leff is a characteristic plasma dimension (often close
to the value of L but not always) relevant for photoabsorption [m]. In the case of a
Doppler line profile, the line center opacity is simply given by

s0;ij � 1:08��10 kji
ðmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðamuÞ
Ti eVð Þ

s
fij

ni
ðm�3Þ

Leff
ðmÞ 1� e

�
�hxji

kTe

8><
>:

9>=
>;: ð1:57Þ

sji is the wavelength of the bound–bound transition [m], Ti is the ion temperature in
[eV], and M is the atomic mass in [amu].

For the bremsstrahlung mechanism of emission–absorption, the typical impris-
onment length L� (that is a free path length averaged over frequencies) is equal to
L� � 3� 1037T7=2 � ðZ2NiNeÞ�1 (T is in eV, Ni and Ne are in cm�3, and L� is
in cm).
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The intensity of BrR escaping from a plasma layer in thermodynamic equilib-
rium with a thickness L is equal to

IðLÞ / Z2NiNe

ffiffiffiffi
T

p
� L ð1:58Þ

when L � L� (volume radiation); in the opposite case, L � L�

IðLÞ � r � T4 ð1:59Þ

(blackbody radiation, r is the Stefan–Boltzmann constant). The last case is typical
for astrophysical objects and especially stars. Here, the imprisoned radiation is
responsible for the energy transfer from the hot star center to its more cold
periphery. The value T ¼ T� being a boundary between the volume and the surface

RL is equal to T� � 2� 10�11ðZ2NiNeLÞ2=7. The dependence of T� for star
atmospheres Z � 1 is rather weak, so one may estimate approximately

T�ðeVÞ � 2� 10�11ðLNiNeÞ2=7.
The surface intensity of CR is determined by the Rayleigh–Jeans formula

Tx� 3=12p2c2; where the value of effective frequency x� is determined by the
optical thickness of the system jðx�ÞL � 1.

1.1.5 Excited Atoms Under Plasma Perturbations

An atom (or an ion) in a plasma is subject for various perturbations which lead to a
definite distribution of the atom with regard to excited states as well as to changes of
the atomic wave functions themselves. As a result of such perturbations, the atomic
states turn out to be “mixed,” strongly different from pure unperturbed atomic states.
Consequently, the spectral characteristics of a radiation emission or absorption by
the atom in media are also substantially different from the spectra of the unperturbed
atom. The situation leads us to a conception of “a perturbed atom” that is an atom
that is “dressed” by the media. The main consideration is devoted to an analysis of
practically important situations when the atom is under simultaneous and combined
action of perturbations of different natures: collisions, electrical and magnetic fields,
oscillating and stochastic perturbation, blackbody radiation, etc. In this sense, our
approach is quite different from the conventional consideration of atomic processes
devoted to specific types of external influences on the atom with no regard to any
other influence that could exist. The conception of the perturbed atom seems to be
especially of interest for astrophysical and high-energy and high-intensity laser
applications, where a variety of perturbations are present simultaneously.

The atomic state “mixing” mechanisms can easily be imagined considering a
plasma as some external system of classically moving particles interacting with the
atom (Griem 1964, 1974, 1997). If we consider plasmas from this point of view, the
plasma action is composed of fast changing perturbations due to electrons on the
one hand, and slow ones due to ions on the other hand. It is convenient to define
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these last perturbations by the electric microfields FðtÞ caused by the ions. This
defines a boundary for other types of electrical and magnetic fields in plasmas, such
as plasma oscillation fields and fields of magnetic systems.

As far as the electron–atom interaction is concerned, it may be taken into
account by the introduction of an additional atomic relaxation, described by the S-
matrix. Thus, the plasma electrons induce non-elastic changes of an atomic
electron from one sublevel to another. The action of an ion electric field F as well as
other fields leads to periodic oscillations of the electron between different atomic
states. Properly speaking, exactly these oscillations express the fact of atomic wave
function “mixing” in an external field.

The usual approach to the atomic spectral description in plasmas is divided into
two main problems (e.g., Griem 1974; Sobelman et al. 1995; Sobelman 2006):
(1) the investigation of excited atomic state dynamics in external fields and (2) the
investigation of atomic level population kinetics. For example, this approach is
applied to the description of the Stark effect (Griem 1964, 1974; Sobelman et al.
1995; Sobelman 2006), where at first the true atomic states are defined (atomic
dynamics), and then their populations and relaxation processes are analyzed. In
reality, the values of the relaxation (kinetic) parameters have to be compared with
the atomic interaction with external fields, and the whole character of the atomic
state evolution is found to be more complicated. The situation is typical, for
example, for highly charged ions in dense plasmas (Akhmedov et al.
1985; Anufrienko et al. 1993). Thus, it is more consistent to take into account both
dynamical and kinetic parameters simultaneously.

This approach is used in laser physics (Rautian and Shalagin 1991;
Klimontowitch 1983), where the atomic dynamics in external electromagnetic fields
is described by kinetic equations, including relaxation parameters. Although we
shall investigate dynamic and kinetic processes separately, it is necessary to con-
sider a more general approach (than just used in laser physics (Rautian and Shalagin
1991)] for the description of atomic excited state evolution based on general kinetic
equations (Blum 2012). The corresponding kinetic equation is written for the
atomic density matrix: the diagonal elements determine the atomic state populations
and the non-diagonal ones determine the polarization of the corresponding atomic
transition (see also Chap. 7). Processes leading to atomic excitation as well as to
atomic state mixing induce the polarization of media for the considered transition.
The calculation of the polarization spectral distribution determines the character-
istics of the radiation emitted or absorbed by atoms in plasmas. The main sources of
atomic excitation in a plasma are electrons and light quanta. The electron action on
the atom is characterized in the simplest cases by incoherent pumping of excited
atomic states Q, being the rate of an atomic electron appearing at a given atomic
level in a unit time and a unit volume. The excitation of atomic electrons by light
quanta is of importance in optically dense plasmas (Burnett 1985) and requires
more detailed information to investigate the spectral parameters. In fact, for exci-
tation by incoherent pumping (electrons) the only spectral characteristics which
define the media polarization is the line shape IðxÞ of spontaneous radiation.
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However, for excitation by a light quantum with frequency x0, the emitted radi-
ation with frequency x “remembers” the initial quantum x0 inducing a polarization
for the considered transition. As a result, the polarization distribution induced by
the quanta in the media is described by the more complicated frequency redistri-
bution functions Rðx;x0Þ determining the probability of the emission of a quantum
with frequency x when the absorption of the initial quantum with frequency x0 has
taken place (Anufrienko et al. 1990; Demura et al. 1990; Burnett 1985; Talin and
Klein 1982; Talin et al. 1997; Bulyshev et al. 1995; Mossé et al. 1999).

The calculation of spectral functions IðxÞ and Rðx;x0Þ in plasmas is a very
complicated problem connected with both atomic state dynamics in external fields
and the population kinetics of these very states.

To summarize, we may say that the atomic spectral formation in plasmas is a
complex interference process in which act on a similar basis both relaxation and
dynamical parameters of atomic interaction with a plasma. The state interference is
essential for both the state population formation and the polarization of the medium.
That is why the selection of purely dynamical effects in atomic spectral systems
with subsequent relaxation parameters is a restrictive procedure.

The advantages of classical methods are connected with the universal nature of
theoretical results based on them. It is just for astrophysical applications where it is
desirable to have universal dependencies of atomic process probabilities on dif-
ferent parameters which make it possible to determine a correspondence with
plasma parameters and to look for scaling parameters for the total problem.

Atomic states in plasmas are determined by a balance of radiative–collisional
processes. One of them is determined by collisions of the atom with photons,
another with electrons. However, the separation of these processes on pure colli-
sional and radiative ones is also rather restrictive. From the point of view of
classical mechanics, all these types of processes are determined by Fourier com-
ponents of the electron motion in an atomic potential. The discrete or continuous
nature of electron spectra is essential only under quantization conditions, deter-
mining an electron state density for both types of electron spectra. It will be shown
below that for a broad domain of parameters, the dependencies of radiative–colli-
sional processes on them are of pure classical nature and quantum parameters
appear only after their substitution into classical formulae according to the corre-
spondence principle. The most important parameter for radiative–collisional pro-
cesses is the emitted frequency x being a Fourier harmonic in a classical
consideration and a discrete level energy difference in the quantum theory.
Practically all universal dependencies of the transition probabilities are connected
with the classical approach for a motion of external particles or atomic electrons in
an atomic potential. We will demonstrate both these possibilities below.
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1.2 Structure of Atoms and Ions

1.2.1 Symmetry Properties of the Coulomb Field

As is known (Huhges 1967; Landau and Lifschitz 2005), the Coulomb field
(U ¼ �e=r) possesses several symmetry properties. These properties involve
together with the energy E and the orbital momentum ~L the presence of an addi-
tional integral of motion, the Runge–Lentz vector ~A, which is equal to

~A ¼~t�~L� e~r=r: ð1:60Þ

The physical meaning of vector ~A in classical mechanics follows from its con-
nection with the coordinate h~ri averaged over the period of electron motion:

~A ¼ � 2e2

3a
h~ri ða ¼ e2=ð2EÞÞ: ð1:61Þ

The quantum mechanical generalization of the Runge–Lentz vector is the operator

Â ¼ 1
2m

ðp̂� L̂� L̂� p̂Þ � e~r=r; ð1:62Þ

where p̂, L̂ and~r are the operators of momentum, orbital momentum, and electron
coordinates, respectively.

All components of the operator Â commutate with the Hamiltonian Ĥ. The
remainder of the commutation relations takes the form (eijk is an antisymmetrical
tensor)

½Li; Lj	 ¼ ieijkLk; ½Li;Aj	 ¼ ieijkAk; ½Ai;Aj	 ¼ �2im�1eijk � LkĤ: ð1:63Þ

Operators L̂ and Â are mutually perpendicular:

L̂Â ¼ ÂL̂ ¼ 0: ð1:64Þ

They satisfy the relation

Â
2 ¼ 2

m
ĤðL̂2 þ 1Þ ¼ e2: ð1:65Þ

It is seen from the relations (1.63)–(1.65) that one may construct from operators Â
and L̂ new vectors satisfying the commutation relations quite analogous for orbital
momenta if one limits oneself to the subspace of atomic states belonging to a fixed
value of the energy E (the isoenergetic surface H ¼ E). Introducing new operators
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Ĵ1;2 ¼ 1
2

L̂� m
a

� 1=2
Â

� �
ð1:66Þ

we can see that they satisfy the usual commutation relations for an orbital
momentum:

½J1i; J1j	 ¼ ieijkJ1k; ½J2i; J2j	 ¼ ieijkJ2k: ð1:67Þ

Operators Ĵ1 and Ĵ2 commutate with each other. Thus, the subspace of atomic states
belonging to the given isoenergetic surface E ¼ const possesses some transfor-
mation symmetry properties which may be described by the rotation of the oper-
ators Ĵ1;2 in two independent subspaces.

Equation (1.64) results in the equality of the squares of the vectors and their com-
mutative properties which allow to achieve their simultaneous diagonalization:

Ĵ
2
1 ¼ Ĵ

2
2 ¼ jðjþ 1Þ ð1:68Þ

where the momentum magnitude of j defined from Landau and Lifschitz (2005) is
equal to ðn� 1Þ=2. Correspondingly, the projections m1;2 of the vectors vary within
the limits:

m1;2 ¼ �j;�jþ 1; . . .; þ j; j ¼ n� 1
2

: ð1:69Þ

The presence of the two commutating operators Ĵ1 and Ĵ2 enables the construction
of different states from wave functions with given n corresponding to definite
magnitudes of the vector projections on different directions. The vectors Ĵ1 and Ĵ2
are independent and the directions of the vector quantization may not coincide. It is
also possible, just as in angular momentum theory, to construct states corresponding
to the squares of the vectors Ĵ1 and Ĵ2 and one of their projections. The convenience
of using this or another representation becomes apparent in the presence of the
diagonalization of perturbations possessing different symmetry. Essentially, the
aforementioned method of states construction is an extension of the well-known
method of the variable separation for a Coulomb field in spherical and parabolic
coordinates.

Let us briefly dwell on the connection of parabolic and spherical quantization
using the formalism mentioned above. As is well known (Landau and Lifschitz
2005; Bethe and Salpeter 1977), parabolic wave functions correspond to definite
projections on one and the same extracted direction of the orbital momentum
L defined by the quantum number m and the dipole momentum d, or the same
Runge–Lentz vector A defined by the difference of the parabolic quantum numbers
n2 � n1.

Taking into account the definition (1.66) of operators Ĵ1;2, it is easy to ascertain
that the following relations hold true:
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ðJ1ÞZ ¼ m1 ¼ mþ n2 � n1
2

; ðJ2ÞZ ¼ m2 ¼ mþ n1 � n2
2

;

LZ ¼ m; ðm=aÞ1=2 � AZ ¼ n2 � n1:
ð1:70Þ

Thus, the parabolic state corresponds to a definite z-projection of operators Ĵ1
and Ĵ2 (along with vectors L̂ and Â) in a given direction.

It is also known that the spherical states /nlm correspond to definite magnitudes

of L̂
2 ¼ ðĴ1 þ Ĵ2Þ2, and the projection of LZ equals m. Since the operators Ĵ1 and Ĵ2

obey the usual rules of the momentum composition, one can easily establish a

connection between the wave function in parabolic ðĴ21; Ĵ1Z; Ĵ
2
2; Ĵ2ZÞ and spherical

ðL̂2 ¼ ðĴ1 þ Ĵ2Þ2; Ĵ21; Ĵ
2
2; L̂ZÞ coordinates, or bases. Using the standard results of the

orbital momentum theory for the calculation of the transformation coefficient

un1n2m ¼
X
l;m0

hn1n2mjnlm0iunlm0 ð1:71Þ

we arrive at the relation (Berestetskii et al. 2008; Sobelman 2006)

hn1n2mjnlm0i ¼ ð�1Þn�1þð2n2� mj j�mÞ=2

� C
n� 1
2

;
n� 1
2

; l;
mþ n2 � n1

2
;
mþ n1 � n2

2
;m0

� � ð1:72Þ

where C j1; j2; j;m1;m2;m½ 	 are the usual Clebsch–Gordan coefficients. The result
(1.71), (1.72) is a specific case of the application of the Coulomb field symmetry.
As has been discussed, it is possible to construct the wave functions of a more
complicated symmetry, corresponding to the projections of the operators Ĵ1 and Ĵ2
on different directions.

The symmetry properties of the Coulomb field make it possible to construct
coherent states for a hydrogen atom. These atomic states correspond to quantum
states in the form of a wave packet with minimum uncertainty between canonically
conjugate variables. Such wave packets make a transition to a classical motion
along specific electron trajectories. To determine coherent states of an electron in a
Coulomb field, one must determine the following variables, namely: the angular
momentum of the electron motion, the eccentricity of the elliptic electron orbit, and
its orientation in the space.

To do this, let us use the four-dimensional representation of the electron motion
in terms of the operators Ĵ1;2 introduced above. According to the representation, the
electron orbit orientation in the space can be determined by independent rotations of
these vectors according to independent transformation rules for angular momenta.
So one can introduce the following angular variables to determine the electron
position in the space: h is an angle of rotation along a classical trajectory with the
standard classical angular velocity (or inverse rotation period), a and b are angles,
determining the position of the operator Ĵ1 in the space, and c and d are similar
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angles for the operator Ĵ2. The eccentricity of the orbit is determined by the
modulus of the Runge–Lentz vector being a combination of vectors Ĵ1;2, and the
same is true for the electron angular momentum. The total energy E is determined
by the action variable I1  R ¼ n�h, and the last is the well-known Bohr quanti-
zation condition.

Therefore, the evolution of an arbitrary atomic state can be constructed from the
state jjji which corresponds to the circular orbit by its rotation at the proper angles
with the help of the operators Ĵ1;2. Accounting for the relation j ¼ ðn� 1Þ=2 [see
(1.69)], one can represent the total evolution as a sum of rotations with different
values of j. As a result, one obtains:

jR; a; b; c; d; hi ¼
X
j

CjðRÞ exp½�iaJ1	 exp½�ibJ1	

� exp½�icJ2	 exp½�idJ2	 exp �iR3h

2n2�h3

� 	
jjjijjji

: ð1:73Þ

The constants CjðRÞ are determined by normalization conditions and are equal to

CjðRÞ ¼ expð�R=2�hÞ ðR=�hÞ
jffiffiffiffiffiffiffiffiffið2jÞ!p : ð1:74Þ

Equations (1.73) and (1.74) determine a coherent state of hydrogen atoms in the Ĵ1;2
representation. Making a transformation to the spherical coordinate representation
with the help of relations (1.66), (1.70)–(1.72), it is possible to obtain a coherent
atomic state in the spherical basis.

The classical phase space measure in the variables (1.73) is dR dh
dððjþ 1=2Þ�h cos bÞ da dððjþ 1=2Þ�h cos dÞ dc. For large j, the state jR; a; b; c; d; hi
gets its dominant contribution from m1 ¼ ðjþ 1=2Þ cos b and m2 ¼ ðjþ 1=2Þ cos d.
This corresponds just to the Bohr quantization of the action angles because cos b ¼
2J1z=R and cos d ¼ 2J2z=R.

The correspondence principle proposes that the expectation values of an operator
X will be related to the corresponding classical variable Xðp; qÞ for a specific
classical orbit.

1.2.2 Allowed and Forbidden Transitions

The main difference between the multielectron atomic spectra and the hydrogenic
spectra is connected with the difference of the potential VðrÞ of the atom from the
Coulomb potential. As a consequence of this circumstance, “accidental” level
degeneration is removed over orbital quantum numbers l, so that the transitions
from sublevels corresponding to different values of l become spectroscopically
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distinguishable. The corresponding selection rules for individual transitions l ! l0

become simple as compared with those for the hydrogen atom with two bases of
quantization, namely parabolic and spherical (Bethe and Salpeter 1977; Landau and
Lifschitz 2005). As expected from the selection rules, the transitions are divided
into dipolar allowed and forbidden transitions. For example, 4d�2p, 4f�2p tran-
sitions in the helium atom, the first one is allowed and the second one is forbidden.

It is known that non-hydrogenic atoms under the influence of an electrical field
demonstrate an energy shift proportional to the square of the field strength (the
quadratic Stark effect). The theory of the quadratic Stark effect is a typical example
of the second-order perturbation theory (Bethe and Salpeter 1977). In fact, in the
absence of accidental degeneration over the orbital quantum number l, the diagonal
matrix elements of the perturbation V ¼ �dF turn to zero and the energy shift DE
arises only in the second-order perturbation theory:

DEð2Þ
n ¼

XVnmVmn

xnm
: ð1:75Þ

The sum in (1.75) covers all intermediate states; however, the main contribution
to the sum is made by nearby atomic levels. For example, in the helium atom these
levels correspond to a change in the orbital momentum quantum number at a value
of �1. The calculation of the matrix elements Vl l0 between the states mentioned
gives the following result (Bethe and Salpeter 1977):

DEð2Þ
nlm ¼ C4ðnlmÞF2;C4ðnlmÞ ¼ 9

4
n2=ðZ � 1Þ2ð2lþ 1Þ

� f½n2 � ðlþ 1Þ2	½ðlþ 1Þ2 � m2	=ð2lþ 3ÞðEnl � Enlþ 1Þ
þ ðn2 � l2Þðl2 � m2Þ=ð2l� 1ÞðEnl � Enl�1Þg:

ð1:76Þ

According to (1.76), the energy shift depends on “spherical” quantum numbers n, l,
m, the dependency on n being very strong (which represents the increase of the
polarizability of the excited states).

It should be noted that when applying a field F, there may be changes not only in
the energy but also in the wave functions of the states. These changes are connected
with the “mixing” of nearby atomic states that leads to the violation of the selection
rules for dipolar radiative transitions. Let us estimate the ratio R of the intensity
IFðnl� n0lÞ of the forbidden atomic line to the intensity IAðnl� n0lþ 1Þ of the
allowed atomic line in helium (Bethe and Salpeter 1977):

RðnlmÞ ¼ IFðnl ! n0lÞ
IAðnl ! n0lþ 1Þ ¼

9
4
F2½n2 � ðlþ 1Þ2	

� n2½ðlþ 1Þ2 � m2	=½4ðlþ 1Þ2 � 1	ðEn;lþ 1 � EnlÞ2:
ð1:77Þ
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The spectral lines corresponding to the transitions between the excited helium levels
lie in the visible spectral range, and therefore, they are convenient for electric field
diagnostics in plasmas. As the electric field strength F increases (or with the
transition to hydrogen-like highly excited atomic states), the quadratic Stark effect
makes a transition to the linear effect. The transition is often observed in sufficiently
dense plasmas. It is a typical situation when for the same transitions n ! n0 some
atomic states experience a linear Stark effect, whereas other states are subject to the
quadratic Stark effect.

The energy spectrum of a multielectron atom is the spectrum of only one of its
electrons. The rest of the electrons form an atomic (or ionic) core. The core is
essentially an additional (third) body having influence on the interaction of an
excited electron with the nuclear. The influence consists of the possibility of the
core excitation leading to the appearance of a new type of transition, connected with
the excitation of two (or more) atomic electrons. Examples of such transitions are
considered below.

One of the important peculiarities of radiative transitions of an atomic electron in
external shells of a neutral atom is the smallness of relativistic effects due to the
smallness of the parameter e2=�hc � 1. Therefore, the transitions of higher multi-
pole order (e.g., quadrupole transitions as well as magnetic dipolar transitions) are
strongly suppressed (forbidden) as compared to electric dipole transitions. This is
the difference of the spectra mentioned with the spectra of highly charged ions.
According to the order of magnitude estimate, the relative magnitudes of electric
dipole (E1), magnetic dipole (M1), and magnetic quadrupole (M2) transition
probabilities are given by Cowan (1981) AE1: AM1: AE2 ¼ 1: ðaZÞ2: ðaZÞ2; where
a ¼ 1=137 is the fine structure constant and Z is the effective nuclear charge.

1.2.3 Properties of Highly Charged Ion Spectra

A vast amount of the literature (Safronova and Senashenko 1983; Janev et al. 1985;
Shevelko and Vainshtein 1993; Drake 2006) is devoted to calculations of highly
charged ions (HCI) spectra. Here, we are interested in the general properties of
these spectra for large nuclear charges Z � 1, which will be used later for the
estimation of different effects. If the number of bound electrons is small compared
with Z, then their motion is determined mostly by their interaction with the nucleus
Vie � Ze2=r. Taking into account that r� n2=Z for a typical bound energy In of the
electron on the atomic level n, one obtains the hydrogen-like formula: In � Z2=2n2.
The difference of the transition energies DEnn0 is obviously given by the Rydberg
formula [atomic units (a.u.)]:

DEnn0 ¼ Z2

2
1
n2

� 1
n02

� 	
: ð1:78Þ
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The interaction of electrons with each other Vee � r�1 leads to the splitting of
energy sublevels � Z for the given principal quantum number n (transitions with
Dn  n� n0 ¼ 0). The expansion may be continued and we obtain a series over
degrees of Z�1 (Safronova and Senashenko 1983; Janev et al. 1985; Shevelko and
Vainshtein 1993; Drake 2006). For example, for transitions in Li-like ions, the
following relationship is obtained (Safronova and Senashenko 1983):

DE2s�2p ¼ 0:0707Z � 0:120: ð1:79Þ

Analogous expansions may be obtained for transition oscillator strengths
f ¼ 2xnn0 jdnn0 j2. For the same transitions with Dn ¼ 0 in Li-like ions, we obtain
(Safronova 1983) (with an account of x / Z, d / Z�1. . .):

f2s�2p ’ 1:35Z�1 þ 2:20Z�2: ð1:80Þ

The dependence on Z of the radiation transition width cr follows from the

formula cr ¼
2
3
x3d2nn0c

�3 that leads to

cr ¼ Z4cr0 ; ð1:80Þ

where cr0 is the radiation transition width in the hydrogen.
In the same manner, atomic level’s fine structure splitting Dfs and the Lamb shift

DL increases. For hydrogenic ions, we have (Bethe and Salpeter 1977) (j being the
total angular momentum):

Dfs ¼ � Z4

2n3c2
1=ðjþ 1=2Þ; DLðl ¼ 0Þ ¼ 4Z4

3pn3c3
ln

1
Za

: ð1:81Þ

Detailed calculations of the Lamb shift are performed by Erickson (1971), Drake
(2006). The frequencies of the transitions between the fine structure sublevels
extend into the visible and even the ultraviolet spectral domains for values Z
 20.

For non-hydrogenic ions, the spin–orbit interaction must be taken into account
along with the interaction of the excited electron with a core, and the former may
have the same order of magnitude as the latter one. For hydrogen-like ions with
Z � 1, fine structure splitting leads to the partial removal of the degeneracy inside
the given atomic level, splitting it into separate components with different values of
total angular momentum j. The splitting may be large enough so that in case of an
electric field interaction, some components experience a quadratic Stark effect,
whereas the others follow the linear one. In principle, the calculations of the Stark
effect for H-like ions do not differ in any way from corresponding calculations for
neutral hydrogen (Zhidkoy et al. 1986; Lüders 1950; Ahmedov et al. 1985).
However, the electric field strengths that cause the analogous splitting in a H-like
ion are increased Z4 times as compared with the neutral atom in accordance with the
increase of fine structure splitting.
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The energy-level behavior follows the corresponding results of Lüders (1950),
Bethe and Salpeter (1977) for neutral hydrogen; however, the magnitudes of the
field strengths are sharply increased. It is evident that for one and the same mag-
nitude of field strength F, some components (e.g., 2p3=2 at the level n ¼ 2) possess
quadratic and others (2p1=2, 2s1=2)-linear splitting over the field. In general, the case
for intermediate values of F, the terms’ behavior, depends on F and it is rather
complicated to obtain analytical expressions.

The interaction V of the atomic dipolar momentum d with a field F in plasmas
depends weakly on Z. In fact, the magnitude d decreases with increasing
Z (d / Z�1), whereas the field F created by the ion with charge Z at distance
R increases with Z (F / ZR�2). Altogether to observe a Stark structure of highly
charged ions, it is necessary to have sufficiently high densities to provide large field
strengths F at an average interparticle distance, to assure a splitting that may contain
a fine structure.

The action of the electric field F on H-like ions leads, as in the case of helium, to
a removal of interdictions for atomic transitions. In particular, the effects of atomic
state “mixing” cause destruction of the metastable 2s-level in the field F. Indeed the
squared amplitude due to changing of its lifetime has the form (Landau and
Lifschitz 2005; Bethe and Salpeter 1977):

jasðtÞj2 � e�Im ESðFÞ�tð Þ; ð1:82aÞ

Im EsðFÞf g ¼ c
2

1� DEspffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DE2

sp þ 4d2spF
2

q
0
B@

1
CA; ð1:82bÞ

where c is the decay rate of the 2p1=2 level and DEsp is the Lamb shift dividing the
metastable state (2s1=2) and radiating state (2p1=2). Given a large enough magnitude
of the field, the lifetimes of the metastable and radiating levels become equal. The
role of these effects in plasmas is examined in more detail below.

The calculations of the Stark spectral splitting of non-hydrogenic ions with
regard to fine structure require simultaneous consideration of both the interelectron
and spin–orbital interactions. The latter can be taken into account with the help of
perturbation theory in the Pauli approximation up to ion charges Z ¼ 30 (Klarsfeld
1969). The term structure is complex, and the same is true for the atomic state wave
functions. Therefore, as a rule the spectral line intensity calculations are carried out
with the help of numerical methods.

The increase of Z leads to a sharp increase of forbidden transitions. Thus, for
example, the probabilities of quadrupole transitions E2 are ðZe2=�hcÞ2 times smaller
than the probabilities of allowed dipole transitions, and as a consequence, they
increase sharply with increasing Z. The width of the two-photon transition 2s�1s
increases in a highly charged ion as (Klarsfeld 1969):
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c2s�1s ¼ ð8:2283� 0:0001ÞZ6 ðs�1Þ ð1:83Þ

and for values as low as Z ¼ 20 becomes of the same order of magnitude as the
width of the allowed transition 2p�1s in the neutral hydrogen. The probabilities of
magnetic dipole transitions (M1) increase analogously.

The transition probabilities M1 and E2 between the fine structure sublevels
increase especially sharply. Indeed, for such a transition, the transition frequency x
itself increases proportionally to Z4. Therefore, radiation widths proportional to x3

increase like Z12 or even more sharply. For example, for the transitions 2s1=2 �
1s1=2 in H-like ions we obtain:

crðM1Þ ¼ 2:46� 10�16Z10 s�1: ð1:84Þ

The sharp increase of transition probabilities of multipoles leads to the oppor-
tunity of observations even under the conditions of laboratory plasmas. An example
is the M1 transition in the Fe XX ion with a wavelength of k ¼ 2665 Å observed in
the plasma of the Princeton Tokamak PLT. The corresponding radiation width of
the transition is equal to 570 s�1 (Sudkewer 1981).

From the above, it is evident that the main peculiarity of HCI spectra is a sharp
increase of the transition probabilities as compared with the neutral atom. Under
rarefied high-temperature plasma conditions of the Sun or of thermonuclear mag-
netically confined plasmas, the intensities of forbidden transitions are comparable
with the intensities of the allowed transitions. This is due to the fact that for Z-
values Z
 20 the radiation decay rates cr both for the allowed and forbidden
transitions begin to dominate over the rates of the states’ collisional excitation.
Under such conditions of “coronal” equilibrium (e.g., taking place in the Sun’s
corona), the line intensities are obviously determined by atomic states excitation
rates (since every act of an excitation is certainly accompanied by the radiation).
The excitation rates for different sublevels, unlike radiation transition’s rates, are of
comparable order (Sudkewer 1981; Sobelman et al. 1995).

As an example, Fig. 1.6 shows the “Corona” X-ray spectrum of argon (right)
observed in a tokamak. The left part of Fig. 1.6 schematically depicts the relevant
atomic levels. Here, the resonance line corresponds to the dipole-allowed transition
(E1)

W ¼ 1s2p 1P1 ! 1s2 1S0 þ �hxW

in He-like argon,

X ¼ 1s2p 3P2 ! 1s2 1S0 þ �hxX
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the magnetic dipole transition (M1),

Z ¼ 1s2s 3S1 ! 1s2 1S0 þ �hxZ

the magnetic quadrupole transition (M2), and

Y ¼ 1s2p 3P1 ! 1s2 1S0 þ �hxY

the dipole-allowed intercombination transition (E1). It can clearly be seen that the
line intensities of the W, Y, X, Z lines are of comparable order although their
transition probabilities differ by many orders of magnitude (e.g., for argon:
AðWÞ ¼ 1:07� 1014 s�1, AðYÞ ¼ 1:82� 1012 s�1, AðXÞ ¼ 3:16� 108 s�1,
AðZÞ ¼ 4:80� 106 s�1). This is due to the strongly populated metastable states in
low-density plasmas (see also Chap. 6). The spectrum of Fig. 1.6 also demonstrates
a rather strong emission of Li-like satellites (designated as “n = 2”, “n = 3”, and
“n = 4”)

Li-like satellites ¼ 1s2lnl0 ! 1s2nl0 þ �hxsatellite

and some emission of Be-like satellites

Be-like satellites ¼ 1s2l2l02l00 ! 1s22l02l00 þ �hxsatellite:

The line emission of the He-like W-, Y-, Z-, X-lines as well as the Li-like satellites
1s2lnl′ permits a unique characterization of the tokamak plasma, in particular with

Fig. 1.6 High-resolution X-ray spectrum of argon observed in a tokamak
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respect to electron temperature, ion temperature, charge exchange with the neutral
background and neutral beam injection (Rosmej and Lisitsa 1998; Rosmej et al.
1999a, b, 2006; Bureyeva et al. 2003) as well as impurity diffusion.

1.3 Autoionizing Atomic States

1.3.1 Excitation of Core Hole States

The excitation of a number of electrons leads to the appearance of new autoion-
ization lines in atomic or ionic spectra. The classic examples are the simplest
autoionization states of a two-electron helium atom. The peculiarities of these states
are connected with the fact that strictly speaking, they are not discrete but have a
finite width C connected with the possibility of the atom’s disintegration of the
autoionization state into an ion and a free electron.

To discern the essence of the matter, let us consider an approximate model of the
autoionization via the helium state 2s2p 1P emerging during the excitation of both
of its electrons at the atomic level n ¼ 2. The usual helium spectrum is the spectrum
of excitation of one of its two electrons. This energy spectrum corresponds to the
system of rigorously discrete levels, and the first excited state, the n ¼ 2 level, lies
approximately 20 eV above the ground state. These discrete levels condense
towards the boundary of the discrete spectrum–continuum, situated approximately
25 eV above the ground state.

Let us now assume that the atom is divided into two parts, namely: The excited
electron is in the state n ¼ 2 ðDE12 ’ 20 eVÞ and the remaining one-electron ion is
called the core. The energy levels of such a core are hydrogen-like and they respond
to the nuclear charge Z ¼ 2, so that its excitation energy into the state n ¼ 2 is
approximately equal to DEc ¼ Z2Ryð1� 1=4Þ ’ 40 eV. Hence, the excitation
energy of two electrons (the external and the core electrons) at a given time is
approximately equal to DEð2Þ ¼ DE12 þDEc ’ 20 eVþ 40 eV ¼ 60 eV. Thus, the
helium atom has a discrete state with the energy DEð2Þ ’ 60 eV exceeding the
atomic ionization potential I ’ 25 eV; that is, it is situated deeply in the continuum
(or in the background of the continuum). However, this state is discrete only in the
zeroth approximation when we have neglected the interaction of electrons between
each other. Taking into account this electron interaction results in a decay of the
autoionization state. One can imagine the mechanism of such decay in the fol-
lowing way: The inner core electron makes a transition to the ground state (1s) and
the external electron is ejected into continuum. Such a process is named “core
relaxation” and is accompanied by ejection of an external electron (Auger electron).
Though the division of atomic electrons into the “core” and “external” parts is
relative, it is at the same time rather visual and we shall use it in future discussions.
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1.3.2 The Interaction of Discrete States with a Continuum:
Fano resonances

As stated above, the autoionizing states are non-stationary and experience a decay
described by the autoionization width C. This decay is due to the interaction of the
discrete state with a continuous spectrum of free electron states. The description of
the autoionization decay processes is in many respects similar to the description of
radiative decays for which the role of the continuum is played by a number of
electromagnetic field harmonics. A corresponding theory for autoionizing states
may be developed by an analogy with the general theory of states damping. The
initial research was performed by Fano (1961) applied to the photoeffect. The
essence of Fano’s approach involves the construction of correct stationary wave
functions of a system of a “discrete level continuum,” including the interaction
between them. The problem is the generalization to the continuum spectrum from
the known problem of the energy spectrum of two interacting discrete levels. The
correctly constructed wave functions are then used later for the calculation of the
transition probabilities between them and another discrete atomic level, or the
atomic ground state for photoeffect problems, in particular.

Another approach was developed quite independently and somewhat later by
Kompanets (1968), while somewhat later also a generalized formulation has been
proposed (Lisitsa and Yakovlenko 1974). In contrast to the Fano method (Fano
1961), the Kompanets approach is based directly on time-dependent approaches
being connected by a Fourier transform and they give identical results for the final
transition probability. Nevertheless, the non-stationary approach is by far more easy
and allows further advancement into the domain of strong interactions. Thus, we
shall briefly consider both approaches.

The existence of autoionizing states leads to the appearance of sharp peaks for
the probabilities of processes with the participation of a continuous spectrum, like
photoionization, inelastic scattering, and so on.

To calculate effects of this kind, Fano (1961) suggested a method that is based
on the determination of a mixed state of the system “discrete level continuum” by
the diagonalization of their interaction. The essence of his methods encompasses
the following. Consider the Hamiltonian

H ¼ H0 þV ð1:85Þ

having the states of discrete Wn and continuous Wm spectra

hWnjHjWn0 i ¼ Endnn0
hWmjHjWm0 i ¼ EmdðEm � Em0 Þ: ð1:86Þ

Here, En and Em are the energies of the discrete and continuous states. The mag-
nitude V depicts the interaction between the discrete and continuous states:
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hWmjHjWni ¼ Vmn: ð1:87Þ

Let us find the eigenfunctions of the Hamiltonian (1.85). For this purpose, we
expand the wave function W into the states of discrete and continuous spectra

W ¼ aðEÞWn þ
Z

dE0 dm
dE0 bE0Wm0 ; ð1:88Þ

where the indices of the continuous states m indicate the integration over the energy
E by introducing the density of states dm=dE.

Fano determined the coefficients aðEÞ and bE0 from the wave function (1.88) of
the discrete level against the background of the continuum. The result for coefficient
aðEÞ takes the form:

jaðEÞj2 ¼ jV j2
ðE � En � DÞ2 þ p2jV j4 ; ð1:89Þ

where D represents a shift of the resonance transition with respect to En (Fano
1961). It is seen from (1.89) that the initial discrete state runs into the resonant
curve with a half-width of pjV j2 determined by the interaction with the continuum.
This means that if at some moment in time the system has been in state Wn, then its
average lifetime determined with respect to the decay into the continuum is equal to
�h=2pjV j2. The further use of the Fano method consists in the calculation (with the
help of perturbation theory) of the transition probability from the ground state W0

into a determined mixed state W (1.88).
Kompanets (1968) suggested a non-stationary approach to the description of

interactions with a continuum for resonance phenomena in the photoeffect. The
basis of such a theory involves taking into account three types of atomic states,
namely: the initial state with amplitude c0, the discrete autoionizing state cn, and the
continuum state cE. The matrix elements of the transitions from the initial state to
the level n are designated by H0n, one to the continuum by H0E, and at least the
interaction with the continuum characterizing the autoionization decay is designated
by Vn;E. Then, for the amplitudes mentioned, we have the system of equations:

i _cE ¼ VE;ne
ixEntcn þH0Ee

iðxe�xÞtc0; ð1:90Þ

i _cn ¼
X
E0

Vn;E0eixE0ntcE0 þH0ne
iDxetc0; ð1:91Þ

where xEn  xe � xn;Dx  x� xn: The solution of the system is performed
with the help of perturbation theory and assuming c0 ¼ 1. Writing down cE from
(1.90) in quadrature form

cE ¼ �ieðxE�xÞt �
Z t

0
H0E þVE;n � cn � eiDxt
� � � eðxE�xÞt0 � dt0 ð1:92Þ
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let us substitute (1.92) into (1.91). Making the transition in (1.91) from the sum
P

E
to the integral over energy qðEÞdE with the density of states qðEÞ, it is justified for
xt ! 1 to take out the slowly varying matrix elements at point E0 ¼ x. It results
in the following relation:X

E0
Vn;E0cE0e

iðxE0 �xÞt ¼ �pi½Vn;xH0xqx þ jVnxj2qxcn � expð�iDxtÞ	: ð1:93Þ

Substitution of (1.93) into (1.91) leads to an ordinary differential equation for c0.
Substituting its solution into (1.93), one finds the probability amplitude of the
population of the continuum state cE. Calculating the modulus of cE to the second
power, performing the integration over some continuous spectral interval E, and
performing the limit t ! 1, one obtains the final expression for the transition
probability W:

W ¼ 2pqðxÞ jH0xðxn � xÞþVx;nH0nj2
ðxn � xÞ2 þðpjVx;nj2qxÞ2

: ð1:94Þ

Equation (1.94) coincides with the Fano formula (Fano 1961). Far from resonance,
Dx � C ¼ pjVx;nj2qx, the probability is reduced to the probability of the direct
photoeffect:

Wph ¼ 2pqxjH0xj2: ð1:95Þ

In the general case, it describes the resonance process of the transition into the
continuum with regard to the interference of the direct and autoionization channels.
The introduction of the dimensionless Fano parameters

x ¼ Dx
C

; ð1:96aÞ

q ¼ Hn0

H0x2pqxVnx

����
���� ð1:96bÞ

shows that the shape of the resonance curve is described by the function

f ðxÞ ¼ ðxþ qÞ2
x2 þ 1=4

; ð1:97Þ

having a typical asymmetrical form.
Let us discuss the physical sense of the Fano formula (1.94). First of all, it is

evident that the photoionization process is of resonant type with a probability which
increases sharply for Dx�C. The first element in the numerator in (1.94) describes

the decay of the initial state c0 into the continuum with amplitude ðWphÞ1=2 due to
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direct photoionization without any connection with state cn. The second term
describes the decay of the level c0 into the continuum over the intermediate state cn;
namely, the decay amplitude is proportional to the matrix element H0n of the
transition from c0 into cn, multiplied by the amplitude ðC1=2Þ of the decay of state
cn. Thus, (1.94) allows for two opportunities for the state c0 to decay into the
continuum, namely directly (with probabilityWph) and over the state cn. Both states
c0 and cn “resound” against the background of the continuum in the interaction
which leads to the decay of the states with probabilities Wph and C as well as to the

additional interference connection ðWphCÞ1=2 of these states. The connection is
obviously realized by transitions from level c0 into the continuum and from the
continuum into level cn.

1.4 Rydberg Atomic Autoionizing and Non-Autoionizing
States in Plasmas

1.4.1 Rydberg Atomic States

We now pay attention to highly excited (Rydberg) states of atoms and ions. In
recent years, the investigation of Rydberg states received keen interest (Stebbings
and Dunning 1983). The great interest of Rydberg states for plasma applications is
connected with the high multiplicity of atomic states from ionized atoms bringing
their spectra to hydrogen-like ones, and with the effective population of highly
excited atomic states in a plasma medium.

As a rule, the description of the Rydberg states is connected with quasi-classical
or pure classical methods. A difficulty arises in the direct application of quantum
mechanical methods for large quantum numbers that lead to great numerical dif-
ficulties caused by the sharp increase in the number of quantum states ð/ n2Þ.
Therefore, the precision of quantum calculations usually diminishes with the
increase of n. At the same time, it is clear that classical methods should work
successfully for large n.

The usual channel of Rydberg state population for low-temperature plasma is
three-body recombination and cascade excitation, and for high-temperature plasmas,
these are photo and dielectronic recombinations. An important population channel
for HCI excited states is their charge exchange with neutral atoms which exist
already (neutral background) or are introduced into plasmas for heating (neutral
beam injection or neutral beam heating). The typical values of the main quantum
numbers n of the excited states are about n ’ 20, for hydrogen-like ions and are
10� n� 100 for highly charged ions. The special cases are atoms in rarefied
astrophysical plasmas that are excited as a rule by photoexcitation and leading to
very large values of n up to n ¼ 400�600 (Stebbings and Dunning 1983).

Also in dense plasmas, Rydberg transitions became of considerable interest.
They can be used for diagnostic purposes, i.e., to determine the bulk electron
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temperature in non-Maxwellian plasmas (Rosmej 1995) and also for the determi-
nation of ionization potentials (Palchikov et al. 2002).

1.4.2 Autoionizing Rydberg Atomic States

Recently, also Rydberg satellite spectra from autoionizing states became of
increasing interest for space-resolved X-ray spectroscopy. They have been identi-
fied in laser-produced plasmas with the help of atomic structure calculations
(Rosmej et al. 2001a; Skobelev et al. 2002). Figure 1.7 shows a spectrum from a
dense ns-laser-produced silicon plasma in the high-energy spectral range of the
Li-like Rydberg satellites, i.e.,

1s2lnl0 ! 1s22lþ �hxsat:

The low-energy transitions

1s2lnl0 ! 1s2nl0 þ �hxsat

have serious impact on the interpretation of the resonance line emission. It has been
demonstrated with the help of high-resolution X-ray spectroscopy and spectral
simulations (Rosmej et al. 1998) that resonance line emission can effectively be
replaced by an accumulation of Rydberg satellites in ns-laser-produced plasmas
(Rosmej and Faenov 1997; Rosmej 1998; Rosmej et al. 1997a, b, 1998, 2000) as
well as in fs-laser-produced plasmas.

Fig. 1.7 Rydberg
high-energy spectrum of hot
dense silicon
ns-laser-produced plasmas.
For Li-like Rydberg 1s2lnl′-
satellites with n > 3, the
spectral distribution splits
essentially into three groups.
For satellites with n > 5, the
groups of different n-quantum
number “mix” with each other
and the series limit is located
near the He-like Hed
transition
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1.4.3 Dielectronic Satellite Accumulation
in ns-Laser-Produced Plasmas

Figure 1.8 shows the space-resolved X-ray emission spectrum from a ns-laser
irradiating a solid magnesium target. It can clearly be seen that far from the target
surface, the emission is dominated by the He-like W- and Y-line. At closer distances
to the target surface, intense satellite emission develops. The Li-like 1s2l2l′-satellite
emission is labeled according to the notation of Gabriel (1972), and the potential
wavelengths interval is indicated by the dashed horizontal line (target distance
about 90 lm).

At very small target distances (below 70 lm), the resonance line transforms into
a very broad and complex structure and seems even to disappear very close to the
target surface. This complex resonance line structure has been identified as a
dielectronic satellite accumulation (Rosmej and Faenov 1997; Rosmej et al. 1997a,
b, 1998), the so-called DSA model (Rosmej and Faenov 1997) in plasmas where the

Fig. 1.8 Space-resolved
X-ray emission spectrum
from a ns-laser-produced Mg
plasma. The MARIA
simulations are carried out for
a strongly coupled plasma
with ne = 8 � 1021 cm−3,
kTe = 100 eV, L = 15 lm
resulting in an ion–ion
coupling parameter of Cii � 2
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ion–ion coupling parameter (Z is the ionic charge, ni is the ionic density, and kTe is
the electron temperature)

Cii ¼ 2:32� 10�7 � Z
2 � n1=3i ðcmÞ
kTe ðeVÞ ð1:98Þ

achieves values of the order of 1 (Rosmej et al. 1998, 2003). The basic mechanisms
for the DSA in strongly coupled plasmas have been identified via spectral simu-
lation with the MARIA suite of codes (Rosmej 1997, 1998, 2001, 2006): high line
center opacity of the resonance line and low temperature. Figure 1.8 shows the
spectral simulation carried for an optically thick magnesium plasma with electron
density ne = 8 � 1021 cm−3, electron temperature kTe = 100 eV, and effective
plasma dimension of L = 15 lm. These parameters correspond to a strongly cou-
pled plasma with an ion–ion coupling parameter (1.98) of Cii � 2. The line center
opacity of the He-like resonance line W is about s0 (W) � 170, and even the
intercombination line Y and the Li-like j-satellite achieve values of optical thickness
of s0 (Y) � 0.3 and s0 (j) � 4, respectively. Due to the large opacity of the reso-
nance line and the Li-like n = 2 1s2l2l′-satellites, the Rydberg satellite emission
starts to be dominating (negligible opacity) near the target surface. We note that
Rydberg satellites accumulate not only near the He-like resonance line W but also
near the He-like intercombination line Y (Rosmej et al. 1997a).

Similar observations have been made for the He-like 2l2l′-satellites near Lyman
a (Renner et al. 2001). The strongly coupled plasma regime can be likewise a
favorable parameter regime for the creation of hollow ion configurations of the type
K1L0M2 via the so-called excited state coupling (Rosmej et al. 1998, 2003) that give
rise to anomalous intense satellite emission near the He-like transition
1s3p 1P1 ! 1s2 1S0 þ �hxHeb.

1.4.4 Transient Three-body Recombination of Dielectronic
Satellite Emission

In fs-laser-produced plasma, transient three-body recombination has been identified
as an important mechanism for dielectronic satellite accumulation (Rosmej et al.
1997a), e.g., the population of autoionizing Rydberg levels via three-body
recombination according to

1s2lþ eþ e ! 1s2lnl0

and subsequent radiation emission of Rydberg satellites in the low-energy region
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1s2lnl0 ! 1s2nl0 þ �hxRy;Hea

and

1s2lnl0 ! 1s22lþ �hxRy;Hen

in the high-energy region.
Figure 1.9 shows the MARIA simulations of the transient spectral emission of a

plasma produced by fs-laser irradiation of a solid Mg target. The simulations cal-
culate the time-dependent atomic populations njðtÞ from the evolution of the tem-
perature and density (including prepulse, rapidly heating, and the cooling phase)
and include also hot electrons [characterized by the hot electron fraction fhotðtÞ and
hot electron temperature kThot; see Rosmej (1997)], opacity, and differential plasma
motion:

@njðtÞ
@t

¼ �njðtÞ �
X
k

WjkðtÞþ
X
l

nlðtÞ �WljðtÞ ð1:99Þ

and

IxðtÞ ¼
XNmax

j¼1

XNmax

i¼1

�hxji

4p
� nj � Aji � Kji � Uji; ð1:100Þ

where Kji and Uji are the time-dependent escape and optically thick line profiles
[see, e.g., (1.33), (1.34)]. The matrix WjkðtÞ includes the elementary atomic pro-
cesses that are relevant for the population and depopulation of atomic levels (e.g.,
collisional excitation/de-excitation, ionization, three-body recombination, radiative
recombination, dielectronic capture, autoionization, and radiative decay).

Fig. 1.9 MARIA simulations of the time-dependent evolution of the spectral distribution of a
fs-laser-produced Mg plasma. a Simulations including Li-like 1s2l2l′-satellites as well as Rydberg
1s2lnl′-satellites, b same simulation as in (a), however, all satellite emission is artificially switched
off
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In order to compare the time-dependent spectral distribution of (1.100) with time
integrated but spatially resolved measurements, (1.100) has to be integrated over
time:

Ix ¼
Z1
0

IxðtÞdt: ð1:101Þ

Figure 1.10 compares the experimental data with the simulations according to
(1.99)–(1.101). In order to obtain a best fit, time-dependent test functions of tem-
perature, density, and hot electron fractions have been varied until a good agree-
ment with the data was achieved.

Figure 1.10 demonstrates excellent agreement with the time-dependent non-LTE
and non-Maxwellian MARIA simulations with the spectra at target distances
between 45–100 lm. Apart the fundamental understanding of the complex line
formation of resonance line emission and dielectronic satellite emission in strongly
coupled plasmas, the analysis of the dielectronic satellite emission has outstanding
advantages for diagnostic applications to provide a unique characterization of the
plasma (see also Chap. 10).

Fig. 1.10 MARIA
simulations of the
time-dependent evolution of
the spectral distribution of a
fs-laser-produced Mg plasma
summed over the total
emission to be compared with
time-integrated but
space-resolved measurements
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1.5 Plasma Spectroscopy

The emission of light (Loudon 2000) is one of the most fascinating phenomena in
nature, and we all use light to obtain information, to diagnose something, to control
or optimize a process, or to understand what is true and what is right from spec-
troscopic diagnostics. Today plasma spectroscopy has proven to be one of the most
powerful methods to understand various physical phenomena. It provides essential
information about basic parameters (like temperature, density, chemical composi-
tion, and velocities) and relevant physical processes. The accessible parameter
range of spectroscopy covers orders of magnitude in temperature and (especially)
density, because practically all elements of particular, selected isoelectronic
sequences can be used for diagnostic investigations. These elements can occur as
intrinsic impurities or may be intentionally injected in small amounts (the so-called
tracer elements). This makes plasma spectroscopy also a very interdisciplinary
science, and several books and review articles concerning traditional plasma
spectroscopic methods have been published (Griem 1964, 1974, 1997; Fujimoto
2004; Kunze 2009; McWhirter 1965; Boiko et al. 1985; Michelis and Mattioli
1981).

The rapid development of powerful laser installations (high-energy and
high-intensity optical lasers, X-ray free electron lasers), intense heavy ion beams,
and the fusion research (magnetic and inertial fusion) enables the creation of matter
under extreme conditions never achieved in laboratories so far. An important fea-
ture of these extreme conditions is the non-equilibrium nature of the matter: e.g., a
solid is heated by a fs-laser pulse and undergoes a transformation from a cold solid,
warm dense matter, strongly coupled plasma to a highly ionized gas while time is
elapsing. We might think about using time-dependent detectors to temporally
resolve the light emission in the hope to have then resolved the problem. However,
this is not so simple: There are serious technical obstacles and also basic physical
principals to respect. A simple technical reason is that for 10 fs-laser radiation
interacting with matter, we do not have any X-ray streak camera available (the
current technical limit is about 0.5 ps). A principal reason is that the atomic system
from which light originates has a characteristic time constant with might be much
longer than the 10 fs (see also Chap. 6 for more details). The atomic system is
therefore “shocked,” and any light emission is highly out of equilibrium invali-
dating any standard methods for diagnostics (even if the experimental observation
is time resolved).

More complex physical reasons are related to the fact that the term
“non-equilibrium” concerns not only the time evolution but also the statistical
properties of the system. One important example (known for laser-produced plas-
mas and inertial fusion research) is the creation of suprathermal electrons (or hot
electrons). They seriously alter the light emission in a non-trivial manner (a trivial
change is an enhanced ionization due to hot electrons, and a non-trivial is the
qualitative distortion of ion charge stage distribution (Rosmej 1997) which in turn
invalidates the application of any standard diagnostic methods). In consequence,
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traditional equilibrium methods are not anymore applicable. Moreover, theoretical
analysis shows that often standard methods cannot be corrected or modified to be
anymore useful like they have been at the beginning of their historical foundation.

In conclusion, an essential point in modern research is not only to understand the
radiative properties by itself, but also to characterize an unknown phenomenon via
spectroscopic and atomic physics methods that are essentially independent from
other theories (plasma simulations, etc.).

1.5.1 Spatial Properties of Dielectronic Satellite Emission

Large efforts are made to create homogenous dense plasmas under extreme con-
ditions to provide samples and emission properties, which can be directly compared
with theory. Unfortunately, dense hot laboratory plasmas show almost always large
variations of the plasma parameters over space and, in consequence, a large vari-
ation of the spectral emission. As spatial parameter grid reconstructions are difficult,
X-ray spectroscopy with spatial resolution is frequently applied to obtain supple-
mentary information. The spatial resolution can be realized either with a slit
mounted at a suitable distance between the source and the X-ray crystal or by means
of curved X-ray crystals. The most commonly used curved crystal arrangements are
the Johann geometry, the Johannson geometry, and two-dimensional curved crys-
tals; a review of these methods is given in Boiko et al. (1985).

It is worth emphasizing two particular methods that turned out to be extremely
useful for dense plasma research:

(1) The vertical Johann geometry (Renner et al. 1997) which is extremely suitable
for line profile investigations (spatial resolution of some lm with simultaneous
extremely high spectral resolution of about k=dk � 6000, the spectral range,
however, is rather small, permitting only to observe, e.g., the H-like aluminum
Lymana line and corresponding satellite transitions (Renner et al. 2001). Due to
the appearance of double-sided spectra, the geometry can provide line shift
measurements without reference lines. Due to the high sensitivity of this
method, even a spin-dependent line shift of He-like ions (W and W-lines) has
recently been reported in dense laser-produced plasmas (Renner et al. 2006;
Adamek et al. 2006). These results have initiated first attempts to investigate the
density dependence of the exchange energy (Li et al. 2006; Rosmej et al. 2011),

(2) The spherical X-ray crystals (Faenov et al. 1994; Skobelev et al. 1995) which
do provide simultaneously high spectral (k=dk � 1000�6000, dependent on
the large varieties of possible geometries) and spatial resolution (about 10–
30 lm), large spectral windows [permitting, e.g., to observe all the Ka-satellite
series K1LN ! K2LN�1 þ �hxKa�sat until the He-like resonance line W for
aluminum (Rosmej et al. 2001a)] and large spatial intervals (up to cm with 10
lm resolution) and the possibility for X-ray microscopic applications
(two-dimensional X-ray imaging).
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Although the technology of space-resolved spectroscopy advances the analysis
of the radiation emission considerably, a principle difficult remains: There is always
a line of sight and a corresponding spatial integration of the radiation emission
along this line of sight. Above-discussed spatial resolution can provide spatial
resolution only for the coordinates perpendicular to the line of sight. Therefore,
even when applying two-dimensional X-ray imaging methods the principle draw-
back of the line-of-sight integration remains.

It should be noted that Abel inversion methods which are widely used in plasma
tube experiments, magnetic fusion research, etc., are difficult to implement for
dense plasmas experiments: The emission from different coordinates corresponds
often to different emission times and therefore quite different regimes are respon-
sible for the line emission (with corresponding different excitation channels, e.g.,
heating or recombination regimes). An example is the radiation emission of the
resonance line emission in dense laser-produced plasmas: During the heating
process, collisional excitation from the ground state strongly populates the upper
levels and drives correspondingly intensive line emission. When the laser is turned
off, the plasma recombines and the upper levels are populated by recombination at
much lower temperatures and often also at much lower (orders of magnitude)
densities. Interesting high-density regimes are therefore masked by a low-density
recombining regime.

The intensity driven by the low-density-recombining regime can drive even
more intense line emission than the high-density plasma heating phase itself (a
pitfall for Stark profile interpretations). This is easily seen in Fig. 1.11: A massive
Mg target is irradiated with a ns-high-energy-density laser, and the line emission is
observed with a spatial resolution in the direction of the expanding plasma. The
almost horizontal emission feature corresponds to the bremsstrahlung emission of
the target surface. Near the target surface (corresponding to the plasma heating
regime), the intensities of the He-like intercombination line Y and the resonance line
emission W are of similar order and strongly density dependent. At large target
distances (z larger than about a few 100 lm corresponding to the recombining
regime), the Y-line is as intense as the W-line and even dominates at very large
distances (z larger than about 500 lm).

Proposing the use of a streak camera sounds good to distinguish the heating and
recombination regime, but implies somehow to lose the resolution in space. We can
continue with endless discussions of technical improvements of the spectroscopic
equipment (note, e.g., there is limited hope for a 1 fs X-ray streak camera in nearest
future), but it looks like that we somehow turn in a circle and do not reach our
dream: a temporally resolved spectral photon distribution of useful atomic transi-
tions (useful in the sense that they are sensitive either to temperature, density, hot
electrons fractions, ion velocities, charge state distributions, chemical composition,
… ) originating from a single point entering the detector without interaction of the
surrounding dense plasma. Although technical developments are extremely
important, their developments alone are not sufficient to make our dream come true.
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Let us return to Fig. 1.11: It looks like that there is another class of line emission
that is important only at close target distances (note that the emission that seems to
be below the target surface is an artifact due to the fact that the line of sight of the
space-resolved spectrometer was not exactly parallel to the target surface but
enclosed an angle of 20°). This emission is due to the so-called dielectronic satellite
emission originating from autoionizing states of highly charged ions. Their primary
excitation channels are dielectronic capture, inner-shell excitation, and collisional
redistribution between the autoionizing levels. For atomic levels with large
autoionizing rates, dielectronic capture is usually the most important excitation
channel for the satellite intensity:

Isatk;ji ¼ anenk
Qk;ji

gk

exp �Ekj=kTe
� �
kTeð Þ3=2

ð1:102Þ

with

Qk;ji ¼ gjAjiCjkP
l Ajl þ

P
m Cjm

: ð1:103Þ

Qk,ji is the so-called dielectronic satellite intensity factor for the satellite radiative
transition from j ! i after dielectronic capture from level k with population nk into
level j, ne is the electron density, a = 1.656 � 10−22 cm3 s−1, gj and gk are the
statistical weights of the states j and k, Cjk is the autoionizing rate in [s−1], Ekj is the
dielectronic capture energy in [eV], and kTe is the electron temperature [eV].

Inspection of the dielectronic capture channel and the correspondingly induced
satellite line intensity (1.102) shows that the intensity is proportional to the square
of the electron density (because the ground state nk is proportional to the electron
density):

Fig. 1.11 Space-resolved
X-ray emission spectrum
from a ns-laser irradiating a
solid Mg target. At large
target distances (z > 1 cm),
the intercombination line Y is
even more intense than the
resonance line emission W,
whereas dielectronic
1s2l2l′-,1s2lnl′-satellite
emission is rather confined to
the target surface
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Isat highCð Þ / n2e : ð1:104Þ

The emission is therefore confined to high-density and also high-temperature
plasma areas because the capture energy Ekj is usually of the order of Z2

effRy (where
Zeff is the effective charge of the autoionizing configuration seen by the radiative
transition electron). This effect is clearly seen in Fig. 1.11: The 1s2l2l′- and 1s2lnl′-
satellites are visible just around the target surface. Line-of-sight integration effects
are therefore minimized, and (1.102)–(1.104) act like a “local emission source”.

For satellite transitions whose dielectronic capture is coupled to excited states,
the spatial confinement is even larger because the excited states are essentially
proportional to the squared of the electron density (via dielectronic capture).
Figure 1.12 shows an example for the Li-like 1s3l3l′-satellites that are essentially
coupled to the 1s2l-excited states in high-density plasmas (Rosmej et al. 1998).
Figure 1.12 shows a strong confinement of the satellite emission around the target
surface, whereas the Heb-line expands far into space (up to several mm). The
1s3l3l′-satellites emit almost only near the target surface and show negligible
emission above the target surface because their intensity is almost proportional to
the third power of the electron density. In low-density plasmas, the excited state
population 1s2l is small and the 1s3l3l′-satellites are rather weak because they are
coupled essentially to the He-like ground state 1s2 1S0 via dielectronic capture
(Rosmej 1998). We also note that autoionizing rates into the excited states 1s2l are
usually orders of magnitude larger than corresponding ones into the He-like ground
state 1s2 (Rosmej et al. 1998; Petitdemange and Rosmej 2013).

A further significant property of the satellite emission is that the radiation time of
dielectronic satellite transitions is dominated by the large autoionizing rate rather
than by radiative decay rate (as it is the case for usual resonance line emission), i.e.,

Fig. 1.12 Space-resolved X-ray emission spectrum of Heb and corresponding 1s2l3l′- and 1s3l3l′-
satellite transitions from a high-density ns-laser-produced Si plasma. Satellite emission is strongly
confined to the dense target surface plasma
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ssatðhighCÞ � 1
Arad þCAuger

� 1
CAuger

: ð1:105Þ

As characteristic autoionising rates are of the order of 1014 s−1, the radiative time
scale of satellite transitions is typically of the order of some 10 fs only (see also
Chap. 6).

The dielectronic satellite emission constitutes therefore a powerful class of X-ray
transitions for spectroscopic diagnostics that are originating from multiple excited
states of highly charged ions. Combined with modern spectroscopic techniques
(high spectral resolution, high spatial resolution, high time resolution, high lumi-
nosity) unique and powerful characterizations of dense hot plasmas under extreme
conditions are possible. Therefore, large theoretical and experimental efforts are
currently devoted to the investigation of the radiation emission from multiple
excited states of highly charged ions.

1.5.2 Stark Broadening Analysis of Rydberg Dielectronic
Satellites

The analysis of space-resolved emission confined to the highest densities is of
primary importance for Stark broadening analysis. Traditional applications (Griem
1964, 1974, 1997) are devoted to the analysis of non-autoionizing series lines that
bare the experimental disadvantage of important spatial and temporal integration.

In order to profit from the particular properties of the dielectronic satellite
transitions with respect to spatial and temporal integration, Stark broadening
analysis has also been developed for Rydberg satellite transitions (Rosmej et al.
2003). These complex simulations became only recently numerically feasible with
the development of powerful methods and computer codes (Talin and Klein
1982; Talin et al. 1995).

Figure 1.13 shows the Stark profile analysis of the Li-like Rydberg satellites
1s2l4l0 ! 1s22lþ �hxHec�sat (Fig. 1.13a) and 1s2l5l0 ! 1s22lþ �hxHed�sat

(Fig. 1.13b) carried out with the PPP code (Talin et al. 1995). Excellent agreement
is obtained for the 1s2l4l′-satellites. For the 1s2l5l′-satellites, the emission group
near 0.543 nm is likewise in excellent agreement, whereas the group near 0.545 nm
shows discrepancies on the blue and red wing. These deviations from the data are
due to the hollow ion Rydberg satellite transitions K1L0M1N1 ! K2L0M1 þ
�hxHollow�sat (Rosmej et al. 2003) that have not been included in the Stark broad-
ening calculations.
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1.5.3 Nonlinear Interference Effects in Stark Broadening
of Multi-electron Configurations

The general theory of impact broadening is based on the density matrix and
quantum kinetic approach (see Chap. 7) and considers the scattering amplitudes and
phases thereby allowing to consider quantum mechanical interference effects. In the
line broadening theory, interference effects arise due to transition frequencies that
coincide or are so closely spaced that the corresponding spectral lines overlap. In
some cases, the interference effects are so important that they alter the entire picture
of the line broadening and it has been noted long time ago that interference effects
may lead to a considerable line narrowing (Aleseyev and Sobelman 1969;
Sobelman et al. 1995).

For satellites’ transitions, or in general, transitions involving core hole states in
upper and lower levels, interference effects result in important line narrowing or
narrowing of the respective emission groups (Rosmej 2012a; Galtier et al. 2013) as
is demonstrated in Fig. 1.14 via the Li-like dielectronic 1s2l2l′- and 1s2l3l′-satel-
lites. It can clearly be seen that the omission of the interference effects considerably
overestimates the width of the spectral distribution of the dielectronic satellite
transitions (Rosmej 2012a). The situation is different for the high-energy channel
1s2l3l0 ! 1s22lþ �hx of the same Li-like autoionizing configurations (satellites to
Heb ¼ 1s3p 1P1 ! 1s2 1Pþ �hx). Figure 1.15 demonstrates that the inclusion of
interference effects practically do not change the overall shape of the satellite
emission.

As Figs. 1.14 and 1.15 demonstrate, the high- and low-energy channel respond
in a very different manner to quantum mechanical interference effects, that can
schematically be summarized as follows

Fig. 1.13 Stark broadening analysis of Li-like Rydberg 1s2lnl′-satellites of a dense
ns-laser-produced silicon plasma. The simulations are carried out for ne = 4 � 1020 cm−3,
kTe = kTi = 350 eV
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1s 2l nl0 ! low-energy channel : 1s2nl0 strong interference effects
high-energy channel : 1s22l weak interference effects .

�
ð1:106Þ

The origin of this different behavior with respect to quantum interference effects is the
different atomic structure of the 1s22l levels with respect to the 1s23l levels; see
Table 1.1. The table demonstrates that for the low-energy channel, much more clo-
sely lying levels are encountered than for the high-energy channel. Correspondingly,
the possibility for interference effects is larger for the low-energy channel.

We note that the fact that both channels originate from the same upper level
makes studies of nonlinear interference effect more convenient, as different level
populations for both channels (1.106) are not encountered.

Fig. 1.14 Nonlinear interference effects in Stark broadening for Li-like satellite transitions
1s2l2l0 ! 1s22lþ �hx and 1s2l3l0 ! 1s22lþ �hx of a dense aluminum plasma at
kTe = kTi = 100 eV, a ne = 1 � 1023 cm−3 and b ne = 1 � 1024 cm−3

Fig. 1.15 Nonlinear interference effects in Stark broadening for Li-like satellite transitions
1s2l3l0 ! 1s22lþ �hx of a dense aluminum plasma at kTe = kTi = 100 eV, a ne = 1 � 1023 cm−3

and b ne = 3 � 1023 cm−3

Table 1.1 Energies of Li-like aluminum levels in [eV] counted from the ground state 1s22s 2S1/2

1s22s 2S1/2 1s22p 2P1/2 1s22p 2P3/2 1s23s 2S1/2 1s23p 2P1/2 1s23p 2P3/2 1s23d 2D3/2 1s23d 2D5/2

0.0 21.824 22.541 250.50 256.50 256.71 258.89 258.95
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It is important to point out that the apparent width of a satellite group is not only a
result of the Stark broadening but also due to the spectral distribution of the oscillator
strengths (see more details in Chap. 6). Therefore, complex atomic structure cal-
culations (involving intermediate coupling, multiconfigurations, and corresponding
configuration interaction) are important to correctly predict the total width
(Stark + oscillator strength distribution) of the satellite group emission. Detailed
analysis of the precision of atomic structure calculations as well as different methods
of calculations on Stark profiles has been studied in Rosmej et al. (2013).

Also interference effects in hollow ion X-ray emission have been considered
(Rosmej 2012b). Hollow ion X-ray transitions are of great interest for the study of
high-density matter due to their negligible bound–bound opacity: The lower state of
the hollow ion X-ray transition is usually not an atomic ground state but an excited
autoionizing state that is weakly populated even in very dense plasmas (Rosmej
et al. 2015). For example, for the hollow ion configurations K0LN , the lower state of
the X-ray transitions

K0LN ! K1LN�1 þ �hxHollow ð1:107Þ

is the K1LN�1 which is an autoionizing state that is weakly populated. This is so,
because the autoionizing rate is of the order of 1013–1014 s−1 resulting in a rapid
disintegration of the lower level population via the Auger effect:

K1LN�1 ! K2LN�3 þ eAuger: ð1:108Þ

Therefore, the bound–bound opacity [see (1.57)] for these hollow ion X-ray
transitions

sðhollowÞij / fij � kji � Leff � ni K1LN�1
� � ð1:109Þ

is very low and these transitions can be observed in very high-density plasmas as
their emission might readily leave the plasma while other transitions with highly
populated lower states are strongly absorbed.

1.5.4 Hollow Ion X-Ray Emission in Dense Plasmas

A hollow ion is an ion, where one or more internal shells are entirely empty,
whereas higher shells are filled with two or more electrons. Simple examples are
the K0LxLy configurations for x = 2–8 and different numbers y of electrons in the
M-shell: e.g., x = 1 and y = 0 corresponds therefore to the H-like Lya transitions,
and x = 2 and y = 0 corresponds to the He-like 2l2l′-satellites near Lya.

Figure 1.16 shows the hollow ion X-ray emission of highly charged argon ions
with two K-shell vacancies and different numbers of L-shell spectator electrons as
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observed with high-resolution X-ray spectroscopic methods in a dense
Mega-Ampère Z-pinch experiment (Rosmej et al. 1993, 2001b), i.e.,

K0LN ! K1LN�1 þ �hxHollow: ð1:110Þ

Hollow ion transitions originating from the configurations K0LN of highly charged
ions are of particular interest for dense plasma research. These transitions connect
the most strongly bound states in atomic/ionic systems. Strongly coupled plasma
effects can therefore be studied as perturbations to these stable transitions. Next, the
response time of hollow ion emission is of the order of some 10 fs only and
represents therefore a fast X-ray emission switch at times when the plasma density
is highest (Rosmej et al. 2007). Likewise, as already discussed above, the intensity
contributions from the low-density long-lasting recombining regime is negligible.
Of particular importance for high-energy-density physics is the fact that the
absorbing lower states are by themselves autoionizing states (namely K1LN) that are
weakly populated even in dense plasmas. Radiation transport effects will therefore
be small, e.g., even in ICF plasmas with well above solid density compression.

As concerns their line identification, the hollow ion X-ray transitions K0LN !
K1LN�1 þ �hxHollow are well separated from other transitions (Rosmej et al. 2015)
and the identification of double K-hole configurations is therefore less complicated
(for N = 2–5, the transitions are essentially located between the H-like Lya-line and
the He-like Hea-line), as can be seen in Fig. 1.16.

Other well-observed examples of hollow ion configuration are of type K1L0MX

for x = 2–18 (the L-shell does not contain any electrons, whereas the M-shell is
filled with two or more electrons). The case x = 2 has been presented in Fig. 1.12
and is of particular importance for emission confined to the high-density plasma.

Fig. 1.16 Hollow ion X-ray emission from argon ions with two vacancies in the K-shell observed
in a dense Mega-Ampère Z-pinch
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Hollow ion configurations with no electrons in K- and L-shell have been considered
in Rosmej et al. (1999b), Colgan et al. (2016).

Traditionally, hollow ion X-ray emission has been observed in ion beam surface
interaction experiments (Armour et al. 1980; Briand et al. 1990) under low-density
conditions: Highly charged ions are extracted from a heavy particle accelerator at
definite energies and are then brought into interaction with matter. However,
recently also in a few visible and IR laser-produced plasma experiments, obser-
vation of hollow ion emission has been claimed (Rosmej et al. 1999b, 2015; Faenov
et al. 1999; Abdallah et al. 2000; Colgan et al. 2013), as well as in high current
dense Z-pinch plasmas (Rosmej et al. 2001b). Although hollow ion emission has
been identified on the basis of atomic structure calculations, the origin of their high
intensities in dense laser-produced plasmas and Z-pinch plasmas is not yet well
understood.

In Rosmej et al. (1999b, 2002, 2006, 2015), charge exchange between inter-
mixing inhomogenous dense plasmas has been proposed to explain HI and
dielectronic satellite emission. However, up to now no “ab initio” atomic kinetic
models were developed to provide proof of any reasonable production mechanisms
except transient three-body recombination (Rosmej et al. 1997b) and charge
exchange (Rosmej et al. 2002). We note that usual collisional–radiative simulations
indicate that HI emission in dense laser-produced plasmas should be quite
small (Rosmej et al. 2015), i.e., below bremsstrahlung. Current achievements in the
understanding of HI emission in dense plasmas concern essentially atomic structure
calculations and corresponding identification of configurations. However, agree-
ment with observed hollow ion emission (intensities) has only been achieved by
means of numerous free intensity parameters (including LTE assumptions
(Abdallah et al. 2000) to increase considerably (many orders of magnitude) the
population of the hollow ion configurations with respect to atomic ground and
singly excited states. The origin of these large parameters themselves remained not
well justified.

It is therefore of fundamental interest to develop “ab initio” hollow ion popu-
lation kinetics to shed more light into this mystery. The first attempt in this direction
has been made by the development of ab initio HI population kinetics that is driven
by intense radiation fields (Rosmej et al. 2007; Rosmej and Lee 2007). It was
shown that effective hollow ion X-ray emission can be excited up to an observable
level by the initiation of an effective photoionization chain reaction (Rosmej and
Lee 2007):

K2LN þ �hxXFEL ! K1LN þ e; ð1:111aÞ

K1LN þ �hxXFEL ! K0LN þ e; ð1:111bÞ

K0LN ! K1LN�1 þ �hxHollow�K0 : ð1:111cÞ

It is important to note that the fully time-dependent simulations carried out with the
MARIA code (Rosmej 1997, 1998, 2001, 2006, 2012a, b) did not contain any free
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parameters. The excitation mechanism is therefore well identified: chain
reaction-induced photoionization of the K-shell by intense radiation fields (for more
details see also Chap. 10). The XFEL-driven hollow ion emission according to
(1.111) predicted by the MARIA simulations for magnesium (Rosmej and Lee
2007) has finally later been observed at the X-ray free electron laser LCLS
installation irradiating solid Mg samples (Ciricosta et al. 2016). It should be noted
that also the predicted high intensity of the hollow ion emission (Rosmej and Lee
2007) (being of the same order like usual resonance line emission) corresponds to
the observations made in (Ciricosta et al. 2016). Finally, we note that X-ray hollow
ion emission has also been observed irradiating gases with intense XFEL (Young
et al. 2010). It has also been claimed that observed intense hollow ion emission in
petawatt laser-produced plasma experiments might be due to radiation fields driven
by the laser–matter interaction (Colgan et al. 2013, 2016).

Figure 1.17 shows a high-quality high-resolution X-ray spectrum of aluminum
(Colgan et al. 2013) where very intense and even dominating hollow ion emission
from various charge stages are identified (indicated as Hollow ions K0LXMY in
Fig. 1.17). Likewise, Fig. 1.17 demonstrates, that even in a harsh radiation envi-
ronment like petawatt installations, high-precision X-ray spectroscopy can be per-
formed, thus allowing to apply X-ray spectroscopic methods and atomic physics for
a unique characterization of matter under extreme conditions (Renner and Rosmej
2019). This is of great importance despite many controversially discussed phe-
nomena like suprathermal electrons, radiation fields, opacity and near-solid-density
atomic plasma physics. It is important to emphasize that the spectrum in Fig. 1.17 is
in linear intensity scale and has been obtained from a direct scan of the exposed
X-ray film. In order to avoid blacking of the X-ray film due to hot electrons, the
spectrometer was protected with metal and plastic plates and the line of sight passed
a strong static magnet (to avoid direct illumination of the crystal surface by hot
electrons).

Fig. 1.17 Hollow ion
aluminum X-ray emission
induced by irradiating a 1.5
lm thin aluminum foil with a
160 J, 0.7 ps, 1.064 lm
petawatt laser at
I = 3 � 1020 W/cm2
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Chapter 2
Radiative Characteristics of Polarized
Atoms and Ions

Abstract The chapter is devoted to an introduction of the main radiative charac-
teristics of atoms and ions to describe the light-matter interaction. The presentation
is based on the correspondence principle between classical and quantum physics in
order to derive the basic radiative properties, including the Einstein coefficients and
the dynamic polarizability of the atom. Attention is also paid to the description of
the dynamic polarizability of atoms and ions including the static, high-frequency
and resonance case. The innovative concept of local plasma frequency is introduced
for the atom that allows describing the polarizability of many-electron systems at a
semi-quantitative level. Finally, the prospective interesting polarizability of metal
nanoparticles placed in a solid-state matrix is considered within the framework of
the Mie theory and the dipole approximation.

2.1 Oscillator Strengths

The Bohr theory is not only a theory applicable to the hydrogen atom, but also a
theory of interaction of electromagnetic radiation with an atom since important
features of this interaction are described by the second and third Bohr postulates.
Moreover, the theory of interaction of radiation with atoms can be studied without
recourse to the consistent quantum-electrodynamic formalism, but with the help of
the so-called correspondence principle in the spirit of the semiclassical Bohr
approach. A starting point of such a consideration is the expression for dipole
radiation power known from classical electrodynamics (Amusia 1990):

Q tð Þ ¼ 2
3c3

€d tð Þj2;�� ð2:1Þ

where

dðtÞ ¼ erðtÞ ð2:2Þ
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is the dipole moment of a particle with charge e (understood hereafter to be an
electron). The dots above the dipole moment symbol in the formula (2.1) denote the
second time derivative. The criterion of applicability of the dipole approximation
[framework of formula (2.1)] can be formulated as

k � a; ð2:3Þ

where a is the size of the spatial region for radiation, k is the radiation wavelength.
In case of an atom, when a � 10�8 cm, the condition (2.3) covers a wide range of
wavelengths down to X-rays.

The second time derivative of the dipole moment appearing in the right-hand
side of (2.1) can be expressed in terms of the electron acceleration w : €d ¼ ew and
formula (2.1) can be rewritten as

Q ¼ 2e2w2

3c3
: ð2:4Þ

Thus within the framework of classical physics, an accelerated charged particle
will lose its energy by dipole radiation with a rate determined by the formula (2.4).
It should be noted that energy loss by a charge in the Coulomb field results not in a
decrease, but in an increase of its kinetic energy. Increased kinetic energy of a
charge is accompanied by a twofold decrease in its potential energy, which is
connected with decreasing distance to the center of the Coulomb field. As a result,
the total electron energy decreases.

In case of periodic motion of a charge with a circular frequency x0, as it occurs
with an atomic electron, the radiation power of interest is those averaged over the
period of motion T ¼ 2p=x0. To perform this averaging in the formula (2.1), we
will use the following equation that is valid for a real periodic function f tð Þ:

f tð Þ2
D E

T
� 1

T

ZT=2
�T=2

f tð Þ2dt ¼ 2
X1
n¼1

fnj j2; ð2:5Þ

where

fn ¼ 1
T

ZT=2
�T=2

f tð Þ exp �nx0tð Þdt ð2:6Þ

is the nth harmonic of the Fourier expansion of the function f tð Þ. In derivation of
the formula (2.5), it was assumed that the average over the period of the function
under consideration is equal to zero, that is, f0 ¼ 0. It should be noted that the factor
2 in the right-hand side of the (2.5) is connected with taking into account the
contribution of negative harmonics of the Fourier series ðn\0Þ.
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Using (2.5), in which it is assumed that f tð Þ ¼ €d tð Þ, we obtain from (2.1) the
following expression for dipole radiation power averaged over the period:

Q tð Þh iT¼
X1
n¼1

Qn; ð2:7Þ

where

Qn ¼ 4
3c3

€dÞn
� ��2:��� ð2:8Þ

In view of

ð€dÞn ¼ � nx0ð Þ2 dð Þn; ð2:9Þ

we find with the help of (2.8)

Qn ¼ 4 nx0ð Þ4
3c3

dð Þn
�� ��2: ð2:10Þ

The formula (2.10) describes the dipole radiation power at the nth harmonic
frequency xn ¼ nx0. In particular, the radiation power at the frequency of periodic
motion of an electron x0 (n = 1) is

Q x0ð Þ ¼ 4x4
0

3c3
d x0ð Þj j2: ð2:11Þ

Here, we re-designated the first Fourier harmonic of the dipole moment:
d1 ¼ dðx0Þ.

Now let us replace in the formula (2.11) the Fourier harmonic of the dipole
moment with its matrix element calculated between the states mj i and nj i (Wm;n rð Þ
are the corresponding state wave functions):

d x0ð Þ ! dmn � mh jd nj i ¼
Z

drW�
m rð Þ � d �Wn rð Þ; ð2:12Þ

where the frequency of the periodic motion x0 will be replaced by the frequency of
the transition nj i ! mj i:

x0 ! xmn ¼ En � Em

�h
: ð2:13Þ
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As a result, instead of the formula (2.11), we will obtain

Qmn ¼ 4x4
mn

3 c3
dmnj j2: ð2:14Þ

The quantity (2.14) can be called electromagnetic radiation power in transition
of an atomic electron from the stationary state nj i to the stationary state mj i. It
describes the intensity of radiation of different spectral series of a hydrogen atom:
the Lyman series (m = 1), the Balmer series (m = 2), the Paschen series (m = 3),
etc. However, it should be remembered that, in contrast to the classical radiation
power (2.1), the quantity (2.14) should be understood statistically, that is, as a result
of averaging over an ensemble of atoms.

If now the radiation power (2.14) is divided by the energy of the transition under
consideration DEmn ¼ �hxmn, we obtain a quantity with dimension of reciprocal
time coinciding with the Einstein coefficient for spontaneous radiation Amn:

Qmn

DEmn
¼ 4x3

mn

3 �h c3
dmnj j2¼ Amn ¼ 1

smn
: ð2:15Þ

In the last equality of the formula (2.15), there is introduced the lifetime smn of
the state nj i with respect to its spontaneous decay to the lower state mj i. This time
for the transition 2j i ! 1j i in a hydrogen atom is s12 � 1:6� 10�9 s.

Thus the use of the formula of classical electrodynamics (2.1) and replacements
in (2.12)–(2.13) allowed to obtain a quantum result for the power of radiation of
spectral lines (2.14) and the probability of spontaneous radiation (2.15). This
reflects the principle of correspondence between classical and quantum physics.
This principle can be formulated as follows: Quantum-mechanical expressions are
obtained from classical expressions if in the latter the Fourier components of
physical quantities are replaced by the corresponding matrix elements. In this case,
the quantum transition frequency should coincide with the Fourier component
frequency (Brandt and Lundqvist 1965).

Curiously, the existence of a finite lifetime of the excited state nj i can be
interpreted in the spirit of the correspondence principle as “falling” of an electron
into the nucleus due to photon radiation—which is just the process, against which
the second Bohr postulate “struggles”. This “falling” goes on until the electron
reaches the ground state m ¼ 1 with the lowest possible (from the point of view of
quantum physics) energy.

To clear up the physical justification of the second Bohr postulate, we will
introduce a classical period of electron revolution for the orbit with principal
quantum number n, radius rn and velocity tn:

Tn ¼ 2prn
tn

¼ n3 2psa: ð2:16Þ
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Now let us estimate the ratio of the period (2.16) to the lifetime smn. Using
(2.15), (2.16) and assuming that rmn � aB Rðm; nÞ, where Rðm; nÞ is a function of
the order of unity, we have approximately

Tn
smn

� Tn
s1n

� anð Þ3 R2 1; nð Þ � 4� 10�7 n3R2 1; nð Þ; ð2:17Þ

where n3R2ð1; nÞ ! 1 for large numbers n (see the asymptotic formula in
Table 2.1). The second approximate equality in (2.17) reflects the fact that the
lifetime of the excited state of a hydrogen atom is dominated by its transition to the
ground state.

From the obtained relation (2.17), it follows that the period of electron revolution
in the classical orbit is several orders of magnitude less than the lifetime in this state
nj i. Thus these states may be considered to a good degree of accuracy to be
stationary according to the first two Bohr postulates. This stationary is a conse-
quence of the small value of the fine structure constant a that is responsible for the
electromagnetic interaction.

The principle of correspondence between classical and quantum physics con-
cretized for radiative transitions in an atom is called the spectroscopic principle of
correspondence. It can be formulated as follows: an atom in interaction with an
electromagnetic field behaves as a set of classical oscillators with eigenfrequencies
equal to frequencies of transitions between atomic energy levels. This means that to
each transition between atomic states jj i and nj i is assigned an oscillator with an
eigenfrequency xnj. Let us call these oscillators transition oscillators. The contri-
bution of transition oscillators to the response of atoms to electromagnetic inter-
action is proportional to a dimensionless quantity called oscillator strength. The
higher the value of the oscillator strength, the stronger is the corresponding tran-
sition. The oscillator strength for the transition between the discrete spectrum states

Table 2.1 Oscillator strengths for a hydrogen atom

Initial state 1s 2s 2p 3s 3p 3d

Final state np np ns nd np ns nd np nf

n = 1
2
3
4
5
6
7
8P1

n¼9 fn0
Asymptotic formula

–

0.4162
0.0791
0.0290
0.0139
0.0078
0.0048
0.0032
0.0109
1.6n–3

–

–

0.4349
0.1028
0.0419
0.0216
0.0127
0.0081
0.0268
3.7n–3

−0.139
–

0.014
0.0031
0.0012
0.0006
0.0003
0.0002
0.0007
0.1n–3

–

–

0.696
0.122
0.044
0.022
0.012
0.008
0.023
3.3n–3

–

−0.141
–

0.484
0.121
0.052
0.027
0.016
0.048
6.2n–3

−0.026
0.145
–

0.032
0.007
0.003
0.002
0.001
0.002
0.3n–3

–

–

–

0.619
0.139
0.056
0.028
0.017
0.045
6.1n–3

–

−0.417
–

0.011
0.0022
0.0009
0.0004
0.0002
0.0007
0.07n–3

–

–

–

1.016
0.156
0.053
0.025
0.015
0.037
4.4n–3

Discrete spectrum
Continuous spectrum

0.5650
0.4350

0.6489
0.3511

−0.119
0.008

0.928
0.183

0.707
0.293

−0.121
0.010

0.904
0.207

−0.402
0.002

1.302
0.098

Total sum 1.000 1.000 −0.111 1.111 1.000 −0.111 1.111 −0.400 1.400
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jj i ! nj i, fnj (in quantum mechanics, it is the practice to write the state indices from
right to left—corresponding to absorption), is determined by the formula

fnj ¼ 2me xnj nh jd jj ij j2
3 e2 �h gj

; ð2:18Þ

where gj is the statistical weight of the state j. From the formula (2.18), it follows
the relation gj fnj ¼ �gn fjn since the oscillator strength for a transition with
decreasing energy is negative. According to its physical meaning, the oscillator
strength of a one-electron atom is always less than one.

The formulation of the correspondence principle via the oscillator strength in the
form of (2.18) corresponds to the dipole approximation if the criterion of (2.3) is
fulfilled. Otherwise, the definition (2.18) should be generalized to include also the
non-dipole part of the interaction of electromagnetic radiation with atomic elec-
trons. The non-dipole nature of interaction is found to be essential if the matrix
element of the dipole moment in the formula (2.18) is equal to zero. Such transi-
tions are called dipole-forbidden transitions in contrast to dipole-allowed transi-
tions, when nh jd jj i 6¼ 0. Equality or inequality with respect to zero of the dipole
moment of a transition can be predicted from an analysis of the symmetry of states
involved in the transition. The relations between characteristics of atomic states
allow predictions of a nonzero value of nh jd jj i are called selection rules for dipole
radiation. These rules have the simplest form for the hydrogen-like ion where the
systematics of its electronic states (neglecting the spin–orbit interaction) is rather
simple. An energy level with a principal quantum number n has a 2 n2-fold
degeneracy that occurs as follows. First, there is a degeneracy with respect to the
orbital quantum number l that is specific for a hydrogen-like ion: states of an atomic
electron with l ¼ 0; 1; . . . n� 1 designated as n; lj i have energy En. We note that to
numerical designations l ¼ 0; 1; 2; 3; 4; 5; 6. . . there correspond letter designa-
tions: s; p; d; f ; g; h; i. . . Then, each state n; lj i is degenerated with respect to the
value of the projection of an electron orbital moment on a dedicated axis. This
degeneracy is of general character and is connected with the spherical symmetry of
the atomic potential. The quantum number of the projection of a moment of
momentum ml runs over 2 lþ 1 values: ml ¼ �l;�lþ 1; . . .; l� 1; l, to which the
states n; l; mlj i correspond. Finally, the electronic states n; l; mlj i are doubly
degenerated with respect to the electron spin projection, which results in a 2 n2-fold
degeneracy of an energy level of a hydrogen-like ion with a principal quantum
number n. It should be noted that this classification is valid for discrete spectrum
states. In the case of a continuous spectrum, there is an additional degeneracy of
states resulting from different directions of electron momentum.

In terms of the given state classification, selection rules for dipole radiation of a
hydrogen-like ion come into play as follows. Allowed transitions are transitions, for
which an orbital quantum number changes by one: l ! l	 1. In this case, the
magnetic quantum number changes by no more than one: ml ! ml;ml 	 1. In
particular, if the magnetic quantum number does not change, linearly polarized
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radiation is emitted (absorbed), whereas in the opposite case circularly polarized
radiation is emitted (absorbed). A particular case of the selection rules is the average
dipole moment of an atom in the absence of external fields. It is equal to zero, i.e.,
dh i ¼ 0 as a consequence of the spherical symmetry of an atom.
Besides electron transitions in a discrete spectrum (bound–bound transitions),

there are also transitions from bound states to continuous ones (bound-free tran-
sitions), for which the concept of oscillator strength by a formula similar to (2.18)
can also be introduced. Physically, to a bound-free transition, there corresponds
atomic ionization. In contrast to the case of a bound–bound transition, the oscillator
strength fej for a bound–free transition to a state with an energy e is no longer a
dimensionless quantity. The dimensionality of fej is equal to a reciprocal energy,
which corresponds to the normalization of the wave function of the continuous
spectrum to the energy delta function. Therefore, for a bound–free transition,
instead of oscillator strength, the concept of oscillator strength density is used:
fej ! dfj=de.

The oscillator strengths for bound–bound and bound–free transitions in an atom
satisfy the so-called golden sum rule. For transitions from the ground state it is
expressed by the equation

X
n

fn0 þ
Z1
IP

df0
de

de ¼ Ne; ð2:19Þ

where Ip is the atomic ionization potential, Ne is the number of electrons of the
atom.

The oscillator strengths for a number of electron transitions in a hydrogen atom
are given in Table 2.1 taken from Bethe and Salpeter (1977).

From this table, we observe the following. First, for transitions with increasing
energy, the oscillator strength is larger in the case of increasing orbital quantum
number, i.e., the transition n; l ! n0; lþ 1 is stronger than the transition n; l !
n0; l� 1 if n\n0. Secondly, the sum of oscillator strengths for transitions to the
continuous spectrum decreases with increasing orbital quantum number of the
initial state, that is, states with higher orbital moments are more difficult to ionize.
Third, transitions to a state with a nearest principal quantum number have the
highest oscillator strength. Fourthly, oscillator strengths for transitions from lower
levels to states with large quantum numbers n
 10 decrease as n�3. These regu-
larities define the probabilities of corresponding radiative transitions in a hydrogen
atom.

An important property of the oscillator strength for a hydrogen-like ion is its
independence of the nucleus charge Z. This is easily seen from the definition (2.18).
Here two values appear that depend on the nuclear charge: the transition frequency
xjn and the matrix element of the dipole moment of a transition dnj. If it is
remembered that xjn / Z2 and dnj / Z�1, we immediately obtain fnj / Z0.
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It is instructive to calculate oscillator strengths for transitions between energy
levels of a quantum harmonic oscillator. In this case, the formula (2.18) can be
rewritten as

fN0N ¼ 2mx0 N 0h ĵz Nj ij j2
�h

; ð2:20Þ

where hN 0 ĵz Nj i is the matrix element to be determined of the harmonic oscillator
with an eigenfrequency x0 and mass m. The oscillator coordinate operator is
expressed in terms of the annihilation operator â and the creation operator âþ as
follows: ẑ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�h=2mx0

p
âþ âþð Þ. Using the definitions and the property of

orthogonality of the state vectors Nj i, we obtain for the required matrix element:

N 0h ĵz Nj i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�h
2mx0

r ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
d N 0;Nþ 1ð Þþ

ffiffiffiffi
N

p
d N 0;N � 1ð Þ

h i
; ð2:21Þ

where dðm; nÞ is the Kronecker symbol. Substituting (2.21) into the definition
(2.20), we find the simple relation

fN0N ¼ Nþ 1ð Þ � d N 0;Nþ 1ð Þ � N � d N 0;N � 1ð Þ: ð2:22Þ

Hence, it follows in particular that oscillator strengths are nonzero only for
transitions to nearest energy states (the selection rule for a linear harmonic oscil-
lator). From formula (2.22), it is likewise shown how the sum rule (2.19) is fulfilled
(with Ne ¼ 1). Finally, the considered case is an example of the situation when an
oscillator strength can be an arbitrarily large quantity.

2.2 Classical and Quantum Expressions for Einstein
Coefficients

Einstein coefficients were introduced phenomenologically for the description of the
probability per unit time for three fundamental photoprocesses (photoabsorption,
spontaneous radiation, and induced radiation) in interaction of thermal radiation with
a two-level system. The consistent derivation of expressions for these coefficients is
possible only within the framework of quantum electrodynamics, a complex phys-
ical discipline considering radiation and a substance on the quantum basis.
Nevertheless, if the correspondence principle and the oscillator strength concept are
used, corresponding formulas can be also obtained in a classical manner.

The spectroscopic principle of correspondence makes it possible to represent an
atom and its interaction with radiation as a set of charged harmonic oscillators
corresponding to transitions between atomic energy levels n ! j ðEj [EnÞ. These
oscillators describing the system response to electromagnetic disturbance are called
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transition oscillators. Their coordinate xnj satisfies a damped oscillator equation
with external force, in the right-hand side of which the oscillator strength fjn 6¼ 0 (a
dipole-allowed transition) is substituted as a factor:

€xjn þ 2 djn _xjn þx2
jn xjn ¼ fjn

e
m
E tð Þ: ð2:23Þ

Here xjn ¼ ðEj � EnÞ=�h is the transition frequency, dnj is the damping constant,
e is the oscillator charge, dots above the coordinate symbol denote differentiation
with respect to time, the electric field strength EðtÞ is assumed to be independent of
the coordinate [the dipole approximation (2.3)].

In the absence of a radiation field, the transition oscillator is at rest: xjn ¼ 0 and
_xjn ¼ 0. An external field begins to “swing” the oscillator, imparting energy; forced
oscillations of the transition oscillator occur, the time dependence of which, xjnðtÞ,
can be found from the (2.23).

We obtain the following expression for forced oscillations of an oscillator for the
transition j ! n:

xjn tð Þ ¼ fjn
e
m

Z1
�1

E x0ð Þ exp �ix0tð Þ
x2

jn � x02 � 2ix0djn

dx0

2p
; ð2:24Þ

where Eðx0Þ is the Fourier transform of the electric field strength EðtÞ.
An oscillating charged oscillator radiates electromagnetic waves according to the

formula for the radiation power of a dipole (2.1). In case of oscillations under the
action of an external field, this radiation is induced radiation. If the pulse of the
external field ceases, and the charged oscillator still oscillates, corresponding
radiation is spontaneous. The probability per unit time for spontaneous radiation at
the transition between atomic energy levels j ! n is given by the Einstein coeffi-
cient Anj. The explicit form of this coefficient can be obtained on the basis of
classical consideration with the use of the spectroscopic principle of
correspondence:

Anj ¼
2 fjn e2x2

jn

3mc3
: ð2:25Þ

The formula (2.25) gives the expression for the Einstein coefficient for sponta-
neous radiation in terms of the oscillator strength for a corresponding transition. It
should be noted that the oscillator strength can be calculated theoretically or
determined experimentally.

If now in the right-hand side of the (2.25) the expression for the oscillator
strength (2.18) is substituted, we come to the following formula for the Einstein
coefficient for spontaneous radiation:
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Anj ¼
4x3

jn dnj
�� ��2

3gj�hc3
; ð2:26Þ

where dnj is the matrix element of the electric dipole moment (see also Chap. 7).
To derive the formula for the Einstein coefficient for absorption Bjn while

remaining within the framework of classical physics, we proceed from the (2.24),
from which the expressions for the transition oscillator rate can be obtained:

_xjn tð Þ ¼ �ifjn
e
m

Z1
�1

x0E x0ð Þ exp �ix0tð Þ
x2

jn � x02 � 2ix0djn

dx0

2p
: ð2:27Þ

From (2.27), we find for the period-averaged power absorbed by the transition
under the action of radiation with a spectral energy density qðxÞ:

Pjn ¼ fjn
2 p2 e2

3m
q xjn
� �

: ð2:28Þ

It will be remembered that in obtaining this relation it was assumed that the
radiation spectrum width is much larger than the spectrum width for a transition in
an atom which is true, for example, for thermal radiation.

By definition, the Einstein coefficient for absorption (in case of transition of an
atom from the state nj i to the state jj i) is

Bjn ¼ wjn

q xjn
� � : ð2:29Þ

According to the physical picture of the process, the photoabsorption probability
per unit time, wjn, is equal to the ratio of absorbed power to the transition energy:

wnj ¼ Pnj

�hxnj
: ð2:30Þ

Gathering the formulas (2.28)–(2.30), we obtain:

Bjn ¼ 2p2e2fjn
m �hxjn

: ð2:31Þ

In view of the explicit form of the oscillator strength (2.18), we find from (2.31)
the expressions for the Einstein coefficient in terms of the matrix element of the
transition dipole moment:
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Bjn ¼
4 p2 djn

�� ��2
3 gn�h2

: ð2:32Þ

The formula for the Einstein coefficient describing induced radiation follows
from (2.32):

Bnj ¼
4 p2 dnj

�� ��2
3 gj �h2

: ð2:33Þ

It should be noted that the matrix element of the dipole moment can be con-
sidered to be symmetric with respect to its indices: dnj ¼ djn (see also Chap. 7).

It is worth noting that the presented approach is valid if the external field is not
too strong, i.e., when the amplitude of oscillations of a transition oscillator is linear
with respect to the strength of the electric field in an electromagnetic wave.
Otherwise, it is necessary to take into account nonlinear effects, and more complex
considerations are required. It should be noted that the Einstein coefficient for
spontaneous radiation can be represented as

Anj ¼ Bnj qvac xnj
� �

; ð2:34Þ

where

qvac xð Þ ¼ �hx3

p2 c3
ð2:35Þ

is a quantity that can be interpreted as the spectral density of energy of vacuum
fluctuations of an electromagnetic field. Equations (2.34), (2.35) correspond to an
interpretation of spontaneous radiation as radiation induced by vacuum fluctuations.

2.3 Dynamic Polarizability of Atoms

The expression for dynamic polarizability of an atom can likewise be obtained
without recourse to quantum mechanics with the use of the spectroscopic principle
of correspondence. Let us calculate the dipole moment of an atom d in the
monochromatic field EðtÞ ¼ 2Re Ex expð�ix tÞf g that is by definition equal to

d tð Þ ¼ 2Re b xð ÞEx exp �ix tð Þf g: ð2:36Þ
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The Fourier component of the dipole moment is given by the expression

dx ¼ b xð ÞEx: ð2:37Þ

In the formulas (2.36)–(2.37), Ex is the complex electric field vector for
monochromatic radiation that is a Fourier component of EðtÞ.

It will be remembered that the dipole moment of an atom in the absence of
external fields is equal to zero due to spherical symmetry, so the value of an induced
dipole moment can really be a measure of perturbation of an atom by external
action. The linear dependence of dðtÞ on the electric field strength (2.36) is valid for
small values of E (smallness of perturbation of an atomic electron state as a result of
interaction with an electromagnetic field). Thus for sufficiently weak fields, the
response of an atom to electromagnetic disturbance can be characterized by its
polarizability bðxÞ.

According to the spectroscopic principle of correspondence, the change of an
atomic state is made up of changes of motion of oscillators that correspond to
transitions between atomic states (transition oscillators). Thus the deviations of
transition oscillators from the equilibrium position under the action of the field EðtÞ
can be considered to be small. For the nth oscillator, the equation of motion in the
harmonic approximation is given by:

€rn þ d0n _rn þx2
0n rn ¼

e
m

f0n E tð Þ; ð2:38Þ

where rn is the radius vector corresponding to the deviation of a transition oscillator
from the equilibrium position, d0n, x0n, f0n are the damping constant, the eigen-
frequency, and the oscillator strength. For simplicity, we consider a one-electron
atom in the ground state and its dipole moment d ¼ e r . In case of a multielectron
atom, the dipole moment is equal to the sum of dipole moments of atomic electrons.
In view of the correspondence principle, an induced dipole moment of an atom is
made up of the induced dipole moments dn of oscillators of transitions to the nth
state: d ¼ P

n
dn ¼ e

P
n
rn. Going to Fourier components in this equation, we have

dx ¼ e
X
n

rnx; ð2:39Þ

where rnx is the Fourier transform of the radius vector deviation (from the equi-
librium position) of the transition oscillator. From the equation of motion (2.38), it
follows:

rnx ¼ e
m

f0n
x2

0n � x2 � ixd0n
Ex: ð2:40Þ

Substituting formula (2.40) into the (2.39) and using the definition of polariz-
ability (2.37), we find
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b xð Þ ¼ e2

m

X
n

f0n
x2

0n � x2 � ixd0n
: ð2:41Þ

Hence it follows that the dynamic polarizability of an atom, generally speaking,
is a complex value with the dimensionality of a volume. The imaginary part of the
polarizability is proportional to the damping constants of the transition oscillators.
The sum in the right-hand side of the (2.41) includes both summations over the
discrete energy spectrum and integration over the continuous energy spectrum. The
imaginary part of the polarizability is responsible for absorption of radiation, and
the real part defines the refraction of an electromagnetic wave in a medium. The
expression (2.41) describes not only a one-electron atom, but also a multielectron
atom. The multielectron nature of an atom is taken into account by the fact that in
the definition of the oscillator strength (2.18) the dipole moment of an atom is equal
to the sum of dipole moments of each of its electrons.

From the (2.41), several important limiting cases can be obtained. For example,
if the frequency of an external field is equal to zero, the formula (2.41) gives the
expression for the static polarizability of an atom:

b0 � b x ¼ 0ð Þ ¼ e2

m

X
n

f0n
x2

0n
: ð2:42Þ

Hence it is seen that static polarizability is a real and positive value. It has large
numerical values if in the spectrum transitions high oscillator strengths and low
eigenfrequencies are encountered.

In the opposite (high-frequency) limit, when �hx � IP; (IP is the atomic ion-
ization potential) and the eigenfrequencies in the denominators of (2.41) can be
neglected, in view of the golden sum rule (2.19), we obtain from the formula (2.41):

b1 xð Þ ¼ � e2 Ne

mx2 : ð2:43Þ

The high-frequency polarizability of an atom (2.43) is a real and negative value.
If the frequency of an external field is close to one of the eigenfrequencies of the

transition oscillators, so that the resonance condition

x� x0nj j � d0n ð2:44Þ

is fulfilled, and only one resonance term can be left in the sum (2.41), we obtain the
following expression for the resonance polarizability:

bres xð Þ ¼ e2

2mx0n

� �
� f0n
x0n � x� i d0n=2

: ð2:45Þ
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In derivation of (2.45) from (2.41), in non-resonance combinations, the dis-
tinction of the external field frequency from the transition eigenfrequency was
neglected. Resonance polarizability is a complex value, and the real part of which
can be both positive and negative.

Equation (2.37) defines the dynamic polarizability. Taking the inverse Fourier
transform, we obtain

d tð Þ ¼
Z1
�1

b sð ÞE t � sð Þ ds; ð2:46Þ

where bðsÞ is a real function of time where its Fourier transform is equal to the
dynamic polarizability bðxÞ. The simplest expression for bðsÞ follows from the
formula (2.45):

bres sð Þ ¼ �i
e2 f0n

2mx0n
� h sð Þ � exp �ix0n s� d0n s=2ð Þ; ð2:47Þ

where hðsÞ is the Heaviside step function. The time dependence of the induced
dipole moment dðtÞ coincides with the time dependence of the right-hand side of
(2.47) for a delta pulse of the field: EðtÞ ¼ E0 dðtÞ, where dðtÞ is the Dirac delta
function. In the general case, the expression for bðsÞ can be obtained by replace-

ment of the frequency x0n !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0n � ðd0n=2Þ2
q

and summation over all transition

oscillators. It should be noted that a decrease in the oscillation eigenfrequency in
view of damping that follows from this replacement is quite natural since friction
(the analog of damping) decreases the rate of motion.

2.4 General Relations of Atomic Polarizability

From the formula (2.47), it follows in particular that the function b sð Þ is zero for
times s\0, which is a reflection of the causality principle. Really, as seen from
(2.46), in order for the effect to appear after its cause, the fulfillment of the con-
dition bðs\0Þ ¼ 0 is necessary. The causality principle imposes certain restrictions
on the form of the function bðxÞ, from which the Kramers–Kronig relations follow
that connect the real and imaginary parts of dynamic polarizability:

Re b xð Þf g ¼ 1
p
V :P:

Z1
�1

Im b x0ð Þf g
x0 � x

dx0; ð2:48Þ
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Im b xð Þf g ¼ 1
p
V :P:

Z1
�1

Re b x0ð Þf g
x� x0 dx0; ð2:49Þ

where the principal-value integral is given by:

V :P:
Zþ1

�1

f xð Þ
x� a

dx ¼ lim
D!0

Za�D

�1

f xð Þ
x� a

dx þ
Zþ1

aþD

f xð Þ
x� a

dx

8<
:

9=
;: ð2:50Þ

With the use of (2.48), (2.49), it is possible to obtain the real part of the po-
larizability via the imaginary part and vice versa. For practical purposes, it is
convenient to integrate (2.48) over positive frequencies and to represent the prin-
cipal value of the integral as a “punctured” integral:

Re b xð Þð Þ ¼ 2
p

Z1
0

x0Im b x0ð Þð Þ � x Im b xð Þð Þ
x02 � x2 dx0: ð2:51Þ

In derivation of (2.51), it was assumed that the imaginary part of the polariz-
ability is an odd function of frequency.

There is an important relation connecting the imaginary part of the dynamic
polarizability and the photoabsorption cross section rphðxÞ. This relation is called
the optical theorem and looks like

Im b xð Þð Þ ¼ c
4 px

rph xð Þ: ð2:52Þ

With the use of the optical theorem we find with (2.51)

Re b xð Þð Þ ¼ c
2p2

Z1
0

rph x0ð Þ � rph xð Þ
x02 � x2 dx0: ð2:53Þ

Equation (2.53) expresses the real part of polarizability in terms of the pho-
toabsorption cross section. In particular, for static polarizability, we have:

b 0ð Þ ¼ c
2 p2

Z1
0

rph xð Þ
x2 dx: ð2:54Þ

From (2.53), it is possible to obtain the sum rule for the photoabsorption cross
section when going to the limit x ! 1 and using the expression (2.43) for the
high-frequency polarizability:
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mc
2 p2 e2

Z1
0

rph xð Þ dx ¼ N;
2m
p e2

Z1
0

x Im b xð Þf g dx ¼ N: ð2:55Þ

The second equality in (2.55) follows from the first equality in view of the
optical theorem (2.52).

As it was noted, the above formulas for the polarizability are valid for a
spherically symmetric atomic state. In the general case, the polarizability bij is a
tensor. For an atom being in the state n l mj i, where n, l, m are the principal, orbital,
and magnetic quantum numbers, the tensor can be represented as (Amusia 1990)

bij ¼
bsnl �

1
2
P2 b

a
nl

i
2
P1 b

a
nl 0

� i
2
P1 b

a
nl bsnl �

1
2
P2 b

a
nl 0

0 0 bsnl þP2 b
t
nl

2
6664

3
7775: ð2:56Þ

Here bsnl; b
a
nl; b

t
nl are the scalar, antisymmetric, and tensor components of the

polarizability. The functions of magnetic and orbital quantum numbers P1; 2ðmÞ for
l 6¼ 0 are

P1 mð Þ ¼ m
l
; P2 mð Þ ¼ 3m2 � l lþ 1ð Þ

l 2l� 1ð Þ : ð2:57Þ

For a spherically symmetric state, when l ¼ m ¼ 0, P1 ¼ P2 ¼ 0, formula (2.56)
shows that the atomic polarizability becomes a scalar.

With the use of (2.56), it is possible to write the shift and splitting of magnetic
sublevels of the state n l mj i in the ac field E tð Þ ¼ E Re e expð�ix tÞf g (in the
general case, e is a complex vector, and ej j ¼ 1) far from the resonance as

DEnlm ¼ � 1
4
E2 bsnl xð ÞþP2 mð Þ btnl xð Þ� 	 ð2:58Þ

for linear polarization of the electric field and

DEnlm ¼ � 1
4
E2 bsnl xð Þ 	 P1 mð Þ banl xð Þ � 1

2
P2 mð Þ btnl xð Þ


 �
ð2:59Þ

for right-hand ðþ Þ and left-hand ð�Þ circular polarizations of the unit vector e. The
components of the polarizability tensor bsnl; b

a
nl; b

t
nl are

bsnl xð Þ ¼ 1
3 2lþ 1ð Þ l rl�1 xð Þþ lþ 1ð Þ rlþ 1 xð Þ½ �; ð2:60Þ

banl xð Þ ¼ 1
2 lþ 1

r�l�1 xð Þ � r�lþ 1 xð Þ� 	
; ð2:61Þ
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btnl xð Þ ¼ � 1
3 2 lþ 1ð Þ � rl�1 xð Þþ 2 l� 1

2 lþ 3
rlþ 1 xð Þ


 �
; ð2:62Þ

where

rl0 xð Þ ¼
X
n0

f n
0l0

nl

x2
n0n � x2 � ixdn0n

; ð2:63Þ

r�l0 xð Þ ¼ x
X
n0

f n
0l0

nl

xn0n x2
n0n � x2 � ixdn0n

� � ð2:64Þ

are the corresponding spectral sums. Thus the formulas (2.56)–(2.64) generalize the
concept of dynamic (dipole) polarizability of an atom to the general non-spherical
case of the state n l mj i (l 6¼ 0) when polarizability is a tensor.

In the foregoing, we were dealing with dipole polarizability that describes the
response of the atom to a spatially homogeneous electric field. If the characteristic
dimension of the spatial homogeneity of a field is less than the size of the atom, the
dipole polarizability should be replaced by the generalized polarizability of an atom
bðx; qÞ that depends also on the impulse �h q transmitted to the atom as a result of
the atom–field interaction. With the use of bðx; qÞ, the dipole polarizability of the
atomic core due to an external electric field is given by

D xð Þ ¼
Z

b x; qð ÞE x; qð Þ dq

2 pð Þ3; ð2:65Þ

where Eðx; qÞ is the space-time Fourier transform of the electric field. For the
spatially homogeneous field Eðx; qÞ ¼ EðxÞ dðqÞ and bðxÞ ¼ bðx; q ¼ 0Þ
(2.65) turns (in case of a spherically symmetric atomic state) into an entirely local
approximation DðxÞ ¼ EðxÞ � bðxÞ.

2.5 Static Polarizability of Atoms and Ions

The static polarizability b0 of a hydrogen-like ion in the ground 1s-state is

b0 ¼
9
2
a3B
Z4 ; ð2:66Þ

where aB is the Bohr radius. The value of the static polarizability b0 rapidly
decreases with increasing nuclear charge and increases sharply with principal
quantum number n. These regularities are easily understood at the qualitative level
if it is remembered that static polarizability is proportional to the volume of an atom
that decreases with increasing Z and increases strongly with n.
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For multiply charged ions (N  Z, N is the number of electrons in the ion core,
Z is the nuclear charge), the following approximate expression for the static
polarizability can be obtained:

b0 ¼
63
16

N3

Z4 a
3
B: ð2:67Þ

The dependence of the static polarizability of a multiply charged ion on the
nuclear charge is the same as for a hydrogen-like ion (2.66). This follows from
quantum considerations for ions with filled shells. In this case, if Z � N, the
minimum frequency of a virtual transition is proportional to the squared nuclear
charge. Then from the general quantum-mechanical expression for the polarizability
(2.41), it follows the above Z-dependence.

For ions with partially filled electron shells, the main contribution to static
polarizability is made by a virtual transition with no change in principal quantum
number Dn ¼ 0. In this case, b0 / Z�3.

For ions with a filled outer shell, rather good agreement with experimental data
is provided by the simple empirical formula for the static dipole polarizability of an
outer shell with principal quantum number n:

b0 ¼ Nn
n6

Z4
eff

a3B; ð2:68Þ

where Nn and Zeff are, respectively the number of electrons in the outer electron
shell and the effective nuclear charge. The latter value can be determined from
Zeff ¼ n

ffiffiffiffiffiffiffiffiffiffiffi
In=Ry

p
, where In is the ionization potential of the outer shell. The formula

(2.68) provides particular good results for neon-like ions n ¼ 2; Nn ¼ 8ð Þ. This can
be seen from Table 2.2.

2.6 Local Plasma Frequency Model of Polarizability
of Many Electron Systems

The local plasma model was proposed by Brandt and Lundqvist in the mid-1960s
(Brandt and Lundqvist 1965) for the description of the photoabsorption by multi-
electron atoms in the spectral range x� Z a.u. (here 1 a.u. = 27.2 eV is the atomic

Table 2.2 Static dipole polarizability: The value of static polarizability is given in atomic units

Ion Ca+10 Ti+12 Fe+16 Co+17 Ni+18

In, eV 558.2 737.8 1168 1293 1419

Zeff 12.8 14.73 18.54 19.5 20.43

bexp0 1.74 � 10−2 1.04 � 10−2 4.44 � 10−3 3.69 � 10−3 3.08 � 10−3

b0 1.89 � 10−2 1.09 � 10−2 4.33 � 10−3 3.53 � 10−3 2.94 � 10−3

An atomic unit of polarizability is equal to 0.149 Å3 (1 Å = 10−8 cm)
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unit of energy). In this case, in contrast to ranges of high (x� Z2 a.u.) and low
(x� 1 a.u.) frequencies, photon absorption is defined more by collective effects
rather than by one-particle interaction. Based on these qualitative considerations,
the electron core of an atom is approximated by the inhomogeneous distribution of
the charge and the interaction which an electromagnetic field is defined by the
plasma resonance condition:

x ¼ xp rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 p n rð Þ e2

m

r
; ð2:69Þ

where nðrÞ is the local electron density and xpðrÞ is its associated local plasma
frequency. It can be shown that to the condition (2.69) there corresponds the
following expression for the dipole dynamic polarizability that satisfies the
Kramers–Kronig relations (2.48), (2.49) and the sum rule (2.55):

bBL xð Þ ¼
ZR0

0

x2
p rð Þr2 dr

x2
p rð Þ � x2 � i � 0 ¼

Z
bBL r;xð Þ dr: ð2:70Þ

Here, the value bBLðr;xÞ is introduced that corresponds to a so-called spatial
polarizability density in the Brandt–Lundqvist approximation, R0 is the size of the
atom (ion). In the denominator of the integrand of (2.70) an infinitesimal imaginary
additive (designated as “i � 0”) is introduced that indicates the rule of pole bypass
in calculation of the integral.

The expression (2.70) has correct high-frequency asymptotics (2.43). In the
low-frequency limit, it gives

bBL x ! 0ð Þ ! R3
0=3; ð2:71Þ

that is, static polarizability is found to be proportional to the volume of an atom.
Despite of its apparent simplicity, the formula (2.71) well describes available

experimental data. First of all, this concerns multielectron atoms with filled shells
since in this case the main contribution to polarizability is made by the continuous
energy spectrum of an atom, and the local plasma frequency approximation (2.70)
is the most adequate. This fact is demonstrated by Table 2.3, where the values

Table 2.3 Static polarizability

Atom
(ion)

Kr I Xe I KI I Rb II Cs II Sr III Ba III

bexp0 17 27 7.5 12 16.3 6.6 11.4

bvar0 26.8 30.9 9.1 14.3 17.8 8.7 11.4

bUSh0
21.1 25.5 6.6 11.9 15.3 7.5 9.7

bStZ0
17.2 27.3 5.25 8.5 14.6

bBL0 24 27 8.6 11.6 13.5 7 8.4
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(in atomic units) of the static polarizability of atoms and ions with filled electron
shells are calculated within the framework of different models as well as experi-
mental data. For the calculations of the static polarizability in the framework of the
Brandt–Lundqvist model, the used atomic/ionic radius was calculated from the
Thomas–Fermi–Dirac model including correlation allowance.

bvar0 is the calculation from the variational method, bUSh0 is the calculation of
Shevelko and Ulanzev (1994), bStZ0 is the calculation of Stott and Zaremba (1980)
within the framework of the electron density formalism, bBL0 ¼ R3=3 is the calcu-
lation in the framework of the Brandt-Lundqvist model.

With the use of the formula (2.70) and the statistical model of an atom, the
following expression for the dynamic polarizability can be obtained:

b x; Zð Þ ¼ r3TF ~b
x
Z

� 
¼ b3 a3B

Z
~b

x
Z ma

� �
;

~b mð Þ ¼
Zx0
0

4 p f xð Þ x2 dx
4 p f xð Þ � m2 � i � 0 ;

ð2:72Þ

where rTF ¼ b aB=Z1=3 is the Thomas–Fermi radius, Z is the atomic nucleus charge,
aB is the Bohr radius, b ffi 0:8853, ~bðmÞ is the dimensionless polarizability as a
function of the reduced frequency m ¼ x=Z ma, x0 ¼ R0=rTF is the reduced atomic
radius, f ðxÞ is the universal function describing the distribution of the electron
density nðrÞ in an atom according to the formula nðrÞ ¼ Z2 f ðr=rTFÞ, ma ffi
4:13� 1016 s�1 is the atomic unit of frequency.

It should be emphasized that the dimensionless polarizability ~bðmÞ does not
depend on the atomic nuclear charge. Thus, the representation of the dynamic
polarizability of a statistical atom (2.72) reveals a scaling law with respect to the
parameter m ¼ x=Z ma.

The results of calculation of the real and imaginary parts of the dipole dynamic
polarizability of a krypton atom within the framework of the local plasma frequency
method by the formula (2.70) using the Slater and Lenz–Jensen electron densities
are presented in Fig. 2.1. Given in the same figure (curve 3) are the results of
calculation for the corresponding values in the random phase exchange approxi-
mation that is today the most consistent quantum-mechanical method of description
of the electronic structure of atoms. It is seen that the dynamic polarizability of a
krypton atom calculated in the local plasma frequency model for the Lenz–Jensen
electron density renders in a smoothed manner the quantum-mechanical features of
the frequency behavior of dynamic polarizability. These are most pronounced in the
vicinity of potentials of ionization of electron subshells. The use of Slater wave
functions allows to some extent to resolve the spectral fluctuations of the polariz-
ability in the vicinity of the ionization potentials of the electron subshells. However,
in this case, we loose the universality of the description like in the statistical model.
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Let us present the high-frequency asymptotics of dimensionless polarizability
that follows from the formula (2.72) in view of the explicit form of the function f ðxÞ
for distribution of the Thomas–Fermi and Lenz–Jensen electron densities. For the
imaginary part ~bðmÞ, we have

Im ~bT�F m ! 1ð Þ
n o

! 4:35
m4

; ð2:73aÞ

Im ~bL�J m ! 1ð Þ
n o

! 4:615
m4

: ð2:73bÞ

From the formulas (2.73), it is seen that the above statistical models give a
similar result for the imaginary part of polarizability. It should be noted that in the
hydrogen-like approximation (for a spherically symmetric atomic state) the imag-
inary part of polarizability decreases as m�4:5. The high-frequency asymptotics of
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Fig. 2.1 Frequency
dependences of the real
(a) and imaginary (b) parts of
the polarizability of a krypton
atom calculated in different
approximations: in the local
plasma frequency
approximation for the Lenz–
Jensen electron density (1), in
the local plasma frequency
approximation for the Slater
electron density (2), in the
random phase exchange
approximation (3) (Korol
et al. 1998)
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the real part of the dimensionless polarizability ~bðmÞ in both models of atomic core
electron density looks like

Re ~b m ! 1ð Þ
n o

! � b�3

m2
; ð2:74Þ

which is in qualitative agreement with the general formula (2.43). From comparison
of the expressions (2.73) and (2.74), it follows in particular that at high frequencies
the imaginary part of polarizability decreases much more rapidly than its real part.

2.7 Dynamic Polarizability of Nanoparticles

Let us calculate the dynamic polarizability of a sphere placed in a dielectric
medium. We assume that the sphere radius is much larger than the distance between
atoms in the substance. In this case, for the description of the interaction of the
sphere with an electromagnetic field the concept of the dielectric permittivity can be
used.

Using the Mie theory for calculation of the cross section of radiation scattering
by a spherical particle of radius rs, it is possible to obtain the following expression
for the polarizability of a spherical particle in terms of the Mie coefficients:

bs ¼
3
2
em

rs
x

� 3
� �i a1 x;mx;mð Þþ b1 x;mx;mð Þ½ �; ð2:75Þ

where

x ¼ k rs ¼ ffiffiffiffiffi
em

p x
c
rs; ð2:76Þ

m ¼
ffiffiffiffiffiffiffiffiffiffiffi
es xð Þ
em

s
: ð2:77Þ

m is the relative refractive index; em, esðxÞ are the dielectric permittivities of the
matrix and the material of the sphere; an and bn are the Mie coefficients in the
Legendre polynomial and spherical Hankel function expansions of a scattered wave
outside the sphere.

Hereafter, we assume that the dependence of the value em on the radiation
frequency x can be neglected. With the use of boundary conditions (for a more
detailed description, see Sect. 4.5.1), the following formulas for the Mie coefficients
can be obtained (Van der Hulst 1981):
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an x; y;mð Þ ¼ w0
n yð Þwn xð Þ � mw0

n xð Þwn yð Þ
w0
n yð Þ fn xð Þ � m f0n xð Þwn yð Þ ; ð2:78Þ

bn x; y;mð Þ ¼ mw0
n yð Þwn xð Þ � w0

n yð Þw0
n xð Þ

mw0
n yð Þ fn xð Þ � f0n xð Þwn yð Þ ; ð2:79Þ

where

wn zð Þ ¼ z jn zð Þ ¼
ffiffiffiffiffiffi
p z
2

r
Jnþ 1=2 zð Þ; ð2:80Þ

fn zð Þ ¼ z h 1ð Þ
n zð Þ ¼

ffiffiffiffiffiffi
p z
2

r
H 1ð Þ

nþ 1=2 zð Þ ð2:81Þ

are the functions introduced by Debye in 1909; jnðzÞ is the spherical Bessel func-

tion, Jnþ 1=2ðzÞ and H 1ð Þ
nþ 1=2ðzÞ are the Bessel and Hankel functions of half-integer

order. For n ¼ 1, we have

j1 zð Þ ¼ sin zð Þ
z2

� cos zð Þ
z

; ð2:82Þ

h 1ð Þ
1 zð Þ ¼ sin zð Þ

z2
� cos zð Þ

z
� i

sin zð Þ
z

þ cos zð Þ
z2


 �
: ð2:83Þ

In the limit of small parameters x ¼ k rs, the following expansions for the Mie
coefficients can be obtained from the formulas (2.78)–(2.83) (Van der Hulst 1981):

a1 ffi i s x3 1þ t x2 � i s x3
� �

; b1 ¼ i s u x5; ð2:84Þ

where

s ¼ 2
3
m2 � 1
m2 þ 2

; t ¼ 3
5
m2 � 2
m2 þ 2

; u ¼ 1
30

m2 þ 2
� � ð2:85Þ

are the auxiliary functions of the relative refractive index. In view of the formulas
(2.84), (2.85), in the limit x ¼ k rs  1 we obtain

bs x; rsð Þ ¼ r3s em
es xð Þ � em
es xð Þþ 2 em

; ð2:86Þ

the so-called Lorentz formula for the polarizability of a small spherical particle of
radius rs  k=2 p

ffiffiffiffiffi
em

p
and dielectric permittivity es xð Þ that is placed in a matrix

with a dielectric permittivity em.
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The expression (2.86) is valid for a sufficiently small nanosphere radius
rs  2 p

ffiffiffiffiffi
em

p
k, where k is the wavelength of a scattered photon. The analysis

shows that for a metal sphere in glass the formula (2.86) for the optical spectral and
adjacent spectral ranges works well for nanosphere radii less than 20 nm.

It should be noted that the expression (2.86) can be obtained to an accuracy of

the factor em with the use of the Clausius–Mossotti formula
eðxÞ � 1
eðxÞþ 2

¼ 4
3
pNabðxÞ

if in the latter it is assumed that e xð Þ ¼ esðxÞ=em and Na ¼ 1=Vs, where Vs is the
sphere volume. From the formula (2.86), it follows that the dynamic polarizability
of a sphere with small radius has a maximum for the frequency xr defined by
setting the real part of the denominator in the right-hand side of the (2.86) to zero:

Re es xrð Þþ 2 emf g ¼ 0: ð2:87Þ

The resonance (2.87) is connected with excitation of plasmons at the surface of the
sphere.

The dielectric permittivity esðxÞ appearing in (2.86) can be expressed in terms of
the real ns and imaginary js parts of the refractive index of the sphere material by
the known formula:

es xð Þ ¼ e1 xð Þþ i e2 xð Þ ¼ ns xð Þ½ �2� js xð Þ½ �2 þ 2 ins xð Þ js xð Þ: ð2:88Þ

The spectral dependences of the refractive index components nsðxÞ and jsðxÞ
for a number of metals are determined experimentally in the work of Johnson and
Christy (1972) in a range of photon energies �hx from 0.64 to 6.6 eV. Experiments
were carried with thin films with thickness’ ranging from 18.5 to 50 nm. In doing
so, it was found that the complex refractive index does not depend on the film
thickness in the range from 25 to 50 nm. Corresponding plots for silver and gold
are given in Fig. 2.2.

From the plots in Fig. 2.2, it follows that practically throughout the presented
range of photon energies the condition nsðxÞ\jsðxÞ is fulfilled, which corre-
sponds to a negative value of the real part of dielectric permittivity. Negative
dielectric permittivity means the impossibility of propagation of an electromagnetic
wave in a volumetric sample as well as reflection of radiation from such a medium.

The results of calculation from the formula (2.86) of the real and imaginary parts
of the polarizability of a silver nanosphere placed in glass em ¼ 2:25 with the use of
the data on the refractive index of silver of Fig. 2.2a are presented in Fig. 2.3. From
the figure, there follows the presence of a polarizability resonance at a photon
energy of about 3.1 eV. Within the framework of the simplest model, when the
dielectric permittivity of a metal is described by the plasma formula esðxÞ ¼
1� x2

p=x
2 (xp is the plasma frequency), the position of the maximum of the

imaginary part of the metal sphere polarizability is given by the equation following
from the resonance condition (2.87):
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Fig. 2.2 Experimental dependences of the real (solid curve) and imaginary (dotted curve) parts of
the refractive index of silver (a) and gold (b) films as functions of the photon energy (Johnson and
Christy 1972); the photon energy in electron–volts is plotted on the abscissa
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Fig. 2.3 The real and imaginary parts of the polarizability of a silver sphere with radius of 30 nm
in a glass matrix; the abscissa is plotted in electron–volts, the ordinate is plotted in atomic units
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xres ¼ xpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 em

p : ð2:89Þ

In derivation of (2.89), it was assumed that the dielectric permittivity of a matrix
in the frequency range under consideration does not depend on frequency. It should
be noted that in vacuum the resonance frequency of a plasmon at the sphere surface
is xres ¼ xp=

ffiffiffi
3

p
.

For silver �hxp � 9 eV, so in case of a glass matrix, it follows from (2.89) that
�hxres � 3:8 eV. The difference of this value from the data of Fig. 2.3 is connected
with the fact that the plasma formula for the dielectric permittivity used in
derivation of (2.89) has an appreciable error due to neglect of the contribution of
bound electrons.

A resonance increase in the polarizability of a metal nanosphere results in a
number of important optical effects caused by increasing the electric field strength
of the electromagnetic wave near the nanosphere if the condition (2.87) is fulfilled.
It should be noted that one of such effects is an increase (by more than 10 orders of
magnitude) in the probability of spontaneous Raman scattering of light by mole-
cules attached to metal nanoparticles. This effect was observed experimentally now
several times, and it has great prospects for applications.
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Chapter 3
Probabilities of Radiative Transitions

Abstract In this chapter, we consider the probability of photoprocesses including
bound–bound, bound–free, and free–free electronic transitions. This concerns
atomic radiation transitions in the discrete energy spectrum, radiative recombina-
tion, Bremsstrahlung including polarization channel, photoionization, photode-
tachment of negative ions, and phase control of photoprocesses by ultrashort laser
pulses. Considerable attention has been paid to various types of broadening of the
spectral lines of atomic radiative transitions, including plasma broadening mecha-
nisms. The rotational approximation of the Kramers electrodynamics is presented
which is suitable for describing both free–free and free–bound electronic transitions
in the high frequency limit. The photoionization of atoms is described both within
the framework of a rigorous quantum mechanical approach and with the help of a
number of approximate methods. Analytical generalized photoionization
cross section formulas from K-, L-, M-, N-, and O-shell that include also possible
inner-shell photoionization are presented. Finally, generalized scaled formulas
for radiation recombination rates into all states with principal quantum numbers
n = 1–9 and orbital quantum numbers l = 0–8 are given that can be applied for a
large variety of practical cases.

3.1 Radiative Transition Cross Sections

To calculate the probability per unit time (rate) for a phototransition between atomic
energy levels, together with the Einstein coefficient for an induced process (2.29), a
radiative transition cross section is widely used. In a monochromatic field of fre-
quency x it is determined by the equation

rjnðxÞ ¼ wjn

jðxÞ ; ð3:1Þ
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where

jðxÞ ¼ cE2
0

8p�hx
ð3:2Þ

is the photon flux density at a specified frequency and E0 is the amplitude of the
strength of the electric field of monochromatic radiation. Since the dimensionality
of the probability per unit time wjn is [s

−1] and the dimensionality of the photon flux
density is [s−1m−2], it follows from (3.1) that the cross section has the dimen-
sionality [m2], i.e., the dimensionality of an area. Thus, we can say that the cross
section describes some effective area of a hard sphere: If the projectile trajectory
touches the hard sphere, a transition takes place, and if the trajectory lies outside, no
transition occurs.

Using the formulas (2.28), (2.30), we find from (3.1) to (3.2) the following
expression for the cross section of the transition n ! j:

rjnðxÞ ¼ 2p2e2

mc
fjnG

ðhÞ
jn ðxÞ; ð3:3Þ

where GðhÞ
jn ðxÞ is the spectral form of a line of the homogeneously broadened

transition, and fjn is the transition oscillator strength (2.18). From the expression
(3.3), it follows in particular that a large oscillator strength implies a large cross
section. For dipole-forbidden transitions, when fjn ¼ 0, the cross section is equal to
zero.

Substituting the expression for the oscillator strength (2.18) into (3.3), we obtain
the expression for the phototransition cross section in terms of the matrix element of
the dipole moment djn:

rjnðxÞ ¼ 4p2xjn

3�hcgn
nh jd jj ij j2GðhÞ

jn ðxÞ: ð3:4Þ

gn is the statistical weight (the degeneracy factor) of a nth atomic energy level.

Because GðhÞ
jn ðxÞ has it maximum value at x ¼ xjn, the maximum value of the

cross section corresponds to the frequency x ¼ xjn (the resonance condition):

r maxð Þ
jn ¼ rjn x ¼ xjn

� � ¼ 8p
3�hcgn

nh jd jj ij j2 xjn

Dxjn
; ð3:5Þ

that is, it is proportional to the ratio of the eigenfrequency to the spectral charac-
teristic width of an atomic transition line. This ratio is similar to the resonator Q-
factor and is equal to the number of free oscillations of the oscillator until their total
damping. It should be noted that in the early works of M. Planck and A. Einstein on
the quantum theory of electromagnetic interaction atoms and molecules of a sub-
stance were called resonators.
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In case of natural broadening, when Dxjn ¼ Anj, (3.5) is transformed with (2.26)
to the form:

r maxð Þ
jn ¼ gj

2pgn
k2jn: ð3:6Þ

Hence, it follows that the resonance cross section of a phototransition in case of
natural broadening of a line is proportional to the squared of the resonant wave-
length kjn ¼ 2pc=xjn; that is, in a wide spectral range, it exceeds by many orders of
magnitude the geometrical cross section of an atom (equal to its area). It should be
noted that the maximum cross section does not depend on the matrix element of the
dipole moment.

For an atom under the action of radiation with a finite spectral width Dx 6¼ 0, the
probability per unit time for the excitation of an atomic transition n ! j is given by
the integral

wjn ¼
Z

rjn x0ð Þj x0ð Þdx0: ð3:7Þ

If the radiation spectrum considerably exceeds the spectral width of the transi-
tion line, i.e. Dx � Dxjn, as it is the case, for example, for the thermal radiation,
the spectral form of a transition line in the definition of the cross section can be

replaced by the delta function GðhÞ
jn x0ð Þ ! d x0 � xjn

� �
, and the integral (3.7) gives:

wjn ¼ 4p2xjn

3�hcgn
nh jd jj ij j2j xjn

� � ¼ Bjnq xjn
� � ð3:8Þ

since jðxÞ ¼ cqðxÞ=�hx, qðxÞ is the spectral radiation density. The second equality
in formula (3.8) coincides with the relation that was used by A. Einstein to describe
the interaction of thermal radiation with a two-level atom.

In the general case of an arbitrary relation between the widths of radiation
spectra and the atomic transition in an atom, the expression (3.7) should be used for
the calculation of the photoexcitation rate. It should be noted that for the calculation
of the probability per unit time for a phototransition, instead of a cross section, the
concept of a spectral Einstein coefficient

DjnðxÞ ¼ BjnGjnðxÞ ð3:9Þ

is sometimes used. The formula (3.7) can be rewritten in terms of the spectral
Einstein coefficient (3.9) with replacement of the photon flux density jðxÞ by the
spectral radiation energy density qðxÞ.

The atomic transition n ! j induced by the action of radiation corresponds to
photon absorption, if En\Ej. The reverse transition j ! n corresponds to photon
radiation that can be both induced (under the action of an external field) and
spontaneous. The cross section of induced radiation rnjðxÞ is described by formulas
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similar to (3.3)–(3.4) because the matrix element of the dipole moment can be made

symmetric by selection of the wave functions, i.e. nh jd jj i ¼ jh jd nj i and GðhÞ
jn ðxÞ ¼

GðhÞ
nj ðxÞ and the difference in expressions for the cross sections of induced radiation

and absorption consists only in different statistical weights of states. Therefore, the
expression for the cross section of induced radiation rnjðxÞ for the transition j ! n
is obtained from (3.4) by the replacement gn ! gj.

It is easy to express the absorption coefficient kjn in terms of the absorption cross
section in order to describe electromagnetic wave damping in the propagation in a
medium with resonant atoms. The damping is a result of a transition in an atom
from a lower to a higher energy state, i.e. n ! j ðEn\EjÞ: kjn ¼ Nnrjn, where Nn is
the concentration of atoms in the state n. It is obvious that the absorption coefficient
has the dimensionality of reciprocal length [m−1]. By analogy with the absorption
coefficient, it is possible to introduce an amplification coefficient for the reverse
transition j ! n corresponding to induced radiation of a photon and an increase in
radiation intensity: knj ¼ Njrnj. Therefore, the effective amplification coefficient
taking into account induced radiation and absorption can be expressed as follows:

k totð Þ
nj ¼ knj � kjn ¼ gjrnj xð Þ Nj

gj
� Nn

gn

� �
: ð3:10Þ

If k totð Þ
nj [ 0 (induced radiation dominates), radiation is amplified by the medium

of resonant atoms. Otherwise radiation is attenuated since photon absorption
dominates over induced radiation. Since the atomic transition cross section is a
positive number, then, as follows from the formula (3.10), amplification of radiation
is given by the condition:

Nj

gj
� Nn

gn
[ 0; En\Ej: ð3:11Þ

The relation (3.11) is called the population inversion condition. It is widely used in
quantum electronics, laser physics, and analogous to the study of possible radiation
amplification. In thermodynamic equilibrium, when the Boltzmann formula for
energy level populations holds true, an inequality reverse to (3.11) is fulfilled. Thus,
to obtain population inversion, it is necessary to disturb a substance considerably
from its thermal equilibrium state. This is usually achieved by the action of external
photons on a medium being called pumping.

The concept of a cross section is used not only for the description of absorption
and induced radiation, but it also characterizes other photoinduced processes such
as photon scattering, photorecombination, and bremsstrahlung. The cross section
concept is likewise used in calculations of the interaction of other elementary
particles (electrons, protons, neutrons) with atoms and molecules. In all cases, the
cross section is determined by a formula similar to (3.1), with replacement of the
photon flux density by the flux density of particles that induce the process under
consideration.

88 3 Probabilities of Radiative Transitions



It should be noted that the concept of probability per unit time for a photoin-
duced process loses its physical meaning for ultrashort electromagnetic pulses
where the duration of radiation is of the order of the period of the electric field
oscillations at the carrier frequency. Ultrashort pulses can be produced with the use
of special methods of time compression of laser radiation (CPA: chirped pulse
amplification). To ultrashort pulses in the optical range there corresponds a duration
of several femtoseconds. At present, in the visible range of laser wavelengths of
well-controlled shapes with durations of only 1.5 periods of the optical frequency
have been produced. In the UV range, pulse durations down to several hundreds of
attoseconds have been achieved. To describe the interaction of ultrashort radiation
pulses with a substance, it is more adequate to use the concept of the total prob-
ability for a process (i.e., during the total action of a pulse) that can be expressed in
terms of a cross section (Rosmej et al. 2014, 2016, 2021).

3.2 Spectral Line Shapes of Atomic Radiative Transitions

The relations (2.28)–(2.29) were obtained in the limit of radiation with a broad
spectrum (the so-called broadband illumination). In the general case, using the same
approach as for the derivation of (2.37), it is possible [using (2.27)] to find the
following expression for absorbed power by the transition n ! j:

Pjn ¼ 2p2e2

3m
fjn

Z1
0

GðhÞ
jn x0ð Þq x0ð Þdx0; ð3:12Þ

where

GðhÞ
jn x0ð Þ ¼ djn=p

� �
xjn � x0� �2 þ djn

� �2 ð3:13Þ

is the spectral form (profile) of a line transition in case of homogeneous broadening.
The function (3.13) is called the Lorentz function or Lorentzian. From (3.12) to
(3.13), it follows that external field frequencies are most effectively absorbed in the
vicinity of the transition eigenfrequency xjn. The characteristic frequency interval,
in which the interaction between radiation and the atom is most intensive, is given
by the damping constant: xjn � x0�� ��� djn. Hence, it follows that a characteristic
width of an atomic transition line (in view of both detuning signs) is given by

Dx hð Þ
jn ¼ 2djn. Substituting the damping constant from the last equation into (3.13),

we obtain the form of a line of a homogeneously broadened transition in an atom or
in any other quantum system.
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Instead of the characteristic width DxðhÞ
jn , a characteristic time can be introduced

according to

T2 ¼ 2

DxðhÞ
jn

: ð3:14Þ

The parameter T2 is called the transverse relaxation time or the phase relaxation
time. It is related to the damping constant of a transition oscillator according to
T2 ¼ 1=djn and therefore, as it follows from (3.14), defines the lifetime of a tran-
sition oscillator in the mode of free oscillation. The time T2 (as will be shown
below) is called the irreversible phase relaxation time.

Thus, from the point of view of the spectroscopic principle of correspondence,
homogeneous broadening of a spectral line is defined by the damping of a transition
oscillator occurring in free oscillation without external field.

An important particular case of homogeneous broadening is natural broadening

of a line due to spontaneous radiation: DxðhÞ
jn ¼ Anj. In this case, transition oscillator

damping is caused by the interaction of an atomic electron with the vacuum fluc-
tuations of an electromagnetic field. Natural broadening for an atom in free space is
the minimum possible, and it defines the degree of radiation monochromaticity that
is in principle achievable.

Another type of broadening occurs in interaction of radiation with an ensemble

of atoms when the transition eigenfrequency is spread over DxðinhÞ
jn for different

atoms. This means that every atom has a specific frequency shift and the observed
frequency spread belongs to the ensemble of atoms. This spread defines inhomo-
geneous broadening of a line. The spectral form (shape) is determined by the
distribution function of the frequency shifts. In the case of a Gaussian distribution
function, one has (Gaussian):

GðinhÞ
jn x0ð Þ ¼ 1ffiffiffiffiffiffi

2p
p

DxðinhÞ
jn

exp �
x0 � x cð Þ

jn

� 	2
2 DxðinhÞ

jn

� 	2
8><
>:

9>=
>;; ð3:15Þ

where xðcÞ
jn is the central frequency of a transition in an ensemble of atoms.

The spectral forms of lines for homogeneous (Lorentzian) and inhomogeneous

(Gaussian) broadening are presented in Fig. 3.1 for xðcÞ
jn ¼ xjn and DxðinhÞ

jn ¼
DxðhÞ

jn ; the coordinate axes are plotted in relative units, i.e. ðx0 � xðcÞ
jn Þ=DxðinhÞ

jn .
It is seen that the spectral form of a homogeneous broadened line has more

extended “wings” compared to inhomogeneous Gaussian broadening. The func-
tions (3.13), (3.15) have two common properties: (1) normalization to unity and
(2) both functions tend to the Dirac delta function in the limit of zero width.

Different causes can produce inhomogeneous broadening of a line depending on
the concrete realization of the radiative transition. For atoms in a gas and ions in
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a plasma, an important mechanism of inhomogeneous broadening is the Doppler
effect. According to this effect, the radiation frequency from the intrinsic frame of
reference is connected with an atom in the laboratory frame of reference by the
formula

x ¼ cx0 1� t
c
cos h

� 	
� cx0 1� tk

c

� 	
; ð3:16Þ

where x0 is the frequency in the frame of reference of the radiating atom, c ¼

1� t=cð Þ2
� 	�1=2

is the Lorentz factor, h is the angle between the atomic velocity

vector and the photon wave vector (the angle of radiation), and tk is the projection
of the atomic (ionic) velocity on the direction of photon radiation. In gases and
low-temperature plasmas t � c and c ffi 1. Since the velocity of atoms/ions in
thermal equilibrium has a distribution, the width that is defined by the thermal
velocity tT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2T=M
p

(M is the mass of an atom/ion) and the radiation frequency
in the laboratory frame of reference [see (3.16)] will also have a distribution. The
Doppler profile can be represented in terms of the integral

GðDÞ
ki ðxÞ ¼

Z1
�1

d x� xki 1� tk
c

� 	� 	
f tkð Þdtk; ð3:17Þ

where f tkð Þ is the function of distribution of atomic (ionic) velocity projections on a
specified direction. The delta function in the right-hand side of (3.17) marks out
those values of velocity projections, at which, according to the Doppler effect (3.16),
the frequency in the laboratory frame of reference is equal to a specific value x. The
formula (3.17) corresponds to an interpretation of inhomogeneous broadening as a
distribution function of atomic eigenfrequencies. We can say that the Doppler effect
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Fig. 3.1 Homogeneous and
inhomogeneous broadening
of a spectral line
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maps the velocity distribution of atoms onto their eigenfrequency distribution. It
should be noted that using the second equality in the right-hand side of (3.16)
considerably simplifies the derivation of the expression for the Doppler profile.

In case of a Maxwellian velocity distribution, i.e.

f tkð Þ ¼ 1ffiffiffi
p

p
tT

exp � tk
tT


 �2
 !

; ð3:18Þ

the calculation of the integral (3.17) gives

GðDÞ
ki ðxÞ ¼ 1ffiffiffiffiffiffi

2p
p

DxðDÞ
ki

exp � x� xkið Þ2

2 DxðDÞ
ki

� 	2
2
64

3
75; ð3:19Þ

where

DxðDÞ
ki ¼ 1ffiffiffi

2
p tT

c
xki �

ffiffiffiffiffi
T
M

r
xki

c
ð3:20Þ

is the Doppler line width (note that the FWHM is given by 2
ffiffiffiffiffiffiffi
ln 2

p � DxðDÞ
ki ; see also

(1.22)).
The right-hand side of (3.20) includes a temperature defining the translational

velocity of atoms (ions) in the plasma and is called the ion temperature. As can be
seen from (3.20), the measurement of the Doppler line width for radiation with a
specified central frequency allows determining the ion temperature of the plasma if
the mass of the radiating atom (ion) is known. According to the formula (3.20), the
Doppler line width is proportional to the central radiation frequency, so the role of
the Doppler effect increases with energy of an atomic transition. For the optical
range and room temperatures, Doppler broadening is of the order of 10 GHz.

A Doppler profile being of the form (3.19) assumes an unchanged velocity of the
atom during radiation emission. This condition is realized if the free path of an
atom/ion in a gas or a plasma is larger than the wavelength of the radiation.
However, it can be violated for sufficiently dense and hot plasmas such as
laser-produced plasmas. Then, the line profile is close to be a Lorentz profile (3.13),
with a line width that is inversely proportional to the atomic collision frequency. In
rarefied low-temperature plasmas, the line profile is described by the formula
(3.19).

Another mechanism of inhomogeneous line broadening characteristic to atoms/
ions in plasma is connected with the Stark effect (Griem 1974, 1997; Sobelman
et al. 1995). The Stark effect represents a shift (and, generally speaking, splitting) of
the spectral line radiation of an atom under the action of an external electric field.
Inhomogeneous broadening under the action of the Stark effect occurs in case of a
static (or sufficiently slowly varying with time) electric field. Such fields are
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produced by plasma ions due to relatively low (in comparison with electrons)
velocity (because the mass of ions is much larger than the electron mass). The
expression for the Stark effect that is linear with respect to the electric field looks
like

x� xik ¼ CikF; ð3:21Þ

where F is the magnitude of the electric field strength at the location of an atom
(ion) and Cik is the Stark constant for the atomic transition. The linear Stark effect is
characteristic for hydrogen-like ions where we encounter degeneracy in orbital
quantum number.

Let us consider the influence of the Stark effect on the form of a spectral line in
the static case when the electric field that acts on the radiating atom is a result of a
large number of plasma ions. Then for the strength of the total electric field, we
have

F ¼
XN0

j¼1

Fj ¼
XN0

j¼1

e
rj
r3j
; ð3:22Þ

where the summation is carried out over all plasma ions, with N0 being the number
of ions. For simplicity, we assumed Z ¼ 1 in (3.22). The relation (3.21) establishes a
univocal correspondence between the electric field and the frequency shift.
Therefore, if the distribution function for the electric field strengthW Fð Þ is known, it
is easy to find with the help of the formula (3.21) the frequency distribution function
that is a line profile for inhomogeneous broadening. This function looks like

GðStÞ
ik ðxÞ ¼ 1

Cik
W

x� xik

Cik


 �
: ð3:23Þ

The factor in front of the ion field distribution function results from the relation
dF=dx ¼ 1=Cik being the frequency transformation of the field distribution.

Thus, a key problem is the determination of the ion field distribution function
W Fð Þ. Following Holtsmark, simple expressions can be obtained in the approxi-
mation of negligible correlation between the plasma ions. Then, the probability for
ions having a radius vector in the interval ðrj; rj þ drjÞ is proportional to the product
V�N0

QN0
j¼1 drj, where V is the plasma volume. The probabilityW Fð Þ is proportional

to that part of the N0-dimensional space in variables rj, in which (3.22) is fulfilled.
According to this, the formula for the ion field distribution function is given by:

W Fð Þ ¼ d F�
XN0

j¼1

e
rj
r3j

 !* +
; ð3:24Þ
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where averaging is done over the above distribution of ion radii. The explicit form
of the function WðFÞ can be obtained when using the integral representation of the
delta function and going to the limit N0; V ! 1 at constant concentration of the
ions N ¼ N0=V . As a result, the following expression is obtained (Unsöld 1955):

WðFÞdF ¼ WðFÞdF ¼ H
F
F0


 �
dF
F0

; ð3:25Þ

where

H bð Þ ¼ 2
p
b
Z1
0

x sin b xð Þ exp �x3=2
� 	

dx ð3:26Þ

is the so-called Holtsmark distribution, b ¼ F=F0, F0 ¼ aeN2=3 is a scaling factor

of the electric field strength and a ¼ 2 p 4=15ð Þ2=3ffi 2:603. From (3.25), it follows
that the ion field distribution depends only on the field strength. The plot of the
Holtsmark function is presented in Fig. 3.2. The maximum of this function corre-
sponds to a value b ¼ 1:607.

The Holtsmark distribution function is normalized according to
R1
0 H bð Þdb ¼ 1.

In the vicinity of zero, HðbÞ increases as b2, and at b � 1 it decreases as b�5=2. The
Holtsmark distribution differs essentially from the Gaussian distribution (3.15) that
describes spectral line broadening as a result of the Doppler effect. It is close to the
Gaussian velocity distribution for low b � 1, when the contribution to the field
originates from a large number of ions. As is known, statistical regularities in
ensembles of particles are described just by the Gaussian distribution. For strong
fields, the Holtsmark distribution coincides with the distribution of a field from one
nearest particle (the binary approximation). Thus, the Holtsmark function describes
the transition from the Gaussian distribution for weak fields to the binary
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Fig. 3.2 Holtsmark function
according to (3.26)
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distribution for strong fields. Curiously, the scaled field strength of the Holtsmark
distribution F0 ¼ 2:603 eN2=3 differs from the field at an average interionic distance
�F ¼ e 4pN=3ð Þ2=3	 2:61 eN2=3 by less than one percent.

In plasma, a change of the phase of a transition oscillator (an equivalent oscil-
lator) leading to homogeneous broadening can be a result from a collision between
an atom and a charged particle. Let us consider this process for the case of inter-
action of electrons with a hydrogen-like atom. Then, an instantaneous change of the
oscillator frequency xðtÞ under the action of the electric field FðtÞ of a plasma
electron can be represented as

xðtÞ ¼ C
e
FðtÞ; ð3:27Þ

where C is the Stark constant. The change of the phase of an equivalent oscillator
during the time of electron transit close to the atom (ion) is given by

D/ ¼
Z1
�1

xðtÞdt ¼
Z1
�1

C
q2 þ t2t2

dt ¼ p
C
qt

; ð3:28Þ

q is the impact parameter, t is the velocity of the perturbing particle assumed to be
moving uniformly on a straight trajectory. From (3.28), it follows that a phase
change Du ¼ p is achieved at

qW ¼ C
t
: ð3:29Þ

This value is called the Weisskopf radius; it defines the region of impact parameters
corresponding to an essential change of the equivalent oscillator phase. To the
radius qW, there is related the Weisskopf cross section

rW ¼ pq2W ¼ p
C2

t2
ð3:30Þ

and the Weisskopf frequency

X ¼ t
qW

¼ t2

C
: ð3:31Þ

The parameter qW defines the effective volume of interaction of an atom with
perturbing particles. If there is one particle in this volume, the binary interaction
takes place. Otherwise many particles interact simultaneously with an atom
(non-binarity).
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The Weisskopf frequency (3.31) separates impact and static limits for the
spectral line shape. The profile of a line broadened by collisions with electrons can
be represented in the form

G Dxð Þ ¼ 1
2p

Dx x� xikð Þ
x� xikð Þ2 þ Dx x ¼ xikð Þ=2ð Þ2 ð3:32Þ

that would coincide with the Lorentz profile (3.13) if the line width Dx in the
numerator of the right-hand side of the (3.32) would be a constant value (as in the
denominator). In fact, the line width in the numerator depends on frequency
detuning. If this detuning is much less (in magnitude) than the Weisskopf frequency
(the impact limit), it can be considered that Dx x� xikð Þ ¼ Dx x ¼ xikð Þ, and the
Lorentz profile of a line (3.13) is realized. In the impact case, interaction of a
quantum system with a perturbing particle is of instantaneous nature. As a result,
the phase of oscillations of a transition oscillator “jumps”. A typical value of impact
broadening in gas at normal pressure and room temperature is about 100 GHz, so in
the optical range it far exceeds natural broadening of a line, that has characteristic
values of 100 MHz.

In the opposite case x� xikj j � X (the far wing of a line), it is necessary to take
into account the frequency dependence of the line width in formula (3.32). Then,
static broadening is realized, and the line profile (in the binary approximation) looks
like

GðstÞ
ik ðxÞ ¼ 2pNC3=2

x� xikj j5=2
: ð3:33Þ

The dependence on frequency detuning in the right-hand side of (3.33) coincides
with the result of the Holtsmark approximation in the strong field limit, when
Hðb � 1Þ / b�5=2. As was already noted, this coincidence is connected with the
fact that in the strong field limit the static Holtsmark distribution coincides with the
distribution of a field from one particle nearest to an atom; that is, the binary
approximation is valid.

The condition x� xikj j � X means that in the static limit the time of inter-
action qW=tð Þ should be much larger than the time of spectral line formation
ð	 1= x� xikj jÞ. In the impact limit, on the contrary, the time of formation of a line
is long, and perturbation can be considered to be instantaneous.

The expression for a line broadening in the static limit and the binary approx-
imation (3.33) was obtained for an interaction charge-dipole. In the general case,
when the energy of interaction of “broadening particles” with an atom (ion) looks
like UðRÞ ¼ Cn=Rn (R is the distance between particles), the line profile in the static
limit is described by the expression
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GðstÞ
ik ðxÞ ¼ 4pN Cn=�hð Þ3=n

n x� xikj j nþ 3ð Þ=n : ð3:34Þ

The obtained expression is valid in the spectral range x� xikj j � X. From the
formula (3.34), it follows that the frequency dependence in the static wing of a line
coincides with the Lorentz dependence (3.13) only for n ¼ 3, that is, for dipole–
dipole interaction.

3.3 Quasi-classical and Quantum Radiative Transition
Probabilities

3.3.1 Kramers Electrodynamics

The foundations of radiation theory for a classically moving particle (electron) in a
given potential UðrÞ are described in numerous books on classical electrodynamics
(Jackson 2007; Landau and Lifschitz 2003). In accordance with Gervids and Kogan
(1975, 1991), Kogan and Kukushkin (1984), Kogan et al. (1992) we shall dwell on
a number of classical spectral peculiarities connected with the attractive potential
UðrÞ ¼ �jUðrÞj playing an important role in the applicability of classical
mechanics to atomic physics. The essence of the problem involves the situation
when an emitting electron in an attractive field experiences an acceleration and may
obtain a kinetic energy W ¼ Eþ jUðrÞj, that considerably exceeds its initial energy
E at infinity. In this case, the classical nature of the electron motion is even pre-
served when the quantum energy �hx emitted by the electron exceeds its initial
energy E. This circumstance essentially expands the domain of applicability of the
classical methods to atomic processes, including the inelastic domain �hx
E.
Below, we will focus on the Coulomb field case playing an important role for the
atomic processes in plasmas. Atomic potentials of more general type are investi-
gated in (Kogan and Kukushkin 1984). The results of the following considerations
will be used later in the quasi-classical approximation for radiation transitions
probabilities.

Classical electrodynamics (CED) operates with an effective spectral radiation
yield dkðxÞ, cross section drðxÞ and energy dEðq;xÞ emitted during the time of
the collision with an impact parameter q in a frequency domain dx. These values
are connected by the relation

dkðxÞ
dx

¼ �hx
dr
dx

¼
Z1
0

2pqdq dE q;xð Þ=dx½ �: ð3:35Þ

The spectral distribution of the emitted energy is defined by the Fourier coef-
ficients _xðq;xÞ and _yðq;xÞ of the electron velocity components _xðq; tÞ and _yðq; tÞ:
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dEðq;xÞ
dx

¼ e2

3pc3
x2 _xðq;xÞþ i _yðq;xÞj j2 þ _xðq;xÞ � i _yðq;xÞj j2
h i

: ð3:36Þ

These Fourier components for a motion in a Coulomb field are expressed in

terms of the Hankel functions Hð1Þ
im ðimeÞ and their derivatives Hð1Þ0

im ðimeÞ:

dEðq;xÞ
dx

¼ 2pZ2e6x2

3m2t4c3
f ðm; eÞ; ð3:37Þ

f ðm; eÞ ¼ Hð1Þ0
im ðimeÞ

h i2
� 1� 1

e2


 �
Hð1Þ

im ðimeÞ
h i2� �

: ð3:38Þ

Here, m ¼ x=~x is a dimensionless frequency in units of the “classical” Coulomb
frequency, ~x ¼ t=a ¼ mt3=Ze2 (a ¼ Ze2=mt2 is the Coulomb length), e2 ¼
1þ q2=a2 is the eccentricity of the hyperbolic trajectory (q is the impact parameter):
parameters Ze, m, t, and c are the standard designations for nuclear charge, mass,
electron velocity, and the speed of light, respectively.

The function f ðm; eÞ is well known (Landau and Lifschitz 2003) being the
complete derivative of the function

gðmÞ ¼ p
ffiffiffi
3

p

4
imHð1Þ

im ðimeÞHð1Þ0
im ðimeÞ; ð3:39Þ

that makes it possible to perform the integration over dq in (3.35) and to obtain the
cross section

drðxÞ ¼ 16pe2t2

3
ffiffiffi
3

p
�hc3

a2
dm
m
gðmÞ: ð3:40Þ

The function gðmÞ is named the Gaunt factor. For large radiation frequencies
x=~x � 1, the factor gðmÞ approaches unity, and the numerical factor before gðmÞ in
(3.40) is the so-called Kramers bremsstrahlung cross section.

The total (integral over x) effective radiation k is expressed in terms of the total
radiation energy loss DEðqÞ during the collision:

k ¼
Z

�hx
dr
dx

dx ¼
Z1
0

2pqdqDEðqÞ: ð3:41Þ

The magnitude DEðqÞ may be expressed, in turn, with the help of a time integral
from the square of electron acceleration wðq; tÞ:
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DEðqÞ ¼ 2e2

3c3

Z1
�1

w q; tð Þ½ �2dt: ð3:42Þ

For the central field, (3.42) is rewritten in the form

DE qð Þ ¼ 4e2

3m2c3

Z1
r0 qð Þ

dU
dr


 �2 dr
tr
; ð3:43Þ

trðqÞ is the radial velocity, and r0ðqÞ is the classical turning point defined from the
relation

1 ¼ q2

r20
� Uðr0Þj j

E
: ð3:44Þ

Let us write down the spectral distributions of the emitted energy in the domain
of large and small frequencies. Following (Kogan and Kukushkin 1984; Gervids
and Kogan 1991), let us use the normalized spectral functions being the ratio of the
spectral distribution dE q;xð Þ to the total radiation DEðqÞ

m � 1; q � a:
dEðq;xÞ
DEðqÞ ¼ 8

p2
sK0 sð Þ½ �2 þ sK1 sð Þ½ �2

n o
ds; ð3:45Þ

s ¼ Mx=2E;

m � 1; q � a:
dE q;xð Þ
DEðqÞ ¼ 12

p2
GðuÞudu; ð3:46Þ

u ¼ M3x=3Z2me4; GðuÞ ¼ u K2
1=3ðuÞþK2

2=3ðuÞ
h i

; ð3:47Þ

where M ¼ mtq is the electron orbital momentum, and KmðxÞ are the Mcdonald
functions.

Let us analyze in more detail the high-frequency case (3.46), (3.47). First, it is
obvious that the spectral distribution described by the variable u does not depend on
the initial electron energy E. This suppression of the energy integral is due to the
aforementioned electron acceleration in an attractive potential UðrÞ ¼ �Ze2=r. As a
matter of fact, the radiation of large frequencies x � ~x ¼ t=a originates from the
part of sharp curvature of the impact electron trajectory where its acceleration is
maximum. It is obvious that the largest acceleration is observed near the trajectory
turning point r0 (3.43), (3.44). In this domain, the potential energy Uðr0Þ is much
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larger compared with the initial energy U r0ð Þj j � Eð Þ and that is the reason why
the latter does not influence the spectral distribution of the emitted energy. This
domain for the Coulomb field was first indicated by Kramers (1923). The
non-Coulomb generalization of the approximation to suppress the energy integral
forms the basis of the so-called Kramers electrodynamics introduced by Kogan
et al. (1992).

According to (3.36), the energy spectral distribution consists of the two polar-
izations corresponding to the rotation directions along and against the electron
trajectory. In accordance with the total intensity (3.46, 3.47), the sum of two
contributions from two polarizations mentioned is

dE q;xð Þ
DEðqÞ ¼ 6

p2
u2 K1=3ðuÞþK2=3ðuÞ
� 2 þ ½K1=3ðuÞ � K2=3ðuÞ�2
n o

du

/ F2
�ðuÞþF2

þ ðuÞ
� 

:

ð3:48Þ

It is easy to see that in almost all domains, the change of the function F�ðuÞ
(corresponding to the sum of functions K1=3 and K2=3) substantially exceeds the
function Fþ ðuÞ (corresponding to their difference). This particular circumstance is
caused mathematically by the compensation of the functions K1=3 and K2=3 and
reflects an important feature of radiation formation in the high-frequency domain;
namely, the radiation is basically caused by the electron rotation near the turning
point r0 of the trajectory. The angular velocity of such a rotation xRðr0Þ is defined
by the relation:

xRðr0Þ ¼ M=mr20 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Eþ U r0ð Þj jð Þ=mr20

q
¼ tmax

r0
; ð3:49Þ

where tmax is the maximum electron velocity.
The aforementioned nature of the spectral formation becomes apparent if one

writes down the functions F�ðx;E;MÞ for an arbitrary potential UðrÞ in the form
of the Fourier components of the electron trajectory (Kogan and Kukushkin 1984;
Kogan et al. 1992):

F�ðx;E;MÞ ¼
Z1

r0ðE;MÞ

cos
R1

r0ðE;MÞ
x� xR r0ð Þ½ � 2

m
Eþ UðrÞj j �MxR r0ð Þ

2

� �� ��1=2

dr0
 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ UðrÞj j �MxRðrÞ

2

r rdr:

ð3:50Þ

For large frequencies x � ~x the integrated expressions in (3.50) promptly
oscillate everywhere, excluding the points of oscillation compensation x 	 xR rxð Þ.
The compensation takes place only for the function F� (which explains the defini-
tion of its index) but not for the function Fþ . Therefore, the more differ the F� and
Fþ contributions to the intensity I xð Þ, the higher the frequency x becomes. This
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circumstance follows from pure classical mechanics and also manifests itself in
quantum calculations of transitions probabilities, known as the Bethe rule.

The above analysis of the radiation mechanism in the high-frequency domain
reveals a means for an universal spectra description (Kogan et al. 1992). The
description is reached by the replacement of the real electron motion by its rotation
along a circle with angular velocity xRðrÞ. This approximation is obtained by the
introduction of the delta function d x� xRðrÞ½ � into (3.43), leading to the following
spectral distribution (Kogan and Kukushkin 1984; Gervids and Kogan 1991):

dk
dx


 �
R
’ 8pe2

3c3m2t

Z1
0

@U
@r


 �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� U rð Þ

E

r
r2d x� xR rð Þ½ �dr: ð3:51Þ

Calculation of the integral in (3.51) leads to the following expression for the
Gaunt factor (3.40) of the bremsstrahlung (Kogan and Kukushkin 1984; Kogan
et al.1992; Gervids and Kogan 1991)

grotðxÞ ¼ 6
Z2e4

D2
x

2þDx

Eþ UðrxÞj j½ �3
mx2 ; ð3:52aÞ

Dx ¼ �d ln Eþ UðrxÞj j½ �=d ln rx: ð3:52bÞ

In correspondence with the ideas presented above, the radiation radius rx is
defined by the relation

xRðrxÞ ¼ x ð3:53aÞ

or

Eþ UðrxÞj j
r2x

¼ mx2

2
: ð3:53bÞ

The rotational approximation (3.52), (3.53) is of high precision. For example, for
a Coulomb potential the error of the approximation does not exceed 5% even for a
frequency as low as x ¼ ~x=2. The detailed analysis of the rotational approximation
results in a more general class of atomic potentials (Kogan and Kukushkin 1984;
Kogan et al. 1992; Gervids and Kogan 1991).

The supression of the energy integral in the Kramers electrodynamics and the
peculiarities of the radiation spectra connected with it work well in the
high-frequency domain x � ~x. This domain makes the main contribution to the
total bremsstrahlung intensity. As far as the low-frequency domain x � ~x is
concerned, (3.45) shows that there is no compensation of K0 and K1 and conse-
quently there is no domination of the spectral function F� with respect to Fþ .

The independence of the radiation characteristics on the energy indicates the
universal nature of the radiation spectral dependence on the frequency, not only for
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the infinite motion ðE[ 0Þ considered above but also for the finite motion ðE\0Þ
of the electron along an elliptical trajectory, as well. This is easy to verify by
analyzing the finite motion intensity distribution InðxÞ, being the sum of harmonics
n ¼ x=x0, where

x0 ¼ 2 Ej jð Þ3=2=Ze2 ffiffiffiffi
m

p ð3:54Þ

is the typical frequency of the finite motion (the analog of the frequency ~x in a
continuum spectrum). The intensity In of a given harmonic is equal to (Gervids and
Kogan 1991):

In / n2E4 1� ~e2
� �2

 K2
1=3

n
3
ð1� ~e2Þ3=2

h i
þK2

2=3
n
3

1� ~e2
� �3=2h in o

;
ð3:55Þ

where ~e ¼ 1� 2jEjM2=Z2me4ð Þ1=2 is the eccentricity of elliptical trajectory. It is
simple to ensure that the argument of the K-functions in (3.55) is reduced, as in the
continuum spectrum case, to the universal variable u�M3x=Z2. Independence of
the spectrum on the energy is realized for the radiation intensity of the classical
motion averaged over the period T ¼ 2p=x0, namely for the quantity (Gervids and
Kogan 1991):

TdI ¼ TIndn ¼ 2p
x0

In
dx
x0

/ In
x2

0
dx: ð3:56Þ

One can see that the quantity (3.56) becomes independent of the electron energy
after substitution of (3.55). To summarize, it should be noted that Kramers
high-frequency spectral domain possesses a universal intensity distribution for
transitions in both continuum and discrete spectra. The universality is connected
with the supression of the energy integral for attractive atomic potentials.

3.3.2 Discrete Energy Spectrum

Let us consider the results of Kramers electrodynamics (KrED) in the application to
transitions in the discrete energy spectrum. As it follows from the general properties
of the KrED, the dependencies of spectral characteristics of the radiation remain the
same as in the case of a continuous energy spectrum. The only additional fact to be
taken into account is the discrete nature of the energy spectrum which corresponds
to the following relation between the emitted photon frequency x and the difference
between the initial Enl and final En0l0 atomic state energies:
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x ¼ Enl � En0l0ð Þ=�h: ð3:57Þ

The values for the energies Enl should be taken from the results of quantum
mechanical calculations or from corresponding experimental data.

Equation (3.57) leads to the relationship between the spectral interval dx of the
emitted photon frequencies and the density dn0 of final states:

dx=dn0 ¼ 2p=Tn0l0 : ð3:58Þ

Here, Tn0l0 is the period of classical motion (in the general case being only the
radial period) of the electron with the energy equal to the energy En0l0 of the final
state. The value Tnl is determined by the conventional formulae of classical
mechanics (Landau and Lifschitz 2005; Naccache 1972; Kogan and Kukushkin
1984; Kogan et al. 1992) for the case of the central potential UðrÞ.

The general expression for the probability of the transition C ! C0 ðC � fnlgÞ
may be obtained from the classical spectral distribution for the emitted energy
whose terms are to be separated with respect to the increase and decrease of the
electron angular momentum:

DExðqÞ� ¼ 2e2mx4

3pc3
F�½ �2; ð3:59Þ

where the functions F� defined by (3.50) correspond to the radiation emission pro-
cesses with the increase ðFþ Þ and decrease ðF�Þ of the electron angular momentum.

In order to obtain the probability WðC ! C0Þ of a radiative transition per unit
time, we divide the quantity (3.59) by the energy �hx of an emitted photon and by
the period Tnl of the classical motion with given initial energy and then multiply the
result by the final state density (3.58). Thus, we obtain

WC!C0 ¼ DEx qð Þ
�hx

dx
dn0

����
���� 1Tnl ¼

2p
TnlTn0l0

DExðqÞ
�hx

: ð3:60Þ

Equation (3.60), with account of (3.59) and relation M ¼ �hðlþ 1=2Þ ¼ mtq,
takes the form

Wðnl ! n0l� 1Þ ¼ 4
3

x
c

� 	3 me2
�h

1
TnlTn0l0

F2
�ðx; lÞ: ð3:61Þ

This result coincides with the result of the corresponding quasi-classical cal-
culation (Gantsev et al. 1985; Kogan et al. 1992), in the limit of n � 1, l � 1. The
periods Tnl and Tn0l0 in the latter calculation originate from the normalization con-
stants of quasi-classical wave functions (for the relations between the functions F�
and quasi-classical matrix elements, see Goreslavski et al. (1982), Gantsev et al.
(1985), Landau and Lifschitz (1977), Naccache (1972), Kogan and Kukushkin
(1984), Kogan et al. (1992)).
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The KrED result for a bound–bound transition corresponds to the
high-frequency domain where the emitted frequency x largely exceeds the fre-
quency of the electron revolution around the field center on its classical trajectory:

xnn0Tnl � 1: ð3:62Þ

The KrED method for the description of an electron bound–bound radiative
transition in a central potential UðrÞ may be considered as some alternative to the
well-known quantum defect method (Bates and Damgaard 1949; Davydkin and
Zon 1981; Sobelman 1972, 2006; Cowan 1981). The latter is based on the fol-
lowing relation for the final state density

@x=@n0 ¼ Z2
i ðmn0l0 Þ�3; mn0l0 ¼ n0 � ll0 ; ð3:63Þ

where l10 is the quantum defect value. Equation (3.63) originates from the corre-
sponding dependence in the Coulomb potential generalized onto the case of
non-integer quantum number mnl. The essential feature of the quantum defect
method is the use of the Coulomb results for the spectral distribution of the tran-
sition probabilities with the subsequent replacement of the originally integer
quantum number n by the non-integral quantity mnl. This approach may be ulti-
mately interpreted as a Coulomb-type approximation for the potential UðrÞ.

It should be noted that the KrED approach does not require such an approxi-
mation for the potential. Thus, for free–free radiative transitions (bremsstrahlung) in
the field of a many-electron atom, the use of the Thomas–Fermi (TF) potential in
(3.39) leads to a successful description of the radiation spectral distribution. The
validity of the TF model for the description of bound–bound transitions and the
comparison of corresponding results of the KrED with the quantum defect method
(Bates and Damgaard 1949) [and its classical analog (Davydkin and Zon 1981)] for
the case of an arbitrary deviation of the potential from the Coulomb-type are to be
investigated in future.

The most detailed comparison of quasi-classical results for bound–bound tran-
sitions with the corresponding quantum numerical calculations has been carried out
for the case of the Coulomb field (Gantsev et al. 1985):

X
i0¼l�1

W nl ! n0l0ð Þ ¼ 2 lþ 1=2ð ÞG0 x lþ 1=2ð Þ3=3Z2
h i

=3p2c3 nn0ð Þ3; ð3:64Þ

where

G0ðxÞ � x K2
1=3ðxÞþK2

2=3ðxÞ
h i

¼ x
2

K1=3ðxÞþK2=3ðxÞ
� 2 þ K1=3ðxÞ � K2=3ðxÞ

� n o2
/ x F2

�ðxÞþF2
þ ðxÞ

� 
:

ð3:65Þ
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The integration of the spectral probability (3.65) over frequencies gives the total
probability (per unit time) of the radiative decay of the state fnlg:

W totðnlÞ ¼ 4Z4=p
ffiffiffi
3

p
c3n3l2: ð3:66Þ

The quantity inverse to (3.66) determines the mean lifetime of this state.
Equation (3.66) weighted by the factor ð2lþ 1Þ and averaged over the values of
angular momentum l gives the probability

WðnÞ ¼ 8Z4 lnðnÞ
p
ffiffiffi
3

p
c3n5

ð3:67Þ

which is close to the results of quantum numerical calculations (Goreslavsky et al.
1982; Gantsev et al. 1985; Bethe and Salpeter 1977) that give (for n > 20):

WðnÞ 	 7:89 109 � Z
4

n5
� 3 lnðnÞ � 0:247 ½s�1�� �

.

Using explicit expressions for the functions F� and Fþ in the case of the
Coulomb potential, it appears possible to trace the origin of the success of the KrED
approach. These functions determine the probabilities of transitions with the
decrease and increase of the electron angular momentum, respectively. This fact can
be proven in the framework of classical radiation theory by calculating the rate of
angular momentum loss dM=dxdt caused by the classical emission of radiation
with frequency x [e.g., (Landau and Lifschitz 2003; Jackson 2007)]. Though the
net rate of the angular momentum change is negative, as it should be, the term
containing the function Fþ is positive and therefore corresponds to the increase of
the electron angular momentum. Note that the relation between the functions Fþ
and F� indicated is especially transparent within the framework of the
quasi-classical approach. In this case, these functions correspond to the transitions
with a positive and negative change of the electron orbital quantum number
ðDl ¼ �1Þ, respectively (3.64), (3.65).

In the Coulomb case, the values of the function F2
�ðxÞ largely exceed the values

of the function F2
þ ðxÞ in a wide range, x
 10�2. The predominance of the tran-

sition with Dl ¼ �1 over a transition with Dl ¼ þ 1 and the growth of this pre-
dominance with the growth of the transition frequency ðx / xM3Þ constitutes the
essence of the well-known Bethe empirical rule (Bethe and Salpeter 1977) derived
originally from the results of quantum numerical calculations in the Coulomb case.
However, it follows from our consideration (Kogan et al. 1992) that the physical
nature of this rule is purely classical. Indeed, this phenomenon can entirely be
interpreted classically in terms of the correlation between the angular momentum
and polarization of classical radiation. The qualitative explanation can be based on
the fact that the intensity of the emission of the radiation, circularly polarized along
the direction of the radiating electron rotation, largely exceeds the intensity cor-
responding to the case of opposite directions of the electron and radiated electric
field rotation (the situation is similar, e.g., to the cyclotron radiation emission). The
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degree of predominance discussed evidently predetermines the accuracy of the
“rotational approximation” (RA). For a Coulomb field, a quantitative estimate of
the accuracy of the RA can be found from a comparison of the corresponding
contributions of the Dl ¼ �1 transitions. Their ratio is equal to (Gantsev et al.
1985):

Z1
0

xF2
�ðxÞdx=

Z1
0

xF2
þ ðxÞdx ¼

1þ p
ffiffiffi
3

p
=6

1� p
ffiffiffi
3

p
=6

	 20:5 : ð3:68Þ

Thus, the accuray (integral in x) of the RA is of the order of 5% that agrees with
the results of the classical calculations. A detailed numerical comparison of the
results of the quantum and quasi-classical calculations for the transition probabil-
ities has been carried out (Gantsev et al. 1985). The result of this calculations of the
quantum corrections to the classical limit of the transition probabilities in the
Kramers domain is presented in Kogan and Kukushkin (1984).

The degree of deviation of the transition probability from the Bethe rule can be
clearly characterized by the function

DðxÞ � xF2
þ ðxÞ ¼ x K2=3ðxÞ � K1=3ðxÞ

� 2
: ð3:69Þ

It is appropriate to designate this quantity as the Bethe rule defect. A useful
analytic approximation of this function is presented in Kogan et al. (1992). The
aforementioned predominance of F�ðxÞ over Fþ ðxÞ can be written according to
(3.69) in the form of the ratio DðxÞ=G2ðxÞ (for G2 see (3.74) below), which is small
in the domain of the applicability of the Bethe rule.

Thus, the KrED method provides the clues for an universal description of the
transitions between those discrete spectral energy states which dominantly con-
tribute to the total integral of radiation emission rates. Even for the Coulomb case,
in spite of its detailed investigation in the literature (Landau and Lifschitz 1977;
Bethe and Salpeter 1977), the KrED approach yields simple analytic results. Thus,
the replacement of the Gordon formulae (Bethe and Salpeter 1977) for the transition
probabilities by the corresponding KrED formulae appreciably reduces the number
of variables since these classical formulae contain a smaller number of independent
variables. An application of the KrED method to the non-Coulomb case and a
comparison with already existing methods (e.g., the quantum defect method) are
subjects for research.
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3.4 Radiative Recombination

3.4.1 Kramers Photorecombination Cross Section

The suppression of the energy integral that is fundamental for the KrED approach
manifests itself most strongly in the process of photorecombination radiation
emission. Indeed, this process is strongly inelastic since the energy �hx of an emitted
photon is in any case larger than the initial energy E of the recombining electron:

�hx ¼ Eþ Enlj j; ð3:70Þ

where Enl is the energy of electron bound (final) state.
The possibility to suppress the energy integral (see Sect. 3.3) permits the use of

the classical approach even for the description of such strongly inelastic process.
We shall use the universal classical formula (3.59) for the spectral distribution of
the emitted energy to describe the photorecombination cross section. It may be
achieved by means of the continuation of the corresponding results for the
bremsstrahlung radiation (BR) cross section onto the domain of negative values of
the final electron energy with account of its quantization law (3.58).

For the PhR, in contrast to the BR, not only the cross section of the integral over
the orbital momentum l is of essential interest, but the cross section rPhRðE ! n0l0Þ,
differential with respect to l, as well. In order to obtain rPhRðE ! n0l0Þ, one has to
replace the integration over the impact parameters q in the BR formulae by a
summation over the final state orbital momentum l0 ¼ l� 1:

rPhR E ! n
0
l
0

� 	
¼ �h2pl0

mE
DEx l0ð Þ
�hx

2p
Tn0l0

; ð3:71Þ

where the relation �hðl0 þ 1=2Þ ¼ qmt is to be used in DExðqÞ. The cross section
(3.71) is a functional of the atomic potential UðrÞ which enters to the spectral
functions F�ðxÞ and Fþ ðxÞ and for the period Tn0l0 . A detailed comparison of the
quasi-classical result (3.71) with exact quantum computations for the non-Coulomb
potentials has not yet been performed. The Coulomb potential (3.71) has been
investigated by Kukushkin and Lisitsa (1985), Kim and Pratt (1983). In this case,
the spectral dependence of the PhR cross section is described in terms of the
universal spectral function G0ðxÞ (3.65):

rPhR E ! nlð Þ ¼ 8Z2 lþ 1=2ð Þ2G0 x lþ 1=2ð Þ3=3Z2
h i

=3c3n3E: ð3:72Þ

Note that (3.72) shows a universal dependence of the cross section on the
classical parameter in the argument of the function G0 similar to the case of the BR.

The total (integral over q or l) PhR cross section rPhRðE ! nÞ obtained by
integration of (3.72) for the Coulomb case is given by
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rPhR E ! nð Þ ¼ 8p

3
ffiffiffi
3

p Z4

c3n3
1
Ex

; ð3:73Þ

where x ¼ Eþ Z2=2n2 (in atomic units). Equation (3.73) is known as Kramers
formula.

3.4.2 Radiative Recombination Rates

The analytic result (3.72) allows a derivation of a simple formula for the pho-
torecombination rate qnl into the state with given quantum numbers n and l for a
Maxwellian energy distribution with temperature T . Multiplying (3.72) by the
electron velocity and then averaging over the Maxwellian velocity distribution, we
obtain (Kukushkin and Lisitsa 1985) (in atomic units):

qnlPhR ¼ 4
2

2þ xT
G2 xmð Þþ xT

2þ xT
W xm; xTð ÞexmxT

� �
=p2n3c3l2: ð3:74aÞ

Here, the universal dimensionless parameters are introduced:

xm ¼ EnM
3=3 ¼ ðlþ 1=2Þ3=6n2; xT ¼ 3=TM3; ð3:74bÞ

which determine the dependencies of the rate q on the level with energy E ¼ 1=2n2

and angular momentum M ¼ �hðlþ 1=2Þ. The function G2 is related to the universal
function G0 by the equation

G2 ¼
Z1
x

G0ðx0 Þdx0 ¼ xK1=3ðxÞK2=3ðxÞ ð3:74cÞ

and the function W is expressed in terms of the above-defined “Bethe rule defect”
DðxÞ (3.69):

Wðxm; xTÞ ¼
Z1
xm

DðyÞ expð�xTyÞdy: ð3:74dÞ

It follows from (3.74d) that the photorecombination rate is determined by two
different terms. In the first term described by the G2 function, the Bethe rule defect
is neglected, whereas the second term is caused exclusively by the Bethe rule defect
and becomes appreciable for small xm and large xT.

Thus in the KrED, the PhR rate into the energy state with given n and l quantum
numbers is described by an universal function of two parameters. This universal
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dependence of the PhR rate in the Kramers domain is in agreement with the exact
quantum numerical calculations (as discussed below).

The accuracy of the quasi-classical calculations of the PhR rate turns out to be
fairly good (within � 20%, according to the results obtained from exact numerical
calculations). Detailed tables for the PhR rate in the Coulomb case, obtained in
quasi-classical approximation, are presented in Gantsev et al. (1985).

The applicability of KrED analytical results for the Coulomb field case to the
description of PhR cross sections for an ion with a core was investigated in detail
(Kim and Pratt 1983). The authors use the approximation for the potential of such
an ion in the form of a modified Coulomb potential with an effective charge Zeff . It
has been shown (Kim and Pratt 1983) that in a wide range of electron energies and
ion charges, this Coulomb-type approximation of the potential yields a satisfactory
description of the PhR cross sections provided the value Zeff is taken equal to the
mean value of the charges of the nuclei Z and of the ion Zi, Zeff ¼ ðZ þ ZiÞ=2.

The cross section for the recombination as a function of the Kramers parameter
xl3=Z2

eff for ions with various values of atomic number Z, ion charge Zi and
electron energy EðkeVÞ and different sets of parameters Z, Zi, E prove to be
satisfactorily described by an universal classical formula with the aforementioned
value of Zeff . The same agreement between classical and quantum results occurs
also for the dependencies of the cross section on nð/ n�3Þ which follows from
(3.73). The substitution of the Zeff value in this equation gives the following simple
analytic approximation for the PhR cross section summed over l (Kim and Pratt
1983):

reffPhRðnÞ ¼
8p

3
ffiffiffi
3

p Z4
eff=c

3n3E Eþ Z2
eff=2n

2
� �

: ð3:75Þ

The total PhR cross section is obtained by the summation of (3.75) over all
allowed (non-occupied) quantum states according to the following equation:

reffPhR ¼ Wn0rn0 þ
X

n
 n0 þ 1

rn: ð3:76Þ

Here, n0 is the value of the principal quantum number of the filled atomic shell,
and Wn0 is the statistical weight determined by the ratio of the number of free places
in this shell to their total number. The results for the total PhR cross section (3.76)
are in good agreement with the results of quantum numerical calculations.

The agreement between the quasi-classical and quantum results may be
improved by means of a proper choice of the lower limit of summation n0eff in
(3.76) which depends on the effects of screening and correlations of the electrons in
the filled atomic shell. In this case, the value n0eff will be an universal parameter for
a given isoelectronic sequence. Modifying the Kramers formula (3.75), it is easy to
obtain an analytical approximation for the total PhR cross section by replacing the
summation over n by an integration Kim and Pratt (1983):
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rtot 	
Z1
n0eff

rndn ¼ 8pZ2
eff

3
ffiffiffi
3

p
c3E

ln 1þ Z2
eff=2En

2
0eff

� �
: ð3:77Þ

The values of the cutoff parameter s ¼ 1=2n20eff , obtained from the comparison of
(3.77) with the results of quantum calculations, are as follows: s ¼ 1:1 for fully
stripped ions (bare nuclei), s ¼ 0:065 for Ne-like shells, s ¼ 0:045 for Ar-like shells.
The numerical quantum results are described satisfactorily by a linear dependence of
the logarithm argument on s, namely ð1þ sZ2

eff=EÞ for Zeff ¼ ðZþ ZiÞ=2.
The simple approximations (3.75), (3.77) for the partial and total PhR cross

sections lead to a simple and reliable analytical result (Kim and Pratt 1983) for
some important characteristics of a plasma. The rate of photorecombination a ¼
\ trtoth i[ is given by

a ¼ 16
3

ffiffiffiffiffiffi
2p
3

r
Z2c�3ffiffiffiffi

T
p expðbÞE1ðbÞþCþ lnðbÞ½ �; b ¼ sZ2

T
: ð3:78Þ

3.4.3 Radiative Losses

The rate of electron energy loss b ¼ Etrtoth i can be approximated by

b ¼ T
c2

1� 16
3

ffiffiffiffiffiffi
2p
3

r
Z4

cT3=2
expðbÞE1ðbÞ

" #
: ð3:79Þ

The total rate of radiation losses of plasma due to photorecombination c ¼P
n cn ¼

P
xntrtotn

� �
requires a computation of the sum over n with the aid of

approximations for partial cross sections:

c ¼ 16
3

ffiffiffiffiffiffi
2p
3

r
s

Z4

c3T1=2
: ð3:80Þ

The brackets denote the averaging over the Maxwellian velocity distribution
function, C ¼ 0:577 is the Euler constant, E1ðxÞ is the integral exponential function.
Comparison with numerical calculations show (Kim and Pratt 1983) that the pre-
cision of (3.78, 3.79, 3.80) are considerably improved is one sets Z ¼ Zeff .
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3.4.4 Generalized Scaled Empirical Formulas for Radiative
Recombination Rates

Quantum mechanical numerical calculations have been performed for the pho-
toionization cross sections. In order to obtain radiative recombination rates, these
photoionization cross sections have been transformed with the help of the Milne
relation to radiative recombination cross sections:

gir
ðphiÞ
ij ðxÞ ¼ 2mec2E

�h2x2
gjr

ðRRÞ
ji ðEÞ; ð3:81aÞ

�hx ¼ �hx0 þE ¼ Ei þE; ð3:81bÞ

where E is the energy of the photoelectron. Note that the energy level i corresponds
to charge state Z, whereas the level j belongs to charge state Z + 1. The rate
coefficients of the spontaneous radiative recombination are then given by:

Rspon
ji ¼ ne

Z1
0

dErðRRÞji ðEÞtðEÞFðEÞ; ð3:82aÞ

where F(E) is the electron energy distribution function of the continuum electrons,
ne is the electron density, and tðEÞ is the electron velocity given by

tðEÞ ¼
ffiffiffiffiffiffiffi
2E
me

r
: ð3:82bÞ

Numerical results have been scaled with respect to charge Z and temperature
parameter b and fitted to the following analytical formula for convenient application
(P1, P2, and P3 are fitting parameters) (Rosmej et al. 2022):

t � rðRRÞ
D E

¼ 10�8 � Zeff � Q � P1 �
ffiffiffi
b

p
� bþP2

bþP3
cm3 s�1� 

; ð3:83aÞ

b ¼ Z2
eff � Ry
kTe

: ð3:83bÞ

Ry = 13.606 eV, kTe is the electron temperature in [eV], Zeff is the effective
charge determined by Zeff = n(En(eV)/Ry)

1/2 where En is the ionization potential of
the state n of the ion before recombination and Q is a factor depending on the
quantum numbers of angular momentum for the considered transition:
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Q n0l
m�1
0 SL ! n0l

m
0 S0L0

� � ¼ m � GS0L0
SL

�� ��2� 2S0 þ 1ð Þ 2L0 þ 1ð Þ
2 � 2l0 þ 1ð Þ 2Sþ 1ð Þ 2Lþ 1ð Þ : ð3:83cÞ

m is the number of equivalent electrons, GS0L0
SL is the fractional parentage coefficient.

For example, for radiative recombination into the 4d-shell from the bare nuclei, we
have n0 ¼ 4, l0 ¼ 2, S0 ¼ 0:5, L0 ¼ 2, m ¼ 1, S ¼ 0, L ¼ 0, GS0L0

SL ¼ 1 from which
it follows Q bare nuc ! 4d 2Dð Þ ¼ 1. For the radiative recombination into the
He-like ground state 1s 2S ! 1s2 1S, n0 ¼ 1, l0 ¼ 0, S0 ¼ 0, L0 ¼ 0, m ¼ 2,
S ¼ 0:5, L ¼ 0, GS0L0

SL ¼ 1, it follows Q 1s 2S ! 1s2 1Sð Þ ¼ 0:5, and for the radiative
recombination into the triplet n = 2 P-state, i.e. the transition 1s 2S ! 1s2p 3P,
n0 ¼ 2, l0 ¼ 1, S0 ¼ 1, L0 ¼ 1, m ¼ 1, S ¼ 0:5, L ¼ 0, GS0L0

SL ¼ 1, it follows
Q 1s 2S ! 1s2p 3Pð Þ ¼ 0:75.

Table 3.1 shows the numerical result for hydrogen for all nl-states from n = 1–9
and l = 0–8. The before last line provides the sum of the recombination rates over
all states with n = 1–9 and l = 0–8 obtained from detailed numerical quantum
calculations, whereas the last line provides the sum of the numerical results for
n = 1–9 and l = 0–8 and the Kramers approximation for n > 9.

Table 3.1 Numerical calculation of the radiative recombination into hydrogen, Q = 1, Zeff = 1 in
(3.83)

nl P1 P2 P3

1s 4.07  10−6 0.05 0.516

2s 6.03  10−7 0.04 0.530

2p 1.57  10−6 0.04 2.59

3s 2.03  10−7 0.06 0.666

3p 5.94  10−7 0.03 2.56

3d 6.52  10−7 0.01 7.39

4s 9.31  10−8 0.06 0.727

4p 2.86  10−7 0.04 2.79

4d 4.10  10−7 0.01 7.49

4f 3.00  10−7 0.01 17.5

5s 5.10  10−8 0.07 0.822

5p 1.57  10−7 0.03 2.78

5d 2.51  10−7 0.01 7.63

5f 2.64  10−7 0.01 17.6

5g 1.39  10−7 0.00 32.4

6s 3.09  10−8 0.07 0.869

6p 9.66  10−8 0.03 2.89

6d 1.61  10−7 0.01 7.79

6f 1.97  10−7 0.01 17.8
(continued)
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Table 3.2 shows the numerical result for H-like molybdenum for all nl-states
from n = 1–9 and l = 0–8. The before last line provides the sum of the recombi-
nation rates over all states with n = 1–9 and l = 0–8 obtained from detailed quantum
mechanical calculations, whereas the last line provides the sum of the numerical
results for n = 1–9 and l = 0–8 and the Kramers approximation for n > 9.

The numerical data have been scaled with respect to Z and b and finally fitted
with three parameters. The fitting parameters of Table 3.2 can be used for all ions
with Z > 1 due to the scaled representation of numerical results. Let us demonstrate
an example for application of (3.83), namely radiative recombination into the
6g-state from fully stripped carbon at kTe = 15.3 eV: n0 ¼ 6, l0 ¼ 4, S0 ¼ 0:5,

Table 3.1 (continued)

nl P1 P2 P3

6g 1.58  10−7 0.00 32.5

6h 6.74  10−8 0.00 55.8

7s 2.03  10−8 0.08 0.954

7p 6.37  10−8 0.03 2.98

7d 1.09  10−7 0.01 7.94

7f 1.44  10−7 0.01 17.9

7g 1.39  10−7 0.00 32.6

7h 9.44  10−8 0.00 55.7

7i 3.33  10−8 0.00 88.5

8s 1.41  10−8 0.08 0.989

8p 4.43  10−8 0.03 3.06

8d 7.71  10−8 0.01 8.09

8f 1.06  10−7 0.01 18.1

8g 1.14  10−7 0.00 32.8

8h 9.58  10−8 0.00 55.9

8i 5.53  10−8 0.00 88.1

8k 1.48  10−8 0.00 115

9s 1.01  10−8 0.08 1.02

9p 3.20  10−8 0.03 3.14

9d 5.64  10−8 0.01 8.21

9f 8.02  10−8 0.01 18.3

9g 9.16  10−8 0.00 32.9

9h 8.70  10−8 0.00 56.1

9i 6.32  10−8 0.00 87.7

9k 3.18  10−8 0.00 131

9l 5.85  10−9 0.00 127

Total (1s...9 l) 1.09  10−5 0.16 1.69

Total (1s...∞) 1.28  10−5 0.18 2.14

Fitting parameters approximate the numerical results typically accurate better than 10% in the large
temperature range 1/8 < b < 64

3.4 Radiative Recombination 113



L0 ¼ 4, m ¼ 1, S ¼ 0, L ¼ 0, GS0L0
SL ¼ 1 from which it follows

Q bare nuc ! 6g 2Gð Þ ¼ 1, Z ¼ Zeff ¼ 6, b ¼ 32 and (from Table 3.2)
P1 ¼ 1:58 10�7, P2 ¼ 0:00, P3 ¼ 32:5, from which it follows from (3.83a)
t � rðRRÞð6 gÞ� � ¼ 2:66 10�14 cm3 s�1. The exact numerical quantum mechanical
result calculated specifically for carbon provides
t � rðRRÞð6 gÞ� � ¼ 2:65 10�14 cm3s�1. This example demonstrates the high pre-
cision of the fitting formulas (3.83) and the advantageous representation of
numerical results in Z- and b-scaled representation.

Let us now consider the application of Table 3.2 to estimate the radiative
recombination rates for non-hydrogen-like ions with the help of an effective charge
Zeff. One of the most difficult tests is the radiative recombination into the ground
state of neutral helium, i.e. the transition 1s 2S ! 1s2 1S. The ionization potential of
the helium ground state is Ei 1s2 1Sð Þ ¼ 24:587 eV from which it follows an
effective charge Zeff ¼ n0 �

ffiffiffiffiffiffiffiffiffiffiffiffi
Ei=Ry

p ¼ 1 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24:587=13:606

p ¼ 1:3443, Q ¼ 0:5
and (from Table 3.2) P1 ¼ 4:37 10�6, P2 ¼ 0:06, P3 ¼ 0:574. Let us consider
radiative recombination at kTe = 0.425 eV from which it follows (3.83b) b ¼
Z2
effRy=kTe ¼ 57:85 and from (3.83a) t � rðRRÞ 1s2 1Sð Þ� � ¼ 2:21 10�13 cm3 s�1.

The exact numerical quantum mechanical result calculated specifically for the
Helium ground state V � rðRRÞ 1s2 1Sð Þ� � ¼ 2:53 10�13 cm3 s�1.

Let us finish with a consideration of the recombination into the triplet n = 2 S-
state of He I, i.e. the transition 1s 2S ! 1s2s 3S: n0 ¼ 2, l0 ¼ 0, S0 ¼ 1, L0 ¼ 0,
m ¼ 1, S ¼ 0:5, L ¼ 0, GS0L0

SL ¼ 1 it follows Q 1s 2S ! 1s2s 3Sð Þ ¼ 0:75,
Zeff ¼ n0 �

ffiffiffiffiffiffiffiffiffiffiffiffi
Ei=Ry

p ¼ 2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:7677=13:606

p ¼ 1:1839, Q ¼ 0:75 and (from
Table 3.2) P1 ¼ 6:53 10�7, P2 ¼ 0:06, P3 ¼ 0:642. Let us consider radiative
recombination at kTe = 3.4 eV from which it follows (3.83b) b ¼ Z2

effRy=kTe ¼
4:738 and from (3.83a) t � rðRRÞð1s2 1SÞ� � ¼ 0:951 10�14 cm3 s�1. The exact
numerical quantum mechanical result calculated specifically for the Helium triplet
1s2s 3S-state provides t � rðRRÞ 1s2s 3Sð Þ� � ¼ 1:03 10�14 cm3 s�1. These exam-
ples demonstrate that the use of the generalized scaled fitting parameters of

Table 3.2 Numerical calculation of the radiative recombination into H-like ions, Q = 1, Zeff = Zn

nl P1 P2 P3

1s 4.37  10−6 0.06 0.574

2s 6.53  10−7 0.06 0.642

2p 1.63  10−6 0.04 2.65

3s 2.13  10−7 0.06 0.704

3p 6.19  10−7 0.04 2.74

3d 6.61  10−7 0.01 7.44

4s 9.69  10−8 0.07 0.798
(continued)
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Table 3.2 (continued)

nl P1 P2 P3

4p 2.97  10−7 0.04 2.85

4d 4.15  10−7 0.01 7.54

4f 3.01  10−7 0.01 17.5

5s 5.23  10−8 0.07 0.848

5p 1.62  10−7 0.04 2.96

5d 2.53  10−7 0.01 7.68

5f 2.66  10−7 0.01 17.7

5g 1.39  10−7 0.00 32.4

6s 3.16  10−8 0.07 0.891

6p 9.81  10−8 0.03 2.93

6d 1.63  10−7 0.01 7.83

6f 1.98  10−7 0.01 17.8

6g 1.59  10−7 0.00 32.5

6h 6.76  10−8 0.00 55.8

7s 2.07  10−8 0.08 0.973

7p 6.45  10−8 0.03 3.01

7d 1.10  10−7 0.01 7.98

7f 1.45  10−7 0.01 18.0

7g 1.40  10−7 0.00 32.7

7h 9.47  10−8 0.00 55.7

7i 3.33  10−8 0.00 88.6

8s 1.42  10−8 0.08 1.01

8p 4.47  10−8 0.03 3.09

8d 7.76  10−8 0.01 8.12

8f 1.07  10−7 0.01 18.2

8g 1.15  10−7 0.00 32.8

8h 9.61  10−8 0.00 56.0

8i 5.54  10−8 0.00 88.2

8k 1.48  10−8 0.00 115

9s 1.02  10−8 0.08 1.03

9p 3.23  10−8 0.03 3.16

9d 5.67  10−8 0.01 8.25

9f 8.05  10−8 0.01 18.3

9g 9.19  10−8 0.00 33.0

9h 8.72  10−8 0.00 56.1

9i 6.33  10−8 0.00 87.7

9k 3.18  10−8 0.00 131

9l 5.86  10−9 0.00 127

Total (1s…9l) 1.09  10−5 0.16 1.69

Total (1s…∞) 1.28  10−5 0.18 2.14

Fitting parameters can also be used for any non-H-like ion with Zeff > 1 in the large temperature
range 1/8 < b < 64 because the numerical results have been scaled not only with respect to Z but
at the same time with respect to b too. Typical accuracy of fitted rates is 10%
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Table 3.2 provide likewise a good accuracy for non-hydrogen-like ions (if the
H-like approximation holds true reasonably well) if the charge Z is replaced by the
effective charge Zeff. Note, that detailed radiative recombination rates for H I, He I
and He II are presented in Annex A.2 and A.3.

3.4.5 Enhanced Radiative Recombination in Storage Rings

Several observations in storage rings have identified enhanced radiative recombi-
nation by about a factor of 10 at very low energies (Gao et al. 1995, 1997). The
essence of the effect is an anomalous increase of recombination rates when the
relative energy of the electron–ion collision becomes of comparable value with the
transverse electron beam temperature that is of the order of 0:1 meV. The first
observations have been made with multicharged ions with a core, and it was
suggested that dielectronic recombination might contribute. However, also mea-
surements with bare nuclei indicated enhanced radiative recombination rates by a
factor of 4 (Gao et al. 1995). It was found that the excess rates defined as a
difference between the measured and standard ones increase sharply as a function of
an ion charge (as Z2:8) and fall with the increase of the electron energy (Gao et al.
1997). However, for very highly charged ions, the Z2.8-scaling could not be con-
firmed (Hoffknecht et al. 2001).

It has been discussed (Heerlein et al. 2002, 2004a) that three-body recombina-
tion can be excluded as an explanation of enhanced rates, as the typical density
dependence was not observed. Also Zeeman and Stark effects, stimulated emission,
multiphoton effects and QED effects could finally not be made responsible for the
enhanced rates, and it was proposed that the observations are driven by an electron
distribution function that includes electrons with negative energy when the ions
merge the electron beam (Heerlein et al. 2002). However, the modification of the
electron distribution function has been controversely discussed (Hörndl et al. 2004;
Heerlein et al. 2004b).

In further investigations (Hörndl et al. 2005), dense plasma screening effects as
well as B-field effects on the cross sections have been excluded as an explanation
for the enhanced rates. In fact, the B-field cross section calculations did not
reproduce the observed B0.5-field dependence. Finally, transient electric-field-
induced enhanced recombination (Hörndl et al. 2005) has been proposed. In this
scenario, radiative decay of transiently formed Rydberg states inside the solenoid
can stabilize a fraction of these bound electrons by preventing field ionization in the
toroidal demerging section. Thus, sufficiently deeply bound electrons with principal
quantum numbers contribute, in addition to the RR channel, to the observed
electron ion recombination rate. This model is also geometry dependent, but at
present, respective observations have not been possible as all experimental setups
are very similar and therefore enhanced radiative recombination rates seem to
request further investigations.
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3.5 Two-Channel Bremsstrahlung in Electron–Atom
Collisions

Photon radiation in scattering of a charged particle by an atom (ion, molecule,
cluster, etc.) is called bremsstrahlung. The initial and final states of a radiating
particle in this process belong to the continuous spectrum, and radiation energy
originates from its kinetic energy. Let us consider at first a simple case when a
nonrelativistic electron is scattered by a “bare” nucleus (that is, a nucleus without
bound electrons) with a charge number Z. We use the classical expression for the
dipole radiation power Q in terms of acceleration w of a scattered electron (an
acceleration of a nucleus can be neglected because of its heavy mass):

QðtÞ ¼ 2e2

3c3
w2ðtÞ: ð3:84Þ

The total energy of the bremsstrahlung is

E ¼ 4e2

3c3

Z1
0

wðxÞj j2 dx
2p

: ð3:85Þ

In derivation of (3.85), the following relation was used:

Z1
�1

f 2ðtÞdt ¼ 2
Z1
0

f ðxÞj j2 dx
2p

; ð3:86Þ

where f ðtÞ is a real function of time and f ðxÞ is its Fourier component. To calculate
the Fourier component of the acceleration wðxÞ, it is necessary to concretize the
character of motion of the particle. It is well known that in the case of a central force
field the momentum of an electron M ¼ m t q (note that jtj ¼ tÞ is conserved,
where t is the electron velocity (at an infinite distance from a nucleus) and, q is the
impact parameter (see Fig. 3.3).

ρ
v

Z e

r(t)

En

Eτv t

Fig. 3.3 Diagram of electron
scattering by a nucleus in the
approximation of straight
trajectories, q is the impact
parameter
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Thus, the motion of a particle in the potential U r ¼ rj jð Þ is characterized by two
values: the initial velocity and the impact parameter, so the Fourier component of
acceleration depends also on q: wðxÞ ! wqðxÞ. For the last value, we have:

wqðxÞ ¼ e
m
Eðx; qÞ; ð3:87Þ

where Eðx; qÞ is the Fourier component of the strength of the electric field of a
nucleus acting on a scattered electron with a specified impact parameter. Let us
calculate Eðx; qÞ in the approximation of straight trajectories of electron motion.
This approximation is valid for “distant” collisions, when q[ aC (aC ¼ Z e2=m t2

is the Coulomb length). It should be noted that this approach was used by E. Fermi
for the calculation of excitation of atoms by charged particles. Using elementary
electrodynamic formulas, we find for the Fourier component of the strength of the
electric field of a nucleus:

Eðx;qÞ ¼ 2Ze
qt

F
xq
t

� 	
en � iF0 xq

t

� 	
es

n o
; ð3:88Þ

where en;s are the normal and tangent (with respect to the velocity vector t) unit
vectors (see Fig. 3.3) and

F fð Þ ¼
Z1
0

cos fxð Þ
1þ x2ð Þ3=2

dx; ð3:89Þ

where the prime (F′(x)) denotes differentiation with respect to the argument.
In view of (3.87), it follows from (3.85) an expression for the bremsstrahlung

energy differential with respect to photon frequency:

dEq

dx
¼ 2e4

3pm2c3
E x; qð Þj j2: ð3:90Þ

The probability of bremsstrahlung in a scattering process of an electron with
specified impact parameter and frequency is related to the energy of (3.90) by the
relation:

dWq

dx
¼ 1

�hx
dEq

dx
; ð3:91Þ

and the differential (with respect to frequency) cross section is therefore

dr
dx

¼ 2p
Zqmax

qmin

dWq

dx
qdq: ð3:92Þ
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qmin and qmax are the minimum and maximum impact parameters. Gathering the
formulas (3.90)–(3.92) together, we obtain:

dr
dx

¼ 4e4

3m2c3�hx

Zqmax

qmin

E x; qð Þj j2qdq: ð3:93Þ

Hence, in the approximation of straight trajectories, we have obtained for the
spectrally resolved cross section for the electron bremsstrahlung in the field of a
“bare” nucleus:

dr
dx

¼ 16Z2e6

3m2t2c3�hx

Zqmax

qmin

dq
q

F2 xq
t

� 	
þF02 xq

t

� 	n o
; ð3:94Þ

where the function FðfÞ is given by the formula (3.89).
Classical consideration is found to be insufficient for the determination of the

limits of integration qmin, qmax in (3.94). For this purpose, it is necessary to invoke
quantum considerations. For example, the minimum value qmin is defined by the de
Broglie wavelength of a scattered electron:

qmin 	 kDB=2p ¼ �h
mt

: ð3:95Þ

The relation (3.95) reflects the fact that the location of a quantum particle cannot
be determined more exactly than spatial “diffusiveness” of its wave function that is
characterized by the de Broglie wavelength. To determine the maximum impact
parameter qmax, it is necessary to use the law of conservation of energy and the
relation between the change of momentum Dp of an incident electron and the
impact parameter q: Dp 	 �h=q. Then, it can be obtained:

qmax 	
t
x
: ð3:96Þ

In derivation of (3.96), the energy conservation law was used in the form
�hx ¼ tDp that is true for small changes of an electron momentum Dpj j � p, which
corresponds to the approximation of straight trajectories. This approximation
realized in case of distant collisions q[ aC implies the weakness of interaction of a
projectile with the target (nucleus). Naturally, in weak interaction mainly
low-frequency photons will be emitted. It can be shown that a corresponding
condition looks like: x\xC, where xC ¼ t=aC is the Coulomb frequency. In the
low-frequency region, the argument of the function FðfÞ and of its derivative F0ðfÞ
is less than one: f ¼ xq=t\1, so, as it follows from the definition (3.89), the
following approximate equalities can be used: FðfÞ 	 1 and F0ðfÞ 	 0. As a result,
instead of (3.94) we have:
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dr
dx

¼ 16Z2e6

3m2t2c3�hx
ln

qmax

qmin


 �
: ð3:97Þ

It is easy to generalize the obtained expression to an arbitrary scattered particle,
for which the used approximations are fulfilled. For this purpose, it is necessary to
make replacements in the formulas (3.84) and (3.87) according to e ! ep, m ! mp,
where ep and mp are the charge and the mass of the projectile. Then, in view of
(3.95) and (3.96) we obtain from (3.97) the expression for the spectral brems-
strahlung of a nonrelativistic charged particle on a “bare” nucleus in the
low-frequency approximation ð�hx � mpt2=2Þ:

dr
dx

¼ 16Z2e2e4p
3m2

pt
2c3�hx

ln
mpt2

�hx


 �
: ð3:98Þ

From the obtained equation, it follows that the bremsstrahlung cross section is
inversely proportional to the squared mass of the projectile. Thus, in going from
light charged particles (electron, positron) to heavy particles (proton, alpha particle,
etc.), the cross section of the process under consideration decreases more than
million times. This conclusion led to the well-known statement that heavy charged
particles do not emit bremsstrahlung photons. As it will be clear from the following,
this statement needs considerable correction.

The spectral intensity of radiation is equal to the process cross section multiplied
by the projectile flux and the energy of an emitted photon, so (3.98) gives:

dI
dx

¼ 16Z2e2e4p
3m2

ptc
3 ln

mpt2

�hx


 �
: ð3:99Þ

As discussed above, the formulas (3.98), (3.99) were obtained in the approxi-
mation of distant collisions corresponding to emission of low-frequency photons.
The contribution of high-frequency photons x[xC to the bremsstrahlung is made
by close collisions q\aC corresponding to strongly curved trajectories. The
spectral cross section and intensity of the electron bremsstrahlung in this case are
described by the Kramers formulas:

dr Kramð Þ

dx
¼ 16pZ2e6

3
ffiffiffi
3

p
m2t2c3�hx

; ð3:100Þ

dI Kramð Þ

dx
¼ 16pZ2e6

3
ffiffiffi
3

p
m2tc3

: ð3:101Þ

The right-hand side of the (3.101) does not include the Planck constant, which is
indicative of a purely classical nature of this expression.
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It is interesting to note that the Kramers formulas describe not only brems-
strahlung, but also photorecombination, when the final state of a radiating electron
belongs to the discrete ion spectrum. This circumstance follows from the fact that
radiation in the high-frequency limit x[xC is “gathered” from a section of the
trajectory of closest approach to the nucleus, so a radiating electron “does not
know” where it is scattered after emission of a photon.

The expressions (3.98)–(3.99) were obtained within the framework of classical
consideration with quantum “insertions” (3.95), (3.96). It is clear that such an
approach is not consistent, but its important advantage is physical transparency and
mathematical simplicity. It is pertinent to note here that the use of the quantum
mechanical formalism within the framework of the Born approximation results in
the same formulas for the cross section and intensity of bremsstrahlung of
low-frequency photons as (3.98), (3.99).

The criterion of the Born approximation is given by the relation:

Z eep
�� ��
�ht

� 1; ð3:102Þ

Relation (3.102) corresponds to sufficiently fast projectiles. The condition
(3.102) allows calculation of the scattering cross section according to the pertur-
bation theory; the ratio Z eep

�� ��=�ht serves as a small parameter in the theory. The
possibility of classical consideration is given by an inequality that is reverse to
(3.102), so the above coincidence of results is to a certain extent by accident.
A similar accidental coincidence of classical and quantum results holds true for the
Rutherford cross section of electron scattering by a nucleus.

3.6 Bremsstrahlung in Many Electron–Atom Collisions
and Mass-Independent Radiation

When going to bremsstrahlung on an atom, it is necessary to take into account the
screening effect of bound electrons, resulting in the replacement

qmax ! min t=x; rað Þ; ð3:103Þ

(ra is the atomic radius) in the expressions for the cross section and intensity. In
fact, for impact parameters q[ ra the atomic field is equal to zero, so the accel-
eration of a projectile vanishes, and, according to (3.84), the bremsstrahlung van-
ishes too. It is obvious that screening is essential for sufficiently low frequencies
x\t=ra; otherwise, a projectile should pass sufficiently close to the nucleus to emit
a photon at specified frequency.

In case of bremsstrahlung on multielectron atoms, when the Thomas–Fermi
model is valid, the Thomas–Fermi radius can be used as an atomic radius:
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ra 	 rTF ¼ aBb=
ffiffiffi
Z3

p
, where aB 	 0:53 Å is the Bohr radius, Z is the charge number

of the atomic nucleus, and b ffi 0:8553 is a constant.
The replacement (3.103) corresponds to the screening approximation in the

bremsstrahlung theory used by H. Bethe and W. Heitler to generalize the cross
section formulas to the atomic case. Physically, the screening approximation means
the replacement of atomic electrons by a nucleus with effective charge. Thus, bound
electrons are excluded from consideration as a dynamical degree of freedom that
might occur during bremsstrahlung. In fact, during emission of high-energy photons
an energy–momentum excess can be transferred to atomic electrons, resulting in
their excitation and ionization.

Besides a real excitation, atomic electrons can be excited virtually in a collision
of an atom with a charged particle. Virtual excitation corresponds to the occurrence
of a variable dipole moment in an atom that, according to the fundamentals of
electrodynamics, should radiate electromagnetic waves. Such a process is called
polarization bremsstrahlung since it is connected with the dynamic polarizability of
an atom defining a radiating dipole moment.

Polarization bremsstrahlung can be interpreted also as a process of scattering of
the eigenfield of a projectile (a virtual photon) contributing to the radiation field (a
real photon) of atomic electrons. Polarization bremsstrahlung is therefore an
additional radiation channel in charge scattering by a target with a system of bound
electrons. We will call a bremsstrahlung that exists also on a “bare” nucleus
ordinary or static bremsstrahlung. The latter term implies that this channel is the
only channel in the model of static distribution of the electron charge of bound
electrons.

Let us derive formulas for the polarization bremsstrahlung of a fast charged
particle on an atom, considering the atom to be an elementary dipole with polar-
izability bðxÞ. For the description of the projectile motion, we use, as above, the
classical approach and the approximation of straight trajectories. We proceed from
the formula for dipole radiation power, but this time we will formulate it in terms of
the dipole moment of the radiating system:

QðtÞ ¼ 2
3c3

€dðtÞ�� ��2: ð3:104Þ

Here, two dots denote the second time derivative. Integrating the (3.104) with
respect to time and using the formula (3.87) for the squared second derivative of the
dipole moment, we come to the expression for the total energy of polarization
bremsstrahlung for the time of a collision corresponding to the impact parameter q:

E ¼ 4e2

3c3

Z1
0

x4 bðxÞE pð Þðx; qÞ�� ��2dx
2p

; ð3:105Þ

where EðpÞðx; qÞ is the Fourier component of the strength of the electric field of a
charged projectile at the location of an atom. In derivation of this formula, the
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relation €dðxÞ ¼ �x2dðxÞ was used that follows from the definition of the Fourier
components.

Going from the total radiated energy to the spectral cross section as was done in
derivation of the formula (3.93), we obtain the following expression for the
polarization bremsstrahlung:

drPB

dx
¼ 4x3 b xð Þj j2

3c3�h

Z~qmax

~qmin

EðpÞðx; qÞ�� ��2q dq: ð3:106Þ

The upper limit of integration in this formula follows from the energy conser-
vation law (3.96), being of the same value as for static bremsstrahlung. But the
lower limit of integration is essentially different. In the elementary dipole
approximation under consideration, it is defined by the size of an atom:

~qmin ¼ ra: ð3:107Þ

As the analysis shows, scattering with small impact parameters q\ra makes
small contributions to the polarization bremsstrahlung cross section since in this
case the coherence in re-emission of the projectile eigenfield by atomic electrons to
a real photon is lost.

From Fig. 3.3, it is easy to see that the Fourier component of the strength of the
electric field of a projectile in the approximation of straight trajectories can be
calculated by a formula similar to (3.88), with replacement of the nuclear charge by
the projectile charge. As a result, for the strength EðpÞðx; qÞ we have:

EðpÞðx;qÞ ¼ 2ep
qt

�F
xq
t

� 	
en þ iF0 xq

t

� 	
es

n o
; ð3:108Þ

where en and es are the normal and tangent unit vectors, and the function FðfÞ is
given by the (3.89). Substituting (3.108) in (3.106), we obtain the spectral cross
section of polarization bremsstrahlung:

drPB

dx
¼ 16e2px

3 b xð Þj j2
3t2c3�h

Zt=x
ra

dq
q

F2 xq
t

� 	
þF02 xq

t

� 	n o
dq: ð3:109Þ

Hence, we find for the intensity:

dIPB

dx
¼ 16e2px

4 b xð Þj j2
3tc3

Zt=x
ra

dq
q

F2 xq
t

� 	
þF02 xq

t

� 	n o
dq: ð3:110Þ
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It should be noted that the formula (3.110) does not contain the Planck constant,
which is indicative of the classical nature of the polarization bremsstrahlung.

In the low-frequency limit, when FðfÞ 	 1 and F0ðfÞ 	 0, the formula (3.109)
gives:

drPB

dx
¼ 16e2px

3 bðxÞj j2
3t2c3�h

ln
t

xra


 �
: ð3:111Þ

This expression is valid for frequencies x\t=ra; otherwise, it is necessary to
employ formula (3.109). However, the calculation shows that in the frequency
range x[ t=ra polarization bremsstrahlung is low.

The cross section (3.111) can be obtained within the framework of the quantum
approach in the domain of validity of the Born approximation (3.92), that means for
fast (but nonrelativistic) projectiles.

It should be emphasized that the polarization bremsstrahlung cross sections
(3.109), (3.111) do not depend on the projectile mass in contrast to the static
bremsstrahlung cross section (3.99). Thus, the long existing statement in physics
that heavy charged particles do not emit bremsstrahlung photons does not extend to
the polarization channel. This circumstance is connected with the fact that the static
bremsstrahlung cross section is proportional to the squared acceleration of a pro-
jectile, while the polarization cross section does not depend on this acceleration.

The polarization bremsstrahlung cross section (3.111) can be obtained from the
static cross section (3.98) via the replacements mp ! m, e4p ! e2e2p, qmin ! ~qmin

and

Z ! ZpolðxÞ; ð3:112Þ

where

ZpolðxÞ ¼ mx2

e2
bðxÞj j2 ð3:113Þ

is the effective polarization atomic charge (in units of the electron charge
e) (Rosmej et al. 2017). A polarization charge characterizes the ability of the
electron core of an atom to emit a photon under the action of an ac field. In contrast
to an ordinary charge, a polarization charge depends on radiation frequency. The
frequency dependence of polarization charges of silver and krypton atoms is pre-
sented in Fig. 3.4.

From Fig. 3.4, it is seen that in the high-frequency range the polarization charge
is equal to the number of bound electrons of an atom (or the charge number of its
nucleus). This fact follows from the definition (3.113) and the formula for
high-frequency polarizability (2.43). In the low-frequency region x ! 0 a polar-
ization charge, according to (3.113), decreases quadratically since in this case atomic
polarizability is equal to its static value (2.42) that does not depend on frequency.
Finally, in the intermediate spectral range the polarization charge is a non-monotonic
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function that reflects the features of the energy spectrum of an atom. For example, a
wide “dip” in the dashed curve of Fig. 3.4 in the range of 1600–1750 eV corre-
sponds to the binding energy for 2p-electrons in the krypton atom. A minimum in the
low-frequency region corresponds to virtual excitation of atomic subshells with
principal quantum number n ¼ 3. Thus, the spectral cross section of polarization
bremsstrahlung reflects the atomic core dynamics as a function of frequency.

In the high-frequency limit, when x � xa(xa is the characteristic frequency of
excitation of an atom in the discrete spectrum), but still x\t=ra, b xð Þ 	
�Ze2=mx2 ðZpol xð Þ ¼ ZÞ the formula (3.111) gives:

drPB

dx
¼ 16Z2e4e2p

3m2t2c3�hx
ln

t
xra


 �
: ð3:114Þ

Curiously, in case of an incident electron (positron), the obtained expression
differs from the formula for the static bremsstrahlung cross section only by the
logarithmic factor.

Let us now consider the resonance case, when the bremsstrahlung frequency is
close to one of the eigenfrequencies of an atom, i.e. x 	 x0. The dynamic polar-
izability looks like

b x 	 x0ð Þ ffi e2

m
f0

x2
0 � x2 � 2ixc0

: ð3:115Þ

This expression for the resonance polarizability follows from the general formula
(2.41) if only the resonance summand is considered for which xnm � x0, fnm � f0,
and cnm � c0. Substituting the formula (3.115) in (3.111), we obtain:

Fig. 3.4 Spectral
dependence of the
polarization charges of silver
and krypton atoms
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drres

dx
¼ 4

3

e2p
�hc

c
t

� 	2 r2e f
2
0x0

x0 � xð Þ2 þ c20
ln

t
xra


 �
; ð3:116Þ

where re ¼ e2=mc2 	 2:8 10�13 cm is the classical radius of an electron.
From the expression (3.116), it is seen that resonance polarization brems-

strahlung has a sharp maximum at the frequency x ¼ x0 if c0 � x0. The last
inequality is satisfied in case of excitation of electrons of the outer atomic shell into
the discrete spectrum. For neutral atoms, energies of the resonant photons are about
10 eV. In case of multiply charged ions with a system of bound electrons (an
electron core), these energies can be much higher and reach values of the order of
several keV. However, in this case the transition damping constant being equal to
the Einstein coefficient Amn is also large, and therefore, the resonance is not sharp
anymore. At frequencies corresponding to virtual excitation of inner atomic shells,
the resonance structure in the spectral dependence of the dynamic polarizability
bðxÞ disappears. In the spectral curves, “dips” appear that correspond to the
beginning of the photoionization of an atomic subshell (see Fig. 3.4).

Thus, resonance effects in the above-considered spontaneous polarization
bremsstrahlung are essential only in a narrow frequency interval in the vicinity of a
resonance and are ill-defined in the integral characteristics of radiation. The situ-
ation changes when going to the induced bremsstrahlung (also called the induced
bremsstrahlung effect).

3.7 Photoionization

3.7.1 General Relations

Let us consider at first a bound–free transition of a quantum system with photon
absorption under the action of electromagnetic radiation of moderate intensity,
when the condition of applicability of the perturbation theory is satisfied. Let the
atom be excited as a result of absorption of a photon of an external field.
Photoabsorption is characterized by the spectral cross section that is connected with
the probability per unit time for excitation of a bound electron under the action of
electromagnetic radiation with a specified frequency x. For the photoabsorption
cross section rðxÞ, there exist a number of general relations that are used for the
construction of approximate models to quantitatively describe the photoeffect. For
example, it is convenient to express the value rðxÞ in terms of the spectral function
of dipole excitations gðxÞ according to the formula (Amusia 1990):

rðxÞ ¼ 2p2

137
aBtagðxÞ; ð3:117Þ
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where aB is the Bohr radius, and ta ffi 2:18 108 cm/s is the velocity of an electron
in the first Bohr orbit in a hydrogen atom (an atomic unit of velocity). Hereafter, the
number 137 resulted from writing the velocity of light in atomic units: c=ta ffi 137.
The function gðxÞ is very convenient because it satisfies the sum rule:Z

gðxÞdx ¼ Nn; ð3:118Þ

where Nn is the total number of electrons in an atomic shell n. Besides, the spectral
function gðxÞ satisfies also the equation:

gðxÞ ¼
X
j

fijd x� xij
� �

; ð3:119Þ

where fij is the strength of an oscillator for the transition i ! j and xij is the
eigenfrequency of this transition. It should be noted that if we are dealing with the
photoionization of an electron in subshell nl with specified principal n and orbital l
quantum numbers, the expressions (3.117)–(3.119) should be related to this sub-
shell and designated with corresponding indices: Xnl.

The above formulas (3.117)–(3.119) concern not only photoionization, but also
photoabsorption that is accompanied by electron transitions in the discrete spec-
trum, i.e. photoexcitation. In case of a photoionization, the summation in (3.119) is
replaced by an integration over states of the continuous spectrum, the integrand
being a differential oscillator strength for transition to the continuum df =de, where e
is the energy of a state of the continuous spectrum of an electron. The differential
oscillator strength is expressed in terms of the matrix element die of a transition
dipole moment operator for transitions to the continuum in the same manner as for
transitions to the discrete spectrum:

df
de

¼ 2x diej j2
3e2a2B

; ð3:120Þ

where e is the elementary charge.
It is useful to introduce the concept of an oscillator strength density for transi-

tions into the discrete spectrum too. The oscillator strength of such transitions has to
be divided by the energy interval from the given level to the nearest energy level. It
can be shown that in this case the following relation is valid (Cowan 1981;
Sobelman 1972, 2006):

lim
n0!1

4p2Rya2B
137

fnl;n0l0

En0 þ 1l0 � En0l0
¼ rnl;el0 Inlð Þ: ð3:121Þ

This means, the normalized oscillator strength density for infinitely large prin-
cipal quantum numbers goes over to the threshold value of the partial (corresponding
to a given value of orbital quantum number l0) cross section of photoionization of an
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electron subshell nl. The limiting transition (3.121) is a demonstration of a smooth
conjugation of optical characteristics of discrete and continuous spectra.

The most general expression for the cross section of photoionization of an
electron subshell in the one-electron approximation (that is, with neglect of inter-
electron correlations) looks like

rnlðxÞ ¼ 4p2Nnlta
3e2aBx137 2lþ 1ð Þ dnl;e lþ 1ð Þ

�� ��2 þ dnl;e l�1ð Þ
�� ��2h i

; ð3:122Þ

where Nnl is the number of equivalent electrons, that is, electrons with the same
values of principal and orbital quantum numbers. Here, there are introduced the
matrix elements of a dipole moment operator for transitions to states of the con-
tinuous spectrum with orbital quantum numbers allowed by selection rules. These
matrix elements can be expressed in terms of radial wave functions of the initial
ðRnlðrÞÞ and final ðRel0 Þ states as follows:

drnl;el0 ¼
exta
aB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1ð Þ 2l0 þ 1ð Þ

p l 1 l0

0 0 0


 �Z1
0

Rnl rð ÞrRel0 rð Þr2dr; ð3:123Þ

where
l 1 l0

0 0 0


 �
is the so-called 3j-symbol. It results from integration with

respect to angular variables in the definition of the matrix element of the dipole
moment. The 3 j symbol describes the selection rules for dipole radiation,
according to which l0 ¼ l� 1. Naturally, in the case l ¼ 0 there is one allowed
value of a quantum number of an orbital moment in the final state: l0 ¼ 1. As a rule,
the main contribution to the photoionization cross section is made by a transition
with increasing quantum number of an orbital moment l ! lþ 1. Exceptions to this
rule occur if for some specific reasons the matrix element dnl;n0lþ 1 is small or goes to
zero. On the other hand for the angular distribution of ionized electrons (that we do
not consider here), the transition l ! l� 1 can play an important role.

3.7.2 Hydrogen-like Approximation

As was shown for the first time by Sommerfeld (1978), the total (integrated with
respect to the electron escape angle) photoionization cross section for the ground
1s-state of a hydrogen-like ion is

rH�like
ph 1s ðxÞ ¼ 29p2

3Z2137
I1s
�hx


 �4

a2B
exp �4farcctgfð Þ
1� exp �2pfð Þ ; ð3:124Þ
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where x is the ionizing radiation frequency, Z is the nuclear charge, I1s ¼ Z2Ry is
the ionization potential of the 1s-state (Ry=13.6 eV), p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m �hx� I1sð Þp
is the

momentum of the ionized electron, and f ¼ Zme2=p�h is the so-called Born
parameter. The Born parameter (see also (3.102)) is a dimensionless quantity
characterizing the force of interaction between an electron and a charged particle.
This parameter is introduced in the electron scattering theory and usually written in
terms of the electron velocity: f ¼ Ze2=�ht. The dependence of the Sommerfeld
photoeffect cross section (3.124) on the photon energy is presented in Fig. 3.5
(solid curve).

It should be noted that photoionization is a process of the first order with
a smallness parameter being the electromagnetic interaction constant (e2=�hc ffi
1=137 in ordinary units). This manifests itself in the presence of the velocity of light
(the number 137) to the first power in the denominator of the formula (3.124).

In the vicinity of the photoionization threshold, when p ! 0; f ! 1, we
obtain from the formula (3.124) the following approximate expression for the
photoeffect cross section:

r1sðxÞ 	 29p2a2B
3e4Z2137

1� 8
3

�hx� I1sð Þ
I1s


 �
	 0:23a2B

Z2 1� 8
3

�hx� I1sð Þ
I1s


 �
; ð3:125Þ

where e is the base of the natural logarithm (not to be confused with an elementary
charge). Thus, the photoeffect cross section for a hydrogen atom ðZ ¼ 1Þ at the
threshold ð�hx ¼ RyÞ is equal to 0.063 Å2 or 6.3 Mb. It should be noted that the
cross section of photoionization of atoms is often given in megabarns:
1 Mb = 10−18 cm2.

An important feature of the photoeffect of hydrogen-like atoms follows from
formulas (3.124)–(3.125): The maximum of the cross section value is achieved at
threshold, that is, at the minimum radiation frequency, at which photoionization is
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Fig. 3.5 Sommerfeld,
Kramers, and Born cross
sections of photoionization of
the ground state of a hydrogen
atom and the cross section in
the Rost approximation
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still possible. For higher frequencies, the cross section monotonically decreases.
This property is caused by the fact that an ionized electron experiences Coulomb
attraction of a nucleus that increases the cross section.

From the formula (3.125), it follows that the cross section of photoionization of
the ground state of a hydrogen-like ion decreases at the threshold inverse propor-
tionally to the squared nuclear charge. Such a behavior of the cross section has a
simple qualitative interpretation: With increasing nuclear charge the radius of the
ground state of a hydrogen-like ion decreases r1s / Z�1, whence (on the assump-
tion that r1s / r21s) there follows the threshold dependence of the photoionization
cross section that can also be represented as rthres1s / 1=I1s. Hence, it follows that the
threshold value of the photoeffect cross section for ns-states (with another principal
quantum number n) can be represented as

rthresns ¼ I1s=Insð Þrthres1s : ð3:126Þ

Thus, the threshold value of the photoionization cross section increases with
principal quantum number. Curiously, this relation is validated by experimental
cross sections even in the case of non-hydrogen-like atoms. For example, for an
argon atom we have I1s : I2s : I3s 	 150 : 10 : 1, while the ratio of experimental
threshold cross sections for these shells is 300 : 30 : 1.

In the high-frequency mode �hx � I1s we obtain from (3.124)

r1sðxÞ 	 28p
3

a2B
Z2137

I1s
�hx


 �7=2

1� p

ffiffiffiffiffiffi
I1s
�hx

r" #
: ð3:127Þ

The formula (3.127) reflects the well-known asymptotic decrease in the
hydrogen-like photoeffect cross section with increasing frequency: x�7=2. It makes
sense to emphasize that the photoionization cross section (3.124) goes to its
asymptotic behavior (3.127) only at rather high values of frequency, i.e. about
x[ 40I1s=�h since the expansion parameter ð�2 pfÞ of the exponent in (3.124)
becomes much less than unity only at such high frequencies.

For the photoionization of nl-subshells (with l 6¼ 0), the photoeffect cross section
decreases also monotonically with increasing frequency, and for x � Inl=�h we
have

rnl xð Þ / 1=xlþ 7=2; ð3:128Þ

that is, the cross section decrease is more rapid.
As discussed above in relation with the Sommerfeld formula (3.124), there

follow characteristic features for the cross sections of photoionization of a
hydrogen-like ion, i.e. a maximum at threshold, a monotonic decrease with
increasing frequency. These characteristic features, when going to multielectron
atoms, are, generally speaking, violated. Nevertheless, the hydrogen-like formula
for the photoionization cross section is a starting point for construction of an
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approximate method of description by an order of magnitude. For example, if the
high-frequency dependence (3.128) is employed from the threshold and combined

with the sum rule
137

2p2aBta

Z 1

Inl

rnlðxÞdx ¼ Nnl, we obtain the following pho-

toionization cross section in the hydrogen-like approximation:

rnlðxÞ ¼ 4p2a2B
137

Nnl
5
2
þ l


 �
I5=2þ l
nl Ry

�hxð Þ7=2þ l
: ð3:129Þ

The cross section (3.129) applied for the 1 s-electron gives a 3.2-fold excess
over the exact value near the threshold, and far from the threshold an underesti-
mation of 2.7 times. Therefore, (3.129) defines the cross section within an order of
magnitude (in the hydrogen-like approximation).

For semiquantitative characterization of radiative phenomena, simple formulas
obtained by Kramers within the framework of classical physics are often used. They
describe cross sections for radiative processes in electron scattering in the field of a
point charge. These formulas are valid for non-small values of the Born parameter
f ¼ Z e2=�ht
 1, that is, for large charge numbers and low electron velocities. In
this case, the electron motion is quasi-classical and can be described to a good
degree of accuracy as a motion along a classical trajectory.

Within the framework of the Kramers approach for the cross section of pho-
toionization of an atomic subshell with quantum numbers nl, the following
expression can be obtained (see Sect. 3.3):

rðKrÞnl ðxÞ ¼ 64p

3
ffiffiffi
3

p Nnl
a2B

137Z2

ffiffiffiffiffiffi
Ry
Inl

r
Inl
�hx


 �3

: ð3:130Þ

Hence, the formula (3.130) corresponds to the cross section of photoionization
of a hydrogen atom in the ground state if it is assumed that Z ¼ Nnl ¼ 1 and
Inl ¼ Ry. Figure 3.5 presents these results (dashed line) that demonstrate that,
despite its simplicity, the Kramers formula adequately describes the cross section of
photoionization of a hydrogen atom. The most distinction from the exact cross
section is at threshold. The Kramers formula overestimates the Sommerfeld
threshold value of the cross section by about 30%. In the high-frequency mode, the
expression (3.130) gives another asymptotics than the Sommerfeld formula (3.124):
x�3 instead of x�3:5. However, since the cross section goes to the high-frequency
asymptotics only very far from the threshold (more than ten times), this distinction
has little effect in the actual region of photon energies where the cross section is
high.
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3.7.3 Photoeffect Cross Section in the Born Approximation

In the mode of small values of the Born parameter f ¼ Z e2=�ht � 1, the influence of
an atomic core on the motion of an ionized electron can be considered to be a small
perturbation. This is the case for high velocities and low nuclear charges. In this case,
in calculation of the matrix elements dnl;elþ 1 appearing in the general formula for the
photoeffect cross section (3.122), plane waves corresponding to free motion can be
used as a wave function of an ionized electron. Then for the cross section of pho-
toionization of an atomic subshell, the following expression can be obtained:

rnlðxÞ ¼ 8p2

3 � 137Nnla
2
B
Ry
�hx

pðxÞ
�h


 �3

gnl
pðxÞ
�h


 �����
����
2

; ð3:131Þ

where pðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m �hx� Inlð Þp

is the momentum of the ionized electron, Inl is the

potential of ionization of an electron subshell, gnlðkÞ ¼
ffiffiffi
2
p

r R1
0 jl krð ÞRnlðrÞr2dr is

the Fourier transform of the radial wave function of the initial state of an atom,
RnlðrÞ is the radial wave function of the initial state of an atomic electron nor-
malized according to

R1
0 RnlðrÞj j2r2dr ¼ 1, and jl krð Þ is the spherical Bessel

function of the lth order.
Let us give for reference several spherical Bessel functions: j0ðxÞ ¼ sin x=x,

j1ðxÞ ¼ sin x=x2 � cos x=x, j2ðxÞ ¼ 3x�3 � x�1ð Þ sin x� 3 cos x=x2. Spherical
Bessel functions describe the radial dependence of a spherical wave with a specified
value of an orbital quantum number l.

In case of photoionization of the ground state of a hydrogen atom, we have:

R10ðrÞ ¼ 2=
ffiffiffiffiffi
a3B

p� 	
exp �r=aBð Þ and g10ðkÞ ¼

ffiffiffi
2
p

r
4a3=2B

1þ k2a2Bð Þ2
, Nnl ¼ 1, Inl ¼ Ry.

Substituting these equations in the formula (3.131), we find the following expres-
sion for the cross section of photoionization of a hydrogen atom in the Born
approximation:

rðBÞ1s ðxÞ ¼
28p

3 � 137 a
2
B
Ry
�hx

pðxÞaB=�hð Þ3

1þ pðxÞaB=�hð Þ2
h i4 : ð3:132Þ

The plot of the function rðBÞ1s ðxÞ is presented in Fig. 3.5 as a dashed-dotted line.

From Fig. 3.5 a characteristic feature of the Born cross section is seen: It goes to
zero at the threshold in contrast to the exact Sommerfeld cross section and the
approximate Kramers cross sections that have a maximum at the threshold. This is
connected with the fact that the Born approximation does not take into account
nuclear attraction that increases the cross section value. At the same time, the

function (3.132) has correct high-frequency asymptotics r Bð Þ
1s �hx � Ryð Þ / x�7=2
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since in the mode of high photon energies an ionized electron can be considered to
be free, which corresponds to the condition of applicability of the Born approxi-
mation. Nevertheless, the ratio of the Born cross section to the exact cross section
for �hx ¼ 100 eV is 2.1, at �hx ¼ 1 keV it is 1.38, and only for �hx ¼ 10 keV, this
ratio is equal to 1.12; that is, the convergence is rather slow.

Thus for not too high photon energies the Kramers photoeffect cross section for a
hydrogen atom describes the real situation better than the Born cross section.

3.7.4 Local Plasma Frequency Model

So far the photoionization cross section was calculated with neglect of interelectron
interaction; that is, it was assumed that photon absorption occurs as a result of inter-
action of an electromagnetic field with individual electrons, the contributions of which
are additively summed, giving the total cross section. There is a rather simple alter-
native approach to the description of an atomic photoeffect based on purely classical
considerations. It is the local plasma frequency model or the Brandt–Lundqvist
approximation (Brandt and Lundqvist 1965) that was considered in Sect. 2.6. Within
the framework of this approach, an atom is approximated by an inhomogeneous dis-
tribution of electron density with concentration nðrÞ (plus nucleus) [Rosmej et al.
2020]. Each spatial point corresponds to its own local plasma frequency
xpðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2n rð Þ=mp

, and interaction of an external electromagnetic field of fre-
quency x with atomic electrons is defined by the plasma resonance condition

x ¼ xpðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2n rð Þ

m

r
: ð3:133Þ

From this equation, it follows that absorption of electromagnetic field energy by
atomic electrons occurs at those distances from a nucleus where the local plasma
frequency coincides with the ionizing radiation frequency. This model results in the
following simple expression for the spectral function:

gðxÞ ¼
Z

d3r nðrÞ d x� xpðrÞ
� �

: ð3:134Þ

It is easy to see that the spectral function (3.134) satisfies the sum rule (3.118).
For the photoionization cross section, according to (3.117), we have

rðxÞ ¼ 2p2

137
aBta

Z
d3r nðrÞ d x� xpðrÞ

� �
: ð3:135Þ

The presence of the delta function in (3.135) allows easy integration with respect
to spatial variables. As a result, we obtain the so-called Brandt–Lundqvist
approximation for the photoionization cross section:
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rB�L
ph ðxÞ ¼ 4p2x

137ta
r2x

n rxð Þ
n0 rxð Þj j ; ð3:136Þ

where rx is the solution of (3.133). This value corresponds to the radial distance
(from the nucleus) of the plasma resonance, and the prime denotes differentiation
with respect to the radius. Thus, within the framework of the model, the photoeffect
cross section is defined only by the distribution of the electron density nðrÞ. For the
last value, it is convenient to use the statistical model of an atom, in which
nðrÞ ¼ Z2=a3B

� �
f x ¼ r=rTFð Þ, where f ðxÞ is the universal function of the reduced

distance x ¼ r=rTF, Z is the nuclear charge, rTF ¼ baB=Z1=3 is the Thomas–Fermi
radius, and b ffi 0:8853. Substituting the above expression for electron density in
the formula (3.136), we find

rB�L
ph ðxÞ ¼ s m ¼ �hx

2Z Ry


 �
¼ 9p4m

32 � 137 x
2
m
f xmð Þ
f 0 xmð Þj j a

2
B; ð3:137Þ

here the reduced frequency m ¼ �hx= 2Z Ryð Þ is introduced, and xm is the solution of
the equation m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

4pf ðxÞp
being a result of (3.133).

As seen from (3.137), the photoionization cross section in the Brandt–Lundqvist
approximation is found to be a universal function, that is, independent of nuclear
charge but a function of the reduced frequency: sðmÞ. The formula (3.137) reveals a
corresponding scaling law for the cross section with respect to the variable m. The
universal function sðmÞ is defined by the type of the statistical model of atom, that is,
by the dependence of f ðxÞ.

Figure 3.6 shows the calculation of the photoionization cross section of a krypton
atom carried out within the framework of two alternative approaches: the quantum
hydrogen-like approximation (3.129) (solid curve), and the classical local plasma
model (3.137) that employs the Thomas–Fermi electron density (dotted curve).

Fig. 3.6 Cross section of
photoionization of a krypton
atom: solid red curve—
hydrogen-like approximation
(3.129); dotted blue curve—
local plasma model (3.137)
with electron density
according to the Thomas–
Fermi model
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It is seen that the first dependence is a saw-toothed curve with jumps at fre-
quencies corresponding to the ionization potentials of electron subshells. The value
of a jump decreases with increasing potential of subshell ionization according to the
formula (3.126). The cross section of photoionization of an atom in the local plasma
model (for the Thomas–Fermi electron density) is a smooth monotonically
decreasing curve that describes in a smooth manner the quantum jumps of the
hydrogen-like approximation.

The main advantages of the Brandt–Lundqvist approximation are simplicity,
clearness, and universality. It gives the worst description of the process in spectral
intervals in the vicinity of thresholds of ionization of electron subshells as it is seen
from Fig. 3.6. In the original work of Brandt and Lundqvist (1965), it was noted that
the local plasma model is adequate to physics of electromagnetic field photoabsorp-
tion by an atom not throughout the frequency range, but at frequencies x 	 Z Ry=�h
ðRy ¼ 13:6 eVÞ, when collective interactions dominate over one-particle interactions.
For such frequencies, the distance to a nucleus, at which the plasma resonance con-
dition (3.133) is satisfied (in the Thomas–Fermi model), coincides with the Thomas–
Fermi radius, that is equal to the distance where the electron density is maximum.
Therefore, the assumption of domination of collective phenomena in the photoeffect at
frequencies x 	 Z Ry=�h seems to be reasonable, at least at a qualitative level.

The use of the exponential screening model for the normalized function of the
electron density f x ¼ r=rTFð Þ, i.e.

fexp xð Þ ¼ 128
9p3

e�2x ð3:138Þ

allows obtaining a simple analytical expression for the photoeffect cross section. In
this case, then the transcendental (3.133) is easily solved, and we obtain with the
use of (3.137)

rB�L expð Þ
ph x ¼ 2Z Ry=�hð Þmð Þ ¼ 9p4a2Bm

64 � 137 ln
2 16

ffiffiffi
2

p

3pm


 �
; m� 16

ffiffiffi
2

p

3p
ffi 2:4: ð3:139Þ

A characteristic feature of the cross section (3.139) is the existence of a “cutoff
frequency”, which is connected with limited radial electron density near a nucleus
in the model (3.138). Therefore, there exists a radiation frequency, for which the
plasma resonance condition is not satisfied. Another characteristic feature of the
photoeffect cross section calculated with the function (3.138) is the presence of a

pronounced maximum at �hx expð Þ
max ffi 8:8Z eV.

The atomic photoeffect cross section calculated within the framework of the
Brandt–Lundqvist approximation (3.137) while employing different statistical
atomic models is presented in Fig. 3.7. We note, that the comparison of the local
plasma frequency approach employing various atomic models shows often sur-
prisingly good agreement with experimental photoionization cross section data
(Rosmej et al. 2020).
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3.7.5 Approximate Quantum Methods of Calculation
of Photoabsorption Cross Sections

Along with the above classical method of consideration of interparticle correlations
in photoabsorption, there are approximate quantum methods taking into account
multiparticle effects, in which the photoionization cross section is calculated with
the use of somewhat more simplified approaches in comparison with consistent
quantum mechanical consideration, such as the random phase exchange approxi-
mation (RPEA).

One of such methods is based on the local electron density functional
(DFT) formalism. The simplification of calculation is achieved due to introduction
of a local effective potential for the determination of one-particle wave functions of
the ground state of a system. For this purpose, a non-local exchange-correlation
energy is calculated in the local density approximation according to the equations

VxcðrÞ ¼ � 0:611e2

rsðrÞ � 0:1e2

3aB
ln 1þ 11:4aB

rsðrÞ

 �

;
4
3
pr3s ðrÞ ¼ n�1ðrÞ: ð3:140Þ

Equation (3.140) is the so-called exchange-correlation potential. As a result, the
solutions of the corresponding equations are found to be no more difficult than the
solution of the Hartree differential equations. The effects of interelectron interaction
are taken into account with the use of the introduction of a self-consistent field
representing the sum of external and induced fields and being a solution of an
integral equation.

The results of such calculations are in excellent agreement with available experi-
mental data. Besides, they are indicative of an important role of multiparticle effects in
photoionization of atoms with filled electron shells. These effects result (except for the
case of neon) in a considerable shift of the photoionization cross section maximum to

Fig. 3.7 Photoeffect cross
section in the Brandt–
Lundqvist approximation
employing different statistical
atomic models: 1—Thomas–
Fermi, 2—Lenz–Jensen, 3—
exponential screening
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the region of higher frequencies in comparison with the independent electron approx-
imation, when the position of a maximum practically coincides with the threshold
energy of a photon. For example, the maximum of the cross section of photoionization
of a xenon atom in the vicinity of the 4d-threshold is shifted by about 2.5 Ry in the
direction of high frequencies. In this case, there is no strong resonance connected
(within the framework of one-particle consideration) with transition from the 4d-
subshell to the virtual f-state located in the continuous spectrum.

It is interesting to note that the local DFT method predicts a lower (by several
electron-volts) value of the photoeffect threshold in comparison with its observed
value. At the same time, this method does not describe highly excited states of the
discrete spectrum of an atom. It should be emphasized that in this case the sum rule
for the photoabsorption cross section is fulfilled because the “non-physical” con-
tribution of the continuous spectrum to the cross section is compensated by the
contribution of the discrete spectrum adjacent to the photoionization threshold that
is not taken into account. This fact is present in a much more pronounced form in
the above versions of classical description of the atomic photoeffect. As can be seen
from Fig. 3.6, the Thomas–Fermi model for the atomic electron density gives a
photoionization cross section that is strongly pulled into the low-frequency region,
though the sum rule for corresponding cross sections is fulfilled. Within the
framework of statistical models, naturally, there is no discrete energy spectrum of
an atom at all, so the “non-physical” region of the continuous spectrum below
photoionization threshold simulates to a certain extent the contribution of bound
states not taken into account.

3.7.6 Rost Hybrid Method

Let us consider a simple model of an atomic photoeffect that admits the analytical
representation of the process cross section, known as the Rost hybrid method (Rost
1995). From the formal point of view, this approach is based on the approximate
operator equation:

exp � i Ĥ0 þD1
� �

t

�h

( )
exp

iĤ0t
�h

� �
	 exp � iD1t

�h


 �
; D1 ¼ e2aB

r2
; ð3:141Þ

where H0 is the unperturbed Hamiltonian of the atom. Hence, the expression for the
cross section is given by

rph xð Þ 	 2pZ2t2a
3 � 137x

Zþ1

�1
dt wh j exp �iD1t=�hð Þ wj ieixt ð3:142Þ
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The representation of the cross section via (3.142) is called the “hybrid”
approximation: It is quantum mechanically due to the general operator approach
and at the same time has classical features since the approximate commutation of
operator exponents (3.141) is used. It should be noted that the formula (3.142) can
be rewritten in terms of the electron density if the following replacement is made:

w rð Þj j2! 4pr2n rð Þ: ð3:143Þ

After integration with respect to time, the remaining integral (due to the presence
of the delta function) can be represented as

rph xð Þ ¼ 8p3Z2

3 � 137 a
5
B

2Ry
�hx


 �7=2

n r ¼
ffiffiffiffiffiffiffiffiffi
aBta
x

r
 �
: ð3:144Þ

In particular, from (3.144) it follows the hydrogen-like high-frequency asymp-
totics of the photoionization cross section if n r ! 0ð Þ ! const. The dependence
(3.144) is presented in Fig. 3.5 as a dotted curve.

Thus, as in the Brandt–Lundqvist approximation, the photoeffect cross section in
the Rost hybrid approximation is found to be an electron density functional. But in
this case the characteristic distance of the radiative process rx is not defined by the
plasma resonance condition (3.133), but by the difference of the atomic
Hamiltonians Hl with orbital quantum numbers differing (according to the dipole
selection rules) by one:

�hx ¼ H1ðrÞ � H0ðrÞ: ð3:145Þ

Equation (3.145) immediately follows from (3.141) in view of the energy
conservation law. Based on (3.145), it is possible to give a physical interpretation of
the Rost approximation. From this equation, it follows that photon absorption
occurs with a fixed electron coordinate as in the Born–Oppenheimer approximation,
where the values of coordinates of molecular nuclei do not change during an
electron transition. It should be noted that the formula (3.141) is just a mathematical
expression of this fact. So the Rost hybrid approximation can be considered as a
generalization of the adiabatic principle to the case of electron transitions in atoms.

It should be emphasized that the Rost model does not fulfill the sum rule for the
photoabsorption cross section (3.118) in contrast to the Brandt–Lundqvist
approximation. This hints to the inconsistency of the hybrid approach used in the
derivation of the expression for the photoeffect cross section within the framework
of this model.
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3.7.7 Generalized Scaled Empirical Photoionization Cross
Sections from K-, L-, M-, N- and O-Shell

Quantum mechanical numerical calculations for the photoionization cross sections
of different subshells have been performed in a Z- and energy threshold-scaled
representation that allow to establish a generalised scaled photoionization model
GSPM (Rosmej et al. 2020):

rðphiÞ ¼ pa20
Z2
eff

� m
2l0 þ 1

� P1 � uþP2

uþP3
� 1

uþP4ð Þ7=2þ l0
; ð3:146aÞ

u ¼ E � En0l0
~Z2 � Ry ; ð3:146bÞ

Zeff ¼ n0

ffiffiffiffiffiffiffiffiffi
En0l0

Ry

s
; ð3:146cÞ

~Z ¼ Zeff þðZeff � zÞ for single electrons in outer shell n0l0; ð3:146dÞ
~Z ¼ Zn � Nbound þNnl
 n0l0 for inner-shell ionization: ð3:146eÞ

a0 is the Bohr radius ðpa20 ¼ 8:79 10�17cm2Þ, m is the number of equivalent
electrons in the subshell n0l0, n0 and l0 are principal and orbital quantum number,
respectively, Ry = 13.606 eV, Zn is the nuclear charge, En0l0 is the ionization
potential, Nbound is the number of bound electrons, z ¼ Zn � Nbound þ 1 is the spec-
troscopic symbol,Nnl
 n0l0 is the number of electrons in subshells higher or equal than

Table 3.3 Numerical quantum mechanical calculations of the photoionization cross section from
H-like ions from the n0l0-subshells

n0l0 P1 P2 P3 P4

1s 4.667  10−1 2.724  100 9.458  100 1.189  100

2s 5.711  10−2 6.861  10−1 7.768  100 3.644  10−1

2p 8.261  10−2 1.843  10−1 7.340  100 2.580  10−1

3s 1.682  10−2 1.436  10−1 7.356  100 1.436  10−1

3p 2.751  10−2 1.742  10−1 7.162  100 1.742  10−1

3d 3.788  10−3 1.566  10−1 7.880  100 1.566  10−1

4s 7.096  10−3 8.799  10−2 7.308  100 8.799  10−2

4p 1.493  10−2 1.197  10−1 1.027  101 1.197  10−1

4d 1.769  10−3 1.205  10−1 6.346  100 1.205  10−1

4f 1.092  10−4 1.055  10−1 9.231  100 1.055  10−1

5s 3.956  10−3 5.846  10−2 8.651  100 5.846  10−2

For H-like ions, ~Z ¼ Zeff ¼ Zn. Fitting parameters are generally accurate within 20% in the large
energy range from 10−3< u < 32(i.e., from threshold to about 30 times threshold)
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the subshell n0l0, and P1;P2;P3;P4 are fitting parameters that are given in Table 3.3.
The scaled formula (3.146) provides a precision of about 20% of the photoionization
cross sections of H-like ions when employing the parameters given in Table 3.3. The
particular advantage of the developed formula (3.146) is that it shows the right
high-energy and low-energy asymptotics that have been discussed above.

Let us first consider the application of formulas (3.146) to the threshold value of
hydrogen discussed above (Sect. 3.7.2). From (3.146) and the parameters for the
1s state in Table 3.1, it follows with l0 ¼ 0, m ¼ 1, Zeff ¼ 1, rðphiÞ 1sð Þ 	 6:4
10�20cm2. This is in excellent agreement with the exact value of the Sommerfeld
formula (3.124) that gives rðphiÞ 1sð Þ ¼ 6:3 10�20cm2.

Now, we consider photoionization from the 2p-shell of H-like helium, i.e. the
transition 2pþ �hx ! nucþ e at a photon energy of 122 eV: Zeff ¼ 2, u ¼ 2,
l0 ¼ 1, m ¼ 1 and the fitt-parameters for the 2p state in Table 3.1 it follows
rðphiÞð2pÞ 	 3:7 10�21cm2 whereas the exact quantum mechanical numerical
result is rðphiÞ 2pð Þ ¼ 3:7 10�21cm2.

Thefitt-parametersmight also be used to estimate the photoionization cross section
for non-H-like ions in the framework of the H-like approximation with effective
charges. Let us consider for demonstration of the application of (3.146) the pho-
toionization from Li-like aluminum: (a) transition 1s22sþ �hx ! 1s2 þ e at a photon
energy of 7020 eV: E2s 	 442 eV form which it follows Zeff 	 11:4. Because the
considered 2s-electron corresponds to the photoionization of a single outer electron
~Z ¼ 11:8 and u ¼ 3:47.With l0 ¼ 0 andm ¼ 1 and the fitt-parameters for the 2s state

in Table 3.1 it follows r phið Þ
fit ð2sÞ 	 1:3 10�22cm2. The quantum mechanical

numerical result is rðphiÞð2sÞ ¼ 1:3 10�22cm2, (b) transition 1s23dþ �hx !
1s2 þ e at a photon energy of 1010 eV: E3d 	 183 eV form which it follows
Zeff 	 11:0. Because the considered “d-electron” corresponds to the photoionization
of a single outer electron ~Z ¼ Zeff and u ¼ 0:5. With l0 ¼ 2 and m ¼ 1 and the

fitt-parameters for the “d-state” in Table 3.1, it follows rðphiÞfit ð3dÞ 	 4:3 10�22cm2.
The quantum mechanical numerical result is rðphiÞð3dÞ ¼ 4:4 10�22cm2, (c) let us
consider a more complicated ground state, the transition 1s22s22p2 þ �hx !
1s22s22p1 þ e in B-like neon at a photon energy of 2117 eV: E2p 	 158eV from
which it follows Zeff 	 6:81, ~Z ¼ 7:62 and u 	 2:48. With l0 ¼ 1 andm ¼ 2 and the
fitt-parameters for the 2p state in Table 3.1, it follows rðphiÞ 2pð Þ 	 1:5 10�22cm2.
The quantum mechanical numerical result is rðphiÞ 2pð Þ ¼ 2:3 10�22cm2. These
examples have general character: The H-like approximation is valid for excited states,
whereas for ground and close to ground state excited states, specific numerical cal-
culations are requested and in these cases (3.146) might be used only for an order of
magnitude estimate.

We now apply the parameters of Table 3.1 to non-hydrogen-like ions and
inner-shell photoionization (of primary interest for X-ray Free Electron Laser
applications) with the help of the rescaling relation (3.146b, e). We consider the
photoionization of the 1s- and 2s-shells of B-like Neon at a photon energy of
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2000 eV: (a) the ionization potential for the transition 1s22s22p1 þ �hx !
1s12s22p1 þ e is E1s 	 1050 eV from which it follows Zeff 	 8:78. Because the
ionization of the 1s-electron corresponds to inner-shell ionization, Zn ¼ 10,
Nbound ¼ 5, Nnl
 n0l0ð1sÞ ¼ 5 and ~Z ¼ 10� 5þ 5 ¼ 10 from which it follows
u ¼ 0:70. With l0 ¼ 0 and m ¼ 2 and the fitt-parameters for the 1s state in
Table 3.1, it follows rðphiÞð1sÞ 	 3:8 10�20cm2. The quantum mechanical
numerical result is rðphiÞð1sÞ ¼ 3:9 10�20cm2; (b) we now consider the transition
1s22s22p1 þ �hx ! 1s22s12p1 þ e for a photon energy of 2132 eV: E2s 	 173 eV
from which it follows Zeff 	 7:13;Nnl [ n0l0ð2sÞ ¼ 3, ~Z ¼ 10� 5þ 3 ¼ 8 and
u 	 2:10. With l0 ¼ 0, m ¼ 2 and the fitt-parameters for the 2s state in Table 3.1 it
follows rðphiÞð2sÞ 	 2:0 10�21cm2. The quantum mechanical numerical result is
rðphiÞð2sÞ ¼ 2:3 10�21cm2. The general precision for inner-shell photoionization
is difficult to estimate, but (3.146) might estimate inner-shell photoionization cross
sections within a factor of 2 or so but might be only an order of magnitude estimate
in more complex cases (Rosmej et al. 2020).

3.8 Photodetachment from Negative Ions

Several atoms and molecules, having captured an electron, can form negative ions.
As a result of such a capture, energy is released that is called electron affinity
energy. In Table 3.4, the electron affinity energy ea is given for a number of atoms
and molecules.

An affinity energy means that energy is necessary to move an outer electron from
the negative ion to infinity. This energy can be transferred to an ion as a result of
absorption of a photon of sufficiently high frequency x[ ea=�h. The process of
detachment of an outer electron of a negative ion under the action of an electro-
magnetic field is called photodestruction. In case of photodestruction of a negative
ion, a detached electron is in a neutral atom field that is much more weak than the
long-range Coulomb field of an ion. So in the first approximation, it is possible to
neglect the influence of an atom on a detached electron, assuming it to be free, and
to use a plane wave for its wave function. In other words, for description of
photodestruction of a negative ion the Born approximation is adequate, so the
formula (3.131) should be valid. The specific photodestruction cross section is then
defined by the form of the functions gnlðkÞ representing the Fourier transform of a
wave function of an outer electron of a negative ion. The simplest model that can be
used for the radial wave function RnlðrÞ of a negative ion is called the zero radius

Table 3.4 Electron affinity energies

Ion H Li O F S Cl O2 H2O

ea, eV 0.75 0.58 1.47 3.45 2.08 3.6 0.45 0.9
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potential approximation. In this approximation, we have:

Rð0Þ
10 rð Þ ¼ ffiffiffiffiffi

2c
p

exp �crð Þ=r, where c ¼ ffiffiffiffiffiffiffiffiffiffi
2mea

p
=�h is the parameter of the reciprocal

characteristic length of the potential. Using this wave function, we obtain from
(3.131):

rð0Þph ðxÞ ¼
4p

3 � 137 a
2
B

ffiffiffiffiffiffi
ea
Ry

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m �hx� eað Þp
maBx

 !3

: ð3:147Þ

The spectral dependence of the cross section (3.147) is shown in Fig. 3.8.

It is seen that at threshold the cross section goes to zero as it should be in the Born
approximation. The maximum of the spectral dependence is reached at a photon
energy approximately equal to the double affinity energy of a hydrogen atom
(0.75 eV). The value of the cross section itself at maximum is 2.6 times higher than
the maximum cross section of photoionization of the neutral hydrogen.

From the formula (3.147), there follows the high-frequency asymptotics of the cross
section of photodestruction of a negative hydrogen ion in the zero radius potential

approximation: rð0Þph ðxÞ / x�1:5, that is, with increasing frequency the cross section
decreases much more slowly than in case of photoionization of neutral hydrogen.

The zero radius potential approximation is favorably distinguished by its sim-
plicity but gives results differing essentially from those of more accurate models.
Besides, in case of negative ions of atoms with high polarizability, in calculation of
the photodestruction cross section it is necessary to take into account variable
polarization of the atomic core that appreciably changes the cross section.

The polarization of a core can also play an essential role in the process of
ionization of neutral multielectron atoms. This multiparticle effect at a quantum
level is taken into account in the random phase exchange approximation, and within
the framework of the classical picture, it is considered in the local plasma frequency
approximation.

1,0 1,5 2,0 2,5
0,00

0,04

0,08

0,12

0,16

cr
os

s 
se

ct
io

n,
 A

2

photon energy, eV

zero-range potential modelFig. 3.8 Cross section of
photodestruction of a negative
ion of a hydrogen atom
calculated in the zero radius
potential approximation
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3.9 Phase Control of Photoprocesses by Ultrashort Laser
Pulses

For ultrashort laser pulses, we have to consider the total probability W for the
elementary atomic physics processes instead of the probability per unit time
(Rosmej et al. 2014, 2016, 2021):

W ¼ c
4p2

Z1
0

rðx0Þ E x0; sð Þj j2
�hx0 dx0; ð3:148Þ

where c – velocity of light, Eðx0Þ – Fourier transform of electric field in the
pulse, s – pulse duration, and rðx0Þ – cross section of the elementary process under
consideration. Let us apply the so-called corrected Gaussian pulse to obtain explicit
expressions for the probabilities for the photoexcitation. The Fourier transform of
this pulse has the form (Rosmej et al. 2014):

ECGP x0;x; s;uð Þ ¼ iE0s

ffiffiffi
p
2

r
x02s2

1þx2s2
e�iu� x�x0ð Þ2s2=2 � eiu� xþx0ð Þ2s2=2
n o

;

ð3:149Þ

where E0, x, and s are the pulse amplitude, carrier frequency, and duration, respec-
tively, and u is the initial phase. An important feature of (3.149) is the absence of an
electric field component at zero current frequency in contrast with the widely used
expression of the standard Gaussian shape. Let us apply the formula (3.148) for
calculation of the photoexcitation of a multielectron atom by an ultrashort Gaussian
pulse (3.149) in the local plasma frequency model. Within the framework of this
model, the expression for the photoabsorption cross section looks like

rðBLÞph x0ð Þ ¼ 2p2e2

mc

Z
nðrÞd x0 � xplðrÞ

� �
dr; ð3:150Þ

where xplðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2nðrÞ=mp

is the local plasma frequency, and nðrÞ is the spatial
distribution of electron density in an atom. Substituting (3.150) in (3.148), we find

W ðphÞ
tot ¼

ffiffiffi
p

p
effiffiffiffi

m
p

�h

Z1
0

E xpl rð Þ;u� ��� ��2 ffiffiffiffiffiffiffiffiffi
n rð Þ

p
r2dr; ð3:151Þ

where E xplðrÞ;u
� ��� ��2 is the squared absolute value of the Fourier transform of the

electric field calculated at the local plasma frequency, in which the carrier envelope
phase dependence is clearly indicated. To analyze phase effects in the total
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probability of photoexcitation by ultrashort laser pulses, we will introduce a phase
modulation factor according to

KðphÞ
tot ¼ 2

W ðphÞ
tot u ¼ 0ð Þ �W ðphÞ

tot u ¼ p=2ð Þ
W ðphÞ

tot u ¼ 0ð ÞþW ðphÞ
tot u ¼ p=2ð Þ

: ð3:152Þ

The phase modulation factor for the total probability of photoabsorption by an
atom with the charge Z ¼ 30 calculated within the framework of the statistical
model for electron density is presented in Fig. 3.9 for three pulse durations as a
function of carrier frequency. The dimensionless parameter nc is the number of
periods in the radiation pulse at given carrier frequency.

It is seen that an appreciable dependence of the photoabsorption probability on
the carrier envelope phase exists only for nc\0:5. The phase modulation factor for
the fixed parameter nc increases with carrier frequency. It should be noted that the
photoabsorption probability at the high-frequency boundary of Fig. 3.9 is 15% of its
maximum value (that in this model corresponds to the frequency xmax ¼ 0:4 a.u.).

The expression for the total photoabsorption probability (3.148) can be used to
study the interaction of an ultrashort pulse with a metal nanosphere in a dielectric
medium. If the radiation wavelength far exceeds the nanoparticle radius rs, the
dynamic polarizability of a nanoparticle can be described by the Lorentz formula:

bsðxÞ ¼
esðxÞ � em
esðxÞþ 2em

r3s ; ð3:153Þ

esðxÞ is the dielectric permittivity of a nanoparticle metal, and em is the dielectric
permittivity of the matrix. Hence, with the use of the optical theorem (2.52), it is
possible to find the photoabsorption cross section in the dipole approximation and
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Fig. 3.9 Phase modulation
factor for the total probability
of photoabsorption of an
ultrashort pulse by an atom as
a function of carrier frequency
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with the help of the formula (3.148) the total photoabsorption probability during the
action of the pulse.

The photoabsorption probabilities of an ultrashort pulse by a silver nanoparticle
in a glass matrix are given in Fig. 3.10 for two values of carrier envelope phase.
The frequency dependence of the dielectric permittivity of silver is restored with the
use of data on the real and imaginary parts of the refractive index.

It is seen that for the present case ðnc ¼ 0:25Þ there is an essential dependence of
photoabsorption on the carrier envelope phase, especially for photon energies at the
carrier frequency exceeding the energy at the maximum. With increasing radiation
pulse duration, the dependence of the probability on the carrier envelope phase
becomes less appreciable and for nc [ 0:5 practically disappears (see Fig. 3.9).

In a number of cases, for excitation of a quantum system a sequence of identical
pulses separated by a time interval T (not to be confused with the oscillation period
designation) is used. It is not difficult to obtain the Fourier transform of the electric
field strength for such a sequence consisting of N identical pulses in terms of the
Fourier transform of a single pulse EðxÞ:

ENðxÞ ¼ sin xTN=2ð Þ
sin xT=2ð Þ exp i

N � 1ð ÞxT
2

� �
E xð Þ: ð3:154Þ

Substituting (3.154) in the right-hand side of the (3.148), we find the probability
of photoexcitation of a quantum transition under the action of N identical pulses:

W21 Nð Þ ¼ c
4p2�h

Z
r21 xð Þ

x
sin xTN=2ð Þ
sin xT=2ð Þ

� �2
E xð Þj j2dx: ð3:155Þ

Fig. 3.10 Total probability
of photoabsorption of an
ultrashort pulse ðnc ¼ 0:25Þ
on a silver sphere (rs ¼ 5:3
nm) as a function of carrier
frequency for two values of
the carrier envelope phase
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Let us use these expressions for the description of the photoionization of a
hydrogen atom under the action of a train of short pulses. In this case, the process
cross section r21ðxÞ is given by the Sommerfeld formula that can be written as [see
(3.124)]:

rH m ¼ �hx
Ry


 �
¼ 29p2a2B

3 � 137 � m4
exp � 4arctg

ffiffiffiffiffiffiffiffiffiffiffi
m� 1

pffiffiffiffiffiffiffiffiffiffiffi
m� 1

p

 �

1� exp �2p=
ffiffiffiffiffiffiffiffiffiffiffi
m� 1

p� � ; ð3:156Þ

where aB ffi 0:53 Å is the Bohr radius, and Ry ffi 13:6 eV is the Rydberg constant.
The photoionization probabilities of a hydrogen atom due to the action of N laser

pulses with duration equal to two cycles in dependence of the carrier frequency are
presented in Fig. 3.11 [using formulas (3.155)–(3.156)]. The abscissa is expressed
in terms of the dimensionless parameter m ¼ e=Ryþ 1, where e ¼ �hx� Ry is the
energy of ionized electron.

One can see from Fig. 3.11 that the spectral dependence of the photoionization
probability shows a narrowing that increases with the number N of laser pulses. The
value of the parameter m at maximum is determined by the equation xT ¼ 2pk
(here k is a natural number). Since the energy of the ionized electron is equal to
Ry m� 1ð Þ and the number of these electrons is proportional to the probability
WðNÞ, one can conclude that it is possible to manipulate considerably the energy
spectrum of the photoelectron by changing the laser pulse parameters.
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Chapter 4
Radiation Scattering on Atoms, Plasmas,
and Nanoparticles

Abstract Radiation scattering on free electrons, atoms, plasmas, and nanoparticles
is considered using various approaches both quantum and classical ones. Scattering
on atoms is described in dipole and non-dipole approximations while the
high-frequency limit is applied for elastic (Rayleigh) and Compton scattering. The
high-frequency limit is treated using the dynamical form factor (DFF), the Compton
profile, and the impulse approximation. The DFF of the plasma component is also
used for the description of the radiation scattering in plasmas, namely Compton
scattering, transient scattering, and scattering with plasmon generation and
absorption. Radiation scattering and absorption on nanoparticles placed in homo-
geneous media are presented within the framework of the Mie theory. Numerical
examples are given for radiation scattering and absorption on silver nanospheres
with different radii in glass in the vicinity of surface plasmon resonances.

4.1 Photon Scattering by a Free Electron

Scattering of a photon can be interpreted as virtual absorption of an incident photon
and simultaneous emission of a scattered photon. At first, let us consider the
simplest case, when a photon is scattered by a free electron. Strictly speaking, the
model of a free (not interacting with the environment) electron is always approx-
imate. Nevertheless, in a number of cases, this approximation is well satisfied.
Moreover, as we will see further, even a bound electron under certain parameter
conditions of scattering can be considered to be free.

Scattering of a photon with a frequency x and a wave vector k by a free electron
is accompanied by a change in frequency x ! x0 and in wave vector k ! k0. If the
angle of photon scattering h is introduced (Fig. 4.1), then due to the conservation of
energy–momentum it is possible to obtain the following relation between the fre-
quency change and the angle of photon scattering:

1
x0 �

1
x
¼ �h

m c2
1� cos hð Þ; ð4:1Þ
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where m is the electron mass and c is the velocity of light. The factor in front of the
parentheses in the right-hand side of (4.1) can be rewritten as kC=2pc, where
kC ¼ h=mc ffi 2:42� 10�10 cm is the Compton wavelength of an electron.

It is easily seen from the expression (4.1) that at zero-scattering angle h ¼ 0 the
change in photon frequency is equal to zero: x ¼ x0. If h 6¼ 0, the frequency of a
scattered photon is found to be less than its initial frequency x0\x since part of the
photon energy is transferred to a scattered electron (the “recoil” energy). A decrease
in frequency corresponds to an increase in radiation wavelength, so photon scat-
tering through a nonzero angle is accompanied by an increase in wavelength.

With the use of standard rules of quantum electrodynamics (Berestetskii et al.
1982), the following expression (the Klein-Nishina-Tamm formula) can be obtained
for the cross section of photon scattering by a free electron in the laboratory frame
of reference (connected with an electron):

dr ¼ r2e
2

x0

x

� �2 x
x0 þ

x0

x
� sin2 h

� �
dX0; ð4:2Þ

where re ¼ e2=mc2 ffi 2:82� 10�13 cm is the so-called classical electron radius,
dX0 is an element of the solid angle in the direction of the wave vector of a scattered
photon. If �hx � mc2, the frequency change is small (see (4.1)) in comparison with
the frequency itself: Dxj j � x, and in (4.2) it can be assumed x � x0. Then from
the expression (4.2), the well-known nonrelativistic Thomson formula is obtained
for the cross section of photon scattering by a free electron at rest that is differential
with respect to the angle:

drTh ¼ 1
2
r2e 1þ cos2 h
� � x0

x

� �2

dX0: ð4:3Þ

It is seen that in this case the value of the cross section is defined by the squared
of the classical electron radius, that is, a very small quantity.

Fig. 4.1 Scattering of a
photon by an electron at rest,
pe is the recoil momentum of
the electron
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The cross section integrated with respect to the angle of scattering in the case of
an arbitrary photon energy can be obtained from (4.2):

r xð Þ ¼ 2pr2e
1
x

1� 4
x
� 8
x2

� �
ln 1þ xð Þþ 1

2
þ 8

x
� 1

2 1þ xð Þ2
( )

; ð4:4Þ

where x ¼ 2�hx=mc2. The scattering cross section (4.4) normalized to the squared
classical electron radius is given in Fig. 4.2.

In the nonrelativistic limit of low photon energy, when x � 1, the first terms of
the expansion of the right-hand side of the (4.4) give

r ¼ rTh 1� 2�hx
mc2

� �
; �hx � mc2; ð4:5Þ

here, the Thomson cross section rTh ¼ 8pr2e=3 of photon scattering by an electron
integrated with respect to the angle is introduced. This fact is illustrated by Fig. 4.2,
in which it is seen that the normalized scattering cross section in the limit of low
photon energy is 8p=3 ffi 8:378. The inflection point of the curve shown in
Fig. 4.2 corresponds to the approximate equality of the photon energy and the
electron rest energy, when x = 1.

In the ultrarelativistic case x � 1, when the photon energy is much higher than
the electron rest energy �hx � mc2, we obtain from (4.4):

r ¼ pr2e
mc2

�hx
ln

2�hx
mc2

� �
þ 1

2

� �
; ð4:6Þ
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Fig. 4.2 The normalized cross section of photon scattering by a free electron in a wide range of
photon energies, x ¼ 2�hx=mc2
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that is, the scattering cross section decreases in inverse proportion to the photon
energy.

It should be noted that in the ultrarelativistic limit the differential scattering cross
section in the laboratory frame of reference has a sharp maximum in the direction of
the initial propagation of the photon. On the other hand in the nonrelativistic limit,
the distribution of scattered radiation is of dipole character [as can be seen from the
formula (4.3)].

4.2 Radiation Scattering on Atoms

Within the classical framework, when electromagnetic radiation acts on an atom,
bound electrons begin oscillation, which, according to known electrodynamic laws,
results in the emission of a secondary or scattered electromagnetic wave. In
quantum terms, this process represents a scattering of the photon by an atomic
electron: the atomic electron is virtually excited to some intermediate atomic state
and finally reaches the steady state. We note that by virtual excitation it is meant the
transition of an electron to a state with another energy: this transition is then
“instantly” followed by the reverse transition to a steady state with the initial or
another energy. If this final steady state coincides with the initial state, we encounter
the so-called Rayleigh scattering, and in the other case, there is Raman scattering.

Quite another situation is possible in X-ray scattering, namely when an atomic
electron in the course of photon scattering is ionized. This process is referred to as
Compton scattering of a photon by an atomic electron.

4.2.1 Classical Description

We will dwell first on Rayleigh scattering of radiation by an atom. In order not to
resort to the quantum mechanical formalism, we employ the spectroscopic principle
of correspondence for the description of this process. According to this principle, an
atom behaves as a set of oscillators with frequencies equal to eigenfrequencies of
atomic electrons when interacting with radiation. These oscillators are called
transition oscillators since each of them corresponds to some transition between two
steady states of an electron in an atom.

To calculate the Rayleigh scattering cross section, we proceed from the
expression for the power of dipole radiation induced by the action of an electro-
magnetic wave on an atom (Landau and Lifschitz 1975):

Q tð Þ ¼ 2
3c3

€d tð Þ�� ��2; ð4:7Þ
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where c is the speed of light, two dots above the dipole moment vector denote
differentiation with respect to time. The criterion of applicability of the dipole
approximation (formula (4.7)) can be formulated by the following inequality:

k � a; ð4:8Þ

where a is the size of the region of space responsible for radiation, k is the radiation
wavelength. In case of an atom, when a � 10�8 cm, the condition (4.8) covers a
wide range of wavelengths down to soft X-rays. We note that for modern X-ray
Free Electron Laser installations, where photon energies up to about 20 keV are
reached, the dipole condition (4.8) is not anymore valid.

The expression (4.7) describes the instantaneous power of radiation at a given
instant of time t. In experiments, the power averaged over the period of oscillation
of the field in an electromagnetic wave causing dipole moment oscillations
T ¼ 2p=x is measured. In case of monochromatic radiation, the formula for the
average radiation power follows from (4.7), i.e.,

Q tð Þh iT¼
X1
n¼1

Qn; ð4:9Þ

Qn ¼ 4
3c3

€d
� �

n

�� ��2; ð4:10Þ

where ð€dÞn is the nth Fourier harmonic of the second derivative of the dipole
moment. Using the periodicity of dipole moment oscillations, with the use of the
Fourier transform, it is possible to obtain the radiation power at a frequency of
periodic motion of an electron xðn ¼ 1Þ as

Q � Qn¼1 ¼ 4x4

3c3
dxj j2: ð4:11Þ

Substituting (2.37) in (4.11) and using the formula for the intensity of
monochromatic radiation in terms of the Fourier harmonic of the electric field
strength, i.e.,

I ¼ c
2p

Exj j2; ð4:12Þ

we obtain for the cross section of the Rayleigh scattering of radiation by an atom in
an ith state

r Rscð Þ
i xð Þ ¼ 8p

3
x2

c2
bi xð Þ

����
����
2

; ð4:13Þ
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where biðxÞ is the dynamic polarizability of an atom in an ith state. The detailed
consideration of the dynamic polarizability was presented in Chap. 2.

Let us consider for comparison the classical Thomson formula for the cross
section of radiation scattering by a free electron

r Thð Þ
sc xð Þ ¼ 8p

3
e2

mc2

� �2

: ð4:14Þ

In order to compare (4.13) and (4.14), we consider different limiting cases of the
expression for the cross section of radiation scattering by an atom (4.13). The first
case corresponds to the scattering of low-frequency radiation, when x � xni: the
radiation frequency is much less than the frequencies of the transition of an atom
from the initial state to excited states. In this limit, the scattering cross section is
given by a formula similar to (4.13), in which the frequency-independent static
polarizability of an atom b0 ¼ bðx ¼ 0Þ is dominating. Thus from the expression
(4.13), it follows that in the low-frequency limit the scattering cross section
increases as the fourth power of frequency, which, in particular, defines the blue
color of the sky (solar radiation scattered in the air).

Resonant scattering of radiation by an atom occurs if the radiation frequency is
close to one of the atomic eigenfrequencies. Then the previous formulas give

r resscð Þ
i x � xnið Þ ¼ 2p

3
f 2nir

2
e

x2
ni

x� xnið Þ2 þ dni=2ð Þ2 ; ð4:15Þ

where re � 2.8 � 10−13 cm is the electron classical radius. In case of an exact
resonance with natural broadening of a transition, when ðdniÞnat ¼ Ani (Ani is the
Einstein coefficient for spontaneous radiation), it follows from (4.15) that

r resscð Þ
i x ¼ xnið Þ � k2ni; ð4:16Þ

i.e., the resonant scattering cross section is proportional to the squared of the ra-
diation wavelength, which in the optical range exceeds the geometrical size of an
atom by several orders of magnitude.

Finally, in the high-frequency limit, when the eigenfrequencies of the atom can
be neglected in comparison with the radiation frequency, we obtain

r Rscð Þ
i x � xnið Þ ¼ 8p

3
r2eN

2
a ; ð4:17Þ

where Na is the number of atomic electrons. In derivation of (4.17), the sum rule for
oscillator strengths, i.e., X

n

fni ¼ Na ð4:18Þ
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was used. The condition of the high-frequency approximation x � xni can be
rewritten as x � IP=�h, where IP is the ionization potential of the atomic shell that
mostly contributes to the scattering cross section.

The Rayleigh scattering cross section in the high-frequency limit (4.17) obtained
in the dipole approximation is proportional to the squared number of atomic
electrons. This reflects the fact that if the dipole condition (4.8) is valid the elec-
tronic charge of an atom oscillates as a single entity under the action of an elec-
tromagnetic wave. As a result, secondary radiation leading to scattering is coherent
with respect to the contributions of all atomic electrons. It is the presence of the
factor N2

a in the cross section that manifests this coherence.
For atoms with only one electron, (4.17) coincides with the Thomson formula

(4.14), i.e., with the cross section of radiation scattering by a free electron. This
coincidence is not accidental since neglecting the binding energy of the atomic
electron corresponds to the condition x � xni.

The above cross sections describe photon scattering in total solid angle. These
are the so-called integrated cross sections. To obtain a differential cross section
describing photon scattering by a spherically symmetric system into a specified
solid angle X0 þ dX0, one has to multiply the integrated cross sections by the factor
of the angular dependence of dipole radiation, 3ð1þ cos2 hÞ=16p, where h is the
angle between the wave vector of incident radiation k and the wave vector of
scattered radiation k0. Then, instead of formula (4.17), we have

dr Rscð Þ
i x � xnið Þ

dX0 ¼ 1þ cos2 h
2

r2eN
2
a : ð4:19Þ

Hence, it is seen that the cross section maximum corresponds to forward ðh ¼ 0Þ
and backward ðh ¼ 180	Þ scattering of photons.

The expression (4.19) is valid for spherically symmetric systems in the dipole
approximation, when the change in the wave vector of radiation as a result of
scattering Dk ¼ k0 � k is small in comparison with the atomic momentum, i.e.,
rj
�� �� Dkj j � 1. It can be generalized to the non-dipole case via the replacement
Na ! nðDkÞ, where nðDkÞ is the spatial Fourier transform of the atomic electron
density. The latter statement means that radiation scattering “tests” the distribution
of the electron density inside an atom. Within the framework of the quantum
mechanical formalism, the Fourier transform nðDkÞ is equal to the atomic form
factor in a specified electronic state:

n Dkð Þ ! nii Dkð Þ � Fi Dkð Þ ¼ ih j
X
j

exp iDk rj
� �

ij i; ð4:20Þ

where the sum is calculated over all electrons of an atom, and the symbol ih j. . . ij i is
the Dirac notation for the matrix element (the integral of an operator …. calculated
with atomic wave functions wiðrjÞ). It immediately follows from (4.20) that in the
framework of the dipole approximation [see relation (4.8)] FiðDkÞ ffi Na since in
this case the exponents in the sum (4.20) are small.
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In the exponential screening approximation, the electron density decreases with
increasing distance to the nucleus on a characteristic scale length Ra (the average
atomic radius). The atomic form factor and accordingly the Fourier transform of the
electron density is given by

Fi Dkð Þ ¼ Na

1þDk2R2
a

: ð4:21Þ

The radius Ra for multielectron atoms can be assumed to be equal to the
Thomas–Fermi radius Ra ffi rTF ¼ b�h2=

ffiffiffi
Z3

p
mee2 (b ffi 0:8853, Z is the

nuclear charge).
From the given expression and the formulas (4.17), (4.19), it follows that if a

condition opposite to the dipole condition is fulfilled, i.e., Dkj j[R�1
a , the cross

section of the Rayleigh scattering of radiation by an atom starts to decrease because
of the loss of coherence between the contributions of different atomic electrons.
Thus in the general case, (4.19) is replaced by the expression for the differential
cross section of Rayleigh scattering in the high-frequency limit:

dr Rscð Þ
i x � xnið Þ

dX0 ¼ 1þ cos2 h
2

r2e nii k
0 � kð Þj j2: ð4:22Þ

As follows from (4.20)–(4.22), the dipole expression for the cross section (4.19)
works reasonably well for small scattering angles even if the dipole condition (4.8)
is violated.

Formula (4.22) is valid for radiation scattering by nonrelativistic electrons. It
should be noted that in Rayleigh scattering the radiation frequency remains the
same despite of the fact that a considerable momentum Dp ¼ �hDk is transferred
from the photon to the atom. This circumstance is connected with the fact that the
momentum excess Dp is finally absorbed not by an atomic electron, but by the
nucleus where the recoil energy is low (due to the heavy mass).

In the case of Raman scattering, when the state of an atom changes, the cross
section can be expressed in terms of the scattering tensor, a quantity being the
generalization of the dynamic polarizability. On the other hand, the radiation fre-
quency changes by an amount equal to the change in energy of the atom.

4.2.2 Quantum Description

The quantum description of radiation scattering by an atom is based on the formula
for the cross section of electromagnetic field scattering by a quantum system
(Berestetskii et al. 1982):
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dr scatð Þ
fi

dX0 ¼ x x0ð Þ3
�h2c4gi

X
n

e0
dfnð Þ ednið Þ
xni � x� icni

þ edfnð Þ e0
dnið Þ
xni þx0 � icni

� 	�����
�����
2

; ð4:23Þ

where x0 ¼ x� xfi, e and e′ are unit polarization vectors of incident and scattered
radiation, respectively. The formula (4.23) describes radiation scattering that can be
accompanied by simultaneous excitation/de-excitation of a quantum system.
Scattering in the case xfi 6¼ 0 is called Raman scattering, and if xfi ¼ 0, there is
Rayleigh scattering. It should be noted that the formula (4.23) was obtained by
Kramers and Heisenberg before the advent of quantum mechanics. It is convenient
to rewrite the expression (4.23) as

dr scatð Þ
fi

dX0 ¼ x x0ð Þ3
c4gi

el e0
ð Þsclsfi x0;xð Þ�� ��2; ð4:24Þ

where

clsfi x
0;xð Þ ¼ 1

�h

X
n

dfnð Þl dnið Þs
xni � x� icni

þ dfnð Þs dnið Þl
xni þx0 � icni

" #
ð4:25Þ

is the electromagnetic field scattering tensor of the quantum system; l; s are the
three-dimensional vector indices, over which summation in the formula (4.24) is
assumed.

In the case of Rayleigh scattering (when xfi ¼ 0), the scattering tensor changes
to a polarizability tensor:

clsfi ! blsi xð Þ ¼ 1
�h

X
n

dlind
s
ni

xni � x� icni
þ dsind

l
ni

xni þx� icni

� 	
: ð4:26Þ

Note that the polarizability tensor relates the electric dipole moment vector to the
strength of the electric field of frequency x:

dli xð Þ ¼ blsi xð ÞEs xð Þ: ð4:27Þ

Here, summation over the index s is implied.
In the case of a spherically symmetric state of a quantum system, the polariz-

ability tensor changes to a scalar: blsi xð Þ ¼ bi xð Þdls. Then it can be shown that the
expression (4.26) coincides with (2.41) if the explicit form for the oscillator strength
is used (2.18) and the relationship between the damping constants is taken into
account ðdin ¼ 2cinÞ. The differential cross section of Rayleigh scattering by a
quantum system in the spherically symmetric state is then given by
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dr scatð Þ
ii

dX0 ¼ x4

c4
bi xð Þj j2 e0
eð Þj j2: ð4:28Þ

We will sum this expression over the polarization directions of a scattered
photon with the use of the formula

2 e0
eð Þj j2
D E

¼ sin2 h: ð4:29Þ

In (4.29), averaging is carried out over all possible directions of the vector e0 at a
specified angle h between the vectors e and n0 (n0 is the unit vector in the direction
of the scattered photon). As a result, we have

dr scatð Þ
ii

dX0 ¼ x4

c4
bi xð Þj j2 1� n0eð Þ2


 �
: ð4:30Þ

For non-polarized incident radiation, formula (4.30) should be averaged over the
direction of the vector e, and we obtain

dr scatð Þ
ii

dX0 ¼ x4

c4
bi xð Þj j2 1þ n0nð Þ2

2
; ð4:31Þ

where n is the unit vector in the direction of an incident photon. In derivation of
(4.31), the averaging rule, i.e., eles

�  ¼ ðdls � nlnsÞ=2 was used.
The expression (4.31) describes the cross section of Rayleigh scattering of

radiation by a spherically symmetric system as a function of frequency x and
scattering angles h ¼ arccos n0nð Þ. At high frequencies x � xa (xa is the charac-
teristic frequency of transitions in a discrete spectrum), we obtain with (2.43) and
(4.31)

dr scatð Þ
ii

dX0 ¼ N2
e r

2
e
1þ cos2 h

2
; ð4:32Þ

where h is the angle of scattering, Ne is the number of electrons in the quantum
system, re ¼ e2=ðmec2Þ is the electron classical radius (re ¼ 2:8� 10�13 cm). It
should be noted that the expression (4.32) was obtained on the basis of the quantum
approach that is identical to the result of classical scattering in the high-frequency
approximation (4.19).

For Ne ¼ 1, the expression (4.32) coincides with the Thomson formula for the
cross section of radiation scattering by a free electron. This coincidence is not
accidental since there are no bound states for a free electron, i.e., xa ¼ 0, and the
condition of the high-frequency approximation is fulfilled automatically. The
squared number N2

e appearing in (4.32) corresponds to the coherence of photon
scattering by all electrons of the quantum system. Coherence of scattering is a
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consequence of the dipole approximation k � a used in derivation of all formulas
of this chapter. In the opposite limit, i.e., k � a, coherence is disturbed, and N2

e in
(4.32) is replaced by Ne.

In the opposite limit (low frequencies), when the dynamic polarizability can be
replaced by its static value, the Rayleigh scattering cross section increases with the
fourth power of frequency as it follows from formulas (4.28)–(4.31).

Let the frequency of scattered radiation be close to one of the eigenfrequencies
of a transition in the quantum system, where the following relation holds true:

x� xnij j � cni: ð4:33Þ

In this case, the sum over the intermediate states in (4.23) can be replaced by one
resonance summand:

dr scatð Þ
fi

dX0 ¼ x x0ð Þ3
�h2c4gi

P
Mn

e0
dfnð Þ ednið Þ
�����

�����
2

x� xnið Þ2 þ c2ni
: ð4:34Þ

Here, only the summation over the degenerate states of the resonance level is
left. The phenomenon described by the cross section (4.34) is called resonance
fluorescence. Let us consider a Rayleigh case, when xfi ¼ 0 and accordingly the
frequencies of incident and scattered photons coincide: x ¼ x0. We will assume for
simplicity that the initial state is non-degenerate: gi ¼ 1. Then (4.34) takes the
following form

dr RFð Þ
i

dX0 ¼ 1
16

c
xni

� �2 A2
ni e0
eð Þj j2

x� xnið Þ2 þ c2ni
; ð4:35Þ

where Ani is the Einstein coefficient of spontaneous radiation.
In the case of natural line broadening, when the half-width is defined by

spontaneous radiation, i.e., cni ¼ Ani=2 and of an exact resonance x ¼ xni, we
obtain from (4.35)

dr RFð Þ
i

dX0 / k2: ð4:36Þ

Hence it follows that the cross section of resonance fluorescence in the optical
range in the case of natural line broadening exceeds by many orders of magnitude
the scattering cross section far from the resonance. It should be noted that relation
(4.36) has already be obtained (see (4.19)) on the basis of a classical consideration.
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4.3 High-Frequency Radiation Scattering on Atoms

For scattering of electromagnetic radiation in the X-ray range k� 1 Å
(k ¼ 2p=k� 10 Å−1), the dipole approximation (4.8) is violated, and instead (4.23)
has to be used to take into account the wave vectors of incident and scattered
photons. This is of particular interest for modern X-ray Free Electron Laser (i.e.,
LCLS in USA, EU-XFEL in Germany, SACLA in Japan) driven scattering
experiments where photon energies larger than 10 keV can be generated.

4.3.1 Non-dipole Character of Scattering

The non-dipole scattering tensor defining the scattering cross section with the use of
(4.24) is given by

clsfi k
0; kð Þ ¼ e2

mx0x
m
�h

X
n

jlfn kð Þjsni k0ð Þ
xfn þx� i0

þ jsfn k0ð Þjlni kð Þ
xin � x� i0

� 	
� dlsnfi qð Þ

( )
; ð4:37Þ

where q ¼ k0 � k is the change in the photon wave vector, dlk is the Kronecker

symbol, jl kð Þ ¼ 1
2m

XN

j¼1
p̂lj exp �ikrj

� �þ exp �ikrj
� �

p̂lj
n o

and n̂ qð Þ ¼PN
j¼1 exp �iqrj

� �
are the Fourier transforms of the atomic electron current density

and electron density operators, ij i; fj i are the initial and final atomic states.
It should be noted that in the high-frequency limit that can be determined by the

inequality �hx � I (I is the characteristic atomic ionization potential) the main
contribution to the scattering tensor is made by the second summand in braces of
(4.37). The sum in square brackets has an order of magnitude of ðI=xÞ2. In the
high-frequency domain, the scattering tensor clsfiðk0; kÞ is found to be a scalar equal to

chffi k0; kð Þ ¼ � e2

mx0x
nfi q ¼ k0 � kð Þ: ð4:38Þ

It should be emphasized that the condition of the high-frequency limit �hx � I is
fulfilled for the majority of atomic electrons in the X-ray range of photon energies,
i.e. when �hx� 10 keV. Exceptions are electrons of inner shells (in particular K-
and L-shells) of heavy elements with a nuclear charge Z � 60.

Substituting the expression for the scattering tensor in the high-frequency limit
(4.38) into the formula for the scattering cross section (4.24) and averaging over
photon polarizations, we find

drhf ¼ 1
2
r2e 1þ cos2 #
� � x0

x

� �
nfi qð Þj j2dX0: ð4:39Þ
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The obtained expression differs from the classical Thomson formula (4.3) by the
presence of an additional factor that is proportional to the squared absolute value of
the matrix element of the Fourier transform of the atomic electron density operator
calculated for the wave vector q ¼ k0 � k.

4.3.2 Dynamic Form Factor of an Atom

The expression (4.39) should be supplemented with (4.24) expressing the law of
conservation of energy in scattering. It is convenient to write this equation in terms
of the delta function dðx� x0 þ ðEi � EfÞ=�hÞ. Using its integral representation
dðxÞ ¼ ð1=2pÞ R expðix tÞdt and the Heisenberg operator q̂ðtÞ ¼ expði Ĥ t=�hÞq̂
expð�i Ĥ t=�hÞ, it is possible to obtain the following frequency-angular cross section
of photon scattering by an atom in the initial state ih i in the high-frequency
approximation:

dri
dX0d Dxð Þ ¼

dr
dX0

� �Th x
x0

 �

Si Dx; qð Þ; ð4:40Þ

where ð dr
dX0ÞTh is given by the formula (4.3). SiðDx; qÞ is the dynamic form factor

(DFF) of an atom (Platzman and Wolf 1973), i.e.,

Si Dx; qð Þ ¼ 1
2p

Z1
�1

dte�iDxt ih jn̂ q; tð Þn̂ �qð Þ ij i: ð4:41Þ

As can be seen from (4.41), the DFF is a space-time Fourier transform of the
density–density correlation function for atomic electrons. The dynamic form factor
satisfies a number of sum rules. In the case of a hydrogen-like atom we have the
simple relations

Z1
�1

S x; kð Þdx ¼ 1;
Z1
�1

S x; kð Þxdx ¼ �hk2=2m: ð4:42Þ

Thus the frequency-angular distribution of photons scattered by an atom in the
high-frequency approximation �hx � I is determined by the formula (4.40). If
�hx\I, the expression (4.40) becomes, generally speaking, invalid. This is partic-
ularly the case, when the frequency of the scattered radiation approaches one of the
atomic eigenfrequencies (then, so-called resonant scattering arises and the cross
section has a pronounced maximum).

In case of Rayleigh scattering ð ij i ¼ fj iÞ by a ground state of a hydrogen-like
atom, the diagonal matrix element niiðqÞ included in the expression for the cross
section (4.39) is easily calculated analytically, and (4.39) is transformed to the form
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drii
dX0 ¼

dr
dX0

� �Th 1

1þ a2Hq2=4½ 4
; ð4:43Þ

where aH ¼ �h2=Z m e2 is the characteristic radius of a hydrogen-like ion. From the
given expression, it follows that the Rayleigh scattering cross section sharply
decreases ð/ ð1=aHqÞ8Þ if q[ a�1

H .
Thus for high recoil momenta (in comparison with the characteristic atomic

momentum) scattering proceeds with a change of the atomic state. In this case, if an
atom is ionized, there is Compton scattering; if it is excited to the state of a discrete
spectrum, scattering is combinational (Raman). It should be noted that the Raman
scattering cross section increases at small q from zero, reaches its maximum at
q � 1=a, and then decreases. The calculation for the ground state of a hydrogen-like
atom shows that the value of this cross section is always less than the value of its
Rayleigh analog. At maximum, it reaches a value about 20% of the Thomson cross
section.

In the opposite case ðq\a�1
H Þ, photon scattering proceeds with no changes in the

atomic states. This can be ascertained with the use of the formulas (4.40)–(4.41).
Really, in case of small changes in the wave vector of the scattered photon, the
Fourier transform of the electron density operator is equal to the number of atomic
electrons n̂ðq\a�1

H Þ ffi N. Then from (4.41), it follows that the DFF of an atom
looks like Si ¼ N2dðx� x0Þ, that is, x ¼ x0 and accordingly Ei ¼ Ef. Hence, in
the case of small transfered momenta, the scattering is of coherent character with
respect to the contribution of atomic electrons and the cross section is proportional
to the squared number of electrons. On the contrary, in the case of high transferred
momenta q[ 1=a, scattering is incoherent, and its cross section is proportional to
N. In view of these dependencies, the following approximate expression for the
DFF of an atom can be proposed:

S Dx; qð Þ � h 1=a� qð ÞN2d Dxð Þþ h q� 1=að ÞNd Dxþ �hq2=2m
� �

: ð4:44Þ

The first summand in the right-hand side of this equation describes coherent
processes occurring in the case of small recoil. The second summand in the
right-hand side of (4.44) relates to incoherent phenomena, when an energy–mo-
mentum excess (that appears in the course of scattering) is carried away by an
ionized electron.

4.3.3 Impulse Approximation in the Theory
of Compton Scattering

It was indicated above that (leaving out the contribution of inner K-shells) for the
description of the X-ray scattering by an atom, the high-frequency approximation
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(4.40) can be used, where the dynamic properties of an atom are essential for
photon scattering (defined by its dynamic form factor (4.41)). As a rule, the DFF of
an atom can not be calculated in the general form. The qualitative formula for the
DFF (4.44) does not take into account the details of the electronic structure of an
atom and is not precise enough for comparison with experimental data. However,
there exist an approximate method for the calculation of the cross section of X-ray
scattering by an atom that was used at the very early days for the analysis of
experimental data. This is the so-called impulse approximation (IA) assuming that
atomic electrons in the course of X-ray scattering behave as free electrons to a
greater extent than as bound electrons. The exact definition of the IA will be given
below.

The impulse approximation for the description of the Compton scattering of
X-rays by an atom, as was shown by Platzman and Wolf (1973), can be obtained
from the first principles. For this purpose, it is necessary to use the expression for
the DFF (4.41) and the explicit form of the spatial Fourier transform of the electron
density operator n̂ðqÞ ¼PN

j¼1 expð�i qrjÞ. In the expression for the Heisenberg

operator n̂ðq; tÞ ¼ expði Ĥ t=�hÞn̂ðqÞ expð�i Ĥ t=�hÞ, the complete Hamiltonian of the
system Ĥ is the sum of the operators of kinetic T̂ and potential V̂ energies: Ĥ ¼
T̂ þ V̂ (Note that the potential energy operator commutes with the electron density
operator, whereas the kinetic energy operator does not commute). Then we will
write down the known expansion of the operator exponent included in the deter-
mination of the DFF:

exp
iĤt
�h

� �
¼ exp

iT̂t
�h

� �
exp

iV̂ t
�h

� �
exp

�i T̂; V̂
� �
�h2

t2

2

 !
. . .; ð4:45Þ

where Â; B̂
� �

is the commutator of the operators Â and B̂, the dots at the end of
(4.45) denote exponents with multiple commutators containing higher powers of
the time parameter t. In fact, (4.45) is a power expansion of the time interval t. The
value of this interval is given by the value 1=Dx as it follows from (4.41). Really,
the contribution to the time integral in the determination of the DFF for large values
of the variable t is small due to strong oscillations of the exponent. The IA con-
dition is given by the equation

exp �i T̂ ; V̂
� �

t2=2�h2
� � ¼ 1; ð4:46Þ

according to which the non-commutativity of the operators T̂ and V̂ can be
neglected for times responsible for the process. Physically, this means that during
photon scattering, the potential in which an atomic electron moves practically does
not change. If (4.46) is valid, the contribution of exponents with multiple com-
mutators to the expansion (4.45) can be neglected and the expression for the DFF in
the impulse approximation looks simply like
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SIAi Dx; qð Þ ¼ 1
2p

Z1
�1

dte�iDxt ih jeiT̂t=�hn̂ qð Þe�iT̂ t=�hn̂ �qð Þ ij i; ð4:47Þ

where q ¼ k0 � k. From this equation, it follows that in the framework of the IA the
potential V̂ vanishes from the determination of the DFF. However, it should be
emphasized that this does not mean to neglect the binding of atomic electrons to a
nucleus. As was already noted, in the impulse approximation, the potential V̂ is
assumed to be constant, and therefore it cancels out in the expressions for the energy
of initial and final atomic states. In other words, the energy of the initial and final
states of an ionized electron within the framework of the IA is measured with respect
to a constant instantaneous value of the potential V̂ . The expression (4.47) can be
evaluated approximately replacing the sum over the complete set of wave functions
by plane waves. Using the fact that a plane wave is an eigenfunction of the operator
exp �i T̂ t=�h
� �

we then obtain for the DFF of a ðnlÞth electron subshell of an atom

SIAnl Dx; qð Þ ¼
Z

dp
4p�h3

d Dxþ p� �hqð Þ2
2m�h

� enl
�h

 !
Rnl pð Þj j2; ð4:48Þ

enl is the subshell binding energy, RnlðpÞ is the radial wave function of the electron
subshell in the momentum representation that is determined by the expression

Rnl pð Þ ¼
ffiffiffi
2
p

r Z1
0

Rnl rð Þjl prð Þr2dr; ð4:49Þ

here jl p rð Þ is the spherical Bessel function of the first kind, RnlðrÞ is the normalized
radial wave function of the electron subshell. If the relation between a momentum
and the energy of atomic electrons in the quasi-free approximation is used, i.e.,

p2=2m ¼ enl; ð4:50Þ

we have instead of (4.48)

SIAnl Dx; qð Þ ¼
Z

dp
4p�h3

d Dxþ �hq2

2m
� pq

m

� �
Rnl pð Þj j2: ð4:51Þ

As can be seen from this formula, the frequency shift in Compton scattering
within the framework of the impulse approximation is related to the Doppler shift in
photon scattering due to a moving atomic electron (the summand pq under the sign
of the delta function in (4.51)). In this case, the spectrum of scattered photons is
defined by the distribution of atomic electrons by momenta given by the function
RnlðpÞj j2.
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The cross section of Compton scattering of X-rays by an atom is usually
expressed in terms of the Compton profile (CP) of an electron subshell. The CP is
determined by the formula

Jnl Qð Þ ¼ 1

2�h3

Z1
Q

Rnl pð Þj j2pdp: ð4:52Þ

In view of this determination, the dynamic form factor of an electron subshell
within the framework of the impulse approximation (4.51) can be expressed in
terms of the CP as follows:

SIAnl qð Þ ¼ m
qj j Jnl Q ¼ m Dxj j � �hq2=2

qj j
� �

: ð4:53Þ

It should be noted that the CP satisfies the normalizing condition:

2
Z1
0

Jnl Qð ÞdQ ¼ 1: ð4:54Þ

Since Compton scattering is an incoherent process, the atomic CP is equal to the
sum of CPs of all electron subshells.

Using the relation (4.40) and the formula (4.53), we find for the cross section of
Compton scattering of X-rays by an atom:

drIA

dX0d Dxð Þ ¼
dr
dX

� �Th x
x0

 �m

q
J Qð Þ; ð4:55Þ

where Q ¼ m Dxj j � �hq2=2
qj j : Thus the expression (4.55), together with the formula

(4.3) for dr=dX0ð ÞTh, gives the frequency-angular distribution of X-rays scattered
by an atom within the framework of the high-frequency and impulse approxima-
tions. It is seen that the frequency distribution for a specified angle of scattering is
defined by the Compton profile of an atom (4.52) that in turn depends on the wave
functions Rnl rð Þ of the atomic electron. The corresponding frequency dependence is
a bell-shaped curve. Its width is defined by the width of the distribution of the
atomic momenta wave functions. Let us give the expression for the CP of the
ground state of a hydrogen-like ion:

JH1s Qð Þ ¼ 8p5H
3p p2H þQ2ð Þ3

; ð4:56Þ
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where pH ¼ Z m e2=�h is the characteristic momentum of a hydrogen-like ion.
Substituting (4.56) in (4.55), we find the frequency function of the distribution of
X-rays within the framework of the IA for a fixed angle of scattering by a
hydrogen-like ion in the 1s-state:

drH1s
dDx

¼ r1s qð Þ q6p6H

q2p2H þ m Dxj j � �hq2=2ð Þ2
h i3 ; ð4:57Þ

where q ¼ k0 � kj j is the magnitude of the photon wave vector change in scattering.
From this formula, it follows that the central frequency of scattered radiation is
determined by the equation m x� x0ð Þ ¼ �h q2=2. This equation represents the law
of conservation of energy–momentum for the process of radiation scattering by a
free electron at rest. The width of the frequency distribution (4.57) is proportional to
the parameter q pH=m, which corresponds to a Doppler broadening of the spectrum
of radiation scattered by an electron moving with the velocity
tH ¼ pH=m ¼ Z e2=�h.

Presented in Fig. 4.3 are the spectral cross sections of Compton scattering (in
relative units) by a hydrogen-like ion in the 1s-state calculated in the
high-frequency approximation with the use of the exact wave functions (curves 1,
3) and within the framework of the impulse approximation (curves 2, 4) according
to formulas (4.55)–(4.56). Two values of ionic charges are considered: Z = 1
(curves 1, 2) and Z = 2 (curves 3, 4). The incident photon energy is �hx ¼ 17:4
keV (639.7 a.u.) (which corresponds to the line Ka1 in a molybdenum atom), the
angle of radiation scattering is # ¼ 133:75	. As can be seen from Fig. 4.3, the

Fig. 4.3 The spectral cross section of Compton scattering of X-rays (�hx ¼ 17:4 keV, the angle of
scattering is # ¼ 133:75	) by a ground state hydrogen-like ion calculated in the high-frequency
approximation with the use of the exact functions (curves 1, 3) and within the framework of the
impulse approximation (curves 2, 4) for different ionic charges: curves 1, 2—Z = 1, curves 3, 4—
Z = 2
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maximum of the spectral cross section corresponds to a scattered photon energy of
�hx ¼ 605 a.u. (16.456 keV) and a recoil energy of ER ¼ �h Dxj j ¼ 944 eV.

It should be noted that the recoil energy in scattering by a free electron at rest for
otherwise same parameters is 949 eV, being in good agreement with the above
value ER at the maximum of the spectral cross section. It should be emphasized that
for the case of a free electron there is a univocal correspondence between the
scattering angle and the frequency of the scattered photon and the spectral cross
section represents a delta function of the frequency detuning x� x0 � ER=�h.
Binding of an electron to a nucleus results in a finite spectral width dx of the
frequency distribution of the scattered photons at a specified angle of scattering h.
Naturally, the stronger the binding to a nucleus is, the higher the value of the
parameter dx is. This also follows from Fig. 4.3: for larger charge values, the
frequency dependence is broader. Figure 4.3 also demonstrates that the accuracy of
the IA decreases with increasing binding energy EB (EB ¼ Z2Ry for a
hydrogen-like ions) at fixed recoil energy ER. Thus the value of the ratio n ¼
EB=ER can serve as a criterion for the applicability of the IA; with decreasing
parameter n the IA accuracy increases. Figure 4.3 shows also an asymmetry of the
frequency distribution of the scattered photons when the exact wave functions are
employed (curves 1, 3). In the high-frequency wing of the line, the intensity of the
scattered radiation decreases more slowly than in the low-frequency wing. This
asymmetry increases with the binding energy EB. At the same time, the calculation
within the framework of the IA gives a symmetric (for the present case “Lorentz”)
profile. It should be noted that the asymmetry could be to some extent taken into
account within the framework of the impulse approximation if in the right-hand side
of (4.45) succeeding expansion terms are taken into account.

4.4 Scattering on Plasmas

We now consider the scattering of electromagnetic radiation by electrons in plas-
mas. The cross section of radiation scattering by ions is negligible because of the
heavy mass of an ion. In contrast to atomic electrons, plasma electrons execute an
infinite motion, that is, they are delocalized throughout the plasma volume.
Therefore, strictly speaking, the condition for the application of the dipole
approximation (4.8) is not fulfilled for plasma electrons because the radius of the
area of their localization is very large. Since plasma electrons are quasi-free, the
potential of their ionization IP is equal to zero, the condition of the high-frequency
approximation is naturally fulfilled, and it is possible to use the expression for the
scattering cross section according to formula (4.22).

The adjective “quasi-free” is used in reference to plasma electrons is not acci-
dentally. The prefix “quasi” reflects the fact that plasma electrons interact with other
particles and collective plasma excitations. This interaction manifests itself in the
scattering of electromagnetic waves by plasma electrons in the vicinity of fre-
quencies of collective plasma excitations. For example, a momentum excess
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transferred from a photon in scattering can be absorbed by a plasma electron itself
but can be as well transferred to another particle or a quasi-particle. Depending on
these possibilities, the frequency of scattered radiation differs. Therefore, by
recording the spectrum of the scattered photons, it is possible to obtain information
on the plasma properties.

4.4.1 General Expression for the Cross Section of Radiation
Scattering in Plasmas

Let us generalize the scattering cross section (4.22) taking into account a possible
change in the state of a plasma electron in the course of scattering:

dr plasð Þ
fi k; k0ð Þ
dX0dx0 ¼ 1þ cos2 h

2
d Dxþxfið Þr2e nfi k0 � kð Þj j2dV ; ð4:58Þ

where Dx ¼ x0 � x is the change in radiation frequency, dV is the element of the
volume in which the scattering plasma electrons are located (the volume of inter-
action). The given expression describes radiation scattering with the transition of a
plasma electron from the state ij i to the state fj i (here Dirac ket vectors are used to
designate electronic states). Expression (4.58) gives the cross section of photon
scattering in the frequency interval x0 þ dx0 and is therefore differential not only
with respect to the angle, but also with respect to the frequency of the scattered
radiation. The delta function in the right-hand side of (4.58) expresses the con-
servation law of energy in the scattering process.

Since in the experiment the initial and final states of a plasma electron are not
fixed, formula (4.58) should be summed over the final states and averaged over the
initial ones. As a result, we obtain

dr plasð Þ
R k; k0ð Þ
dX0dx0 ¼ 1þ cos2 h

2
r2eS Dk;DxÞð ÞdV ; ð4:59Þ

where the function S Dk;Dxð Þ is the so-called electron dynamic form factor
(DFF) of the plasma or the spectral density function. The DFF reflects the influence
of plasma characteristics on the radiation scattering cross section. In the general
case, the determination of the DFF in terms of the Fourier component of the plasma
density time-domain correlator looks like (Platzman and Wolf 1973).

S Dk;Dxð Þ ¼ 1
2p

Z1
�1

dt eiDxt n̂ Dk; tð Þn̂ �Dkð Þh i; ð4:60Þ

where n̂ is the electron density operator, the angle brackets include quantum
mechanical and statistical averaging. Equation (4.58) can be obtained from the
formula
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S Dk;Dxð Þ ¼
X
f ;i

w ið Þd Dxþxfið Þ nfi Dkð Þj j2; ð4:61Þ

in which averaging over initial states and summation over final states of plasma
electrons are carried out explicitly (w ið Þ is the probability of a plasma electron being
in the ith state).

Physically, the electron DFF defines the probability of absorption of a
four-dimensional energy–momentum wave vector Dk ¼ Dk;Dxð Þ by a plasma in
terms of the action of external disturbance on an electronic component. It should be
emphasized that in case of a homogeneous distribution of charges in plasmas this
probability would be equal to zero since then the Fourier transform of the electron
density is given by the delta function n Dkð Þ ! d Dkð Þ, that is, Dk ¼ 0 and k ¼ k0.
Radiation scattering is therefore a result of plasma density fluctuations. These
fluctuations can be due to various reasons. A typical cause of electronic charge
fluctuations is Debye screening of ions by plasma electrons, when the electron
density is increased in the vicinity of a positive ion. Another type of fluctuations is
connected with collective excitations in plasmas, for example, plasmons. Then,
electronic charge fluctuations are of nonstationary character: they oscillate at a
plasma frequency xpe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2ne=me

p
(ne is the density of the plasma electrons).

Scattering by nonstationary fluctuations changes the radiation spectrum. Thus, from
the observed scattered radiation spectrum the fluctuation spectrum of the electron
density in a plasma that is given by the DFF (4.60)–(4.61) can be deduced.

To calculate the DFF, it is possible to use the formula relating the DFF of a
plasma component to the function of plasma response to external electromagnetic
disturbance (a fictitious external potential). This relation is known as the fluctua-
tion–dissipative theorem (Platzman and Wolf 1973):

S Dk;Dxð Þ ¼ Im Fee Dk;Dxð Þf g
pe2 exp ��hDx=Tð Þ � 1½  ; ð4:62Þ

where Fee Dk;Dxð Þ is a linear function of the response of the electronic component
to a fictitious external potential that acts on plasma electrons, T is the plasma
temperature (in energy units). The imaginary part of the response function
appearing in (4.62) describes energy dissipation in plasmas. For this reason, the
theorem is called the fluctuation–dissipation theorem. The response function is
expressed in terms of the dielectric permittivity of the plasma and describes the
propagation of various electromagnetic disturbances. After a number of mathe-
matical transformations, the following result can be obtained from (4.62) for the
dynamic form factor of an electronic component in a plasma:

S Dkð Þ ¼ el ið Þ

el

����
����
2

dnej j2 þ Zi
1� el eð Þ

el

����
����
2

dnij j2; ð4:63Þ
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where

dne;i
�� ��2¼ ne;iffiffiffiffiffiffi

2p
p

tTe Dkj j exp � Dx2

2Dk2t2T;ie

 !
ð4:64Þ

are the Fourier transforms of the squared thermal fluctuations of the electronic and
ionic components of the plasma, el ¼ el Dkð Þ is the longitudinal part of the plasma
dielectric permittivity that describes the propagation of longitudinal plasma waves
(corresponding to the density fluctuations), tT is the thermal velocity of the plasma
particles. The indices ið Þ and eð Þ designate for the dielectric permittivity and the
thermal velocity that these quantities belong to an ionic or electronic plasma
component.

Hereafter, the expressions for the longitudinal part of the electronic and ionic
dielectric plasma permittivities appearing in the right-hand side of the (4.63) are
needed. Their explicit form depends on the relationship between the spatial and
time components of the four-vector Dk ¼ Dk;Dxð Þ, that is, between the spatial and
time characteristics of the electronic and ionic components of the plasma. Thus, the
electronic part of the function el eð Þ, for which the relation Dxj j\tTe Dkj j holds true,
describes the effect of charge screening in a plasma. The corresponding expression
looks like

el eð Þ Dkð Þ ffi 1þ 1

d2e Dkj j2 ; ð4:65Þ

where de is the Debye screening radius of the electronic component. On the con-
trary, the reverse inequality Dxj j[ tTi Dkj j is characteristic for the ionic component
of the longitudinal dielectric permittivity (because of the low velocity of ions). This
results in the frequency-dependent relation

el ið Þ Dxð Þ ffi 1� x2
pi

Dx2 ; ð4:66Þ

where xpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p e2ni=mi

p
is the ion plasma frequency.

4.4.2 Radiation Scattering by Plasma Electrons

Substituting the DFF of (4.63)–(4.64) into the expression for the cross section of
radiation scattering in a plasma (4.59), it is possible to obtain a cross section being a
sum of two terms. The first of them is related to the first summand in braces of
(4.63). It looks like
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dr plasð Þ
e k; k0ð Þ
dX0dx0 ffi

exp � Dx2

2Dk2t2Te

 !
ffiffiffiffiffiffi
2p

p
tTe Dkj j

Dk2d2e
1þDk2d2e

" #2
1þ cos2 h

2
r2enedV : ð4:67Þ

The above cross section is connected with radiation scattering by an electronic
charge that screens the electron density fluctuation. The electron density fluctuation
is described by the factor in the first row of (4.67) containing the thermal velocity of
plasma electrons. The factor in square brackets is responsible for screening. It is
small in the case of small transferred wave vectors Dkj j\ d�1

e and tends to one in
the opposite limit. Thus scattering by electron density fluctuations is suppressed for
small angles of scattering h\2 arcsin k=4p deð Þ (this inequality is valid for suffi-
ciently short wavelengths k\4p de).

As can be seen from the frequency dependence in the formula (4.67), the width
of the radiation spectrum (scattered by the electron density fluctuations) is defined
by the thermal velocity of plasma electrons that in turn is a measure of plasma
temperature. The higher the temperature, the wider is the spectrum of scattered
photons. The value of the cross section is proportional to the concentration of
plasma electrons. Therefore, measuring the intensity and the spectrum of scattered
radiation, it is possible to judge such important characteristics of plasma as the
temperature and the electron concentration.

The process described by the cross section (4.67) is similar to Compton scat-
tering since a momentum excess is transferred to a plasma electron that carries away
considerable recoil energy as in case of the Compton effect with an atom. If the
change in wave vector is larger than the reciprocal of the Debye radius, a photon is
scattered by each plasma electron “separately”, and collective plasma effects can be
neglected. Compton scattering of radiation in a plasma is shown in Fig. 4.4, in
which the recoil momentum of a plasma electron pe ¼ �h � Dk is presented.

Fig. 4.4 Radiation scattering by a plasma electron
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The value of the radiation scattering cross section for one electron is proportional
to the squared electron classical radius r2e ffi 7:84� 10�25 cm2, i.e. a very small
quantity. Note that an atomic unit of cross section that defines, for example, the
cross section of electron scattering by atoms is equal to 2:8� 10�17 cm2 .
Therefore, the possibility to study plasma characteristics with the use of radiation
scattering appeared only after the development of laser radiation sources of high
spectral radiance (Kunze 1968; Sheffield 1975).

4.4.3 Transient Scattering of Radiation in Plasmas

The cross section of radiation scattering by an electronic charge screening ion
density fluctuations looks like

dr plasð Þ
i k; k0ð Þ
dX0dx0 ffi

exp � Dx2

2Dk2t2Ti

 !
ffiffiffiffiffiffi
2p

p
tTi Dkj j

Zi
1þDk2d2e

" #2
1þ cos2 h

2
r2enidV ; ð4:68Þ

Zi is the charge of a plasma ion, ni ¼ ne=Zi is the concentration of ions in
an electrically neutral plasma. Here the first factor describes ion fluctuations, and
the expression in square brackets represents the electronic charge of a Debye sphere
that scatters radiation with a specified value Dk. In the case Dkj j\ d�1

e , the scat-
tering cross section is proportional to the squared charge of an ion, in which the
coherent character of the process with respect to the contribution of electrons inside
the Debye sphere manifests itself. In case of fulfillment of the reverse inequality,
coherence is disturbed, and the scattering cross section decreases as Dk�4d�4

e . For
sufficiently long wavelengths of scattered radiation k[ de, coherence takes place
for all angles of scattering. In the opposite limit of short-wavelength radiation, the
scattering cross section is maximum in the range h\2 arcsin k=4p deð Þ and sharply
decreases with increasing angle of scattering.

Radiation scattering by a Debye sphere (4.68) is called transient scattering
(Ginzburg and Tsytovich 1990). This process is represented schematically in
Fig. 4.5, in which the recoil momentum of an ion pi ¼ �h Dkj j arises in the course of
scattering.

Transient scattering is accompanied by the transfer of a momentum excess to a
heavy ion, so the change in photon energy is insignificant. The last fact can be
demonstrated with the use of the limiting transition

exp � Dx2

2Dk2t2Ti

 !
ffiffiffiffiffiffi
2p

p
tTi Dkj j ! d Dxð Þ ð4:69Þ
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that is valid if Dxj j � tTi Dkj j. From the relation (4.69), it follows that in this case
scattering proceeds practically with no change in radiation frequency: x0 ffi x. Thus
radiation scattering by a Debye sphere is an analog of Rayleigh scattering of
radiation by an atom, when the radiation frequency does not change.

4.4.4 Radiation Scattering by a Plasmon

So far, we have considered a photon momentum excess Dpph ¼ �hDk that was
transferred to individual plasma excitations: electrons and ions. A process involving
collective plasma excitation is also possible, when a momentum excess is trans-
ferred to a plasmon representing a coupled oscillation of an electronic charge and a
longitudinal electric field. This process is represented schematically in Fig. 4.6.

A plasmon is characterized by a corresponding dispersion law. It will be
remembered that the dispersion law describes the relation between a frequency and
a wave vector. For collective excitations (quasi-particles) in plasmas, the dispersion
can be obtained from the condition that the dielectric permittivity of a medium is
zero, that is, from the condition of the plasma wave propagation. In the case of
longitudinal electric field oscillations (a plasmon), the dispersion law is determined
by the equation

e lð Þ k;xð Þ ¼ 0; ð4:70Þ

where e lð Þ k;xð Þ is the longitudinal part of the dielectric permittivity of the medium.
In view of the explicit form of the dielectric permittivity of a plasma for kj j\d�1

e
according (4.65), we obtain from (4.70):

xpl kð Þ ffi xpe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 k2d2e

q
� xpe: ð4:71Þ

Fig. 4.5 Transient scattering
of radiation by a Debye
sphere in plasma
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Equation (4.71) represents the dispersion law for a plasmon. It corresponds to
the propagation of plasmons at the plasma frequency xpe. For sufficiently large
wave vectors kj j[ d�1

e , a plasmon is a not well-defined excitation since it disap-
pears during times of the order of the plasmon oscillation period.

In case of fulfillment of the plasmon resonance condition (4.70), a singularity
appears in the expression for the electron DFF (4.63) that corresponds to emission/
absorption of a plasmon. This singularity is caused by the presence of the function
e lð Þ Dk;Dxð Þ in the denominator of the formula (4.63). Due to the presence of the
imaginary part in the dielectric permittivity, it approaches a delta function of the
form d Dx� xpl Dkð Þ� �

describing the energy conservation law (the plus sign
corresponds to emission of a plasmon, the minus sign corresponds to absorption).
Omitting mathematical details, we will write down the expression for the electron
DFF with the transfer of an energy–momentum to an emitted plasmon:

Spl Dk;Dxð Þ ¼ Npl Dkð Þþ 1
� � �hxpl Dkð ÞDk2

8pe2
d Dxþxpl Dkð Þ� �

H 1� Dkj jdeð Þ;
ð4:72Þ

where H xð Þ is the Heaviside step theta function and

Npl Dkð Þ ¼ 1
exp xpl Dkð Þ�T� �� 1

ð4:73Þ

is the number of plasmons at a specified temperature in thermodynamic equilib-
rium. Substituting (4.72) into the formula (4.59), after integration with respect to the
scattered photon frequency, we obtain the cross section of radiation scattering with
generation of a plasmon:

Fig. 4.6 Radiation scattering
by a plasmon
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dr plasð Þ
pl

dX0 ¼ 1þ cos2 h
2

r2eH 1� Dkj jdeð Þ Npl Dkð Þþ 1
� � �hxpl Dkð ÞDk2

8pe2
dV : ð4:74Þ

The frequency of the scattered radiation is x0 ¼ x� xpl Dkð Þ.
For the scattering cross section with plasmon absorption, the expression is

similar to (4.74) and the replacement Npl Dkð Þþ 1 ! Npl Dkð Þ and x0 ¼
xþxpl Dkð Þ is quite accurate. From the calculations it follows that by recording the
dependence of the scattered photon frequency on the angle of scattering it is pos-
sible to determine experimentally the dispersion law for plasmons.

Similar expressions are valid for cross sections of radiation scattering at col-
lective plasma excitations of other types, such as ion-sound waves.

By recording the radiation spectrum (scattered by the plasma), it is possible to
study various quasi-particles in plasma. The width of the radiation spectrum scat-
tered by some collective excitation defines the damping constant and accordingly
the lifetime of the quasi-particle. Scattering by collective excitations in plasmas
accompanied by a change in radiation frequency is an analog of Raman scattering
of radiation by atoms and molecules.

Scattering in the X-ray spectral range became an important diagnostic tool for
high-energy density science (Glenzer and Redmer 2009; Sheffield et al. 2010) and
attracted in particular attention to study the so-called Warm Dense Matter regime
(Lee et al. 2003) produced by various means (Kozyreva et al. 2003; Soho et al.
2008; Tauschwitz et al. 2007; Sheffield et al. 2010). The small scattering cross
section, however, makes it rather difficult to obtain good signal-to-noise ratios for
spectrally resolved analysis unless X-ray scattering sources are not driven by
multikilojoule lasers (Glenzer and Redmer 2009; Gamboa et al. 2012).

The advent of the X-ray Free Electron Lasers installations, however, has entirely
changed the experimental landscape: dense plasmas are produced with powerful
optical lasers (that are built near the experimental XFEL facilities itself) and are
then diagnosed with the XFEL (Fletcher et al. 2013; MacDonald et al. 2016). The
first experiment where a dense plasma was created with an optical laser and then
probed by XFEL has been carried out in 2011 at LCLS (Seely et al. 2011): here,
X-ray pumping of inner-shell transitions in dense aluminum plasma has been
demonstrated for various charge states (Rosmej et al. 2016).

It should be noted, however, that the high intensity of the XFEL beam perturbs
considerably the material to be studied itself, in particular, via strong heating that
proceeds from inner-shell ionization followed by subsequent equilibration of pho-
toelectrons (kinetic energy being equal to the access energy of the ionization
potential) and Auger electrons in the valence band (so-called Auger electron heating)
(Galtier et al. 2011; Rosmej et al. 2012). Therefore, high-resolution X-ray spec-
troscopy remains a primary diagnostic tool (Renner and Rosmej 2019) although
many important parameters can be accessed with scattering diagnostics (e.g., tem-
perature, density, average charge number, collective plasma effects). The access to
atomic structure in dense plasmas via X-ray scattering diagnostics is only indirect
(via the dynamic form factor) and also therefore high-resolution X-ray spectroscopy
appears to be an important complementary diagnostic.
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4.5 Scattering on Nanoparticles

The color of the strongest colorants (organic dyes) is defined, as a rule, by
absorption of radiation by dye molecules. In interaction of radiation with metal
nanoparticles, we encounter a different situation. For small nanosphere radii
rs\15� 35 nm absorption dominates, for large radii radiation scattering begins to
play a decisive role. The combined effect of absorption and scattering on the
passage of a light beam through a substance is described by the extinction cross
section rext ¼ rscat þ rabs. The quantity rextI0 represents the power removed from a
light beam of intensity I0 due to absorption and scattering. The ratio of the scat-
tering cross section to the extinction cross section is called quantum efficiency
g ¼ rscat=rext. The quantum efficiency characterizes the relative value of power
removed from a light beam that goes into radiation scattering, that is, can be
recorded by a photodetector. From the aforesaid, it follows that the quantum effi-
ciency increases with nanoparticle size, but, as it will be seen from further con-
sideration, another important characteristic come into play, namely the quality
factor of resonant scattering that decreases with increasing radius.

An important specific feature of photoprocesses with metal nanoparticles is the
absence of luminescence under the action of radiation (characteristic of targets with
strong optical transitions in the discrete spectrum). As a result, radiation of metal
nanoparticles is completely driven by the scattering of the electromagnetic waves.
This results, in particular, in a narrow radiation spectrum, when a metal nanosphere
is excited by a laser in narrow spectral range.

Spherical nanoparticles of noble metals (gold and silver) find wide application in
various fields of research and technologies. In particular, gold nanospheres are used
as active nanomarkers in medicine and biology. Besides, the use of metal
nanoparticles in various sensors shows promising results.

From the fundamental point of view, the advantage of the spherical form of a
nanoparticle consists first of all in the fact that there is no dependence of its optical
properties (absorption and scattering cross sections) on the form, i.e. the optical
properties depend essentially only on size. This makes it possible to control the
characteristics of the electromagnetic response of a nanosphere by changing its
radius. Besides, cross sections of radiation scattering and absorption by metal
spheres can be described within the framework of a relatively simple analytical
approach.

4.5.1 Mie Theory of Radiation Scattering and Absorption

The Mie theory of radiation scattering by a metal sphere in a homogeneous medium
is based on the expansion of an electromagnetic field in terms of cylindrical har-
monics (due to the cylindrical symmetry of the problem) and “joining” of tangential
components of the strength of electric and magnetic fields at the boundary of the

176 4 Radiation Scattering on Atoms, Plasmas, and Nanoparticles



sphere (Jackson 2007). To satisfy these boundary conditions, it is necessary to take
into account the field irradiating the sphere. A field inside the sphere and a sec-
ondary wave field representing the scattered wave. The derivation of corresponding
formulas is rather cumbersome, but they are available in classical monographs on
optics (Van de Hulst 1981; Born and Wolf 1999), and we will give here only the
final result. The cross section of radiation scattering by a metal sphere according to
the Mie theory is

r Mieð Þ
scat ¼ 2pc2

emx2

X1
n¼1

2nþ 1ð Þ an x;mx;mð Þj j2 þ bn x;mx;mð Þj j2
n o

; ð4:75Þ

where an, bn are the Mie coefficients that are given by the formulas (2.78)–(2.81),
the parameters x and m are given by:

x ¼ krs ¼ ffiffiffiffiffi
em

p x
c
rs: ð4:76Þ

The variable x from (4.76) is the product of the wave vector of radiation in the
matrix with the nanosphere radius and

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
es xð Þ=em

p
ð4:77Þ

is the ratio of the refractive indices of the nanosphere and the matrix material.
Equation (4.75), in contrast to (4.74), takes into account not only the dipole

summand n ¼ 1ð Þ, but also the terms corresponding to the contribution of higher
order multipoles n[ 1ð Þ. This is essential for short wavelengths, when the
condition of the dipole approximation k � rsð Þ is not fulfilled.

The results of calculation of the cross section of radiation scattering by silver
spheres of different sizes within the framework of the Mie theory are presented in
Fig. 4.7 in the spectral range close to the plasmon resonance.

From Fig. 4.7, it follows that with increasing size of the metal nanosphere the
position of the scattering cross section maximum is shifted to the long-wavelength
region, and the width of the spectral maximum increases. For radii of 30 and 40 nm,
a second peak appears due to a quadrupole resonance in excitation of a surface
plasmon. The quadrupole term corresponds to n ¼ 2 in the sum (4.75).

A decrease in frequency and an increase in the spectral width of the plasmon
resonance with increasing nanosphere size result in a decrease of the quality factor
Q of plasmon excitation that by definition is Q ¼ xres=Dx. For a gold nanosphere,
the value of the quality factor decreases from 8 to 2.5 as the radius changes from 30
to 80 nm. In this case, the resonance energy decreases from 2.2 to 1.7 eV. In case
of a similar change in the radius of a silver nanosphere, the quality factor of a
surface plasmon decreases from 11 to 4, and the resonance energy decreases from
2.7 to 2.5 eV.

The quality factor of a plasmon resonance is very important since it is equal to
the coefficient of amplification of a local field, i.e., it defines the value of the
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strength of an electric field connected with a surface plasmon (this field is acting on
particles in the vicinity of the surface). As a result of this amplification, it is possible
to observe a whole class of nonlinear optical phenomena, such as Raman scattering
that are otherwise practically not observable (or would require otherwise super-
strong electromagnetic fields for their recording).

For the cross section of radiation extinction by a metal sphere, the Mie theory
gives (Van de Hulst 1981)

r Mieð Þ
ext ¼ 2pc2

emx2

X1
n¼1

2nþ 1ð ÞRe an x;mx;mð Þþ bn x;mx;mð Þf g: ð4:78Þ

The expressions for the expansion coefficients an, bn are given in
Chap. 2 [formulas (2.78)–(2.81)], the parameters x and m are given by (4.76)–
(4.77). The extinction describes the radiation intensity as a result of absorption and
scattering by the substance particles.

As was already mentioned, the cross section of radiation absorption is equal to
the difference of the cross sections of extinction and scattering rabs ¼ rext � rscat.
With the use of this relation and the expressions (4.75), (4.78), it is possible to
calculate the cross section of photoabsorption by a metal sphere. The calculations
for silver spheres in a medium with em ¼ 2:25 (glass) of different radii are presented
in Fig. 4.8. It is seen that in contrast to the scattering cross section the absorption
cross section has a considerably more strong quadrupole resonance that even
dominates over the dipole resonance even at a sphere radius of 30 nm.

The numerical analysis within the framework of the Mie theory shows that in the
case of silver nanospheres the cross sections maxima of absorption and scattering of
radiation at a plasmon become equal for a radius of 15 nm; for larger radii, scat-
tering dominates over absorption. In the case of gold nanospheres, scattering

Fig. 4.7 Cross sections of radiation scattering by silver nanospheres of different radii (10, 20, 30,
40 nm) in a medium with em ¼ 2:25 and in the vicinity of a plasmon resonance; the abscissa is the
photon energy in eV, the ordinate is the cross section in nm2
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becomes equal to absorption for a radius of 37 nm and the maximum of the spectral
cross section of scattering is shifted (with respect to the absorption maximum) to the
region of lower photon energies by about 0.1 eV. The ratio of scattering and
absorption cross sections is related to the quantum efficiency of scattered radiation
that is an important parameter for the practical application of nanoparticles.

It should be emphasized that the strong dependence of spectra of radiation
scattering and absorption in the vicinity of a plasmon resonance on the sphere
radius results in inhomogeneous broadening for an ensemble of nanoparticles with
an appreciable spread of radii. This should be taken into account in the analysis of
corresponding experimental data.

Naturally, the Mie theory has a certain range of applicability. This is connected
first of all with the phenomenological description of a nanoparticle material by the
use of the dielectric permittivity. Such an approach is valid for sufficiently large
nanoparticles and radiation wavelengths, when the substance can be considered as a
continuum. In the case of small-sized nanoparticles, local effects become important
that are not taken into account when using the bulk dielectric permittivity of a
metal. Finally, the Mie theory assumes the presence of a sharp boundary of a metal
sphere, which is also an approximation.
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Chapter 5
Electron–Atom Collisions

Abstract The theory of electron–atom collisions including excitation, ionization,
and recombination is presented in the framework of Fermi’s equivalent photon
method, the similarity function approach, and semi-empirical analytical formulas.
Collisional excitation is described via a quasi-classical consideration.
Dipole-allowed, dipole-forbidden, and intercombination electron transitions are
considered including intermediate coupling effects. Comparisons between different
theoretical approaches and experimental data for excitation cross-sections are
provided for various atoms and type of electronic transitions. Semi-empirical
analytical formulas for excitation, de-exciation, ionization, and three-body recom-
bination are given. Complex dielectronic recombination rates in dense plasmas are
presented with account for density and electric field effects. Extensive numerical
data for dielectronic recombination into H-, He-, and Li-like ions taking into
account multi-channel Auger and radiative decay are given for all elements with
nuclear charge Zn = 2–42 together with easy to use scaled semi-empirical formulas.
The theory of excited states coupling and collisional redistribution for dielectronic
recombination is developed.

5.1 Fermi Equivalent Photon Method

The radiative–collisional processes appear to be a wide domain for the application
of Kramers electrodynamics (KrED). These are processes in which the electron
participates while moving along a classical highly curved quasi-parabolic orbit
(Kogan et al. 1992). The most natural domain for the application of the KrED is the
physics of multicharged ions (MCI).

According to the Fermi concept (Fermi 1924) of equivalent photons (EPh), the
electromagnetic field produced by an external particle (e.g., an electron) in the
vicinity of a MCI location may be interpreted as a flux of equivalent photons
incident on the MCI. It can be shown that this description is applicable provided the
dipole approximation for describing the interaction between the bound electron of
the MCI and the incident electron of the plasma holds true. In this case, the dipole
approximation describes in an universal manner all the processes of energy loss
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induced by the incident electron (either due to radiation emission during a collision
with an ion or due to an inelastic non-radiative collision with an ion) as the pro-
cesses of the emission of real or equivalent photons. The probability of both pro-
cesses is determined by the dipole matrix element for the corresponding inelastic
(radiative or non-radiative) transition of the incident electron.

The spectral intensity distribution of the EPh may be described on the basis of
the classical radiation theory. In this case, the intensity of the EPh flux is simply
determined by the Fourier transforms of the electron coordinates determined in turn
by its classical trajectory. This approach makes it possible to treat several important
radiative–collisional processes:

(a) excitation of an ion by electron impact treated as an absorption of the EPh by
this ion,

(b) the same excitation as in a) but with subsequent re-emission of a real photon as
a resonance fluorescence of the EPh,

(c) dielectronic recombination as a resonance fluorescence of the EPh, which
results in a recombination of the incident electron.

An essential advantage of the EPh method is related to applications of purely
radiative processes to the description of non-radiative processes (both, collisional
and radiative–collisional). Several processes are of resonant character with respect
to the absorption of the EPh by the ion and of non-resonant character, for which the
intermediate state of a two-step “absorption–re-emission” process is not real and
consequently is not obeying the energy conservation law (this state is formed by the
process of virtual excitation with the energy E 6¼ �hx0, where x0 is the frequency of
a resonant transition). These non-resonant processes are known as polarization
radiation (Thytovich and Oiringel 1991) and can be treated as the non-resonant
scattering of the EPh by the ion. The polarization radiation is determined by the
dynamical polarizability of ion in the domain of non-resonant frequencies.

For the application of the Fermi method, it is necessary that effective distances
reff which are responsible for the main contribution to the inelastic collision
cross-section are much greater than the characteristic size of the bound electron
orbit. This requirement is especially well fulfilled for MCI. Let us illustrate this for
the excitation of a Dn ¼ 0 transition. The electron orbit size is of the order 1=Z (in
atomic units), transition energies DE for Dn ¼ 0 transitions in MCI are typically of
the order of Z, and the values of reff for the corresponding cross-section can be
estimated as

reff � rx¼DE=�h �ðZ=DE2Þ1=3 � Z�1=3 � Z�1: ð5:1Þ

This inequality justifies the use of the dipole approximation for the potential V of
interaction between bound and incident electrons (with space coordinate vectors ri
and re, respectively), V ¼ e2ri � re=r3e . In this framework, the static Coulomb
interaction between the bound and incident electrons transforms to the processes of
emission and absorption of the EPh by electrons, and the corresponding proba-
bilities are determined by the conventional dipole matrix elements.
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The electric field produced by the incident electron at the location r ¼ 0 of the
ion is equal to

Fð0; tÞ ¼ �ereðtÞ=r3eðtÞ; ð5:2Þ

where the dependence reðtÞ describes the classical trajectory of the incident elec-
tron. Using the equation of the motion of the incident electron in the field of the
MCI m€re ¼ �Ze2re=r3e , it is convenient to transform (5.2) into the form

FðtÞ ¼ €reðtÞm=Ze: ð5:3Þ

The spectral distribution for the EPh flux Ix of the electric field of the incident
electron can be expressed in terms of the Fourier transforms:

Ix ¼ c
4p2

1
x

jFx;xj2 þ jFy;xj2
n o

¼ cx3

4p2Z2 xxj j2 þ yxj j2
n o

; ð5:4Þ

where x and y are the coordinates of the incident electron in the plane of its motion.
The Fourier transforms of the electron space coordinates in the Coulomb field are
well known (Berestetskii et al. 1982; Landau and Lifschitz 2003; Jackson 1998).
Thus, we obtain

Ix ¼ cx2

4t4
Hð1Þ0

im ðimeÞ
h i2

� e2 � 1
e2

Hð1Þ
im ðimeÞ

h i2� �
; ð5:5Þ

where t is the electron initial velocity, Hð1Þ
im is the Hankel function, e is the orbital

eccentricity;

e ¼ 1þ 2EM2=Z2; m ¼ xZ=t3; E ¼ mt2=2; ð5:6Þ

E and M are the energy and angular momentum of the incident electron, respec-
tively. In the limit of low EPh frequencies, m � 1, the main contribution to the
spectral distribution of the EPh flux integrated over the electron impact parameters
q is due to the distance from the field center trajectories, (q � a � Z=2E), which
are nearly rectilinear, with eccentricity e � 1. In this case, (5.5) is transformed to

Ix ¼ cx=2p2t4
� �

K2
0ðxq=tÞþK2

1ðxq=tÞ
� �

; ð5:7Þ

where K0ðxÞ and K1ðxÞ are the Macdonald functions. Fermi (1924) used (5.7) to
describe atomic excitation by a rectilinearly moving particle.

For the description of the processes resulting in a loss of a considerable part of
the incident electron energy, it is necessary to consider the EPh with high fre-
quencies, namely m � 1. The main contribution to the emission of such EPh comes
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from the strongly curved electron trajectories, e� 1 � 1, which are close to the
field center, q � a. In this Kramers domain, we arrive at the result (see Chap. 3)

Ix ¼ p�2Z�2cMG0ðxM3=3Z2Þ ð5:8aÞ

with [see also (3.47)]

G0ðxÞ ¼ x K2
1=3ðxÞþK2

2=3ðxÞ
h i

: ð5:8bÞ

5.1.1 Excitation by Electron Impact as Absorption
of Equivalent Photons by an Ion

The equivalent photons method makes it possible to obtain a simple analytical
description of the collisional processes and treat them as purely radiative. Within
this framework, the excitation of multicharged ions (MCI) by electron impact may
be clearly considered as absorption of the equivalent photons (EPh) with a resonant
frequency x0 ¼ DEif=�h. The relationship between the collisional cross-section rexc
and the cross-section rabs for the absorption of the EPh can be obtained by means of
equating the number of excitation events, during the time interval dt (caused by the
collisions of the MCI with the electron flux) with a space density ne and a particle
velocity te to the corresponding number of transitions caused by the absorption of
the EPh produced by a single electron, i.e., dNexc ¼ neterexcdt. This is multiplied
by the total number of electrons in the volume dV corresponding to the time interval
dt, dV ¼ 2pqdqtedt,

dNabs ¼
Z

2pqdqnetedt
Z

dx cE2
x=4p

2�hx
� �

rabsðxÞ; ð5:9Þ

where the expression in brackets corresponds to the spectral distribution of the EPh
flux (5.4) produced by a single electron with a fixed value of the impact parameter
q. Assuming rexc ¼

R
rlexcdl for the relation of the total and partial (with respect to

the orbital quantum number l) cross-sections, we arrive at the result

rlexc ¼ 2pð�h=mteÞ2ðlþ 1=2Þ
Z

rabsðxÞ cE2
x=4p

2�hx
� �

dx: ð5:10Þ

Furthermore, the expression for the EPh flux can be taken out of the integral at
the frequency x0 of the radiative transition in the MCI core because of its weak
frequency dependence in comparison with the absorption cross-section. The
resulting integral over x gives the well-known expression
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Z
rabsðxÞdx ¼ p2ðc=xÞ2gf4x2

0jdif j2=3�hc3; ð5:11Þ

where dif is the dipole moment matrix element of the transition and gf is the
statistical weight of the upper level.

Substituting the spectral distribution (5.5) into (5.10) for the EPh flux, produced
by the electron in the Coulomb field of the MCI, we finally obtain

rlexc ¼
8p3

3
ð�h=mteÞ2x2

0jdif j2gft�4
e ðlþ 1=2Þ

� Hð1Þ0
im ðimeÞ

h i2
�ðe2 � 1Þe�2 Hð1Þ

im ðimeÞ
h i2� �

:

ð5:12Þ

The transition in (5.12) to the Kramers electrodynamics (KrED) domain (m � 1)
corresponds to the transition from (5.5) to (5.8). Thus, we obtain the result in the
KrED domain:

rlexc ¼ ð8p=3Þð�h=mteÞ2ðgf=giÞfifZ�2ðlþ 1=2Þ2G0½xðlþ 1=2Þ3=3Z2�; ð5:13Þ

where fif is the oscillator strength for the transition considered and gi is the sta-
tistical weight of the lower level.

Equation (5.13) manifests explicitly the interrelation between the independence
of the radiation characteristics on the energy (see also Chap. 3) and the well-known
fact of the finiteness of the excitation cross-section at threshold. Thus, we face once
more the phenomenon, inherent to the KrED, of the independence of the spectral
distribution on the energy, which leads to a smooth transition between the discrete
and continuous energy spectra for the processes with both real (from the BR to the
PR) and equivalent photons (the transition from the Born approximation domain for
the excitation to its threshold and further to the DR).

The total excitation cross-section is obtained by summing up the partial cross-
section (5.10) over l, yielding an expression in terms of the well-known spectral
distribution for the Coulomb bremsstrahlung Gaunt-factor gðmÞ (Kogan et al. 1992)

rifexc ¼
8p2ffiffiffi
3

p jdif j2g�1
i t�2

e g½Zx0=ð2EÞ3=2�: ð5:14Þ

The function gðmÞ has a simple analytic approximation:

gðmÞ 	
ffiffiffi
6

p

p
� ln 2

c � m
	 
1=

ffiffi
2

p

þ exp
pffiffiffi
6

p
	 
" #

: ð5:15Þ

The result (5.14) was derived earlier (Bazylev and Chibisov 1981) in a some-
what different way. It should be noted that (5.14) is valid up to the excitation
threshold where Kramers EPh spectrum (5.8) does not depend on the incident
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electron energy at all. In the opposite limit of a fast-incident particle, the
cross-section (5.14) exhibits a logarithmic (Born-type) structure. It is this result that
was derived by Fermi for atomic excitation and ionization by fast particles.
Equation (5.14) is in good agreement with quantum numerical calculations as well
as with experimental data (Bazylev and Chibisov 1981; Gau and Henry 1977).

It should be also noted that for the first time, the interrelation between the
excitation cross-section for allowed dipole transitions and the Gaunt factor for
bremsstrahlung in a Coulomb field for the general quantum case (Sommerfeld
formula) was investigated by Gailitis (1963). So far we have restricted ourselves to
the case of quasi-classical incident electron motion; however, the applicability of
the KrED approach to the calculation of excitation cross-sections remains valid also
for an arbitrary (not necessarily purely Coulombic) ionic potential (e.g., of a
Thomas–Fermi ion). The description of these excitation cross-sections may be
achieved by the replacement of the Coulomb EPh intensity by the corresponding
EPh spectral intensity in (5.5).

5.1.2 Autoionization Decay and Dielectronic Capture

Let us recall the essence of the dielectronic recombination (DR) process. An
incident electron with the energy Ei excites an ion core with an excitation energy
DE ¼ �hx0. In this case, if the energy Ei is smaller than DE, the electron is finally
captured by the ion into a state with the energy Ef ¼ �Ry=n2f obeying the condition

Ei � Ef ¼ Ei þ 1=2n2f ¼ DE ¼ �hx0: ð5:16Þ

This capture results in a double excited state of the ion, namely the ion core
electron is excited with energy DE while the captured electron occupies a highly
excited level of the ion. This state of the ion can decay in two possible ways:

(i) by relaxation of the ion core electron into the initial ground state with the
simultaneous ejection of the captured electron from the ion: This process is
known as autoionization;

(ii) by radiative decay of the ion core electron, resulting in its return to the initial
state after the emission of a photon of energy �hx ’ �hx0 ¼ DE, whereas the
captured electron remains in the ion.

For illustration, Fig. 5.1 shows the relevant energy level diagram for the He-like
2l2l′-satellites close to the H-like Lyman-alpha transition (so-called Lya-satellites).
The energy of the 2l2l′-satellites is approximately (in the H-like approximation)
Esat 	 2 � Z2Ry=4 ¼ Z2Ry=2 which is half of the ionization potential of the H-like
ground state (Z2Ry). The series limit of the autoionizing levels 2lnl′ is the first
excited state 2l. Radiative decay from the 2l2l′-levels populates the single excited
levels 1s2l 1,3L, from which radiative decays (W- and Y-line) populate finally the
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ground state 1s2. The chain of processes, dielectronic capture (1s + e − 2l2l′),
radiative decay to single excited levels (2l2l′ − 1s2l + hm) and radiative decay to the
ground state (1s2l 1,3L − 1s2 + hm′), is called dielectronic recombination (DR
channel) because an effective recombination has taken place (from the H-like
ground state 1s to the He-like ground state 1s2).

Thus, the DR process as well as the photorecombination (PhR) process result in
the capture of an incident electron and its simultaneous photon emission. The
difference is that the photon is emitted by the ion core electron in the DR process
rather than by the incident electron as in the PhR process. The relationship between
the PhR and the DR is analogous to the interrelation between conventional and
polarization bremsstrahlung (Astapenko 2013).

As a rule, the DR rate is large for ions with a complex core which possesses
transitions between the levels with the same quantum number n (the transitions with
Dn ¼ 0, e.g., 2s ! 2p transitions in lithium-like and more complex ions). The
transition energy DE ¼ �hx0 for Dn ¼ 0 and Z � 1 is of the order of Z � Ry, while
the ionization energy is of the order of Z2 � Ry � DE. Since the energy E of the
incident recombining electron is in any case smaller than the excitation energy, this
implies the following inequality

ðZ2Ry=EÞ1=2 � Ze2=�ht � 1; ð5:17Þ

Fig. 5.1 Energy level
diagram relevant for the
He-like autoionizing levels
2l2l′, so-called Lya-satellites
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which justifies the application of a quasi-classical approach to the description of
dielectronic recombination process.

An application of the proposed approach to the DR implies the treatment of a
DR process as a resonance fluorescence with a complicated intermediate state
which appears after the capture of the incident electron by an ion and possesses an
additional channel of decay via the autoionization. The resonance fluorescence thus
involves three types of quantum states:

– an initial state with total energy E1 of a non-excited ion and an initial spectral
distribution I0 of equivalent photons;

– an intermediate state with total energy E2 of an excited ion with a captured
incident electron on a highly excited ionic level (double excited ion with an ion
charge reduced by unity) and an EPh distribution I0 reduced by one EPh of
energy xeq;

– a final state with total energy E3 of a single excited ion with a charge reduced by
unity, an EPh of energy x and a EPh distribution I0. The state energies are
connected by conservation laws:

E3 � E1 ¼ x� xeq; E3 � E2 ¼ x� x0: ð5:18Þ

The resonance fluorescence probability has the form (Heitler 1984)

wRF ¼ jV21j2jV32j2
½ðx� xeqÞ2 þC2=4�½ðx� x0Þ2 þ c2=4� ; ð5:19Þ

where V21 and V32 are the matrix elements that correspond to the absorption of an
EPh at frequency xeq and the emission of a real photon at frequency x, respec-
tively; c and C are the total probabilities (per unit time) of photon absorption and
emission, i.e.,

cðEÞ ¼ 2p
X
k

jV32j2dðE � E3Þ; ð5:20Þ

CðEÞ ¼ c
X
keq

jV21j2 1

½ðE � E2Þ2 þ c2=4�: ð5:21Þ

The quantities CðEÞ and cðEÞ in (5.21) should be taken at the energy E ¼ E3, but in
fact they depend only weakly on energy.

It is noteworthy to recall an implication of (5.19): For the elementary process of
absorption–emission, the energies of the absorbed and emitted photons are equal
(within the very small width C). This “memory” about the absorbed photon by
the ion (atom) manifests itself in the probability (5.19) which does not reduce to the
product of absorption and emission probabilities. Indeed, the first factor in the
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denominator of (5.19) does not bind (approximately via the corresponding d
function) the energies of the initial (xeq) and exactly resonant (x0) photons, but
only the energies of the initial and final (x) photons. It is the continuity of the
incident photon spectrum that reduces the resonance fluorescence to the two
independent processes of absorption and subsequent emission. Thus, the DR width
CDR is formed by the width c (5.20) and by the probability (per unit time) of the
autoionization process of the intermediate state:

CDR ¼ cþCA : ð5:22Þ

This relation implies the possibility of the return of the recombined electron to
the continuum energy state with the simultaneous equivalent photon re-emission by
the ion core.

The matrix element V21 is determined by the oscillator strength of the radiative
transition in an ion (V21 � d21, where d21 is the matrix element of the dipole
moment of a bound radiating electron in an ion) and is proportional to the flux
density of the EPh incident on an ion. For the continuous EPh spectrum, the total
probability of absorption CRF is expressed in terms of I0:

CRF ¼ 2pI0;x V21j j2; ð5:23Þ

where the bar ( V21j j2) denotes the averaging over the angles of the absorbed photon
wave vector. As applied to the specific conditions of the model for the DR con-
sidered, the summation over keq in (5.21) should be supplemented by a summation
over the final states of the captured electron. This procedure combined with the
conservation law for the incident electron energy leads to the result:

CDR ¼ CRFZ
2=n3: ð5:24Þ

Using then the expression for the DR total probability summed over the EPh
frequencies

X
x

wDR ¼ cCA

cþCA
ð5:25Þ

we obtain the rate of the autoionization process

CA ¼ f12
pn3

lG0
x0M3

3Z2

	 

; ð5:26Þ

where f12 is the oscillator strength of the excited radiative transition in the ion core,
and the function G0ðxÞ is given by (5.8b). Equation (5.26) coincides with the result
which may be obtained from the exact quantum calculation (Beigman et al. 1981;
Sobelman and Vainshtein 2006) of autoionization rate in Kramers domain
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(quasi-classical motion of the incident electron along a quasi-parabolic orbit,
Ze2=�ht � 1, q � a). The total DR rate corresponding to the capture of an electron
into an ionic nl state is then given by the expression

aDR ¼ 2p
T

	 
3=2gð2Þ
gð1Þ

ð2lþ 1ÞcCA

ðcþCAÞ exp �x
T

þ Z2

2n2T

� �
; ð5:27Þ

where T is the electron temperature, and gð1Þ and gð2Þ are the statistical weights for
the ground and excited ion levels, respectively.

The result (5.26) may also be derived on the basis of the relation between the
autoionization probability and the cross-section for the ion excitation by electron
impact near the ionization threshold. This relation follows from the detailed balance
equation for the mutually inverse processes of autoionization and electron capture
into an ion nl-level with the excitation of the 1 ! 2 transition in an ion core, i.e.,

ð2lþ 1Þg2CAðnlÞ ¼ Z2n�3xg1rexcðlÞ=p2a20: ð5:28Þ

Substituting the KrED result (5.13) for the excitation cross-section rexc, we obtain
(5.26).

All the methods for the derivation of autoionization, dielectronic capture, and
dielectronic recombination are equivalent in the sense that they are based on the
dipole approximation for the interaction between an incident and a bound electron.
It is exactly this approximation that allows us to treat all of the processes related to
an energy loss of the incident electron as processes of effective radiation of either
real (bremsstrahlung and photorecombination radiation) or equivalent (excitation,
dielectronic recombination, polarization bremsstrahlung, and polarization recom-
bination) photons.

5.2 Ionization by Electron Impact

5.2.1 Thomson Formula

Ionization of atoms by electron impact is one of the most important elementary
processes defining the characteristics both of laboratory and astrophysical plasmas.
A consistent description of this phenomenon involves the quantum mechanical
approach; however, its main qualitative features can be determined also within the
framework of classical mechanics. A corresponding formula for the cross-section
was first proposed by J. Thomson in 1912, even before the development of the
quantum theory. The classical consideration of ionization of an atom by electron
impact
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eþA ! Aþ þ 2 e ð5:29Þ

carried out by Thomson is based on the assumption of elastic scattering of the
projectile by bound electrons of the target. In this case, ionization results from
the transfer of energy to an atom, that is, higher than the ionization potential of the
electron subshell under consideration (as a result of projectile scattering). The
applicability of the classical method to estimate the atomic ionization cross-section
is based on the exact coincidence of quantum mechanical and classical
cross-section of elastic electron–electron scattering.

Without considering the binding of atomic electrons to the nucleus, the
expression for the integrated (with respect to the angle of scattering) cross-section
of collisional ionization can be represented as (Astapenko and Lisitsa 2007)

ri ¼
Z

DE[ I

dr; ð5:30Þ

where dr is the differential cross-section of electron–electron scattering, DE is the
energy transferred from a projectile, I is the atomic ionization potential. Neglecting
the change of the energy of the incident electron in comparison to its initial energy,
we can derive the cross-section dr with the help of the Rutherford formula (that
describes the cross-section of elastic scattering of a charged particle in the Coulomb
potential):

dr Rð Þ

dX
¼ Z e2

2mt2 sin2ðh=2Þ

	 
2

: ð5:31Þ

dX is an element of the solid angle, into which a projectile is scattered, h is the angle
of scattering, and t is the velocity of the incident electron. For electron–electron
scattering, we have Z ¼ 1. Assuming that the value of energy transferred to an
atomic electron DE is equal to the recoil energy, it is easy to find that

DE ¼ 4E sin2 h=2ð Þ: ð5:32Þ

For the derivation of (5.32), the relation for a transmitted pulse that neglects the
binding of an atomic electron to the nucleus was used, i.e.,

Dp ¼ 2mt sin h=2ð Þ; ð5:33Þ

that follows from elementary consideration of elastic scattering (Landau and
Lifschitz 2005). With the use of (5.32), it is possible to express the angle of
scattering in terms of energy transferred to an atomic electron DE. As a result, we
obtain from (5.31) for a one-electron atom
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dr ¼ p e4 dDE

E DEð Þ2 ; ð5:34Þ

where E ¼ mt2=2 is the energy of the incident electron. Substituting the expression
(5.34) in (5.30) and integrating over the possible values of the transferred energy
DE, we obtain the so-called Thomson formula for the cross-section of collisional
ionization of a one-electron atom:

ri ¼
ZE
I

dr ¼ pe4

E
1
I
� 1
E

	 

; E[ I: ð5:35Þ

If the dimensionless parameter x ¼ E=I is introduced, the right-hand side of
(5.35) can be rewritten as

r Thð Þ
i Eð Þ ¼ p e4

I2
x� 1
x2

; x
 1: ð5:36Þ

It is clear that the value xth ¼ 1 (Eth ¼ I) is the threshold value: At x\1, the
process cross-section is equal to zero since the energy of an incident electron is
insufficient for ionization of an atom.

5.2.2 Similarity Function Method for the Ionization
Cross-Section

Qualitatively, the Thomson formula (5.36) renders properly the features of the
collisional ionization of a one-electron atom. However, from the quantitative point
of view the formula is not very precise. To obtain a realistic description, it is
advisable to represent the expression (5.36) as follows (Astapenko and Lisitsa
2007):

r Thð Þ
i Eð Þ ¼ p a2I f

Thð Þ E=Ið Þ: ð5:37Þ

Here the dimensionless Thomson similarity function f Thð Þ xð Þ ¼ x� 1ð Þ=x2
describing the dependence of the collisional ionization cross-section on a projectile
energy and the “ionization radius” are introduced:

aI ¼ e2

I
: ð5:38Þ

As one can easily see from (5.38), the ionization radius is equal to the distance
between incident and atomic electrons, at which the energy of the Coulomb
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interaction is equal to the atomic ionization potential. The radius aI defines the
cross-section rI ¼ p a2I that characterizes the cross-section of collisional ionization
of a one-electron atom by an order of magnitude.

From formula (5.37), it follows that the projectile energy enters in the expression
for the collisional ionization cross-section only in terms of the ratio E=I. This
circumstance forms the basis for the similarity function method that assumes that
the ratio of the ionization cross-section to the value rI ¼ p a2I is a universal function
of the dimensionless variable x ¼ E=I. Thus, the formula (5.36) is generalized by
(5.37): The similarity function f xð Þ can be determined either within the framework
of a chosen theoretical or empirical approach.

The Thomson similarity function gives a value for the cross-section maximum of
1=4 at xmax ¼ 2, i.e., at Emax ¼ 2 I. The comparison with experimental data shows
that this value xmax is too low. In other words, the Thomson formula shifts the true
position of the cross-section maximum closer to the threshold value Eth ¼ I. In fact,
the maximum of the collisional ionization cross-section is found from Emax ¼ 3 I to
Emax ¼ 4 I (see the next section).

Curiously, the Thomson formula gives a value for the cross-section maximum of

collisional ionization of a hydrogen atom of r Hð Þ
i Emaxð Þ ¼ p a2B 	 0:88 Å2 (aB is the

Bohr radius) that is equal to the area of the first Bohr orbit. According to (5.36), the

energy at cross-section maximum is Emax ¼ 2I Hð Þ
1s ffi 27:2 eV, which coincides with

the atomic unit of energy.
For more realistic descriptions of the cross-section of atomic ionization by

electron impact, it is necessary to develop other similarity functions. For ionization
potentials I[ 10 eV, good agreement with experimental data is obtained by the
Gryzinski similarity function (Gryzinski 1959, 1965a, b, c)

f Gryzð Þ xð Þ ¼ 1
x

x� 1
xþ 1

	 
3=2

1þ 2
3

1� 1
2x

	 

ln 2:7þ

ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p �� �
ð5:39Þ

derived within the framework of classical consideration but taking into account the
velocity distribution function of the bound electrons. For completeness, we mention
also the Eletskii–Smirnov similarity function

f ESð Þ xð Þ ¼ 10 x� 1ð Þ
p x xþ 8ð Þ ; ð5:40Þ

obtained empirically (on the basis of comparison with experimental data). It should
be noted that the functions (5.39) and (5.40) are similar to each other.

The formulas (5.36), (5.37) were obtained for a one-electron atom. For the
calculation of collisional ionization of multielectron atoms, the expression (5.37)
should be generalized so that the contribution of different subshells of an atom (in
particular the number of electrons in each subshell) to the total cross-section is
taken into account. The resultant formula looks like
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ri Eð Þ ¼
X
nl

Nnl p a2Inl f ðE=InlÞ h E � Inlð Þ; ð5:41Þ

where Nnl is the number of equivalent electrons, Inl the ionization potential of a nl-
subshell (n, l are the principal and orbital quantum numbers), and h xð Þ is the
Heaviside step function that describes the “inclusion” of inner atomic subshells in
the process at E[ Inl.

The comparison with experimental data shows that the similarity functions
(5.39), (5.40) give the best result for atoms with ionization potentials I[ 10 eV
(remember that I ¼ min Inlf g). In case of multielectron atoms with a moderate value
of I (10 eV[ I[ 6 eV), the Born–Compton similarity function is more adequate
for the description of collisional ionization (Astapenko 2001):

f BCð Þ xð Þ ¼ 2:5
p

1
x

Zym
1

dy
Zffiffixp þ ffiffiffiffiffiffi

x�y
p

ffiffi
x

p � ffiffiffiffiffiffi
x�y

p

dt

t2 t2 þ y� t2ð Þ2=0:64
h i; ð5:42Þ

where ym ¼ xþ 1ð Þ=2. The similarity function (5.42) is obtained in the first Born
approximation for the interaction of a projectile with atomic electrons. For its
derivation, the analogy between collisional ionization and Compton scattering of
the projectile eigenfield by an atom was used, and the electron shell of the atom was
described within the framework of the Thomas–Fermi model.

In the case that a significant contribution to the ionization process is made by
atomic subshells with large orbital quantum numbers (l ¼ 2; 3), the use of the
similarity functions (5.42) may be insufficient. In this case, the similarity function
of the so-called Binary Encounter Bethe (BEB) approximation can be used (Kim
and Rudd 1994):

f BEBð Þ x; uð Þ ¼ 1
1þ xþ u

ln xð Þ
2

1� 1
x2

	 

þ 1� 1

x
� ln xð Þ
1þ x

� �
: ð5:43Þ

In (5.43), the additional parameter u is introduced that represents the ratio of the
average kinetic energy of a subshell to its ionization potential. It should be noted
that for a hydrogen atom (in view of the virial theorem) u ¼ 1. The parameter u
takes into account the decrease of the cross-section of collisional ionization of
atomic subshells with high orbital momenta. This decrease is connected with the
fact that at equal ionization potentials, a subshell with a higher orbital moment has a
smaller radius, which results in a decrease of process cross-section.

Figure 5.2 shows the similarity functions (5.39), (5.40) as well as (5.42), (5.43).
A common feature of the similarity functions presented in Fig. 5.2 is their identical
near-threshold dependence: f xð Þ / x� 1. This dependence is a consequence of the
common quantum mechanical regularity connected with the behavior of the sta-
tistical weight of the final state of an ionized electron as a function of the projectile
energy. On the other hand, the asymptotic behavior of the similarity functions at
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high-incident electron energies E � I (x � 1) is different. From formulas (5.39),
(5.40) and (5.42), (5.43) and x � 1, we obtain: f Gryzð Þ; BEBð Þ / ln xð Þ=x,
f ESð Þ; BCð Þ / 1=x. The first asymptote coincides with the high-energy limit of the
inelastic cross-section of the Bethe quantum mechanical theory, the second
asymptote deviates from it, but provides better agreement with experimental data at
not too high projectile energies.

The similarity function method favorably differs from other methods of calcu-
lation of the collisional ionization cross-section by its simplicity and reliability; it is
often used for fast evaluation of the cross-sections (in particular for bulky complex
configurations).

5.2.3 Comparison with Experimental Data

At present days, electron impact ionization cross-sections of neutral atoms have
been measured for the majority of elements from the periodic table. The experi-
mental measurements are carried out with the help of the so-called crossed-beam
technique that consists of several steps:

(a) the beam of fast neutrals is produced by neutralization of fast (with an energy
of several keV) ions in a chamber with low-pressure gas (about 10−4 torr),

(b) the ion beam is then pre-extracted from a DC gas discharge, focused, and
passed through a special filter that sorts ions with respect to their velocities,

(c) the resultant beam of fast neutrals with specified energy retains the collimation
of the initial ion beam, which is mandatory for high-precision measurements,

(d) the absolute neutral atom flux is measured with the help of a calibrated
detector,
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Fig. 5.2 Comparison of
different similarity functions
for the collisional ionization
cross-section of an atom:
Gryz—Gryzinski; ES—
Eletskii–Smirnov; BC—
Born–Compton; BEB—BEB
approximation
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(e) the measurement of the collisional ionization cross-section is then carried out
intersecting the neutral beam of atoms with the electron beam,

(f) ions resulting from electron–atom collisions are focused on an electrostatic
analyzer extracting ions with a given charge number that are then recorded by
an electron multiplier,

(g) based on the measured data, the experimental value of the ionization
cross-section is finally calculated by the formula

r expð Þ
i Eð Þ ¼ Ji Eð Þ te tn

Je Eð ÞRF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2e þ t2n

p ; ð5:44Þ

where Ji;e are the ion and electron currents, tn;e are the velocities of neutrals and
electrons, R is the neutral flux, F is the value characterizing the degree of inter-
section of the neutral beam and the electron beam.

Thus, the measurement of the absolute value of the collisional ionization
cross-section consists in the measurement of each value appearing in the right-hand
side of (5.44).

Figure 5.3 shows the comparison of the experimental cross-section of collisional
ionization of a hydrogen atom with the results of calculations by the similarity
function method.

It is seen that in this case, the Eletskii–Smirnov similarity functions and the BEB
approximation provide better agreement with the experiment than the Born–
Compton method that considerably overestimates the cross-section. This circum-
stance is connected with the fact that the formulas for the Born–Compton method
were obtained in the Thomas–Fermi approximation for an electron shell of an

Fig. 5.3 Ionization cross-sections of a hydrogen atom by electron impact: 1—experiment,
2—Born–Compton method, 3—Eletskii–Smirnov formula, 4—BEB approximation for u = 1
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ionized atom that is only valid for multielectron atoms. Moreover, in this case the
ionization potential of a hydrogen atom (13.6 eV) is overestimated and the use of
the Born–Compton similarity function is beyond its range of applicability.

From Fig. 5.3, it follows that the maximum of the ionization cross-section of a
hydrogen atom by electron impact is reached at an incident electron energy Emax 	
50 eV in contrast to the value Emax 	 27:2 eV following from the Thomson formula
(5.36). The value of the cross-section at the maximum is about 0.6 Å2, which is
somewhat less than the prediction of the Thomson theory (0.88 Å2). Thus in the
case of a hydrogen atom, the classical approach of J. Thomson strongly shifts the
position of a maximum to a too low energy range, but gives a satisfactory value of
the maximum cross-section.

It is of interest to compare the cross-section of photoionization of a hydrogen atom
rph xð Þ with the cross-section of ionization by electron impact. The cross-section of
photoionization of a hydrogen atom reaches its maximum at threshold, i.e., at a photon
energy of 13.6 eV, whereas the maximum of the photoionization cross-section
(0.064 Å2) is about an order of magnitude less. Different asymptotic behavior of the
cross-sections can also be noted: rph xð Þ / x�7=2, while ri Eð Þ / ln Eð Þ=E, i.e., the
photoionization cross-section decreases much more rapidly.

As an example we compare experimental data with different theories of colli-
sional ionization of a multielectron atom. Figure 5.4 shows an example for the
tellurium atom (atomic number Z ¼ 52): The configurations of outer electron shells
are 4dð Þ10 5sð Þ2 5pð Þ4, and their ionization potentials are I4d ¼ 47 eV, I5s ¼ 18 eV,
I5p ffi 9 eV. As follows from these energies and formulas (5.37)–(5.38), the
cross-section maximum of collisional ionization of the 5p-subshell is about an order
of magnitude higher than the corresponding value for the 5s-subshell, indicating
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Fig. 5.4 Cross-section of ionization of a tellurium atom by electron impact: 1—experiment,
2—Born–Compton method, 3—Eletskii–Smirnov formula, 4—Gryzinsky formula
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that the main contribution to the ionization process stems from the outer atomic
subshell. This situation is typical: As a rule, the cross-section of collisional ion-
ization of an atom is defined by its outer subshell since it has the smallest ionization
potential.

From Fig. 5.4, it is seen that in this case the best agreement with experimental
data is achieved by the Born–Compton similarity function (5.42). The Eletskii–
Smirnov and Gryzinsky formulas somewhat underestimate the cross-section.

The value of the cross-section of collisional ionization of neutral atoms in the
ground state varies in a relatively narrow range: from 0.5 Å2 (for helium) to about
10 Å2 for heavy atoms such as tellurium. Atoms in excited states with low ion-
ization potential have large collisional ionization cross-sections that at the maxi-
mum can make up several hundreds of squared angstroms. For multiply charged
positive ions with a high ionization potential, the cross-section can be rather small
because r / 1=I / 1=Z2.

The cross-section of ionization of atoms by electron impact defines an important
parameter for atomic population kinetic equations that is called the rate coefficient
[typical employed units are (cm3 s−1)] that is determined by the expression

ki Teð Þ ¼
Z

ri Eð Þ te Eð ÞFe E; Teð Þ dE; ð5:45Þ

where Fe E; Teð Þ is the energy distribution function of plasma electrons at a given
temperature Te of an electron subsystem, te Eð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E=me

p
is the velocity (non-

relativistic) of an electron.
With the use of the universal expression (5.41) for the atomic ionization

cross-section, it is easy to estimate the rate coefficient for a Maxwellian electron
energy distribution function:

FeðE; TeÞ ¼ 2ffiffiffi
p

p
ffiffiffiffi
E

p

ðTeÞ3=2
exp � E

Te

� �
; ð5:46Þ

where Te is expressed in energy units. Substituting the formulas (5.41) and (5.46) in
the expression (5.45), we obtain

ki Teð Þ ¼ 2
p

X
nl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2meInl

p e2

Inl

	 
2

H Inl=Teð Þ; ð5:47Þ

where electron temperature is included in the dimensionless function

H yð Þ ¼ y3=2
Z1
1

f xð Þ e�x y x dx; ð5:48Þ
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that depends itself on the similarity function f xð Þ. H yð Þ reaches a maximum at
about values y = 0.06–0.08, i.e., at a temperature of Tmax 	 12� 15ð Þ I. It should
be noted that at such temperatures, an atom is already ionized. The functions
H I=Tð Þ calculated with the Eletskii–Smirnov and Born–Compton similarity func-
tions for the ionization potential of a hydrogen atom are shown in Fig. 5.5.

5.3 Analytical Empirical Formulas for Ionization, Single,
and Total Recombination Rates

5.3.1 Ionization

Among a vast amount of fitting formulas and numerical calculations (Sobelman and
Vainshtein 2006; Voronov 1997; Lotz 1970; Kato et al. 1991), we point out here
one of the most used formulas from Lotz providing a modified explicit analytic
expression for the ionization from shell “n” of an ion with charge state “Z” (i.e.,
XZðnÞþ e ! XZþ 1ðmÞþ eþ e) averaged over a Maxwellian electron energy
distribution function:

IZ;Zþ 1ðn;mÞ 	 6� 10�8 Pn
Ry

EZ;Zþ 1ðn;mÞ
	 
3=2 ffiffiffiffiffiffiffiffi

bnm
p

e�bnm a bnmð Þ ½cm3 s�1�;

ð5:49aÞ

a bnmð Þ 	 ln 1þ 0:562þ 1:4 bnm
bnm 1þ 1:4 bnmð Þ

� �
; ð5:49bÞ
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Fig. 5.5 Dependence of the
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(5.47), (5.48)] on electron
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bnm ¼ EZ;Zþ 1ðn;mÞ
kTe

: ð5:49cÞ

kTe is the electron temperature in [eV], EZ,Z+1(n,m) is the ionization energy in [eV]
from state “n” of ion “Z” to state “m” of ion “Z + 1”, and Pn is the number of
equivalent electrons in the state “n”. Note, that detailed ionization rate coefficients
for H I, He I and He II are presented in Annex 2 and 3.

5.3.2 Three-Body Recombination in Dense Plasmas

Three-body recombination (i.e., XZþ 1ðmÞþ eþ e ! XZðnÞþ e) is the inverse
process of ionization and can be approximated by the following analytical
expression:

TZþ 1;Z m; nð Þ 	 2� 10�31 Ry
EZ;Zþ 1ðn;mÞ
	 
3 Pn gZðnÞ

gZþ 1ðmÞ b2nm a bnmð Þ ½cm6 s�1�;

ð5:50Þ

with a bnmð Þ and bnm given by (5.49b, c). gZþ 1ðmÞ is the statistical weight of the
state before recombination (usually the strongly populated ground state) and gZðnÞ
is the statistical weight of the recombined state. Note, that detailed three-body
recombination rate coefficients for H I, He I and He II are presented in Annex 2
and 3.

Of particular interest for the calculation of the ionic fraction and radiation losses
is the total three-body recombination rate, i.e., the summation over principal
quantum number “n” until Nmax in (5.50):

TZþ 1;Z ¼
XNmax

n¼1

TZþ 1;Z nð Þ: ð5:51Þ

The summation over the principal quantum number “n” in (5.51) has to be taken
out with care. In fact, (5.51) assumes that all recombination into excited states
finally populate the ground state via radiative cascades. At large quantum numbers,
however, collisional processes become so important that that the recombination
flow to an excited state might even be transferred back before it can decay to the
ground state by radiative cascades. As collisional rates strongly increase with
principal quantum number “n” but radiative decay rates decrease with principal
quantum number “n”, there exist a critical electron density ne;crit where collisional
processes are equally important as radiative decay for a given principal quantum
number n ¼ ncrit. A rough guideline for the selection of the maximum principal
quantum number in (5.51) is therefore

200 5 Electron–Atom Collisions



Nmax 	 ncrit: ð5:52Þ

If the atomic structure is such that the atomic ground state has the principal
quantum number n = 1, critical electron density and critical principal quantum
number are related by:

ne; crit 
 6� 1019 Z7 ncrit � 1ð Þ2ncrit�2

n3crit ncrit þ 1ð Þ2ncrit þ 2

kTe eVð Þ
Z2
eff Ry

	 
1=2

cm�3� �
: ð5:53Þ

kTe is the electron temperature in [eV], Zeff is the effective ionic charge and
Ry = 13.6 eV. With the help of (5.53), for each given electron density ne;crit, the
critical principal quantum number ncrit can be calculated. Equation (5.53) has a
well-defined asymptote for large quantum numbers:

lim
ncrit!1

ncrit � 1ð Þ2ncrit�2

n3crit ncrit þ 1ð Þ2ncrit þ 2

( )
¼ lim

n!1
1

n3crit ncrit þ 1ð Þ4
ncrit � 1
ncrit þ 1

	 
2ncrit�2
( )

	 0:0183
n7crit

ð5:54Þ

because

lim
ncrit!1

ncrit � 1
ncrit þ 1

	 
2ncrit�2
( )

	 1
54:6

: ð5:55Þ

Therefore, we can write

ne;crit 	 6� 1019Z7
eff

1
n3crit

0:0183
n4crit

kTe eVð Þ
Z2
effRy

	 
1=2

	 1018
Z7
eff

n7crit

kTe eVð Þ
Z2
effRy

	 
1=2

cm�3� �
:

ð5:56Þ

Equation (5.56) shows that the critical electron density scales with the seventh
power of the principal quantum number and with the seventh power of the effective
charge. Equation (5.52) can therefore be estimated as follows:

ncrit 	 373
Zeff

n1=7e;crit

kTe eVð Þ
Z2
effRy

	 
1=14

: ð5:57Þ

The maximum principal quantum number is not a very critical issue for radiative
and dielectronic recombination, as both processes decrease rapidly with the prin-
cipal quantum number itself. For the three-body recombination, however, the
recombination rates increase strongly with principal quantum number and Nmax has
to be chosen with care. Monte Carlo simulations (Mansbach and Keck 1969) that
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take into account the complex movement of the electron in the excitation–ionization
among the numerous excited states indicate the following:

TZþ 1;Z 	 2� 10�27f
Z3
eff

kTeð Þ9=2
cm6 s�1� � ð5:58Þ

with f = 1. Most of the results obtained with different methods propose expressions
similar to (5.58) but differ by the numerical coefficient f = 0.1–10 (Hahn 1997;
Mayorov et al. 1994). Note that if all three-body recombination rates are summed
up and the upper limit is identified with the collisional ionization limit, f = 3.1
(Hahn and Li 1996) (note that the ionization limit employed in (Hahn and Li 1996)
does not depend on density).

In dense and cold plasmas, the classical three-body recombination rate is
diverging because the Maxwell electron distribution function becomes very narrow.
This is unphysical, because it can be shown that this violates the Pauli principle.
A recent investigation based on a consistent use of the Fermi–Dirac distribution
function and Pauli-blocking factors has shown (Deschaud et al. 2014, 2015) that the
three-body recombination rate is then well defined for all transitions from the hot
dense plasma to the warm dense matter (WDM), to the hot solid, and to the cold solid.

5.3.3 Radiative Recombination in Dense Plasmas

In a similar manner, the total radiative recombination is the sum of all radiative
recombination into the ground and excited states (Nmax is the largest principal
quantum number to be taken into account):

RZþ 1;Z ¼
XNmax

n¼1

Xn�1

l¼0

RZþ 1;Z nlð Þ: ð5:59Þ

In the optical electron model (hydrogenic approximation), the radiative recom-
bination can be directly represented by a sum over the orbital l-quantum numbers
(Baker and Menzel 1938; Sobelman and Vainshtein 2006):

RZþ 1;Z nð Þ ¼
Xn�1

l¼0

RZþ 1;Z nlð Þ; ð5:60Þ

R nð Þ 	 5:2� 10�14QnZeffb
3=2
n c bnð Þ ½cm3 s�1�; ð5:61aÞ

Zeff ¼ ngr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EZ;Zþ 1ðngrÞ

Ry

s
; ð5:61bÞ
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c bnð Þ 	 ln 1þ 0:562þ 1:4 bn
bn 1þ 1:4 bnð Þ

� �
; ð5:61cÞ

bn ¼
EZ;Zþ 1ðnÞ

kTe
; ð5:61dÞ

Qn 	 1� N
2 n2

: ð5:61eÞ

kTe is the electron temperature in [eV], EZ;Zþ 1ðnÞ is the ionization energy of the
state “n” of ions “Z” into state “m” of ion “Z + 1” in [eV], Zeff is the effective
charge of the ion before recombination, ngr is the principal quantum number of the
ground state, Ry = 13.6 eV and Qn is an angular factor which takes into account the
Pauli principle (means the reduced probability to be captured into a certain level
that is already partially occupied with electrons), (5.61e) is the corresponding
hydrogenic approximation. For example, for radiative recombination into He-like
neon (i.e., Ne9þ ð1sÞþ e ! Ne8þ ð1s2Þ), we have Qn ¼ 1� 1=ð2 � 12Þ ¼ 0:5 and
Zeff ¼ 1 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1195:81 eV=Ry
p ¼ 9:4. Note, that detailed radiative recombination rate

coefficients for H I, He I and He II are presented in Annex 2 and 3.
Using (5.61) and Qn = 1, the sum of (5.60) over the n-quantum numbers can be

approximated by the following analytic expression:

Rtot n
 n1ð Þ ¼ 2:6� 10�14 Zeff n1b
1=2
1

� ln 1:78b1ð Þ þ g b1ð Þ 1þ b1=n1ð Þf g cm3 s�1� �
; ð5:62aÞ

b1 ¼
Z2
eff Ry
n21kTe

; ð5:62bÞ

g b1ð Þ 	 ln 1þ 0:562þ 1:4 b1
b1 1þ 1:4 b1ð Þ

� �
: ð5:62cÞ

n1 is the principal quantum number from which the sum is taken (usually over all
higher lying excited states with n > ngr). In practice, the calculations of the total
radiative recombination rate employ detailed calculations for the recombination into
the ground state and states that have the same principal quantum number as the
ground state, i.e., Rðn ¼ ngrÞ (either via (5.61) or more advanced detailed quantum
mechanical calculations) and employ (5.62) for the excited states with an effective
charge given by (5.61b). In this case, n1 ¼ ngr þ 1. In other words, one employs
detailed calculations for the states with the same principal quantum number as the
ground state and the hydrogenic approximation with effective charge for the excited
states.

In the framework of the hydrogenic approximation for the contribution of the
excited states, dense plasma effects can be estimated with the help of (5.52) and
(5.62) assuming that all recombination is suppressed for quantum numbers larger
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than the critical quantum number, i.e., n[ ncrit. In this case, n1 ¼ ncrit in (5.62) and
the total radiative recombination in dense plasmas is given by

Rtot
dense 	 Rtot n ncritð Þ 	 Rðn ¼ ngrÞþ Rtotðn
 ngr þ 1Þ � Rtotðn
 ncrit þ 1Þ� �

:

ð5:62dÞ

5.4 Classical Consideration of Collisional Excitation
of an Atom

5.4.1 Fermi Photon Equivalent Method
and Oscillator Strength Method

Excitation of atoms in collisions with electrons is another example of an inelastic
collisional process that plays an important role in various fields of physics and
technology. In contrast to collisional ionization, when an atomic electron is excited
to the continuous energy spectrum (corresponding to infinite motion), excitation of
an atomic electron goes to the discrete spectrum, that is (within the framework of
the classical picture), to another atomic orbit with higher energy. This phenomenon
is responsible for emission of photons in plasmas resulting from a transition of an
atomic excited state to the ground state. It is also one of the mechanisms to achieve
population inversion in gas lasers (so-called electron beam pumping). Also the
population inversion of the soft X-ray Ne-like and Ni-like lasers is based on col-
lisional excitation in plasmas (Sobelman and Vinogradov 1985; Elton 1990). Note
that X-ray laser schemes without population inversion have also been proposed
(Braunstein and Shuker 2003) that is based on a complex interplay of the atomic
master equations that include the atomic coherences (Loudon 2000).

Electron collisional excitation is schematically described as

eþA ! A� þ e; ð5:63Þ

where the symbol A� denotes an atom in the excited state of a discrete spectrum. For
calculation of the reaction cross-section (5.63), we will use the spectroscopic
principle of correspondence between quantum physics and classical physics.
According to this principle, an atom in interaction with an electromagnetic field
behaves as a set of oscillators that are assigned to a pair of energy levels Ei and Ej of
the atomic spectrum. Let us assume that Ei\Ej. The eigenfrequencies of these
oscillators are equal to the eigenfrequency of the transition i ! j:
xji ¼ Ej � Ei

� �
=�h, and the efficiency of their interaction with an electromagnetic

field is defined by the oscillator strength:
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fji ¼
2mxji dji

�� ��2
3 �h e2 gi

; ð5:64Þ

where gi is the statistical weight of the initial state. In the quantum mechanical
description of the dipole moment of a transition oscillator, dji is a matrix element of
an electric dipole moment operator calculated between states ij i and jj i. In the case
of excitation of an atom, xji [ 0 and fji [ 0; for an electron transition with
decreasing energy (xij\0), fij\0. Since dji

�� �� ¼ dij
�� ��, we obtain from (5.64)

gi fji ¼ �gj fij.
Atomic excitation i ! j via collisions with an electron corresponds therefore to

the interaction between the electric field of the scattered electron and the transition
oscillator. Assuming a homogenous incident electron field close to the atom, it is
possible to write the following equation for the radius vector of the oscillator rji:

€rji þ cji _rji þx2
ji rji ¼ fji

e
m
E t; qð Þ; ð5:65Þ

where cij is the damping constant, E t; qð Þ is the strength of the electric field that is
produced by an incident electron moving along a trajectory with an impact
parameter q relative to the atom.

Let us assume fji 6¼ 0. Corresponding transitions are called dipole (or optically)-
allowed transitions. Otherwise, the transitions are called dipole or optically for-
bidden transitions.

The Fourier transform of (5.65) is given by:

vji xð Þ ¼ fji � e
m
� �ixð ÞE x; qð Þ
x2

ji � x2 � i cji x
; ð5:66Þ

where E x; qð Þ is the Fourier component of the electric field strength of a scattered
electron. In order to determine the excitation cross-section of an atom for the
transition i ! j, we calculate the work done on a transition oscillator by an incident
electron during the duration of the collision:

Aji qð Þ ¼
Z1
�1

e vji tð ÞE t; qð Þ dt ¼ 1
2 p

Z1
�1

e vji xð ÞE� x; qð Þ dx: ð5:67Þ

The second equality of (5.67) is a Fourier representation using the relation
E �x; qð Þ ¼ E� x; qð Þ and the integral representation of the delta function, i.e.,

Z1
�1

exp ix tð Þ dt ¼ 2 p d xð Þ: ð5:68Þ
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It should be emphasized that the expression (5.67) is valid only for sufficiently
high-impact parameters q[ a, where a is the “cutoff” length. If q[ a, penetration
of an incident electron into an atomic core can be neglected. The analysis shows
that essentially distant collisions contribute to the excitation cross-section of a
dipole-allowed transition. Hereafter, we assume Aji q\að Þ ¼ 0. The cutoff param-
eter a is of the order of several Bohr radii; its exact value depends on the atom and
the specific transition.

Substituting (5.66) in (5.67) and transforming the integration over positive fre-
quencies only, we obtain

Aji qð Þ ¼ fji
e2

2m

Z1
0

G hð Þ
ji x� xji
� �

E x; qð Þj j2 dx: ð5:69Þ

G hð Þ
ji Dxð Þ ¼ cji=2 p

Dx2 þ cji=2
� �2 ð5:70Þ

is the spectral line shape of a transition for homogeneous broadening.
Equation (5.70) shows that the damping constant cji defines the spectral width of a
line. The function (5.70) satisfies the asymptotic relation

G hð Þ
ji Dx; cji ! 0
� �! d Dxð Þ: ð5:71Þ

The spectral width of the function E x; qð Þj j2 in (5.69) is defined by the ratio
t=q. This value is much larger than the width of the spectral line of an atomic

transition cji for q[ a and t[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �hxji

�
m

q
. Therefore, the asymptotic formula

(5.71) can be used.
The probability of excitation of the transition i ! j is equal to the ratio

Wji qð Þ ¼ Aji qð Þ
�hxji

; ð5:72Þ

where �hxji ¼ DEji is the atomic excitation energy. The analysis shows that Wji\1
for the considered range of impact parameters q and impact velocities t as it should
be according to the physical meaning of the probability.

The cross-section integrated with respect to the impact parameter is given by

rji ¼ 2 p
Z1
a

Wji qð Þ q dq: ð5:73Þ
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Here the upper limit of integration with respect to the impact parameter is
assumed to be equal to infinity according to the classical picture. Substituting the
formulas (5.72) and (5.69) in (5.73), we find in view of (5.71):

rji ¼ p fji
e2

mDEji

Z1
a

E xji; q
� ��� ��2 q dq: ð5:74Þ

To proceed further, let us consider the approximation of straight trajectories. In
this case, it is easy to obtain an expression for the Fourier component of an incident
electron field:

E x; qð Þ ¼ 2 e
q t

F
xq
t

 �
en � iF0 xq

t

 �
es

n o
; ð5:75Þ

where en; s are the normal and tangent (with respect to the velocity vector v ¼ const)
unit vectors and

F fð Þ ¼
Z1
0

cos f xð Þ
1þ x2ð Þ3=2

dx ð5:76Þ

(the prime in (5.75) denotes differentiation with respect to the argument).
Substituting (5.75)–(5.76) in (5.74), we obtain an expression for the collisional

excitation cross-section as a function of the incident electron energy E ¼ mt2=2:

rji Eð Þ ¼ 2 p fji
e2

DEji

	 
2 DEji

E

Z1
1

H
xji a ~qffiffiffiffiffiffiffiffiffiffiffiffiffi
2E=m

p
 !

d~q
~q
: ð5:77Þ
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H(ν)Fig. 5.6 Spectrum of the
electric field of an incident
electron (5.78) as a function
of the dimensionless
frequency: 1—total, 2—
normal component of the
field, 3—tangential
component of the field
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H mð Þ ¼ F2 mð ÞþF02 mð Þ ð5:78Þ

is the spectral function of the electric field strength of an incident electron (see
Fig. 5.6). In (5.77), integration with respect to the dimensionless variable ~q ¼ q=a
is introduced. From (5.77) to (5.78), it follows that the spectrum of the electric field
of the scattered electron depends only on the dimensionless parameter m ¼ xq=t.

Figure 5.6 shows that the main contribution to the spectral function H mð Þ near its
maximum is essentially only due to the normal component of the electric field of the
electron. In this parameter region, the spectrum width is of the order of magnitude
of the ratio t=q.

It is convenient to rewrite formula (5.77) for the collisional excitation
cross-section of an atom according

rji Eð Þ ¼ 2 p fji
e2

DEji

	 
2

/
E

DEji
; g

	 

; ð5:79Þ

/ x; gð Þ ¼ 1
x

Z1
1

H
g ~qffiffiffi
x

p
	 


d~q
~q

ð5:80Þ

is a dimensionless function that depends on the ratio E=DEji and on the dimen-
sionless parameter

g ¼ 1ffiffiffi
2

p a
aB

ffiffiffiffiffiffiffiffiffi
DEji

2Ry

s
; ð5:81Þ

where Ry ¼ 13:6 eV, aB ¼ 0:53� 10�8 cm is the Bohr radius. The numerical
value g depends on the value of the cutoff length a.

The expression (5.72) for the excitation probability of an atom can be rewritten
as

Wji qð Þ ¼
Z1
0

r phð Þ
ji xð Þ dN x; qð Þ

dS dx
dx; ð5:82Þ

where

r phð Þ
ji xð Þ ¼ fji

2 p2 e2

mc
G hð Þ

ji xð Þ ð5:83Þ

is the cross-section of photoabsorption of an atom for the transition i ! j. The
expression
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dN x; qð Þ
dS dx

¼ c

2pð Þ2
E x; qð Þj j2

�hx
ð5:84Þ

can be interpreted as the number of photons (per unit area in a unit frequency
interval) contained in the electric field of an incident electron during the collision
time. Based on the formulas (5.82)–(5.84), the process of atomic collisional exci-
tation can be represented as an atomic absorption of photons forming the eigenfield
of a scattered charged particle. Such photons are called equivalent photons. The
knowledge of the photoabsorption cross-section (e.g., from experimental data) and
the number of equivalent photons allow to obtain the transition probability
according (5.82). This approach was used by E. Fermi in 1924 (even before the
development of quantum mechanics) for the calculation of the atomic excitation
induced by fast-charged particles (Fermi 1924). This theory is called the Fermi
equivalent photon method (discussed in Sect. 5.1).

5.4.2 Similarity Function Method for Collisional Excitation
of an Atom

The formulas (5.79)–(5.81) for the cross-section of collisional excitation of a
dipole-allowed transition in an atom in the approximation of straight trajectories are
valid for sufficiently high-incident electron energies E � DEji. In the vicinity of the
excitation threshold, i.e., E 	 DEji, an electron loses practically its whole of kinetic
energy and the approximation v ¼ const becomes obviously incorrect. The analysis
shows that the expression (5.79) can be extended to the whole range of incident
electron energies if the function u ðE=DEjiÞ is properly chosen. This choice can be
made either empirically on the basis of comparison with experimental data or on
general theoretical considerations. The basis of this approach is the assumption that
the ratio

u E=DEji � x
� � ¼ rji Eð Þ

2 p fji e2=DEji
� �2 ð5:85Þ

is a universal function of the dimensionless variable x ¼ E=DEji only.
Equation (5.85) expresses the essence of the similarity function method for the
calculation of the cross-section of collisional excitation of an atom. Quantum
mechanical consideration shows that the similarity function u xð Þ should satisfy two
asymptotic relations:

u x ! 1ð Þ /
ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p
and u x � 1ð Þ / ln xð Þ

x
: ð5:86Þ

In view of (5.86), u xð Þ can be approximated by Astapenko et al. (2000)
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u xð Þ ¼ ln 1þ a
ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p� �
xþ b

: ð5:87Þ

The values of the parameters a and b can be obtained from experimental data:
a 	 0:5, b 	 3. Let us note the difference of the near-threshold behavior of the
similarity function for the excitation of an atom, i.e., u x 	 1ð Þ / ffiffiffiffiffiffiffiffiffiffiffi

x� 1
p

from the
corresponding dependence for ionization of an atom by electron impact, i.e.,
f x 	 1ð Þ / x� 1.

It is of interest to compare the similarity function (5.87) with the expression
obtained in the approximation of straight trajectories (5.80), (5.78). This compar-
ison for g ¼ 1:7 is given in Fig. 5.7. From this figure, it follows that for x[ 3 both
functions practically coincide. In particular, the position of maxima xmax ffi 3:45
and the maximum values umax ffi 0:09 coincide. A noticeable difference exists only
in the near-threshold region 1\x\2, where the approximation of straight trajec-
tories is inadequate.

Therefore, the cross-section of collisional excitation of a dipole-allowed tran-
sition in an atom for arbitrary energies of an incident electron, including the
near-threshold region, can be represented as

rji Eð Þ ¼ 2 p ra fji
2Ry
DEji

	 
2

u
E

DEji

	 

; ð5:88Þ

where the similarity function u xð Þ is given by the formula (5.87). Note that (5.88) is
expressed in atomic units (e ¼ 1, Ea ¼ 2Ry ffi 27:2 eV, and ra ¼ a2B ffi 2:8�
10�17 cm2). In view of the above values for xmax, umax, the formula (5.88) gives for
the maximum cross-section

1 10 100
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jix ΔΕΕ=

2

Fig. 5.7 Empirical similarity
function (1) and the similarity
function calculated in the
approximation of straight
trajectories (2) for the
cross-section of collisional
excitation of a dipole-allowed
transition in an atom
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rji Emax ¼ 3:45DEji
� � ffi 0:63� 10�16 fji

Ry
DEji

	 
2

½cm2�: ð5:89Þ

Thus, the cross-section of collisional excitation of a dipole-allowed transition is
directly proportional to the transition oscillator strength and inversely proportional
to the squared excitation energy. A characteristic value for the transition energies in
a neutral atom is 1–10 eV. The oscillator strengths vary in a more wide range: from
10−6 to 2. At fji\10�6, an electron transition in an atom can be considered to be
forbidden. The maximum value fji ffi 2 is reached for transitions with no change in a
principal quantum number in atoms of alkaline-earth elements.

Figure 5.8 shows the experimental (curve 1) and calculated (curve 2) excitation
cross-sections for the transitions 2s ! 2p in the lithium atom. Because there is no
change in principal quantum number, the oscillator strength is rather high
(f2p!2s ¼ 0:75) and the excitation energy rather low (DE2p!2s 	 1:85 eV).
Therefore, the maximum value of the cross-section is rather large: rmax ffi
4:3� 10�15 cm2. The position of the maximum corresponds to an energy of about
7.5 eV. Figure 5.8 demonstrates rather good agreement between theory and
experiment, especially in the vicinity of threshold.

Fig. 5.8 Cross-section of
excitation of a lithium atom
by electron impact for the
transition 2 s ! 2 p:
1—experimental data of the
American National Standards
Institute (NIST 2019),
2—calculation by the
similarity function method
according (5.88)
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5.4.3 Analytical Empirical Formulas for Excitation
and De-excitation Rates

5.4.3.1 Dipole Excitation and De-excitation of Ions

For dipole-allowed transitions (i.e., Dl ¼ �1), one of the most used general for-
mulas has been proposed by Van Regemorter (1962). The corresponding excitation
rates (integration of the cross-section over a Maxwellian energy distribution
function) can be cast in the following analytical form:

tr a ! a0ð Þh i :¼ Caa0 ¼ 3:15� 10�7 faa0
Ry

DEaa0

	 
3=2

�
ffiffiffi
b

p
� e�b � pðZ[ 0Þ bð Þ; ð5:90aÞ

DEaa0 ¼ Ea � Ea0 ; ð5:90bÞ

b ¼ DEaa0

Te
: ð5:90cÞ

faa0 is the oscillator strength for the dipole transition from state a to state a′, and
pðZ[ 0Þ bð Þ is an effective Gaunt factor. The required oscillator strength faa0 is easily
obtained from the spontaneous transition probability Aa0a

faa0 ¼ 1

4:339� 107 Ea � Ea0ð Þ2
ga0

ga
Aa0a ð5:91Þ

with Ea and Ea expressed in [eV], ga and ga0 are the statistical weights of the lower
and upper states, respectively. Note that (5.91) expresses the absorption oscillator
strength in terms of the spontaneous emission coefficient. The effective
Gaunt-factor pðbÞ can be approximated by an analytical expression:

pðZ[ 0Þ bð Þ ¼ 0:2757 e�1:3b b� b2

4
� ln bð Þ � 0:5772

	 

þ 0:2 1� e�4:5b� �

:

ð5:92Þ

This formula provides the correct asymptotic behavior for low and high energies
and an accuracy better than 5% for all values of b.

De-excitation rates are obtained from the principle of detailed balance, i.e.,

Ca0a ¼ Caa0
ga
ga0

expðbÞ ð5:93Þ
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providing

Ca0a ¼ 3:15� 10�7 faa0
ga
ga0

Ry
DEaa0

	 
3=2

�
ffiffiffi
b

p
� p bð Þ: ð5:94Þ

Equation (5.94) demonstrates that de-excitation rates do not contain the expo-
nential factor from the Maxwellian average. For low temperatures, i.e., for
parameters b[ 10, the effective Gaunt-factor approaches pðZ[ 0ÞðbÞ ! 0:2 (ap-
proaching a finite value for the Gaunt factor is due to the attraction of the electron
via the Coulomb potential of the atoms, i.e., the electron practically falls into the
potential of the ion and excites the ion) and we find formally the following
asymptotic expressions:

Caa0 ! 6:3� 10�8faa0
Ry

DEaa0

	 
3=2 ffiffiffi
b

p
� expð�bÞ / e�DEaa0=Teffiffiffiffiffi

Te
p ; ð5:95Þ

Ca0a ! 6:3� 10�8 faa0
ga
ga0

Ry
DEaa0

	 
3=2 ffiffiffi
b

p
/ 1ffiffiffiffiffi

Te
p : ð5:96Þ

It should be noted that (5.95), (5.96) provide only approximate values because
for low temperatures, the Born approximation is not valid anymore and normal-
ization of the transition probability becomes of importance. Equations (5.95) and
(5.96) demonstrate that for small temperatures, the excitation rate vanishes whereas
the de-excitation rate is rather large. Therefore, in low-temperature recombining
plasmas, the collisional processes are dominated by the de-excitation of the pop-
ulated levels. For high temperatures, i.e., b\10, we find the following asymptotic
expressions:

Caa0 ! 8:7� 10�8 faa0
Ry

DEaa0

	 
3=2 ffiffiffi
b

p
� ln 1=bð Þ / ln Teffiffiffiffiffi

Te
p ; ð5:97Þ

Ca0a ! 8:7� 10�8 faa0
ga
ga0

Ry
DEaa0

	 
3=2 ffiffiffi
b

p
� ln 1=bð Þ / ln Teffiffiffiffiffi

Te
p : ð5:98Þ

Therefore, for high temperatures (i.e., hot electrons), excitation and de-excitation
rates have the same asymptotic behavior and are identical except the ratio of the
statistical weights.
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5.4.3.2 Dipole Excitation and De-excitation of Neutral Atoms

Dipole excitation and de-excitation by collisions between electrons and neutral
atoms can likewise be described by the formulas (5.90), (5.91), (5.93), however,
with a modified effective Gaunt factor. The following analytical formula is
proposed:

pðZ¼0Þ bð Þ ¼
if b 0:4 : 0:27566� b� b2

4
þ b3

12
� ln bð Þ � 0:57722

	 


else 0:066

ffiffiffiffiffiffiffiffiffiffiffi
bþ 2

p
bþ 0:127

8>><
>>:

9>>=
>>;:

ð5:99Þ

These formulas provide the correct asymptotic behavior for low and high energies
and an accuracy better than 3% for all values of b.

For low temperature, we find formally the following asymptotic expressions:

Caa0 ! 2:1� 10�8 faa0
ga
ga0

Ry
DEaa0

	 
3=2expð�bÞffiffiffi
b

p / ffiffiffiffiffi
Te

p � expð�DEaa0=TeÞ;

ð5:100Þ

Ca0a ! 2:1� 10�8 faa0
ga
ga0

Ry
DEaa0

	 
3=2 1ffiffiffi
b

p / ffiffiffiffiffi
Te

p
: ð5:101Þ

It should likewise be noted here that (5.100), (5.101) provide only very
approximate values because for low temperatures, the Born approximation is not
valid, and normalization of the transition probability becomes of importance.
Equations (5.100), (5.101) indicate that, unlike for the case of electron excitation of
ions, the excitation and de-excitation rates vanish both for low temperatures. For
high temperatures, the following asymptotes are obtained:

Caa0 ! 8:7� 10�8 faa0
Ry

DEaa0

	 
3=2 ffiffiffi
b

p
� ln 1=bð Þ / ln Teffiffiffiffiffi

Te
p ; ð5:102Þ

Ca0a ! 8:7� 10�8 faa0
ga
ga0

Ry
DEaa0

	 
3=2 ffiffiffi
b

p
� ln 1=bð Þ / ln Teffiffiffiffiffi

Te
p : ð5:103Þ

Comparing (5.102), (5.103) with (5.97), (5.98), we find that the
high-temperature asymptotes of neutral atoms and ions are identical.

Finally we note that numerous variants of the effective Gaunt factors pðZ[ 0ÞðbÞ
and pðZ¼0ÞðbÞ are proposed in the literature, see, e.g., (Fischer et al. 1996). They
practically do all not differ very much.

214 5 Electron–Atom Collisions



5.5 Excitation of Dipole-Forbidden Transitions in Atoms

5.5.1 Intercombination Transitions

The previous section considered collisional excitation of dipole-allowed transitions
in atoms that can be described classically with the use of the concept of a transition
oscillator. For dipole-forbidden transitions, this approach is not applicable because
fji ¼ 0. In this case, the interaction between an incident electron and an atom/ion is
of non-dipole nature.

Dipole-forbidden transitions can be of two types: (1) no change in an atomic spin
and (2) with a change in an atomic spin. In the first case, there is no dipole moment
of a transition because of non-fulfillment of selection rules (in pure LS-coupling) for
the orbital quantum number L: Lj � Li

�� ��[ 1 or Li ¼ Lj ¼ 0. Excitation for these
atomic transitions is due to direct Coulomb interaction of an incident electron with
quadrupole or other more higher multipole moments.

The dependences of the cross-section of collisional excitation of transitions of
the first type on the incident electron energy E in the near-threshold region
(x ¼ E=DEji 	 1) and for high energies (x � 1) are the same as for dipole-allowed
transitions [see (5.86)]. In view of this fact, the most simple approximation of the
excitation cross-section of a dipole-forbidden transition with no change in spin can
be represented as

rji x ¼ E=DEji
� � ¼ c

ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p

aþ x3=2
; ð5:104Þ

where a, c are the parameters that define the incident electron energy at the
cross-section maximum (Emax ¼ DEji xmax) and the value of the cross-section max-
imum rmax itself. It should be noted that formula (5.104) can be used for an
approximate description of the cross-section of a dipole-allowed transition. As a rule,
the maximum cross-section rmax for dipole-forbidden transitions with no change in
atomic spin is much less than a corresponding dipole-allowed transition. The max-
imum of the cross-section of dipole-forbidden transitions is shifted to the region of
lower energies in comparison with dipole-allowed transitions (in the majority of
cases 1:5\xmax\2, whereas with increasing excitation energy xmax decreases).

Now let us consider collisional excitation of dipole-forbidden transitions with a
change in atomic spin, the so-called intercombination transitions (see also
Sect. 1.2.2). In this case, excitation of an atom occurs due to exchange interaction
between incident and atomic electrons. Exchange interaction is essentially of
quantum mechanical nature. At a qualitative level, the process can be described as
follows. An incident electron transfers a considerable part of its energy DE to an
atomic electron that is in a state with energy Ei. As a result, the incident electron is
captured into an atomic orbit with an energy Ej [Ei, and the atomic electron is
ionized. Thus, the incident and atomic electrons seem to exchange their roles that
are based on the indistinguishability of electrons.
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The energy transfer, at which exchange excitation of an atom at the transition
i ! j occurs, is determined by the inequality

Eþ Ej

�� ��DEEþ Eij j: ð5:105Þ

We note that bound states of atomic electrons correspond to negative energies
Ei;j\0. The simple classical consideration is valid far from threshold x � 1 when
[according to (5.105)] the energy transferred from an incident electron to an atomic
electron is much larger than the excitation energy: DE � DEji. Therefore, exchange
interaction is more strong than direct interaction if DE ¼ DEji. It occurs at small
distances from the atomic nucleus (of the order of the size of an excited electron
orbit), in contrast to the electron–dipole interaction for the excitation of
dipole-allowed transitions that occur at long distances from an atom.

According to the above-developed physical picture of cross-section calculation,
it is possible to use the expression (5.34) for the cross-section of electron energy
transfer in Rutherford scattering. Integrating this formula within the limits deter-
mined by the relation (5.105), we find

r interð Þ
ji E � DEji

� � ¼ p e4

E
DEji

Eþ Ej

�� ��� �
Eþ Eij jð Þ : ð5:106Þ

It is convenient to rewrite this equation in terms of the dimensionless variable
x ¼ E=DEji. From (5.106), it follows then the asymptotic expression for the
intercombination transition cross-section in the high-energy domain, i.e., E � Eij j:

r interð Þ
ji E � Eij jð Þ ¼ p e4

DEji
� �2 1

x3
: ð5:107Þ

Therefore at high-incident electron energies, the excitation cross-section of an
intercombination transition decreases more rapidly than the cross-section with no
change in spin (5.104). This fact is connected with the necessity of transfer of a
large quantity of energy in exchange interaction [see the relations (5.105)] resulting
in intercombination excitation.

In the near-threshold region of energies, i.e. x ¼ E=DEji 	 1, the same asymp-
totic is valid for the intercombination cross-section as for the dipole case
[r / ffiffiffiffiffiffiffiffiffiffiffi

x� 1
p

, see (5.86)]. Combining the limiting cases [see analogy for the
derivation of (5.104)], the following simple approximation can be obtained for the
excitation cross-section of an intercombination transition in an atom by electron
impact (Astapenko et al. 2000):

r interð Þ
ji x ¼ E

DEji

	 

¼ c

ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p

aþ x7=2
; ð5:108Þ
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where a and c are the parameters characterizing the transition under consideration.
The obtained expression is valid in a wide range of projectile energies up to
relativistic values. Figure 5.9 shows the cross-section of collisional excitation of the
intercombination transition 3 s 1S ! 3 p 3P in a magnesium atom calculated by
(5.108) for c ¼ 2� 10�14 cm2 and a ¼ 10 together with experimental data.

In the initial state, there are two valence electrons with antiparallel spins in the
3s-subshell of a magnesium atom, i.e., the total spin is zero. In a collision with an
incident electron, one of the 3s-valence electrons is excited to the 3p-subshell due to
exchange interaction with a spin flip, resulting in a total atomic spin of one. From
Fig. 5.9, it is seen that the cross-section is rather large and that
xmax ¼ Emax=DEji 	 1:85, which is considerably less than for the case of a
dipole-allowed transition, when xmax ffi 3:45. It follows from it that the large value
of the cross-section maximum is caused by a relatively low value of the excitation
threshold (DEji ffi 2:7 eV).

5.5.2 Intermediate Coupling Effects

The asymptotic behavior of the intercombination cross-sections for high-energy is
strictly valid only in the LS-coupling scheme. In general, however, intermediate
coupling admixes spin-allowed cross-sections to the exchange cross-section thereby
changing entirely the asymptotic behavior. As has been shown by Vainshtein
(Sobelman and Vainshtein 2006), the excitation cross-section can be expressed in
terms of products of radial cross-sections and angular factors. In the intermediate
coupling scheme, this can be formulated for the mixed states a0 and a1 in the
following way:

Fig. 5.9 Excitation
cross-section by electron
impact of the
intercombination transition
3 s 1S ! 3 p 3P in a
magnesium atom:
1—experimental data (NIST
2019), 2—model
cross-section (5.108)

5.5 Excitation of Dipole-Forbidden Transitions … 217



ra0a1 ¼
X
j

Qd
jða0; a1Þrdjðn0l0; n1l1ÞþQe

jða0; a1Þrejðn0l0; n1l1Þ
�

þQe
jþ 1ða0; a1Þrejþ 1ðn0l0; n1l1Þ

� : ð5:109Þ

rdjðn0l0; n1l1Þ, rejðn0l0; n1l1Þ, and rejþ 1ðn0l0; n1l1Þ are the radial parts of the
one-electron cross-sections of direct and exchange contributions of multiplicity j
(the multiplicity can vary in the interval j ¼ jmin; jmin þ 2; . . .; jmax with jmin ¼
l0 � l1j j and jmax ¼ l0 þ l1), Qd

jða0; a1Þ, Qe
jða0; a1Þ, and Qe

jþ 1ða0; a1Þ are the cor-
responding angular factors of direct and exchange terms. If the mixed state is
represented by

WðaÞ ¼
X
LS

a j aLSh iWðaLSÞ; ð5:110Þ

where a j aLSh i are the mixing coefficients, the angular factors are given by

Qd
j ¼ 2l0 þ 1

2J0 þ 1
� b2jða0; a1Þ; ð5:111Þ

Qe
j ¼

2l0 þ 1
2J0 þ 1

� b2jða0; a1Þ
4

þ
X
x

b2j;xða0; a1Þ
 !

: ð5:112Þ

The respective amplitudes in intermediate coupling can be expressed in terms of
the known mixing coefficients and amplitudes in LS-coupling:

bj;xða0; a1Þ ¼
X

L0S0L1S1

a0
�� a0;L0S0� �

bðLSÞj;x ða0;L0S0 ; a1;L1S1Þ a1;L1S1
�� a1� �

; ð5:113Þ

bjða0; a1Þ ¼
X

L0S0L1S1

a0
�� a0;L0S0� �

bðLSÞj ða0;L0S0 ; a1;L1S1Þ a1;L1S1
�� a1� �

: ð5:114Þ

bðLSÞj ða0;L0S0 ; a1;L1S1Þ and bðLSÞj;x ða0;L0S0 ; a1;L1S1Þ are the amplitudes in LS-coupling that
have analytical solution in terms of the 3j and 6j symbols, the quantum numbers of
the atomic core LPSP and of the optical electron l0 and l1, the number of equivalent
electrons m, and the fractional parentage coefficient GL0S0

LPSP :

bðLSÞj ða0;L0S0 ; a1;L1S1Þ ¼ dS0S1 � ð�1ÞJ1�S0 � J0J1½ � � j J0 J1
S0 L1 L0

� �
� ~bðLSÞj ðL0L1Þ;

ð5:115Þ
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bðLSÞj;x ða0;L0S0 ; a1;L1S1Þ ¼
ffiffiffiffiffiffiffiffi
3=2

p
� ð�1ÞSP�S1 þ 1=2þ L1 � J0J1S0S1x½ ��

j J0 x

S0 L1 L0

� �
x J1 1

S1 S0 L1

� �
1 S0 S1
SP 1=2 1=2

� �
� ~bðLSÞj ðL0L1Þ;

ð5:116Þ

~bðLSÞj ðL0L1Þ ¼
ffiffiffiffi
m

p � ð�1ÞLP � L0L1½ � � j L0 L1
LP l1 l0

� �
� GL0S0

LPSP ; ð5:117Þ

J0J1. . .½ � ¼ ð2J0 þ 1Þ � ð2J1 þ 1Þ � . . .½ �1=2: ð5:118Þ

Table 5.1 Intermediate coupling angular coefficients and fitting parameters for rate coefficients

Transition Qd Qe Ad/Ae vd/ve Dd/De

1s2 1S0 – 1s2s 1S0
LS-coupling 2 0.5

Zn = 9 2 0.5 3.31/2.09 0.782/0.608 0.350/0.00

Zn = 18 2 0.5 3.40/2.18 0.641/0.665 0.30/0.00

Zn = 42 2 0.5 3.33/2.48 0.933/1.18 1.00/0.05

1s2 1S0 – 1s2s 3S1
LS-coupling 0 1.5

Zn = 9 0 1.5 2.13/1.83 0.0651/0.587 -0.80/0.00

Zn = 18 0 1.5 2.83/2.07 0.287/0.657 -0.40/0.00

Zn = 42 0 1.5 3.33/2.48 0.933/1.18 1.00/0.05

1s2 1S0 – 1s2p 1P1

LS-coupling 2 0.5

Zn = 9 2.00 0.5 5.90/12.7 0.378/1.08 4.50/0.00

Zn = 18 1.97 0.5 8.91/12.6 0.217/1.07 2.10/0.00

Zn = 42 1.52 0.5 9.35/14.3 0.392/1.69 3.25/0.05

1s2 1S0 – 1s2p 3P0

LS-coupling 0 1.67 � 10−1

Zn = 9 0 1.67 � 10−1 6.19/13.5 0.386/1.07 4.50/0.00

Zn = 18 0 1.67 � 10−1 9.03/13.0 0.222/1.06 2.15/0.00

Zn = 42 0 1.67 � 10−1 9.35/14.3 0.392/1.69 3.25/0.05

1s2 1S0 – 1s2p 3P1

LS-coupling 0 0.5

Zn = 9 6.27 � 10−4 0.5 6.19/13.5 0.386/1.07 4.50/0.00

Zn = 18 3.21 � 10−2 0.5 9.02/13.0 0.221/1.07 2.15/0.00

Zn = 42 4.85 � 10−1 0.5 9.35/14.3 0.392/1.69 3.25/0.05

1s2 1S0 – 1s2p 3P2

LS-coupling 0 8.33 � 10−1

Zn = 9 0 8.33 � 10−1 6.19/13.5 0.386/1.07 4.50/0.00

Zn = 18 0 8.33 � 10−1 9.06/1.29 0.218/1.06 2.10/0.00

Zn = 42 0 8.33 � 10−1 9.35/14.3 0.392/1.69 3.25/0.05

The fitting coefficients for Zn = 42 can be used for any ion with Zn > 10. The precision of the
fitting coefficients b, v, D is typically better than 10% in a large temperature interval of
1/8 < b < 64
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It is difficult to obtain general expressions for the cross-sections in intermediate
coupling because the calculation of the mixing coefficients a j aLSh i requests
numerical calculations of the atomic structure and the sums in (5.109), (5.111)–
(5.114) are rather cumbersome.

In order to provide some insight into the intermediate coupling effects on
excitation cross-sections, let us consider the excitation of the He-like excited levels
a1 ¼ 1s2l LSJ from the ground state a0 ¼ 1s2 1S0. In this case, formulas (5.109)–
(5.114) can be considerably simplified (n0 ¼ 1; l0 ¼ 0; n1 ¼ 2; l1 ¼ 0; 1; j ¼ 1):

ra0a1 ¼ Qd
jr

d
jðn0l0; n1l1ÞþQe

jr
e
jðn0l0; n1l1Þ: ð5:119Þ

Table 5.1 shows the angular Q-factors for LS-coupling and intermediate cou-
pling for various elements. The angular factors for the intercombination transition
1s2 1S0 – 1s2p 3P1 show that in LS-coupling the contribution of the direct
cross-section is zero (Qd ¼ 0) and gradually increases with increasing nuclear
charge (see bold values in Table 5.1). For molybdenum (Zn = 42), the intermediate
coupling effect is so strong that the angular factor reaches a value of Qd ¼ 0:485
which is about one-third of the angular factor for the resonance transition 1s2
1S0 − 1s2p 1P1. Therefore, the high-energy asymptote is entirely dominated by the
direct cross-section rather than by the exchange cross-section, i.e.,

rð1s2 1S0 � 1s2p3P1Þ ¼ Qd
1r

d
1ð1; 0; 2; 1Þ þ Qe

1r
e
1ð1; 0; 2; 1Þ !

E�DE
Qd

1r
d
1ð1; 0; 2; 1Þ:

ð5:120Þ

For completeness, Table 5.1 provides also the fitting parameters for the explicit
calculation of the corresponding rate coefficients averaged over a Maxwellian
distribution function.

The adopted fitting formulas are as follows:

Cij

ðcm3 s�1Þ ¼
10�8

Z3

Ej

Ei

	 
3=2 ffiffiffi
b

p
� exp �DEij

Te

	 


� Qd � Ad � ðbþ 1þDdÞ
bþ vd

þ Qe � Ae � ðbþDeÞ
bþ ve

� �
; ð5:121Þ

b ¼ Z2Ry
Te

; ð5:122Þ

DEij ¼ Ei � Ej; ð5:123Þ
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where Z is the spectroscopic symbol and Ry = 13,606 eV. Let us consider an
example for molybdenum and the intercombination transition 1s2 1S0 – 1s2p 3P1

for an electron temperature of Te = 20,000 eV: Z ¼ 42� 2þ 1 ¼ 41,
Ei¼1s2 1S0 ¼ 23; 810:6 eV, Ej¼1s2p 3P1

¼ 5903:7 eV, DEij ¼ 17; 906:9 eV, b ¼ 1:277:
Cij 	 1:5� 10�13 cm3 s�1. This is the intermediate coupling cross-section whereas
in pure LS-coupling CLS

ij 	 2:6� 10�14 cm3 s�1. This example demonstrates not
only the importance of intermediate coupling on the high-energy asymptotes of
cross-sections and rates but also its impact on the total rate coefficient for rather
moderate temperatures (b—values of the order of one). We note that the fitting
coefficients in Table 5.1 do not include resonance contributions. These contribu-
tions are most pronounced for the excitation of the 1s2s 3S1 state (some 10%) and
the 1s2p 3P2 state (about 10%). For applications in plasma atomic physics, reso-
nance contributions can be rather well included in atomic kinetics via explicit
inclusion of multiple excited autoionizing states as suggested by Cowan (1980,
1983).

It should be noted that the decreasing of the cross-section rj with decreasing j is
not connected with any small parameter. This differs radically from the interaction
of an atom with an electromagnetic field where higher multipoles contain the factor
ðZ � aÞ2jþ 1 making each successive term smaller by a factor of about 5� 10�5 � Z2.
In the case of electron–atom collisions, such small parameter does not exist.
Numerical calculations show that the multipole cross-section rjþ 2 is usually about
ten times smaller than rj (Sobelman and Vainshtein 2006) but might be in some
cases have even larger contributions than the lowest one (Rosmej 2000). Finally we
note that unlike radiative transitions, non-dipole transitions (e.g., monopole,
quadrupole) can have rather large cross-section values and are not at all negligible
for high-precision calculations.

For rapid calculations of large transition arrays, the Regemorter approach pro-
vides a reasonable estimate of the collisional cross-sections for the total emission
group. For similar purposes, the plane wave Born PWB approximation attracts
interest up to present days, because this approach can be easily incorporated in
atomic structure codes and allows to estimate also monopole and quadrupole
transitions and shows a correct high-energy behavior (which is difficult to obtain in
more complex numerical methods like the R-matrix and the convergent-close-
coupling method). The pathological behavior at threshold of the PWB approxi-
mation can be removed by the empirical Robb–Cowan approach (Cowan 1981) that
has recently been improved by the so-called Elwert–Sommerfeld correction factor
(Kilcrease and Brookes 2013).

Other important corrections to the first-order cross-sections have been proposed
by Vainshtein (Sobelman and Vainshtein 2006): one-channel normalization,
K-matrix, inclusion of exchange and intermediate coupling effects (note that the
above fitting parameters of Table 5.1 are based on numerical calculations of the
one-channel normalized Coulomb–Born approximation including exchange and
intermediate coupling effects). For example, it has been demonstrated for neutral
helium HeI (Beigman et al. 2000) that the application of the K-matrix method to
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pure Born cross-sections results in rather good agreement with the numerically very
complex convergent-close-coupling calculations CCC. Detailed electron collisional
exciation and deexciation rate coefficients (including intercombination transitions)
for H I, He I and He II are presented in Annex 2 and 3.

Finally we note that the application of PWB collisions strengths to line polar-
ization provides reasonable numerical values as essentially ratios of cross-sections
enter to the line polarization formulas (Cowan 1981; Percival and Seaton 1958).

5.6 Analytical Empirical Formulas for Dielectronic
Recombination in Dense Plasmas

Dielectronic recombination is a combination of dielectronic capture and subsequent
radiative stabilization competing with multi-channel autoionization. In non-LTE
plasmas, excited states coupling, angular momentum changing collisions, colli-
sional depopulation and ionization potential depression strongly alter the stabi-
lization processes. A consistent description of non-LTE dielectronic recombination
involves therefore atomic kinetics and electric field perturbations of the atomic
structure and related matrix elements (Rosmej et al. 2020).

5.6.1 Autoionization, Dielectronic Capture, and Dielectronic
Recombination

Dielectronic recombination can easily be calculated from the autoionizing rate of a
certain atomic state with the help of the principle of detailed balance. The first step
is the application of the principle of detailed balance to dielectronic capture, i.e.,

nZj � CZ;Zþ 1
jk ¼ nZþ 1

k � ne � DCh ikj; ð5:124Þ

where nZj is the atomic population of the upper state, CZ;Zþ 1
jk is the autoionizing rate

from the upper state to a state k with population nZþ 1
k , and DCh ikj is the dielectronic

capture rate from state k to the upper state j. In thermodynamic equilibrium, the
populations nZj and nZþ 1

k are linked via the Saha–Boltzmann equation because the
states j and k belong to different ionic states, Z and Zþ 1 respectively, i.e.,

nZj
nZ þ 1
k

¼ ne �
gZj

2gZþ 1
k

� 2p�h2

mekTe

	 
3=2

� exp DEZþ 1;Z
k;j

kTe

 !
: ð5:125Þ
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gZj and gZþ 1
k are the statistical weights of the states j and k, ne is the electron

density, me the electron mass, and Te the electron temperature. The energy differ-
ence DEZþ 1;Z

k;j is related to the so-called dielectronic capture energy EDC
kj by

DEZþ 1;Z
k;j ¼ �EDC

kj : ð5:126Þ

EDC
kj is the energy of the Auger electron, if the autoionizing state j decays via

autoionization to state k. Combining (5.124)–(5.126), we find the general expres-
sion for the dielectronic capture rate:

DCh ikj¼
gZj

2gZ þ 1
k

� 2p�h2

me

	 
3=2

�CZ;Zþ 1
jk � expð�EDC

kj =kTeÞ
ðkTeÞ3=2

ð5:127aÞ

or, in convenient units

DCh ikj¼ 1:656� 10�22 � gZj
gZ þ 1
k

� CZ;Zþ 1
jk �

exp �EDC
kj ðeVÞ=TðeVÞ

 �
TeðeVÞð Þ3=2

cm3

s

� �
: ð5:127bÞ

If PZ
j;gr is the probability that the autoionizing state j of charge state Z decays to

the ground state gr of the same charge state, the quantity PZ
j;gr � DCh ikj is called the

dielectronic recombination rate coefficient [cm3 s−1] into state k via the interme-
diate state j:

DRh iZþ 1;Z
kj ¼ PZ

j;gr � DCh iZþ 1;Z
kj : ð5:128Þ

In general, the probability PZ
j;gr is a function of density and temperature, i.e.,

PZ
j;gr ¼ PZ

j;grðne; TeÞ: ð5:129Þ

The probability function (5.129) has to be determined from numerical calcula-
tions of a multilevel, multicharge state atomic population kinetics that explicitly
involves all necessary autoionizing states as “active levels” (means the populations
of the autoionizing levels are calculated on the same footing as ground and single
excited states). If collisions are negligible compared to spontaneous radiative decay
rates as well as autoionizing rates, the probability PZ

j;gr can be approximated by the
so-called satellite branching factor

PZ
j;gr !

X
i

BZ
ji ¼

X
i

AZ
jiP

l A
Z
jl þ

P
k C

Z;Z þ 1
jk

( )
: ð5:130Þ

Let us illuminate the situation with the help of the most simple autoionizing states
2l2l′, in particular the state j ¼ 2p2 1D2 of He-like argon. In this case, Z ¼ 16,
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k ¼ 1s 2S1=2, and i ¼ 1s2p 1P1; i0 ¼ 1s2p 3P1; i00 ¼ 1s2p 3P2: CZ;Zþ 1
kj ¼ 3:09�

1014 s�1, AZ
ji ¼ 1:22� 1014 s�1, AZ

ji0 ¼ 1:92� 109 s�1, AZ
ji00 ¼ 6:21� 1012 s�1.

Therefore, PZ¼16
j;gr 	Pi B

Z¼16
ji ¼ 2:78� 10�1 þ 4:38� 10�6 þ 1:42� 10�2 ¼

2:92� 10�1. The approximation PZ
j;gr 	

P
i B

Z
ji assumes that all single excited states,

namely i ¼ 1s2p 1P1; i0 ¼ 1s2p 3P1; i00 ¼ 1s2p 3P2, decay entirely to the ground
state gr ¼ 1s2 1S0 via the radiative transitions 1s2p 1P1 ! gr, 1s2p 3P1 ! gr, and
1s2p 3P2 ! gr. Because Að1s2p 1P1 ! grÞ ¼ 1:07� 1014 s�1, Að1s2p 3P1 !
grÞ ¼ 1:82� 1012 s�1, Að1s2p 3P2 ! grÞ ¼ 3:16� 108 s�1, the assumption that
the excited state j decays to the ground state via the intermediate states i; i0; i00 is a
good assumption because the sum in (5.130) is dominated by the strongest transition
j ! i where collisional “competition” starts to be important only for near-solid
density plasmas (and contributions j ! i0 and j ! i00 are small). Therefore, the
dielectronic recombination rate can be approximated by the following expression:

DRh iZ þ 1;Z
kj 	

X
i

AZ
jiP

l A
Z
jl þ

P
k C

Z;Zþ 1
jk

� DCh iZþ 1;Z
kj

( )
: ð5:131Þ

With the help of (5.125), (5.131) can be written as follows:

DRh iZþ 1;Z
kj 	 1

2gZþ 1
k

� 2p�h2

me

	 
3=2

� expð�EDC
kj =kTeÞ

ðkTeÞ3=2
�
X
i

gZj � CZ;Zþ 1
jk � AZ

jiP
l A

Z
jl þ

P
k C

Z;Zþ 1
jk

( )
:

ð5:132Þ

The term in parenthesis is the so-called dielectronic satellite intensity factor

QZþ 1;Z
k;ji ¼ gZj � CZ;Zþ 1

jk � AZ
jiP

l A
Z
jl þ

P
k C

Z;Zþ 1
jk

: ð5:133Þ

Therefore, under the assumptions made in (5.130), the dielectronic recombina-
tion due to the autoionizing states 2l2l′ is given by the sum of the dielectronic
satellite intensity factors, for the present example of Ar, numerical calculations
(including intermediate coupling and configuration interaction) provide

P
j;i Qk;ji ¼

8:29� 1014 s�1 and EDC
k;ji¼2l2l0 	 2:302� 103 eV. For the autoionizing states 2l3l′,

we obtain
P

j;i Qk;ji ¼ 7:95� 1014 s�1 and EDC
k;ji¼2l3l0 	 2:875� 103 eV, for the 2l4l′

states
P

j;i Qk;ji ¼ 4:77� 1014 s�1 and EDC
k;ji¼2l4l0 	 3:072� 103 eV, for the 2l5l′

states
P

j;i Qk;ji ¼ 2:96� 1014 s�1 and EDC
k;ji¼2l5l0 	 3:16� 103 eV, for the 2l6l′

states
P

j;i Qk;ji ¼ 1:89� 1014 s�1 and EDC
k;ji¼2l6l0 	 3:21� 103 eV, for the 2l7l′

states
P

j;i Qk;ji ¼ 1:29� 1014 s�1 and EDC
k;ji¼2l7l0 	 3:24� 103 eV. One can see that

the convergence for high n-spectator electrons is not quite rapid and follows
approximately the scaling law

P
j Q

DC
k;ji¼2lnl0 / 1=n3.
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Despite of the most simple configurations 2lnl0 for the dielectronic recombina-
tion, one can see that the numerical calculations are rather cumbersome: Very large
quantum numbers nl0 have to be involved in the numerical calculations to reach
convergence. For large quantum numbers, however, convergence is difficult to
achieve in purely quantum numerical calculations and quasi-classical approaches
are mandatory to practically solve the problem.

Next, to obtain the total dielectronic recombination rate from H-like to He-like
ions, one needs to invoke all possible intermediate states j ¼ 3lnl0; 4lnl0; 5lnl0; . . .
One can easily understand that for more complex configurations, the number of
autoionizing states to be involved becomes rapidly numerically prohibitive for
purely quantum mechanical numerical calculations.

Moreover, dielectronic recombination is not only related to corresponding
atomic structure calculations, but also to the collisional radiative interplay for the
calculation of the probability Pj;gr. In general, one needs to include explicitly all
relevant autoionizing states in a collisional radiative model in order to correctly
predict the ionic fractions for given temperature and density. In this case, however,
the atomic state population kinetics is entirely dominated by the number of
autoionizing high-n-states and numerically prohibitive. It likewise looks rather
strange, to dominate an atomic state population kinetics by autoionizing states just
for the purpose to calculate one recombination coefficient. It is essentially for these
reasons that numerical calculations of ionic fractions are still under controversial
discussion up to present days (and in particular for high-Z elements) (NIST 2019;
Rubiano et al. 2007; Chung et al. 2013; Colgan et al. 2015).

Moreover, dielectronic recombination is therefore not only a theoretical subject in
atomic physics, but it has important impact to the radiative properties of atoms and
ions, plasma spectroscopy, and technical applications (e.g., radiation sources). Note
also that historically, dielectronic recombination has been invented to understand the
order of magnitude discrepancies in the ionic abundance between calculations and
spectroscopic observation from the solar corona emission (Burgess 1964).

5.6.2 Total Rates of Dielectronic Recombination
and Multichannel Approach

In order to obtain the total dielectronic recombination rate DRh iZþ 1;Z
tot , all dielec-

tronic recombination rates DRh iZþ 1;Z
kj ¼ PZ

j;gr � DCh iZþ 1;Z
kj have to be summed with

respect to the initial state k and also with respect to the intermediate states j, i.e.,

DRh iZþ 1;Z
tot ¼

X
k

X
j

DRh iZþ 1;Z
kj ¼

X
k

X
j

PZ
j;gr � DCh iZþ 1;Z

kj : ð5:134Þ

Because the probability PZ
j;gr is a function of density and temperature [see dis-

cussion related to (5.129)], it is difficult to obtain general and closed formulas for
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the dielectronic recombination rate coefficient. Only in the low-density approxi-
mation, where relation (5.130) approximately holds true, general formulas in terms
of dielectronic recombination rate coefficients that depend only on temperature can
be obtained.

5.6.2.1 Burgess Formulas

One of the most used general approximate empirical formula in this framework is
the so-called Burgess formula (Burgess 1964) that assumes that the nl-spectator
electron which is not interacting with the core is treated in the hydrogenic
approximation and that the capture cross-section can be expressed in terms of the
excitation cross-section for transitions a0 ! a using the principle of correspon-
dence discussed above:

DRh iZþ 1;Z
kj :¼ DZþ 1;Z a0 ! a; nlð Þ: ð5:135Þ

For the total dielectronic recombination rate, we have

DRh iZþ 1;Z
tot :¼ DZþ 1;Z ¼

X
a0

X
a

X
n

Xn�1

l¼0

DZþ 1;Z a0 ! a; nlð Þ: ð5:136Þ

For the simplest example of autoionizing states 2l2l′ outlined above, a0 ¼ 1s and
a1 ¼ 2p, i.e., the transition a0 ! a corresponds to the Ly-alpha transition in H-like
ions. For these configurations, dielectronic recombination into the ground state is
the most important one, i.e., there exists a single state k ¼ a0 ¼ 1s. a0 coincides
therefore with the atomic ground state and the sum over a0 can be suppressed, i.e.,

DZþ 1;Z 	
X
a

X
n

Xn�1

l¼0

DZþ 1;Z a0 ! a; nlð Þ: ð5:137Þ

The dielectronic recombination rate coefficient DZþ 1;Z a0 ! a; nlð Þ can then be
expressed via the following analytical empirical expression (Burgess 1964)

DZþ 1;Z a0 ! a; nlð Þ ¼ 4:8� 10�11 fa0 a Bd b
3=2 e�bvd ½cm3 s�1�; ð5:138Þ

where

b ¼ zþ 1ð Þ2 Ry
kTe

; ð5:139Þ

vd ¼
v

1þ 0:015
z3

zþ 1ð Þ2
; ð5:140Þ
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v ¼ DE a0 ! að Þ
zþ 1ð Þ2 Ry : ð5:141Þ

z is the so-called spectroscopic symbol of the double excited ion after recombi-
nation. The spectroscopic symbol is given by z = Zn − Nbound + 1, where Nbound is
the number of bound electrons. For example, for neutral helium the spectroscopic
symbol is z = 1 (He I), singly ionized helium has z = 2 (He II).

If the first resonance transition is a Dn = 0 transition, the branching factor Bd is
given by Cowan (1981):

Bd ¼ zv
z2 þ 13:4

	 
1=2 1

1þ 0:105 zþ 1ð Þvþ 0:015 zþ 1ð Þ2v2 : ð5:142Þ

For Δn 6¼ 0, the branching factor is approximated by Cowan (1981):

Bd ¼ zv
z2 þ 13:4

	 
1=2 0:5

1þ 0:210 zþ 1ð Þvþ 0:030 zþ 1ð Þ2v2 : ð5:143Þ

The branching factor Bd has the following meaning: After dielectronic capture, a
double excited state is formed that can decay via autoionization or radiative decay.
For the dielectronic recombination, only the radiative decays contribute finally to
recombination as autoionization returns the autoionizing state to the original state.

According to (5.138), a0 is the ground state and therefore fa0a is the dipole
oscillator strength for the resonance transition a0 ! a with transition energy
DE a0 ! að Þ in [eV]. As the oscillator strength drops rapidly with principal quan-
tum number, it is usually sufficient to consider only the first two a-terms in the sum
of (5.137) and we finally obtain the desired expression for the total dielectronic

recombination [DZþ 1;Z a0 ! að Þ :¼P
n

Pn�1

l¼0
DZþ 1;Z a0 ! a; nlð Þ]:

DZþ 1;Z 	 DZþ 1;Z a0 ! a1ð ÞþDZþ 1;Z a0 ! a2ð Þ: ð5:144Þ

Let us consider the dielectronic recombination into neutral helium as an
example:

He1þ ð1sÞþ e ! He0þ��ðnln0l0Þ ! He0þ ð1s2Þ: ð5:145Þ

For this example, a0 ¼ 1s, a1 ¼ 2p, a2 ¼ 3p, …. Therefore, the oscillator
strength fa0a1 corresponds to the oscillator strength of the resonance line, namely the
H-like Lyman-alpha line of singly ionized helium, fa0a2 corresponds to the
Lyman-beta line. The oscillator strengths are f1s!2p ¼ 0:4164 and
f1s!3p ¼ 0:07914, respectively, and their transition energies are DE 1s ! 2pð Þ ¼
40:81 eV and DE 1s ! 3pð Þ ¼ 48:37 eV, respectively. The spectroscopic symbol is
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z = 1 and Dn 6¼ 0 (therefore (5.143) applies). As one can see, higher n oscillator
strengths provide almost negligible contribution to the total dielectronic recombi-
nation rate. From (5.139)–(5.143), we obtain b ¼ 4Ry=kTe, Bd 1s ! 2pð Þ ¼
0:0825, Bd 1s ! 3pð Þ ¼ 0:0846, vd 1s ! 2pð Þ ¼ 0:747, and vd 1s ! 3pð Þ ¼ 0:886.
More precise quantum mechanical calculations (Sobelman and Vainshtein 2006;
Wang et al. 1999) provide Bd;ref 1s ! 2pð Þ ¼ 0:155, Bd;ref 1s ! 3pð Þ ¼ 0:0144,
vd;ref 1s ! 2pð Þ ¼ 0:744, and vd;ref 1s ! 3pð Þ ¼ 0:888. For the rate coefficient at
kTe = Ry (b = 4), we obtain: DHe1þ ;He0þ 1s ! 2pð Þ ¼ 1:65� 10�12 cm3 s�1½ �,
DHe1þ ;He0þ 1s ! 3pð Þ ¼ 3:2� 10�13 cm3 s�1½ � and for the more precise quan-

tum mechanical calculations, DHe1þ ;He0þ
ref 1s ! 2pð Þ ¼ 3:10� 10�12 cm3 s�1½ �,

DHe1þ ;He0þ
ref 1s ! 3pð Þ ¼ 5:46� 10�14 cm3 s�1½ �. This confirms that the leading

terms for the dielectronic recombination are indeed given by (5.144).

5.6.2.2 Multichannel Approach

The comparison of the results from formulas (5.138)–(5.143) with more precise
calculations (Sobelman and Vainshtein 2006; Wang et al. 1999; Kato and Asano
1999) shows that the vd-values are in quite good agreement, whereas the Bd values
differ strongly. For the resonance transition 1s ! 2p, the Bd-value obtained from
(5.143) is about a factor of 2 smaller than more precise values. This is a general
observation: The precision of formulas (5.142), (5.143) is about a factor of 2 for the
resonance transition.

For the transition 1s ! 3p, the Bd-value obtained from (5.143) is about a factor
of 6 larger than the more precise values. This large overestimation is also a general
observation and related to the fact that formulas (5.142), (5.143) take into account
only one autoionizing channel. For the 3lnl′-configurations (that are related to the
transition a0 ! a2 ¼ 1s ! 3p), however, autoionization decays not only to the
ground state but to excited states too:

3lnl0 ! 1sþ eAuger
2lþ eAuger

� �
: ð5:146Þ

Numerical calculations show (Rosmej et al. 1998; Petitdemange and Rosmej
2013) that the autoionizing rates to the excited states “2l” are even more important
than to the ground state “1s”. This reduces considerably the branching factor for the
dielectronic recombination [the Bd-factor in (5.143)]. As the more precise calcu-
lations take into account many channels of Auger decay, the branching factor is
therefore systematically smaller that those of (5.142), (5.143). In fact, as one can
see from (5.143) very similar branching factors are provided for the transitions
a0 ! a1 ¼ 1s ! 2p and a0 ! a2 ¼ 1s ! 3p due to the consideration of one
autoionizing channel only.
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Table 5.2 Fitting coefficients according (5.147) for the dielectronic recombination into H-like
ions originating from the 2lnl′- and 3lnl′-autoionizing levels, Z = Zn, m = 1, l0 = 0 in (5.147)

2lnl′: a0 ¼ 1s ! a ¼ 2p 3lnl′: a0 ¼ 1s ! a ¼ 3p

Element Bd vd Bd vd
He 3.12 � 10−4 0.744 5.48 � 10−6 0.888

Li 3.72 � 10−4 0.736 6.41 � 10−6 0.887

Be 3.67 � 10−4 0.727 6.53 � 10−6 0.885

B 3.42 � 10−4 0.718 6.47 � 10−6 0.883

C 3.13 � 10−4 0.709 6.32 � 10−6 0.881

N 2.85 � 10−4 0.700 6.31 � 10−6 0.879

O 2.58 � 10−4 0.691 5.92 � 10−6 0.877

F 2.33 � 10−4 0.682 5.70 � 10−6 0.874

Ne 2.11 � 10−4 0.673 5.48 � 10−6 0.872

Na 1.90 � 10−4 0.665 5.26 � 10−6 0.870

Mg 1.72 � 10−4 0.657 5.04 � 10−6 0.868

Al 1.56 � 10−4 0.649 4.84 � 10−6 0.866

Si 1.41 � 10−4 0.642 4.63 � 10−6 0.863

P 1.27 � 10−4 0.636 4.43 � 10−6 0.861

S 1.15 � 10−4 0.630 4.24 � 10−6 0.859

Cl 1.05 � 10−4 0.624 4.05 � 10−6 0.857

Ar 9.50 � 10−5 0.620 3.87 � 10−6 0.856

K 8.61 � 10−5 0.616 3.69 � 10−6 0.854

C 7.82 � 10−5 0.612 3.52 � 10−6 0.852

Sc 7.09 � 10−5 0.609 3.35 � 10−6 0.851

Ti 6.45 � 10−5 0.606 3.19 � 10−6 0.849

V 5.85 � 10−5 0.604 3.04 � 10−6 0.848

Cr 5.33 � 10−5 0.602 2.89 � 10−6 0.847

Mn 4.85 � 10−5 0.601 2.74 � 10−6 0.846

Fe 4.42 � 10−5 0.599 2.60 � 10−6 0.845

Co 4.03 � 10−5 0.598 2.47 � 10−6 0.844

Ni 3.68 � 10−5 0.598 2.34 � 10−6 0.843

Cu 3.37 � 10−5 0.597 2.22 � 10−6 0.842

Zn 3.08 � 10−5 0.597 2.10 � 10−6 0.842

Ga 2.83 � 10−5 0.596 1.99 � 10−6 0.842

Ge 2.60 � 10−5 0.596 1.88 � 10−6 0.841

As 2.39 � 10−5 0.596 1.78 � 10−6 0.841

Se 2.20 � 10−5 0.596 1.68 � 10−6 0.841

Br 2.03 � 10−5 0.596 1.59 � 10−6 0.841

Kr 1.88 � 10−5 0.596 1.50 � 10−6 0.841

Rb 1.74 � 10−5 0.597 1.42 � 10−6 0.841

Sr 1.61 � 10−5 0.597 1.34 � 10−6 0.842

Y 1.50 � 10−5 0.597 1.27 � 10−6 0.842
(continued)
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Due to the existence of multichannel autoionization decay, the multichannel
radiative decay and the complexity of configurations involved, quantum numerical
calculations of the dielectronic recombination are very complex and the precision of
the Burgess formula is difficult to determine. This is another reason why the
recourse to quasi-classical methods appears to be mandatory for a comprehensive
description of the dielectronic recombination phenomenon.

Below, we provide numerical data for dielectronic recombination into H-, He-,
and Li-like ions taking into account multichannels for Auger and radiative decay
(Beigman 1981; Shevelko and Vainshtein 1993; Vainshtein and Shevelko 1996).
The numerical results have been fitted to a simple analytical expression in order to
facilitate the application of these complex calculations:

DZþ 1;Z a0 ! a; nlð Þ ¼ 10�8 � m
2l0 þ 1

� Bd � b3=2 � e�bvd ½cm3 s�1�; ð5:147aÞ

b ¼ Z2 � Ry
kTe

; ð5:147bÞ

where Ry = 13,606 eV, kTe is the electron temperature in [eV], m is the number of
equivalent electrons of state a0, Z is the charge of the ion where the core transition
a0 ! a takes place (e.g., for the 2lnl′-autoionizing states of He-like argon the core
transition is the 1s ! 2p transition in H-like argon, Z = 18), l0 is the corresponding
orbital momentum of state a0. The physical meaning of the parameter vd is related
to the fact that all contributions of the configuration with different spectator elec-
trons nl have to be summed up for the total dielectronic recombination rate with
different energies [see (5.16)]. The parameter vd provides a fit to the numerical
results to replace the sum of different energies in a best manner by an average
energy vd � b. Finally, the total sum is replaced by an average amplitude Bd to
provide a simple analytical expression without any summation.

Table 5.2 presents the numerical calculation of the total dielectronic recombi-
nation rate into H-like ions for the core transitions 1s–2p and 1s–3p for all elements
from He (Z = 2) (see also Annex 3) until Mo (Z = 42) and the corresponding fitting
parameters according (5.147). It can be seen that for low-Z elements, the dielec-
tronic recombination related to the core transition 1s–2p is dominating, for large
Z-values, the relative contribution of the dielectronic recombination with the core

Table 5.2 (continued)

2lnl′: a0 ¼ 1s ! a ¼ 2p 3lnl′: a0 ¼ 1s ! a ¼ 3p

Element Bd vd Bd vd
Zr 1.39 � 10−5 0.598 1.20 � 10−6 0.842

Nb 1.30 � 10−5 0.599 1.13 � 10−6 0.843

Mo 1.21 � 10−5 0.599 1.07 � 10−6 0.843

The numerical data include corrections for multidecay channels (two channels for 2l2l′ and four
channels for 3lnl′)
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Table 5.3 Fitting coefficients according to (5.147) for the dielectronic recombination into He-like
ions originating from the 1s2lnl′- and 1s3lnl′-autoionizing levels, Z = Zn − 1, m = 2, l0 = 0 in
(5.147)

1s2lnl′: a0 ¼ 1s2 ! a ¼ 1s2p 1s3lnl′: a0 ¼ 1s2 ! a ¼ 1s3p

Element Bd vd Bd vd
Li 3.39 � 10−5 1.11 1.57 � 10−6 1.27

Be 9.94 � 10−5 0.961 2.12 � 10−6 1.14

B 1.53 � 10−4 0.891 2.51 � 10−6 1.07

C 1.93 � 10−4 0.848 2.98 � 10−6 1.03

N 2.17 � 10−4 0.818 3.40 � 10−6 1.00

O 2.34 � 10−4 0.795 3.92 � 10−6 0.983

F 2.17 � 10−4 0.775 4.23 � 10−6 0.967

Ne 2.05 � 10−4 0.757 4.50 � 10−6 0.956

Na 1.88 � 10−4 0.740 4.56 � 10−6 0.945

Mg 1.72 � 10−4 0.726 4.54 � 10−6 0.937

Al 1.57 � 10−4 0.713 4.47 � 10−6 0.929

Si 1.43 � 10−4 0.701 4.36 � 10−6 0.922

P 1.30 � 10−4 0.690 4.22 � 10−6 0.916

S 1.18 � 10−4 0.681 4.07 � 10−6 0.910

Cl 1.07 � 10−4 0.672 3.92 � 10−6 0.905

Ar 9.72 � 10−5 0.664 3.76 � 10−6 0.901

K 8.83 � 10−5 0.658 3.61 � 10−6 0.897

C 8.02 � 10−5 0.652 3.45 � 10−6 0.893

Sc 7.28 � 10−5 0.647 3.30 � 10−6 0.889

Ti 6.62 � 10−5 0.642 3.15 � 10−6 0.886

V 6.02 � 10−5 0.638 3.01 � 10−6 0.883

Cr 5.47 � 10−5 0.635 2.87 � 10−6 0.880

Mn 4.98 � 10−5 0.632 2.73 � 10−6 0.877

Fe 4.54 � 10−5 0.629 2.60 � 10−6 0.875

Co 4.14 � 10−5 0.627 2.47 � 10−6 0.873

Ni 3.78 � 10−5 0.625 2.35 � 10−6 0.871

Cu 3.46 � 10−5 0.623 2.23 � 10−6 0.869

Zn 3.16 � 10−5 0.622 2.11 � 10−6 0.868

Ga 2.90 � 10−5 0.620 2.00 � 10−6 0.867

Ge 2.67 � 10−5 0.619 1.90 � 10−6 0.865

As 2.45 � 10−5 0.619 1.80 � 10−6 0.864

Se 2.26 � 10−5 0.618 1.70 � 10−6 0.864

Br 2.08 � 10−5 0.617 1.61 � 10−6 0.863

Kr 1.93 � 10−5 0.617 1.52 � 10−6 0.862

Rb 1.78 � 10−5 0.616 1.44 � 10−6 0.862

Sr 1.65 � 10−5 0.616 1.36 � 10−6 0.861
(continued)
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transition 1s–3p increases. The Burgess formula provides amplitudes Bd that are
about a factor of 3 smaller than the present numerical calculations. For the 3lnl′-
states, the Burgess formula considerably overestimates the dielectronic recombi-
nation rate because it does not take into account the multichannel radiative and
Auger decay. This is of particular importance for low-Z elements. The one channel
approximation, e.g., for C provides Bd ¼ 6:75� 10�5, whereas the four-channel
approximation provides Bd ¼ 6:32� 10�6, i.e., a reduction by a factor of 10. The
multichannel decay is much less important for higher Z-values, e.g., for Fe Bd ¼
5:13� 10�6 whereas the four-channel approximation provides Bd ¼ 2:60� 10�6.

Table 5.3 presents the numerical calculation of the total dielectronic recombi-
nation rate into He-like ions for the core transitions 1s-2p and 1s-3p for all elements
from He (Z = 2) until Mo (Z = 42) and the corresponding fitting parameters
according (5.147). It can be seen that for low-Z elements, the dielectronic recom-
bination related to the core transition 1s-2p is dominating, for large Z-values, the
relative contribution of the dielectronic recombination with the core transition
1s-3p increases. The Burgess formula provides amplitudes Bd that are about a factor
of 3 smaller than the present numerical calculations. For the 1s3lnl′-states, the
Burgess formula considerably overestimates the dielectronic recombination rate
because it does not take into account the multichannel radiative and Auger decay.
This is of particular importance for low-Z elements. The one channel approxima-
tion, e.g., for C provides Bd ¼ 6:76� 10�5, whereas the four-channel approxi-
mation provides Bd ¼ 2:98� 10�6, i.e., a reduction by a factor of 20. The
multichannel decay is much less important for higher Z-values, e.g., for Fe Bd ¼
5:34� 10�6 whereas the four-channel approximation provides Bd ¼ 2:60� 10�6.

Table 5.4 provides the numerical results of dielectronic recombination into
Li-like ions related to a core transition 2s-2p, i.e., the core transition is a Dn ¼ 0
transition. Therefore, the fitting parameter vd is rather small and the associated
exponential factor for the dielectronic recombination does not vary much. In
addition, the configurations 1s22lnl′ are only autoionizing for rather high principal
quantum numbers. This is quite different for the dielectronic recombination related
to the core transition 2s–3p: The states are autoionizing for rather low quantum
numbers nl and the temperature dependence is much different due to an order of

Table 5.3 (continued)

1s2lnl′: a0 ¼ 1s2 ! a ¼ 1s2p 1s3lnl′: a0 ¼ 1s2 ! a ¼ 1s3p

Element Bd vd Bd vd
Y 1.53 � 10−5 0.616 1.29 � 10−6 0.861

Zr 1.43 � 10−5 0.616 1.22 � 10−6 0.861

Nb 1.33 � 10−5 0.616 1.15 � 10−6 0.861

Mo 1.24 � 10−5 0.616 1.09 � 10−6 0.861

The numerical data include corrections for multidecay channels (two channels for 1s2lnl′ and four
channels for 1s3lnl′)
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Table 5.4 Fitting coefficients according to (5.147) for the dielectronic recombination into Li-like
ions originating from the 1s22lnl′- and 1s23lnl′-autoionizing levels, Z = Zn − 2, m = 1, l0 = 0 in
(5.147)

1s22lnl′: a0 ¼ 1s22s ! a ¼ 1s22p 1s23lnl′: a0 ¼ 1s22s ! a ¼ 1s23p

Element Bd vd Bd vd
Be 8.09 � 10−5 0.0571 1.97 � 10−6 0.197

B 6.86 � 10−5 0.0400 2.85 � 10−6 0.173

C 5.18 � 10−5 0.0306 6.61 � 10−6 0.161

N 3.95 � 10−5 0.0248 1.06 � 10−5 0.153

O 3.09 � 10−5 0.0207 1.47 � 10−5 0.149

F 2.47 � 10−5 0.0179 1.85 � 10−5 0.145

Ne 2.02 � 10−5 0.0156 2.17 � 10−5 0.142

Na 1.69 � 10−5 0.0139 2.41 � 10−5 0.140

Mg 1.43 � 10−5 0.0126 2.57 � 10−5 0.138

Al 1.23 � 10−5 0.0115 2.67 � 10−5 0.136

Si 1.07 � 10−5 0.0105 2.71 � 10−5 0.135

P 9.43 � 10−6 0.00981 2.69 � 10−5 0.133

S 8.41 � 10−6 0.00914 2.60 � 10−5 0.131

Cl 7.57 � 10−6 0.00858 2.53 � 10−5 0.130

Ar 6.87 � 10−6 0.00809 2.42 � 10−5 0.128

K 6.25 � 10−6 0.00772 2.31 � 10−5 0.127

C 5.76 � 10−6 0.00736 2.19 � 10−5 0.126

Sc 5.35 � 10−6 0.00704 2.09 � 10−5 0.124

Ti 5.00 � 10−6 0.00677 1.97 � 10−5 0.123

V 4.67 � 10−6 0.00658 1.86 � 10−5 0.122

Cr 4.42 � 10−6 0.00637 1.76 � 10−5 0.120

Mn 4.20 � 10−6 0.00620 1.66 � 10−5 0.119

Fe 4.02 � 10−6 0.00605 1.57 � 10−5 0.118

Co 3.86 � 10−6 0.00592 1.48 � 10−5 0.117

Ni 3.72 � 10−6 0.00581 1.40 � 10−5 0.116

Cu 3.61 � 10−6 0.00571 1.32 � 10−5 0.115

Zn 3.51 � 10−6 0.00564 1.25 � 10−5 0.114

Ga 3.42 � 10−6 0.00558 1.18 � 10−5 0.113

Ge 3.35 � 10−6 0.00553 1.11 � 10−5 0.112

As 3.25 � 10−6 0.00556 1.05 � 10−5 0.111

Se 3.20 � 10−6 0.00554 9.96 � 10−6 0.110

Br 3.20 � 10−6 0.00546 9.43 � 10−6 0.109

Kr 3.17 � 10−6 0.00546 8.92 � 10−6 0.108

Rb 3.15 � 10−6 0.00547 8.45 � 10−6 0.107

Sr 3.13 � 10−6 0.00548 8.01 � 10−6 0.106

Y 3.12 � 10−6 0.00551 7.59 � 10−6 0.105

Zr 3.11 � 10−6 0.00554 7.20 � 10−6 0.105

Nb 3.11 � 10−6 0.00558 6.83 � 10−6 0.104

Mo 3.11 � 10−6 0.00563 6.48 � 10−6 0.103

The numerical data include corrections for multidecay channels (one channel for 1s22lnl′ and four
channels for 1s23lnl′)
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magnitude different vd-factor. Unlike the dielectronic recombination into H- and
He-like ions (Tables 5.2 and 5.3), the dielectronic recombination related to the
n = 3 core transition is very important compared to the 2s–2p related recombina-
tion. Due to this reason, the temperature dependence of the total recombination rate
(being the sum of the 2s–2p, 2s–3p,… transitions) is complex and differs qualita-
tively from the dielectronic recombination into H- and He-like ions that are dom-
inated by a single exponential factor.

The influence of multichannel Auger and radiative decay on the dielectronic
recombination related to the 2s–3p core transition is likewise important for low-Z
elements. For Be atoms, the multichannel decay reduces the Bd—factor by more
than a factor of 10, whereas for Ar the multichannel decay decreases the dielec-
tronic recombination only by a factor of 2.

It is interesting to discuss the influence of the various mechanisms related to the
dielectronic recombination with the core hole transition 2s–4p. The single channel
approximation leads to a wrong estimation of the importance of high-order

Table 5.5 Bd-factors according to (5.147) for the dielectronic recombination into Li-like ions
originating from the 1s2nln′l′-autoionizing levels, Z = Zn − 2, m = 1, l0 = 0 in (5.147)

Element 1s22lnl′: a0 ¼ 1s22s ! a ¼ 1s22p

Bd (one channel) Bd (multichannel) Bd (Burgess)

Be 8.09 � 10−5 – 1.34 � 10−4

C 5.18 � 10−5 – 7.99 � 10−5

Mg 1.34 � 10−5 – 1.94 � 10−5

Ar 6.87 � 10−6 – 8.65 � 10−6

Fe 4.02 � 10−6 – 4.88 � 10−6

Mo 3.11 � 10−6 – 3.87 � 10−6

1s23lnl′: a0 ¼ 1s22s ! a ¼ 1s23p

Be 3.44 � 10−5 1.97 � 10−6 2.88 � 10−5

C 6.45 � 10−5 6.61 � 10−6 6.98 � 10−5

Mg 6.43 � 10−5 2.57 � 10−5 6.96 � 10−5

Ar 4.55 � 10−5 2.42 � 10−5 5.15 � 10−5

Fe 2.61 � 10−5 1.57 � 10−5 3.54 � 10−5

Mo 8.61 � 10−6 6.48 � 10−6 1.89 � 10−5

1s24lnl′: a0 ¼ 1s22s ! a ¼ 1s24p

Be 1.60 � 10−5 3.47 � 10−7 1.10 � 10−5

C 2.52 � 10−5 3.39 � 10−7 2.23 � 10−5

Mg 2.06 � 10−5 1.30 � 10−6 1.87 � 10−5

Ar 1.29 � 10−5 2.05 � 10−6 1.27 � 10−5

Fe 6.54 � 10−6 2.00 � 10−6 8.01 � 10−6

Mo 1.87 � 10−6 1.17 � 10−6 3.82 � 10−6

The numerical data show single- and multiple-channel approximation as well as corresponding
factors according the theory of Burgess (note that the different numerical coefficients in (5.138)
compared to (5.147a) have been included in the value for Bd-Burgess for comparison of the
different methods)
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Table 5.6 Fitting coefficients according to (5.147) for the dielectronic recombination into excited
states of Li-like ions originating from the 1s23lnl′- and 1s24lnl′-autoionizing levels, Z = Zn − 2,
m = 1, l0 = 1 in (5.147)

1s23lnl′: a0 ¼ 1s22p ! a ¼ 1s23d 1s24lnl′: a0 ¼ 1s22p ! a ¼ 1s24d

Element Bd vd Bd vd
Be 1.78 � 10−4 0.140 1.88 � 10−5 0.190

B 2.99 � 10−4 0.137 2.01 � 10−5 0.189

C 3.74 � 10−4 0.135 2.04 � 10−5 0.188

N 4.44 � 10−4 0.133 2.18 � 10−5 0.187

O 5.15 � 10−4 0.131 2.35 � 10−5 0.187

F 5.52 � 10−4 0.130 2.53 � 10−5 0.186

Ne 5.65 � 10−4 0.128 2.67 � 10−5 0.185

Na 5.76 � 10−4 0.127 2.88 � 10−5 0.181

Mg 5.73 � 10−4 0.125 3.28 � 10−5 0.174

Al 5.61 � 10−4 0.124 3.32 � 10−5 0.172

Si 5.39 � 10−4 0.122 3.33 � 10−5 0.171

P 5.19 � 10−4 0.120 3.48 � 10−5 0.167

S 4.96 � 10−4 0.119 3.46 � 10−5 0.165

Cl 4.71 � 10−4 0.117 3.44 � 10−5 0.164

Ar 4.48 � 10−4 0.115 3.41 � 10−5 0.163

K 4.25 � 10−4 0.114 3.38 � 10−5 0.161

C 4.04 � 10−4 0.112 3.34 � 10−5 0.160

Sc 3.83 � 10−4 0.110 3.30 � 10−5 0.159

Ti 3.64 � 10−4 0.109 3.25 � 10−5 0.158

V 3.45 � 10−4 0.107 3.20 � 10−5 0.157

Cr 3.27 � 10−4 0.105 3.14 � 10−5 0.156

Mn 3.11 � 10−4 0.104 3.08 � 10−5 0.156

Fe 2.95 � 10−4 0.102 3.02 � 10−5 0.155

Co 2.80 � 10−4 0.101 2.95 � 10−5 0.154

Ni 2.66 � 10−4 0.0992 2.88 � 10−5 0.154

Cu 2.53 � 10−4 0.0978 2.80 � 10−5 0.153

Zn 2.40 � 10−4 0.0964 2.72 � 10−5 0.153

Ga 2.28 � 10−4 0.0951 2.64 � 10−5 0.153

Ge 2.17 � 10−4 0.0939 2.56 � 10−5 0.152

As 2.06 � 10−4 0.0927 2.47 � 10−5 0.152

Se 1.96 � 10−4 0.0916 2.39 � 10−5 0.152

Br 1.86 � 10−4 0.0905 2.30 � 10−5 0.152

Kr 1.77 � 10−4 0.0895 2.22 � 10−5 0.152

Rb 1.68 � 10−4 0.0885 2.14 � 10−5 0.152

Sr 1.60 � 10−4 0.0876 2.05 � 10−5 0.152

Y 1.52 � 10−4 0.0867 1.97 � 10−5 0.152

Zr 1.45 � 10−4 0.0859 1.89 � 10−5 0.152

Nb 1.38 � 10−4 0.0851 1.82 � 10−5 0.152

Mo 1.31 � 10−4 0.0844 1.74 � 10−5 0.152

The numerical data include corrections for multidecay channels (three channels for 1s23lnl′ and six
channels for 1s24lnl′)
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dielectronic recombination rates. For example, the numerical calculations in the

single channel approximation for Be atoms give Bð1ChannelÞ
d ð2s� 3pÞ ¼ 3:4� 10�5,

whereas Bð1ChannelÞ
d ð2s� 4pÞ ¼ 1:6� 10�5, i.e., 2s-4p transitions are only reduced

by a factor of about 2 compared to the 2s-3p transitions. Numerical calculation
including the multichannel decay provide an entirely different picture:

Bð6ChannelÞ
d ð2s� 3pÞ ¼ 2:0� 10�6 but Bð6ChannelÞ

d ð2s� 4pÞ ¼ 3:5� 10�7, i.e., the
numerical calculations including the multichannel decay indicate that higher-order
dielectronic recombination rates are strongly suppressed.

This is a general observation that multichannel decay reduces the dielectronic
recombination. Table 5.5 shows the numerical calculation for the dielectronic
recombination Bd-factors for single- and multiple- channel decay into Li-like ions
for different orders and elements in comparison to the standard Burgess formula.
One observes that the Burgess formula is in reasonable agreement with the
numerical results for the one-channel decay although it might differ up to a factor of
3 in some cases. Comparing, however, the numerical calculations for the multi-
channel decay (which is the most correct approach as discussed above) discovers
extremely large overestimations of the dielectronic recombination by the Burgess
formula. In particular for light elements, the overestimation might be as large as 1–2
orders of magnitude, e.g., for the dielectronic recombination related to the

autoionizing states 1s24lnl′ of Be, we have Bðmulti�channelÞ
d ð2s� 4pÞ ¼ 3:47� 10�7,

whereas BðBurgessÞ
d ð2s� 4sÞ ¼ 1:10� 10�5, i.e., an overestimation by more than

factor of 30 compared to the Burgess formula. It is therefore not recommended
(Rosmej et al. 2020) to calculate higher-order contributions to the dielectronic
recombination via the Burgess approach.

5.6.2.3 Excited State-Driven Dielectronic Recombination

Table 5.6 shows the dielectronic recombination rates related to the excited states
1s22p of Li-like ions. It can be seen from a comparison of the numerical data from
Tables 5.4 and 5.6 that the excited state contribution is even more important than
the ground state contribution. For example, for Be, Bdð2s� 3pÞ ¼ 1:97� 10�6,
whereas Bdð2p� 3dÞ ¼ 1:78� 10�4 and Bdð2p� 4dÞ ¼ 1:88� 10�5. This means
the excited state contribution is up to 2 orders of magnitude more important than the
ground state contribution. Therefore, even for rather moderate densities with small
population of the excited states, their contribution to dielectronic recombination can
be important.

Particular important cases are encountered if the first excited states are related to
Dn ¼ 0 radiative transitions. Because these transition probabilities are by orders of
magnitude lower than those for Dn[ 0 transitions, Boltzmann populations with
respect to the ground state are already achieved for rather low electron densities.
For example, for Be, at densities of about 1015 cm−3, the population of the excited
states 1s22p is more important than those of the ground state 1s22s (Rosmej 1994).
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Therefore, all excited state contributions of Beryllium, e.g., for tokamaks at typical
divertor densities have larger contribution than the ground state.

The excited state contribution could be even important for very low densities if
the excited states are metastable states. Therefore, in heavy ions, where we met
excited states that are close to ground states, either related by a dipole-allowed
radiative transition or by multipole transitions, the dielectronic recombination is
extremely complex even for rather low densities. This is the main reason that up to
present days, ionic balance calculations of heavy elements differ strongly from one
method to another and that dielectronic recombination remains an active field of
research and of considerable interest for applications (nuclear fusion, astrophysics,
radiation sources, and spectroscopic diagnostics).

In conclusion, the excited state contribution is driven by atomic kinetics that can
have much more important impact, than any other sophisticated effects related to
ground state contributions. This points again to the great practical importance of
quasi-classical methods (albeit of limited precision) that provide the possibility to
obtain numerical data even for large quantum numbers that are important for the
dielectronic recombination. It is important to emphasize that the inclusion of
excited state contributions for the dielectronic recombination up to high quantum
numbers for the corresponding core transitions may exceed ground state contri-
butions by many orders of magnitude and it is for this reason that it is more precise
to include as much as possible excited state contributions with the limited precision
rather than improve via sophisticated atomic structure calculations the simplest
core-transition-related dielectronic recombination but ignoring higher-order and
excited states contributions.

5.6.3 Dense Plasma and Electric Field Effects
on Dielectronic Recombination

Dense plasma effects are of multiple origins. The first one (as discussed above in
relation with Table 5.6) is related to the atomic population kinetics where highly
populated excited states directly contribute to the recombination process (Rosmej
1994). The second one is related to the shift of bound states into the continuum, and
the third one concerns the change of atomic processes itself (cross-sections) due to
the plasma electric microfield.

5.6.3.1 Atomic Population Kinetics

Let us begin with the atomic population kinetics and the existence of a critical
principal quantum number, where collisional processes start to dominate over
radiative ones [see discussion related to (5.52)–(5.57)]. The physical meaning of this
critical quantum number Nmax (5.52) is that above this principal quantum number,
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the population kinetics is essentially governed by the Saha–Boltzmann relation
between highly excited states and the next ionization stage and any single recom-
bination processes (whatever its magnitude is) are rapidly assimilated via collisions
that effectively suppress the recombination processes. In fact, the analytical formulas
for total dielectronic recombination and also for total radiative recombination
assume that finally all excited states effectively recombine (via radiative cascading to
the ground state). As has been demonstrated (Rosmej et al. 2006; Rosmej 2012),
even the large rates of charge exchange recombination processes from excited states
are effectively assimilated by collisions [although the collision limit itself changes
(Rosmej 2012)] so that there exists a critical quantum number where the Saha–
Boltzmann relations hold true and where recombination into higher states does not
effectively contribute to recombination (see also Sect. 10.3.1).

5.6.3.2 Limitation of Bound States

The second phenomenon is related to the fact that the plasma electric microfield
limits the number of bound states. Electric field ionization starts at the critical field
strength Fcrit that is given by Bethe and Salpeter (1977)

Fcrit ¼ 6:8� 108
V
cm

� Z
3
eff

n4F
; ð5:148Þ

where Zeff is the effective ion charge and nF the principal quantum number from
which on field ionization starts. In order to estimate the limited number of quantum
states that take effectively part in the recombination process, we identify the critical
field strength Fcrit with the Holtsmark field

F ¼ 1:3� 10�6 � Zi � N2=3
i ðcm�3Þ V

cm
; ð5:149Þ

and the principal quantum number nF with the maximum quantum number, i.e.,

nmax 	 4:8� 103 � Z3=4
eff

Z1=4
i � N1=6

i ðcm�3Þ
: ð5:150Þ

Let us compare the maximum quantum number from (5.150) with the critical
quantum number of (5.57) assuming that ne;crit ¼ Ni � Zi and kTe eVð Þ ¼ a � Z2

effRy,
where a is a constant (of the order of a 	 0:1� 1):

ncrit 	 373 � a1=14 � Zeff

Z1=7
i � N1=7

i

: ð5:151Þ

With the help of (5.149) and (5.150), we find
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nmax

ncrit
	 13

a1=14
� 1

Z1=4
eff � Z3=28

i � N1=42
i ðcm�3Þ

: ð5:152Þ

Let us illuminate the relation (5.152) with a typical example: near-solid density
high-temperature H-like aluminum, i.e., Zeff ¼ 13, Zi ¼ 12, a ¼ 0:3, Ni ¼
1022 cm�3 providing nmax=ncrit 	 1:7. Therefore, for almost all practical applica-
tions, we encounter the relation

nmax

ncrit
[ 1: ð5:153Þ

The physical interpretation of relation (5.153) means that the collisional ther-
malization and the associated effective suppression of single recombination rates
into excited states are therefore related to a large ensemble of high-n quantum
numbers below those that merge into the continuum. For this reason, a detailed
quantum mechanical treatment of high-n-states and their merging into the contin-
uum appears to be not critical and quasi-classical estimates seem to be well adapted
to the problem.

5.6.3.3 Effects of Angular Momentum Changing Collisions

It is evident that a strict consideration of angular momentum changing collisions
requests a very extended atomic level system that includes all details of the
autoionizing states in order to treat properly the collisional population redistribution
effects. We restrict here ourself to a principle discussion with the help of the most
frequently employed formula for dielectronic recombination proceeding from
dielectronic capture from channel k and with radiative transition j ! i [see also
(5.131)–(5.133)]:

DRh iZþ 1;Z
k;ji 	 1

2gZþ 1
k

� 2p�h2

me

	 
3=2

� gZj � CZ;Zþ 1
jk � AZ

jiP
l A

Z
jl þ

P
k C

Z;Zþ 1
jk

� expð�EDC
kj =kTeÞ

ðkTeÞ3=2
:

ð5:154Þ

Let us now consider a simple illustrative example, namely the Ly-alpha
dielectronic 2l2l′-satellites of He-like ions and depict two levels, one that has very
large autoionizing rate and one that has a negligible ones. For the first case, we
consider the level j0 ¼ 2p2 1D2, k ¼ 1s 2S1=2 and the radiative transition
j0 ¼ 2p2 1D2 ! i0 ¼ 1s2p 1P1. Atomic structure calculations for carbon (Zn = 6)
deliver: CZ;Zþ 1

j0k ¼ 2:5� 1014 s�1, AZ
j0i0 ¼ 1:4� 1012 s�1,

P
l A

Z
jl ¼ 1:4� 1012 s�1,P

k C
Z;Zþ 1
j0k ¼ 2:5� 1014 s�1. For the second case, we consider the autoionizing

5.6 Analytical Empirical Formulas … 239



configuration j ¼ 2p2 3P1, k ¼ 1s 2S1=2 and the radiative transition
j ¼ 2p2 3P1 ! i ¼ 1s2p 3P2. Atomic structure calculations (Zn = 6) provide:
CZ;Zþ 1
jk ¼ 0, AZ

ji ¼ 6:0� 1011 s�1,
P

l A
Z
jl ¼ 1:4� 1012 s�1,

P
k C

Z;Zþ 1
jk ¼ 0 from

which it follows QZþ 1;Z
k;ji ¼ 0.

Assuming a two-level system where only dielectronic capture and angular
momentum changing collisions (characterized by the rate coefficient Cj0j) con-
tribute, the atomic populations nZj and nZj0 are given by

nZj0
X
l

AZ
j0l þ

X
k

CZ;Zþ 1
j0k þ neCj0j

 !
¼ nZþ 1

k � ne � DCh iZþ 1;Z
k;ji0 þ ne � nZj � Cjj0 ;

ð5:155Þ

nZj
X
l

AZ
jl þ

X
k

CZ;Zþ 1
jk þ neCjj0

 !
¼ nZþ 1

k � ne � DCh iZþ 1;Z
k;ji þ ne � nZj0 � Cj0j;

ð5:156Þ

where

DCh iZþ 1;Z
k;q ¼ 1

2gZþ 1
k

� 2p�h2

me

	 
3=2

�gZq � CZ;Zþ 1
qk �

exp �EDC
kq =kTe

 �
ðkTeÞ3=2

ð5:157Þ

with q ¼ j; j0. In the absence of collisions, (5.154)–(5.156) transform to

nð0Þ; Zq

X
l

AZ
ql þ

X
k

CZ;Zþ 1
qk

 !
¼ nZ þ 1

k � ne � DCh iZ þ 1;Z
q;k ; ð5:158Þ

providing

nð0Þ; Zq ¼ nZþ 1
k � ne � 1

2gZþ 1
k

� 2p�h2

me

	 
3=2

� gZq � CZ;Zþ 1
qkP

l A
Z
ql þ

P
k C

Z;Zþ 1
qk

�
exp �EDC

kq =kTe
 �
ðkTeÞ3=2

;

ð5:159Þ

where the index “(0)” indicates the low-density case.
In order to understand the effect of angular momentum changing collisions on

the total dielectronic recombination rate, we need to consider the sum for the two
levels, i.e.,
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DRcollh iZþ 1;Z
tot ¼ DRcollh iZþ 1;Z

k;ji þ DRcollh iZþ 1;Z
k;j0i0 ; ð5:160Þ

where the index “coll” for the single dielectronic recombination rates DRcollh iZþ 1;Z
k;ji

and DRcollh iZþ 1;Z
k;j0i0 indicates that these rates include the collisional processes. This

has to be distinguished from (5.154) which is a low-density approximation. It is of
principal interest to understand the change of the dielectronic recombination due to
collisions with reference to the low-density case, i.e., we consider the ratio

DRcollh iZþ 1;Z
tot

DRh iZþ 1;Z
tot

¼
DRcollh iZþ 1;Z

k;ji þ DRcollh iZþ 1;Z
k;j0i0

DRh iZþ 1;Z
k;ji þ DRh iZþ 1;Z

k;j0i0
: ð5:161Þ

The collisional dielectronic recombination rates cannot be determined from
relations like (5.154) but need to be determined directly from the populations, i.e.,

DRcollh iZþ 1;Z
k;ji / nZj � AZ

ji ; ð5:162Þ

because the product of the level population with the radiative decay is the rate at
which the excited state decays to the ground state which is equivalent to dielec-
tronic recombination (note that the usual branching ratios that appear in formulas
like those of (5.154) are already included via the equilibrium population) if the
right-hand side of (5.155), (5.156) is driven by dielectronic capture and angular
momentum changing collisions between the autoionizing levels under considera-
tion. Combining the relations (5.161) and (5.162), we obtain

DRcollh iZþ 1;Z
tot

DRh iZ þ 1;Z
tot

¼
nZj � AZ

ji þ nZj0 � AZ
j0i0

nð0Þ; Zj � AZ
ji þ nð0Þ;Zj0 � AZ

j0i0
; ð5:163Þ

i.e.,

DRcollh iZþ 1;Z
tot

DRh iZþ 1;Z
tot

¼

nZj0

nð0Þ; Zj0
þ nZj � AZ

ji

nð0Þ; Zj0 � AZ
j0i0

nð0Þ; Zj � AZ
ji

nð0Þ; Zj0 � AZ
j0i0

þ 1

: ð5:164Þ

Because EDC
kj 	 EDC

kj0 , we have for the population ratio in the low-density case
(for the example given above)
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nð0Þ; Zj

nð0Þ; Zj0
	 gZj � CZ;Zþ 1

jk

gZj0 � CZ;Zþ 1
j0k

�
P

l A
Z
j0l þ

P
k C

Z;Zþ 1
j0kP

l A
Z
jl þ

P
k C

Z;Z þ 1
jk

	 0; ð5:165Þ

because CZ;Zþ 1
jk � CZ;Zþ 1

j0k . Therefore, population is essentially transferred by
angular momentum changing collision form level j0 to level j but not vice versa. Let
us now specify the above example for the populations of (5.155), (5.156):

nZj
X
l

AZ
jl þ neCjj0

 !
	 ne � nZj0 � Cj0j; ð5:166Þ

and

nZj0
X
l

AZ
j0l þ

X
k

CZ;Zþ 1
j0k

 !
	 nZ þ 1

k � ne � DCh iZþ 1;Z
k;j0 ; ð5:167Þ

Equations (5.155), (5.156), (5.158) indicate that for autoionizing levels with
very large autoionizing rates, the populations are close to the low-density case.
Equation (5.167) corresponds therefore to the case of low density (5.158), i.e.,

nZj0 	 nð0Þ; Zj0 : ð5:168Þ

Injecting relations (5.165), (5.166), (5.168) into (5.164), we obtain

DRcollh iZþ 1;Z
tot

DRh iZþ 1;Z
tot

	 1þ ne � Cj0jP
l
AZ
jl þ neCjj0

� A
Z
ji

AZ
j0i0
: ð5:169Þ

Because gj0 � Cj0j 	 gj � Cjj0 for closely spaced levels, relation (5.169) takes the
form

DRcollh iZþ 1;Z
tot

DRh iZþ 1;Z
tot

	 1þ
gZj0

gZj
� A

Z
ji

AZ
j0i0

� 1
1þ P

l A
Z
jl=neCjj0

 !
: ð5:170Þ

If
P

l A
Z
jl 	 neCjj0 , the term in parenthesis of relation (5.170) is about one half

and the relation indicates that the total dielectronic recombination rate is enhanced
(i.e., DRcollh iZþ 1;Z

tot = DRh iZþ 1;Z
tot [ 1) due to angular momentum changing colli-

sions. This can be understood in a transparent qualitative picture: For the level j0

with high autoionization rate, the dielectronic capture is high and due to the large
autoionizing rate, the branching factor for radiative de-excitation is small. If,
however, a certain fraction of population is collisionally transferred to another level
before autoionization and radiative decay disintegrate the upper level j0, the level j is
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effectively populated by collisions from j0 ! j (because the population of the
level j is small as dielectronic capture is small due to small autoionization rate).
The transferred population, however, has a very favorable branching factor for

the level j (e.g., in the above example AZ
ji=

P
l A

Z
jl þ

P
k C

Z;Zþ 1
jk

 �
¼ 6:0�

1011=1:4� 1012 ¼ 0:43) compared to the level j0 (AZ
j0i0=

P
l A

Z
j0l þ

P
k C

Z;Zþ 1
j0k

 �
¼

1:4� 1012=2:6� 1014 ¼ 0:0088) and the transferred population is more effectively
transferred to the ground state to finally contribute to the dielectronic
recombination.

5.6.3.4 Electric Field Effects on Cross-Sections

The influence of the electric field on autoionization and corresponding dielectronic
recombination rates was studied by (Davis and Jacobs 1975; Jacobs et al.
1976; Jacobs and Davis 1979) with the simplest atomic system of He-like
autoionizing states 2l2l′. It was realized that forbidden autoionizing processes
(forbidden in LS-coupling scheme) become allowed by electric field mixing of
autoionizing bound state wave functions. The allowed autoionization width is given
by the first-order transition rate

Cðd ! cÞ ¼ 2p
�h

� dh jV cj ij j2d Ed � Ecð Þ; ð5:171Þ

where V is the electrostatic interaction. Because V is a scalar operator, the
autoionization vanishes unless there are available adjacent continuum states c with
the same angular momentum and parity as the discrete levels d (Cowan 1981).
Because of the absence of even parity P states below the second ionization
threshold, the 2p2 3P-state of He-like ions is metastable against autoionization
decay. In the presence of perturbing electric fields, however, autoionization of the
state a ¼ 2p2 3P may occur by a second-order process involving the field-induced
transition to the nearby autoionizing state d ¼ 2s2p 3P. In a quasi-static ion field,
the field-induced autoionization rate is given by

Table 5.7 Field-free autoionization decay rates in [s−1] including intermediate coupling,
configuration, and magnetic interaction

State Zn = 3 Zn = 6 Zn = 13 Zn = 18 Zn = 26 Zn = 42

2p2 1S0 8.4 � 1010 5.1 � 1012 1.3 � 1013 1.9 � 1013 3.4 � 1013 7.0 � 1013

2p2 1D2 1.5 � 1014 2.5 � 1014 3.1 � 1014 3.1 � 1014 2.3 � 1014 2.1 � 1014

2p2 3P0 2.9 � 107 2.3 � 109 2.3 � 1011 1.2 � 1012 3.7 � 1012 2.8 � 1012

2p2 3P1 0 0 0 0 0 0

Breit
interaction

2.6 � 107 6.8 � 108 1.9 � 1010 7.2 � 1010 3.2 � 1011 2.2 � 1012

2p2 3P2 1.1 � 109 3.1 � 1010 3.0 � 1012 2.1 � 1013 1.1 � 1014 1.5 � 1014
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Cða ! cÞ ¼ 2p
�h

�
X
d

ah jQ!� E! dj i dh jV cj i
ðEa � EdÞþ i�hðCd þAdÞ=2

�����
�����
2

d Ea � Ecð Þ; ð5:172Þ

where ~Q is the electric dipole moment operator, Cd and Ad are the autoionization
and radiative width of the state d, respectively. Therefore, the first-order contri-
bution from the field-induced transition decays directly into the non-resonant
continuum c ¼ 1s�p 3P.

It should be noted that for practical applications, not only field-induced transi-
tions have to be considered, but intermediate coupling, configuration, and magnetic
interactions too. In particular for highly charged ions, these “non-electric field
effects” may have likewise a considerable contribution to the forbidden autoion-
ization width, as is demonstrated in the following Table 5.7. In addition, the Breit
interaction induces an autoionization rate for the 2p2 3P1—state (see second line for
the state 2p2 3P1 in Table 5.7).

Table 5.7 shows also the general effect that if the nuclear charge increases, the
autoionizing widths are more and more distributed over the levels. Therefore,
electric field effects are best studied for low-Z elements.

From the relationship between the corresponding capture and autoionizing rates,
it follows that the electric field can induce dielectronic recombination through
normally inaccessible high angular momentum states which have large statistical
weights (Jacobs et al. 1976). In fact, in a plasma, the angular momentum l is no
longer a good quantum number, because the presence of an electric field destroys
the spherical symmetry. However, the projection m which is defined with respect to
the direction of the electric field remains a good quantum number. For nonzero
quantum numbers m, this results in a twofold degeneracy of the outer electron in
addition to the twofold degeneracy due to the spin. The appropriate transformation
of the field-free substates l has the form

nkmj i ¼
Xn�1

l¼ mj j
nlmj i nlm j nkmh i; ð5:173Þ

where the quantum number k, which replaces l in the presence of the electric field,
can have integer values from k ¼ 0. . . n� mj j � 1ð Þ. The calculations demonstrate
(Jacobs et al. 1976; Jacobs and Davis 1979; Bureyeva et al. 2001, 2002) that the
dependence of the autoionization rates on the quantum number k is rather smooth in
contrast to the field-free case where the autoionization rates decrease rapidly with
quantum number l. Due to this reason, dielectronic capture in the presence of
electric field increases because it is proportional to the autoionizing rate and the
statistical weight, i.e., DCh iZþ 1;Z

k;j / gZj � CZ;Zþ 1
jk . Because the dielectronic recom-

bination is proportional to the dielectronic capture [see (5.154)], this results in a
considerable increase of the total dielectronic recombination rate. For example, for
the autoionizing states 1s22pnl in Be-like Fe22+ an about threefold increase of the
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dielectronic recombination rate was found even for densities as low as 1014 cm−3

(Jacobs et al. 1976). This dramatic increase for rather low densities is particularly
connected with the fact that for the 1s22pnl-configuration, the resonance sponta-
neous transition probability 2p–2s is not very large and high-n-states have
autoionizing rates larger than radiative decay rates for n-quantum numbers up to
about 100. In consequence, high-n-states contribute considerably to the dielectronic
recombination rate. As high-n-states are likewise strongly affected by rather small
electric fields, a considerable impact on the total recombination rate is encountered
even for rather low plasma densities (being of importance for typical densities of
solar corona or magnetic fusion plasmas).

The interaction with an electric field makes atomic structure calculations
extremely complex, and it is difficult to derive general conclusions. It has been,
however, demonstrated (Bureyeva et al. 2001, 2002) that the quasi-classical
approach combined with a transformation to parabolic quantum numbers (5.173)
provides results that are in surprisingly good agreement with extremely complex
numerical calculations (Robicheaux and Pindzola 1997). Moreover, the
quasi-classical approach combined with the transformation to parabolic quantum
numbers allowed deriving a closed expression for the autoionization rate in an
electric field:

Cðn; k;mÞ ¼
Zlmax

lmin

Pðnl; kmÞ � CðnlÞ � dl; ð5:174Þ

with

l2min ¼
1
2

ðn� 1Þ2 þm2 � k2
h i

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ2 þm2 � k2
h i2

�4ðn� 1Þ2m2

r( )

ð5:175Þ

and

l2max ¼
1
2

ðn� 1Þ2 þm2 � k2
h i

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ2 þm2 � k2
h i2

�4ðn� 1Þ2m2

r( )
:

ð5:176Þ

CðnlÞ is the standard autoionizing rate in spherical coordinates and Pðnl; kmÞ is a
joint probability (with normalization equal to one) for the appearance of spherical
(nl) and parabolic (km) quantum numbers that can be expressed in terms of
Clebsch–Gordan coefficients. For large quantum numbers and the condition
m\l � n (quasi-classical limit of Clebsch–Gordan coefficients that is of practical
interest), the joint probability can be approximated by Bureyeva et al. (2002)
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Pðnl; kmÞ 	 1
p
� 2lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � l2min

� � � l2max � l2
� �q

8><
>:

9>=
>;: ð5:177Þ

Substituting quasi-classical values for the autoionization rate CðnlÞ into (5.174)
and using (5.173), we obtain an autoionizing rate in parabolic quantum numbers
expressed in terms of universal functions (t = l/leff, leff = (3Z2/x)1/3):

Cðn; k;mÞ ¼ fij
p � n3 � Iðtmin; tmaxÞ; ð5:178Þ

Iðtmin; tmaxÞ 	 2
lmax

� 3Z2

x

	 
2=3

�Y lmin � ðx=3Z2Þ1=3
 �

; ð5:179Þ

YðxÞ 	 0:284 � exp �2x3
� �

: ð5:180Þ

fij is the oscillator strength of the core transition with charge Z (e.g., the oscillator
strength corresponding to the transition 1s� 2p in H-like Al for the He-like 2lnl0-
satellites, Z = 13). The formulas (5.174)–(5.180) demonstrate likewise a broad
distribution over the electric quantum number k that finally results in an increase of
the dielectronic recombination rate.
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Chapter 6
Atomic Population Kinetics

Abstract This chapter introduces to the theory of atomic population kinetics and
radiative properties of atomic and ionic bound–bound transitions. Particular
attention is devoted to the general problems related to an extremely large number of
kinetic equations describing populations of Rydberg and autoionization atomic
states in plasmas. A new method of reduced kinetics for autoionizing states, the
virtual contour shape kinetic theory (VCSKT), is described in details. The method
is based on a probability method for LTE- and non-LTE-level populations that
allows effective level reduction while preserving all detailed atomic transitions. The
representation employs effective relaxation constants that have analytical solutions.
The comparison with detailed level-by-level calculations demonstrates high accu-
racy and large efficiency of the VCSKT. In order to solve many states’ kinetic
problems for Rydberg atomic states, the quasi-classical representation of the system
of kinetic equations is proposed. In particular, the two-dimensional radiative cas-
cades between Rydberg atomic states are described by a purely classical motion of
atomic electrons in a Coulomb field that lose energy and orbital momentum. The
general collisional-radiative model for large principal quantum numbers is reduced
to an effective diffusion in two-dimensional energy and orbital momentum space.
The results of these new kinetic models are compared with standard collisional-
radiative kinetics demonstrating an important reduction of computer times, the
possibility to obtain scaling relations and to independently study the precision of
complex quantum calculations for these many level kinetic problems.

6.1 Generalized Atomic Kinetics of Non-Equilibrium
Plasmas Containing Ions of Various Charge States

6.1.1 Principles of Atomic Line Emission: The Two-Level
Atom

Let us consider a two-level atom to understand the basic principles of atomic line
emission. Figure 6.1 depicts the two-level atom and the related atomic physics
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processes. For a two-level atom, the system of differential population equations
takes the form:

dn1
dt

¼ n0neC01 � n1A10 � n1 neC10 þ neCd1ð Þ: ð6:1Þ

n1 is the upper level density, n0 the lower level density, ne is the electron density,
the C’s are the electron collisional rate coefficients and A is the spontaneous
radiative decay rate. In stationary plasmas, d/dt = 0 and (6.1) can readily be solved
for the upper-level density:

n1 ¼ n0neC01

A10 þ neC10 þ neC1d
: ð6:2Þ

The intensity of the spectral line is then given by

I10 ¼ �hx10

4p
n0neC01

A10

A10 þ neC10 þ neC1d
: ð6:3Þ

In the high-density limit when neC10 � A10 and Cd1 = Cd0 = 0 (due to the
detailed balance of populating and depopulating collisions from and to levels not
explicitly included in the two-level system), the intensity is proportional to the
radiative decay rate:

I10 / A10: ð6:4Þ

In the low-density limit, however, when neC10 � A10 (Corona model), the
intensity is given by

I10 ¼ �hx10

4p
n0neC01: ð6:5Þ

Equation (6.5) shows that the intensity is independent of the spontaneous
radiative decay rate. How to understand this result? Let us imagine that we fill a

Fig. 6.1 Two-level atom of
an open system
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bottle with water that has a hole, see Fig. 6.2 left. The size of the hole (area A)
corresponds to the radiative decay rate Arad, the water that flows out of the hole
corresponds to the line intensity, and the water flow into the bottle corresponds to
the excitation rate C. If the hole is small, the water mounts in the bottle because it
cannot escape quickly enough through the small hole.

Let us now imagine that we fill the bottle only with a tiny rate. In this case, the
water escapes immediately through the whole and the water is not mounting in the
bottle. Under these circumstances, we could increase the size of the hole without
changing the amount of water that is escaping from the hole because for the small
hole already all water escapes. This regime is equivalent to the case where the
intensity does not depend on the radiative decay rate and corresponds to the Corona
model. Equation (6.2) shows that in the limit of low densities the upper state
population is given by

n1 � n0neC01

A10
: ð6:6Þ

If the radiative decay rate is small, the upper state population is large (so-called
metastable level). This explains why we can observe in experimental spectra line
emissions of forbidden transitions with intensities that are of the same order like
those for resonance lines. Famous examples are the light emission from the Aurora

Fig. 6.2 Water pool model of atomic radiation emission. The collisional excitation rate
C corresponds to the water population flow into the pool, the height h to the atomic population
n, the size of the hole (area A) to the radiative decay Arad, and the water flow out of the hole to the
radiative emission
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Borealis (green and red emission from atomic oxygen), the observation of the
forbidden lines X and Z of He-like impurity ions in tokamaks (see Sect. 1.2.3) as
well as the observation of the intercombination line Y of He-like ions in many dense
laser-produced plasmas.

6.1.2 The Principles of Ionic Charge State Distributions
in Plasmas

Atomic radiation in plasmas is rather complex as line emission from several ion-
ization stages of the atom contribute at the same time. We therefore start our
investigation with the so-called ionic charge state distribution in plasmas. In order
to get some insight in the relevant physics, we consider an atomic level with
population density nZ and charge state “Z” that is linked to (Z + 1) and (Z − 1) via
several elementary atomic processes, see Fig. 6.3: electron collisional ionization I,
three-body recombination T, radiative recombination R, and dielectronic recombi-
nation D. These processes are defined as follows (see also Chap. 1 and Sect. 3.5):

Ionization: XZ þ e ! XZþ 1 þ eþ e
Three-body recombination: XZ þ eþ e ! XZ�1 þ e
Radiative recombination: XZ þ e ! XZ�1 þ �hxrad:recom:

Dielectronic recombination: XZ þ e ! XZ�1;�� ! XZ�1;� þ �hxsat ! XZ�1 þ �hxl

XZ characterizes an atom “X” in charge state “Z”, “e” is an electron in the
continuum, �hxrad:recom: is the continuum radiation of the radiative recombination.
XZ;� and XZ;�� characterize single- and double-excited ions, �hxsat and �hxl indicate
bound–bound radiation from atomic and ionic lines. The dielectronic recombination
describes a multistep process: it starts from the so-called dielectronic capture of a

Fig. 6.3 Schematic ionic
level system showing
ionization (I) and
recombination processes
(T, R, D), T is the three-body
recombination, R the radiative
recombination, and D the
dielectronic recombination
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continuum electron that forms first a double-excited atom XZ�1;�� (means that the
energy of the recombining originally free electron is used to excite another bound
electron in the atom). De-excitation is via successive radiative decays between
bound atomic levels, creating the photons �hxsat and �hxl. The photon �hxsat

originates from a double-excited state and is called “dielectronic satellite”. As the
atoms start from charge state “Z” and end up finally in charge state “Z − 1”,
effective recombination has occurred.

The evolution of the atomic populations can be described by the following
system of differential rate equations:

dnZ
dt

¼ �nZ n2eTZ;Z�1 þ neDZ;Z�1 þ neRZ;Z�1 þ neIZ;Zþ 1
� �

þ nZþ 1 n2eTZþ 1;Z þ neDZþ 1;Z þ neRZþ 1;Z
� �

þ nZ�1 neIZ�1;Z
� �

:

ð6:7Þ

Let us now consider explicit solutions of the set of (6.7). The stationary solution
is given by

nZþ 1

nZ
¼ neIZ;Zþ 1

neRZþ 1;Z þ neDZþ 1;Z þ n2eTZþ 1;Z
: ð6:8Þ

Due to the n2e-dependence of the three-body recombination, radiative recombi-
nation and dielectronic recombination are negligible compared to three-body
recombination at high densities:

lim
ne!1

nZþ 1

nZ

� �
¼ IZ;Zþ 1

neTZþ 1;Z
: ð6:9Þ

The ionization rate coefficient IZ;Zþ 1 is related to the three-body recombination
rate coefficient TZþ 1;Z via the principle of microreversibility (see also Sects.7.7.2
and 10.6.5.4) that for a system containing Maxwellian electrons at temperature Te
takes the form (EZ;Zþ 1 is the ionization energy from the charge state “Z” to charge
state “Z + 1”):

TZþ 1;Z ¼ IZ;Zþ 1
gZ

2gZþ 1

2p�h2

mekTe

� �3=2

eþEZ;Zþ 1=kTe : ð6:10Þ

With the help of (6.10), (6.9) can be rewritten as:

lim
ne!1

nZþ 1

nZ

� �
¼ 2

mekTe
2p�h2

� �3=2gZþ 1

gZ

e�EZ;Zþ 1=kTe

ne
: ð6:11Þ

Equation (6.11) is equivalent to the famous Saha–Boltzmann equation. Note that
(6.11) connects only two levels in charge states “Z” and “Z + 1”, whereas the
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so-called Saha-equation connects all levels from charge state “Z” to all levels of
charge state “Z + 1” with the help of their respective partition functions.

At low densities, three-body recombination is small compared to radiative and
dielectronic recombinations:

lim
ne!0

nZþ 1

nZ

� �
¼ neIZ;Zþ 1

neRZþ 1;Z þ neDZþ 1;Z
: ð6:12Þ

As ionization rate coefficients, radiative recombination rate coefficients, and
dielectronic recombination rate coefficients depend on the electron temperature,
(6.12) does not depend on density and is a function of electron temperature only:

lim
ne!0

nZþ 1

nZ

� �
¼ FZ;Zþ 1 kTeð Þ ¼ IZ;Zþ 1

RZþ 1;Z þDZþ 1;Z
: ð6:13Þ

The low-density limit according to (6.13) is called “Corona distribution”. In the
Corona limit, FZ;Zþ 1 kTeð Þ is a universal function of the electron temperature. As for
every charge state a universal function can be obtained, the Corona limit describes a
universal charge state distribution of all ions in a plasma. Even if the density
changes by orders of magnitude, the charge state distribution does not change as
long as for every charge state three-body recombination is negligible compared to
the sum of radiative and dielectronic recombination.

Equation (6.8) demonstrates that the distribution of the ionic charge state pop-
ulations is strongly dependent on elementary atomic processes. We therefore dis-
cuss in the following radiative recombination, dielectronic recombination,
ionization, and three-body recombination in the context of their application for the
calculation of the ionic charge state distribution.

In order to make practical use of the general solution of the charge state dis-
tribution according to (6.8), we need explicit expressions for the radiative recom-
bination rate coefficient RZ;Zþ 1, the dielectronic recombination rate coefficient
DZ;Zþ 1, the three-body recombination rate coefficient TZ;Zþ 1, and the ionization
rate coefficient IZ;Zþ 1.

Let us begin with the Corona limit (6.13) and consider the schematic atomic
level system depicted in Fig. 6.4. Radiative recombination takes place into the
ground and all excited states:

XZ þ 1 1ð Þþ e ! XZ nð Þþ �hxrad:recom:

After radiative recombination, the excited states XZ nð Þ can decay via sponta-
neous radiative emission as indicated by the red flashes in Fig. 6.4. In the Corona
limit, radiative decay Ann′ is much more important than collisional transfer pro-
cesses between excited states Cnn′ because the electron density is low: Ann′ � neCnn

′. This implies that excited state population is low compared to the ground state and
effective ionization from excited states is very small compared to the ionization
from the ground states (an exception might be metastable levels: radiative decay is
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low and population might be very high). Therefore, all radiative recombination ends
up finally into the ground state. The total radiative recombination is therefore the
sum of all radiative recombination into the ground and excited states (Nmax is the
largest principal quantum number to be taken into account):

RZþ 1;Z ¼
XNmax

n¼1

Xn�1

l¼0

RZþ 1;Z nlð Þ: ð6:14Þ

In the optical electron model (hydrogenic approximation), the radiative recom-
bination can be directly represented by a sum over the orbital l-quantum numbers

RZþ 1;Z nð Þ ¼
Xn�1

l¼0

RZþ 1;Z nlð Þ: ð6:15Þ

The rate coefficient R nð Þ can be estimated with the formulas from (5.61) while
the sum Rtot n� n1ð Þ over the n-quantum numbers (n1 is the principal quantum
number from which the sum is taken, i.e., overall higher-lying excited states with
n > n1) can be directly approximated with (5.62).

In a similar manner, dielectronic recombination DZþ 1;Zða0 ! a; nlÞ has to be
summed over the excited state contribution to account for the total recombination
due to cascading from excited levels:

Fig. 6.4 Schematic ionic
level system showing
radiative recombination to
ground (n = 1) and excited
sates (n) followed by radiative
cascades
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DZþ 1;Z ¼
XNmax

n

Xn�1

l¼0

X
a0

X
a

DZþ 1;Z a0 ! a; nlð Þ: ð6:16Þ

The sums in (6.16) can considerably be simplified with the help of the Burgess
formula (see also Sect. 5.6.2) where the sums over the quantum numbers “nl” of the
spectator electrons are explicitly taken into account:

DZþ 1;Z a0 ! að Þ ¼
X
n

Xn�1

l¼0

DZþ 1;Z a0 ! a; nlð Þ ð6:17Þ

assuming that dielectronic recombination into the ground state is usually the most
important one. In this case, the state a0 coincides with the atomic ground state and
the sum over a0 can be suppressed (see also Sect. 5.6):

DZþ 1;Z �
X
a

DZþ 1;Z a0 ! að Þ; ð6:18Þ

DZþ 1;Z a0 ! að Þ ¼ 4:8� 10�11fa0aBdb
3=2e�bvd ½cm3 s�1	: ð6:19Þ

The factor Bd is a so-called branching factor: after dielectronic capture, a
double-excited state is formed that can decay via autoionization or radiative decay.
For the dielectronic recombination, only the radiative decays contribute finally to
recombination as autoionization only returns the original state. In the one-channel
approximation, (6.19) can be estimated with the help of the Burgess and Cowan
formulas from (5.138–5.143).

Due to multichannel autoionization and radiative decay and the complex con-
figurations involved numerical calculations of the dielectronic recombination turn
out to be very complex and the precision of the Burgess formula is difficult to
estimate. This is one of the major reasons that up to present-day different atomic
population models to calculate the ionization charge state distribution differ largely
from each other, in particular for high-Z elements (Rubiano et al. 2007; Chung et al.
2013; Colgan et al. 2015).

The ionization rates involved in (6.7) are the ionizations from the ground state
that can be directly estimated from the formulas (5.49) while radiative recombi-
nation and dielectronic recombination rates are given by (6.14), (6.16) and its
approximations discussed in this chapter and in the Annex A.1.

As it has been discussed above for the radiative recombination and dielectronic
recombination processes, also the three-body recombination rate into excited states
followed by radiative cascades has to be taken into account:

TZþ 1;Z ¼
XNmax

n¼1

Xn�1

l¼0

TZþ 1;Z nlð Þ: ð6:20Þ
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Summation over the orbital l-quantum numbers “l” provides:

TZþ 1;Z nð Þ ¼
Xn�1

l¼0

TZþ 1;Z nlð Þ: ð6:21Þ

The three-body recombination rate TZþ 1;Z nð Þ can be estimated from (5.50). The
summations over principal quantum number “n” until Nmax in (6.21) have to be
taken out with care and follow the methods described in Sect. 5.3.2 and corre-
sponding approximation formulas from (5.51–5.58).

6.1.3 Characteristics of the Ionic Charge State Distribution

Figure 6.5 shows the charge state distribution of Argon obtained from the colli-
sional–radiative code MARIA (Rosmej 1997; 2001, 2006, 2012). The dominance
of the shell structure in the distribution of different charge states is clearly visible: a
rather wide existence over temperature of the Ne-like and He-like ions densities.

The dominance of closed shell configurations is a general feature and almost
independent of the atom and the electron density. The large “high-temperature
wings” of the Na-like and Li-like charge states are related to the dielectronic
recombination that proceeds from the closed shell configurations 1s22s22p6 and 1s2.
As one can see from Fig. 6.5, in general, only about 3–6 charge states are highly
populated for a given temperature. This is a typical feature of plasmas with
Maxwellian electron energy distributions. We note that in non-Maxwellian plasma,

Fig. 6.5 Charge state distribution of Argon in dependence of the electron temperature calculated
with the MARIA code, ne = 1020 cm−3
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however, qualitative changes appear (Rosmej 1997) that in turn witness the pres-
ence of suprathermal electrons.

6.1.4 Generalized Atomic Population Kinetics

In dense plasmas, collisional excitation results into an important population of
excited states from which ionization processes may then proceed more efficiently.
A particular important case is the ionization from a metastable state because
radiative decay is low and population correspondingly high. At the same time,
collisional and radiative processes are equally important. It is therefore desirable to
consider ionic population and excited states on the same footing rather than cal-
culating the ionic charge state distribution from a set of (6.7) and, separately from
these, the corresponding excited states. A widely applied and very successful
model (albeit only rates are considered) is the so-called collisional–radiative model
(CRM) where all ionization states, ground states, and excited states are connected
via elementary collisional radiative processes. The population equations are based
on the rate equation principle (see Fig. 6.2) while the elementary processes are
calculated with quantum mechanical, quasi-classical or classical methods.
The CRM is also called the standard atomic kinetics. The time-dependent evolution
of the atomic populations is given by a set of differential rate equations:

dnjZ
dt

¼ �njZ
XZn
Z 0¼0

XNZ0

iZ0¼1

WjZiZ0 þ
XZn
Z0¼0

XNZ0

kZ0¼1

nkZ0WkZ0 jZ : ð6:22Þ

njZ is the atomic population of level j in charge state Z, Zn is the nuclear charge, NZ0

is the maximum number of atomic levels in charge state Z, and WjZiZ0 is the pop-
ulation matrix which contains the rates of all elementary processes from level j of
charge state Z to level i of charge state Z′.

In general, (6.22) is a system of nonlinear differential equations because the
population matrix might contain the populations by itself (e.g., when radiation
transport is included). Only for special cases, the populationmatrixW does not depend
on the atomic populations and the set of equations becomes linear. Equations (6.22)
provide N differential equations where the number of levels N is given by:

N ¼
XZn
Z¼0

NZ : ð6:23Þ

Looking more carefully to the symmetry relations of (6.22), one finds that the
system of equations contains only (N − 1) independent equations for the N atomic
populations. We are therefore seeking for a supplementary equation. Let us con-
sider atomic populations in terms of a probability (like in quantum mechanics). In
this case, the probability to find the atom in any state is equal to 1:
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XZn
Z¼0

XNZ

jZ¼1

njZ ¼ 1 : ð6:24Þ

Equation (6.24) is the desired Nth equation and is called the “boundary condi-
tion”. The population matrix is given by:

Wij ¼ W rad
ij þW col

ij : ð6:25Þ

The matrix describing the radiative and autoionizing processes is given by

W rad
ij ¼ Aij þCij þPabs

ij þPem
ij þPrr

ij þPiz
ij : ð6:26Þ

The collisional processes are described by

W col
ij ¼ neCij þ neIij þ n2eTij þ neRij þ neDij þW col�heavy

ij ; ð6:27Þ

W col�heavy
ij ¼ Cxij þ nHPC

HP
ij þ nHPI

HP
ij . . . ; ð6:28Þ

where W col�heavy
ij describes the heavy-particle collisions, Aij is the spontaneous

radiative decay rate, Cij the autoionization rate, Pabs
ij the stimulated photoabsorption,

Pem
ij the stimulated photoemission, Prr

ij the stimulated radiative emission, Piz
ij the

photoionization, Cij the electron collisional excitation/de-excitation, Iij the electron
collisional ionization, Tij the three-body recombination, Rij the radiative recombi-
nation, Dij the dielectronic capture, Cxij the charge exchange (see also Annex 1),
CHP
ij the excitation/de-excitation by heavy-particle collisions, and IHPij the ionization

by heavy-particle collisions.
In the framework of the general set of (6.22), the distribution of atomic popu-

lations over the various charge states is readily obtained from its detailed solution:

nZ ¼
XNZ

jZ¼1

njZ : ð6:29Þ

nZ is the population for the charge state Z. Heavy-particle collisions are usually not
very important in dense hot plasmas. However, there are a few important excep-
tions, e.g., the coupling of the H-like levels 2s1/2 and 2p1/2 via heavy-particle
collisions that might change the line ratio of the Lyman-alpha doublet (Boiko et al.
1985) because the energy difference between the levels 2s1/2 and 2p1/2 is very small
compared to the difference between the levels 2s1/2 and 2p3/2. Therefore, the cou-
pling to the level 2p3/2 is inefficient. Another example is the proton collisional
induced ionization of Rydberg levels in magnetic fusion plasmas (Rosmej and
Lisitsa 1998).

6.1 Generalized Atomic Kinetics of Non-Equilibrium Plasmas … 259



6.1.5 Statistical Charge State Distribution Based on Average
Occupation Numbers

It is evident from (6.22)–(6.29) that the calculation of the charge state distribution
can be very complex, in particular, for mid-Z or more heavy elements. It is therefore
of interest to develop simplified methods to estimate the charge state distribution
over the various shells (in particular for the more complex shells L,M, N, O, P). For
these purposes, a statistical model has been developed (Rosmej et al. 2002a) to
calculate the probability of the charge state distribution based on an average
occupation number:

f knð Þ ¼ Pn

2n2

� �kn


 1� Pn

2n2

� �2n2�kn


 2n2ð Þ!
2n2 � knð Þ!kn! : ð6:30Þ

f knð Þ is the probability to find kn-electrons 0� kn � 2n2ð Þ in quantum shell n (K-
shell: n = 1, L-shell: n = 2, M-shell: n = 3 etc.) if the average non-integer popu-
lation is Pn. Figure 6.6 shows the charge state distribution for L-,M- and N-shell for
various different averaged populations Pn.

It can be seen from Fig. 6.6 that if the average occupation number is Pn ¼ n2 the
probabilities are centered around the maximum probability at kn ¼ Pn and that the
maxima are far from 1, e.g., for the L-shell, we find a maximum at 0.273, M-shell at
0.185, and N-shell at 0.141. At the same time, the charge state distribution becomes
more wider from L-shell to M-shell to N-shell. The calculations for Pn ¼ 2n2 � 1
show that even at such high-shell occupation, the maximum fraction for the cor-
responding charge state is much below 1, only for the case of almost complete shell
occupation, fractions near 1 are encountered (see calculations for Pn ¼ 2n2 � 0:5).

The charge state distribution can be visualizedwith the spectral distribution. This is
demonstrated in Fig. 6.7 via the inner-shell X-ray transitions of type 1s12sn2pm !
1s22sn2pm�1 þ �hx for copper. The spectral distribution I xð Þ has been calculated from

I xð Þ ¼
X2n2
kn¼0

f knð Þ 

X
i;j

�hxðknÞ
ji 
 gðknÞj 
 AðknÞ

ji 
 u x;xðknÞ
ji

� �
; ð6:31Þ

Fig. 6.6 Charge state distribution of L-, M- and N-shell for various averaged populations Pn
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where gðknÞj is the statistical weight of level j in charge state kn, A
ðknÞ
ji is the transition

probability from level j to level i in charge state kn and �hxðknÞ
ji is the corresponding

transition energy.

6.2 Characteristic Time Scales of Atomic and Ionic
Systems

The development of short-pulse lasers (optical and free electron lasers) allows to
study systems that are highly out of equilibrium and it is therefore of great interest
to study the general properties of the radiating atoms and ions for time-dependent
perturbations. It turns out that two principle time scales can be identified: the
characteristic time scale to establish an ionization balance and the characteristic
time scale of photon emission.

6.2.1 Characteristic Times to Establish Ionization Balance

The time-dependent response properties can be studied in the framework of a
two-level atom considering the level “Z + 1” and “Z” of Fig. 6.3. Equation (6.7)
then takes the form:

@nZ
@t

¼ �nZneIZ;Zþ 1 þ nZþ 1 n2eTZþ 1;Z þ neRZþ 1;Z þ neDZþ 1;Z
� �

: ð6:32Þ

For the two-level atom, the normalization condition (closure relation) reads

Fig. 6.7 Spectral distribution
of inner-shell X-ray
transitions 1s12sn2pm !
1s22sn2pm�1 þ �hx for various
averaged L-shell populations
P2 ¼ 1; 4; 7
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nZ þ nZþ 1 ¼ 1; ð6:33Þ

which means that the probability to find the atom either in state “Z” or in state
“Z + 1” is equal to one. Inserting (6.33) into (6.32), we obtain:

@nZ
@t

¼ �nZaþ b; ð6:34Þ

where

a ¼ neIZ;Zþ 1 þ n2eTZþ 1;Z þ neRZþ 1;Z þ neDZþ 1;Z; ð6:35Þ

b ¼ n2eTZþ 1;Z þ neRZþ 1;Z þ neDZþ 1;Z: ð6:36Þ

If the rate coefficients and the electron density do not depend explicitly on time,
the differential equation (6.34) has an analytical solution:

nZ tð Þ ¼ aebt þ c: ð6:37Þ

Let us consider a rapid cooling process (e.g., a recombining plasma when the
laser interaction is switched off) where all initial populations are in the state nZþ 1:

nZ t ¼ 0ð Þ ¼ 0; ð6:38Þ

nZþ 1 t ¼ 0ð Þ ¼ 1: ð6:39Þ

Inserting (6.37) into (6.34), we obtain for t = 0:

ab ¼ �aa� acþ b: ð6:40Þ

Inserting (6.38) into (6.37), it follows

aþ c ¼ 0: ð6:41Þ

An additional equation can be obtained remembering that at t ! 1 a physical
solution must be finite. Inserting (6.37) into (6.34), we obtain:

abebt ¼ �a aebt þ c
� �þ b: ð6:42Þ

In order to select finite solutions for t ! 1, we must request b < 0:

c ¼ b
a
: ð6:43Þ

From (6.40), (6.41), (6.43), we obtain all further integration constants:
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a ¼ � b
a
; ð6:44Þ

b ¼ �a: ð6:45Þ

The final solution (6.37) is therefore:

nZ tð Þ ¼ b
a

1� e�atð Þ: ð6:46Þ

Equation (6.46) shows that the cooling process which populates the level nZ has
a characteristic time scale:

1
a
¼ sZ;Zþ 1 ¼ 1

neIZ;Zþ 1 þ n2eTZþ 1;Z þ neRZþ 1;Z þ neDZþ 1;Z
: ð6:47Þ

A similar result can be obtained for rapid heating. Therefore, even sudden
cooling/heating processes do not lead to a sudden response of the atomic level
populations. It is important to note that the time scale for the ionization
process (Z) ! (Z+1) is not given by the inverse rate of ionization itself but rather
by the inverse of the sum of the ionization and all recombination process. This has
important numerical consequences for the time-dependent charge state evolution.
The physical reason is that equilibrium requests not only the equilibrium of the
atomic state that is ionized but also the equilibrium of those levels that are popu-
lated by ionization. From these levels, however, recombination processes originate
which request to be in equilibrium with these processes too.

In order to obtain more insight in the meaning of (6.47), let us rewrite the
equation in the following form:

sZ;Zþ 1 ¼ 1
ne


 1
IZ;Zþ 1 þRZþ 1;Z þDZþ 1;Z þ neTZþ 1;Z

: ð6:48Þ

If three-body recombination is negligible (Corona model), the characteristic time
scale (6.48) is inversely proportional to the electron density:

lim
ne!0

sZ;Zþ 1 ¼ 1
ne


 1
IZ;Zþ 1 þRZþ 1;Z þDZþ 1;Z

/ 1
ne

: ð6:49Þ

Therefore, the characteristic time scale for low-density plasmas can be very long.
Although each ionization stage and each element has, in principle, its own char-
acteristic time scale according to (6.48), numerical calculations demonstrate,
however, that rather general time constants can be identified (Rosmej 1997; 2001;
2006). For example, the characteristic time constant of the K-shell of highly
charged ions is given by
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sZ;Zþ 1 K � shellð Þ � 1012 cm�3s
ne cm�3ð Þ ð6:50Þ

that is rather insensitive of the temperature and the atomic element. This can be
directly understood from (6.48) that contains the sum of the recombination and
ionization processes: at high temperature ionization is dominating, whereas at low
temperature recombination processes dominate so that the sum of all these pro-
cesses is finally not strongly dependent on temperature.

6.2.2 Characteristic Times of Photon Emission

We consider now the transient evolution of photon emission according to Fig. 6.8.
The relevant set of differential equations is given by

@nj
@t

¼ �nj Aji þ neCji
� �þ nineCij; ð6:51Þ

ni þ nj ¼ 1; ð6:52Þ

which means that the probability to find the atom either in state “i” or in state “j” is
equal to one. Inserting (6.52) in (6.51), we obtain:

@nj
@t

¼ �njaþ b; ð6:53Þ

where

a ¼ neCij þAji þ neCji; ð6:54Þ

b ¼ neCij: ð6:55Þ

The analytical solution of the differential equation (6.53)–(6.54) is given by

Fig. 6.8 Schematic of a
two-level atom
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nj tð Þ ¼ aebt þ c: ð6:56Þ

Let us consider a rapid cooling process and an initial condition

nj t ¼ 0ð Þ ¼ 1: ð6:57Þ

The analytical solution of the differential equation (6.53)–(6.57) is then given by:

c ¼ b
a
; ð6:58Þ

a ¼ 1� b
a
; ð6:59Þ

b ¼ �a ð6:60Þ

and the time-dependent upper-level density is given by

nj tð Þ ¼ 1� b
a

� �
e�at þ b

a
: ð6:61Þ

As can be seen from (6.61) the cooling process that populates the level nj has a
characteristic time scale:

1
a
¼ sj ¼ 1

Aji þ neCji þ neCij
: ð6:62Þ

Therefore, a sudden cooling does not lead to a sudden response of the atomic
level populations and the radiative decay. At very low densities, the relaxation
constant is given by

sj � 1=Aji: ð6:63Þ

Equation (6.63) is principally different from (6.48). Even for low densities, the
relaxation time can be very small due to the radiative decay rate. The relaxation
constant of allowed transitions between principal quantum numbers can be esti-
mated from the following expression (n, m are principal quantum numbers, m > n)
(Cowan 1981):

Amn ¼ A m ! nð Þ � 1:57� 1010Z4
eff

nm3 m2 � n2ð Þ ½s�1	: ð6:64Þ

Note that (6.64) is valid only for allowed dipole transitions without any change
in spin quantum number. In a multilevel system, all radiative decay rates to the
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lower levels have to be considered for the relaxation constant (Sobelman and
Vainshtein 2006):

Am ¼
X
n

A m ! nð Þ � 7:79� 109Z4
eff

m5 ln
m3 � m

2

� 	
½s�1	: ð6:65Þ

6.2.3 Collisional Mixing of Relaxation Time Scales

Equations (6.61), (6.62) show that the population of levels which decay radiatively
is strongly density-dependent if the rates of collisional processes are of the order of
the radiative decay rate. In this case, the characteristic time scales for photon
emission are strongly density-dependent. Moreover, in a multilevel system, colli-
sions might transfer population from levels with different relaxation constants, the
so-called Mixing of Relaxation Times (Rosmej and Rosmej 1996; Rosmej 2012).
This can have very important impact on the time-dependent radiative properties. For
example, in a multilevel system, a metastable level can “feed” a resonance emission
for a long time via collisions. This phenomenon is demonstrated in Fig. 6.9 for a
rapidly cooled argon plasma. The multilevel collisional radiative simulations are
carried out with the MARIA code (Rosmej 1997, 2001, 2006, 2012) for Zn = 18 at
ne = 1021 cm−3 and rapid cooling from kTe = 2000 eV to kTe = 500 eV.

The shortest relaxation time is those of the He-like resonance line
s(W) � 9 � 10−15 s (indicated by the arrow at the first step in Fig. 6.9). The next
step is due to a collisional coupling between the levels 1s2p 1P1 and 1s2s 1S0.

Fig. 6.9 Collisional mixing of relaxation times of the He-like levels 1s2s 3S1, 1s2s
1S1, 1s2p

3P2,
1s2p 3P1, 1s2p

3P0, 1s2p
1P1. The simulations show the collisional mixing of the relaxation times

for the He-like resonance line W = 1s2 1S0–1s2p
1P1 and the He-like intercombination line

Y = 1s2 1S0–1s2p
3P1. Simulations are carried out with the MARIA code (Rosmej 1997, 2001,

2006, 2012) for argon, Zn = 18 at ne = 1021 cm−3 and rapid cooling from kTe = 2000 eV to
kTe = 500 eV
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The relaxation time of the 1s2s 1S0-level is determined by the two-photon decay
s(2E1) � 3 � 10−9 s as well as by collisions. At an electron density of ne =
1021 cm−3, the relaxation time of the 1s2s 1S0-level is determined by collisions
(rate coefficient C(1s2s 1S0–1s2p

1P1) � 2 � 10−9 cm3 s−1). The effective relax-
ation time is therefore about s(1s2s 1S0) � 4 � 10−13 s as indicated by the arrow
“1s2s 1S0” (giving rise to the second step at about t = 10−13–10−12 s). The last step
is due to the establishment of ionization equilibrium: the recombination rate from
the H-like to He-like ions at kTe = 500 eV is about R � 4 � 10−12 cm3 s−1, giving
a relaxation time of about s(1s 2S1/2) � 3 � 10−10 s. This is indicated by the arrow
“1s 2S1/2”. Almost stationary conditions are achieved at times larger than 1 ns,
providing s(1s 2S1/2) ne � 1 � 1012 cm−3 s. These numerical results are in good
agreement with (6.50).

Due to the strong Z-scaling of intercombination and forbidden transitions
(Z8

eff . . .::Z
10
eff , contrary to the Z-scaling of allowed dipole transitions with Z4

eff ), the
relaxation steps depicted in Fig. 6.9 may change by many orders of magnitude for
different elements. Therefore, in transient dense plasmas, collisional processes do
not lead only to a transfer of population but also to a mixing of relaxation times.
This can result in a considerable prolongation of the radiation emission. Let us, for
example, consider the intercombination line of He-like argon ions as an example:
the radiative relaxation time is s(Y = 1s2–1s2p 3P1) � 6 � 10−13 s, however, the
fine structure 1s2l 3L is metastable and decays by magnetic multipole transitions
with very long relaxation times: s(Z = 1s2−1s2s 3S1) � 2 � 10−7 s and s(X = 1s2–
1s2p 3P2) � 3 � 10−9 s. It is therefore possible that the intercombination line
emission has a collisionally enhanced relaxation time by about five orders of
magnitude compared to the radiative relaxation time of the Y-line itself (indicated
by the vertical arrow “1s2l 3L” in Fig. 6.9). This can lead to very long-lasting
intercombination line emission in cooling plasmas like, e.g., in laser-produced
plasmas and Z-pinch plasmas. This effect has been observed with X-ray streak
camera measurements in a dense plasma focus experiment (Lebert et al. 1995):
intercombination line emission over time scales of the order of some 0.1 ns are
observed.

Figure 6.9 demonstrates, likewise, that the intercombination line intensity in the
time interval of about 10−13 − 10−9 s is much stronger than those of the resonance
line. This effect has likewise been observed in experiments (Lebert et al. 1995). It is
important to note that inner-shell ionization (1s22l + e ! 1s2l 1,3L + 2e) may
explain at maximum three times larger intensities of the intercombination line
compared to the resonance line (due to the ratio of the statistical weights of the
singlet and triplet systems) but is practically limited to about a factor of 2 due to
charge state distribution effects.

Therefore, collisional mixing of relaxation times explains simultaneously up to
order of magnitude different intensities in certain time intervals and very
long-lasting emission. Both effects have been simultaneously observed in experi-
ments of a dense argon pinch during its transition from the column to the micro-
pinch mode (Lebert et al. 1995). The time-dependent measurement has been

6.2 Characteristic Time Scales of Atomic and Ionic Systems 267



performed with the help of an X-ray streak camera coupled to a X-ray Bragg
crystal, and time-dependent observation of the spectral distribution containing the
X-ray intercombination and resonance line emissions Y = 1s2−1s2p 3P1 and
W = 1s2−1s2p 1P1.

6.3 Reduced Atomic Kinetics

6.3.1 Ground States, Single-Excited and Autoionizing
Levels: General Considerations

The atomic structure of multielectron atoms is rather complex, and the large number
of levels is often prohibitive for numerical solution of the population kinetic
equations. This is essentially due to the large number of autoionizing states that
have to be explicitly involved in dense plasmas in order to reasonably approximate
the dielectronic recombination to get right the ionic charge state distribution. It is
important to underline that the dielectronic recombination rates calculated by, e.g.,
the Burgess formula and other similar approaches (see Chap. 5) are strictly only
applicable in Corona plasmas, where density effects do not play an important role.
There are principally two different density effects:

I. Due to collisional excitation also single-excited states are subjected to
dielectronic capture (see Sect. 5.6.2.3 “Excited states driven dielectronic
recombination”, comparison of Tables 5.5 and 5.6).

II. In dense plasmas, electron collisions may redistribute population between the
autoionizing levels, thereby changing the dielectronic recombination after
dielectronic capture. This invalidates in general the assumption made for using
branching factors [see (5.130)] that do not depend on density and therefore
invalidates the use of the simple dielectronic recombination formulas. In order
to take into account the density effects among the autoionizing states, all
autoionizing levels have to be included explicitly in the population kinetics.

As the number of autoionizing levels is excessively larger than the number of
ground and single-excited states, the numerical load to solve the population kinetic
equations in dense hot plasmas is finally dominated by the number of the autoion-
izing states. Currently, there are essentially three different methods in use to handle a
large number of levels (thousands up to millions of levels) in population kinetics:

(1) Averaged models of the Fermi type and its various modifications. These models,
however, are not very useful for high-resolution spectroscopy and related
plasma diagnostics. They are usually employed for equation of state and opacity
simulations (Lieb and Simon 1977; Piron and Blenski 2011). So-called plasma
atomic models (Demura et al. 2013) have recently been proposed to extend
statistical models to plasma diagnostic precision (to be discussed in Chap. 9).
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(2) The super-configuration methods where numerous levels are lumped together
via to a certain coupling scheme (Bar-Shalom et al. 1995; Bauche et al. 2006;
Abdallah and Sherrill 2008; Hansen et al. 2011). As details of the level
structure are suppressed, high-resolution spectroscopic applications are very
challenging (a discussion with respect to dielectronic satellite transitions can be
found in (Petitdemange and Rosmej 2013).

(3) The virtual contour shape kinetic theory (VCSKT) that is based on a probability
formalism to account for collisional–radiative effects in complex autoionizing
configurations (Rosmej 2006). VCSKT allows for a maximum reduction of
autoionzing levels in population kinetics (in the limit to one autoionizing level
for a certain configuration instead of all detailed autoionizing levels, e.g., the
274 LSJ-split autoionizing levels 1s3l5l′ are replaced by just one level) while
maintaining the details of all transitions (e.g., means all detailed transitions
originating from the 274 levels of the 1s3l5l′-configuration) with respect to their
existence and to their distribution of oscillator strengths over frequency. This
allows maximum simplification in the population kinetics while maintaining
maximum information in the spectral distribution (e.g., necessary for diagnostic
applications).

6.3.2 The Virtual Contour Shape Kinetic Theory (VCSKT)

6.3.2.1 Exact and Reduced Kinetics

Due to the important practical difference between autoionizing states and
single-excited states, it is convenient to first reformulate the population kinetics and
corresponding spectral distribution explicitly with respect to autoionizing states. Let
us start with the general expression for the spectral distribution:

I xð Þ ¼
XN
i¼1

XN
j¼1

�hxji 
 nj 
 Aji 
 uji x;xji; h
� �

; ð6:66Þ

where the indexes i; j run over all ground, single, and autoionzing states from all
charge states. N is the number of levels included in the model, nj is the population
of level j, xji is the frequency of the transition j ! i, Aji is the corresponding
spontaneous transition probability (of any multipole order for electric and magnetic
transitions), uji is the line profile, and h specifies the ensemble of parameters for the
line profile calculation (e.g., the ionic temperature, electron density, ion density,
etc.). The population nj of level j is determined from
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dnj
dt

¼ �nj 

XN
i¼1

Wji þ
XN
k¼1

nk 
Wkj ð6:67Þ

with

N ¼
XNa

a¼1

Na;a þ
XNb

b¼1

Nb;b: ð6:68Þ

Wij are the transition matrix elements [see also (6.25)–(6.28)] connecting the
discrete levels [i; j; k in (6.67)] in all ionization stages. If a particular transition j ! i
cannot occur because of energy or symmetry considerations, Wij ¼ 0. Na and Nb are
the total numbers of autoionizing-state and bound-state manifolds, respectively, and
Na;a and Nb;b are the numbers of levels in the individual autoionizing-state and
bound-state manifolds af g and bf g, respectively. These manifolds may be defined to
include states with the same principal quantum numbers but different
angular-momentum combinations, e.g., af g ¼ 1s3l5l0f g, Na;a ¼ 274,
bf g ¼ 1s3lf g, Nb;b ¼ 10. The number of possible angular-momentum combinations

Na;a can be enormous. Consequently, it is necessary to consider many thousands,
possibly millions of levels, even for combinations of only a few nl-configurations in
the evaluation of the radiative emission Ia xð Þ from the manifold af g of the
autoionizing states:

Ia xð Þ ¼
XN
i¼1

X
j2 af g

�hxji 
 nj 
 Aji 
 uji x;xji; h
� �

: ð6:69Þ

The difficulty associated with (6.66), (6.67) is that the retention of a reduced
number of autoionizing levels Na;a ! Nr

a;a in order that

Nr ¼
XNa

a¼1

Nr
a;a þ

XNb

b¼1

Nr
b;b ð6:70Þ

in the atomic-state kinetics leads to the omission of many emission lines in the
evaluation of (6.69). The multitude of original, detailed emission lines is thereby
replaced by a reduced set of artificial lines (with averaged intensities, line center
positions, and broadening parameters). Consequently, important spectral features
and plasma-parameter sensitivities can be lost as a result of this reduction
procedure.

We are therefore led to inquire, if (6.69) is the only possible form for the
determination of the spectral distribution. This is not only a fundamental question
but also one of great practical importance: the exact treatments of (6.67), (6.69)
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present a severe challenge for practical integrated calculations, which are needed to
provide spectroscopic/diagnostic accuracy for the radiation field generated by
inertial fusion and other dense plasmas. It is therefore highly desirable to develop
alternative methods.

6.3.2.2 The Probability Method for Boltzmann-like Populations

For the purpose of a more transparent presentation of the principal ideas, let us
consider the case

Na;a ! N1
a;a ¼ 1 ð6:71Þ

for which all autoionizing levels a are represented by only a single level in the
population kinetics described by (6.67), with a density na< and a statistical weight
ga< i0 2 Nð Þ:

Ia< xð Þ ¼ na<
ga<

XN
i0¼1

X
j2 af g

�hxji0 
 <j 
 Aji0 
 uji0 x;xji0 ; h
� �

: ð6:72Þ

Note that in (6.72) we have used the index i0 2 Nð Þ instead of i 2 Nð Þ because
after level reduction the overall level identification changes. A generalization of
(6.71) to several levels for the manifold af g is straightforward. As one can see from
the comparison of (6.69), (6.72), the dimensionless vector <j transforms the
averaged level na< to non-statistical individual populations nj. Practically, we seek
for a solution for <j that continuously transforms the individual level populations
from the Corona model to the Boltzmann case with increasing densities. For clarity
of the physical meaning of <j, let us first consider the trivial solution of (6.72):

<ðTÞ
j ¼ ga<

na<

 nj; ð6:73Þ

i.e., Equation (6.73) makes (6.72) equal to (6.69): in other words, <ðTÞ
j depends on

the exact individual population vector nj. A non-trivial solution for <j does not
invoke the exact solution for all nj (6.67), (6.68) but employs only the reduced
kinetics according to (6.67), (6.70), i.e.,

<j ’ <j na<ð Þ ð6:74Þ

from which the approximate individual populations are obtained according to

nðnÞj ’ na<
ga<


 <ðnÞ
j : ð6:75Þ
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The upper index (n) for nðnÞj and <ðnÞ
j indicates the approximate solutions of order

“n”. Equation (6.75) has a clear physical meaning. The first term in (6.75) for nðnÞj is
an individual level population according to the statistical assumption (the total
population is just divided by the total statistical weight), i.e., the population per

statistical weight. The second term, namely <ðnÞ
j provides a correction to the sta-

tistical population.
A solution of (6.75) can be obtained recalling that the radiation emission from

autoionizing states is primarily produced by four individual atomic mechanisms:
dielectronic recombination (D), inner-shell collisional excitation (C), collisional
coupling among the autoionizing levels af g (B), and couplings to all other levels
retained in the atomic kinetics (A). We therefore split <j into the respective con-
tributions ðj 2 a, k; l; q; s; t; u 2 reduced set of bound levels retained in the popu-
lation kinetics pertaining to the various excitation channels):

<j ¼
X
k

<ðDÞ
k;j þ

X
l

<ðCÞ
l;j þ<ðBÞ

j þ
X
q

<ðAÞ
q;j : ð6:76Þ

Within the manifold af g <ðBÞ
j describes collisions corresponding to no change in

the principal quantum number n, whereas <ðAÞ
q;j pertains to transitions with changes

in n:

<ðA;BÞ
q;j �

Z1
DE

rðA;BÞq;j Eð Þ 
 F Eð Þ 
 dE: ð6:77Þ

DE is the energy threshold, F Eð Þ is the electron energy distribution function and r
the cross section. For the majority of relevant transitions

rDn¼0 � rDn[ 0: ð6:78Þ

We therefore neglect detailed collisional processes between different n-quantum

numbers from and to the manifold af g and approximate <ðAÞ
q;j by

<ðAÞ
q;j �

X
X

<ðXÞ
q;j : ð6:79Þ

The symbol X denotes additional (to D and C type) processes, e.g., direct
radiative recombination, three-body recombination, charge transfer, and ionization.
Accordingly, (6.74) generalizes the standard processes of dielectronic recombina-
tion and inner-shell excitation (Gabriel 1972; Jacobs and Blaha 1980) to further
excitation channels (X). Equations (6.74), (6.75) reduce the complex redistribution
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effects to collisional processes with the manifold af g only. Processes (D), (C), and
(X) are therefore decoupled from the detailed level populations according to (6.67),
(6.70). This permits the derivation of an analytical solution for the elements <j

c ¼ D;C;Xð Þ:

<ðBÞ
j ¼ gjqjbj; ð6:80Þ

<ðcÞ
k0;j ¼ 1� qj

� �
gj R

ðcÞ
k0;j: ð6:81Þ

In Maxwellian plasmas, bj is the Boltzmann factor. qj describes the degree of
collisionality over radiative and autoionization processes and is given by

qj ’ 1�
PN

i00¼1 Aji00 þ
P

k Ck;j

mðredisÞj þ PN
i00¼1 Aji00 þ

P
k Ck;j

; ð6:82Þ

where mðredisÞj is a characteristic collision frequency for level j and Ck;j is the
autoionization rate of level j via channel k. Taking into account all details of the
atomic data via the index j in (6.72), (6.82) even metastable level features are

recovered. The strengths RðcÞ
k0;j from (6.81) can be derived by considering the

low-density limit. In this limit, the spectral distribution, which is defined by (6.69),
can be exactly evaluated as the sum of the contributions from all individual exci-
tation channels as follows:

Ia xð Þ ¼
XN
i0¼1

X
j2 af g

X
c;k0

�hxji0nen
ðcÞ
k0 ch ik0juji0 x;xji0 ; h

� � 
 Aji0PN
i00¼1 Aji00 þ

P
k Ck;j

; ð6:83Þ

where nðcÞk0 are the population densities of the initial states in various excitation
channels (c) and ch ik0j are the corresponding individual collisional excitation rate
coefficients, k0 2 k; l; q, i.e., k0 is an index in the reduced set of bound levels [see
(6.76)]. The link of (6.83) to (6.72) can be accomplished via (6.76, 6.79) approx-
imating na;< from (6.67), (6.70), (6.72) by

na< 

X
s

�Aa<;s þ
X
t

�Ca<;t þ
X
X;u

Xh ia<;u
( )

’
X
k00

X
c0

nðc0Þk00 
 c0h ik00;a<: ð6:84Þ

�Aa<; s, �Ca<;t and Xh ia<;u are effective depopulation rates that decrease the level
density na< due to radiative decay, autoionization (decay of level “a<” to level “t”),
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and processes (X), while ch ik;a< are effective population rates that increase the level
density na< due to the processes (c):

ch ik;a< ¼
X
j2 af g

ch ik;j; ð6:85Þ

�Aa<;s ¼ 1
ga<



X
j2 af g

nj 
 Ajs; ð6:86Þ

�Ca<;t ¼ 1
ga<



X
j2 af g

nj 
 Ct;j; ð6:87Þ

Xh ia<;u ¼
1
ga<



X
j2 af g

nj 
 Xju: ð6:88Þ

As can be seen from (6.85), the effective population rate is given just by the sum
of all detailed population rates. The depopulation rates are more complex as they
request the knowledge of the individual populations that are expressed in terms of
the vector <j from (6.75). With the help of (6.86)–(6.88), we can now determine the

strengths RðcÞ
k0;j from (6.81). Inserting (6.81) and (6.84) into (6.72) and equating the

result with (6.83) we obtain

RðcÞ
k0;j ¼

nðcÞk0 ch ik0;jP
k00
P

c0 n
ðc0Þ
k00 c0h ik00; a<


 ga<
gj



P

s
�Aa<; s þ

P
t
�Ca<; t þ

P
X;u Xh ia<; uPN

i00 Aji00 þ
P

k Ck;j
:

ð6:89Þ

The strength parameter RðcÞ
k0;j has a clear physical meaning: it determines the

strength to populate level j from level k0 via the elementary process (c) in the

Corona limit while the strength parameter <ðcÞ
k0;j ¼ 1� qj

� �
gjR

ðcÞ
k0;j from (6.81)

determines this strength for arbitrary density.
According to (6.80)–(6.82), the intermediate densities and corresponding

redistribution among the individual levels are determined via a probability method:
qj is the probability for level j to be “Boltzmann-like” (see (6.80), while 1� qj is
the probability for level j to be “non-Boltzmann-like” [see (6.81)]. Therefore, the
redistribution among the levels from the manifold af g that is a complex interplay
between collisional–radiative and autoionization processes is replaced by the
individual probabilities from (6.82). The system of equations is closed, if the
individual densities nj from (6.86)–(6.88) are replaced by the approximate indi-
vidual populations from (6.75).
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6.3.2.3 Maximum Recovery Properties and Convergence Properties

In order to solve the system of (6.67), (6.70), the effective depopulation and pop-
ulation rates from (6.85)–(6.88) have to be specified. The system (6.67), (6.70) can

be initially set up assuming qð0Þj ¼ 1 (the upper index specifies the iteration num-
ber). According to (6.76), (6.79), (6.80), (6.81), this corresponds to:

<ðBÞ;ð0Þ
j ¼ gjq

ð0Þ
j bj ¼ gjbj; ð6:90Þ

<ðcÞ;ð0Þ
k0;j ¼ 1� qð0Þj

� �
gjR

ðcÞ
k0;j ¼ 0 ð6:91Þ

from which it follows [see (6.76)]

<ð0Þ
j ¼ <ðBÞ;ð0Þ

j ¼ gjbj: ð6:92Þ

According to (6.75), this corresponds to an individual level population of

nð0Þj ’ na<
ga<


 <ð0Þ
j ¼ na< 
 gj

ga<

 bj ¼ na< 
 gj

ga<

 exp �DEj;a<=kTe

� �
; ð6:93Þ

i.e., the Boltzmann population. The system of (6.67), (6.70) is therefore initially set
up with statistical/Boltzmann averaged rate coefficients. The population densities

nðcÞ;ð0Þk are then used in (6.89) to calculate non-statistical vectors Rð1Þ
j from (6.81),

(6.82) and non-statistical depopulations rates from (6.86)–(6.88) and so on. The
numerical calculations show extremely rapid convergence, in fact, already the
0-iteration (mean no iteration in the set of (6.67), (6.70) providing the first

non-statistical approximation Rð1Þ
j ) provides a very good approximation to the

spectral distribution.
In order to demonstrate the maximum efficiency of the virtual contours shape

kinetic theory (VCSKT), let us consider the extreme case

Na;a ! Nr
a;a ¼ 1 ð6:94Þ

for which all autoionizing levels fag are represented by only a single level in the
population kinetics described by (6.67), with a density na< and a statistical weight
ga< i0 2 Nð Þ. We consider also examples where (D) and (C) driven dielectronic
satellite transitions are well separated: model inaccuracies are not masked by line
overlapping and a stringent test for the accuracy of VCSKT is provided. We
likewise chose parameter intervals so large that all experimental situations of
interest are covered.

Figure 6.10 displays the spectral range of the He-like resonance line
W ¼ Hea ¼ 1s2p 1P1 ! 1s2 1S0, intercombination line, Y ¼ 1s2p 3P1 ! 1s2 1S0
and Li-like dielectronic satellites 1s2l2l0 LSJ ! 1s22l L0S0J 0. This spectral range is
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of particular interest for spectroscopic diagnostics (Gabriel 1972; Boiko et al. 1985;
Rosmej 1997; Rosmej 2012; Glenzer et al. 1998). The agreement is found to be
very good: first, although large temperature variations are considered, the relative
intensity between the He-like resonance line W and the satellite transitions is very
well described. This demonstrates the correct connection between the reduced
atomic kinetics description of (6.67), (6.70), (6.85)–(6.88) and the recovered
spectral distribution of (6.72). Second, in Fig. 6.10a, the plasma density is too low

for titanium to couple the autoionizing levels via <ðBÞ
j . Therefore, correct intensities

driven by dielectronic recombination and inner-shell excitation show the correct
distribution over excitation channels (6.76), (6.79), (6.81). Third, the intensity
redistribution among the transitions due to collisions (Jacobs and Blaha 1980;
Petitdemange and Rosmej 2013) is correct over many orders of magnitude.
Therefore, the probability method for Boltzmann-like populations (6.80)–(6.82)
provides a very satisfactory approximation.

Let us study the probability method for Boltzmann-like populations with another
important example, namely the 1s2l3l′-satellites near Heb ¼ W3 ¼ 1s3p 1P1 !
1s2 1S0 that have been employed in gas-bag experiments to control the uniformity of
the compression toward near-solid density (Woolsey et al. 1997) and in dense
laser-produced plasmas to characterize non-Maxwellian effects (Rosmej et al.
2001). Figure 6.11a shows a near-solid density case, Fig. 6.11b an intermediate
density case, and Fig. 6.11c shows a low-density (corona) case. The agreements

Fig. 6.10 Spectral
distributions of the He-like
resonance line W,
intercombination line Y and
Li-like 1s2l2l′-satellites of
titanium for various
temperatures and densities.
The simulations with the
VCSKT with maximum
reduction, i.e., Nr

a;a ¼ 1, show
overall very good agreement
with the exact solutions
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between the results of the exact simulations and the predictions of VCSKT over
many orders of magnitude in density are remarkable and demonstrate the efficiency
of the probability method for Boltzmann-like populations.

6.3.2.4 Broadening Properties of Complex Emission Groups

Let us consider the broadening properties of the emission from the manifold af g.
Unlike the broadening of a single line, the broadening of the total contour is
determined by the broadening of a single transition from af g and also by the
number of transitions with their respective line center positions. In VCSKT, the last
effect is treated exactly, because all transitions with their exact line center positions
are retained in the summation, based on (6.83). In (Rosmej and Abdallah 1998), a
Voigt profile representation was proposed for uij with a Lorentz width given by

DxðLÞ
ji ¼

X
k

Ajk þCjk þCjk
� �þ X

l

Ail þCil þCilð Þ: ð6:95Þ

Fig. 6.11 Spectral
distributions of the Li-like
1s2l3l′-satellites (near Heb) of
aluminum for various
densities. The simulations
with the VCSKT with
maximum reduction, i.e.,
Nr
a;a ¼ 1, show overall very

good agreement with the
exact solutions
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The inelastic collision rates Cjk can be approximated by a unique frequency mðaÞeff ,
i.e.,

DxðLÞ
ji ’

X
k

Ajk þCjk
� �þ X

l

Ail þCilð Þþ mðaÞeff : ð6:96Þ

Figure 6.11 shows the results of simulations using width expression according to

(6.95) (solid curves) and (6.96) (dashed curves): mðaÞeff is found to provide a good
agreement for the broadening of the total satellite contour. We note that
the expression for the width according to (6.96) readily permits further
sophistications via the introduction of additional effective width expression

mðaÞeff ! mðaÞeff þ mðaÞeff;1 þ . . .. We note that also Stark broadening effects could be
incorporated in this approach (Rosmej et al. 2002b).

6.3.2.5 Response Properties of VCSKT to Hot Electrons

We consider now the response properties of the VCSKT with respect to hot elec-
trons that have important impact on the radiative properties of matter, in particular,
in inertial confinement fusion ICF and high-intensity laser-produced plasmas. The
hot electron fraction is defined as follows (Rosmej 1997):

fhot ¼ ne;hot
ne;hot þ ne;bulk

; ð6:97Þ

where Thot and Tbulk are the “bulk” and “hot” electron temperature, respectively.
Figure 6.12 shows the Lyman-alpha satellite emission 2l2l0 ! 1s2lþ �hxsatellite

of non-Maxwellian and optically thick argon plasmas. A group of transitions is
appreciably populated by hot electrons via the inner-shell excitation process

Fig. 6.12 Spectral
distributions of the He-like
2l2l′-satellites (near Lya) of
argon for dense plasmas
containing hot electrons for
kTbulk = 500 eV,
kThot = 20 keV, ne,tot = ne,bulk
+ ne,hot = 1023 cm−3, effective
plasma size Leff = 10 lm. The
simulations with the VCSKT
with maximum reduction, i.e.,
Nr
a;a ¼ 1, show overall very

good agreement with the
exact solutions
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1s2lþ e ! 2l2l0 þ e (indicated by the arrow in Fig. 6.12). The results of exact and
analytical non-Maxwellian VCSKT simulations are found to be in very good
agreement. This indicates that preferential population via single channels (c) (e.g.,
the inner-shell excitation driven by hot electrons) is very well described by (6.81).

Equations (6.80), (6.81) can be regarded as providing a virtual contour shape Ia<
and population kinetics description (VCSK): the strengths of channels (c) are

redistributed by the action of <ðBÞ
j and <ðcÞ

k0;j from (6.80, 6.81). The levels fag are

thereby decoupled from the atomic kinetics while retaining the details of all indi-
vidual transitions according to (6.83).

An important property of the VCSKT is that (6.79)–(6.89) are exact in the
high-density limit, as well as in the low-density limit. Consequently, VCSKT is
applicable for all kinds of plasma conditions. Equation (6.83) together with (6.79)–
(6.89) differs from the spectral distribution obtained from common reduction
schemes, e.g., (Bar-Shalom et al. 1995; Bauche et al. 2006; Abdallah and Sherrill
2008; Hansen et al. 2011). In these schemes, the reduction of the atomic kinetics is
also applied to the evaluation of (6.66), and therefore the reduced number of levels

NðrÞ
a;a ¼ 1 (e.g., the maximum reduction possible and applied for all examples of

Figs. 6.10, 6.11, 6.12) would then result in the retention of only a single-line
transition for each lower state i0. Practically, all information from the detailed
spectral distribution would be lost. However, (6.83) together with (6.76)–(6.89)
recovers all spectral details via the summation over the full manifold af g from the
reduced population na< via <j na<ð Þ. VCSKT generates therefore a detailed,
unreduced spectral distribution from a reduced description of atomic level popu-
lation kinetics. This is of fundamental interest for the atomic radiative properties
and also of great practical importance because VCSKT reduces the computational
effort by orders of magnitude. VCSKT could therefore be especially promising for
applications: fully integrated simulations with diagnostic accuracy for the most
complex configurations (e.g., hollow atoms/ions) become feasible.

6.4 Two-Dimensional Radiative Cascades Between
Rydberg Atomic States

Many physical applications require calculations of radiative cascade between highly
excited atomic states. Examples include calculations of the level populations and
line intensities of hydrogen and ionized He(II) in interstellar gas plasmas (nebulas)
(Seaton 1959; Pengelly 1964; Summers 1977; Grin and Hirata 2010), spectral line
calculations for highly stripped ions in hot rarefied plasmas whose levels are
populated by the processes of charge transfer (Abramov et al. 1987), or dielectronic
recombination (Sobelman and Vainshtein 2006) as well as natural lasing (Strelnitski
et al. 1996; Messenger and Strelnitski 2010). Several analytical and numerical
techniques for calculating the parameters of radiative cascades were developed and
discussed (Seaton 1959; Pengelly 1964; Summers 1977; Biberman et al. 1982;
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Kukushkin and Lisitsa 1985; Flannery and Vrinceanu 2003; Sobelman and
Vainshtein 2006; Grin and Hirata 2010).

Many works deal with one-dimensional radiative cascades, in which the popu-
lations fnl of atomic states with different orbital quantum numbers l are assumed to
be determined by their statistical weights: fnl ¼ fn 
 ð2lþ 1Þ=n2, where the function
fn depends only on the principal quantum number n and corresponds to the total
(with respect to l) level population. The radiative transitions in such a consideration
thus occur between levels with a definite n, and the corresponding probabilities
Wðn ! n0Þ are obtained by averaging the probabilities Wðnl ! n0l0Þ over l and l0

(this is called the n-method). Pengelly (Pengelly 1964) and Summers (1977) have
carried out numerical calculations for two-dimensional cascades, i.e., dealing with
the populations of the individual nl-levels (this is called the nl-method). In the work
of (Summers 1977) also collisional transitions are considered making it difficult to
trace the role of radiative cascades using his data.

The amount of data and the complexity of the numerical calculations in the nl-
method clearly increase with the number of levels considered. Moreover, even in
numerical calculations, one ought to treat levels with large principal quantum
number up to about n� 102 (cf., e.g., [Sobelman and Vainshtein 2006)]. For large
principal and orbital momenta, scaling relations need to be invoked to calculate the
cascade matrix and the error increases with the increase of n and l (Grin and Hirata
2010). It has been demonstrated (Pengelly 1964) that already for n = 5 considerable
deviations are encountered. On the other hand, just for n � 1 and l � 1, the
radiative transition probabilities could be accurately described by quasi-classical
methods, and in particular by the Kramers Electrodynamics. This is realized due to
the good agreement between quasi-classical results and quantum numerical calcu-
lations. We will show below that the description of radiative cascade based on the
quasi-classical approach leads to manageable analytic solutions which are in good
agreement with quantum numerical calculations. These solutions also allow iden-
tification of the parameters in terms of which the numerical data can be interpreted
in a consistent, unified way without recourse to laborious numerical methods.

Apart from its practical significance, the study of radiative cascades between
Rydberg states is of general physical interest: it can shed light on the relative
importance of direct and cascade populations of atomic levels and on the interre-
lation between quantum mechanical and classical descriptions of electron motion
along the atomic levels. Indeed, the problem can be solved in two extreme cases:

(1) The nl-state may be assumed to be populated directly by a source qnl, after
which it decays with a probability Anl into all of the lower-lying states; the
population will then be equal to qnl=Anl (this is the direct population model).

(2) One may assume that the electron can reach a certain nl-level only by downward
cascading through all of the upper-lying states (the cascade population model).

The latter approach is closely related to the classical concept of motion in nl-space,
in which the electron motion is associated with a gradual loss of energy
E ¼ �Ry=n2ð Þ and angular momentum M ¼ �hðlþ 1=2Þ½ 	 at a rate which is
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determined by corresponding classical quantities (Landau and Lifschitz 2000). This
classical description has been employed (Belyaev and Budker 1958) for the treatment
of radiative cascades; this method is equivalent to using the equation of continuity in
phase space for the population f ðE;MÞ. On the other hand, it was shown (Beigman
and Gaisinsky 1982; Beigman 2001) that the classical “flow” description with respect
to the energy variableE is invalid: the electron alwaysmoves in quantum-mechanical
jumps. It is therefore of interest to examine the regions of nl-space within which the
electron can be considered to move classically or by quantum jumps.

Of particular interest is the cascade population in the case of a photorecombi-
nation source of external population when the free electrons with an equilibrium
(Maxwellian) energy distribution populate the bound atomic states, and the radia-
tive transitions determine both the population source and the subsequent radiative
cascade. It is noteworthy that the distribution of the atomic electrons with respect to
the orbital quantum number l is by no means always proportional to statistical
weights, even if the source of electrons populating the levels is in equilibrium
(Pengelly 1964).

6.4.1 Classical Kinetic Equation

Following (Belayev and Budker 1958), we will use canonically conjugate
action-angle variables to analyze the classical kinetic equation for the electron
distribution function (DF) in an atom or ion. These variables are most convenient
because the characteristic time of action variables variation for a radiating electron
is appreciably larger than the period of electron motion (the latter is the charac-
teristic time of the variation of the angles variables). That is why the DF may be
regarded as independent of the angle variables. We shall take the initial kinetic
equation to be the continuity equation in six-dimensional phase space. After
averaging over the angle variables, this equation takes the form

@f =@tþ @ð_Ikf Þ=@Ik ¼ q; ð6:98Þ

where Ik are the action variables,

I1 ¼ ma2=
ffiffiffiffiffiffi
2E

p
; I2 ¼ M; I3 ¼ Mz; a  Ze2 ð6:99Þ

and the _Ik are the corresponding generalized momenta (averaged over the angle
variables):

_I1 ¼ j@I1=@Ej _E; _I1 ¼ ð1�M2=3I21Þme10Z4=c3M5; ð6:100Þ
_I2  M ¼ �2me10Z4=c3M2I31 ; _I3  _Mz ¼ Mz _M=M: ð6:101Þ
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Here and below, E[ 0 is the modulus of the total energy of the bound electron.
Equations (6.100), (6.101) give the rate at which a classically radiating electron
losses energy I1ð Þ, angular momentum I2ð Þ, and its z-component I3ð Þ (Landau and
Lifschitz 2000).

We shall consider only the stationary case in what follows. The spherical
symmetry of the Coulomb field implies that the DF f must be independent of Mz

(we also assume that the source q is independent of Mz). Equation (6.98) thus
simplifies to

_Eð@f ð3Þ=@EÞþ _Mð@f ð3Þ=@MÞ ¼ qð3Þ: ð6:102Þ

Here the superscript indicates the dimensionality of the space in which f is
defined. We note that the variables E, M, and Mz satisfy the classical kinematic
constraints

M�MmaxðEÞ  ðma2=2EÞ1=2; jMzj �M:

In deriving (6.102), we have used the important property

divð3Þ _I ¼ 0 ð6:103Þ

of the generalized momentum, which implies that the electron flux in the space E,
M, Mz may be uniform (f ð3Þ ¼ const: satisfies (6.98) if q ¼ 0). Solving (6.102) by
the method of characteristics, we find

f ð3ÞðE;MÞ ¼ /½Mðs;E0Þ	 þ
ZE
E0

dE0qð3Þ½E0;Mðs;E0Þ	; ð6:104Þ

where uðMÞ is the boundary condition for (6.102) (we take the boundary to be the
line E ¼ E0; the generalization to the case of an arbitrary boundary is evident),

s  sðE;MÞ ¼ M�3ð1� 2EM2=ma2Þ  M�3e2: ð6:105Þ

e is the eccentricity of the electron orbit, and the dependence Mðs;EÞ in (6.104) is
determined by (6.105). Using (6.104), we can rewrite the Green function for (6.102)
in the form

GðE0M0 ! EMÞ ¼ gðE � E0Þ
_EðE0;M0Þ d½M

0 �Mðs;E0Þ	

 gðM0 �MÞ
j _MðE0;M0Þj d½E

0 � Eðs;M0Þ	;
ð6:106Þ
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where g ¼ 0 for x\0 and g ¼ 1 for x[ 0. The d-function in (6.106) corresponds to
the classical motion of the radiating electron in the two-dimensional fE;Mg-space;
the trajectories coincide with the characteristic curves of (6.102) defined by the
relation sðE;MÞ ¼ const. Since the energy loss rate exceeds the angular momentum
loss, e decreases during the radiation emission process so that the orbits eventually
become “rounder”.

6.4.2 Quantum Kinetic Equation in the Quasi-classical
Approximation

We will consider the quantum mechanical kinetic equation for the distribution
function f ð2Þ in the two-dimensional space fI1; I2g and use the formulae

I1 ¼ �hn; I2 ¼ �hðlþ 1=2Þ; I3 ¼ �hmz; ð6:107Þ

which relate the action variables to the quantum numbers n, l and mz. Because f ð3Þ

is independent of Mz, f ð2Þ and f ð3Þ obey the simple relation

f ð2ÞðI1; I2Þ ¼ 2Mf ð3ÞðI1; I2Þ  ð2lþ 1Þf ð3ÞðI1; I2Þ: ð6:108Þ

The kinetic equation has the standard form C ¼ fnlgð Þ
X1

n0¼nþ 1

X
l0¼l�1

f ð2ÞðC0ÞWðC0 ! CÞþ qðCÞ ¼ AðCÞf ð2ÞðCÞ; ð6:109Þ

where we have allowed for cascades from all higher-lying states; W is the proba-
bility per unit time for a radiative transition C0 ! C, q is the external population
source, and A is the total rate of radiative decay from the C level:

AðCÞ ¼
Xn�1

n0¼lþ 1

X
l0¼l�1

WðC0 ! CÞ: ð6:110Þ

For n � 1, we can replace the sum in (6.109) by an integral, and for l � 1,
f ðC0Þ can be expanded in l near the state C. This leads to an integro-differential
equation (we will henceforth write f in place of f ð2Þ where no confusion may arise)

AðCÞf ðCÞ ¼ qþ
Z1

nþ 1

f ðn0; lÞWðn0 ! nlÞþ @f ðn0; lÞ
@l

X
Dl¼�1

ðl0 � lÞWðC0 ! CÞ
" #

dn0;

ð6:111Þ
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where

Wðn0 ! nlÞ ¼
X
Dl¼�1

WðC0 ! CÞ: ð6:112Þ

The quasi-classical kinetic (6.111) reduces to a simpler one-dimensional integral
or two-dimensional differential equation, depending on the specific region in
nl-space, and the solutions can be joint uniquely because the corresponding regions
overlap.

Indeed, consider (6.111) for the region l � n, for which the Kramers approxi-
mation is valid for the radiative transition probabilities W. The radiative angular
momentum loss Dl ¼ �1ð Þ for l � n is slower than the energy loss, because
transitions with Dn � 1 (including those with Dn ’ 1) are more likely to occur. If
the DF is smooth enough we can therefore discard the differential term in (6.111),
so that l appears to be merely a parameter of the resulting integral equation
ðE ¼ 1=2n2; M ¼ �hðlþ 1=2ÞÞ:
Zxm
0

G0ðxÞf E 1� x
xm

� �
;M

� �
dx� f ðE;MÞ

Z1
0

G0ðxÞdx ¼ Q  pffiffiffi
3

p 
 qðCÞ
AðCÞ ; ð6:113Þ

where xm  ðlþ 1=2Þ3
6n2

, E ¼ 1=2n2 (in atomic units), M ¼ �hðlþ 1=2Þ, and, as

before f is normalized in C space. The function G0 is related to the leading term in
the expansion of the transition probability Wðn0 ! nlÞ (6.112) with respect to �h for
l � n

G0ðxÞ ¼ x 
 K2
1=3ðxÞþK2

2=3ðxÞ
h i

: ð6:114Þ

The function AðCÞ is the total radiative decay rate for the level C ¼ fnlg

AðCÞ ¼ 4
ffiffiffi
3

p
pc3n3ðlþ 1=2Þ2

h i�1
: ð6:115Þ

The first (cascade) integral in (6.113) is negligible for small xm, so that the
population of level C is determined by the external source q,

f ðCÞ ¼ qðCÞ=AðCÞ: ð6:116Þ

The cascade term becomes important as xm increases.
Since the Kramers’ probability W depends only on the difference between the

energies of the initial and final states, the integral (6.113) can be solved by taking
Laplace transforms. The latter satisfy the equation
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�f ðsÞ ¼ �QðsÞ=s�G2ðsÞ; ð6:117Þ

where s is the Laplace variable conjugate to xm,

G2ðxÞ ¼
Z1
x

G0ðx0Þdx0 ¼ xK1=3ðxÞK2=3ðxÞ; ð6:118Þ

s�G2ðsÞ ¼ �G0ð0Þ � �G0ðsÞ: ð6:119Þ

We can approximate G2 to within 10% by the expression

G2 ’ a expð�2xÞ; ð6:120Þ
�G2ðsÞ ¼ aðsÞ=ðsþ 2Þ: ð6:121Þ

where the function aðsÞ is slowly varying, aðs ¼ 0Þ ¼ p2=6 ¼ 1:64; aðs ¼ 1Þ ¼
p

ffiffiffi
3

p ¼ 1:81. If we set a ¼ 1:7, ensuring at most a 10% error in (6.120), (6.121), we
obtain the approximate analytic expression

f ðCÞ ¼ qðCÞ=AðCÞþ
Z1

nþ 1

dn0qðn0; lÞ=j _nðn0; lÞj ð6:122Þ

for an arbitrary source q; here, the quantity �h _n  _I1 is the rate of energy loss [see E
in (6.100)] in Kramers’ domain l � n.

To illuminate the essence of the approximation (6.120), (6.121) it should be
pointed out that the exact relation between G2 and G0 takes the form (with account
of (6.118), (6.119))

G0ðxÞ � 2G2ðxÞ ¼ x½K1=3ðxÞ � K2=3ðxÞ	2  DðxÞ: ð6:123Þ

The correction DðxÞ which is the “Bethe Rule Defect” is proportional to the
Kramers’ transition probability for a transition with Dl ¼ �sgnðDnÞ. Such transi-
tions are suppressed (relative to the transitions with Dl ¼ sgnðDnÞ) the stronger the
larger Dn. In the Kramers’ domain, this leads to an approximate coincidence of the
averaged Dl transition probability with the one corresponding to Dl ¼ sgnðDnÞ
transitions only. The transition to the limit of a classical trajectory (in C space)
corresponds to the motion with averaged (over Dl) probabilities. That is why the
transitions with Dl ¼ �sgnðDnÞ, in spite of their existence as an elementary,
one-step transition, can, within the framework of the KrED, be neglected in mul-
tistep transitions.
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The DF (6.122) satisfies (6.111) for xm � 1 (including xm � 1), where both
integrals in (6.113) are of the same order of magnitude. The integrals cancel each
other for xm � 1 that corresponds to the classical limit in (6.122). We can follow
this limit by expanding f ðC0Þ in the integrand with respect to both n and l (not only
with respect to l as in the derivation of (6.111)). This expansion, which is valid for
xm � 1, leads to the two-dimensional differential equation

_E@f ð2Þ=@Eþ _M@f ð2Þ=@M � _Mf ð2Þ=M ¼ qð2Þ ð6:124Þ

for f ð2ÞðCÞ. Recalling (6.108), we see that (6.124) is equivalent to (6.102).
We note that since the classical limit is consistent with the inequality l � n, it

can be described in terms of Kramers transition probabilities. The contribution of
the leading term in the �h-expansion for the transition probability, which is pro-
portional to �h�1, vanishes due to the aforementioned cancellation between the
contribution of cascades from all upper levels to the nl-level under consideration
and the contribution of cascades from the nl-level to all lower levels. This can-
cellation takes place (in the two-dimensional consideration) only for the leading
terms of the �h-expansion for the contributions mentioned. The calculation of these
contributions, with account of the quantum corrections to the leading term of the �h-
expansion for W , gives the third term on the left-hand of (6.124). As �h ! 0, a
continuous classical flow of electrons described by (6.124) thus replaces the dis-
crete quantum mechanical “jumps” specified by the non-local coupling in the
integral (6.113).

We will now consider how the quasi-classical and classical distributions (6.104)
and (6.122) are to be matched. Comparison in the Kramers’ domain l � n shows
that the first term in (6.104) (the contribution from the boundary condition for a
classical differential equation) must be replaced by the contribution from the direct
population. The resulting distribution function is valid for the entire quasi-classical
domain of n and l, including the non-Kramers region n� l:

f ðCÞ ¼ qðCÞ=AðCÞþM
Z1

nþ 1

qðn0; lðs; n0ÞÞdn0
j _nðn0; lðs; n0ÞÞjMðs; n0Þ ¼ q=Aþ Ĉ½q	; ð6:125Þ

where lðs; nÞ is given by (6.105) (note, that M = ℏ(l+1/2)). Indeed, the boundary
condition contributes to the classical distribution function (6.104) mostly for large n
and, respectively, small xm, for which the purely classical description breaks down.
We will carry out calculations for a specific (photorecombination) source and
explicitly piece the solutions together. The results will prove the correctness of the
quasi-classical expression (6.125).
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6.4.3 Relationship of the Quasi-classical Solution
to the Quantum Cascade Matrix. The Solution
in the General Quantum Case

We will interpret the above result (6.125) by using the quantum cascade matrix
formalism, in which the cascade matrix CðC0 ! CÞ plays the role of the Green
function for the quantum mechanical equation (6.109). The DF obeying (6.109) can
be expressed in the form (Sobelman and Vainshtein 2006; Seaton 1959; Pengelly
1964):

f ðCÞ ¼ A�1ðCÞ
X1
n0¼n

Xn�1

l0¼0

CðC0 ! CÞqðC0Þ  qðCÞ
AðCÞ

þA�1ðCÞ
X1

n0¼nþ 1

Xn�1

l0¼0

CðC0 ! CÞqðC0Þ:
ð6:126Þ

The matrix C can be regarded as the probability of a C0 ! C transition via all
possible cascades CðC ! CÞ ¼ 1ð Þ and obeys the two equivalent recursion
formulae:

CðC0 ! CÞ ¼
Xn0�1

n00¼n

X
l00¼l0�1

WðC0 ! C00Þ
AðC0Þ CðC00 ! CÞ


Xn0

n00¼nþ 1

X
l00¼l�1

CðC0 ! C00ÞWðC00 ! CÞ
AðC00Þ :

ð6:127Þ

Comparison of (6.126) with the quasi-classical function, (6.125) shows that the
cascade population will be purely classical if f is smooth enough (so that f ðC0Þ can
be expanded in (6.109) as a Taylor series near the point C0 ¼ C). In the classical
limit, the matrix C takes the form

CðC0 ! C00Þ / MAðCÞdðs� s0Þ; ð6:128Þ

where the d-function of the argument s [cf. (6.105)] describes the classical trajec-
tory. A similar expression for C also follows directly from (6.127) in the classical
limit. If we let �h ! 0 as in the derivation of (6.124), we find that

CðC0 ! C00Þ / MAðCÞFðs� s0Þ; ð6:129Þ

where the function F is arbitrary.We will now estimate the error in the classical
description of cascades for an arbitrary source q ðincluding a selective population
source q / dðC� C0ÞÞ by substituting the approximate solution (6.122) for the
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Kramers’ domain l � n into the corresponding (6.113). The remaining term can be
transformed into

Zxm
o

qðE0;MÞ
AðE0;MÞ G0ðxÞ � 4

ffiffiffi
3

p

p
G2ðxÞ

� �
dx; x ¼ ðE0 � EÞM3=3

 �
a:u: ð6:130Þ

The expression in square brackets in the integrand coincides with the
above-defined “Bethe rule defect” to within 10%. Equation (6.130) implies that the
terms in square brackets cancels only for those x for which the Bethe rule defect can
be neglected. The distribution function f given by (6.125) cannot be used for
sources q whose main contribution to the integral in (6.127) comes from small x, for
which the terms in square brackets do not cancel.

Let us analyze the case of a d-function source. Equation (6.125) is clearly not
applicable if direct transitions from the level C0 populated by the source to the level
C are important (this corresponds to the leading term in the Bethe rule defect as
x ! 0). In any case, such direct transitions will be important for levels C close to
C0, as well as for more remote levels that are populated solely by Bethe rule defect
transitions, i.e., by electrons lying far from the classical trajectory. Classical cascade
may occur between the levels which lie close to the classical trajectory provided
they are sufficiently far from the levels C0 populated directly by the source
Dxm � 1ð Þ.
The situation depicted (i.e., transition from the quantum direct population, in the

domain close to an externally populated level, to the classical cascade population)
can be described in terms of a modified classical cascade. For example, in Kramers’
domain this gives [here x is the same as in (6.130)]:

f ðCÞ ¼ qðCÞ=AðCÞþ
Z1

nþ 1

qðn0; lÞG0ðxÞ
j _nðn0; lÞj2G2ðxÞ dn

0: ð6:131Þ

However, there is an alternative, more systematic method for treating “the
quantum mechanical properties” of the external source of population. This method
exploits the fact that the form of the quantum mechanical kinetic equation remains
unchanged if we subtract an arbitrary number of the leading terms in the expansion
of the distribution function in powers of the number of the transitions in a cascade
from the externally populated level C0 to the investigated level C. Indeed, (6.109)
continues to hold for the function f � q=Að Þ if we replace q by

hqi 
X1

n0¼nþ 1

X
Dl¼�1

qðC0ÞWðC0 ! CÞ
AðC0Þ : ð6:132Þ
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We thus arrive at the distribution function [compare with (6.125)]

f ¼ hf i  q=Aþhqi=Aþ Ĉ½hqi	: ð6:133Þ

The generalization of the result (6.125) in the case of an arbitrary number of
averaging procedures for the source q gives the result

f ¼ hf iN  q=AþA�1
XN
i¼1

hqii=Aþ Ĉ½hqiN	; ð6:134Þ

where the effective source hqiN describes the population of the level C by all
possible N-step (i.e., N-photon) cascade transitions from all points of the source,

hqiN ¼
X1

n1¼nþN

X1
n2¼nþN�1

. . .
X1

nN¼nþ 1

Xni�1

l1;...:lN¼0

qðC1Þ

�WðC1 ! C2Þ
AðC1Þ 
 
 
WðCN ! CNþ 1Þ

AðCNÞ

ð6:135Þ

and the appropriate selection rules for the radiative transition probabilities must be
used in calculating (6.135). Each additional summation in (6.135) further
smoothens the effective source and thus decreases the error caused by summing the
remainder terms in the series (6.126) “classically” to ’ 10%. The error in the final
result depends both on the specific form of the source q and on the values of
quantum numbers n and l. The error will be small if the relative change of f ðCÞ is
small due to subtracting one more term (corresponding to ðN þ 1Þ-step transitions)
out of the classical cascade.

The above algorithm can be used to calculate the distribution function f for
radiative electron cascades between Rydberg atomic or ionic states for arbitrary
sources and quantum numbers (in particular, n and l may be of the order of unity).

Note that the extent to which the population source q is of essentially
“quantum-mechanical” character depends partly on the sharpness of its distribution
in C-space (6.127) and partly on the range of values of n, l within which the source
is concentrated. For example, the distribution function (DF) is of essentially
quantum character if a smoothly distributed (i.e., “classical”) source is concentrated
in the “quantum” region xm � 1. On the other hand, the cascade population can be
described quasi-classically even for a selective source if the latter is concentrated in
the “classical” region l� n. Thus, if the levels with l ¼ n� 1 are selectively pop-
ulated by the external source, the population of the lower levels by cascades can be
described purely classically and the result agrees with the exact quantum

6.4 Two-Dimensional Radiative Cascades Between Rydberg Atomic States 289



calculation. Specifically, if we use the quantum cascade matrix and recall the
relations for this case l ¼ n� 1ð Þ,

Wðn; l ! n� 1; l� 1Þ ¼ Aðn; lÞ ¼ j _nj ¼ j_lj ¼ 2
3
n�5 ð6:136Þ

we find from (6.126) that

f ðn; lÞ ¼ qðn0; l0ÞA�1ðn; lÞdðn; n0 � kÞdðl; l0 � kÞ; ð6:137Þ

where d is the Kronecker symbol and k� 0. The calculation using (6.125) leads to
the same result.

6.4.4 Atomic Level Populations for a Photorecombination
Source. Quasi-classical Scaling Laws

The general results of Sects. 6.4.2, 6.4.3 are now applied to the calculation of level
population for a Rydberg atom externally populated by a photorecombination
source which is of great interest for astrophysical applications. Since the source
involves the same radiative transitions as the cascade between the atomic levels, the
above approximations for the cascade can be also applied to the recombination
source [see approximation (6.120), (6.121) for the error in the quasi-classical DF
(6.125)] in a specific case.

The calculation of the DF (6.122) for the photorecombination source q provides
(xm = EnM

3/3 = (l+1/2)3/6n2, xT = 3/TM3 in a.u.)

qðCÞ ¼ 2
2þ xT

G2ðxmÞþ xT
2þ xT

w expðE=TÞ; ð6:138Þ

w ¼
Z1
xm

DðyÞ expð�yxTÞdy ð6:139Þ

and corresponds to including the Bethe rule defect contribution to the source q but
neglecting it in the Green function for (6.113). It is worthwhile to express the result
for the DF in terms of the equilibrium DF (as well as the corresponding ratio bðCÞ)

f ðCÞ  2M�AexpðE=TÞbðCÞ; �A ¼ ð2pmTÞ�3=2; ð6:140Þ

bðCÞ  bnl ¼ 2
2þ xT

expð�E=TÞþ 1
a
wðxm; xTÞ; ð6:141Þ

where w and a are given by (6.139) and (6.120), (6.121), respectively (remind,
that we use E[ 0).
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For n; l � 1, the second term in bnl is of importance only for xm � 1, xT � 1;
the DF is therefore independent on the energy E at the edge (l� n, or xm � 1) of the
Kramers’ domain. This implies that the solution outside the Kramers’ domain could
be found from the first term in (6.141), regarded simply as a classical boundary
condition. Because this term is independent of E, the resulting DF will be the same
regardless of which line in nl-space is chosen as the boundary. If we then use
(6.104) and (6.105) to continue the DF (6.140, 6.141) along the characteristic
curves, we obtain the final result

bnl ¼ 2
2þ xTe2

expð�E=TÞþ 1
a
wðxm; xTÞ; ð6:142Þ

which is valid for all quasi-classical values of n and l. It is legitimate to continue the
solution in this way because the source (6.138) is concentrated in the Kramers’
domain, so that there is no need to evaluate (6.125) directly (recall that A and dn/dt
in (6.125) are the transition probabilities for an arbitrary ratio l=n). Indeed, a
calculation using (6.125) for ðl=n� 1Þ � 1 reveals that these states are populated
solely by classical cascades; moreover, most of the contribution comes from the
transitions whose initial state is far from the curve l� n. The latter result corre-
sponds precisely to the classical behavior, in which the states near the boundary
M ¼ MmaxðEÞ can be populated by a source concentrated within a region with an
eccentricity e ! 1. For a recombination source, the Kramers’ domain shrinks along
the n axis as l increases (as the edge of the continuum is approached) and thus is
effectively transformed into a boundary condition.

We will now show that the use of the algorithm discussed in Sect. 6.4.3 per-
mits to incorporate some additional Bethe rule defect contributions to the DF. For a
singly averaged source N ¼ 1ð Þ, (6.132) gives

hQi  hqi=A ¼ 3
p2

Zxm
0

G0ðxÞQðxm � xÞdx : ð6:143Þ

Within 10% error (approximation of the coefficient a in (6.120, 6.121)), this gives

hf i ¼ f þ 3
p2

Zxm
0

DðxÞQðxm � xÞdx ð6:144Þ

for hf i in (6.133); where f is defined by (6.125). The calculation of hf i for the
photorecombination source reveals that the corrections due to the Bethe rule defect
contribution are smaller than the 10% error arising from the approximation (6.120),
(6.121). Thus, if we include the linear correction to (6.141), in accordance with
(6.144), we find that
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hbi ¼ 2
2þ xT

1þ expð�2xmÞ �
ffiffiffi
3

p

p
G2ðxmÞ

� �
expð�E=TÞ

þ w
a

1þ xT
ð2þ xTÞa

Zxm
0

DðxÞdx
2
4

3
5: ð6:145Þ

Since the factor multiplying w in (6.145) is significant only for xm � 1, xT � 1,
we conclude, as in Sect. 6.4.3, that the accuracy of the DF (6.141) is the same as for
(6.120), (6.121).

The quasi-classical DF (6.140, 6.142) derived above reveals approximate scaling
laws for the exact quantum-level populations, while these laws are unknown from
the results of complex quantum numerical calculations. These laws are a conse-
quence of the fact that the quasi-classical DF (6.140, 6.142) depends on a lower
number of variables than in the case for the quantum DF. Indeed, fnl depends only
on xm and xT for xm � 1, xT � 1. If one of the parameters xm or 1=xT becomes
� 1, the second term in (6.142) becomes much less than the first term and f depends
only on xT. Elsewhere in nl-space, f depends on the parameter xTe2. We thus have a
smooth transition between three scaling laws for n; l � 1. Comparison of the
quasi-classical DF (6.140, 6.142) with the results of numerical quantum calcula-
tions (Pengelly 1964) reveals that quasi-classical DF (6.142) can also be used for
relatively small values of n and l. The validity of the scaling laws derived by the
quasi-classical method can be verified by means of a corresponding transformation
of quantum numerical data.

It is worthwhile to illustrate the relative importance of direct and cascade pop-
ulation in the Kramers’ domain l � n for a photorecombination source. We find
from (6.122)

fC / 2
2þ xT

ð1� expð�2xmÞÞþ 2
2þ xT

w
a
expðE=TÞ;

fD / 2
2þ xT

expð�2xmÞþ xT
2þ xT

w
a
expðE=TÞ

ð6:146Þ

for the cascade fCð Þ and direct fDð Þ populations. The contribution from fD clearly
decreases as xm increases while the sum fC þ fDð Þ coincides with (6.141). The
numerical values of the ratio fD=ðfD þ fCÞ agree reasonably well with the data in
(Pengelly 1964), e.g., for n ¼ 6 and T ¼ 104 K, (6.146) implies that this ratio is
equal to 96% for l ¼ 1 and 87% for l ¼ 2; the corresponding values from (Pengelly
1964) are 81% and 73%, respectively.

It is important to note that the dependence of the integral over l population
differs from the one found by the n-method. The major contribution to f ðnÞ comes
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from the first term in (6.142), which gives the following dependence on the
parameter Tn3:

f ðnÞn�2 /
Z1

0

x 1þ 3ð1� x2Þ
2Tn3x3

� ��1

dx �
1
2

Tn3 � 1

Tn3

3
ln

3
Tn3

� �
; Tn3 � 1:

8>><
>>: ð6:147Þ

We note, that in the n-method the universal parameter is Tn2.
The quasi-classical method for an analytic description of radiative cascades

developed in this section gives the possibility of an approximate (to within 10%)
calculation of the contribution of multistep cascade transitions to the atomic level
populations. This calculation is known to be the most difficult part of the corre-
sponding numerical calculations. Indeed, the d-function properties of the cascade
matrix that correspond to radiating electrons moving (in the nl-space) along the
characteristics in the classical domain are difficult to reveal from the results of
quantum numerical calculations. For example, the calculations in (Pengelly 1964)
detected only the boundary characteristics corresponding to l ¼ lmax ¼ n� 1.

The algorithm in Sect. 6.4.3 for calculating populations in the general quantum
case and for arbitrary sources can thus be used to correctly treat cascades through an
arbitrary large number of Rydberg states. The number of quantum mechanical
cascade transitions which cannot be described classically may be quite small in
practice, particularly for the case of distributed sources. For example, the cascade
population is purely classical (to within 10%) for a photorecombination source.

6.5 Two-Dimensional Collisional–Radiative Model
of Highly Excited Atomic States

As outlined in the foregoing Sect. 6.4, the population of Rydberg atomic states
determined by radiative–collisional cascades is the subject of many years’ inves-
tigations (Sobelman and Vainshtein 2006; Beigman 2001; Griem 2005; Strelnitski
et al. 1996; Grin and Hirata 2010). As a rule, the one-dimensional (1D) kinetics is
used for the modeling. When one makes a transition to 2D (in principle n and
orbital momentum l quantum numbers) the number of kinetic equations grows
sharply. Really if, for example, n = 100, one needs to take into account
100 * 100 = 104 equations for radiative–collisional transitions between two highly
excited states multiplied by 100 transitions from the continuum to a specific atomic
energy state which results in more than 106 kinetic equations with further account
of cascade transitions to other Rydberg atomic states. Direct solution of such a
large number of kinetic equations is a problem even for modern computers, but the
most essential point is the estimation of the precision of such calculations.

The possible solution of the problem is the application of quasi-classical or pure
classical model for description of highly excited atomic states. This was
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demonstrated above for radiative (R) cascade transitions. We generalize the model
for general case of both radiative and collisional (RC) processes. For a specific
application, we will use below experimental data for recombination radio lines of
highly excited hydrogen atoms (n > 100) observed in astrophysical plasma with
low electron density ne / 103�104 cm�3ð Þ and moderate temperatures
Te / 1 eVð Þ. One can apply the results for large densities in the case of highly
charged ions with ion charge Z � 1 using the scaling between radiative and col-
lisional processes, proportional to Z7 [see also (5.53)].

6.5.1 Kinetic Model of Radiative–Collisional Cascades

Let us consider the transition from the quantum kinetic equation to the classical
one. The structure of a quantum kinetic equation for a radiative–collisional
(RC) cascade takes the form (Kadomtsev et al. 2007, 2008):

L̂c þ L̂qr
 �

f ðnlÞþ qðnlÞ ¼ 0; ð6:148Þ

where L̂c is the collision transition operator, L̂qr is radiation transition operator, f ðnlÞ
is population distribution function in two-dimensional space of principal n and
orbital momentum l atomic quantum numbers, and qðnlÞ is the population source of
atomic energy states. The action of these operators on population distribution
function takes the form:

L̂cf ðn; lÞ ¼ R½Wðn0; l0; nlÞf ðn; lÞ �Wðn; l; n0; l0Þf ðn0; l0Þ	; ð6:149Þ

L̂rf ðn; lÞ ¼ Aðn; lÞf ðn; lÞ � RAðn; l; n0; l0Þf ðn0; l0Þ: ð6:150Þ

Here, Wðn0; l0; nlÞ and Aðn; l; n0; l0Þ are the rates of collisional and radiative
transitions between atomic states with different quantum numbers, and Aðn; lÞ ¼
Rn0;l0 Aðn; l; n0; l0Þ is the total radiation decay rate to all lower atomic states. The
sums in (6.149), (6.150) go over all values of quantum numbers with account for
corresponding selection rules.

For the case of highly excited (Rydberg) atomic states, it is possible to simplify
the collision operator by its transformation to a diffusion operator in the space of
principle and orbital momentum quantum numbers. The situation is complex due to
the non-local connection between atomic states via radiative transitions. In fact, the
radiation operator (6.150) is in reality an integral operator describing the possi-
bilities of large changes (jumps) of principle quantum numbers in radiative tran-
sitions. It is possible, however, to show that in the domain n[ l � n2=3 the action
of the radiation operator (6.150) can be reduced to a differential one describing the
continuous motion (flux) of the electron in 2D space of quantum numbers with rates
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determined by the classical conservation laws with respect to energy and
momentum:

L̂rf ¼ _n@f =@nþ _l@f =@l  L̂clr f : ð6:151Þ

Therefore, the quantum integral radiation operator L̂r reduces to the classical
differential operator L̂clr . However, this approach is only valid for population sources
which are broad enough (for example, three-body recombination) so that the sta-
tistical weight of atomic states with small values of orbital momentum would be
also small: l2eff / n4=3 � n2. However, this is not the case for many others
recombination sources (for example, radiative or dielectronic ones).

We will use the iteration approach to account for the non-local connection of 2D
distributions used above for a radiative cascade where the distribution function is
presented by

f ¼ q=Aþ qh i=Aþ Ĉ½ qh i	: ð6:152Þ

The same iteration method can be developed accounting for the collision
operator. The general scheme looks as follows. In the first step of the iteration
procedure, we find f as the sum f ¼ f0 þ f1 where f0 satisfies the zero-order
approximation determined by populations from external sources, collisional diffu-
sion and radiation decay to lower atomic states:

L̂cf0ðn; lÞ � Aðn; lÞ 
 f0ðn; lÞþ q n; lð Þ ¼ 0: ð6:153Þ

After the substitution f ¼ f0 þ df into (6.148), we obtain the equation for df :

0 ¼ L̂cdf ðn; lÞ � Aðn; lÞ 
 df ðn; lÞ
þ

X
n0¼nþ 1

X
l0¼l�1

f0ðn0; l0Þ 
 Aðn0; l0 ! n; lÞ

þ
X

n0¼nþ 1

X
l0¼l�1

df ðn0; l0ÞAðn0; l0 ! n; lÞ
ð6:154Þ

or, in the operator form:

L̂c þ L̂clr
 �

df ðn; lÞþ
X

n0¼nþ 1

X
l0¼l�1

f0ðn0; l0ÞAðn0; l0 ! n; lÞ ¼ 0: ð6:155Þ

It can be seen that the function df is determined from an equation that is of similar
type as for f (6.148), where the modified source q1(n, l) enters instead of q(n ,l):

q1ðn; lÞ ¼
X

n0¼nþ 1

X
l0¼l�1

f0ðn0; l0ÞAðn0; l0 ! n; lÞ: ð6:156Þ
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It corresponds to the population after the first quantum emission. Application of
the same procedure like in (6.152) to the function df we separate out the direct
population f1ðn; lÞ by the source q1 (determined from (6.156)) and from the pre-
vious iteration for df with f0. Applying the iteration procedure step-by-step to the
initial (6.148), we find the solution of f in the form of a series f ¼
f0 þ f1 þ f2 þ 
 
 
 þ fk þ 
 
 
 that corresponds to a step-by-step quanta emission
where every term fk is determined from the equation

L̂cfkðn; lÞ � Aðn; lÞfkðn; lÞþ qk ¼ 0;

qk 
X

n0¼nþ 1

X
l0¼l�1

fk�1ðn0; l0ÞAðn0; l0 ! n; lÞ ð6:157Þ

using the function fk�1 calculated at the previous step of (6.157), while f0 can
be found from (6.153) with initial source. From the physical point of view, the
contributions fk are determined by a collision transition kinetics between the steps k
and k + 1 with correspondingly emitted quanta. The convergence of the series is, in
general, rather slow (logarithmic), so that higher-order contributions are of
importance. From a mathematical point of view, the iterative solution corresponds
to a von Neumann series for integral equations.

According to (6.157), the source qk in a specific state nl is determined by
different transitions between the atomic states n0 [ nð Þ after the emission of a k-
th-quantum. At every further step, the quantum becomes more “continuous” and
from a specific iteration number on it is possible to make a transition from the
quantum operator L̂r to the classical differential operator L̂clr [see (6.151)]. This is
realized by changing in the further iteration series terms the quantum for the
classical distribution function f cln :

L̂c þ L̂clr
 �

f clk ðn; lÞþAfk�1ðn; lÞ ¼ 0: ð6:158Þ

As a result, the total distribution function is determined by the sum

f ðn; lÞ �
Xk�1

i¼0

fiðn; lÞþ f clk ðn; lÞ: ð6:159Þ

The quasi-classical radiation operator has been discussed in the foregoing
Sections and will be used in specific calculations below.

6.5.2 The Classical Collision Operator

The collision operator determining the diffusion in the space of principal and orbital
momentum quantum numbers will be determined in a pure classical representation.
For this purpose, the general kinetic equation was solved in the framework of a
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quasi-classical representation for radiation transitions and a pure classical collision
integral. The specific form of the collision integral can be obtained by calculations
of energy and orbital momentum transfer in classical Coulomb collision between an
atomic electron on a Kepler orbit with a plasma particle. The diffusion coefficients
in energy and orbital momentum space are then determined from the well-known
averaged quadrates of energy and orbital momentum transfer. The general form of
the kinetic equation is of Fokker–Planck-type (Belyaev and Budker 1958, Ecker
1972, Kadomtsev et al. 2008):

@f =@t ¼ 1
2

@

@Ik
DIkDIj
� � @f

@Ij
: ð6:160Þ

Here Ik;j are in general arbitrary motion integrals. For a Coulomb field, a natural
choice is to choose the motion integrals as the energy and orbital momentum
integrals. The average values in (6.160) represent an integration over the parameters
of the plasma particles parameters and the motion phases of the Kepler atomic
electron.

Let us consider the cases of fast (inelastic) and slow (elastic) collisions for
plasma electrons and ions correspondently. In the case of fast collisions, the motion
of a plasma particle can be taken as rectangular with an impact parameter q and
velocity te:

D~tej j ¼
Z1
�1

FðtÞdt
������

������ ¼
Z1
�1

q dt

q2 þ t2e t
2

� �3=2 ¼ 2
qte

: ð6:161Þ

This results in the squared energy change:

DEð Þ2
D E

¼ D~te~tað Þ2
D E

¼ 1
3

D~t2e
� �

~t2a
� �

; ð6:162Þ

where ~ta is the electron velocity on the Bohr orbit. After averaging over impact
parameters, Maxwellian velocity distribution and multiplication by the perturbing
particles’ density ne, one obtains the collision frequency x (or the time between
collisions):

DE2� � / Enxs; ð6:163Þ

x ¼ 4
ffiffiffiffiffiffi
2p

p

3
neL

ffiffiffiffi
1
T

r
; ð6:164Þ

where T is the temperature of the perturber particles, L is the Coulomb logarithm. In
order to obtain independent diffusion operators in 2D scheme, it is useful to
introduce dimensionless variables:
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n ¼ ð�E=E0Þ1=2 ¼ n0=n; ð6:165Þ

g ¼ �2EM2

mz20e
4

� �1=2

¼ l=n; ð6:166Þ

f ¼ Mz

M
: ð6:167Þ

Equation (6.165) corresponds to the electron energy, (6.166) to the ratio l=n, and
(6.167) is the orbital momentum projection (that is of no importance for spherically
plasma electron distributions). The domains for changing of variables are:
0\n\1; 0\g\1; �1\f\1. The energy parameter E0 for the dimensionless
energy variable in (6.167) is taken to be equal to one which corresponds to equal
rates of classical collision and radiative decay rates:

E0 ¼ ½
ffiffiffiffiffiffi
2p

p
Le6z20m

3=2c3ne=12
ffiffiffiffi
T

p
	1=4;

E0 ¼ 1
2n20

:
ð6:168Þ

It is obvious that such a choice corresponds to the transition of a collision
cascade to a radiation one, if n � 1. The average squared of the new variable is
equal to

Dgð Þ2
D E

¼ Dl
n
� lDn

n2

� �2
* +

¼ 1
3

D~t2e
� � 5

2
n2 1� g2
� �

: ð6:169Þ

It is convenient also to introduce a dimensionless distribution function according

w ¼ f =neð2pmTÞ�3=2: ð6:170Þ

The collision operator expressed in terms of the new variables takes the form:

L̂cw ¼ n4

g

 @
@n

g

n4

 @w
@n

� �
þ n4

g

 @
@g

5g 1� g2ð Þ
2n6


 @w
@g

� �
: ð6:171Þ

Such representation of the collision integral was obtained in (Belyaev and
Budker 1958) by direct application of the Landau collision integral to the collisions
between plasma and atomic electrons. The elastic collisions correspond to the
diffusion in the orbital momentum quantum number space. Most contributions
originate from ion-atom collisions due to relatively small ion’s velocity compared
to the electron ones.
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6.5.3 Numerical Solution for Delta-Function Source

The solution of the kinetic equation solution for a local (delta-function) source is of
interest in order to demonstrate the effects of collisions on the radiative cascades.
From the point of view of application, it is of interest for a selective (laser) pop-
ulation source. The calculation procedure includes the introduction of a point source
and an iterative calculation procedure as described above.

The plasma parameters have been selected close to astrophysical experimental
conditions (temperature of kTe ¼ 1 eV, density ne ¼ 2:5� 103 cm�3), and two
pairs of quantum numbers n, l: (100,55) and (50,20). The first one corresponds to
the values presented in (Strelnitski et al. 1996) in order to check the results with
quantum calculations. The second pair corresponds to the decrease of quantum
numbers approximately two times in order to demonstrate the sharp change
between radiation and collision processes when quantum numbers are changed.
Note that the collision operator scaling is close to L̂c � neten4, whereas the radi-
ation operator scaling is proportional to L̂r � n�3l�2. This results in different dis-
tributions in 2D space of quantum numbers.

Figure 6.13 shows the 2D population distribution function for the pure radiation
cascade for a delta-function source for a populated atomic state n, l = (50, 20). The
radiation cascade follows the classical trajectory according to (6.151).

Figure 6.14 shows the 2D population distribution function for the collision–
radiative cascade. Collisions result into an important distribution over principle and
orbital momentum quantum numbers (compare with Fig. 6.13).

6.5.4 Radiation Recombination Population Source

Numerical calculations have been performed employing the general iteration
scheme outlined above. It is of interest to compare 1D and 2D models. In order to

Fig. 6.13 2D population
distribution function for the
radiation cascade from a
delta-function source
supporting the population
w0 ¼ 1 for n, l = (50, 20) in
the case when collisions are
absent (note that the sharp
maximum w0 ¼ 1 at n,
l = (50, 20) is not shown for
better demonstration of the
overall features of the
distribution function)
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do so, the total population function was averaged over orbital momentum quantum
numbers l, i.e.,

w  hwil ¼ 2
Z

wl dl=n2: ð6:172Þ

Figure 6.15 presents a comparison between 1D and averaged 2D population
distribution functions. One can see that in the absence of collisions, the two
models differ strongly. It is due to the simple circumstance: the 1D model deals

Fig. 6.14 2D population distribution function for the radiation–collision cascade for ne = 2500
cm−3, kTe = 1 eV

Fig. 6.15 Populations of atomic levels in direct population by a photorecombination source:
1—averaged two-dimensional calculations without collisions, 2—one-dimensional calculations
without collisions, 3—one-dimensional calculations with allowance for collisions, 4—averaged
two-dimensional calculations with allowance for collisions. The plasma parameters correspond to
astrophysical conditions: ne = 2500 cm−3, kTe = 1 eV
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with the ratio of averaged rates, whereas the 2D model deals with the averaged ratio
of the rates; such difference in the averaging procedure results in different depen-
dencies of populations on principle quantum numbers. When collision frequencies
increase, the difference between 1D and 2D populations decreases. It is due to the
strong mixing over orbital momentum states driving their populations to statistical
equilibrium which is just the initial starting point for the 1D kinetics.

6.5.5 Intensities of Rydberg Spectral Lines

The intensities of Rydberg spectral lines are calculated from the equation:

Inn0 ¼ �hxnn0
X
l;l0

NnlAðnl; n0l0Þ; ð6:173Þ

where �hxnn0 are the radiation transition energies, Nnl are populations of upper
energy atomic levels calculated according to the scheme described above, A nl; n0l0ð Þ
are radiation transition probabilities. In experiments on radio-recombination lines
(Biberman et al. 1982) the dependence of radiation transition intensities on the
principle quantum number of the upper level is of interest for a fixed value of
transition frequency x. Figure 6.16 demonstrates the line intensities for the tran-
sitions from the energy levels n = 50–100 at the observed frequency near x ¼
8 
 10�6 a.u. The comparison between statistical equilibrium (large n) and
non-equilibrium (low n) upper-level populations demonstrates the essential differ-
ence between the two curves in Fig. 6.16 (dashed curve show calculations for a
statistical equilibrium, while the solid curve presents non-statistical equilibrium
calculations). This is important for Rydberg spectra interpretation. The results allow
also to judge the degree of non-equilibrium of the populations.

Fig. 6.16 Intensities of
Rydberg spectral lines for the
transition n ¼ 50� 100 at the
observed frequency
x ¼ 8� 10�6 a.u:,
corresponding to the
transition with Dn ¼ 1
between energy levels 50 and
49 for an electron density
ne = 2500 cm−3 and
temperature kTe = 1 eV
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Chapter 7
Quantum Atomic Population Kinetics
in Dense Plasmas

Abstract The atomic populations are the fundamental quantities for various different
disciplines in science and applications. Although the rate equation model has widely
been employed, it has principal deficiencies as it considers only populations related to
the squared of the wave functions, while all mixed populations (coherences) are
missing. In plasmas, however, large effects of strong plasma electric microfields on
atomic (usually highly charged ions) energy levels are encountered that require more
advanced descriptions, e.g., energy level evolution under the action of a quasi-static
electric ion field including coherence effects. For real systems, these phenomena
cannot be described consistently in the framework of the Schrödinger picture but
request the density matrix description in contrast to the standard population balance
rate equations. The general system of densitymatrix equations, however, is extremely
challenging. It is demonstrated that the system can be transformed to a standard form
of population kinetic rate equations with additional terms describing the effect of the
ion electric field, the so-called quantum F-matrix theory (QFMT) allowing to con-
struct real (large) closed model systems. The density matrix approach results in a new
understanding of the fundamental physical problem connected with the transition of
atomic populations to the Boltzmann equilibrium in dense plasmas. The standard
transition is provided by electron collisions only satisfying the principle of detailed
balance related to a statistical population of energy levels over magnetic quantum
numbers. However, the effect of static electric fields on the atomic population is
selective in magnetic quantum numbers resulting in a destruction of statistical
Boltzmann populations. The interplay between the statistical effect of electrons and
non-statistical effect of quasi-static ions is illustrated in detail for autoionizing atomic
states of highly charged ions in dense laser-produced plasmas.

7.1 Rate Equation and Quantum Populations

The atomic populations are the fundamental quantity for various different disci-
plines in science and applications, like the equation of state in thermodynamics,
absorption, emission and scattering properties of matter, lasing, radiation transport,
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radiative cooling and energy loss, diagnostic and spectroscopy employing the
radiative properties of matter, astrophysics, planetary science, radiation sources, and
fusion science (Loudon 2000; McWhirter 1965; Griem 1964, 1974, 1997;
Sobelman 2006; Salzman 1988; Boiko et al. 1985; Michelis and Mattioli 1981;
Lisitsa 1994; Bureyeva and Lisitsa 2000; Unsöld 1955; Mihalas 1978; Mihalas and
Weibel-Mihalas 1999; Bekefi 1966; Drake 2018; Zel’dovich and Raizer 2002). The
most frequently employed approach is the rate equation theory, where the atomic
populations are considered as classical quantities while the various elementary
population and depopulation processes are described by cross sections calculated
with quantum mechanical and/or classical methods. In the framework of the rate
equation theory, the atomic populations of the levels are given by a set of differ-
ential equations (see also Chap. 6):

dnj
dt

¼ �nj
XN
k¼1

Wjk þ
XN
l¼1

nlWlj; ð7:1Þ

where nj is the population density (cm−3) of level j and N is the number of levels
included in the model (e.g., ground and excited states from various charge states).
The matrix Wij describes the rates (s−1) for the various elementary processes from
level i to level j (e.g., radiative decay, collisional excitation/de-excitation, ioniza-
tion, three-body recombination, photoionization, radiative recombination,
autoionization, dielectronic capture, stimulated emission and absorption, and
stimulated radiative recombination). If a certain transition between levels does not
exist (e.g., due to selection rules), the matrix element is zero.

Although the rate model has widely been employed, it has principal deficiencies.
It can consider only populations related to the squared of wave functions, i.e.,
nj / wij j2, while all mixed populations (coherences) related to the terms wiw

�
j ði 6

¼ jÞ are entirely absent in the theory.
The absence of the mixed populations drives two important drawbacks com-

pared to the fully quantum approach: First, coherences cannot be described by the
model system (7.1), and second, the influence of the non-diagonal populations on
the diagonal ones is likewise entirely absent. In other words, even if coherences
and/or polarizations are not of interest, the absence of the coupling remains an
uncertainty in the theory for the determination of populations. Although the prin-
cipal mechanisms of negligible non-diagonal populations on the diagonal ones are
well identified (e.g., broadband illumination of the electromagnetic perturbation
potential, elastic collision rates much larger than radiative decay rates) (Loudon
2000), their quantitative impact cannot be studied within the framework of the
system (7.1) and remains an open question up to present days (in particular, in
applications to dense correlated systems, e.g., dense plasmas, high-energy-density
physics, astrophysics, etc.). Moreover, the Schrödinger picture does not allow to
consistently describe relaxation constants in the amplitude equations and is there-
fore extremely challenging to study a quantum atom immersed into a dense colli-
sional environment.
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It is the purpose of the present quantum kinetic approach, to close this gap by
developing a framework of a quantum kinetics theory for atoms in dense plasmas
that permits to study the impact of the non-diagonal populations on the diagonal
ones for realistic (large) model systems. This is of great practical importance,
because at present only the rate equation approach permits model systems that are
large enough to be realistically considered as closed systems. This is in strong
contrast to the fully quantum approach: the complexity due to the coherences is so
large that only rather restricted model systems have been considered, e.g., for
applications in nonlinear quantum optics.

7.2 Schrödinger Picture

The Schrödinger picture of quantum dynamics describes the probability distribu-
tions for atomic states via the wave function amplitudes

Wj i ¼
X
n

an wnj i; ð7:2Þ

where Wj i is an arbitrary state vector, wnj i are the basis vectors, and an are the
corresponding amplitudes. The probability amplitudes

anj j2¼ wn j Wh ij j2 ð7:3Þ

provide the probability that a system known to be in a state described by Wj i has
attributes associated with wnj i. It is convenient to define the basis vectors wnj i as the
solution of the Hamiltonian Ĥ0 in the absence of any externally applied forces, i.e.,

Ĥ0wn ¼ Eð0Þ
n wn; ð7:4Þ

where the energies Eð0Þ
n are the unperturbed energies of the eigenstates wnj i. An

atom that is known to be in an eigenstate of the Hamiltonian Ĥ0 will remain
infinitely in that states until external forces destroy this repose and cause transitions
between states. If we disturb the isolated atom by a time-dependent interaction
energy represented by the operator V̂ðtÞ, the full Hamiltonian becomes

Ĥ ¼ Ĥ0 þ V̂ðtÞ: ð7:5Þ

As V̂ðtÞ acts on the basis vectors, the interaction produces new linear combinations
of basis vectors, i.e.,

V̂ðtÞwm ¼
X
n

wnVnm ð7:6Þ
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with

Vnm ¼ nh jV̂ mj i ð7:7Þ

while the time evolution is given by the time-dependent Schrödinger equation:

i�h
@WðtÞ
@t

¼ ĤðtÞWðtÞ: ð7:8Þ

It is evident that the Schrödinger picture of (7.8) is extremely challenging for
correlated systems, e.g., dense hot plasmas where the fluctuating electric micro-
fields constitute an important part of the interaction V̂ðtÞ, while numerous
time-dependent collisional excitation and de-excitation processes drive a complex
population kinetics of each amplitude related to the basis vectors wnj i. Due to this
large complexity, model systems are rather restricted if the Schrödinger description
of (7.8) is chosen for numerical solutions. Consequently, a variety of processes may
eventually place the atom into a quantum state that is not included in the restricted
model system. Such events must diminish the probability of finding the atom within
the limited model system. Obviously, any detailed description of such processes
must introduce an enlarged model system to account for the additional quantum
transitions. In order to take into account effects from the enlarged system but retain
the limited model system itself, we can suppress the requirement that the probability
of the limited model must be conserved. The decline from the probability conser-
vation represents therefore the probability lost as the atom undergoes transitions
into quantum states that are not included in the quantum vector basis of the limited
model. As the probability loss is irreversible, it cannot be consistently incorporated
into the quantum mechanical amplitude equations (Rautian and Shalagin 1991).
However, these processes can consistently be described via incoherent relaxation
processes (random phase approximation) into the atomic density matrix equations.

7.3 Atomic Density Matrix: Open and Closed Systems

The density matrix equation of quantum populations in a dense collisional plasma
consisting of multicharged ions and electrons is given by Anufrienko et al. (1990),
Rautian and Shalagin (1991) and Lisitsa (1994):

d~qab
dt

¼ �ixab~qab �
i
�h

X
c

Vac~qcb � ~qacVcb
� �þ Sab

� ca
2

þ cb
2

� �
~qab þRab þAab þQab:

ð7:9Þ
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qab is the density matrix element of the states a and b, i.e., qab ¼ aaa�b that is related
to the reduced representation according to

~qab ¼ qab � exp � i
�h

Ea � Eb
� �

t

� �
: ð7:10Þ

Note that for the diagonal elements ~qab ¼ qab. The first term on the right-hand side
of (7.9) is related to the oscillatory behavior of the non-diagonal matrix elements

with frequency xab ¼ 1
�h

Ea � Eb
� �

, and the second term accounts for the mixing of

populations qac due to the potential Vcb. Sab is the change of the density matrix in

time due to collisions, and Ua0b0

ab are the matrix elements of the collision operator
(Griem 1964, 1974, 1997; Sholin et al. 1973; Lisitsa 1977, 1994; Rautian and
Shalagin 1991; Anufrienko et al. 1993; Sobelman and Vainshtein 2006):

Sab ¼
X
a0b0

Ua0b0

ab � ~qa0b0 : ð7:11Þ

The collision matrix elements Ua0b0

ab describe the influence of the density matrix
element qa0b0 on the matrix element qab due to collisions.

The fourth term accounts for the loss of populations due to transitions into
quantum states that are not explicitly included in the set of the density matrix
equations. In order to distinguish the levels from the system of the density matrix
equations from quantum states not explicitly included, we introduce the following
conventions: a; b; c 2 densitymatrixf g, n;m 62 densitymatrixf g. With this desig-
nation, the loss rates ca and cb are given by

ca ¼
X
n

can; ð7:12Þ

cb ¼
X
m

cbm: ð7:13Þ

The coefficients can and cbm describe the transition rates (number of transitions per
unit time) from the quantum state a to the quantum state n. These depopulating
transitions to quantum levels n;m 62 densitymatrixf g might be due to various
elementary processes, e.g., radiative decay, autoionization, collisional excitation,
ionization, dielectronic capture, radiative recombination, three-body recombination,
etc. Note that the collisional depopulation from the levels a; b 2 densitymatrixf g to
the levels a0; b0 2 densitymatrixf g is described by the collisional operator of (7.11).

The fifth term describes the inverse process of the fourth term, namely the
population of the quantum states a; b; c 2 densitymatrixf g from the quantum states
n;m 62 densitymatrixf g:
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Rab ¼ dab
X
m

cmaqmm: ð7:14Þ

In open model systems, the fifth term (7.14) is absent and the model has therefore
serious drawbacks as it does not maintain, e.g., the principle of detailed balance.

The sixth term Aab describes radiative transitions between the quantum levels
included in the density matrix model (Rautian and Shalagin 1991)

Aab ¼ � crada

2
þ cradb

2

 !
~qab þ dab

X
a0

crada0a~qa0a0 ð7:15Þ

with

crada ¼
X
a0

cradaa0 ; ð7:16Þ

cradb ¼
X
b0

cradbb0 : ð7:17Þ

It is convenient to introduce also explicitly the pumping rates Qab, i.e.,

Qab ¼ dabQa: ð7:18Þ

We note that the pumping rates could formally also be described via the matrix
elements Rab. This, however, is rather challenging in open model systems due to the
absence of such terms.

The summation over the quantum states n;m 62 densitymatrixf g in (7.12), (7.13)
can be consistently performed as they concern only summations over the cross
sections of respective elementary processes. This is quite different from (7.14)
where all elementary processes request the level populations qmm that are not
known within the limited density matrix system a; b; c 2 densitymatrixf g. In dense
plasmas, however, a considerable part of the population flow originates from the
quantum levels n;m 62 densitymatrixf g; examples are the radiative recombination
cascading as well as the spontaneous radiative cascading in triplet systems.

At present, there are no general and consistent solutions available: either the
population flows from the unknown populations densities qmm are neglected or the
density matrix approach is at all suppressed and replaced by the set of (7.1) with all
their aforementioned drawbacks. Therefore, the introduction of relaxation terms
(rates) in the atomic density matrix enables to keep track of some effects originating
from a variety of processes that place the atom into a quantum state that is not
explicitly included in the restricted model system. But in either case this cannot
consistently account for the backflow (7.14) of the populations that is very important
in dense plasmas to be consistent with the principle of detailed balance and the
possibility that the model system approaches correctly the thermodynamic limit.
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It is therefore of general interest (fundamental and application) to develop a new
theory of atomic population kinetic equations that permit model systems to be large
enough to be considered to be closed, i.e.,

XN
a¼1

qaa ¼ 1; ð7:19Þ

while maintaining at the same time the coupling of the non-diagonal populations
qab on the diagonal ones qaa, i.e., to incorporate quantum kinetic effects.

7.4 The Electron Collisional Operator Û

Apart its traditional applications in quantum optics and nonlinear laser physics
(Rautian and Shalagin 1991), the density matrix approach is likewise of funda-
mental interest in atomic plasma physics (Lisitsa 1994). Apart usual collisional
radiative elementary processes that are described by the W-matrix of (7.1), we need
to specify the matrix elements Vab of the field interaction as well as those of the

collisional operator Ua0b0

ab . The explicit determination of the field operators V̂ and Û

is a very complex undertaking because these operators describe a quantum
mechanical many-body correlated charged particle system.

In dense hot plasmas, electrons are usually of much greater mobility than ions
(due to the large electron ion mass ratio). We therefore can assume ions to be
quasi-static ions and responsible for the field operator V̂ (that results into a mixing
of levels due to a quasi-static electric ion field), while the electron collisions are
described by the operator Û that acts on a “quasi-static atomic Stark split structure.”
This approximation is the so-called impact approximation and has originally been
developed in line shape theory (Baranger 1958; Griem and Shen 1959; Griem 1964,
1968, 1974; Griem et al. 1979; Smith and Hooper 1967; Cooper and Oertel 1969;
Sholin et al. 1973; Lisitsa 1977, 1994). In order to obtain explicit expressions for V̂
and Û for quantum kinetics applications in the framework of the impact approxi-
mation, we apply first- and second-order quantum mechanical perturbation theory.

7.4.1 Scattering Matrix Representation

In order to obtain explicit expressions for the evolution of the system, let us restrict
our interest to times Dt that are large compared to the ionic collision time q=ti (ti is
the ion velocity and q the mean ion distance). At the same time, Dt must be small
compared to c�1 where c is the width of the atomic level, so the change of the
system evolution operator in the time interval Dt is still small. These conditions
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correspond approximately to the assumption that collisions are binary. Let us
therefore assume that the evolution of the density matrix can be cast into the
following form:

dq̂
dt

¼ � i
�h

Ĥ0q̂� q̂Ĥ0
� 	� i

�h
V̂ q̂� q̂V̂
� 	þ dq̂

dt


 �
coll

; ð7:20Þ

where the term
dq̂
dt


 �
coll

describes the evolution of the operator q̂ due to collisions.

If the wave function before collision is designated as W and after collision as W0,
they are related to each other via the collision matrix Ŝ:

W0 ¼ ŜW: ð7:21Þ

The corresponding change of the density matrix is then given by

Dq̂ ¼ Ŝþ q̂Ŝ� q̂: ð7:22Þ

Therefore

dq̂
dt


 �
coll

¼ N �
Z1
0

Z1
0

t � FðtÞ dt � 2pqdq Ŝþ q̂Ŝ� q̂
� 	

: ð7:23Þ

N is the density of the perturbing particles, FðtÞ the particle velocity distribution
function, and q the impact parameter. The matrix elements of the collisional part of
the density matrix are designated as in (7.9), i.e.,

Sab ¼ ah j dq̂
dt


 �
coll

bj i ð7:24Þ

from which it follows (using Sþ
ab ¼ S�ba)

Sab ¼
X
a0;b0

qa0b0 � N �
Z1
0

Z1
0

t � FðtÞ dt � 2pqdq S�a0a � Sb0b � daa0db0b
� 	

: ð7:25Þ

According to (7.11), the matrix elements of the collisional operator Û are defined as

Ua0b0

ab ¼ N �
Z1
0

Z1
0

t � FðtÞ dt � 2pqdq S�a0a � Sb0b � daa0db0b
� 	

: ð7:26Þ
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In dense hot plasmas, electron–ion collisions are usually the most important ones
for the excitation of levels and ionization of atoms and ions and we shall therefore
assume in the following that the collisional operator Û describes electron collisions,
i.e.,

Ua0b0

ab ¼ ne �
Z1
0

Z1
0

t � FðtÞ dt � 2pqdq S�a0a � Sb0b � daa0dbb0
� 	

; ð7:27Þ

where ne is the electron density. Due to the long-range character of the Coulomb
field, the scattering matrix Ŝ can be expanded in a perturbation-theory series:

ŜðtÞ ¼ 1þ � i
�h


 �Z t

t0

V̂ ðIÞ t0ð Þdt0 þ � i
�h


 �2 Z t

t0

V̂ ðIÞ t0ð Þdt0
Zt0
t0

V̂ ðIÞ t00ð Þdt00 þ � � �;

ð7:28Þ

where the operator V̂ ðIÞ is given by

V̂ ðIÞ ¼ exp
i
�h
Ĥ0t

� �
� V̂ � exp � i

�h
Ĥ0t

� �
: ð7:29Þ

V̂ represents the field interaction operator.

7.4.2 Electron Collisional Operator in Second-Order
Perturbation Theory

In the classical nonrelativistic approximation, the interaction of perturbers with
charge Zp with a charge distribution q ~rð Þ is given by

ĤintðtÞ ¼ �
X
p

Zp � e2
Z
vol

q ~rð Þd~r
~rp �~r
�� �� : ð7:30Þ

The charge state distribution q ~rð Þ describes the radiating ions including bound
electrons, and the perturbers are assumed to act as point charges. The radius vectors
of the perturbers~rp and the vector~r of the “interaction charge q ~rð Þ” are measured
from the nucleus of the radiator. The term 1=~rp �~r

�� �� can be developed in a Taylor
series:
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1
~rp �~r
�� �� ¼X

1

n¼0

1
n!
� �~r � rp
� �n 1

rp
¼ 1

rp
�~r � rp

1
rp

þ 1
2
~r �~r � rprp

1
rp

þ � � �

¼ 1
~rp
�� �� þ~rp �~r

~rp
�� ��3 þ 1

2
�~rp �~rp
~rp
�� ��5 � 3 �~r �~r � ~rj j2�1̂

� �
þ � � � ;

ð7:31Þ

where 1̂ is the unit matrix. Assuming that all perturbers have the same charge Zp,
the interaction Hamiltonian can be represented as a multipole expansion:

Ĥint ¼ �Zp � e2 �
X
p

1
~rp
�� �� �

Z
vol

q ~rð Þd~r
8<
:

þ ~rp

~rp
�� ��3 �

Z
vol

~r � q ~rð Þd~r

þ~rp �~rp
~rp
�� ��5 �

Z
vol

3~r �~r � ~rj j2�1̂
h i

q ~rð Þd~rþ � � �
9=
;:

ð7:32Þ

The first term in (7.31) corresponds to the monopole, the second one is the dipole,
and the third one is the quadrupole. The corresponding moments are

Z :¼
Z
vol

q ~rð Þd~r; ð7:33Þ

~d ¼
Z
vol

~r � q ~rð Þd~r; ð7:34Þ

Q̂ ¼
Z
vol

3~r �~r � ~rj j2�1̂
h i

q ~rð Þd~r: ð7:35Þ

Note that the dipole moment Z is a scalar, the dipole moment~d is a vector, and the
quadrupole moment Q̂ is a matrix.

In atomic physics, the overwhelming part of radiative and collisional processes
is very well described by the first three terms in the series development of (7.32),
while the dipole term is dominating in most cases. Let us therefore specify the
interaction Hamiltonian in the dipole approximation for the present case of electron
collisions; i.e., an electron collides with the electrons of the radiator and induces
elastic and inelastic transitions (note that due to the orthogonality of the wave
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functions, the monopole term vanishes for transitions unless initial and final
quantum numbers are not identical). In collision theory, the radius vector~rp of the
perturber particles of (7.32) is usually called the impact parameter. Let ~q and~t the
impact parameter and velocity vectors of the colliding electron (perturber) of closest
approach, the classical interaction potential is given by

VðtÞ ¼ e �
~d � ~qþ~t � tð Þ
q2 þ t2 � t2ð Þ3=2

; ð7:36Þ

where q is the impact parameter of the colliding electron, R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ t2 � t2

p
is the

distance between the perturbing particle and the atom, and t the relative velocity of
the perturbing particle and the atom. In the dipole approximation

Ĥint � ĤðdipoleÞ
int ¼ V̂ ¼ e �

~d � ~qþ~t � tð Þ
q2 þ t2 � t2ð Þ3=2

; ð7:37Þ

where the electron charge state distribution of a certain configuration is determined
from the squared of the wave functions of a specific quantum mechanical state, i.e.,

~d ¼ e �
Z
vol

w�
a ~rð Þ �~r � wb ~rð Þd~r ¼~dab: ð7:38Þ

If we develop the scattering matrix up to second order and integrate from t ¼ �1
to t ¼ 1 (i.e., over the whole duration of the collisional process), we obtain from
(7.28)

ŜðtÞ � 1þ � i
�h


 � Z1
�1

V̂ ðIÞðtÞdtþ � i
�h


 �2 Z1
�1

V̂ ðIÞðtÞdt
Z t

�1
V̂ ðIÞ t0ð Þdt0: ð7:39Þ

Physically, a development of the collisional operator up to second order is equiv-
alent to the fact that the main contributions to collisions originate from distant
collisions where the impact parameters are essentially larger than the Weisskopf
radius (i.e., weak collisions).

Assuming that a transition occurs between a level a and a level b consisting of
the states a; a0; . . .ð Þ and b; b0; . . .ð Þ, respectively, the scattering matrix contains then
both the second-order terms~ra �~ra and~rb �~rb and cross-terms originating from the
product of the first-order terms~ra and~rb where~ra and~rb are the radius vectors of the
atomic electrons in states “a” and “b”, respectively. With the help of (7.31) we
obtain the requested matrix elements for the collisional operator of (7.27):
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S�a0a ¼ a0 j ah i� þ a0h j � i
�h


 � Z1
�1

V̂ ðIÞ
a ðtÞdt aj i�

þ a0h j � i
�h


 �2 Z1
�1

V̂ ðIÞ
a ðtÞdt

Z t

�1
V̂ ðIÞ
a t0ð Þdt0 aj i�

ð7:40Þ

and

Sb0b ¼ b0 j bh iþ b0h j � i
�h


 � Z1
�1

V̂ ðIÞ
b ðtÞdt bj i

þ b0h j � i
�h


 �2 Z1
�1

V̂ ðIÞ
b ðtÞdt

Z t

�1
V̂ ðIÞ
b t0ð Þdt0 bj i:

ð7:41Þ

According to (7.27), the collisional operator contains the product of the matrix
elements; therefore, the product of the second-order approximations (7.40), (7.41)
contain third- and fourth-order terms that need to be dropped, i.e.,

S�a0aSb0b � a0 j ah i� b0 j bh iþ a0 j ah i� b0h j � i
�h


 � Z1
�1

V̂ ðIÞ
b ðtÞdt bj i

þ a0 j ah i� b0h j � i
�h


 �2 Z1
�1

V̂ ðIÞ
b ðtÞdt

Z t

�1
V̂ ðIÞ
b t0ð Þdt0 bj i

þ b0 j bh i a0h j � i
�h


 � Z1
�1

V̂ ðIÞ
a ðtÞdt aj i�

þ b0 j bh i a0h j � i
�h


 �2 Z1
�1

V̂ ðIÞ
a ðtÞdt

Z t

�1
V̂ ðIÞ
a t0ð Þdt0 aj i�

þ a0h j � i
�h


 � Z1
�1

V̂ ðIÞ
a ðtÞdt aj i� b0h j � i

�h


 � Z1
�1

V̂ ðIÞ
b ðtÞdt bj i:

ð7:42Þ

In order to apply the collisional operator to dense hot plasmas, we need to average
(7.27) over all directions of the impact vector ~q and the velocity vector~t, i.e.,

Ua0b0

ab ¼ ne �
Z1
0

Z1
0

t � FðtÞ dt � 2pqdq S�a0a � Sb0b � daa0dbb0
� 	8<

:
9=
;

av

: ð7:43Þ
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As we are interested only in times Dt that are large compared to the mean ionic
collision time q=ti, the evolution terms S�a0a � Sb0b are independent from daa0dbb0 and
the averaging procedure can be carried out for these terms independently. If we
assume a random distribution of directions, the second and fourth terms in (7.42)
vanish due to the specific form of the interaction potential (7.36), i.e.,

S�a0aSb0b � da0adb0b
� 	� �

av
� da0a b0h j � i

�h


 �2 Z1
�1

V̂ ðIÞ
b ðtÞdt

Z t

�1
V̂ ðIÞ
b t0ð Þdt0 bj i

8<
:

9=
;

av

þ db0b a0h j � i
�h


 �2 Z1
�1

V̂ ðIÞ
a ðtÞdt

Z t

�1
V̂ ðIÞ
a t0ð Þdt0 aj i�

8<
:

9=
;

av

þ a0h j � i
�h


 � Z1
�1

V̂ ðIÞ
a ðtÞdt aj i� b0h j � i

�h


 � Z1
�1

V̂ ðIÞ
b ðtÞdt bj i

8<
:

9=
;

av

:

ð7:44Þ

The second-order expansion indicates that the electronic collisions of the upper and
lower levels are not independent from each other; i.e., interference effects may take
place. We are now left to calculate the average of products of the interaction
potential V̂ ðIÞðtÞV̂ ðIÞ t0ð Þ� �

av. With the help of (7.37), we obtain:

V̂ðtÞV̂ t0ð Þ� �
av¼ e4 �~r �~r

3
� q2 þ t2tt0

q2 þ t2 � t2ð Þ3=2� q2 þ t2 � t02ð Þ3=2
: ð7:45Þ

The first term in (7.44) provides

b0h j � i
�h


 �2 Z1
�1

V̂ ðIÞ
b ðtÞdt

Z t

�1
V̂ ðIÞ
b t0ð Þdt0 bj i

8<
:

9=
;

av

¼ � e4

3�h2
�
X
b00

b0h j~rb b00j i b00h j~rb bj i

�
Z1
�1

dt
Z t

�1
dt0

q2 þ t2tt0ð Þ � exp ixb0b00 t
� � � exp ixb00bt

0� �
q2 þ t2 � t2ð Þ3=2� q2 þ t2 � t02ð Þ3=2

ð7:46Þ

and correspondingly for the second term in (7.44), we have
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a0h j � i
�h


 �2 Z1
�1

V̂ ðIÞ
a ðtÞdt

Z t

�1
V̂ ðIÞ
a t0ð Þdt0 aj i�

8<
:

9=
;

av

¼ � e4

3�h2
�
X
a00

a0h j~ra a00j i� a00h j~ra aj i�

�
Z1
�1

dt
Z t

�1
dt0

q2 þ t2tt0ð Þ � exp �ixa0a00 tð Þ � exp �ixa00at0ð Þ
q2 þ t2 � t2ð Þ3=2� q2 þ t2 � t02ð Þ3=2

:

ð7:47Þ

The third term in (7.44) is a “cross-term” and given by

a0h j � i
�h


 � Z1
�1

V̂ ðIÞ
a ðtÞdt aj i� b0h j � i

�h


 � Z1
�1

V̂ ðIÞ
b ðtÞdt bj i

8<
:

9=
;

av

¼ e4

3�h2
� a0h j~ra aj i� b0h j~rb bj i

�
Z1
�1

dt
Z1
�1

dt0
q2 þ t2tt0ð Þ � exp �ixa0atð Þ � exp ixb0bt

0� �
q2 þ t2 � t2ð Þ3=2� q2 þ t2 � t02ð Þ3=2

:

ð7:48Þ

Let us introduce the dimensionless parameters (note that xab ¼ �xba)

z1 ¼ q
t
� xb0b00 ; ð7:49Þ

z2 ¼ q
t
� xbb00 ; ð7:50Þ

z01 ¼
q
t
� xa0a00 ; ð7:51Þ

z02 ¼
q
t
� xaa00 ; ð7:52Þ

z3 ¼ q
t
� xb0b; ð7:53Þ

z4 ¼ q
t
� xa0a; ð7:54Þ

x1 ¼ t
q
; ð7:55Þ

x2 ¼ t0

q
: ð7:56Þ
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With the help of the dimensionless parameters (7.49)–(7.56) and (7.46)–(7.48),
(7.44) can be represented in the form

S�a0aSb0b � da0adb0b
� 	� �

av

¼ � 2e4

3�h2
� 1
q2t2

� da0a �
X
b00

b0h j~rb b00j i b00h j~rb bj i�
0
@ 1

2

Z1
�1

dx1

�
Zx1
�1

dx2
1þ x1x2ð Þ � exp i z1x1 � z2x2ð Þ½ �

1þ x21
� �3=2� 1þ x22

� �3=2
þ db0b �

X
a00

a0h j~ra a00j i� a00h j~ra aj i� � 1
2

Z1
�1

dx1

Zx1
�1

dx2
1þ x1x2ð Þ � exp �i z01x1 � z02x2

� �� 	
1þ x21
� �3=2� 1þ x22

� �3=2
þ a0h j~ra aj i� b0h j~rb bj i � 1

2

Z1
�1

dx1

Z1
�1

dx2
1þ x1x2ð Þ � exp �i z3x1 þ z4x2ð Þ½ �

1þ x21
� �3=2� 1þ x22

� �3=2
!
:

ð7:57Þ

The integrals can be expressed in terms of Bessel functions of the first kind Jn,
modified Bessel functions of the second kind Kn and hypergeometric functions nFm

(Deutsch et al. 1969a, b). The integral of the third term in (7.57) is given by

1
2
�
Z1
�1

dx1

Z1
�1

dx2
1þ x1x2ð Þ � exp �i z3x1 þ z4x2ð Þ½ �

1þ x21
� �3=2� 1þ x22

� �3=2
:¼ 2 � z3j j � z4j j � K1 z3j jð Þ � K1 z4j jð Þþ z3 � z4 � K0 z3j jð Þ � K0 z4j jð Þ½ �:

ð7:58Þ

As the second integral in (7.57) reduces to the first one when z01 ¼ �z1 and
z02 ¼ �z2, we obtain

1
2
�
Z1
�1

dx1

Zx1
�1

dx2
1þ x1x2ð Þ � exp i z1x1 � z2x2ð Þ½ �

1þ x21
� �3=2� 1þ x22

� �3=2 :¼A z1; z2ð Þþ iB z1; z2ð Þ ð7:59Þ

and

1
2
�
Z1
�1

dx1

Zx1
�1

dx2
1þ x1x2ð Þ � exp �i z01x1 � z02x2

� �� 	
1þ x21
� �3=2� 1þ x22

� �3=2 ¼ A �z01;�z02
� �þ iB �z01; z

0
2

� �
ð7:60Þ

with
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A z1; z2ð Þ ¼ z1j j � z2j j � K1 z1j jð Þ � K1 z2j jð Þþ z1 � z2 � K0 z1j jð Þ � K0 z2j jð Þ ð7:61Þ

and

B z1; z2ð Þ ¼ z1 1F2 1;
1
2
;
3
2
;
1
4
z21


 �
� 1
4
p z1j j1F2

3
2
; 2;

3
2
;
1
4
z21


 �� �
z2j jK1 z2j jð Þ

� 1F2 1;
1
2
;
1
2
;
1
4
z21


 �
� 1
2
p z1j j1F2

3
2
; 1;

3
2
;
1
4
z21


 �� �
z2K1 z2j jð Þ

þ z2

Z1
0

dt
Z1
0

dt0
t � J0ðtÞ
t2 þ z22

� t0 tþ t0ð Þ � J0 t0ð Þ
tþ t0ð Þ2 þ z1 � z2ð Þ2

þ z2 � z1ð Þ
Z1
0

dt
Z1
0

dt0
t2 � J0ðtÞ
t2 þ z22

� t0 � J0 t0ð Þ
tþ t0ð Þ2 þ z1 � z2ð Þ2

þ z2

Z1
0

dt
Z1
0

dt0
t � J1ðtÞ
t2 þ z22

� t0 tþ t0ð Þ � J1 t0ð Þ
tþ t0ð Þ2 þ z1 � z2ð Þ2

þ z2 � z1ð Þ
Z1
0

dt
Z1
0

dt0
t2 � J1ðtÞ
t2 þ z22

� t0 � J1 t0ð Þ
tþ t0ð Þ2 þ z1 � z2ð Þ2 :

ð7:62Þ

We note the symmetry relations (Deutsch et al. 1969a, b): A(z1, z2) = A(−z1, −z2)
and B(z1, z2) = −B(−z1, −z2). The B-function is rather complex, but can be eval-
uated numerically without great difficulties. In the straight path approximation, the
B-function reduces to Deutsch (1969a, b), Griem (1974), Sobelman and Vainshtein
(2006) and Sahal-Bréchot et al. (2015)

BðstraightÞ z1; z2ð Þ ¼ p � z1 � z2 � K0 z1ð ÞI0 z2ð Þ � K1 z1ð ÞI1 z2ð Þ½ �: ð7:63Þ

In the Born limit, when the dimensionless parameters z of (7.49)–(7.56) are very
small, i.e., z1 � 1 and z2 � 1, the A-function takes a very simple form:

AðBornÞ z1; z2ð Þ ! 1þ z1 � z2: ð7:64Þ

In the straight path approximation, also the B-function takes a simple form:

BðBornÞ
straight z1; z2ð Þ ! p � z1 � z2: ð7:65Þ

The approximations (7.64), (7.65) are of great practical interest because for z\0:1
the A-value deviates less than 10% from its asymptotic value and the B-value is
smaller than about 0.1. Asymptotic expansions for large values of z-parameters, i.e.,
z1 	 1 and z2 	 1, have been considered by (Deutsch et al. 1969b).
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With the help of (7.57)–(7.62), the matrix elements of the collisional operator
(7.43) can therefore be cast into the following form

Ua0b0

ab ¼ �ne � 4pe
4

3�h2
�
Z1
0

f ðtÞ
t

dt
Zqmax

qmin

dq
q

�
X
b00

/ðMÞ;a0b0
ð1Þ;ab � A z1; z2ð Þþ iB z1; z2ð Þ½ �

8<
:

þ
X
a00

/ðMÞ;a0b0
ð2Þ;ab � A �z10 ;�z20ð Þ þ iB �z10 ;�z20ð Þ½ ��/ðMÞ;a0b0

ð3Þ;ab � A z3; z4ð Þ½ �
)
:

ð7:66Þ

with (note, that the third term does not contain a sum over the quantum states and
that the upper index “(M)” remembers that the collisional operator matrix elements
are resolved in magnetic quantum number)

/ðMÞ;a0b0
ð1Þ;ab ¼ da0a � b0h j~rb b00j i b00h j~rb bj i; ð7:67Þ

/ðMÞ;a0b0
ð2Þ;ab ¼ db0b � a00h j~ra a00j i� a00h j~ra aj i�; ð7:68Þ

/ðMÞ;a0b0
ð3Þ;ab ¼ 2 � a0h j~ra aj i� b0h j~rb bj i; ð7:69Þ

f ðtÞ is the electron velocity distribution function. Assuming a Maxwellian electron
energy distribution function, f ðtÞ is given by

f tð Þ ¼
ffiffiffi
2
p

r
� me

kTe


 �3=2

�t2 � exp �met2

2kTe

� �
: ð7:70Þ

t is the electron velocity, me the electron mass, k the Boltzmann constant, and Te the
electron temperature. The integrals [A- and B-functions, (7.61), (7.62)] describe the
non-degenerate case and non-isolated line (z1 ¼ z2 ¼ z for isolated lines) case
because of the possibility z1 6¼ z2. This general case, accompanied with a rigorous
numerical calculation of the integrals of (7.58)–(7.60), is well adopted for appli-
cations to quantum atomic population kinetics of arbitrary level structure.

If the quasi-static Stark splitting between the levels is neglected, i.e., zi ¼ 0 and
correspondingly Að0; 0Þ ¼ 1;Bð0; 0Þ ¼ 0 and V̂ ðIÞ ¼ V̂ [see (7.29)], we encounter
the following relations

Z1
�1

dt
Z t

�1
dt0V̂aðtÞV̂a t0ð Þ ¼ 1

2

Z1
�1

dt � V̂aðtÞ
2
4

3
5
2

ð7:71Þ
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and

Ûa0b0

ab ¼ �ne � 4pe
4

3�h2
�
Z1
0

f ðtÞ
t

dt
Zqmax

qmin

dq
q

�
X
b00

/ðMÞ;a0b0
ð1Þ;ab þ

X
a00

/ðMÞ;a0b0
ð2Þ;ab �/ðMÞ;a0b0

ð3Þ;ab

8<
:

9=
;

ð7:72Þ

Note that (7.71), (7.72) are a particular case of the general (7.66)–(7.69).
In dense plasmas, the integral over the impact parameters deserves particular

attention (Smith and Hooper 1967; Sholin et al. 1973; Griem 1974, 1997; Griem
et al. 1979; Sobelman and Vainshtein 2006; Anufrienko et al. 1993). Other ions and
electrons surround the ion that is considered to be the center of electron scattering.
This results in a screening of the ionic field and is of the order of the Debye sphere
at large distances:

RD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kT
4pe2ni 1þ Z2ð Þ

s
; ð7:73Þ

where ni is the ion density, Z is the ionic charge, and T is the plasma temperature
(assuming that electrons and ions do have the same temperature, i.e., T ¼ Te ¼ Ti).
Therefore, the upper limit of integration for the impact integral (7.66), (7.72) is
given by qmax rather than by an infinite impact parameter. For low values of impact
parameters, (7.36), (7.37) become invalid; however, the region of small impact
parameters with q\qW where qW is the Weisskopf radius (Weisskopf 1933; Kogan
et al. 1973; Lisitsa 1977; Sobelman and Vainshtein 2006) gives a comparatively
small contribution. It is therefore possible to approximate the integral over the
impact parameters in (7.26) according to

Z1
0

2pqdq S�a0a � Sb0b � daa0db0b
� 	 ’ pq2W þ

Z1
qW

2pqdq S�a0a � Sb0b � daa0db0b
� 	 ð7:74Þ

Finally, it should be noted that the impact approximation can only be used if the
duration of the collision fulfills the condition q=ti [Dx�1 where Dx is the width of
the level. Therefore, the upper limit should be chosen as theminimumvalue of the two
valuesRD and ti=Dx. The integrals in (7.57) can be approximated by the followingG-
functions (Griem and Shen 1959; Griem et al. 1979; Smith and Hooper 1967):

Ûa0b0

ab � da0a �
X
b00

b0h j~rb b00j i b00h j~rb bj i � G �Dxab00
� �

þ db0b �
X
a00

a0h j~ra a00j i� a00h j~ra aj i� � G Dxa00b
� �

� a0h j~ra aj i� b0h j~rb bj i � G Dxab0
� �þG �Dxa0b

� �� 	
ð7:75Þ
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with (Hð2Þ
0 is the Hankel function of second kind) (Smith and Hooper 1967)

G Dxab
� � ¼ �ne � pe

4n

3�h2
�
ffiffiffiffiffiffiffiffiffiffiffi
8pme

kTe

r
� exp �hDxab

2kTe


 �
� Hð2Þ

0 �i
�hDxab

2kTe


 �
: ð7:76Þ

The G-function can be approximated by Griem et al. (1979)

G Dxab
� � ¼ �ne � 4p3 �

ffiffiffiffiffiffiffiffiffiffi
2me

pkTe

r
� �h

me


 �2

� Cn þ 1
2
�
Z1
y

e�x

x
dx

0
B@

1
CA; ð7:77Þ

y ¼ n2

2 � Z

 �2

� �h
2Dx2

S þ �h2x2
p þ �h2Dx2

Ry � kTe ; ð7:78Þ

Dx ¼ xab � x; ð7:79Þ

xp ¼
ffiffiffiffiffiffiffiffiffiffi
4pn2e
me

s
: ð7:80Þ

Dx is the frequency separation from the unperturbed line, xp is the electron plasma
frequency, DxS is the Stark shift of the upper levels (i.e., DxS ¼ xaa0 ðFÞ�
xaa0 ðF ¼ 0ÞÞ, n is the principal quantum number of the upper level,
Ry ¼ 13:6057 eV, and Z is the charge of the radiating ion. Cn is a constant that
accounts for the so-called strong collisions at small impact parameters (where the
perturbation theory fails). This constant can roughly be approximated by

Cn � 5
2n

þ 0:2: ð7:81Þ

The exponential integral of (7.77) can conveniently be approximated by

Z1
y

e�x

x
dx � e�y � ln 1þ e�c þ 1:4y

y � 1þ 1:4yð Þ
� �

; ð7:82Þ

where c ¼ 0:577216 is the Euler constant.
For simple estimates [that include the approximations of (7.63)–(7.65)], the

following approximations for the integrals in (7.72) can be employed (Sholin et al.
1973; Lisitsa 1977; Akhmedov et al. 1985; Anufrienko et al. 1993):
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Ûa0b0

ab � ~G Te; qmin; qmaxð Þ � da0a �
X
b00

b0h j~rb b00j i b00h j~rb bj i
2
4

þ db0b �
X
a00

a0h j~ra a00j i� a00h j~ra aj i��2 � a0h j~ra aj i� b0h j~rb bj i
#
;

ð7:83Þ

~G Te; qmin; qmaxð Þ ¼ �ne � 4p3 � e2

�h


 �2

� 1
t

� �
� K; ð7:84Þ

1
t

� �
¼ 4

p th i ¼
4
p
�
ffiffiffiffiffiffiffiffiffi
pme

8kTe

r
; ð7:85Þ

K � ln
qmax

qmin


 �
þ 0:215 ð7:86Þ

with qmax ¼ RD, qmin ¼ max qW; h=mt; Ze
2=mt2; an

� �
where kD ¼ h=met is the

electron De Broglie wavelength, h is the Planck constant, an ¼ n2a0=Z is the
generalized Bohr radius, and

qW ¼ axCx=tð Þ1=ðx�1Þ ð7:87Þ

is the Weisskopf radius. Cx is the Stark constant: For x ¼ 2, we encounter the linear
Stark effect while for the quadratic Stark effect x ¼ 4. The Stark constant can in
some cases be approximated by the reduced matrix elements a rjk kh bi that can
easily be obtained from atomic structure calculations. For the quadratic Stark effect,
we have

C4 � 1
2Ja þ 1

� caJa rk kh cbJb
��� ��2

xab
ð7:88Þ

(note that in this expression the reduced dipole matrix element and the transition
frequency xab are to be employed in atomic units). The constants ax can be
expressed in terms of the C-function:

ax ¼
ffiffiffi
p

p � C ðx� 1Þ=2½ �=C x=2ð Þ ð7:89Þ

(note that ax¼2 ¼ p and ax¼4 ¼ p=2). The velocity can be approximated by the
mean velocity of the Maxwellian average, i.e.,

t � th i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kTe=pme

p
: ð7:90Þ
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We note that improvements of the collisional operator concern not only use of the
exact integrals for the A- and B-functions of (7.59)–(7.62) and higher-order terms in
the series development of the scattering matrix (7.28) but in particular also the
inclusion of the monopole and quadrupole terms in the interaction potential (7.30)
itself (Deutsch et al. 1969a, b; Griem 1974).

7.4.3 Reduced Matrix Element Representation

The matrix elements of the radius vectors of (7.67)–(7.69) that enter into the
expression for the collisional operator Û are very inconvenient for numerical

evaluation of the matrix elements Ua0b0

ab . They can, however, conveniently be
transformed with the help of irreducible tensor operators and the Wigner-Eckhart
theorem (Cowan 1981). The radius vector matrix elements

rab ¼ a0 ah j~r bj i ð7:91Þ

can be considered as a tensor operator T̂ðkÞ
q of rank one, i.e.,

rab ¼ a0 �
X
q

ah jrð1Þq bj i :¼ dab
e

; ð7:92Þ

where dab is the dipole matrix element. The radius vector matrix element can be
then transformed with the help of the Wigner–Eckart theorem according to (r is in
atomic units, i.e., in units of the Bohr radius a0)

ah jrð1Þq bj i ¼ caJaMah jrð1Þq cbJbMb

�� �
¼ �1ð ÞJa�Ma

Ja 1 Jb
�Ma q Mb


 �
caJakrkcbJb

��
:

ð7:93Þ

The state ah j is described by a set of quantum numbers caJaMa where ca is a short

notation of all quantum numbers except Ja and except Ma.
Ja 1 Jb

�Ma q Mb


 �
is the

3j symbol that vanishes unless the relations DJ ¼ Ja � Jb ¼ 0;
1 and
�Ma þ qþMb ¼ 0 are not fulfilled (with the restriction that Ja ¼ Jb ¼ 0 is not
allowed). The q-parameter specifies linear ðq ¼ 0Þ and circular ðq ¼ 
1Þ polar-
ization. caJakrkcbJb

��
is the reduced matrix element that does not depend anymore

on the magnetic quantum numbers. It is very convenient to use reduced matrix
elements in atomic units because atomic structure codes almost exclusively provide
these matrix elements in atomic units.
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Let us begin with the transformation of the matrix element /ðMÞ;a0b0
ð1Þ;0ab ¼ da0a �

b0h j~rb b00j i b00h j~rb bj i from (7.67). Direct application of the Wigner–Eckart theorem
according to (7.93) would be very inconvenient, as it would result in a product of a
sum over different q-terms. However, the matrix elements of ~r �~rð Þ can be con-
veniently evaluated considering the product of the radius vectors as a product of
tensor operators of rank one that transforms according to

ah j~r �~r bj i ¼
X
q

�1ð Þq� ah jrð1Þq � rð1Þ�q bj i: ð7:94Þ

Therefore (see also (7.67))

/1 ¼ da0a � b0h j~rb �~rb bj i
¼ da0a �

X
q

�1ð Þq � b0 rð1Þb;q � rð1Þb;�q

��� ���bD E
¼ da0a �

X
q;b00

�1ð Þqþ Jb0�Mb0 þ Jb00�Mb00 � cb0Jb0 rbk k�
cb00Jb00

� � cb00Jb00 rbk k�
cbJb

�

� Jb0 1 Jb00

�Mb0 q Mb00

 !
� Jb00 1 Jb

�Mb00 �q Mb

 !
;

/2 ¼ db0b � a0h j~ra �~ra aj i
¼ da0a �

X
q

�1ð Þq � a0 rð1Þa;q � rð1Þa;�q

��� ���aD E
¼ da0a �

X
q;a00

�1ð Þqþ Ja0 �Ma0 þ Ja00 �Ma00 � ca0Ja0 rak kh ca00Ja00 i � ca00Ja00 rak kh caJai

� Ja0 1 Ja00

�Ma0 q Ma00


 �
� Ja00 1 Ja

�Ma00 �q Ma


 �
ð7:95Þ

and with the help of the symmetry properties of the 3j symbols

J1 J2 J
M1 M2 M


 �
¼ J J1 J2

M M1 M2


 �
¼ �1ð ÞJþ J1 þ J2 J J2 J1

M M2 M1


 �
ð7:96Þ

and

J1 J2 J
M1 M2 M


 �
¼ �1ð ÞJþ J1 þ J2 J1 J2 J

�M1 �M2 �M


 �
ð7:97Þ

it follows
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Jb0 1 Jb00

�Mb0 q Mb00

 !
� Jb00 1 Jb

�Mb00 �q Mb

 !

¼ �1ð Þ2Jb0 þ 2Jb00 þ 2 Jb00 1 Jb0

�Mb00 �q Mb0

 !
� Jb00 1 Jb

�Mb00 �q Mb

 !

¼ Jb00 1 Jb0

�Mb00 �q Mb0

 !
� Jb00 1 Jb

�Mb00 �q Mb

 !
:

ð7:98Þ

The last relation in (7.98) follows from the fact that Jb0 þ 1þ Jb00 is integral.
Because

cb00Jb00 rbk kcbJb
�� ¼ �1ð ÞJb00 �Jb � cbJb rbk kcb00Jb00

��� ð7:99Þ

we obtain with (7.96), (7.97), (7.98) from (7.95)

/1 ¼ da0a �
X

cb00 ;Jb00 ;q;Mb00

�1ð Þqþ Jb0�Mb0 þ Jb00 �Mb00 þ Jb00 �Jb

� cbJb rbk k�
cb00Jb00

��� cb0Jb0 rbk k�
cb00Jb00

�
� Jb00 1 Jb0

�Mb00 �q Mb0

 !
� Jb00 1 Jb

�Mb00 �q Mb

 !
:

ð7:100Þ

Because �Mb00 � qþMb0 ¼ 0 and 2Jb00 � 2Mb00 is even the alternating sign of
(7.100) transforms into

�1ð Þ�Mb00 þ Jb0 þ Jb00�Mb00 þ Jb00�Jb¼ �1ð Þ2Jb00�2Mb00 þ Jb0�Jb¼ �1ð ÞJb0�Jb : ð7:101Þ

Equation (7.100) therefore transforms into

/1 ¼ da0a �
X
cb00 ;Jb00

�1ð ÞJb0�Jb � cbJb rbk k�
cb00Jb00

��� cb0Jb0 rbk k�
cb00Jb00

�

�
X
q;Mb00

Jb00 1 Jb0

�Mb00 �q Mb0

 !
� Jb00 1 Jb

�Mb00 �q Mb

 !
:

ð7:102Þ

The last sum in (7.102) can be evaluated with the 3j symbol sum rule because the
alternating sign is independent of the summation indexes:

X
M1;M2

J1 J2 J
M1 M2 M


 �
J1 J2 J 0

M1 M2 M0


 �
¼ dJJ0 � dMM0 � d J1; J2; Jð Þ

2Jþ 1
; ð7:103Þ
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where ~J ¼~J1 þ~J2 (i.e., J ¼ J1 þ J2; J1 þ J2 � 1; . . .; J1 � J2j j). The delta function
d J1; J2; Jð Þ indicates the fulfillment of the triangular relation, i.e., d J1; J2; Jð Þ ¼ 1 if
the triangular relation is satisfied and d J1J2Jð Þ ¼ 0 otherwise. Therefore

X
q;Mb00

Jb00 1 Jb0
�Mb00 �q Mb0


 �
� Jb00 1 Jb

�Mb00 �q Mb


 �
¼ dJb0 Jb � dMb0Mb � d Jb00 ; 1; Jb0

� �
2Jb þ 1

:

ð7:104Þ

With (7.102), (7.104) the first term of the collisional operator from (7.66) is then
given by

X
b00

/ðMÞ;a0b0
ð1Þ;ab � Aðz1; z2Þþ iBðz1; z2Þ½ � ¼ da0a � dJb0 Jb � dMb0Mb � d Jb00 ; 1; Jb

� �
2Jb þ 1

�
X
cb00 ;Jb00

cbJb rbk k�
cb00Jb00

��� cb0Jb0 rbk k�
cb00Jb00

�
� Aðz1; z2Þþ iBðz1; z2Þ½ �:

ð7:105Þ

A similar transformation with the help of the Wigner–Eckart theorem and tensor
operators for /2 from (7.95) provides

X
a00

/ðMÞ;a0b0
ð2Þ;ab � Að�z01;�z02Þþ iBð�z01;�z02Þ

� 	 ¼ db0b � dJa0 Ja � dMa0Ma � d Ja00 ; 1; Jað Þ
2Ja þ 1

�
X
ca00 ;Ja00

caJa rak kh ca00Ja00 i � ca0Ja0 rak kh ca00Ja00 i�

� Að�z01;�z02Þþ iBð�z01;�z02Þ
� 	

:

ð7:106Þ

The cross-term /ðMÞ;a0b0
ð3Þ;ab from (7.69) may be transformed with the help of the tensor

product transformation (Sobelman 2006)

T ðkÞ � UðkÞ ¼
X
q

�1ð Þq�TðkÞ
q � UðkÞ

�q: ð7:107Þ

We can transform the term a0h j~ra aj i� b0h j~rb bj i with the help of (7.107) if the tensors
T ðkÞ and UðkÞ operate in the same space. According to (7.23)–(7.25), the vectors a0j i
and b0j i are introduced as a complete orthonormal functional set, i.e., 1̂ ¼P

a0j i a0h j and 1̂ ¼P b0j i b0h j, while the same holds true for the vectors aj i and bj i
itself. Therefore (note that a0h j~ra aj i�¼ ah j~ra a0j i)
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a0h j~ra aj i� b0h j~rb bj i ¼ ab0h j~ra �~rb a0bj i
¼
X
q

�1ð Þq� ab0h jrð1Þa;q � rð1Þb;�q a
0bj i

¼
X
a00;b00

X
q

�1ð Þq� ab0h jrð1Þa;q a00b00j i � a00b00h jrð1Þb;�q a
0bj i:

ð7:108Þ

We can carry out the integration of the first matrix element in (7.108) with respect
to the vectors a0j i and a00j i. After integration, the radial dependence vanishes and

provides finally the term ab0h jrð1Þa;q a00b00j i ¼ ah jrð1Þa;q a00j i b0 j b00h i. Likewise we can
carry out the first integration for the second matrix element with respect to the

vectors b00j i and bj i providing a00b00h jrð1Þb;q a
0bj i ¼ b00h jrð1Þb;q bj i a00 j a0h i. Equation

(7.108) therefore takes the form

ah j~ra a0j i b0h j~rb bj i ¼ db0b00 � da00a0
X
a00;b00

X
q

�1ð Þq� ah jrð1Þa;q a00j i � b00h jrð1Þb;q bj i: ð7:109Þ

We apply now the Wigner–Eckart theorem for each matrix element:

ah j~ra a0j i b0h j~rb bj i ¼ dcb0 ;cb00 � dJb0 ;Jb00 � dMb0 ;Mb00 � dca00 ;ca0 � dJa00 ;Ja0 � dMa00 ;Ma0

�
X

ca00 ;Ja00 ;Ma00

X
cb00 ;Jb00 ;Mb00

X
q

�1ð Þq� �1ð ÞJa�Ma þ Jb0 �Mb0

� caJa rak kh ca00Ja00 i �
Ja 1 Ja00

�Ma q Ma00


 �

� cb00Jb00 rbk k�
cbJb

� � Jb00 1 Jb
�Mb00 �q Mb

 !
:

ð7:110Þ

Due to the d-functions and the fact that 2 � Jb00 þ 1þ Jb0
� �

is even, (7.110) can be
simplified:

ah j~ra a0j i b0h j~rb bj i ¼
X
q

�1ð Þq� �1ð ÞJa�Ma þ Jb0�Mb0 þ Ja�Ja0

� ca0Ja0 rak kh caJai��
Ja 1 Ja0

�Ma q Ma0


 �

� cb0Jb0 rbk k�
cbJb

� � Jb 1 Jb0

�Mb q Mb0

 !
:

ð7:111Þ
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Therefore, we obtain finally for the cross-term /ðMÞ;a0b0
ð3Þ;ab (with -Ma + q + Ma' = 0):

/3 ¼ /ðMÞ;a0b0
ð3Þ;ab ¼ 2 �

X
q

�1ð Þ2Ja�Ma0�Mb0 þ Jb0�Ja0 � ca0Ja0 rak kh caJai�� cb0Jb0 rbk k�
cbJb

�

� Ja 1 Ja0

�Ma q Ma0


 �
� Jb 1 Jb0

�Mb q Mb0

 !
:

ð7:112Þ

7.4.4 Symmetry Properties

The interest in symmetry properties is related to the principle of microreversibility
and the principle of detailed balance which are fundamental conditions that systems
can reach the thermodynamic limit. We are therefore in particular interested in the
symmetry properties of the electron collisional operator because this operator is the
“driving force” in the system of density matrix equations to reach the thermody-
namic limit. Although general symmetry properties exist for quantum mechanical
operators, it is of practical importance to verify the final expressions explicitly in
order to clarify if certain important symmetry properties are maintained in the
course of the various approximations made (second-order perturbation theory,
dipole approximation, etc.).

There are no general symmetry properties related to the collisional operator
matrix elements Sab from (7.11) because it explicitly contains all the populations
~qa0b0 and energy differences. We are therefore interested in the symmetry properties

of some particular matrix elements /1;/2;/3;U
a0b0

ab that follow directly from the

symmetry properties of the functions /ðMÞ;a0b0
ð1Þ;ab ;/ðMÞ;a0b0

ð2Þ;ab and /ðMÞ;a0b0
ð3Þ;ab from (7.67)–

(7.69), (7.112). For a0 ¼ b0 ¼ a we have /ðMÞ;aa
ð3Þ;ab ¼ 0 while /ðMÞ;aa

ð1Þ;ab and /ðMÞ;aa
ð2Þ;ab are

symmetric to each other as can be directly seen from (7.95), i.e.,

/1 ¼ da0a � b0h j~rb �~rb bj i ð7:113Þ

and correspondingly

/2 ¼ db0b � a0h j~ra �~ra aj i ð7:114Þ

Therefore,

X
b00

/ðMÞ;aa
ð1Þ;ab þ

X
a00

/ðMÞ;aa
ð2Þ;ab � /ðMÞ;aa

ð3Þ;ab ¼
X
b00

/ðMÞ;aa
ð1Þ;ba þ

X
a00

/ðMÞ;aa
ð2Þ;ba � /ðMÞ;aa

ð3Þ;ba

ð7:115Þ
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and likewise

X
b00

/ðMÞ;ab
ð1Þ;aa þ

X
a00

/ðMÞ;ab
ð2Þ;aa � /ðMÞ;ab

ð3Þ;aa ¼
X
b00

/ðMÞ;ba
ð1Þ;aa þ

X
a00

/ðMÞ;ba
ð2Þ;aa � /ðMÞ;ba

ð3Þ;aa :

ð7:116Þ

For a0 ¼ a and b0 ¼ b we have /ðMÞ;ab
ð3Þ;ab ¼ 0 while /ðMÞ;ab

ð1Þ;ab and /ðMÞ;ab
ð2Þ;ab are also

symmetric to each other, i.e.,

X
b00

/ðMÞ;ab
ð1Þ;ab þ

X
a00

/ðMÞ;ab
ð2Þ;ab � /ðMÞ;ab

ð3Þ;ab ¼
X
b00

/ðMÞ;ba
ð1Þ;ba þ

X
a00

/ðMÞ;ba
ð2Þ;ba � /ðMÞ;ba

ð3Þ;ba :

ð7:117Þ

For a0 ¼ b and b0 ¼ a we have /ðMÞ;ba
ð1Þ;ab ¼ 0 and /ðMÞ;ba

ð2Þ;ab ¼ 0. If we apply (7.99) two

times, we obtain

cbJb rk k�
caJai�� caJa rk kh cbJb

� ¼ caJa rk kh cbJb
� � cbJb rk k�

caJai� ð7:118Þ

from which it follows

X
b00

/ðMÞ;ba
ð1Þ;ab þ

X
a00

/ðMÞ;ba
ð2Þ;ab � /ðMÞ;ba

ð3Þ;ab ¼
X
b00

/ðMÞ;ab
ð1Þ;ba þ

X
a00

/ðMÞ;ab
ð2Þ;ba � /ðMÞ;ab�

ð3Þ;ba :

ð7:119Þ

For b ¼ a and a0 ¼ b0 ¼ b we have /ðMÞ;bb
ð1Þ;aa ¼ 0 and /ðMÞ;bb

ð2Þ;aa ¼ 0. Because of the

selection rule �2Ma ¼ �2Mb þ 2q and the fact that 2Ja � 2Ma and 2q are even, we
find

X
b00

/ðMÞ;bb
ð1Þ;aa þ

X
a00

/ðMÞ;bb
ð2Þ;aa � /ðMÞ;bb

ð3Þ;aa ¼
X
b00

/ðMÞ;aa
ð1Þ;bb þ

X
a00

/ðMÞ;aa
ð2Þ;bb � /ðMÞ;aa

ð3Þ;bb :

ð7:120Þ

The symmetry relations for
P

b00 /
ðMÞ;a0b0
ð1Þ;ab þ P

a00 /
ðMÞ;a0b0
ð2Þ;ab � /ðMÞ;a0b0

ð3Þ;ab
n o

do in

general not coincide with the symmetry relations for Ua0b0

ab because the matrix

elements Ua0b0

ab contain the integral over the electron distribution function and

7.4 The Electron Collisional Operator Û 331



different energies. Therefore, e.g., different lower threshold energies have to be
taken into account when exchanging the indexes. This circumstance corresponds to
the physical phenomena that in thermodynamic equilibrium the direct and inverse
rates are related to each other via the Boltzmann factor and not only via the
statistical weights (note that in the high temperature limit—or Born limit—the
Boltzmann factor vanishes and the differences in energies, i.e z-terms in (7.49)–
(7.54) vanish too).

We note that for the case a0 ¼ a and b0 ¼ b, and A ¼ 1;B ¼ 0 we encounter also

symmetric integrals because /ðMÞ;ab
ð3Þ;ab ¼ 0 while /ðMÞ;ab

ð1Þ;ab and /ðMÞ;ab
ð2Þ;ab enter only as a

sum in Uab
ab. Therefore (for A = 1 and B = 0)

Uab
ab ¼ Uba

ba: ð7:121Þ

A similar circumstance is encountered for a0 ¼ b0 ¼ a. Therefore (forA = 1 andB = 0)

Uaa
ab ¼ Uaa

ba: ð7:122Þ

7.5 Matrix Elements and Atomic Physics Processes

7.5.1 Line Strengths and Oscillator Strengths

With the help of the Wigner–Eckart theorem, the M-quantum average over the
relaxation constants can be easily obtained from the reducedmatrix elements of atomic
structure calculations. They can be expressed in terms of the dipole strength, the
squared dipole matrix element, the spontaneous transition probability, emission and
absorption oscillator strengths or directly in terms of cross sections and rate coeffi-
cients. The dipole line strength (in atomic units, i.e., in units of e2a20) is defined by

SJaJb ¼ caJakrkcbJb
���� ��2; ð7:123Þ

i.e., the line strength is symmetric

SJaJb ¼ SJbJa : ð7:124Þ

Reduced matrix elements and line strengths are given in atomic units because
numerical atomic structure calculations provide these quantities almost exclusively
in atomic units. Note that a0 ¼ �h2=mee2;Ry ¼ mee4=2�h2 and with �h ¼ 1:054572 �
10�27 erg s; e ¼ 4:803204� 10�10 esu, me ¼ 9:109383� 10�28 g we obtain a0 ¼
5:291772 � 10�9 cm;Ry ¼ 2:179870� 10�11 erg, 1 eV ¼ 1:602176� 10�12 erg
in cgs-units while Ry ¼ 13:605693 eV. The spontaneous transition probability from
caJaMaj i ! cbJbMb

�� �
is given by (see also (7.92))

332 7 Quantum Atomic Population Kinetics in Dense Plasmas



Aab ¼ 4e2a20x
3
ab

3c3�h

X
q

caJaMah jrð1Þq cbJbMb

�� ���� ���2 ¼ 4x3
ab

3c3�h
dab
�� ��2: ð7:125Þ

With the help of the 3j symbol sum rule (assuming that the triangular relation is
fulfilled, see also (7.103))

2Jb þ 1
� �X

Ma;q

Ja 1 Jb
�Ma q Mb


 �2

¼ 1 ð7:126Þ

we obtain for the squared of the dipole matrix element summed over all final states
Mb (see also (7.93) and (7.96))

daJb
�� ��2 ¼X

Mb

dab
�� ��2 ¼ e2a20 caJakrkcbJb

���� ��2X
Mb;q

Ja 1 Jb
�Ma q Mb


 �2

¼ e2a20 �
caJakrkcbJb

���� ��2
2Ja þ 1

:

ð7:127Þ

The line strength SJaJb and absorption oscillator strength faJb are related via

faJb ¼
2me

3�h
� xab �

a20 � caJakrkcbJb
���� ��2

2Ja þ 1ð Þ ¼ 2mea20xab

3�h
� SJaJb e2a20

� �
2Ja þ 1ð Þ ; ð7:128Þ

where the argument ðe2a20Þ indicates that the line strength is in atomic units (see also
(7.123)). The oscillator strength faJb is an absorption oscillator strength from a
specific lower state aj i ¼ caJaMaj i resolved in Ma to all upper states Mb, i.e.,
summed over all Mb. The corresponding expression for the spontaneous transition
probability is likewise obtained from the sum over all final statesMb (note, that here
the index a is the upper state and the index b is the lower state):

AaJb ¼
X
Mb

Aab ¼ 4x3
ab

3c3�h

X
Mb

dab
�� ��2 ¼ 4e2a20x

3
ab

3c3�h
� caJakrkcbJb

���� ��2
2Ja þ 1

¼ 4e2a20x
3
ab � SJaJb

3c3�h � 2Ja þ 1ð Þ

¼ 1:063076� 106 � DE3
abðeVÞ �

SJaJb e2a20
� �

2Ja þ 1ð Þ s�1� 	
:

ð7:129Þ

In the last expression: (easily verified in atomic units using the unit of time
2.418884 � 10−17 sec and the number 137.036 for the speed of light) the constant is
given for the transition energy in (eV) (positive: note that binding energies
are negative; therefore, e.g., the transition energy of Lya is given by the indexes
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a ¼ 2p; b ¼ 1s and DEab ¼ �0:25 � Ryð Þ � �1 � Ryð Þ ¼ þ 0:75 � Ry with
Ry ¼ 13:605693 eV), the line strengths in atomic units, and the transition proba-
bility in (s−1). From (7.128), (7.129) it follows

fbJa ¼ 1:49922� 104 � k2baðmÞ � AbJa : ð7:130Þ

The constant in (7.130) is given for the emission oscillator strength fbJa , transition
wavelength kba in (m), and the spontaneous transition probability AbJa in (s−1).

In order to relate emission and absorption oscillator strength to each other as well
as with corresponding spontaneous transition probabilities, an average over initial
and final M-quantum numbers has to be performed:

dJaJb
�� ��2¼ 1

2Ja þ 1
�
X
Ma;Mb

dab
�� ��2 ¼ e2a20 �

caJakrkcbJb
���� ��2

2Ja þ 1
: ð7:131Þ

The last expression follows from the fact that according to (7.127) the dipole matrix
element summed over final M-quantum numbers Mb does not depend any more on
Ma: Therefore, the subsequent sum over the initial M-quantum numbers Ma pro-
vides 2Ja þ 1 identical terms and one factor 1=ð2Ja þ 1Þ cancels. For the transition
probability, we obtain

AJaJb ¼
1

2Ja þ 1
�
X
Ma;Mb

Aab ¼ 4e2a20
3c3�h

� x3
ab �

SJaJb e2a20
� �

2Ja þ 1
: ð7:132Þ

Equation (7.132) is therefore identical to (7.129). Likewise, we have

fJaJb ¼
1

2Ja þ 1
�
X
Ma;Mb

fab ¼ 2mea20xab

3�h
� SJaJb e2a20

� �
2Ja þ 1ð Þ

¼ 2mea20xab

3�h
� caJakrkcbJb

���� ��2
2Ja þ 1ð Þ :

ð7:133Þ

Because the line strength is symmetric, the absorption oscillator strengths follow
directly from (7.133) changing the initial and final states:

fJbJa ¼
1

2Jb þ 1
�
X
Mb;Ma

fba ¼ 2mea20xba

3�h
� SJbJa e2a20

� �
2Jb þ 1
� �

¼ � 2mea20xab

3�h
� SJaJb e2a20

� �
2Jb þ 1
� �

¼ � 2mea20xab

3�h
� caJakrkcbJb

���� ��2
2Jb þ 1
� � :

ð7:134Þ

Emission and absorption oscillator strengths are therefore related via the expression
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2Ja þ 1ð Þ � fJaJb ¼ � 2Jb þ 1
� � � fJbJa : ð7:135Þ

Comparing (7.132) (exchanging the indexes a and b to account for the fact that a is
the index of the upper state for the transition probability in (7.132) while a cor-
responds to the lower state for the absorption oscillator strengths in 7.133)) and
(7.133), we find, with (7.135) and xab ¼ �xba

�fJaJb ¼
c3 � me

2e2 � x2
ab

� 2Jb þ 1
2Ja þ 1

� AJbJa ¼
c � me

8p2e2
� k2ab �

2Jb þ 1
2Ja þ 1

� AJbJa ð7:136Þ

and

fJbJa ¼
c3 � me

2e2 � x2
ba

� AJbJa ¼
c � me

8p2e2
� k2ba � AJbJa : ð7:137Þ

In convenient units, (7.137) reads (compare with (7.130))

fJbJa ¼ 1:49922� 104 � k2baðmÞ � AJbJa : ð7:138Þ

With the above equations, all M-quantum averages for radius vector dipole matrix
elements are specified.

The matrix elements are not only useful for the calculation of radiative transi-
tions, but also for the calculation of collisional processes and the study of field
effects; detailed studies of different methods of calculations have been performed
(Rosmej et al. 2013). Note, that the detailed calculation of energies, wavelengths,
oscillator strengths and reduced matrix elements including sign for HI and HeII are
presented in Annexes A.2. and A.3.

7.5.2 Reduced Matrix Elements and Cross Sections

Let us consider the dipole allowed electron excitation cross section r J ! J 0ð Þ in the
Born limit. Because the Bessel function in the scattering matrix element can be
represented via a dipole matrix element for high energies, the dipole allowed cross
section can be expressed via reduced matrix elements or oscillator strengths
(f Ja ! Jb
� � ¼ fJaJb ) too (Cowan 1981; Sobelman and Vainshtein 2006):

r Ja ! Jb
� � ¼ 4e4

3�h2
�
Zqmax

qmin

2pqdq � 1
q2t2

� caJa rk kcbJb
���� ��2

2Ja þ 1

" #

¼ 8pe4

3�h2
� 1
t2

� caJa rk kcbJb
���� ��2

2Ja þ 1

( )
� g

¼ 8pa20 �
Ry
E

� Ry
DEab

� f Ja ! Jb
� � � g;

ð7:139Þ
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where [see also (7.86)]

g ¼ ln
qmax

qmin


 �
: ð7:140Þ

The corresponding transition rate coefficient [in units of (cm3 s−1)] averaged over a
Maxwellian distribution function follows directly from (7.139), (7.140), i.e.,

tr Ja ! Jb
� �� � ¼ Z tr Ja ! Jb

� �
f ðtÞdt

¼ 16
ffiffiffi
p

p
a20t0 � f Ja ! Jb

� � � Ry
DEab


 �3=2

�
ffiffiffi
b

p
� exp �DEab

kTe


 �
� �g;

ð7:141Þ

where

�g ¼ ln
qmax

qmin


 �
: ð7:142Þ

a0 and t0 are the Bohr radius and velocity and the bar over the Coulomb logarithm
indicates that maximum and minimum impact parameters are to be taken for the
thermal velocity [for a more detailed discussion of the Coulomb logarithm the
interesting reader is referred to Kogan et al. (1973)] with electron temperature kTe
in (eV), Ry ¼ 13:6057 eV, DEab is the transition energy (positive) in (eV) and

b ¼ DEab

kTe
: ð7:143Þ

For closely spaced levels, the exponential factor in (7.141) is close to 1.
Numerous expressions for (7.142) have been proposed in the literature

(Gaunt-factor discussion) that all practically differ not too much from each other
(Sobelman and Vainshtein 2006). The following closed expression can be employed
for somewhat more general estimates of dipole allowed transitions in ions:

tr Ja ! Jb
� �� � ¼ 3:15� 10�7 � f Ja ! Jb

� � Ry
DEab


 �3=2e�bffiffiffi
b

p gðbÞ cm3 s�1� 	
:

ð7:144Þ

With (c ¼ 0:577216 is the Euler constant)

�gðbÞ � 0:2757 � e�1:3b b� b2

4
� lnðbÞ � c


 �
þ 0:2 � 1� e�4:5b� �

: ð7:145Þ
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We note that the Gaunt-factor approximation of (7.145) is valid for the whole range
of b-parameters, i.e., exceeds the application range of the pure Born limit.

7.6 Magnetic Quantum Number Averages

7.6.1 The Rate Equation Case

Although in the overwhelming number of applicationsM-quantum number resolved
structure is usually employed, the set of equations (7.1) also allows an M-resolved
description of the populations. In practice, theM-resolved descriptions are essentially
limited to applications in polarization spectroscopy (Fujimoto and Imawae 2008;
Degl’Ionnocenti and Landolfi 2004). As theM-quantum number averages in density
matrix approach are rather complex due to the double index for quantum populations,
let us first consider the general principles ofM-quantum number averages in the rate
equation approach, i.e., in the framework of the populations (7.1).

As before, we designate M-quantum-number-resolved levels with the greek
indices a; b; c; . . . while M-quantum-number-averaged levels are designated with
latin indices a; b; c; . . .. The M-quantum-number-resolved set of (7.1) takes there-
fore the form

dna
dt

¼ �na
X
b

Wab þ
X
c

ncWca; ð7:146Þ

while the corresponding M-quantum-number-averaged equation is given by

dna
dt

¼ �na
X
b

Wab þ
X
g

ngWga: ð7:147Þ

The summation of (7.146) over M-quantum numbers provides

X
Ma

dna
dt


 �
¼ �

X
Ma

na
X
b

Wab

 !
þ
X
Ma

X
c

ncWca

 !
: ð7:148Þ

The left-hand side defines the M-quantum-number-summed populations, i.e.

X
Ma

dna
dt


 �
¼ dna

dt
: ð7:149Þ
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We note that at this point, (7.148) and (7.149) are still exact. However, in order that
(7.147) are useful, no direct reference to the M-quantum-number-resolved set of
populations (7.146) should be made; otherwise, there would be no useful simpli-
fication if the averaged populations are just calculated from (7.149).

In order to find a non-trivial solution to the set of population (7.147), additional
approximations need to be involved. The most common one is the hypothesis of a
statistical population among the M-quantum-number-resolved levels cJM (J is the
total angular momentum and c specifies all quantum numbers of a level except
J and M), i.e.

nðapproxÞa ¼ 1
2Ja þ 1

na ð7:150Þ

(Note that usually no Boltzmann exponential factor is applied to (7.150) because
the M-quantum levels are degenerated). Injecting (7.150) into (7.148) we obtain

X
Ma

dna
dt


 �
¼ �

X
Ma

1
2Ja þ 1

na
X
b

Wab

 !
þ
X
Ma

X
c

1
2Jc þ 1

ngWca

 !

¼ �
X
Ma

1
2Ja þ 1

na
X
Jb

X
Mb

Wab

 !
þ
X
Ma

X
Jc

X
Mc

1
2Jc þ 1

ngWca

 !

¼ �na
X
Jb

1
2Ja þ 1

X
Ma

X
Mb

Wab

( )
þ
X
Jc

ng
1

2Jc þ 1

X
Mc

X
Ma

Wca

( )
;

ð7:151Þ

where the summation over Jb and Jc in the second and third line indicates the
summation over all levels that are not resolved in M-quantum number. The com-
parison of (7.147) and (7.148) with (7.151) indicates that the M-quantum-
number-averaged rates of the elementary atomic physics processes should be

Wab ¼ 1
2Ja þ 1

X
Ma

X
Mb

Wab

( )
: ð7:152Þ

With the help of (7.152), (7.147) represents a non-trivial approximate solution of
the M-quantum-number-averaged set of population equations, i.e.

dnðapproxÞa

dt
¼ �nðapproxÞa �

X
b

Wab þ
X
g

nðapproxÞg �Wga: ð7:153Þ

338 7 Quantum Atomic Population Kinetics in Dense Plasmas



7.6.2 Formal Solution for the Density Matrix Equations

Let us now investigate the M-quantum average of the general set of density matrix
(7.9):

d~qab
dt

¼ �ixab~qab �
i
�h

X
c

Vac~qcb � ~qacVcb

� �þ X
a0b0

Ua0b0

ab � ~qa0b0

� ca
2

þ cb
2

� �
~qab þRab þAab þQab:

ð7:154Þ

Because
P

Ma

P
Mb

wcaJaMa
� w�

cbJbMb
¼ P

Ma
wcaJaMa

� �
� PMb

w�
cbJbMb

� �
the M-

quantum-number-summed density matrix elements are given by

~qab :¼
X
Ma;Mb

~qab: ð7:155Þ

The M-quantum-number-summed density matrix elements of (7.155) request the
solution of the full M-quantum-number-resolved (7.154). The practical interest in
the M-quantum-number-averaged equations is therefore related to a presentation
that employs from the very beginning only averaged quantities; otherwise, the
average would not provide any simplifications. We are therefore looking for a set of
density matrix equations that can be written in the form

d~qab
dt

¼ �ixab~qab �
i
�h

X
g

Vag~qgb � ~qagVgb
� �þ X

a0 b0
Ua0b0

ab � ~qa0 b0

� ca
2
þ cb

2

� �
~qab þRab þAab þQab;

ð7:156Þ

where the indexes a, b instead of a; b are used to explicitly indicate M-quantum
number averages. Equation (7.156) represents therefore a density matrix equation
that is resolved in cJ-quantum numbers only (for designation of cJ see Sect. 7.5).

In order that (7.156) is useful, the averaged relaxation constants Rab;Aab;Qab,
ca; cb, the collisional operator U

a0b0
ab , the ionic field interaction Vag, and the transition

frequencies xab need to be specified without making use of the solution of the M-
quantum-number-resolved populations ~qab.

Because energies and relaxation constants do not contain interference terms,
their average is readily performed like in the rate equation case outlined above.
Because xaa ¼ 0, we can define an average frequency via

�hxab ¼ 1
2Ja þ 1

�
X
Ma

Ea

 !
� 1

2Jb þ 1
�
X
Mb

Eb

 !
; ð7:157Þ
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while for relaxation constants (that do not contain interferences) a similar procedure
like for (7.152) can be adopted:

ca ¼
1

2Ja þ 1
�
X
Ma

ca; ð7:158Þ

cb ¼
1

2Jb þ 1
�
X
Mb

cb; ð7:159Þ

Qab ¼ dab
2Ja þ 1

X
Ma

Qa; ð7:160Þ

crada ¼ 1
2Ja þ 1

�
X
Ma

X
a0

caa0 ; ð7:161Þ

cradb ¼ 1
2Jb þ 1

�
X
Mb

X
b0

cbb0 ; ð7:162Þ

Aab ¼ � crada

2
þ cradb

2


 �
~qab þ dab

X
a0

crada0 a~qa0 a0 ; ð7:163Þ

Rab ¼ dab �
X
Ma

X
m

cmaqmm: ð7:164Þ

For the collisional operator Ua0b0
ab and the ionic field interaction Vag, the situation is

different because here, the two different indexes of the density matrix are relevant
(interference terms). Summation of (7.154) over Ma and Mb and comparison with
(7.156) provides formally

X
Ma

X
Mb

� i
�h

X
c

Vac~qcb � ~qacVcb
� �( )

¼ � i
�h

X
g

Vag~qgb � ~qagVgb
� � ð7:165Þ

and

X
Ma

X
Mb

X
a0b0

Ua0b0

ab � ~qa0b0
8<
:

9=
; ¼

X
a0 b0

Ua0b0
ab � ~qa0 b0 : ð7:166Þ
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From (7.165), we obtain

X
Ma

X
Mb

� i
�h

X
ccJcMc

Vac~qcb � ~qacVcb

� �8<
:

9=
; ¼ � i

�h

X
ccJc

Vag~qgb � ~qagVgb
� � ð7:167Þ

from which it follows X
Ma

X
Mb

X
Mc

Vac � ~qcb
� � ¼ Vag~qgb: ð7:168Þ

We therefore formally write

Vag ¼ Fabc
V �

X
Ma

X
Mb

X
Mc

Vac; ð7:169Þ

where Fabc
V is a function that fulfills (7.168), i.e.

X
Ma

X
Mb

X
Mc

Vac � ~qcb
� � ¼ Fabc

V �
X
Ma

X
Mb

X
Mc

Vac

 !
� ~qgb: ð7:170Þ

Similar, from (7.166) it follows

X
Ma

X
Mb

X
ca0 Ja0Ma0 ;cb0 Jb0Mb0

Ua0b0

ab � ~qa0b0
8<
:

9=
; ¼

X
ca0 Ja0 ;cb0 Jb0

Ua0b0
ab � ~qa0 b0 ð7:171Þ

from which we deduce

X
Ma

X
Mb

X
Ma0

X
Mb0

Ua0b0

ab � ~qa0b0
� �

¼ Ua0b0
ab � ~qa0 b0 : ð7:172Þ

We therefore formally write

Ua0b0
ab ¼ Faba0b0

U �
X
Ma

X
Mb

X
Ma0

X
Mb0

Ua0b0

ab ; ð7:173Þ

where Faba0b0
U is a function that fulfills (7.172), i.e.

X
Ma

X
Mb

X
Ma0

X
Mb0

Ua0b0

ab � ~qa0b0
� �

¼ Faba0b0
U �

X
Ma

X
Mb

X
Ma0

X
Mb0

Ua0b0

ab

0
@

1
A � ~qa0 b0 :

ð7:174Þ
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As already outlined for the rate equation case (7.151), the averaged density matrix
(7.156) is only useful, if reasonable approximations can be involved for the matrix
elements (7.166), (7.168) so that these equations do not depend any more on the
populations (neither on the M-resolved ones ~qab nor on the M-averaged ones ~qab).
Therefore, at this point (7.167)–(7.170) and (7.171)–(7.174) are only formal
solutions that request to invoke additional relations and/or further approximations to
be practically useful.

7.6.3 The Failure of the Rate Equation Approach
for Quantum Averages

It is instructive to investigate first what happens if we employ an averaging pro-
cedure for the density matrix elements that corresponds to (7.150), (7.152), i.e., a
simple statistical hypothesis. For the diagonal elements of the density matrix, the
averaging procedure to be found should then exactly provide the same result as
(7.150). Due to the symmetry relation of the density matrix elements, i.e., ~qba ¼
~q�ba we would likewise request this symmetry relation for the approximate solution.

This means ~qðapproxÞab ¼ ~qðapproxÞ�ba should be likewise preserved for all matrix ele-
ments. These two conditions (limit for diagonal elements, symmetry relation for all
density matrix elements) could be fulfilled, e.g., by

~qðapproxÞab ¼? 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ja þ 1

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jb þ 1

p � ~qab: ð7:175Þ

We note, that (7.175) is not necessarily correct, but it fullfills the above mentioned
two conditions and will be used below to demonstrate its failure. For a ¼ b, we
obtain from (7.175)

~qðapproxÞaa ¼ 1
2Ja þ 1

� ~qaa: ð7:176Þ

Equation (7.176) is identical to (7.150) because nðapproxÞa ¼ ~qðapproxÞaa and na ¼ ~qaa.
The symmetry relation can be verified as follows. From (7.155) it follows

~qab ¼ ~q�ba ð7:177Þ

because ~qab ¼ ~q�ba. Inserting (7.176) into (7.177), we obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ja þ 1

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jb þ 1
p � ~qðapproxÞab ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jb þ 1
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ja þ 1

p
� ~qðapproxÞ�ba : ð7:178Þ
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Therefore

~qðapproxÞab ¼ ~qðapproxÞ�ba ð7:179Þ

as it should be.
We now study the averaging produce for the electron collisional operator. If we

insert (7.175) in (7.172), we obtain

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ja0 þ 1

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jb0 þ 1

p � ~qa0 b0 �
X
Ma

X
Mb

X
Ma0

X
Mb0

Ua0b0

ab

� �
¼ Ua0b0

ab � ~qa0 b0 ð7:180Þ

from which it follows

Ua0b0
ab ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ja0 þ 1
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jb0 þ 1
p �

X
Ma

X
Mb

X
Ma0

X
Mb0

Ua0b0

ab

� �
: ð7:181Þ

With the help of (7.173), (7.174) we obtain

Faba0b0
U ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ja0 þ 1
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jb0 þ 1
p : ð7:182Þ

Let us apply (7.181), (7.182) to the particular term Ua0b0
ab � ~qa0 b0 ¼ Uaa

aa � ~qaa in
(7.156). In the population rate equation picture and also in the density matrix
approach, this term in (7.156) corresponds to the electron collisional loss rate from

level a. First we note that /ðMÞ;aa
ð3Þ;aa ¼ 0 because the reduced dipole matrix elements

are zero for identical indexes [see (7.112)]. Due to the product of the d-functions
da0a � dJb0 Jb � dMb0Mb � d Jb0 ; 1; Jb

� �
and db0b � dJa0 Ja � dMa0Ma � d Ja0 ; 1; Jað Þ in the

expressions for /ðMÞ;a0b0
ð1Þ;ab and /ðMÞ;a0b0

ð2Þ;ab of (7.67), (7.68), (7.105), (7.107) the sum-

mations over Ma0 and Mb0 provide only a single term, so that only summations over
Ma and Mb effectively remain in (7.181). Assuming A = 1 and B = 0, we obtain

/ðavÞ;a0b0
ð1Þ;ab ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ja0 þ 1
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jb0 þ 1
p �

X
Ma

X
Mb

X
Ma0

X
Mb0

X
c00;Jb00

/ðMÞ;a0b0
ð1Þ;ab

0
@

1
A

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ja þ 1

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jb þ 1

p �
X
Ma

X
Mb

X
c00;b00

/ðMÞ;ab0
ð1Þ;ab

0
@

1
A:

ð7:183Þ
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For /ðavÞ;aa
ð1Þ;aa , we obtain formally from (7.183) and (7.105):

/ðavÞ;aa
ð1Þ;aa ¼¼ 1

2Ja þ 1
�
X
Ma

X
Mb¼a

1
2Jb¼a þ 1

�
X
cb00 ;Jb00

cb¼aJb¼a rk k�
cb00Jb00

��� ��2
8<
:

9=
;:

ð7:184Þ

As the term in parenthesis of (7.184) does not any more depend onMa nor onMb¼a,
the summation over Ma provides therefore 2Ja þ 1 and the summation over
Mb¼a 2Jb þ 1 ¼ 2Ja þ 1 . Therefore, (7.184) results finally into

/ðavÞ;aa
ð1Þ;aa ¼ 2Ja þ 1ð Þ � 1

2
�
X
cb00 ;Jb00

2 � caJa rk kh cb00Jb00
��� ��2

2Ja þ 1

( )
ð7:185Þ

and correspondingly

/ðavÞ;aa
ð2Þ;aa ¼ 2Ja þ 1ð Þ � 1

2
�
X
cb00 ;Jb00

2 � caJa rk kh cb00Jb00
��� ��2

2Ja þ 1

( )
: ð7:186Þ

Therefore (note, that a″ and b″ run over the same functional space)

/ðavÞ;aa
ð1Þ;aa þ/ðavÞ;aa

ð3Þ;aa þ/ðavÞ;aa
ð3Þ;aa ¼ 2Ja þ 1ð Þ �

X
cb00 ;Jb00

2 � caJa rk kh cb00Jb00
��� ��2

2Ja þ 1

( )
: ð7:187Þ

According to (7.66)–(7.69), (7.139), the term in parenthesis of (7.187) is propor-
tional to cross sections, i.e.

r Ja ! Jb
� � / 2 � caJa rk kcbJb

���� ��2
2Ja þ 1

: ð7:188Þ

Therefore, the sum in (7.187) represents the total loss cross section multiplied with
the statistical weight, i.e.

Uaa
aa ¼ 2Ja þ 1ð Þ½ � � �ne �

X
Ja00

tr Ja ! Ja00ð Þh i
( )" #

: ð7:189Þ

Due to the prefactor 2Ja þ 1ð Þ in (7.189), the electron collisional operator matrix
element Uaa

aa is not proportional to a loss rate as it should be!

A similar problematic is faced, e.g., for the term Ua0b0
ab � ~qa0b0 ¼ Uaa

bb � ~qaa in
(7.156). In the population rate equation picture and also in the density matrix
approach, this term in (7.156) corresponds to the electron collisional transfer rate
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from level a ! b. First we note that /ðMÞ;aa
ð1Þ;bb ¼ 0 and /ðMÞ;aa

ð2Þ;bb ¼ 0 due to the d-

functions in the expressions for /ðMÞ;a0b0
ð1Þ;ab and /ðMÞ;a0b0

ð2Þ;ab , see (7.67), (7.68), (7.105),

(7.106). For /ðMÞ;a0b0
ð3Þ;ab we obtain from (7.181)

/ðavÞ;a0b0
ð3Þ;ab ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ja0 þ 1
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jb0 þ 1
p �

X
Ma

X
Mb

X
Ma0

X
Mb0

/ðMÞ;a0b0
ð3Þ;ab

� �
: ð7:190Þ

For /ðavÞ;aa
ð3Þ;bb , we obtain formally from (7.190) and (7.112):

/ðavÞ;aa
ð3Þ;bb ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ja0¼a þ 1
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jb0¼a þ 1
p

�
X
Ma¼b

X
Mb

X
Ma0¼a

X
Mb0¼a

X
q

2 � caJa rk kh cbJb
��� ��2� Jb 1 Ja

�Mb q Ma


 �2
( )

:

ð7:191Þ

Due to the sum rule of the 3j symbol, the sum over Ma and q provides finally

/ðavÞ;aa
ð3Þ;bb ¼ 1

2Ja þ 1
�
X
Ma¼b

X
Mb0¼a

X
Ma0¼a

2 � caJa rk kh cbJb
��� ��2

2Ja þ 1

( )
: ð7:192Þ

Because the term in parenthesis of (7.192) does not any more depend on
Ma¼b;Mb0¼a and Ma0¼a, the summation over the 3 identical sums in (7.192) would

formally provide 2Ja þ 1ð Þ3. As the term in parenthesis of (7.192) is proportional to
a cross section [see also relation (7.188)], (7.192) would not be proportional to a
cross section because

/ðavÞ;aa
ð3Þ;bb ¼ 2Ja þ 1ð Þ2� 2 � caJakkh cbJb

��� ��2
2Ja þ 1

: ð7:193Þ

Therefore (note, that a″ and b″ run over the same functional space)

/ðavÞ;aa
ð1Þ;bb þ/ðavÞ;aa

ð3Þ;bb þ/ðavÞ;aa
ð3Þ;bb ¼ 2Ja þ 1ð Þ2� 2 � caJa rk kh cbJb

��� ��2
2Ja þ 1

: ð7:194Þ

Correspondingly, the collisional operator matrix element

Uaa
bb ¼ 2Ja þ 1ð Þ½ �2� ne � Vr Ja ! Jb

� �� �� 	 ð7:195Þ

would not be proportional to a collisional rate from level “a” to level “b” as it
should be.
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For completeness, we shortly consider the case for the field matrix elements Vab.
Injecting (7.175) into (7.168), we obtain

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jc þ 1

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jb þ 1

p � ~qgb �
X
Ma

X
Mb

X
Mc

Vac
� � ¼ Vag � ~qgb ð7:196Þ

and, with the help of (7.169)

Fabc
V ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jc þ 1
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jb þ 1
p : ð7:197Þ

As there is no “simple cross section” analog for the field matrix element as for the
cases discussed above in relation with the collisional operator elements, it is
therefore difficult to discuss at this point the failure or correctness of (7.196),
(7.197) and need instead discuss the averaged field matrix elements in relation with
the ion quasi-static field.

7.6.4 The Cross Section Method for Quantum Averages

As can be seen from (7.184), (7.187), (7.189) and (7.192), (7.194), (7.195), the
failure of (7.189) and (7.195) to obtain the physical rates is related to summations
over M-quantum numbers with identical indexes. In other words: in (7.184) one
needs to sum two times over Ma providing the wrong additional factor 2Ja þ 1ð Þ in
(7.189), and, in (7.192) one needs to sum three times over Ma providing the wrong
additional factor 2Ja þ 1ð Þ2 in (7.195). This suggests, to consider a solution to the

problem the other way around and ask, what prefactors Faba0b0
U have to be applied to

obtain the physical cross sections and rates.
The failure is connected with a wrong combination of statistical weights in a

particular way due to multiple equivalent summations; namely, concerning the

elements /ðavÞ
ð1Þ and /ðavÞ

ð2Þ an additional wrong factor 2Ja þ 1ð Þ is encountered, while
processes concerning the element /ðavÞ

ð3Þ an additional wrong factor 2Ja þ 1ð Þ2 is

encountered. This suggests also not to look for a solution of a single prefactor

Faba0b0
U (as discussed before) but for a prefactor for each /ðavÞ

ð1Þ ;/
ðavÞ
ð2Þ , and /ðavÞ

ð3Þ ,

namely Faba0b0

/1
;Faba0b0

/2
, and Faba0b0

/3
, respectively:

/ðavÞ;a0b0
ð1Þ;ab ¼ Faba0b0

/1
�
X
Ma

X
Mb

X
Ma0

X
Mb0

X
cb00 ;Jb00

/ðMÞ;a0b0
ð1Þ;ab

0
@

1
A; ð7:198Þ
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/ðavÞ;a0b0
ð2Þ;ab ¼ Faba0b0

/2
�
X
Ma

X
Mb

X
Ma0

X
Mb0

X
ca00 ;Ja00

/ðMÞ;a0b0
ð2Þ;ab

 !
; ð7:199Þ

/ðavÞ;a0 b0
ð3Þ;ab ¼ Faba0b0

/3
�
X
Ma

X
Mb

X
Ma0

X
Mb0

/ðMÞ;a0b0
ð3Þ;ab

� �
; ð7:200Þ

with

Faba0b0

/1
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ja þ 1
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ja0 þ 1
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jb þ 1
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jb0 þ 1
p ; ð7:201Þ

Faba0b0

/2
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ja þ 1
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ja0 þ 1
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jb þ 1
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jb0 þ 1
p ; ð7:202Þ

Faba0b0

/3
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ja þ 1
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ja0 þ 1
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jb þ 1
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jb0 þ 1
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ja0 þ 1
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jb0 þ 1
p :

ð7:203Þ

Let us now consider the combinations of indexes that are physically related to cross
sections or rates.

7.6.4.1 The Total Loss Rate from a Quantum Level: Uaa
aa

For the case b ¼ a; a0 ¼ a and b0 ¼ a, it follows from (7.112) that /ðMÞ;a0b0
ð3Þ;ab ¼

/ðMÞ;aa
ð3Þ;aa ¼ 0 and therefore

/ðavÞ;aa
ð3Þ;aa ¼ 0: ð7:204Þ

For /ðMÞ;aa
ð1Þ;aa and /ðMÞ;aa

ð2Þ;aa , it follows from (7.67), (7.68), (7.105), (7.106), (7.198),

(7.199), (7.201), (7.202):

/ðavÞ;aa
ð1Þ;aa ¼ Faaaa

/1
�
X
Ma

X
Mb¼a

X
Ma0¼a

X
Mb0¼a

X
cb00 ;Jb00

/ðMÞ;aa
ð1Þ;aa

0
@

1
A

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ja þ 1

p

 �4

�
X
Ma

X
Mb¼a

X
Ma0¼a

X
Mb0¼a

X
cb00 ;Jb00

caJa rbk kh cb00Jb00
��� ��2

2Ja þ 1

0
@

1
A

¼
X
cb00 ;Jb00

caJa rbk kh cb00Jb00
��� ��2

2Ja þ 1

ð7:205Þ
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and likewise

/ðavÞ;aa
ð2Þ;aa ¼ Faaaa

/2
�
X
Ma

X
Mb¼a

X
Ma0¼a

X
Mb0¼a

X
ca00 ;Ja00

/ðMÞ;aa
ð2Þ;aa

 !

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ja þ 1

p

 �4

�
X
Ma

X
Mb¼a

X
Ma0¼a

X
Mb0¼a

X
ca00 ;Ja00

caJa rbk kh ca00Ja00 ij j2
2Ja þ 1

 !

¼
X
ca00 ;Ja00

caJa rbk kh ca00Ja00 ij j2
2Ja þ 1

:

ð7:206Þ

Because the final sums in (7.205), (7.206) run over the same functional space,
(7.205) and (7.206) are identical and we have:

/ðavÞ;aa
ð1Þ;aa þ/ðavÞ;aa

ð2Þ;aa þ/ðavÞ;aa
ð3Þ;aa ¼

X
cb00 ;Jb00

2 � caJa rbk kh cb00Jb00
��� ��2

2Ja þ 1
: ð7:207Þ

Therefore, we obtain with the help of (7.72), (7.139)

Uaa
aa ¼ �ne �

X
Ja00

tr Ja ! Ja00ð Þh i
( )

: ð7:208Þ

The matrix element Uaa
aa corresponds therefore to the decay of the diagonal matrix

element ~qaa, i.e., to the total loss rate of the atomic population of level “a” due to
electron–ion collisions.

7.6.4.2 The Loss Rate of Coherences: Uab
ab

For the case a0 ¼ a and b0 ¼ b, it follows from (7.112) that /ðMÞ;a0b0
ð3Þ;ab ¼ /ðMÞ;ab

ð3Þ;ab ¼ 0

and therefore

/ðavÞ;ab
ð3Þ;ab ¼ 0: ð7:209Þ

For /ðMÞ;ab
ð1Þ;ab and /ðMÞ;ab

ð2Þ;ab , it follows from (7.67), (7.68), (7.105), (7.106), (7.198),

(7.199), (7.201), (7.202), (7.206):
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/ðavÞ;ab
ð1Þ;ab ¼ Fabab

/1
�
X
Ma

X
Mb

X
Ma0¼a

X
Mb0¼b

X
cb00 ;Jb00

/ðMÞ;ab
ð1Þ;ab

0
@

1
A

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ja þ 1

p

 �2

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jb þ 1

p
 !2

�
X
Ma

X
Mb

X
Ma0¼a

X
Mb0¼b

X
cb00 ;Jb00

cbJb rbk k�
cb00Jb00

��� ��2
2Jb þ 1

0
@

1
A

¼
X
cb00 ;Jb00

cbJb rbk k�
cb00Jb00

��� ��2
2Jb þ 1

ð7:210Þ

and likewise

/ðavÞ;ab
ð2Þ;ab ¼ Fabab

/2
�
X
Ma

X
Mb

X
Ma0¼a

X
Mb0¼b

X
ca00;Ja00

/ðMÞ;ab
ð2Þ;ab

 !

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ja þ 1

p

 �2

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jb þ 1

p
 !2

�
X
Ma

X
Mb

X
Ma0¼a

X
Mb0¼b

X
cb00 ;Jb00

caJa rbk kh cb00Jb00
��� ��2

2Ja þ 1

0
@

1
A

¼
X
ca00 ;Ja00

caJa rbk kh cb00Jb00
��� ��2

2Ja þ 1
:

ð7:211Þ

Because the final sums in (7.210), (7.211) run over the same functional space,
(7.210) and (7.211) are similar and we have:

/ðavÞ;aa
ð1Þ;aa þ/ðavÞ;aa

ð2Þ;aa þ/ðavÞ;aa
ð3Þ;aa ¼

X
cb00 ;Jb00

cbJb rbk k�
cb00Jb00

��� ��2
2Jb þ 1

þ
X
ca00 ;Ja00

caJa rbk kh cb00Jb00
��� ��2

2Ja þ 1
:

ð7:212Þ

Therefore, we obtain with the help of (7.72), (7.139)

Uab
ab ¼ �ne � 1

2

X
Jb00

tr Jb ! Jb00
� �� �þ 1

2

X
Ja00

tr Ja ! Ja00ð Þh i
8<
:

9=
;: ð7:213Þ

Equation (7.213) represents therefore the loss rate of coherences of the upper and
lower levels as it should be [see also (7.156)].
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7.6.4.3 The Transfer Rate Between Two Levels: Ubb
aa

As can be seen from (7.67), (7.68), (7.105), (7.106), for the case b ¼ a; a0 ¼ b and

b0 ¼ b, /ðMÞ;a0b0
ð1Þ;ab ¼ /ðMÞ;bb

ð1Þ;aa ¼ 0 and /ðMÞ;a0b0
ð2Þ;ab ¼ /ðMÞ;bb

ð2Þ;aa ¼ 0, therefore

/ðavÞ;bb
ð1Þ;aa ¼ 0; ð7:214Þ

/ðavÞ;bb
ð2Þ;aa ¼ 0: ð7:215Þ

As concerns /ðavÞ;bb
ð3Þ;aa for the selection of these indexes, the alternating sign in (7.112)

transforms to �1ð Þ2Ja�Ma0�Mb0 þ Jb0 �Ja0 ¼ �1ð Þ2Jb�2Ma þ Ja�Ja¼ �1ð Þ2Jb�2Ma . From the
selection rule �Mb þ qþMa ¼ 0, it follows that �2Mb þ 2q ¼ �2Ma; therefore,

�1ð Þ2Jb�2Mb þ 2q¼ þ 1 because 2Ja � 2Ma and 2q are even. The alternating sign
therefore vanishes, and we are left with

/ðMÞ;bb
ð3Þ;aa ¼

X
q

2 � caJa rk kh cbJb
��� ��2� Jb 1 Ja

�Mb q Ma


 �2

: ð7:216Þ

For /ðMÞ;bb
ð3Þ;aa , it follows from (7.112), (7.200), (7.203):

/ðavÞ;bb
ð3Þ;aa ¼ Faabb

/3
�
X
Ma

X
Mb¼a

X
Ma0¼b

X
Mb0¼b

/ðMÞ;bb
ð3Þ;aa

� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ja þ 1

p

 �2

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jb þ 1

p
 !4

�
X
Ma

X
Mb¼a

X
Ma0¼b

X
Mb0¼b

X
q

2 � caJa rk kh cbJb
��� ��2� Jb 1 Ja

�Mb q Ma


 �2
 !

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ja þ 1

p

 �2

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jb þ 1

p
 !4

�
X
Ma

X
Ma0¼b

X
Mb0¼b

2 � caJa rk kh cbJb
��� ��2

2Ja þ 1

 !

¼ 2 � caJa rk kh cbJb
��� ��2

2Ja þ 1
ð7:217Þ

and we have:

/ðavÞ;bb
ð1Þ;aa þ/ðavÞ;bb

ð2Þ;aa þ/ðavÞ;bb
ð3Þ;aa ¼ 2 � caJa rk kh cbJb

��� ��2
2Ja þ 1

: ð7:218Þ
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Therefore, we obtain with the help of (7.72), (7.139)

Ubb
aa ¼ ne � tr Jb ! Ja

� �� � ð7:219Þ

corresponding to the electron collisional transfer from level “b” to level “a” and
determines therefore the influence of the density matrix element ~qbb on the density
matrix element ~qaa due to collisions. Uaa

bb and Ubb
aa correspond therefore to direct and

inverse transitions due to electron collisions. If the electron collisions are assumed
to be random (i.e., a Maxwellian electron energy distribution function), these direct
and inverse matrix elements provide the possibility to obtain the thermodynamic
limit for the atomic populations, i.e., a Boltzmann population in quantum kinetics.

Therefore, expressions (7.198)–(7.203) provide the physically requested cross
sections and rates for the electron collisional operator elements Uaa

aa from (7.208),
Uab

ab from (7.213) and Ubb
aa from (7.219). The particular interesting point in this kind

of cross section normalization is that it concerns all terms /ðavÞ;a0b0
ð1Þ;ab ;/ðavÞ;a0b0

ð1Þ;ab , and

/ðavÞ;a0b0
ð1Þ;ab of the electron collisional operator. We therefore assume (7.198)–(7.203)

as the M-quantum number averages for all combinations of indexes.

7.7 About the Boltzmann Limit in Quantum Kinetics

7.7.1 The Two-Level M-Quantum-Number-Averaged Level
System

Let us consider a closed two-level system and specify explicitly diagonal and
non-diagonal density matrix elements. From (7.156), we obtain with a ¼ 1; 2 and
b ¼ 1; 2:

d~q22
dt

¼ �~q22 A21 � U22
22

� �þU11
22~q11 �

i
�h

V21~q12 � ~q21V12ð ÞþU12
22~q12 þU21

22~q21;

ð7:220Þ
d~q11
dt

¼ �~q11 �U11
11

� �þ U22
11 þA21

� �
~q22 �

i
�h

V12~q21 � ~q12V21ð ÞþU12
11~q12 þU21

11~q21;

ð7:221Þ

d~q12
dt

¼ �~q12
A21

2
� U12

12


 �
� ix12~q12 þU21

12~q21

� i
�h

V12~q22 � ~q11V12ð ÞþU11
12~q11 þU22

12~q22;

ð7:222Þ
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d~q21
dt

¼ �~q21
A21

2
� U21

21


 �
� ix21~q21 þU12

21~q12

� i
�h

V21~q11 � ~q22V21ð ÞþU11
21~q11 þU22

21~q22:

ð7:223Þ

From (7.105), (7.106), (7.112), (7.198)–(7.203), it can be seen that for a two-level
system

U12
22 ¼ 0; ð7:224Þ

U12
11 ¼ 0; ð7:225Þ

U21
22 ¼ 0; ð7:226Þ

U21
11 ¼ 0; ð7:227Þ

U11
12 ¼ 0; ð7:228Þ

U22
12 ¼ 0; ð7:229Þ

U11
21 ¼ 0; ð7:230Þ

U22
21 ¼ 0: ð7:231Þ

The elements U21
12 and U12

21 are mixed terms as described by (7.112). With the help
of (7.224)–(7.231), (7.220)–(7.223) reduce to:

d~q22
dt

¼ �~q22 A21 � U22
22

� �þU11
22~q11 �

i
�h

V21~q12 � ~q21V12ð Þ; ð7:232Þ

d~q11
dt

¼ �~q11 �U11
11

� �þ U22
11 þA21

� �
~q22 �

i
�h

V12~q21 � ~q12V21ð Þ; ð7:233Þ

d~q12
dt

¼ �~q12
A21

2
� U12

12


 �
� ix12~q12 þU21

12~q21 �
i
�h

V12~q22 � ~q11V12ð Þ; ð7:234Þ

d~q21
dt

¼ �~q21
A21

2
� U21

21


 �
� ix21~q21 þU12

21~q12 �
i
�h

V21~q11 � ~q22V21ð Þ: ð7:235Þ

The collisional operator elements Ua0b0
ab are proportional to the electron density (in

the binary approximation), i.e., Ua0b0
ab � ne, while the field matrix elements Vab are

either essentially constant/oscillating external applied fields. For the case of
quasi-static ion fields in plasmas Vab scales approximately like the classical

Holtsmark field, i.e., Vab � n2=3i . From this it follows that at high densities, the
electron collisional operator elements dominate all other terms (in particular the
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radiative decay Aba and the imaginary terms ixab) in (7.222), (7.223). Therefore, in
the stationary case at very high densities (7.234), (7.235) reduce to

~q12 � U12
12 � U21

21 � U21
12 � U12

21

� � ¼ 0 ð7:236Þ

and

~q21 � U21
21 � U12

12 � U12
21 � U21

12

� � ¼ 0: ð7:237Þ

Relations (7.236), (7.237) can only be valid in general if

~q21 ¼ 0 ð7:238Þ

and

~q12 ¼ 0: ð7:239Þ

Due to (7.238), (7.239), the field terms in (7.232), (7.233) vanish and we are left
with

0 ¼ ~q22U
22
22 þU11

22~q11; ð7:240Þ

0 ¼ ~q11U
11
11 þU22

11~q22 ð7:241Þ

from which we obtain

~q22
~q11

¼ �U11
22

U22
22

; ð7:242Þ

~q22
~q11

¼ �U11
11

U22
11

: ð7:243Þ

From (7.219), it follows from (7.242), (7.243):

~q22
~q11

¼ � ne tr J1 ! J2ð Þh i
�ne tr J2 ! J1ð Þh ið Þ ¼

tr J1 ! J2ð Þh i
tr J2 ! J1ð Þh i ; ð7:244Þ

~q22
~q11

¼ � �ne tr J1 ! J2ð Þh ið Þ
ne tr J2 ! J1ð Þh i ¼ tr J1 ! J2ð Þh i

tr J2 ! J1ð Þh i : ð7:245Þ

Equations (7.244) and (7.245) are therefore identical as it should be. Physically they
correspond to the principal of detailed balance where the flow of each elementary
process is exactly balanced by its inverse one, i.e.
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ne � tr J1 ! J2ð Þh i � ~q11 ¼ ne � tr J2 ! J1ð Þh i � ~q22: ð7:246Þ

If the relations between the cross sections or rate coefficients for the direct and
inverse process are known, (7.246) provides readily the population ratio ~q22=~q11:

7.7.2 The Principle of Detailed Balance
and Microreversibility

Let us consider a system in thermodynamic equilibrium where the principle of
detailed balance holds. The principle of detailed balance holds true not only for a
total elementary process but also for each energy interval dE. For the electron
collisional excitation, we can formally write

Xi þ eðEÞ ! Xj þ e E0ð Þ; ð7:247Þ

where Xi and Xj designate the atom in the quantum state “i” and “j”, respectively,
and the electron energy E and E0 are the energies before and after scattering. These
energies are related to each other via the excitation energy DEij:

E ¼ E0 þDEij: ð7:248Þ

The detailed balance for the energy interval dE then reads:

nenirijðEÞtðEÞFðEÞdE ¼ nenjrji E
0ð Þt E0ð ÞF E0ð ÞdE0; ð7:249Þ

where rij is the excitation cross section, rji the de-excitation cross section, tðEÞ the
electron velocity at electron impact energy E, and FðEÞ the electron energy dis-
tribution function. From (7.248), it follows

dE ¼ dE0: ð7:250Þ

In thermodynamic equilibrium, the electron energy distribution function is the
Maxwell distribution

FðEÞ ¼ 2ffiffiffi
p

p �
ffiffiffiffi
E

p
� exp �E=kTeð Þ

kTeð Þ3=2
ð7:251Þ

and the atomic populations are the Boltzmann populations

nj
ni

¼ gj
gi
� exp �DEij=kTe

� �
: ð7:252Þ
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Assuming a nonrelativistic relation between energy and velocity, i.e.

t ¼
ffiffiffiffiffiffi
2E
me

r
ð7:253Þ

we obtain from (7.249) with the help of (7.250)–(7.253)

nerijðEÞ
ffiffiffiffiffiffi
2E
me

r
2ffiffiffi
p

p ffiffiffiffi
E

p
� exp �E=kTeð Þ

kTeð Þ3=2
� dE0

¼ ne
gj
gi
� exp �DEij=kTe

� �
rji E

0ð Þ
ffiffiffiffiffiffiffi
2E0

me

s
2ffiffiffi
p

p ffiffiffiffiffi
E0p exp �E0=kTeð Þ

kTeð Þ3=2
dE0:

ð7:254Þ

From (7.254), it follows with (7.248)

rji E
0ð Þ ¼ gi

gj
rijðEÞ EE0

¼ gi
gj
rij E

0 þDEij
� �E0 þDEij

E0 :

ð7:255Þ

Although thermodynamic equilibrium, Maxwell energy distribution, and
Boltzmann relation have been used for the derivation of (7.255), the final expres-
sion does not contain anymore the temperature; i.e., the relation (7.255) is inde-
pendent from the energy distribution function.

From cross sections, we can readily derive the rate coefficients:

trij
� � ¼ Z1

DEij

tðEÞ � FðEÞ � rijðEÞ � dE: ð7:256Þ

Equation (7.256) can be transformed with the help of (7.248), (7.250) into

trij
� � ¼ Z

1

0

t E0 þDEij
� � � F E0 þDEij

� � � rij E0 þDEij
� � � dE0: ð7:257Þ

Injecting (7.255) into (7.257), we obtain

trij
� � ¼ gj

gi

Z1
0

t E0 þDEij
� � � F E0 þDEij

� � � E0

E0 þDEij
� rji E0ð Þ � dE0: ð7:258Þ
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Assuming a Maxwellian energy distribution function (7.251), it follows from
(7.258):

trij
� � ¼ gj

gi
�
Z1
0

ffiffiffiffiffiffi
2
me

r
� 2ffiffiffi

p
p � E0 � exp �ðE0 þDEijÞ=kTe

� �
kTeð Þ3=2

� rji E0ð Þ � dE0

¼ gj
gi
� exp �DEij=kTe

� � � Z
1

0

ffiffiffiffiffiffiffi
2E0

me

s
� 2ffiffiffi

p
p �

ffiffiffiffiffi
E0p

� exp �E0=kTeð Þ
kTeð Þ3=2

� rji E0ð Þ � dE0

¼ gj
gi
� exp �DEij=kTe

� � � trji
� �

;

ð7:259Þ

i.e.,

trij
� � ¼ gj

gi
� exp �DEij=kTe

� � � trji
� �

: ð7:260Þ

Would we inject (7.260) into (7.245) (note that i ¼ 1; j ¼ 2, r12 ¼ r12 J1 ! J2ð Þ
and r21 ¼ r21 J2 ! J1ð Þ because the levels are M-quantum number averaged) we
would recover the Boltzmann relation for the level populations of the density
equations. This conclusion, however, is ill-defined because it is based on the
relation (7.255) that has been derived under the assumption of thermodynamic
equilibrium (i.e., detailed balance, Maxwellian energy distribution, Boltzmann
relation). In other words, the conclusion that (7.245) is equivalent to the Boltzmann
relation for populations had already been used during the course of derivation [to
obtain (7.255)]. Equation (7.260) should therefore not be considered as a result but
rather as a simple recovery of a relation being already used before.

A correct line of reasoning has to start from the CPT-invariance properties of the
Hamiltonian that describes the scattering process, i.e., from the principle of
microreversibility. It can be shown (Muirhead 1965; Dawydow 1981) that the direct
and inverse cross sections for the process (7.247) are related via

rji E
0ð Þ��CPT ¼ gi

gj
rij E

0 þDEij
� �E0 þDEij

E0 : ð7:261Þ

Equation (7.261) is the famous Klein–Rosseland formula. This formula is formally
identical to (7.255) but is derived without any assumptions of thermodynamic
equilibrium, Maxwellian energy distribution nor Boltzmann population. It is
therefore conceptionally different from (7.255) and for this reason, we have inserted
the index “CPT” in (7.261). We now can calculate directly the rate coefficients of
the direct and inverse processes from the integrals of (7.258) without using the
assumptions of detailed balance and Boltzmann distribution. Inserting (7.261) into
(7.258), we obtain:
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trij
� � ¼ gj

gi

Z1
0

t E0 þDEij
� � � F E0 þDEij

� � � E0

E0 þDEij
� rji E0ð Þ��CPT � dE0 ð7:262Þ

from which it follows with the help of the Maxwellian distribution function

trij
� � ¼ gj

gi
�
Z1
0

ffiffiffiffiffiffi
2
me

r
� 2ffiffiffi

p
p � E0 � exp �ðE0 þDEijÞ=kTe

� �
kTeð Þ3=2

� rji E0ð Þ��CPT � dE0

¼ gj
gi
� exp �DEij=kTe

� � � Z
1

0

ffiffiffiffiffiffiffi
2E0

me

s
� 2ffiffiffi

p
p �

ffiffiffiffiffi
E0p

� exp �E0kTeð Þ
kTeð Þ3=2

� rji E0ð Þ��CPT � dE0:

ð7:263Þ

The integral in (7.263) corresponds to the rate coefficient for the inverse process, i.e.

Z1
0

ffiffiffiffiffiffiffi
2E0

me

s
� 2ffiffiffi

p
p �

ffiffiffiffiffi
E0p

� exp �E0=kTeð Þ
kTeð Þ3=2

� rji E0ð Þ��CPT � dE0 ¼ trji
� �

: ð7:264Þ

Because

trij
� � ¼ tr12h i ¼ tr J1 ! J2ð Þh i ð7:265Þ

and

trji
� � ¼ tr21h i ¼ tr J2 ! J1ð Þh i ð7:266Þ

(7.263) takes the form

tr J1 ! J2ð Þh i ¼ gj
gi
� exp �DEij=kTe

� � � tr J2 ! J1ð Þh i: ð7:267Þ

Inserting (7.267) into (7.245), we finally obtain

~q22
~q11

¼ tr J1 ! J2ð Þh i
tr J2 ! J1ð Þh i ¼

gj
gi
� exp �DEij=kTe

� �
: ð7:268Þ

Therefore, (7.242)–(7.245) and the corresponding electron collisional operator do
show that the diagonal elements of the density matrix equations approach the
Boltzmann ratio at high density.

It should be emphasized that the correct thermodynamic limit can only be
obtained when the interference term of the electron collisional operator from (7.66),
(7.69), (7.112) is included in its general form. Therefore, a quantum kinetic approach
that is consistent with the thermodynamic limit requests a rigorous and consistent
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application of the second-order perturbation theory for the scattering matrix and the
system evolution operator [see also (7.27), (7.28), (7.36)] that contain all possible
matrix elements (i.e., all matrix elements that can be formed with a given set of wave
function vectors that is not restricted to either upper or lower levels). This is different
from usual broadening considerations. Here, the interference term constitutes a
correction to the dominating first term for the upper level.

It should be noted that the second-order perturbation theory of the scattering
matrix has not to be confused with the multipole expansion of the interaction
potential (see 7.31)–(7.35) in terms of monopole, dipole, quadrupole, etc. These
multipoles arise from the Taylor expansion of the interaction potential. We note,
that (7.246) corresponds to the general result of the first-order Born approximation
in quantum mechanical perturbation theory where detailed balance holds true for all
systems (in systems that are spin dependent we have to average over the spin
projections of the initial and final states, respectively, sometimes to be referred to as
semi-detailed balance).

7.7.3 Comments to a Two-Level Quantum Kinetics Resolved
in M-Quantum Number

If the two-level system is resolved in M-quantum number [here the indexes refer to
a ¼ 1; 2 and b ¼ 1; 2 while in the case of M-quantum averages a ¼ 1; 2 and
b ¼ 1; 2, [see (7.220)], we have to start our investigations from (7.9). In order to
facilitate the discussion, let us assume A ¼ 1 and B ¼ 0 in (7.66) for the electron
collisional operators U11

11 and U22
11, i.e.

Û11
11 ¼ �ne � 4pe

4

3�h2
�
Z1
0

f ðtÞ
t

dt
Zqmax

qmin

dq
q

� /ðMÞ;11
ð1Þ;11 þ/ðMÞ;11

ð2Þ;11
n o

; ð7:269Þ

Û22
11 ¼ �ne � 4pe

4

3�h2
�
Z1
0

f ðtÞ
t

dt
Zqmax

qmin

dq
q

� /ðMÞ;22
ð3Þ;11

n o
ð7:270Þ

with [see also (7.105), (7.106), (7.112)]

/ðMÞ;11
ð1Þ;11 ¼ d11 � dJ1J1 � dM1M1 � d J1; 1; J2ð Þ

2J1 þ 1
� c1J1 rk kh c2J2ij j2; ð7:271Þ

/ðMÞ;11
ð2Þ;11 ¼ d11 � dJ1J1 � dM1M1 � d J1; 1; J2ð Þ

2J1 þ 1
� c1J1 rk kh c2J2ij j2; ð7:272Þ
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/ðMÞ;22
ð3Þ;11 ¼ 2 � c2J2 rk kh c1J1ij j2

2J2 þ 1
�
X
q

2J2 þ 1ð Þ � J1 1 J2
�M1 q M2


 �2

: ð7:273Þ

Equation (7.273) shows that the assumption of a framework of a two-level system
that is resolved in M-quantum number is inconsistent. This can be seen directly
from the 3j symbol of (7.273). In the two-level case, there is only one upper level
resolved in M-quantum number and one lower level also resolved in M-quantum
number. Therefore, J1 ¼ 0 in order to have only one level with M1 ¼ 0 and like-
wise J2 ¼ 0 with M2 ¼ 0. The 3j symbol, however, indicates that the transition
DJ ¼ 0 is forbidden for the case J1 ¼ 0 and J2 ¼ 0; i.e., the 3j symbol is zero. The
same holds true for the other matrix elements from (7.271), (7.272): the triangular
relation is not fulfilled, i.e., d J1; 1; J2ð Þ ¼ 0 for the case DJ ¼ 0 with J1 ¼ 0 and
J2 ¼ 0. Therefore, no collisional transition exists between these two levels. From
this, it follows that one cannot study consistently the Boltzmann limit induced by
random electron collisions at high densities in the framework of a two-level system
that is resolved in M-quantum number.

7.8 The Field Perturbation Operator V̂

7.8.1 The Quasi-classical Electric Field Perturbation

The perturbation of the Hamiltonian due to an electric field can be described within
the well-established quasi-classical approach, i.e.

V̂ ¼ �~d �~F; ð7:274Þ

where~d is the electric dipole moment and ~F is the electric field. The corresponding
matrix element of the field perturbation can be expressed via the reduced dipole
matrix element (see (7.93)):

Vab ¼ caJaMah jV̂ cbJbMb

�� �
¼ �

X
q

F� �1ð Þqþ Ja�Ma
Ja 1 Jb

�Ma q Mb


 �
caJakdkcbJb

��
:

ð7:275Þ

If we align the z-axis along with the electric field vector ~F, (7.275) simplifies to

Vab ¼ �F � �1ð ÞJa�Ma
Ja 1 Jb

�Ma 0 Mb


 �
caJakdkcbJb

��
¼ �ea0F �1ð ÞJa�Ma

Ja 1 Jb
�Ma 0 Mb


 �
caJakrkcbJb

��
:

ð7:276Þ
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In order to replace the reduced dipole matrix element with the expressions (7.133)
for the oscillator strength, it is necessary to consider first the conjugate complex of
(7.276) rather than inserting the square root of the oscillator strength (because the
latter procedure destroys the correct quantum mechanical phase). From (7.276), we
find

V�
ab ¼ �F � �1ð ÞJa�Ma

Ja 1 Jb
�Ma 0 Mb


 �
caJakdkcbJb

���
¼ �ea0F � �1ð ÞJa�Ma

Ja 1 Jb
�Ma 0 Mb


 �
caJakrkcbJb

��� ð7:277Þ

from which it follows with (7.133) and the fact that 2Ja � 2Ma is even

Vab � V�
ab ¼ F2 � �1ð Þ2Ja�2Ma

Ja 1 Jb
�Ma 0 Mb


 �2

caJakdkcbJb
���� ��2

¼ 3e2�h2

2me
� F2 � Ja 1 Jb

�Ma 0 Mb


 �2

� 2Ja þ 1ð ÞfJaJb
�hxab

¼ 3e2a20Ry � F2 � Ja 1 Jb
�Ma 0 Mb


 �2

� 2Ja þ 1ð ÞfJaJb
�hxab

:

ð7:278Þ

7.8.2 The Ionic Field Mixing

If particles are moving sufficiently slowly so that the frequencies characterizing the
actual time dependence of the perturbing electric field produced in the vicinity of
the radiator (“jumping frequency”) are much smaller than the resulting Stark shifts
DxSðFÞ ¼ DxabðFÞ (where DxabðFÞ ¼ xabðFÞ � xabðF ¼ 0Þ) the electric field is
quasi-static, i.e.

dFðtÞ=dt
FðtÞ

����
����� DxSðFÞj j: ð7:279Þ

The Stark shifts can be estimated from perturbation theory:

DxabðFÞ ¼ CðnÞ
ab � Fn: ð7:280Þ

For the linear Stark effect, (H-like ions) we have n ¼ 1 while for the quadratic Stark
effect (non-hydrogen-like ions) n ¼ 2;Cab is the Stark constant.

The essential features of the quasi-static approximation can be estimated with the
electric field produced by the nearest perturber. This can be seen as follows. The
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characteristic ionic field in a plasma is given by the Holtsmark characteristic field
(Unsöld 1955):

F0 ¼ 2p � 4
15


 �2=3

� Zpe � n2=3i ¼ 2:6031 � Zpe � n2=3i : ð7:281Þ

Taking the ion sphere radius Ri according to

ni ¼ 1
4
3
pR3

i

ð7:282Þ

as the mean interaction radius for the distance between perturber and radiator, i.e.

r � Ri ¼ 3
4p


 �1=3

� n�1=3
i ¼ 0:62035 � n�1=3

i ð7:283Þ

we find

F � Zpe
r2

� 4p
3


 �2=3

� Zpe � n2=3i ¼ 2:5985 � Zpe � n2=3i : ð7:284Þ

Comparing (7.281), (7.284), we find that the binary approximation is very close to
the statistical mean Holtsmark field. Estimating now the relative field perturbation
from (7.279) via

dFðtÞ=dt
FðtÞ

����
���� � tp

r
ð7:285Þ

(tp is the velocity of the ionic perturbers), we find within the binary approximation
(7.284)

DxabðFÞ 	 1

CðnÞ
ab

0
@

1
A
2n� 1

� t2p
Zpe

 ! n
2n� 1

: ð7:286Þ

The linear Stark effect can be estimated from the first-order perturbation theory:

�hCð1Þ � 3
2
� �h2

Z � e � me
� n n1 � n2ð Þ; ð7:287Þ

where n is the principal quantum number of the atomic level and n1 and n2 are the
parabolic quantum numbers and Z is the ion charge (e.g., Z = 1 for hydrogen, Z = 2
for ionized helium). The outermost levels correspond to n1 ¼ n� 1; n2 ¼ 0 and
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n1 ¼ 0; n2 ¼ n� 1. Therefore, the energy difference between these outermost
levels is

DE ¼ 3ea0
Z

� nðn� 1Þ � F: ð7:288Þ

According to (7.287), for large quantum numbers, the linear Stark constant can be
estimated from

�hCð1Þ
ab � 3�h2

2 � Z � e � me
� n2a � n2b
� �

� �hCð1Þ
ab ; ð7:289Þ

where na and nb are the principal quantum numbers of the upper and lower levels,
respectively. The last relation in (7.289) indicates the relation to an averaged Stark
constant (averaged over magnetic quantum numbers). In atomic units, (7.289) takes
the form (note that in this case the field strengths F have to be measured in atomic
units too, i.e., in units of e=a20):

�hCð1Þ
ab

h i
a:u:

� 3
2 � Z � n2a � n2b

� �
: ð7:290Þ

For the quadratic Stark effect, the Stark constant can be estimated from the
second-order perturbation theory:

�hCð2Þ �
X
c0J 0

cJMh j~d c0J 0M0j i
��� ���2

�hxcJ;c0J 0
: ð7:291Þ

With the help of the Wigner–Eckart theorem, the matrix element in (7.291) can be
expressed in terms of the reduced matrix element. As before, the z-coordinate is
along the electric field vector [see also (7.276)] and we obtain:

�hCð2Þ �
X
c0J 0 M0

J 1 J 0

�M 0 M0


 �2

� cJkdkc0J 0ihj j2
�hxcJ;c0J 0

¼
X
c0J 0

1
2Jþ 1

� cJkdkc0J 0ihj j2
�hxcJ;c0J 0

¼ e2a20 �
X
c0J 0

1
2Jþ 1

� cJkrkc0J 0ihj j2
�hxcJ;c0J 0

:

ð7:292Þ

With the help of (7.134), the quadratic Stark constant can be expressed in terms of
oscillator strengths:

�hCð2Þ � 3
2
� �h

2e2

me

X
c0J 0

fcJ;c0J0

�hxcJ;c0J0
� �2: ð7:293Þ
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In atomic units, the quadratic Stark constant takes likewise a very simple form:

�hCð2Þ � 3
2
�
X
c0J0

fcJ;c0J 0

DE2
cJ;c0J 0 ða:u:Þ

: ð7:294Þ

Taking into account only the most closely lying level in the summation of (7.294),
we obtain (in atomic units)

�hCð2Þ
ab

h i
a:u:

� 3
2
� fab
DE2

abða:u:Þ
: ð7:295Þ

With the help of (7.279), (7.283), (7.285), (7.286), the condition for the quasi-static
regime can finally be formulated as follows:

ni 	 tp

3
4p


 �1=3

� 2pð Þn� 4
15


 �2n=3

� Zpe
� �n�CðnÞ

ab

2
6664

3
7775

3
2n� 1

; ð7:296Þ

where the perturber particle velocity is given by

tp ¼
ffiffiffiffiffiffiffiffiffiffi
3kTp
l

s
: ð7:297Þ

l is the reduced mass of the perturber and radiator and Tp is the temperature of the
perturbers. For the linear Stark effect, we obtain

nð1Þi 	 t3p

6p2 � 4
15


 �2

�Z3
pe

3 � Cð1Þ
ab

h i3
� 7:5� 1017 � kTp eVð Þ

l amuð Þ

 �3=2

� 1

Z3
p � �hCð1Þ

ab

h i3
a:u:

cm�3� 	
; ð7:298Þ

while for the quadratic Stark effect

nð2Þi 	 tp

4p2 � 3
4p


 �1=3

� 4
15


 �4=3

�Z2
pe

2 � Cð2Þ
ab

� 1:2� 1022 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTp eVð Þ
l amuð Þ

s
� 1

Z2
p � �hCð2Þ

ab

h i
a:u:

cm�3� 	
: ð7:299Þ
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The conditions (7.298), (7.299) set a lower density limit for the quasi-static
approximation. It should however be noted that the notion of the quasi-static
approximation according to (7.279) is related to the framework of the line broad-
ening theory and not to the level mixing phenomena that are described by (7.9),
(7.274), and it is therefore necessary to distinguish between broadening and energy
level mixing.

In line broadening the condition of static perturbation is a simple phase mod-
ulation of the atomic energy levels due to phase shift fluctuations induced by the
quadratic Stark effect. If these fluctuations are slow (static), the effect of line
broadening is described by the static approximation. In the opposite case, when the
fluctuations are fast, the broadening effect is described by the adiabatic impact
approximation where only elastic collisions are taken into account and level mixing
is negligible. In both cases, the energy level mixing effect is the same and deter-
mined by statistic electric fields that depend parametrically on time: the field
direction can be considered as constant and aligned along z-direction according to
(7.276). In other words: The failure of the quasi-static condition (7.279) for the
quadratic Stark effect does not mean a randomization of the ionic field direction.

A static condition for the level populations means that the field fluctuation rate is
small compared to the sum of the decay rate s�1

a that can be estimated (lower limit)
with the radiative and Auger decay (see also Chap. 6), i.e.

dFðtÞ=dt
FðtÞ

����
����� s�1

a �
X
b

Aab þ
X
k

Cak: ð7:300Þ

Employing the approximation (7.285) as before, we obtain from (7.300) with
(7.283), (7.285), (7.297)

nðkÞi � 1
s3a

� 3
4p

� l
3kTp


 �3=2

: ð7:301Þ

We note that in a more generalized density matrix theory (Rautian and Shalagin
1991; Anufrienko et al. 1993) the density matrix elements appear as functions of the
frequency, i.e., qab ¼ qabðxÞ: Line broadening and atomic populations are there-
fore coupled and generalized in a unified framework. This presentation, however,
requests the introduction of the quantized electromagnetic field in the density matrix
representation that is outside the scope of the present introductory chapter.

Let us now consider the condition for the application of the perturbation theory,
i.e., the condition

Vab

�� ��� �hxab

�� ��: ð7:302Þ
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Substituting the mean Holtsmark field F0 from (7.281) into (7.276), (7.277), we
obtain

Vab

�� �� ¼ e2a0
ffiffiffi
3

p
� 2p � 4

15


 �2=3

� Zpn2=3i

� �1ð ÞJa�Ma þ 1 Ja 1 Jb
�Ma 0 Mb


 �����
���� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ja þ 1ð ÞfJaJb
�hxab=Ry

s ð7:303Þ

or, in convenient units

Vab

�� ��
�h

¼ 19:253 � Zp � n2=3i � Yj j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ja þ 1ð ÞfJaJb
DEab ðeVÞ

s
s�1� 	 ð7:304Þ

with

Y ¼ �1ð ÞJa�Ma þ 1 Ja 1 Jb
�Ma 0 Mb


 �
: ð7:305Þ

For estimations of the order of magnitude of the interaction energy, we may
approximate Yj j � 1 and obtain directly from (7.277), (7.281)

Vab

�� �� � 2p � 4
15


 �2=3

� e2a0 � Zp � n2=3i � caJakrkcbJb
���� ��

� 2:0� 10�15 � Zp � n2=3i � caJakrkcbJb
���� �� ½eV�:

ð7:306Þ

Combining (7.302), (7.306), we find

ni � 1:1� 1022 � DE3=2
ab eVð Þ

Z3=2
p � caJakrkcbJb

���� ��3=2 cm�3� 	
: ð7:307Þ

The application of the perturbation theory sets therefore an upper limit for the
density that can be quite severe according to (7.307). This limitation is incompatible
with atomic kinetics because the correct asymptotic Boltzmann limit is only
achieved for high densities. Moreover, for closely lying levels the condition (7.302)
for the application of perturbation theory makes no sense. In fact, in the framework
of a more exact theory, the diagonalization of the perturbed Hamiltonian shows a
minimum level separation that is given by the field splitting itself. Therefore, the
level crossing is avoided due to the interaction itself (the avoided crossing is related
to the Landau–Zener effect where the transition occurs essentially in the neigh-
borhood of the minimum distance between the levels).

It is therefore necessary to develop a density matrix approach including level
mixing that circumvents the limitations of perturbation theory while maintaining a
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moderate complexity in order to be useful for practical applications where large
open systems have to be handled. This theory will be discussed below (Sect. 7.9)
within the framework of the quantum mechanical F-matrix theory QFMT.

7.8.3 Magnetic Quantum Number Averages and Symmetry
Properties

In order to proceed to the consideration of large open systems, let us finish before
the discussion of the M-quantum number averages for the ionic field perturbation
too. The M-quantum number averages (see Sect. 7.6) concern elementary processes
that are represented by the product of reduced matrix elements. As the field operator
V̂ from (7.274), (7.275) is only proportional to the matrix element itself, we define
(with respect to Sects. 7.6.3 and 7.6.4) an M-quantum average according to

Vab ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ja þ 1

p �
X
Ma;Mb

Vab: ð7:308Þ

The summation in (7.308) can be carried out with the help of (7.275), and we obtain
the general expression (means for all possible directions of q):

Vab ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ja þ 1

p �
X
Ma;Mb

Vab ¼ ea0F
caJakrkcbJb

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ja þ 1

p � Xð~qÞ ð7:309Þ

with

X ~qð Þ ¼
X

Ma;Mb;q
qj j � ~q

�1ð ÞJa�Ma þ 1 Ja 1 Jb
�Ma q Mb


 �
: ð7:310Þ

The parameter ~q specifies the direction, i.e., ~q ¼ 0 for q ¼ 0 and ~q ¼ 1 for
q ¼ 0;
1. Physically, the factor X determines the quantum number properties of
the electric field with respect to the population kinetics. For the random case
q ¼ 0;
1 (like considered above for the electron collisional operator) while for the
quasi-static case q ¼ 0 (if the ions are quasi-static, the Z-axis can be aligned along
the direction of the electric field ~F).

As (7.310) cannot be readily simplified (e.g., with the help of 3j-symmetry
properties or sum rules), let us calculate for a few relevant cases the numerical
factor X; see Table 7.1. Concerning a quasi-static ion field as discussed above, the
summation over the magnetic quantum numbers in (7.308) requests particular
attention in view of the density matrix (7.9) that contains simultaneously the field

matrix elements Vab and the collisional operator matrix elements Ua0b0

ab . The electron
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motion is assumed to be random, and we have to sum over all q-components in the
3j symbol. During the characteristic time of electron interaction, the ions are
quasi-static, providing the possibility to align the ion field in Z-direction (which is
equivalent to a q ¼ 0 component only). The summation in (7.308) contains
therefore only the summation over initial and final magnetic quantum numbers Ma

and Mb, respectively, but does not contain anymore a summation over the q-
directions.

It can be seen from Table 7.1, that for J-quantum numbers below 6 (covering the
most relevant cases for typical applications in plasma atomic physics) the absolute
values of the factors X for q ¼ 0 are of the order of unity albeit different from one.

Let us now determine the symmetry properties of the V-operator. We have to
start from the symmetry relation of Vab from (7.276). With the help of the symmetry
properties of the 3j symbol and the tensor matrix elements (7.107), we obtain:

Vba ¼ �ea0F � �1ð ÞJb�Mb
Jb 1 Ja

�Mb 0 Ma


 �
cbJb

��rkcaJai�
¼ �ea0F �1ð ÞJb�Mb þ Jb�Ja

Ja 1 Jb
�Ma 0 Mb


 �
caJakrkcbJb

���
:

ð7:311Þ

Table 7.1 Numerical values of the X-function from (7.310) for a few relevant cases of initial ðJaÞ
and final ðJbÞ J-quantum numbers, Ja and Jb, respectively

Ja Jb X(q = 0) X(q = 0, ±1)

0 0 0.00000000 0.00000000

1 0.57735027 1.73205081

1 0 −0.57735027 0.57735027

1 0.00000000 0.00000000

2 0.99760390 2.88963500

2 1 -0.99760390 0.89442719

2 0.00000000 0.00000000

3 1.28125825 3.66573376

3 2 −1.28125825 1.10321726

3 0.00000000 0.00000000

4 1.50969547 4.29288472

4 3 −1.50969547 1.27349379

4 0.00000000 0.00000000

5 1.70631492 4.83451992

5 4 −1.70631492 1.42189008

5 0.00000000 0.00000000

6 1.88161878 5.31873093

Note that due to the selection rule DJ ¼ Ja � Jb ¼ 0;
1 only the corresponding values of the X-
function are nonzero
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Because 2Ja þ 2þ 2Jb and 4Jb are even, and Ma ¼ Mb (due to the selection rules),

we have �1ð ÞJb�Mb þ Jb�Ja¼ �1ð Þ4Jb þ Ja�Mb¼ �1ð ÞJa�Ma from which it follows

Vba ¼ V�
ab: ð7:312Þ

Therefore, the approximation of the quasi-static ion field conserves well the usual
relation of matrix elements and its conjugate complex. It should be noted that not
only the symmetry property of (7.312) is of interest, but also the symmetry of the
product Vab � Vba. In fact, this product arises in the solution of the density matrix
(7.9) for the populations ~qaa. This will be considered below in a dedicated para-
graph in the framework of the construction of large closed model systems.

7.9 The Quantum Mechanical F-Matrix Theory QFMT

7.9.1 Rate Equation and Quantum Populations

Let us consider the equivalent of (7.9) in the framework of the rate equation theory
of (7.1), i.e.

dna
dt

¼ �na
X
b0

cab0 þ cradab0 þUab0
� �

þ
X
a0

na0 ca0a þ crada0a þUa0a
� �þQa:

ð7:313Þ

We are now seeking for a solution for an F-matrix model system

dna
dt

¼ �na
X
b0

cab0 þ cradab0 þUab0 þFab0
� �

þ
X
a0

na0 ca0a þ crada0a þUa0a þFa0a
� �þQa

ð7:314Þ

such that

na ¼ qaa; ð7:315Þ

where the qaa are the populations from the system (7.10) of the coupled diagonal
and non-diagonal density matrix elements.

A solution of (7.315) would certainly provide an expression (albeit very com-
plex) for the F-matrix in (7.314); however, this would be equivalent to directly
solve the density matrix (7.9). In addition, this type of solution (7.315) would not
met the physical motivation of (7.314), to employ a rate equation framework of
atomic levels (7.1) in order that:
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(a) the system can be realized large enough to be considered as a closed system
and,

(b) seek for an approximate solution for the F-matrix in (7.314) in terms of a
function of the matrix elements Wab from (7.1) only, i.e.

Fab ¼ F Wab

� �
; ð7:316Þ

while (7.315) is still well approximated, i.e.

na � qaa: ð7:317Þ

(c) go beyond the perturbation theory for the field interaction in order that the
system (7.314) approaches the correct Boltzmann limit at high densities.

It is the purpose of the Quantum-F-Matrix theory QFMT to solve this general
problem related to (7.313)–(7.317). Note, that the Greek indexes a and b in (7.316),
(7.317) indicate that both equations are resolved in M-quantum number. Note that a
classical system of population equations like those of (7.1) could either be for-
mulated M-quantum-number-resolved or M-quantum-number-averaged.

7.9.2 The Open Two-Level System

In order to proceed toward a solution for the F-matrix according to (7.316), (7.317),
let us consider an open two-level system that is schematically depicted in Fig. 7.1.
For the system in Fig. 7.1a, the rate equation (7.313) takes the form

dn2
dt

¼ �n2 c2 þA21 þU21ð Þþ n1 U12ð ÞþQ2; ð7:318Þ

dn1
dt

¼ �n1 c1 þU12ð Þþ n2 A21 þU21ð ÞþQ1: ð7:319Þ

From (7.318), (7.319), we obtain in the stationary case (i.e., d=dt ¼ 0):

Q1 þQ2 ¼ n1c1 þ n2c2: ð7:320Þ

Physically (7.320) means that all pumping rates are balanced by all loss rates
irrespective of the collisional transfer between the levels “1” and “2”.

For the density matrix system of Fig. 7.1b (7.9)–(7.18), we obtain in the dipole
approximation for field operator V̂ ¼ �~d �~F (i.e., Vab 6¼ 0 if a 6¼ b and Vab ¼ 0 if

a ¼ b where ~d is the dipole moment and ~F the electric field strength; see (7.220)–
(7.223)) the following set of equations:
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d~q22
dt

¼ � i
�h

V21~q12 � ~q21V12ð ÞþU11
22~q11 þU12

22~q12 þU21
22~q21

� ~q22 c2 þA21 � U22
22

� �þQ2;

ð7:321Þ

d~q11
dt

¼ � i
�h

V12~q21 � ~q12V21ð Þþ U22
11 þA21

� �
~q22 þU12

11~q12 þU21
11~q21

� ~q11 c1 � U11
11

� �þQ1;

ð7:322Þ

d~q12
dt

¼ �ix12~q12 �
i
�h

V12~q22 � ~q11V12ð ÞþU11
12~q11 þU22

12~q22 þU21
12~q21

� ~q12
c1
2

þ c2
2

þ A21

2
� U12

12


 �
;

ð7:323Þ

d~q21
dt

¼ �ix21~q21 �
i
�h

V21~q11 � ~q22V21ð ÞþU11
21~q11 þU22

21~q22 þU12
21~q12

� ~q21
c1
2

þ c2
2

þ A21

2
� U21

21


 �
:

ð7:324Þ

From (7.321), (7.322), we obtain an equivalent expression to (7.320) in the
framework of the density matrix approach:

Q1 þQ2 ¼ ~q11c1 þ ~q22c2 þ ~q11 �U11
11 � U11

22

� �þ ~q22 �U22
22 � U22

11

� �� �
þ ~q12 �U12

22 � U12
11

� �þ ~q21 �U21
22 � U21

11

� �� �
:

ð7:325Þ

Fig. 7.1 Open two-level system for the rate equation approach (a) and in the framework of the
density matrix approach (b). The field operator V̂ describes the electric-field-induced level mixing
due to the quasi-static ionic field while the collisional operator Û describes the electronic impact on
the level populations. The pumping rates Q, the loss rates c and the radiative decay rate A are
relaxation constants, see text
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With the help of (7.224)–(7.227), we can proceed toward an explicit identification
of the collision operator elements occurring in (7.325):

~q12 �U12
22 � U12

11

� �þ ~q21 �U21
22 � U21

11

� �� � ¼ 0: ð7:326Þ

Therefore, in a two-level system, the non-diagonal elements do not influence on the
loss rates of the open system that is balanced by the pumping rates. Let us now
consider the contributions to the loss rates via the elements of the collisional
operator that are proportional to the diagonal elements of the density matrix [see
(7.325)]:

U11
11 ¼ �U12; ð7:327Þ

U22
11 ¼ U21: ð7:328Þ

Physically, the elements �U11
11 and �U22

22 of the collisional operator represent the
total electron-induced collisional depopulation rates from the levels “1” and “2”,
respectively. In a two-level system, the total rates are identical to the transition rates
between the levels. According to Sect. 7.6.4.3, the elements [see also (7.219)]

U11
22 ¼ U12; ð7:329Þ

U22
22 ¼ �U21 ð7:330Þ

correspond to the transfer rates from one level to another. Injecting (7.327)–(7.330)
into the term with the first parenthesis of (7.325), we find

~q11 �U11
11 � U11

22

� �þ ~q22 �U22
22 � U22

11

� �� � ¼ 0 ð7:331Þ

and with the help of (7.131), (7.326) finally

Q1 þQ2 ¼ ~q11c1 þ ~q22c2: ð7:332Þ

Therefore, in a two-level system, the pumping is directly balanced by the loss rates
as it is the case in the rate equation approach (see (7.320)).

The identification of the electron collisional operator elements (neglecting the
imaginary part in (7.66), (7.105), (7.106) with cross sections (or rate coefficients))
in (7.327)–(7.330) can be completed with (7.213) (see also Sect. 7.6.4.2), i.e.

U12
12 ¼ �U12

2
� U21

2
; ð7:333Þ

U21
21 ¼ �U21

2
� U12

2
: ð7:334Þ
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7.9.3 The Exact QFMT Solution for a Two-Level System

Let us now consider the solution for the system containing the matrix elements Fab

from (7.314). Instead of (7.318), (7.319), we encounter the following system of
equations:

dn2
dt

¼ �n2 c2 þA21 þU21 þF21ð Þþ n1 U12 þF12ð ÞþQ2; ð7:335Þ

dn1
dt

¼ �n1 c1 þU12 þF12ð Þþ n2 A21 þU21 þF21ð ÞþQ1: ð7:336Þ

We are now seeking for a solution of the density matrix (7.321), (7.322) and are
looking for an explicit expression for ~q22 that can be compared with the rate
equation solution of n2 from the system of (7.335), (7.336). In order to be general
for later discussions, let us not use the relations (7.224)–(7.231) that are specific for
a two-level system. For this purpose, we consider the quasi-stationary case (i.e.,
d=dt ¼ 0) and solve (7.323), (7.324) for ~q12 and ~q21. For this purpose, we rewrite
(7.321) in a more convenient form:

d~q22
dt

¼ ~q11U
11
22 � ~q22 c2 þA21 � U22

22

� �þ ~q12a1 þ ~q21a2 þQ2; ð7:337Þ

d~q11
dt

¼ �~q11 c1 � U11
11

� �þ ~q22 U22
11 þA21

� �þ ~q12a3 þ ~q21a4 þQ1; ð7:338Þ

d~q12
dt

¼ ~q11a5 þ ~q22a6 � ~q12 aþ ix12ð Þþ ~q21U
21
12; ð7:339Þ

d~q21
dt

¼ ~q11a7 þ ~q22a8 þ ~q12U
12
21 � ~q21 bþ ix21ð Þ ð7:340Þ

with

a1 ¼ � i
�h
V21 þU12

22; ð7:341Þ

a2 ¼ i
�h
V12 þU21

22; ð7:342Þ

a3 ¼ i
�h
V21 þU12

11; ð7:343Þ

a4 ¼ � i
�h
V12 þU21

11; ð7:344Þ
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a5 ¼ i
�h
V12 þU11

12; ð7:345Þ

a6 ¼ � i
�h
V12 þU22

12; ð7:346Þ

a7 ¼ � i
�h
V21 þU11

21; ð7:347Þ

a8 ¼ i
�h
V21 þU22

21; ð7:348Þ

a ¼ c1
2

þ c2
2

þ A21

2
� U12

12; ð7:349Þ

b ¼ c1
2

þ c2
2

þ A21

2
� U21

21; ð7:350Þ

x12 ¼ �x21: ð7:351Þ

From (7.338), (7.339) it follows

~q21 ¼ �~q11 �
A
C
��~q22 �

B
C
; ð7:352Þ

~q12 ¼
1

aþ ix12
� ~q11 a5 � U21

12 �
A
C

� �
þ ~q22 a6 � U21

12 �
B
C

� �� �
ð7:353Þ

with

A ¼ a7 þ a5U12
21

aþ ix12
; ð7:354Þ

B ¼ a8 þ a6U12
21

aþ ix12
; ð7:355Þ

C ¼ U21
12 � U12

21

aþ ix12
� b� ix12ð Þ: ð7:356Þ

Assuming A = 1 and B = 0, we encounter a the symmetry relation (7.121) and we
have from (7.349), (7.350)

a ¼ b: ð7:357Þ

The solutions (7.352), (7.353) are then injected into (7.337) with the help of
(7.341)–(7.351), (7.357). The resulting equation is then compared with (7.335) to
obtain the F-matrix elements. Let us split the matrix elements F21 in two parts
according F21 = X21 + iY21 and F12 = X12 + iY12 and we obtain for the X-part of F21
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X21 ¼ þ 2
V21 � V12

�h2
� G1 � G2 � U21 � U22

22

� G1 � G2
V12 � V12

�h2
� U

12
21

a
þ V21 � V21

�h2
� U

21
12

a

� �

� G1 � G2 � U12
22 � U22

12 þU21
22 � U22

21 þ
U12

21

a
� U21

22 � U22
12 þ

U21
12

a
� U12

22 � U22
21

� �

þG1 � G2 � xa � V12

�h
U22

21 þU12
22

� �þ V21

�h
U22

12 þU21
22

� �� �
ð7:358Þ

and for the Y-part of F21:

Y21 ¼ �G1 � G2 � x12

a
� U21

22 � U22
21 � U12

22 � U22
12

� �
� G1 � G2 � V12

�h
� U22

21 � U12
22 þ

U12
21

a
� U21

12 �
U12

21

a
� U21

22

� �

� G1 � G2 � V21

�h
� U21

22 � U22
12 þ

U21
12

a
� U12

22 �
U21

12

a
� U22

21

� �
:

ð7:359Þ

Likewise we obtain for the X-part of F12

X12 ¼ þ 2
V21 � V12

�h2
� G1 � G2 � U12 � U11

22

� G1 � G2
V12 � V12

�h2
� U

12
21

a
þ V21 � V21

�h2
� U

21
12

a

� �

þG1 � G2 � U12
22 � U11

12 þU21
22 � U11

21 þ
U21

12

a
� U12

22 � U11
21 þ

U12
21

a
� U21

22 � U11
12

� �

þG1 � G2 � xa � V12

�h
U11

22 � U11
21

� �þ V21

�h
U21

22 � U11
12

� �� �
ð7:360Þ

and for the Y-part

Y12 ¼ �G1 � G2 � x12

a
� U12

22 � U11
12 � U21

22 � U11
21

� �
� G1 � G2 � V12

�h
� U11

22 þU11
21 �

U12
21

a
U11

12 �
U12

21

a
U21

22

� �

� G1 � G2 � V21

�h
� �U11

12 � U21
22 þ

U21
12

a
U11

21 þ
U21

12

a
U12

22

� � ð7:361Þ
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with

G1 ¼ 1
x2

12

a
þ a

; ð7:362Þ

G2 ¼ a2 þx2
12

a2 þx2
12 � U21

12 � U12
21

; ð7:363Þ

a ¼ c1
2

þ c2
2

þ A21

2
� U12

12: ð7:364Þ

Note that in a two-level system the operator U12
12 can be approximated in terms of

cross sections (see (7.333), (7.334)) under assumptions leading to (7.357). With the
help of relations (7.224)–(7.231) and (7.327)–(7.330), we obtain

X21 ¼ þ 2
V21 � V12

�h2
� G1 � G2

� G1 � G2
V12 � V12

�h2
� U

12
21

a
þ V21 � V21

�h2
� U

21
12

a

� �
;

ð7:365Þ

Y21 ¼ 0; ð7:366Þ

X12 ¼ þ 2
V21 � V12

�h2
� G1 � G2

� G1 � G2
V12 � V12

�h2
� U

12
21

a
þ V21 � V21

�h2
� U

21
12

a

� �
;

ð7:367Þ

Y12 ¼ 0: ð7:368Þ

7.9.4 Successive Pair Coupling of Quantum Effects

One can see from (7.365)–(7.368) that the F-matrix elements for F12 and F21 are
symmetric and contain only the X-functions (see (7.366), (7.368)). We therefore
might approximate the F-matrix solution of a multilevel system by the solution
from the two-level system with general indexes, i.e.

Fab � þ 2
Vab � Vba

�h2
� G1;ab � G2;ab � G1;ab

� G2;ab
Vab � Vab

�h2
� U

ab
ba

aab
þ Vba � Vba

�h2
� U

ba
ab

aab

( ) ð7:369Þ
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with

G1;ab ¼ 1
x2

ab

aab
þ aab

; ð7:370Þ

G2;ab ¼ a2ab þx2
ab

a2ab þx2
ab � Uba

ab � Uab
ba

; ð7:371Þ

aab ¼ ca
2

þ cb
2

þ Aab þAba

2
� Uab

ab: ð7:372Þ

Note that in (7.372) we have replaced the term
A21

2
in (7.364) by

Aab þAba

2
in order to

avoid that the contribution of the radiative decay to the loss of the non-diagonal
matrix element vanishes if we exchange the index as in a two-level system there exists
only one nonvanishing radiative decay from the upper to the lower level. Therefore, if
a designates the upper level and b the lower one, Aab  0 while Aba ¼ 0. On the other
hand, if b designates the upper level and a the lower one, then Aba  0 while Aab ¼ 0.

The radiative term
Aab þAba

2
in (7.372) therefore generalizes the radiative contri-

bution for arbitrary level combinations in a multilevel system. Physically, the Fab-
matrix elements from (7.369) connect a particular selected level awith all other levels
b of the multilevel system. This is schematically depicted in Fig. 7.2.

Figure 7.2 illustrates that the levels a and b are not only coupled to each other
via Fab (see green flashes) but also to all other levels c in the system via Fac and Fbc

(blue flashes). Moreover, in the proposed multilevel scheme (7.369)–(7.372) there
is even recovered some influence of the coupling between the levels c (red flashes)
and the coupling of the levels c to the levels a and b (see red dashed flashes).

There are therefore important advantages of the application of (7.369)–(7.372) in
a multiple-pair approach to a multilevel system:

Fig. 7.2 F-matrix coupling in a multilevel system. Apart its direct coupling between the levels a
and b, it couples likewise all other system levels c to a and to b
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(a) Due to the solution from the two-level system, no approximation with respect to
the magnitude of the V-parameter has been made (in other words, (7.369)–
(7.372) are valid even for large values of V-matrix elements). In other words, no
perturbation theory with limiting conditions like (7.302) is employed. This is
important when considering high densities and the thermodynamic limit: in
plasmas, the thermodynamic limit is achieved for high densities, i.e., for large
values of V-matrix elements (because these matrix elements increase with the
density [see (7.276), (7.281)]. Therefore, (7.369)–(7.372) constitute a
well-adopted compromise: It includes the interferences in a coupled two-level
approach (see discussion concerning Fig. 7.2), while it is appropriate for large
values of V-matrix elements.

(b) The two-level approximation according to (7.369)–(7.372) conserves also the
symmetry properties with respect to a multilevel system. This can be seen as
follows. According to (7.121), the operator elements Uab

ab are symmetric with
respect to an exchange in indexes a and b. Therefore, we encounter a symmetry
(see also (7.357) in the parameter aab from (7.372):

aab ¼ aba: ð7:373Þ

Because Uba
ab � Uab

ba, and x2
ab are symmetric with respect to an exchange of

indexes, we encounter that G1;ab and G2;ab are likewise symmetric:

G1;ab ¼ G1;ba; ð7:374Þ

G2;ab ¼ G2;ba: ð7:375Þ

As Vab � Vba is trivially symmetric with respect to its indexes, we obtain a
symmetry for the F-matrix from (7.369):

Fab ¼ Fba: ð7:376Þ

7.9.5 QFMT and Statistical Boltzmann Populations

An M-quantum-number-averaged model system (7.1) is well adopted to realize
large model systems that include not only a large number of excited levels, but
consider at the same time the ionic distribution. The system is therefore resolved in
nLSJ-quantum numbers for each possible ionization stage, hereafter referred as Z-
nLSJ-resolved population kinetics. Such a model system may contain hundreds up
to millions of levels that realize a closed model system. It is therefore of great
interest, to study the F-matrix approach averaged over M-quantum numbers. This
question is strongly related to the fundamental question, whether the F-matrix
supports Boltzmann relations or not. We are therefore interested to seek for a
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solution for the F-matrix for the following set of equations [instead of (7.314),
(7.315)]

dna
dt

¼ �na
X
b0

cab0 þ cradab0 þUab0 þFab0
� �

þ
X
a0

na0 ca0 a þ crada0 a þUa0 a þFa0 a
� �þQa

ð7:377Þ

and (see also (7.137))

na ¼ qaa; ð7:378Þ

where the qaa are the M-quantum-number-averaged populations from the system of
density matrix (7.156). In analogy to (7.369)–(7.372), we obtain

Fab � þ 2
Vab � Vba

�h2
� G1;ab � G2;ab � G1;ab

� G2;ab
Vab � Vab

�h2
� U

ab
ba

aab
þ Vba � Vba

�h2
� U

ba
ab

aab

� � ð7:379Þ

with

G1;ab ¼ 1
x2

ab

aab
þ aab

; ð7:380Þ

G2;ab ¼ a2ab þx2
ab

a2ab þx2
ab � Uba

ab � Uab
ba

; ð7:381Þ

aab ¼ ca
2
þ cb

2
þ Aab þAba

2
� Uab

ab: ð7:382Þ

According to (7.213), the collisional operator matrix element Uab
ab contains two

symmetric sums over all collisional rate coefficients. Therefore Uab
ab is symmetric, i.e.

Uab
ab ¼ Uba

ba: ð7:383Þ

From (7.362), it follows immediately that

aab ¼ aba; ð7:384Þ

G1;ab ¼ G1;ba; ð7:385Þ
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G2;ab ¼ G2;ba: ð7:386Þ

As Vab � Vba is evidently symmetric with respect to an exchange of indexes, we
encounter finally a symmetric M-quantum-number-averaged F-matrix too, i.e.

Fab ¼ Fba: ð7:387Þ

According to (7.377) the matrix elements Fab and Fba act like effective processes
that induce transitions from state a to state b and vice versa, e.g., like the electron
collisional matrix elements Uab and Uba do. Physically, it can be interpreted that
interferences are interrupted by relaxation which can result into an effective loss
rate. Let us consider the detailed balance for these two processes. For the electron
collisions, the “collisional flow” from level na is given by naUab and the detailed
balance reads

naUab ¼ nbUba: ð7:388Þ

Because [see also (7.139)–(7.142)]

Uab /
caJa rk kcbJb

���� ��2
2Ja þ 1

� exp �DEab

kTe


 �
ð7:389Þ

and

Uba /
cbJb rk kcaJai
��� ��2

2Jb þ 1
ð7:390Þ

we encounter with the help of the symmetry relation of the line strengths [see also
(7.124)], i.e.

caJa rk kcbJb
���� ��2¼ cbJb rk kcaJai

��� ��2 ð7:391Þ

the following relation between the direct and inverse electron collisional processes:

Uba ¼ Uab � 2Ja þ 1
2Jb þ 1

� exp DEab

kTe


 �
: ð7:392Þ

Injecting (7.392) into (7.388), we find

nb
na

¼ 2Jb þ 1
2Ja þ 1

� exp �DEab

kTe


 �
: ð7:393Þ

According to (7.393), the electron collisions support Boltzmann populations. In
fact, it is due to the dominating role in the population kinetics of electron collisions
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(that are proportional to the electron density) that populations approach for high
density the statistical Boltzmann limit.

A corresponding detailed balance equation for the field operator V̂ is difficult to
identify directly from the density matrix (7.154), (7.156), because the operator V̂

acts via an imaginary term
i
�h
V̂ag~qgb in the equations. It is therefore necessary to

consider the F-matrix solution of (7.379) to obtain its real contribution to the
populations (i.e., its influence on the populations of the diagonal elements).
A corresponding detailed balance for the V̂-operator should be defined as

naFab ¼ nbFba: ð7:394Þ

According to the symmetry relation of (7.387), we obtain from (7.394)

nb
na

¼ 1: ð7:395Þ

Therefore, the V̂-field-induced transition rates do not support Boltzmann popula-
tions. This is a very important result for high-density plasmas, because unlike
spontaneous radiative rates, the V̂-field-induced transition rates increase with
density and therefore reduce the efficiency of electron collisions with respect to
their capacity to establish Boltzmann populations (and thereby changing the
so-called critical density, i.e., the minimum density for achieving Boltzmann
populations).

Equation (7.395) indicates that ionic field rates have the tendency to drive the
system to equal populations, while electron collisions have the tendency to establish
a statistical population [except the Boltzmann factor, see (7.389)]. This is related to
the fact that for the electron collisional operator, a random distribution of impact
vectors and velocity vectors has been assumed that has suppressed terms in the
electron collisional operator that are only proportional to one reduced matrix ele-
ment [see (7.42)–(7.44)]. Therefore, from the very beginning, the average of the
scattering matrix (7.43) has suppressed “non-statistical terms.” For the ion field, this
is different. Ions have been assumed to be quasi-static and no random average over
the field contributions in the kinetic equations [see also (7.9), (7.20)] has been
made. We note that the relation (7.395) is independent from the assumption of the
q-components; different assumptions for the q-values result in different numerical
factors (see, e.g., Table 7.1) but do not alter the principle circumstance that ionic
fields do not support the Boltzmann populations.

We note that the density dependence of the influence of the ionic field effect is
not trivial, because the ionic field increases also with density (as do the random
electron collisions). For large densities, we encounter the following scaling rela-
tions related to (7.379)–(7.382):
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aab / ne; ð7:396Þ

G1;ab / n�1
e ; ð7:397Þ

G2;ab / n0e ; ð7:398Þ

VabVba / n4=3e ; ð7:399Þ

VabVab / n4=3e ; ð7:400Þ

VbaVba / n4=3e ; ð7:401Þ

Uba
ab

aab
/ n0e ; ð7:402Þ

Uab
ba

aab
/ n0e : ð7:403Þ

From the scaling relations (7.396)–(7.403), it follows the scaling for the F-matrix:

Fab / n1=3e : ð7:404Þ

The F-matrix scaling is less strong than the scaling of the electron collisional
processes, i.e.

Uab / ne; ð7:405Þ

therefore, the relative importance of field effects vanishes for large densities
according to the scaling

Fab

Uab
/ n�2=3

e : ð7:406Þ

The vanishing ratio
Fab

Uab
for large densities allows electron collisions to be dominant

for very high densities and to establish Boltzmann populations. As the influence of
the F-matrix vanishes for very large densities, a possible failure of perturbation
theory will have little impact on the final result. It is therefore of great interest to
apply the density matrix equations as well as the F-matrix approach to a level
system of practical interest (e.g., in plasma spectroscopy) to get more practical
insight into the changes induced by the ionic fields and their dependence with
density.
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7.10 Application to Autoionizing Levels of Highly
Charged Ions

7.10.1 Dielectronic Satellites Near H-like Lyman-Alpha

Let us apply the density matrix approach to the autoionizing levels 2p2 1D2; 2p2 1S0
and 2s2p 1P1 that are of great interest for dense plasma diagnostic to measure
density and temperature (Boiko et al. 1985; Renner et al. 2009; Renner and Rosmej
2019; Rosmej and Lee 2007; Rosmej et al. 2015; Michelis and Mattioli 1981;
Rosmej 2012a, b). This diagnostic is typically realized with a high-resolution X-ray
Bragg crystal to obtain a highly resolved X-spectral distribution of the transitions
2l2l′ ! 1s2l (the so-called dielectronic satellites of He-like Lyman-alpha) whose
qualitative changes (or line ratios) are then indicative of changes in temperature and
density.

Tables 7.2 and 7.3 present the relevant atomic properties of the levels and the
related transitions obtained from the Flexible Atomic Code FAC (Gu 2008).

The density matrix equations have been solved for the autoionizing levels
2p2 1D2; 2p2 1S0, and 2s2p 1P1 that are resolved in LSJ-quantum numbers but not in
M-quantum number. For these purposes, (7.156) and (7.377), (7.378) have been
numerically solved for q ¼ 0. As dielectronic capture is the dominating population
channel for the 2l2l levels for highly charged ions, dielectronic capture has been
assumed for the pumping rates Qab.

Likewise, the loss rates of the autoionizing levels are dominated by the radiative
losses cA from the levels a; b; c 2 density matrixf g to the levels n;m 62
density matrixf g and the autoionizing rates C. Collisional rates from levels a; b; c 2
densitymatrixf g to the levels n;m 62 densitymatrixf g have therefore to be com-

pared with the sum of the loss rates c ¼ cA þC given in Table 7.2 and with the
rates already included in the density matrix system. Calculations for typical

Table 7.2 Statistical weights g, autoionizing rates C, dielectronic capture energies Es, radiative
loss rates cA, and total loss rates c for aluminum

Level g C (s−1) cA (s−1) Es (eV) c (s−1)

2p2 1S0 1 1.26 � 1013 2.73 � 1013 1237.683 3.99 � 1013

2s2p 1P1 3 1.70 � 1014 1.63 � 1013 1219.174 1.86 � 1014

2p2 1D2 5 3.13 � 1014 3.18 � 1013 1217.566 3.45 � 1014

Table 7.3 Transition energies DE, reduced dipole matrix elements caJa rk kcbJb
��
, absorption

oscillator strengths f, and transition probabilities A for aluminum

Transition DE (eV) caJa rk kcbJb
��

fJaJb AJbJa (s−1)

a = 2p2 1D2 ! b = 2s2p 1P1 1.6078 −0.7615 4.57 � 10−3 8.54 � 105

a = 2s2p 1P1 ! b = 2p2 1S0 18.506 −0.5782 5.05 � 10−2 2.55 � 109
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temperatures show (kTe ¼ 500 eV) that ionization rate coefficients 2l2l0 þ e !
2lþ eþ e are of the order of I 2l2l0 ! 2lð Þ � 10�10 cm3 s�1. Therefore, even for the
highest densities considered ionization loss rates turn out not to be very important.

Concerning electron excitation rates, the most dominant ones are those within
the same group, i.e., collisions from levels a ¼ 2l2l0 a 2 densitymatrixf g to the
levels n ¼ 2l2l0 while n 62 densitymatrixf g. The calculations show that the rate
C 2p2 1D2�2s2p 1P1ð Þ � 6� 10�9 cm3 s�1 is the dominating one for the level
2p2 1D2. This rate, however, is included in the calculations as both levels belong to
the system a; b 2 densitymatrixf g. A similar situation holds true for the 2p2 1S0
level: C 2p2 1S0�2s2p 1P1ð Þ � 9� 10�9 cm3 s�1. The situation is only marginally
different for the 2s2p 1P1-level. The strongest rate coefficient is
C 2s2p 1P1�2p2 1S0ð Þ � 1� 10�8 cm3 s�1 and concerns the levels included in the
density matrix system, while the transition C 2s2p 1P1 � 2s2 1S0ð Þ � 1�
10�9 cm3 s�1 concerns a loss rate to a level n;m 62 densitymatrixf g.

For further physical understanding, let us consider a few critical densities for
typical conditions of dense hot aluminum plasma: ion temperature of kT ¼ 100 eV,
ion charge Z ¼ 12, a mean perturber charge of Zp ¼ 11, and reduced mass of
l ¼ 27=2. Because the 2l2l′-levels are essentially subject to the quadratic Stark
effect, we have to use (7.295) in order to estimate the quasi-static conditions for the
quadratic Stark effect. From the data presented in Table 7.1, we obtain:

�hCð2Þ
1D2�1P1

h i
a:u:

� 1:96� 100; ð7:407Þ

�hCð2Þ
1P1�1S0

h i
a:u:

� 1:64� 10�1: ð7:408Þ

With the help of (7.407), (7.408), the lower density limit for the quasi-static
broadening condition (7.299) can be estimated:

n 2ð Þ
i

1D2 ! 1P1
� �	 1:4� 1020 cm�3; ð7:409Þ

n 2ð Þ
i

1P1 ! 1S0
� �	 1:7� 1021 cm�3: ð7:410Þ

The comparison of estimates (7.409) and (7.410) shows that due to the much
smaller level separation of the D–P transition (see Table 7.3), the quasi-static
regime starts at about one order of magnitude lower density compared to the P–
S transition. In this regime, we encounter a strong level mixing where the transition
from spherical quantization to parabolic one has occurred. At densities lower than
those given by (7.409), (7.410), the field mixing is weak. In both cases, the energy
level mixing effect is the same and determined by statistic electric fields that will be
considered in Sects. 7.10.2 and 7.10.3 in the low-frequency approximation of the
plasma microfield.
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We note that the two different transitions from the strongly mixed levels 2p2 1D2

and 2s2p 1P1 can be well observed because the lower levels are quite different
(1s2p 1P1 and 1s2s1S0) resulting is a large separation in the spectral distribution,
i.e., quite different wavelengths (see Table 7.4).

Let us now consider the density limit for the application of perturbation theory as
provided by (7.307):

ni
1D2 ! 1P1
� �� 9:3� 1020 cm�3; ð7:411Þ

ni 1P1 ! 1S0
� �� 5:5� 1022 cm�3: ð7:412Þ

In the framework of the present QFMT, these density estimates are not quite
relevant because the QFMT solution does not rely on the assumption of small field
perturbation.

We estimate now the critical density for the quasi-static condition in atomic
kinetics from (7.301). The critical density (employing the sum of the radiative
decay and autoionizing rates from the P–S and D–P transition, Table 7.4) is given
by

nðkÞi � 2� 1022 cm�3: ð7:413Þ

With the help of the relation ne � Zp � ni the estimations (7.409)–(7.413) can be
transformed to electron densities if perturber ions and radiating ions are identical
and originate from the same one component ionized atoms.

We note that the density estimate according to (7.413) is near-solid density. If
the fluctuation rates are faster than the characteristic atomic times scales (i.e., if the
density estimate (7.413) is seriously invalidated), the time-dependent density matrix
equations for the fluctuating microfield have to be solved. Alternatively, one can
apply the frequency fluctuation method or the model microfield method that enables
to keep the static solutions of the density matrix while introducing a jumping
frequency (Brissaud and Fritsch 1971; Kosarev and Lisitsa 1996). This approach
maintains the quasi-static consideration presented below even in the case of
dynamic microfields.

Table 7.4 Dielectronic satellite X-ray transitions and corresponding atomic data obtained from
the MZ code (Vainshtein and Shevelko 1986)

Transition k (Å) A (s−1) C (s−1) K Q (s−1)

2p2 1D2 ! 1s2p 1P1 7.2759 3.38 � 1013 3.12 � 1014 9.77 � 10−2 1.52 � 1014

2s2p 1P1 ! 1s2s 1S0 7.2316 1.74 � 1013 1.74 � 1014 9.09 � 10−2 4.75 � 1013

2p2 1S0 ! 1s2p 1P1 7.1929 2.65 � 1013 1.27 � 1013 6.75 � 10−1 8.60 � 1012

k is the wavelengths of the X-ray transition, C the autoionizing rate, K the branching factor
between radiative decay rate and total radiative + autoionizing decay rates, Q is the dielectronic
satellite intensity factor
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7.10.2 The Low-Frequency Plasma Microfield

The ion microfield distribution has been taken into account in the following way.
The density matrix equations have been solved for each microfield value F. The
resulting populations ~qabðFÞ have then been summed up attributing a probability to
each population that corresponds to the probability WðFÞ of the microfield distri-
bution, i.e.

~qab ¼
Z1
0

WðFÞ � ~qabðFÞ � dF: ð7:414Þ

The simplest estimate of the microfield distribution function can be performed
assuming that the ions are statistically independent (i.e., the ideal gas approxima-
tion). In this approximation, the correlation of the positions of the ions is neglected;
i.e., each ion is found at any point in the plasma independently of how all the other
ions are located. This situation is usually characterized by a small Coulomb ion–ion
coupling parameter (dimensionless) that is defined as the ratio of the Coulomb
energy and the mean distance of the ions:

Cii ¼
Z2
p � e2

Ri � kTi : ð7:415Þ

Substituting the mean ion sphere radius (7.283) into (7.415), we obtain

Cii ¼ 4p
3


 �1=3

� Z
2
p � e2 � n1=3i

kTi

¼ 2:321� 10�7 � Z
2
p � n1=3i cm�3ð Þ
kTi ðeVÞ :

ð7:416Þ

A microfield distribution valid for Cii � 0:1 has first been derived by Holtsmark
(Unsöld 1955; Hooper 1966, 1968; Griem 1974; Sobelman 2006) (see also Sect. 3.2):

WH ¼ 2ffiffiffi
p

p � 1
b
�
Z1
0

x � sinðxÞ � exp � x
b


 �3=2
" #

dx; ð7:417Þ

where

b ¼ F
F0

ð7:418Þ
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with

F0 ¼ 2p � 4
15


 �2=3

� Zpe � n2=3i : ð7:419Þ

Zp is the ionic perturber charge, and ni the perturber density. Numerical calculations
show that the maximum of the Holtsmark distribution function is located at

Fmax ¼ 1:607 � F0: ð7:420Þ

The Holtsmark distribution has a well-defined asymptotic behavior for small and
large electric field values:

WH � 1:496 � b�5=2 � 1þ 5:107 � b�3=2 þ 14:93 � b�3 þ � � �
� �

if b 	 1

0:4244 � b2 � 1� 0:463 � b2 þ 0:1227 � b4 þ � � �� �
if b � 1:

(

ð7:421Þ

7.10.3 The Screened Effective Pair Potential Method
in Strongly Coupled Plasmas

Important deviations from the Holtsmark distribution are encountered, if the
Coulomb ion–ion coupling parameter (7.415), (7.416) is C[ 0:1. In fact, in dense
plasmas, the electric microfield is related to the probability to find an electric field
that is equal to the total electric field composed from the sum of the electron and
screened single ion contribution.

Numerous modifications of the Holtsmark distribution to account for ion cor-
relations have been proposed in the framework of the Debye–Hückel theory (Griem
1974, Demura 2010). The simulations are very complex (Demura 2010), and for the
sake of convenience, the so-called “Adjustable Parameter Exponential Expansion—
APEX” has been developed to take into account ion correlation in dense strongly
coupled plasmas.

For the present work, we use the APEX method as proposed by Potekhin et al.
(2002) that is based on a screened potential of Yukawa form:

VðrÞ ¼ Z2
p � e2
r

� exp �s � r
Ri


 �
¼ Z2

p � e2
r

� exp �ks � rð Þ: ð7:422Þ

s is a screening parameter, Ri the ion sphere radius (7.283), and ks is an effective
screening wave vector. The low-frequency ion microfield is approximated by
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WAPEX � b2

SN
� A � exp �a � bað ÞþB � exp �bbcð Þþ exp �Cii �

ffiffiffi
b

p� �
1þ c � b9=2

" #
; ð7:423Þ

where the parameter b is a dimensionless field strengths defined by

b ¼ F
~F0

ð7:424Þ

with

~F0 ¼ Zp � e
R2
i

¼ 4p
3


 �2=3

�Zp � e � n2=3i ¼ 2:598518 � Zp � e � n2=3i : ð7:425Þ

Note that ~F0 is slightly different from the characteristic Holtsmark field strength F0

(see (7.281) and discussions related to (7.281)–(7.284)). The parameter SN is a
normalization constant:

SN ¼ A � Cð3=aÞ
a � a3=a þB � Cð3=cÞ

a � b3=c þ 1

C6
ii

� F c

C9
ii


 �
; ð7:426Þ

where CðxÞ is the Gamma function and

FðyÞ ¼
Z1
0

x2 � exp � ffiffiffi
x

pð Þ
1þ y � x9=2 � dx: ð7:427Þ

The integral (7.427) may be approximated within a precision of a few percent by

FðyÞ �
1þ 4p

9 � ffiffiffi
3

p � y1=9

1
240

þ 0:849 � y1=3 þ 3:2 � y5=9 þ 2:43 � y2=3 þ y7=9
: ð7:428Þ

The parameters A, B, a, b, c, a and c are expressed in terms of the ion–ion coupling
parameter Cii and the potential screening parameter s:

A ¼ A1 � 1þA4 � C1=2
ii

1þA2 � C2
ii þA3 � C4

ii

; ð7:429Þ

A1 ¼ 0:59þ 2540 � s4 þ 3 � s14; ð7:430Þ
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A2 ¼ 0:55þ 10 � s0:5 þ 2 � s4:5
1þ 20 � s0:5 ; ð7:431Þ

A3 ¼ 2:17� 10�3 � s5; ð7:432Þ

A4 ¼ 14:8
1þ 117 � s3:5 ; ð7:433Þ

B ¼ B1

1þB2 � C2
ii þB3 � C4

ii

; ð7:434Þ

B1 ¼ 0:386þ 300 � s2 þ 1:1 � s9:5; ð7:435Þ

B2 ¼ 0:038þ 0:79 � s0:75; ð7:436Þ

B3 ¼ 3:7� 10�3 � s5:5
1þ 4� 10�3 � s9 ; ð7:437Þ

a ¼ 0:5 � Cii þ 1:15þ 2 � s1:8; ð7:438Þ

b ¼ 0:25 � Cii þ 1þ 0:54 � s2:5
1þ 0:07 � s ; ð7:439Þ

c ¼ 0:097
1þ 210 � s2:5 � exp �1:3 � s1:5ð Þ ; ð7:440Þ

a ¼ a1 þ 2 � a2 � C1=2
ii

1þ a2 � C1=2
ii

; ð7:441Þ

a1 ¼ 0:1þ 1:1
1þ 0:145 � s3 ; ð7:442Þ

a2 ¼ 5:4
1þ 20 � s2 þ 1:1

1þ 14 � s0:35 ; ð7:443Þ

c ¼ c1 þ 1:5 � c2 � C1=2
ii

1þ c2 � C1=2
ii

; ð7:444Þ

c1 ¼ 0:1þ 1:1
1þ 0:174 � s2:5 ; ð7:445Þ

c2 ¼
5:4

1þ 21 � s1:5 þ 1:1
1þ 19 � s0:16 : ð7:446Þ
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The range of validity of the fit functions (7.429)–(7.446) concerning the ion–ion
coupling parameters is Cii � 100 and the screening parameter s� 2. These ranges
cover most cases of interest in dense plasma atomic physics.

Let us now determine the effective screening lengths of the potential (7.422) that
is an effective pair potential of Debye–Hückel form. A test charge Zp at position~rp
creates a perturbation of the electron density. In thermodynamic equilibrium, the
perturbed electron density is given by

neðrÞ ¼ nð0Þe � exp � e/
kTe


 �
; ð7:447Þ

where nð0Þe is the unperturbed electron density and / is the potential induced by the
test charge. This potential induces changes to the chemical potential of the elec-
trons; i.e., the chemical potential becomes a function of the potential /. Within the
framework of the grand canonical ensemble theory, the induced charge due to the
potential can therefore be written

q ~rð Þ ¼ �e ne lð0Þ þ e/
� �

� ne lð0Þ
� �h i

; ð7:448Þ

where lð0Þ is the chemical potential of the unperturbed electrons. The potential / is
defined in such a manner that / ~rð Þ ¼ 0 at the points~r, where the plasma is charge
neutral and correspondingly lð0Þ is defined as the electron chemical potential at
points ~r where the plasma is charge neutral. If we linearize (7.448) (i.e., the
chemical potential does not vary very much in space), we obtain for the induced
charge

q ~rð Þ � �e2/ ~rð Þ � @ne
@l

����
l¼lð0Þ

: ð7:449Þ

The potential can then be determined from the Poisson equation:

r2/ ¼ �4pZpd ~rp
� �� 4pe2/ ~rð Þ � @ne

@l

����
l¼lð0Þ

: ð7:450Þ

If we rewrite (7.450) like

r2 þ 4pe2
@ne
@l

����
l¼lð0Þ

" #
/ ~rð Þ ¼ �4pZpd ~rp

� � ð7:451Þ

the second term on the left-hand side can be interpreted as an effective screening of
the pure ionic Coulomb potential. Considering the Fourier transform of (7.451), an
effective electron screening wavenumber ks can be defined according to
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k2s ¼ 4pe2
@ne
@l

����
l¼lð0Þ

: ð7:452Þ

The chemical potential l of the electron Fermi–Dirac distribution

FFD :¼
ffiffiffi
2

p � m3=2
e

�h3p2
� 1
ne

�
ffiffi
e

p
eðe�lÞ=kTe þ 1

ð7:453Þ

has to be obtained numerically from the normalization condition

1 ¼
Z1
0

FFDðEÞ � dE: ð7:454Þ

The integral (7.454) can be conveniently transformed to

1 ¼
ffiffiffi
2

p � ðmekTÞ3=2
�h3p2

� 1
ne

�
ffiffiffi
p

p
2

� f3=2ðzÞ ð7:455Þ

via the functions fxðzÞ

fxðzÞ :¼ 1
CðxÞ

Z1
0

tx�1 � dt
z�1et þ 1

for 0� z� 1; x 2 <

¼
X1
k¼1

ð�1Þk�1 � z
k

kx

ð7:456Þ

that are well known in statistical physics. We note that also powerful closed ana-
lytical approximations have been developed (Antia 1993). The functions fxðzÞ obey
a simple recurrence relation

@

@z
fxðzÞ ¼ 1

z
� fx�1ðzÞ: ð7:457Þ

Due to the exponential dependence of the fugacity z from the chemical potential, it
is in some cases more convenient to develop the functions fnðzÞ in terms of a
logarithmic dependence from the fugacity (Sommerfeld 1971):

fxðzÞ ¼ ln zð Þx
Cðxþ 1Þ � 1þ 2x �

X1
j¼1

n� 1

2j� 1


 �(

� ðln zÞ�2j � Cð2jÞ � fð2jÞ � 1� 1
22j�1


 ��
;

ð7:458Þ
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where f is the Rieman zeta function. With the help of (7.456), the f-function in
(7.455) takes the form

f3=2ðzÞ ¼ 2ffiffiffi
p

p �
Z1
0

t1=2 � dt
z�1 � et þ 1

; ð7:459Þ

z ¼ expðyÞ; ð7:460Þ

y ¼ l
kTe

: ð7:461Þ

In certain ranges of temperature and density, the parameter y characterizes the
degeneracy of the electron gas, i.e., y is large, if the density is high and the
temperature low. From (7.455)–(7.457), (7.459)–(7.461), we can determine the
derivative @ne=@l that appears in (7.452):

@ne
@l

¼
ffiffiffi
p
2

r
� mekTeð Þ3=2

p2�h3
� @f3=2ðzÞ

@z
� @z
@y

@y
@l

¼
ffiffiffi
p
2

r
� mekTeð Þ3=2

p2�h3
� 1
z
f1=2ðzÞ � z

kTe

¼
ffiffiffi
p
2

r
� m

3=2
e kTeð Þ1=2
p2�h3

� f1=2ðzÞ;

ð7:462Þ

where

f1=2ðzÞ ¼ 1ffiffiffi
p

p �
Z1
0

t�1=2 � dt
z�1 � et þ 1

: ð7:463Þ

From (7.452), (7.462), (7.463), the effective screening wave vector is given by

k2s ¼ 2með Þ3=2� e
2

p�h3
� ðkTÞ1=2 � ffiffiffi

p
p � f1=2ðzÞ: ð7:464Þ

For an ideal electron gas, the chemical potential can be obtained from (7.455)
taking into account only the first expansion term in (7.456):

lðidealÞ ¼ �kTe � ln 2
ne

� mkTe
2p�h2


 �3=2
( )

: ð7:465Þ

In the limit of weak coupling, we can likewise replace f1=2ðzÞ by the first expansion
term in (7.456), i.e.,
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f1=2ðzÞ ! z ¼ ne
2
� 2p�h2

mekTe


 �3=2

: ð7:466Þ

Inserting (7.466) in (7.462) we obtain

k2s
��
weak coupling!

4pe2ne
kTe

: ð7:467Þ

The effective screening wave vector for small coupling parameters is therefore the
Debye length, i.e.,

ksjweak coupling!
1
kD

ð7:468Þ

with

kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTe

4pe2ne

r
¼ 7:4339� 102 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne cm�3ð Þ
kTe ðeVÞ

s
½cm�: ð7:469Þ

Equation (7.455) shows that at high densities and low temperatures, i.e., for large
coupling parameters the function f3=2ðzÞ should become very large and can there-
fore be approximated by the first expansion term in (7.458):

1 �
ffiffiffi
2

p � ðmekTeÞ3=2
�h3p2

� 1
ne

�
ffiffiffi
p

p
2

� 4
3
ffiffiffi
p

p � ðln zÞ3=2: ð7:470Þ

From (7.460), (7.461), we obtain an analytical expression for the chemical potential

1 � ð2mekTeÞ3=2
3�h3p2

� 1
ne

� l
kTe


 �3=2

: ð7:471Þ

Therefore, the chemical potential is independent from the temperature and given by

l � 32=3p4=3�h2

2me
n2=3e ¼ eF; ð7:472Þ

where eF is the Fermi energy

eF ¼ 32=3p4=3�h2

2me
� n2=3e ¼ 3:6464� 10�15 � n2=3e cm�3� � ½eV�; ð7:473Þ
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which is identical to the chemical potential at zero temperature. From (7.464), we
obtain with the help of (7.472) the expression

k2s ¼
4pe2ne
kTe

� kTe
eF


 �3=2

� 3
4
� ffiffiffiffi

p�p
f1=2ðzÞ: ð7:474Þ

In the limit of strong coupling, we replace for the screening wave vector likewise
f1=2ðzÞ by the first expansion term in (7.458):

k2s �
4pe2ne

ð2=3Þ � eF ð7:475Þ

and

k2s
��
strong coupling!

4pe2ne
ð2=3Þ � eF : ð7:476Þ

Comparing the relations (7.467) and (7.475) we see that in the limit of strong
coupling the electron temperature kTe is replaced by ð2=3Þ � eF. The physical reason
is that at very low temperature, the pressure of a Fermi gas is due to the Pauli
principle while thermal pressure is negligible. The asymptotic relations (7.467) and
(7.476) suggest therefore a simple approximation via a match of the asymptotes:

k2s �
4pe2ne

kTeð Þa þ 2 � eF=3ð Þa½ �1=a
: ð7:477Þ

As the asymptotes are matched by (7.477) irrespective of the value of the fitting
parameter a, we may determine this parameter for an intermediate case where the
electron temperature is of the order of the Fermi energy. If we take

kTe ¼ 2
3
� eF ð7:478Þ

we obtain from (7.477)

k2s kTe ¼ 2
3
eF


 �
¼ 4pe2ne

21=akTe
: ð7:479Þ

Combining (7.464), (7.472) with (7.479) provides

1
21=a

¼ 3
4

ffiffiffi
p

p � kT
eF


 �3=2

� f1=2ðzÞ

¼ 3
4

ffiffiffi
p

p � 2
3


 �3=2

� f1=2ðzÞ ¼
ffiffiffi
p
6

r
� f1=2ðzÞ

ð7:480Þ

7.10 Application to Autoionizing Levels of Highly Charged Ions 393



from which it follows

a ¼ � ln 2

ln
ffiffiffi
p
6

r
� f1=2ðzÞ


 � : ð7:481Þ

Numerical calculations carried out for the chemical potential show that for kTe ¼
2
3
� eF we have l=kTe � 0:80284 and for

ffiffiffi
p

p � f1=2ðzÞ ¼ F�1=2 l=kTeð Þ � 1:6653

(Cloutman 1989). According to (7.481), this results in a � 1:7963. With the help of
(7.481), (7.478) and ks ¼ s=Ri (7.422), we can determine the screening constant s:

s � 3
4p


 �1=3

� n�1=3
i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2ne

kTeð Þa þ 2 � eF=3ð Þa½ �1=a
s

: ð7:482Þ

Setting ne ¼ Zp � ni, we obtain from (7.482) the screening parameter in convenient
units:

s � 8:3448� 10�4 � n
1=6
e ðcm�3Þ
Z1=3
p

� 1

kTe ðeVÞð Þa þ 2 � eF ðeVÞ=3ð Þa½ � 1=2a
: ð7:483Þ

For example, with ne ¼ 1021 cm�3; kTe ¼ 100 eV, and Zp ¼ 11, we obtain for the
ion–ion coupling parameter Cii ¼ 1:3; eF ¼ 0:3646 eV, and s ¼ 0:119 while, e.g.,
for ne ¼ 1024 cm�3; kTe ¼ 2 eV and Zp ¼ 3 we obtain for the ion–ion coupling
parameter Cii ¼ 72; eF ¼ 36:46 eV and s ¼ 1:17. Therefore, the interval s ¼ ½0; 2�
covers almost all cases of interest.

The comparison of the Holtsmark distribution (7.417) with the APEX (7.423)
shows that for high ion–ion coupling parameters, the microfield distribution func-
tion becomes narrower and the maximum shifts to lower field values. The maxi-
mum of the field distribution can be determined from the following fitting formula
(Potekhin et al. 2002):

FðAPEXÞ
max ¼

~F0

0:622þ 0:25 � s � es � 1þ C1=4
ii þCii

0:774þ 0:54 � s � es
" #�1=2

: ð7:484Þ

The maximum of (7.484) has to be compared with the maximum of the Holtsmark
distribution:

r ¼ FðAPEXÞ
max

FðHoltsmarkÞ
max

� 0:622
0:622þ 0:25 � s � es � 1þ C1=4

ii þCii

0:774þ 0:54 � s � es
" #�1=2

: ð7:485Þ

For the examples given above, we obtain r Cii ¼ 1:3ð Þ � 0:49 and
r Cii ¼ 72ð Þ � 0:076. Therefore, even for moderately coupled plasmas, the
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deviations from the Holtsmark distribution are considerable and the microfield
distribution for high coupling parameters is strongly shifted to smaller field values.

7.10.4 The Relaxation Rate Approximation of QFMT:
QFMT-W

The F-matrix from (7.369)–(7.372) has been further simplified in order to meet also
the requirements of (7.316), (7.317) rather than only those of (7.315):

Fab � 2
Vab � Vba

�h2
� G ð7:486Þ

with

G ¼ aab
x2

ab þ a2ab
; ð7:487Þ

aab ¼ ca
2
þ cb

2
þ Aab þAba

2
� Uab

ab; ð7:488Þ

where the operator Uab
ab is represented in terms of collisional rates, see (7.213), i.e.

Uab
ab = Uab/2 + Uba/2. The loss rates ca and cb (see Table 7.2) are approximated by

the autoionizing rates and the radiative decay rates 2l2l′ ! 1s2l. This approxi-
mation neglects collisional transfer and ionization loss rates to other levels which is
well justified as discussed above.

Figures 7.3, 7.4 and 7.5 show population ratios and effective field rates (Rosmej
et al. 2019). Figure 7.3 shows the population ratio of the states 2p2 1D2 and

Fig. 7.3 Population ratios of
autoionizing levels n(2p2
1D2)/n(2s2p

1P1) in
dependence of the electron
density. The microfield
calculations are averaged over
the APEX ion distribution
function. The Quantum F-
matrix Theory employed in
the quasi-classical approach
provides very good agreement
with the quantum mechanical
atomic density matrix theory
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2s2p 1P1. The black curve presents the calculation of the standard theory (7.1), the
green curve is the solution of the density matrix (7.156) and the blue curve is the
Quantum F-Matrix Theory QFMT from (7.377). It is observed that for the standard
theory, the population ratio does not depend much on density because of the large
autoionization rates of the 2p2 1D2 and 2s2p 1P1 states that strongly populates these
levels by dielectronic capture (see Table 7.2). Therefore, collisions do not change
much the populations even for high density. The solution of the density matrix
results, however, in a strong decrease of the ratio starting from densities of about
1020 cm−3. Although the QFMT approach of (7.486)–(7.488) is a rather simplified
one, it provides a very good approximation to the density matrix solution.

Figures 7.3 demonstrates also that due to the plasma electric microfield the pop-
ulation ratio approaches 1 at about 5 � 1022 cm−3. This strong deviation from the
standard ratio (of about 1.7) is due to the non-random character of the quasi-static ion
field (see also (7.394), (7.395) and related discussion) that does not support the
Boltzmann limit but has the tendency to equilibrate the atomic states to equal pop-
ulations (7.395). The regime from low density to densities where the level populations
approach approximately 1 is characterized by a transition from spherical quantization
to parabolic one.We note, that the quantum density matrix calculations of Fig. 7.3 are
not resolved in magnetic quantum number: whether this allows analyzing previously
unexplained data (e.g. Renner et al. 2009) remains an open question.

Figure 7.4 shows the population ratio of the states 2p2 1D2 and 2p
2 1S0. The black

curve presents the calculation of the standard theory (7.1), the green curve is the
solution of the density matrix (7.156) and the blue curve is the quantum F-matrix
theory from (7.377), (7.486)–(7.488). It is observed that for the standard theory, the
population ratio depends on density because the autoionization rate of the 2p2 1S0
state is rather small (see Table 7.2). Therefore, electron collision between the
autoionizing levels transfers population from the levels 2p2 1D2 and 2s2p 1P1 to the
2p2 1S0 level leading to a decrease of the ratio with increasing densities. At electron

Fig. 7.4 Same like Fig. 7.4,
however showing the
population ratios of the
autoionizing levels n(2p2
1D2)/n(2p

2 1S0) in dependence
of the electron density
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densities of about 1022 cm−3, the ratio stabilizes because the Boltzmann limit is
reached. The exact solution of the density matrix results, however, in a strong
decrease of the ratio starting from densities of about 1021 cm−3. Although the QFMT
approach of (7.486)–(7.488) is a rather simplified one, it provides also for this ratio a
very good approximation to the density matrix solution.

As the approximate QFMT solution according to (7.486)–(7.488) have provided
very good agreement with the quantum mechanical density matrix solution, this
QFMT represents an efficient approximation as it can be also included in the
general rate equation atomic kinetics. We therefore name hereafter this approxi-
mation QFMT-W. The particular efficiency of QFMT-W arises from the fact that it
can be represented only with rate coefficients and energies, that are already included
in the W-matrix elements of the usual rate equation approach.

Figure 7.5 explores the impact of the field perturbation in atomic population
kinetics comparing the field-induced rate Fab with the usual electron collisional rate
Cab. It can be seen that for higher plasma densities, the field effects may have even
larger values than the standard electron collisional rates. This is the origin of the
strong deviation from the standard rate equation kinetics shown in Figs. 7.3 and 7.4.
At very high densities, the electron collisions exceed the field effects because their
scaling with electron density is / ne (see also (7.405)) while the field effects scale

with / n1=3e [see also (7.404)]. The field effects therefore vanish for very high
densities (see also (7.406) and discussion of scaling relations). However, as the
calculations of Figs. 7.3 and 7.4 demonstrate, this limit is difficult to achieve. In
fact, the field effect stay important even for near-solid densities, thereby changing
the usual Boltzmann limit of the standard rate equation approach.

Figure 7.5 demonstrates likewise that the F-matrix approach takes into account
the different action of the electric field mixing due to different energy separation.
Due to the much smaller level separation between the levels 2p2 1D2 and 2s2p 1P1

(1.6 eV, see Table 7.3) than between the levels 2s2p 1P1 and 2p2 1S0 (18.5 eV, see

Fig. 7.5 Comparison of the
effective electric field rate Fab

employed in the atomic rate
population kinetics with the
corresponding electron
collisional rate Cab. The
impact of the plasma electric
microfield results in strong
perturbations with effective
rates that can be much larger
than the standard electron
collisional rates (see red
flashes)
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Table 7.3), the field interaction is much more important. This is clearly visible in
Fig. 7.5 where the ratio of the effective fields rates to the standard collisional rates is
much larger for the transition 2p2 1D2–2s2p 1P1 than for the transition
2p2 1S0–2s2p 1P1. This behavior is quite different from usual collisional processes
employed in standard kinetics: For closely spaced levels, the collisional transfer
rates are almost all in the Born limit and no important different effects are emerging
from different levels separations of the 2l2l′-configurations (an exception might be
the consideration of proton collisions that are very sensitive to the level spacing due
to typically low velocity in plasmas: Well-known examples are the proton collisions
in the fine structure of Lyman-alpha).

In conclusion, the new quantum F-matrix theory QFMT opens up the possibility
to consider large closed population kinetic dense collisional model systems that
could not be treated consistently in the Schrödinger picture nor efficiently in the
framework of the quantum mechanical atomic density matrix theory (due to its
prohibitive complexity). The QFMT is based on a successive pair coupling of
quantum effects, while all pair combinations are considered at the same time when
solving the large kinetic model system. QFMT allows likewise including quantum
mechanical interference effects in standard rate equations. It introduces field- and
level-separation-dependent effective rates in standard collisional radiative modeling
and therefore incorporates the main quantum effects in population kinetics.
QFMT-W represents an efficient approximation to QFMT as it employs only
energies and rate coefficients, that are usually implemented in the transition matrix
W of the standard rate equations. QFMT-W allows therefore developing consis-
tently quantum kinetics approximations for large closed model systems of dense
plasmas that are also numerically manageable.
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Chapter 8
Ionization Potential Depression

Abstract In a low-density environment, where atoms and ions are essentially free,
atomic population kinetics of gases and plasmas has been very successful in many
different scientific and technical disciplines. As density increases, the free atom
model breaks down resulting in a perturbation of the atomic energy levels and a
corresponding ionization potential depression IPD. The IPD is of great fundamental
interest, for thermodynamic applications and also for the understanding of the various
radiative properties (emission, absorption, scattering). Different IPD models are
discussed including the finite temperature ion sphere FTIS model and the
Atomic-Solid-Plasma ASP model. The ASP model accounts for the difference
between real atomic ionization potentials in solids and free atoms taking into account
the structure of the valence band and the Fermi energy. The FTIS model accounts for
self-consistent screening effects of both bound and free electrons inside the ion sphere
with effective radius depending on plasma density. Different regimes of ionization
potential depression are considered as well as plasma polarization shifts of X-ray
spectral lines. Finally, Fermi surface rising in much above solid density compressed
matter is discussed leading to increased K-edge energies rather than decreased ones.

8.1 The Atomic-Solid-Plasma ASP Model

As was pointed out in Chap. 7, a correct description of the population of a quantum
mechanical state is of fundamental importance across a wide range of disciplines. In
a low-density environment, where atoms and ions are essentially free, atomic
population kinetics of gases and plasmas (see Chap. 6) has been very successful in
many different scientific and technical disciplines. For example, it resulted in a
unique characterization of matter via dense atomic plasma physics methods and in
the development of plasma spectroscopy (Rautian et al. 1991; Griem 1997; Kunze
2009; Fujimoto 2004; Sobelman et al. 1995; Lisitsa 1994; Salzman 1998; Unsöld
1955; Mihalas 1978; Mihalas and Weibel-Mihalas 1999; Zeldovich and Raizer
2002; Drake 2006). As density increases, the free atom model breaks down and
numerous corrections to the free atom picture have been developed among which
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the famous ionization potential depression IPD has attracted a broad interest since
many decades (Inglis and Teller 1939; Ecker and Weizel 1956; Ecker and Kröll
1963; Kohn and Majumdar 1965; Zimmermann and Moore 1980; More 1981;
Nguyen et al. 1986; Massacrier and Dubeau 1990; Hummer and Mihalas 1988;
Shimamura and Fujimoto 1990; Blenski and Ishikawa 1995; Stewart and Pyatt 1996;
Rosmej et al. 2011; Li and Rosmej 2012, 2020; Chung et al. 2013; Li et al. 2019).
We also note that the IPD is strongly related to the long-standing discussion of the
divergence of the canonical partition function in thermodynamics (Blinder 1995).

The continuity of bound and unbound states is a fundamental question and has
stimulated sophisticated high-resolution X-ray line shift measurements in very dense
plasmas (Griem 1997; Renner et al. 1997b, 1998; Saemann et al. 1999; Rosmej et al.
2000; Dervieux et al. 2015; Hansen et al. 2017; Beiersdorfer et al. 2019). Among a
variety of studies, those performed with the vertical Johann X-ray spectrometer
scheme (Renner et al. 1997a) for the H-like Lyman series of aluminum (Renner et al.
1997b, 1998) attracted particular interest (Renner and Rosmej 2019).

With the emergence of the X-ray Free Electron Lasers, also measurements of the
ionization potential depression have been attempted and the data seem to question
our present understanding of IDP (Ciricosta et al. 2012). It was claimed that the
performed measurements support the early model of Ecker and Kröll (Ecker and
Kröll 1963), whereas the well-accepted model of Stewart and Pyatt (More 1981;
Stewart and Pyatt 1996) is in disagreement with the data. On the other hand,
subsequently performed ionization potential depression measurements at
laser-driven compression experiments (Hoarty et al. 2013; Fletcher et al. 2014)
confirmed the validity of the Stewart and Pyatt model and demonstrated a worse
agreement with the Ecker and Kröll model. Density functional theory
(DFT) calculations (Vinko et al. 2014) renewed the claims made in (Ciricosta et al.
2012) while the analysis of the XFEL data presented in Ciricosta et al. (2012) has
recently again been questioned (Iglesias and Sterne 2013; Iglesias 2014; Son et al.
2014). Shortly later similar IPD data from XFEL had been re-published (Ciricosta
et al. 2016). Also the pseudo-potential assumptions in the DFT calculations of
(Vinko et al. 2010, 2014) had been subjects to critics (Iglesias 2011, Karasiev and
Hu 2021). In addition, very recent line shift measurements of the He-like resonance
line of aluminum in a dense laser-produced plasma experiment (Stillman et al.
2017) turned out to agree well with the analytic finite temperature ion sphere model
proposed in (Li et al. 2006; Li and Rosmej 2012, 2020). It was found empirically
(Stillman et al. 2017) that better agreement is obtained scaling down the ion sphere
radius of the ab initio analytic 2nd-order model (Li and Rosmej 2012) by about
10% while numerically, scaling properties have been investigated in the framework
of the FTIS by (Rosmej et al. 2011; Rosmej 2018; Li et al. 2019; Li and Rosmej
2020). Moreover, recent measurements in strongly compressed iron plasmas indi-
cate that ionization energies did not decrease but increase (Hansen et al. 2017).

In view of the continued and controversy discussion of the ionization potential
depression, the atomic-solid-plasma (ASP) model (Rosmej 2018) has been devel-
oped for high-density matter where crystal-like structure exists. ASP was shown to
provide good agreement to a large variety of data and explains observed scaling
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relations that remained unexplored. Moreover, ASP also predicts increased ion-
ization energies for much above solid density compressed matter.

Figure 8.1 visualizes via magnesium schematically the principles of the solid
and atomic-solid-plasma model. The cold solid (or “usual” solid) is characterized
by the core states 1s2, 2s2, 2p6, and the valence band (VB)2 contains 2 electrons and

the corresponding Fermi energy is eð2ÞF . As the electrons in the VB are essentially
free, the ASP model considers the states 1s2, 2s2, 2p6 as bound states and the states
above as continuum states (indicated as ASP continuum in Fig. 8.1). Within this

framework, the K-edge of the solid (indicated with energy DEðsolidÞ
K in Fig. 8.1), the

related transition in the free atom (indicated with energy DEðfreeÞ
K in Fig. 8.1), and

the Fermi energy are connected via the relation

DEðfreeÞ
K � DEK ¼ DEðsolidÞ

K � eð2ÞF ; ð8:1Þ

where the upper index for the function eF indicates the number of electrons in the
VB. At zero temperature, the K-edge of the cold solid is the energy to transfer an
electron from the K-shell to the upper bound of the Fermi energy. A link from the
cold solid to the atomic-solid-plasma model is accomplished if the energy DEK is
considered to be the ionization potential depression for the isolated atom or ion, i.e.,

DEK � DEIPD: ð8:2Þ

We therefore obtain for the ionization potential depression

DEIDP ¼ DEðfreeÞ
K ð2Þ � DEðsolidÞ

K ð2Þþ eð2ÞF : ð8:3Þ

Fig. 8.1 Schematic of the atomic-solid-plasma (ASP) model visualized with magnesium and
different ionization stages of the free atom. The electrons (green) in the VB form an effective
continuum (ASP continuum), while the ionized free atoms form a usual continuum
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Figure 8.1 (right part) presents the corresponding example for a single electron
vacancy in the 2p-shell.

Equation (8.3) can be rewritten for arbitrary core hole vacancies:

DEIDP 2;CðiÞ
N

� �
¼ DEðfreeÞ

K 2;CðiÞ
N

� �
� DEðsolidÞ

K 2;CðiÞ
N

� �
þ eð2þNÞ

F ; ð8:4Þ

where N is the number of core hole vacancies and CðiÞ
N is the particular core hole

vacancy configuration (i) for N-vacancies. In the ASP model, the Fermi energy is
determined by the number of electrons of the valence band plus the number of
vacancies (i.e., 2þN for the case of Fig. 8.1). We can generalize (8.4) to the case
of a heated solid, remembering that for finite temperature, quantum states are
available even below the Fermi edge eF:

DEIDPð2;CðiÞ
N Þ ¼ DEðfreeÞ

K ð2;CðiÞ
N Þ � DEðsolidÞ

K ð2;CðiÞ
N Þþ p Tð Þeð2þNÞ

F : ð8:5Þ

pðTÞ is a function that accounts for finite temperatures in the VB. At zero tem-
perature, no places are free below the Fermi energy due to the Pauli principle;
therefore, the chemical potential lðTÞ ¼ eF and pðTÞ ¼ 1. For high temperatures
(i.e., kBTe � eF), an important number of places are offered just at the “bottom” of
the VB and pðTÞ ¼ 0. In this case, the chemical potential is close to

lðTÞ � �1:5 � kTe � ln½ðmekTeÞ=ð2p�h2n2=3e Þ�. These two limits correspond to the
“cold solid” ASP-CS and “hot solid” ASP-HS, respectively. pðTÞ accounts in an
averaged manner for the probability of free places below the Fermi edge eF (Rosmej
2018; Gournay and Rosmej 2022):

p Tð Þ � 1
eF

�
ZeF
0

de
exp b � ðe� lðTÞÞ½ � þ 1

� 1� 1

100
ðkTe=eFÞ
� �0:79

þ 1

: ð8:6Þ

The last expression in (8.6) recovers the correct asymptotes for low and high
temperatures and is accurate within 10% for intermediate values (Gournay and

Rosmej 2022). The Fermi energies for any core hole configuration CðiÞ
N depend only

on the number of core hole vacancies but not on the details of the core hole
configurations itself:

eðNÞF ¼ 32=3p4=3�h2

2me
� n2=3e ðNÞ ¼ 3:6464� 10�15 � n2=3e ðNÞ cm�3� � ½eV�: ð8:7Þ

The Fermi energies at zero temperature are well known from solid-state physics
(Ashcroft and Mermin 1976; Hyperphysics 2021).
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8.2 Approximate Solid-State Core Hole Configuration
Energies

The calculation of the K-shell ionization energies DEðsolidÞ
K of solid matter for dif-

ferent core hole vacancies is rather challenging: complex, very time-consuming, not
very well established, and available experimental data are very rare. In order to
obtain with reasonable effort the full set of requested data for the application of the
ASP model [in particular, expressions similar to those of (8.5)], an empirical
method is proposed that fits naturally to the model depicted in Fig. 8.1. It is based
on the single atom multiconfiguration Hartree–Fock approach, where successive
core hole vacancies are transformed into valence band bound electrons to the next
higher allowed nl-quantum states. If the shell occupation is designated according to

n1l1ð Þw1 n2l2ð Þw2 . . . nqlq
� �wq ; ð8:8aÞ

where wi is the number of equivalent electrons in subshell i, the sum over all
subshells provides

Xq
i¼1

wi ¼ Zn: ð8:8bÞ

The hollow ion configurations that include a number of electrons equal to the
nuclear charge (8.8a) are then numerically solved including the exact exchange
terms AiðrÞ and BijðrÞ:

� d2

dr2
þ liðli þ 1Þ

r2
� 2Zn

r
þ
Xq
j¼1

wj � dij
� � � Z

1

0

2
r[

P2
j ðr0Þdr0 � wi � 1ð ÞAiðrÞ

2
4

3
5PiðrÞ

¼ eiiPiðrÞþ
Xq

j¼1;j 6¼i

wj dliljeij þBijðrÞ
� 	

PjðrÞ;

ð8:9Þ

AiðrÞ ¼ 2li þ 1
4li þ 1

X
k[ 0

li
0

k

0

lj
0

 !2 Z1
0

2rk\
rk[

P2
i ðr0Þdr0; ð8:10Þ

BijðrÞ ¼ 1
2

X
k

li
0

k

0

lj
0

 !2 Z1
0

2rk\
rk[

Pjðr0ÞPiðr0Þdr0: ð8:11Þ

r\ and r[ are the lesser and greater of r and r0, respectively, PiðrÞ are the radial
functions for each subshell and eii and eij are the energies of equivalent and
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non-equivalent electrons. In addition, relativistic corrections to the radial wave
functions are included in the Pauli approximation.

The K-edge is then naturally defined as the difference of the multielectron
averaged energies between the atom in the ground state and the hollow atom
configurations (this respects also the Pauli principle). Let us consider a few relevant
examples to estimate the precision of this empirical “Atomic-Solid Hartree–Fock”
method (shortly designated as AS-HF) with the help of reference data (Desclattes
et al. 2003; Thomson et al. 2009; NIST 2021), Table 8.1. One observes a quite
good match with precisions of the order of some eV.

The precision might be improved employing the Hartree–Fock wave functions
from the numerical solution of the system of integro-differential equations (8.9)–
(8.11) and performing a subsequent detailed angular coupling calculation, shortly
designated as AS-HF-AC (details are described elsewhere (Cowan 1981). Table 8.1
shows examples of Ti and Fe in a simple 4-configuration approach (e.g., for Ti,
x = 2 and Fe, x = 6 taking into account the configurations 1s22s22p63s23p63dx4s2,
1s22s22p63s23p63dx4s14p1, 1s12s22p63s23p63dx+14s2, 1s12s22p63s23p63dx4s24p1).
Although the more complex AS-HF-AC calculations provide better agreement with
the reference data (and could be further improved involving more sophisticated
configuration interactions and intermediate couplings), it should be remembered the
present context: It concerns ionization potential depression energies of up to several
100 eV and experimental error bars of about �10 eV. Moreover, different ioniza-
tion potential depression theories differ much more than the experimental error bars
and show parameter dependences that are even not qualitatively reproduced.
Therefore, the precision of the AS-HF method seems to be quite appropriate for the
present purposes.

Table 8.2 presents the K-edge energies of aluminum for different L- and K-shell
vacancies, assuming pðTÞ ¼ 0 (note that under typical experimental situation of
XFEL irradiation of solids, the sample is heated up to temperatures of several
100 eV). As can be seen from the comparison with currently available data

Table 8.1 K-edge energies [in eV] as calculated with the AS-HF and AS-HF-AC method and
comparison with reference data from (Desclattes et al. 2003; Thomson et al. 2009; NIST 2021)

Element AS-HF AS-HF-AC Reference

Ne 865 867

Na 1073 1072

Mg 1306 1303

Al 1562 1560

Si 1841 1839

P 2144 2146

S 2470 2471

Cl 2819 2820

Ar 3208 3206

Ti 4968 4965 4965

Fe 7129 7109 7111
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(Ciricosta et al. 2016), excellent agreement over the whole range of multiple core
hole vacancies is obtained. Concerning the calculations in the framework of the
density functional theory (DFT) as presented in (Vinko et al. 2014), it should be
mentioned that the use of pseudo-potentials and approximations for the exchange
potential of the few-electron system with core hole states are challenging (Engel
and Vosko 1993; Iglesias 2011; Karasiev and Hu 2021). In addition, the final
results (Vinko et al. 2014; Ciricosta et al. 2016) have artificially been shifted by
þ 35� 40 eV (Vinko et al. 2014; Ciricosta et al. 2016) in order to match the
experimental data for IPD. For the 1s22s2-configuration (indicated with * in
Table 8.2), the much larger discrepancies despite of calibration shifts might indicate
difficulties in the DFT method (Ciricosta et al. 2012, 2016; Vinko et al. 2014) to
correctly describe the subshell structure where the Pauli principle is important.

Therefore, the present ASP-HF method provides results that for the given
context are not better or worse than any other calculations currently available.
Moreover, the present AS-HF itself does not contain any pseudo- and exchange
potential approximations: The AS-HF includes the exact exchange terms, and all
wave functions are subject to a self-consistent field iteration procedure that includes
configuration interaction.

Table 8.2 K-shell ionization energies in solid aluminum in dependence of different core hole
vacancies

Zn–
NK+L

Core
configuration

Experiment
Ciricosta
et al.
(2016)

Present
AS-HF
No
shift

Vinko et al.
(2014),
Ciricosta et al.
(2016)
Calibration
shifts
+35…40 eV

Son et al.
(2014)
Calibration
shift
+21,5 eV

Desclattes et al.
(2003), Thomson
et al. (2009), NIST
(2021)

3 1s2 2s2 2p6 1556 ± 10 1562 1556 1552 1559,53
4 1s2 2s2 2p5 1582 ± 10 1588 1583 1578 –

5 1s2 2s2 2p4 1607 ± 10 1616 1612 1612 –

6 1s2 2s2 2p3 1644 ± 10 1644 1642 1652 –

7 1s2 2s2 2p2 1673 ± 10 1675 1673 1684 –

8 1s2 2s2 2p1 1711 ± 10 1719 1706 – –

9 1s2 2s2 1750 ± 10 1755 1738* – –

10 1s2 2s1 – 1781 – –

11 1s2 – 1808 – –

12 1s1 – 1980 – –

The present AS-HF model includes the exact exchange term for all electrons in the Hamiltonian and does
not include any free parameters neither a calibration shift. On the other hand, the methods employed in
(Vinko et al. 2014; Son et al. 2014; Ciricosta et al. 2016) employ potential approximations and requested
a calibration shift of 35–40 eV (Vinko et al. 2014; Ciricosta et al. 2016) and 21.5 eV (Son et al. 2014) to
match the measured standard K-edge in cold solid aluminum. Note that, e.g., for aluminum, the core
configuration of a cold solid is 1s22s22p6 and the corresponding number Zn–NK+L = 13–(2 + 8) = 3
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8.3 Ionization Potential Depression Formulas

The K-shell ionization energies of the various free ion cores DEðfreeÞ
K ð2;CðiÞ

N Þ are
calculated as described above; however, core hole vacancies are not transferred to
the VB band but correspond to an ionized atom (see Fig. 8.1 for qualitative
illustration).

Figure 8.2 shows the ionization potential depression energies for Mg in
dependence of various core hole vacancies according to (8.5) for pðTÞ ¼ 1 (cor-
responding to a cold solid, indicated with blue symbols, designated as “ASP-CS”)
and for pðTÞ ¼ 0 (corresponding to a hot solid, indicated with red symbols, des-
ignated as “ASP-HS”). The ASP-HS calculations are in very good agreement with
the data (black squares in Fig. 8.2) of (Ciricosta et al. 2016). We note that the ASP
model provides likewise good agreement with the data for double core hole states
(e.g., configurations of the type K0LXMY, i.e., configurations of hollow crystals)
(Gournay and Rosmej 2022).

Also presented in Fig. 8.2 are the widely applied model from Stewart and Pyatt
(More 1981; Stewart and Pyatt 1996) (green symbols designated with “SP”) and the
Ecker–Kröll model (Ecker and Kröll 1963) (orange symbols designated with “EK”)
for an electron temperature of kTe ¼ 100 eV and free electron density of neðN ¼
3Þ ¼ 8:61� 1022 cm−3 (electron density of the Fermi energy for the “usual” solid).
For the Stewart–Pyatt model, assuming ne ¼ ni � Zh i (ni is the ion density and 〈Z〉 is
the average ion charge), the ionization potential depression can be estimated from:

DEðSPÞ
IPD � 2:16� 10�7 � Z

Ri
� 1þ k3D

R3
i

� �2=3

� kD
Ri

� �2
" #

½eV]; ð8:12Þ

Fig. 8.2 Comparison of
different models of ionization
potential depression with the
present ASP and OEFTIS
models. Experimental data are
for Mg in dependence of
successive K- and L-shell
vacancies in near solid density
matter. Zn is the nuclear
charge, and NK+L is the
number of K- and L-shell
electron vacancies (core hole
vacancies)
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kD � 7:43� 102 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kTeðeVÞ
neðcm�3Þ � 1þ Zh ið Þ

s
½cm]; ð8:13Þ

Ri � 0:620 � Zh i
neðcm�3Þ
� �1=3

½cm]: ð8:14Þ

For the Ecker–Kröll model, the ionization potential depression formulas can be
roughly summarized as follows:

DEðEKÞ
IPD � 1:44� 10�7 eV � 1þ Zh ið Þ �

1
~kD

if ni � 1þ Zh ið Þ	 nC

C
~Ri

if ni � 1þ Zh ið Þ
 nC

8>><
>>: ; ð8:15Þ

~kD � 7:43� 102 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kTeðeV)
Zh i � niðcm�3Þ � 1þ Zh ið Þ

s
½cm]; ð8:16Þ

~Ri � 0:620 � 1
Zh i � ni ðcm�3Þ

� �1=3

½cm]; ð8:17Þ

C ¼
~Ri
� 	

nC¼ni�ð1þ Zh iÞ
~kD
h i

nC¼ni�ð1þ Zh iÞ

; ð8:18Þ

nC ¼ 8:00� 1019 �
ffiffiffiffiffiffiffiffiffi
kTe
Z2
max

s
½cm�3�: ð8:19Þ

For example, for aluminum at kTe ¼ 58 eV, with Z ¼ 6, Zh i ¼ 6, Zmax ¼ 13,
ne ¼ ni � Zh i ¼ 3:6� 1023 cm�3, we obtain nC ¼ 4:69� 1019cm�3 	 ni� 1þ Zh ið Þ,
~Ri
��
ni¼nC

¼ 1:72� 10�7 cm, ~kD
��
ne¼ Zh i�nC¼ 3:37� 10�7 cm, C ¼ 0:51 and finally

DEðEKÞ
IPD ¼ 62 eV and DEðSPÞ

IPD ¼ 78 eV.
It can clearly be seen from Fig. 8.2 that the SP and EK models not only fail to

describe the absolute ionization depression energies but fail also to describe the Z-
dependence of the data (black symbols designated as “Exp” in Fig. 8.2).

It should be noted that although Fig. 8.2 employs only particular data for Mg, it
demonstrates the important failure in Z-dependence that requests particular atten-
tion. Also shown in Fig. 8.2 is the optical electron finite temperature ion sphere
(OEFTIS) model that will be described in more detail below.
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8.4 Optical Electron Finite Temperature Ion Sphere
Model OEFTIS

8.4.1 Plasma Polarization Shift and Level Disappearance
in Dense Hot Plasmas

The optical electron finite temperature ion sphere (OEFTIS) model (Rosmej 2018) is
based on an analytical potential description of the arbitrary perturbation potential
method APPM (Rosmej et al. 2011). In OEFTIS, an effective potential is calculated
from an effective charge Zeff seen by the optical electron. The ionization potential
depression can then be cast into an entirely analytical description that only needs
energies and quantum numbers of the free atom/ion configuration. In the second
order approximation in terms of matrix hijrbjji elements of integer power b (that
have analytical solutions in terms of principal and orbital quantum number) we have:

DEIPD ¼ 2Ry � Z
R0

� F hri; hr2ið Þ
F R0;R2

0

� � ; ð8:20Þ

F x; yð Þ � R2
0

2
� y
6
þ 4

3
ffiffiffi
p

p � R3=2
0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ry � Z
kBTe

r
� 8
15

ffiffiffi
p

p � 4ffiffiffi
p

p � xþ 1
10

� y
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ry � Z
kBTe

r
; ð8:21Þ

hri ¼ 1
2Zeff

3n2 � l lþ 1ð Þ� 	
; ð8:22Þ

hr2i ¼ n2

2Z2
eff

5n2 þ 1� 3l lþ 1ð Þ� 	
; ð8:23Þ

Zeff ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0j j=Ry

p
; ð8:24Þ

R0 � 1:1723� 108 � Z=nihZið Þ1=3: ð8:25Þ

Ry ¼ 13:606 eV, DEIPD is the ionization potential depression energy in [eV], E0 is
the ionization potential ([eV]) of the optical electron with principal/orbital quantum
numbers nl that move in an effective Coulomb potential with charge Zeff in the free
atom/ion picture, z is the spectroscopic symbol i.e., z ¼ Zþ 1, where Z is the ion
charge, R0 is the ion sphere radius in atomic units (vanishing wave function at
r = R0 has been assumed) and hZi is the average charge of the plasma, kBTe is the
electron temperature [eV]. It should be noted, that the 2nd-order potential function
F(x,y) of (8.21) should only be considered as a convenient fit function for particular
applications (estimates for ionization potential depression and line shifts in
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intermediate density and temperature range, analysis of scaling relations) rather
than an overall consistent approximation of the finite temperature ion sphere theory.

In this context, the critics of (Iglesias 2019) concerning the limited precision of
the second order expression (e.g. the neutrality condition) represent a rather arti-
ficial discussion in particular as the necessary matrix elements hijrbjji of
non-integer power b of the APPM (Rosmej et al. 2011) (that matches well the
neutrality condition and high precision line shift data) can be represented by the
well-known Г-function, see Annex A.4. Moreover, improved precision of OEFTIS
has been demonstrated with a 4th-order approximation (of integer power b) (Li and
Rosmej 2020) that matches very well high precision X-ray spectroscopic line shift
data and the exact Г-function representation and has in addition the advantage of an
explicit analytical description in terms of principal and orbital quantum numbers
(see Annex A.4 for further details).

In general, it is somewhat difficult to determine the range of validity for the
various models of the rather complex IPD phenomenon but some insight can
roughly be estimated from the validity of the first order perturbation theory:
kBTe [ 3 � eF; ne � 2� 1024 � Z3 � hZi=n6 ½cm�3�.

As the plasma polarization shift (Griem 1997; Lisitsa 1994; Nguyen et al. 1986;
Massacrier and Dubeau 1990) of each state is nl-quantum number-dependent,
(8.20)–(8.25) can also readily be employed to calculate line shifts. This provides
critical tests (Griem 1997; Salzman et al. 1998; Nguyen et al. 1986; Massacrier and
Dubeau 1990; Renner et al. 1997b, 1998; Saeman et al. 1999; Rosmej et al. 2000;
Dervieux et al. 2015; Hansen et al. 2017). Table 8.3 compares measured line shifts
of H-like and He-like aluminum lines with the present 2nd-order OEFTIS [columns
(a)–(d)]. As can be seen, quite good agreement is obtained over different ranges of
quantum numbers, temperatures, and densities. For the He-a transition, the agree-
ment is not very good. However, the extraction of the He-a shift is rather complex
because contributions of high-order satellites need to be extracted with a complex
procedure (Renner et al. 2001). The remaining discrepancies might be ascribed to
the radiation transport effects in differentially moving plasmas (see Chap. 1) that
lead to significant He-a line asymmetries (and therefore to the line center shifts).
Finally we note, that the 2nd-order approximation leads in general to too large
values while the 4th-order provides almost exact results (for details see Annex A.4).

As concerns the measurements of the line disappearance due to ionization
potential depression (Hoarty et al. 2013), the OEFTIS provides equally good
agreement with the data. For case (e) and (f), the ionization potential depressions for
He-a and Ly-a are much lower than the ionization potential. Both lines should
therefore be clearly observed in good agreement with the data. For He-b and Ly-b
and case (e), the ionization potential depressions are larger than the ionization
potential: Lines should therefore not be observable. This is in good agreement with
the experimental data. Case (f) is a very challenging one, because He-b is just
marginally observed. This is likewise in good agreement with OEFTIS: The IPD
values are close to the ionization potential for the 1s3l-levels.
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The study of X-ray line disappearance for dense plasma physics investigations is
most conveniently demonstrated via a comparison of spectra from laser-produced
plasmas originating from high contrast and from prepulse. Figure 8.3 demonstrates
the potential of high-contrast high-intensity lasers to contribute to the challenging
field of dense plasma atomic physics. A Nd-Glas laser with pulse duration of
400 fs, 1 J energy, wavelength 0.53 nm, focal spot diameter 10 lm, and intensity
of 5 � 1018 W/cm3 was brought to interaction with a solid magnesium target at
normal incidence for different irradiation conditions: (1) high contrast 1:1010 (solid
blue curve), (2) a prepulse with energy of 0.03 J separated from the main pulse by
150 ps (solid black curve) (Rosmej et al. 2000). Figure 8.3 shows the spectral
window containing the He-like resonance lines Heb = 1s3p 1P1–1s

2 1S0,

Table 8.3 Line shift measurements (first values, in eV) and OEFTIS calculations (second values,
in eV) of H-like and He-like aluminum lines in dense laser-produced plasmas, Ly series (a) of
Renner et al. at for ne = 1.5 � 1022 cm−3 and kBTe = 1400 eV (Renner et al. 1997b, 1998), Ly-a
(b) of Saemann et al. at ne = 5 � 1023 cm−3 and kBTe = 280 eV (Saeman et al. 1999), He-b (b) of
Saemann et al. at ne = 8 � 1023 cm−3 and kBTe = 220 eV (Saeman et al. 1999), He-b (c) of
Dervieux et al. at ne = 5 � 1023 cm−3 and kBTe = 560 eV (Dervieux et al. 2015), He-a (d) of
Stillman et al. at ne = 2.2 � 1023 cm−3 and kBTe = 330 eV (Stillman et al. 2017)

(a) Renner
et al.
(1997b,
1998)

(b)
Saeman et al.
(1999)

(c)
Dervieux
et al.
(2015)

(d)
Stillman
et al.
(2017)

(e)
Hoarty et al.
(2013)

(f)
Hoarty et al.
(2013)

He-a 2.2 ± 0.6/
1

– 2.4 ± 0.3/
1.9 ± 0.7a

487.7/
283–309a

observed

487.7/
205–226a

observed

He-b – 20 ± 8/
25

6 ± 2/
6.8

– 217.3/
243–259a

not observed

217.3/
196–204a

marginally
observed

Ly-a – 3.7 ± 0.7/
4.1

– – 575.5/
310–339a

observed

574.5/
223–247a

observed

Ly-b 0.2 ± 0.1/
0.30

– – – 255.8/
271–290a

not observed

255.8/
207–225a

observed

Ly-c 0.5 ± 0.2/
0.76

– – –

Ly-d 1.1 ± 0.2/
1.1

– – –

Ly-e 2.0 ± 0.5/
2.4

– – –

Also given the data of Ly-a, Ly-b, He-a, and He-b disappearance/existence of Hoarty et al.
(Hoarty et al. 2013), (e) ne = 2.0–2.5 � 1024 cm−3, kBTe = 700 eV, (f) ne = 8.6–11 � 1023 cm−3,
kBTe = 700 eV: First values are ionization potentials [eV], second ones ionization potential
depression from OEFTIS [eV], and third entry indicates whether the line is observed or not
aThe error bars for the OEFTIS calculations correspond to the density uncertainties given in
(Hoarty et al. 2013, Stillman et al. 2017)
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Hec = 1s4p 1P1–1s
2 1S0, Hed = 1s5p 1P1–1s

2 1S0, and the H-like Lyb =
3p 2P1/2, 3/2–1s

2S1/2 lines, and the Li-like dielectronic satellites 1s3l3l′ and 1s2l3l′.
For the case of prepulse, resonance line emission is dominating, the He-like
Rydberg series is well developed, and the dielectronic satellite intensities are rel-
atively weak. With high contrast, however, the situation is dramatically different.
A new type of spectra develops: Resonance lines seem to disappear, and the
dielectronic satellites become the most pronounced emission features in the spec-
trum. This phenomenon is known as dielectronic satellite accumulation DSA and
has been described in Sect. 1.4.3.

Also shown in Fig. 8.3 the simulations carried out with the MARIA code
(Rosmej 1997, 2001, 2006) indicating near solid density plasmas: electron density
ne � 3� 1023cm�3, electron temperature kTe � 0:2 keV, effective plasma source
size of Leff ¼ 3 lm and expansion velocities of V � 3� 107 cm/s (see also dis-
cussion in Chap. 1 concerning Fig. 1.5). The high-density results in a high ion–ion
coupling parameter C � 3ð Þ and manifests itself in a strongly developed DSA
(clearly seen for the Heb-emission structure), line broadening, line shift, and line
disappearance (as can be clearly seen for the Hec and Hed lines). Also seen in the
simulations is the continuum edge shift of He-like ions near 0.75 nm along with the
line disappearance of Hed and even Hec. These kinds of measurements provide
critical data for theoretical modeling of the ionization potential depression and line
shifts, but high precision experiments are very challenging (Renner and Rosmej
2019).

Fig. 8.3 K-shell X-ray emission of Heb until Lyb of magnesium for different irradiation
conditions: extremely high contrast 1010–1011 and prepulse. The MARIA simulations indicate near
solid density ne = 3 � 1023 cm−3, kTe = 0.2 keV and expansion velocities of the order of
V = 3 � 107 cm/sec. For high contrast, the plasma density is near solid density resulting in a
disappearance of the Hec and Hed lines whereas these lines are clearly visible in the low-density
spectra obtained with prepulse
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8.4.2 Scaled Ion Sphere Radii and Lattice Structure

Despite the quite good agreement of OEFTIS for line disappearances and even for
line shift analysis (Table 8.3), the OEFTIS model is not really in good agreement
with the data presented in Fig. 8.2 (purple triangles, Zcore = Zn−NK+L= 2–9, hZi =
Zcore, kTe = 100 eV, ni = 4.31 � 1022 cm−3). But OEFTIS provides a significant
better agreement with the data compared to the SP and EK models. Empirically, it is
observed that a scaled ion sphere radius (Zn is the nuclear charge and NVB is the
number of electrons in the VB, e.g., for Mg Zn ¼ 12, NVB ¼ 2 and Zcore ¼ 2. . .10)

Rscaled ¼ R0 � f Zcore; Zn;NVBð Þ; ð8:26Þ

where the function f Zcore; Zn;NVBð Þ is approximated with a simple linear depen-
dence in Zcore according to

f Zcore; Zn;NVBð Þ � 0:95 � 1� 0:35 � ðZcore � NVBÞ=Znf g ð8:27Þ

provides a good agreement even with these data (purple dashed curve indicated as
OEFTIS-R-scaled in Fig. 8.2). Likewise in a recent different laser compression
experiment, it was empirically found that a scaled down ion sphere radius describes
better the observed line shift of Helium-a (Stillman et al. 2017). However, in dense
laser-produced plasmas, higher-order dielectronic satellites of the type 1s2lnl′–1s2nl′
are overlapping with the He-a resonance line that makes analysis challenging.
Moreover, as has been discovered recently (Rosmej 2012), these satellite transitions
are subject to important quantum interference effects that lead to a narrowing of the
satellite group emission (see also Sect. 1.5.3). Densities might therefore be
underestimated (Rosmej 2012).

Finally, we mention recent scaling investigations of the plasma screening
potential in the framework of the self-consistent ion sphere model. Based on fully
quantum mechanical self-consistent finite temperature ion sphere calculations, an
analytical potential approximation has been developed (Li et al. 2019):

/p rð Þ ¼ Zn � e
r

� Nf � e
R

� 1þ 1
x� 1

� 1
x� 1

� r
R

� �x�1
� 

; r\R; ð8:28Þ

/p rð Þ ¼ Zn � Nfð Þ � e
r

; r
R; ð8:29Þ

x ¼ 3� b � e
p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nf

R � kTe

r
; ð8:30Þ

Nf ¼ Zn � Nb; ð8:31Þ
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4
3
pR3 � ne ¼ Nf : ð8:32Þ

Nf is the free electron number inside the ion sphere with radius R, ne is the electron
density, and Zn is the nuclear charge of the ion (for detailed application of (8.28–
8.32) in convenient units see Annex A.4). Note that the second term in (8.28)
represents the potential of the free electrons inside the ion sphere and that (8.28),
(8.29) have a continuous derivative. Comparison with numerical simulations has
shown (Li et al. 2019) that excellent agreement with the self-consistent ion sphere
calculations is achieved setting b ¼ 2. The great advantage of the b-potential is that
it substitutes the complex self-consistent ion sphere calculations via a perturbation
potential in the Hamiltonian while maintaining spectroscopic precision (e.g. to
describe high-precision X-ray line shift measurements) (Li and Rosmej 2020).
Finite temperature atomic structure calculations are therefore greatly simplified and
the Li-Rosmej b-potential has therefore attracted growing interest in dense plasma
atomic physics (Chen et al. 2021; Karasiev and Hu 2021; Ma et al. 2020; Shing
et al. 2020).

For infinite temperature, x ¼ 3 and the analytical potential turns into the
well-known uniform electron gas model (UEGM) as it should be:

/ðUEGMÞ
p rð Þ ¼ Zn � e

r
� Zn � Nbð Þ � e

2 � R � 3� r
R

� �2� 
; r\R: ð8:33Þ

The analytical potential can easily be applied to estimate the shift DEK of the K-
edge via the 1s-electron energy shift DE1s setting r ¼ 0:

DEK � DE1s � Nf � e2
R

� 1þ 1
x� 1

� 
: ð8:34Þ

It has been empirically found (Li et al. 2019) that calculations using the ana-
lytical b-potential setting approximately b � 4 are in better agreement with some
recent data obtained from experiments where XFEL radiation interacts with solids
(Ciricosta et al. 2012). In addition, it has been demonstrated (Li and Rosmej 2020)
that the unexplained X-ray line shift data of Hea (Stillman et al. 2017) are in
excellent agreement employing the analytical b-potential with b = 4. These findings
suggest that the b4-potential has the capacity to imitate lattice effects in ionization
potential depression and line shifts in near solid density heated matter (note, that a
higher b-value makes the free electron potential more smooth inside the ion sphere).
We note, that also effective analytical formulas can be developed for arbitrary
b-parameters, see Annex A.4. To what extend the b-potential method could imitate
lattice effects for b > 2 at temperatures much larger than the Fermi temperature
remains an open question and is subject to active research. The same holds true for
scaled ion sphere radii (correspondingly, (8.26–8.34) are only given to guide an
eventual future discussion). In this context we note, that for near solid density
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plasmas with temperatures near the Fermi temperature, the Atomic-Solid-Plasma
Model ASP (as discussed above) has provided excellent agreement with the data.

8.5 Strongly Compressed Matter and Fermi
Surface-Rising

Recent quantum molecular dynamics (QMD) simulations (Hu 2017) of much above
solid density compressed carbon predicted unusually increased K-edge energies,
while existing models failed to describe the QMD predictions. Let us consider this
situation in the framework of the present ASP model that is readily extended to
compressed solids, i.e., instead of (8.3), we have

DEðcompressedÞ
K ¼ DEðsolidÞ

K þ eðcompressedÞ
F � DEIDP: ð8:35Þ

The ionization potential depression is now an input to (8.35) rather than a result
like in (8.4), (8.5). The “low-density” limit of (8.35) corresponds to the “usual”

solid, i.e., DEðcompressedÞ
K ¼ DEðsolidÞ

K . In this case, the corresponding ionization
potential depression should correspond to the Fermi energy of the “usual” solid, i.e.,

eðsolidÞF ¼ DEIDP. Within the framework of ASP, we approximate the ionization
potential depression values for carbon from DEK (calculated with the ASP-HF
method as described above) assuming that the 2p2-electrons form a VB with a

corresponding Fermi energy of eðsolidÞF ¼ 13:56 eV at qðsolidÞ ¼ 2:26g/cm3. The
DEK-values are extended to the low-density case (solid) with a simple linear
expression

DEIDP � eðsolidÞF � eðsolidÞF

eðcompressedÞ
F

þDEK � 1� eðsolidÞF

eðcompressedÞ
F

 !
: ð8:36Þ

Equation (8.36) employs the solid density state energies DEK, solid density

Fermi energies eðsolidÞF , and Fermi energies eðcompressedÞ
F of compressed matter.

According to its construction with Fermi energies, (8.35), (8.36) are applicable only
for temperatures not much larger than the Fermi energy itself.

If we estimate, e.g., the ionization potential depression for the critical He-b line
of the Hoarty experiment (Hoarty et al. 2013) (see Table 8.3 case (f) and corre-
sponding discussion) with the help of (8.5) for pðTÞ ¼ 0, we find DEIPD � 204 eV.
As Table 8.3 shows, this value is not out of order. More detailed discussions
concerning the disappearance/appearance of lines for different densities as observed
in Hoarty et al. (2013) would be, however, inappropriate as the ASP model is not
valid in the temperature range of this experiment (Hoarty et al. 2013) because
kTe � eF (rather than kTe\eF for the ASP model).
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Figure 8.4 compares the K-edge energies from the ASP model of (8.35), (8.36)
with the recent QMD simulations of (Hu 2017) for a temperature of 1.35 eV (i.e.,
kTe � eF). It is observed that the ASP model correctly predicts decreasing values of
K-edge energies up to about q � 10 g/cm3, while for even higher densities much
increased K-edge energies are obtained. According to (8.35), (8.36), the physical

reason for the much increased K-edge energies is the energy term eðcompressedÞ
F that

effectively rises the Fermi surface (like depicted in Fig. 8.1) for the core hole
ionization. The decrease of the K-edge for intermediate values is due to the potential
depression of the optical electron that is still more effective than the rise of the
Fermi surface energy. This is in excellent agreement with the findings from the
recent QMD simulations (Hu 2017), while currently employed models fail to
describe these features. Also shown in Fig. 8.4 the SP model in its original version
(blue curve) and a modified one that includes the Fermi energy (green curve SP-F).

For very high densities, the ASP model predicts somewhat higher values com-
pared to the QMD simulations but is still in agreement with QMD within 20% up to
100 times compressed solid. This somewhat larger deviation for the highest com-
pression values is not very surprising: In Fig. 8.4, we use for all densities the
energies DEK from AS-HF that are free atom/ion energy values. To obtain more
advanced values would probably need modifications in (8.9) (e.g., a free electron
term in the Wigner–Seitz cell) which is not an evident task and outside the frame of
the present studies. We note that the QMD simulations have artificially been shifted

Fig. 8.4 ASP-predicted K-edges of carbon plasmas (black curve) as a function of mass density (or
ion charge state Z), in comparison with quantum molecular dynamics (QMD) modeling (red curve)
(Hu 2017). The blue curve indicates the continuum lowing model of Stewart and Pyatt (SP) (More
1981; Stewart and Pyatt 1996) while the green curve (SP-F) adds the Fermi energy to the SP
model. The ASP model is in good agreement with complex QMD simulations and predicts well
decreased K-edge energies for intermediate densities and increased ones for much above solid
density compression
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by about 12 eV in order to match experimental data for q � 3:5 g/cm3 and this
constant shift has then been applied for all densities of the QMD simulations [for
more details, see (Hu 2017)]. Correspondingly, an error bar in the QMD simula-
tions of near 12 eV should be attributed for the K-edge energies. Therefore, within
the QMD error bars, the present ASP model matches very well with the QMD up to
about ten times compressed solid carbon and is in agreement within 20% up to 100
times compressed solid carbon.

Finally we note that very recently it was claimed (Hansen et al. 2017) that the
above-predicted increased K-edge energies have been observed in a dense Z-pinch
plasma (Hansen et al. 2017): increased K-edge energy for iron of

DEðcompressedÞ
K � DEðsolidÞ

K � þ 5 eV for kTe ¼ 10 eV and ne ¼ 2:3� 1024 cm−3.
Quantitative analysis of these data, however, is challenging as the experiment in
(Hansen et al. 2017) employed a gas mixture (Fe-impurity in Be). In addition,
different methods of calculation delivered different average charges Z* for the iron
impurity: Z* = 3.5 (SCRAM model) and Z* = 5.5 (DFT model). Applying under
these circumstances the present ASP model to the Be–Fe mixture Z-pinch experi-
ment (Hansen et al. 2017), we need to align ionization of the Fe-impurity to the
outer shell electrons (this is drastically different from the above-discussed XFEL
experiment where different ionization is correlated with L-shell core hole ionization,
Tables 8.1 and 8.2). In addition, as the iron impurity is rather small (180 ppm) the
Fermi energy of (8.7) should be those of Be, i.e., 14.3 eV. Using (8.35), (8.36) with
corresponding energies of Fe obtained from the AS-HF method, we obtain for

Z* = 4 a shifted K-edge of DEðcompressedÞ
K � DEðsolidÞ

K

h i
� þ 17 eV, while for Z* = 5

and Z* = 6 the ASP model gives +3.1 and −21.7 eV, respectively. The ASP model
predicts therefore increased Fe K-edge energies in the relevant parameter range.
More detailed conclusions are difficult to derive: The parameter uncertainties are
too large and the observed shifts are too small due to the mid-Z-element employed.

Finally, we note that the experiment is subject to important transient evolution
that drives many overlapping transitions form numerous different charge states. The
Kb-analysis is therefore particularly challenging: Detailed atomic structure calcu-
lations of open 3d-shell electrons predict negative screening (Condamine et al.
2019; Smid et al. 2019) that strongly obscures line and group shifts’ measurements
because dense plasma effects are equivalent to positive screening. It should further
be noted that calibration shifts of up to 104 eV have been applied to the density
functional theory (DFT) simulations (Hansen et al. 2017) to extract various data.

8.6 Discussion of Different Regimes of Ionization Potential
Depression

“Why do well-established models like SP, EK, and the finite temperature ion sphere
models that have proved to provide good agreement with numerous data do not
match the XFEL data of K-edge energies in dependence of the number of L-shell
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core hole vacancies (Fig. 8.2)?” Figure 8.5 explores possible pathways. Let us
separate the parameter space into five qualitative different regions with four
boundaries: (1) the cold solid, (2) the hot solid, (3) the cold plasma, and (4) the hot
plasma. The yellow-colored region between the cold and the hot solid corresponds
to a state of matter, where the lattice structure of the solid density matter is still
present and (8.5) applies. According to Fig. 8.5, the blue dashed line is therefore the
“natural” ionization potential depression of a solid in the ASP picture, where the

Fermi energy eðsolidÞF fully contributes to the K-shell ionization energy. If the solid
crystal structure still prevails while electrons in the conduction band are heated, the
Fermi energy contributes less and less to the ionization energy until the limit of the
hot solid [pðTÞ ¼ 0 according to (8.5)] is obtained (red dashed line in Fig. 8.5).

In the ASP model, the nonlinear dependence with respect to core hole vacancies
is essentially a result of the nonlinear dependence of the energies predicted by the
AS-HF method described above (in particular, when changing the subshell from
one to another orbital quantum number; see, e.g., the change in Fig. 8.5 between
Zn � NKþL ¼ 7 and Zn � NKþL ¼ 8). Within the framework of AS-HF, we find

that the IPD energies DEK ¼ DEðfreeÞ
K � DEðsolidÞ

K from (8.2), (8.3) scale for a variety
of elements roughly like

DEK / ðZ þ 1Þ4=3: ð8:37Þ

The excellent agreement of the ASP model with the data (see Fig. 8.2) therefore
suggests that the IPD data correspond to a heated solid where crystal structure
essentially remained while VB electrons are strongly heated.

Debye models, ions sphere models, or interpolations between them [e.g., the
widely applied SP model (More 1981; Stewart and Pyatt 1996)] are constructed

Fig. 8.5 Visualization of the different physical regimes of ionization potential depression (for Mg
ions) in the framework of the present ASP and OEFTIS models. The abscissa indicates the
dependence on different L-shell vacancies
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with respect to an atom plasma point of view. The corresponding boundaries of
interest in Fig. 8.5 are indicated with “cold plasma” and “hot plasma” (approximate
boundaries have been visualized with the OEFTIS model at solid density for 10 and
1000 eV). The intermediate region is indicated in gray color. Figure 8.2 demon-
strates that Debye and ion sphere models provide essentially a linear dependence on
charge (see curves for OEFTIS and SP in Fig. 8.2), while their absolute values
appear to be too low to match the data. This twofold failure might therefore be
attributed to the absence of lattice structure, Fermi, and solid-state energies.

On the other hand, SP (More 1981; Stewart and Pyatt 1996), finite temperature
ion sphere model (Li and Rosmej 2012, 2020), and the OEFTIS discussed above
provide good agreement with previous data (see, e.g., Table 8.3). In the framework
of Fig. 8.5, this is not a contradiction. Let us consider the green area in Fig. 8.5 that
is located between the hot solid and the cold plasma. This region corresponds to
matter, where crystal structure disappears when going from the upper part of the
green area to the lower one. In fact, in typical optical laser-driven experiments [e.g.,
Dervieux et al. 2015; Renner et al. 1997b; Fletcher et al. 2014)], the pulse duration
is much longer than in XFEL-driven plasmas (Ciricosta et al. 2016) (about a factor
10–100) and disintegration of cold/hot solid crystal structure is important.
Correspondingly, the data (Hoarty et al. 2013) might be more close to the gray
region than the extremely short pulse data from XFEL (Ciricosta et al. 2016). This
point of view might be supported by the observation [(8.26), (8.27) and (Stillman
et al. 2017)] that better agreement with the data is obtained, when scaling down the
ion sphere radius. This moves the ionization potential depression to the region of
the ASP model, i.e., to the green and yellow regions of Fig. 8.5 where some lattice
structure is still present. Whether scaled down ion sphere radii and b4-potentials can
imitate lattice structure effects remain currently an open question (see also dis-
cussions in the Annex A.4 and in [Li et al. 2019; Li and Rosmej 2020]).

In conclusion, Fig. 8.5 permits also a rough recommendation for the application
of different theories and models on the basis of a physical landscape rather than
limiting the discussion to coupling and degeneracy parameters only (see further
discussions below): 1) the yellow region (cold or heated solid) is well described by
the ASP-model (that can be generalized to any chemical element and ionization
stage) while the region above (Fermi surface rising) might be approximated by
“ASP-compressed” (according (8.36)); 2) the green region, where lattice structure
starts to disappear (from top to down) the b-potential and its analytical represen-
tation in terms of Г-functions (with b-parameters larger than 2, for details see
Annex A.4) provides a reasonable description; 3) the grey region of a dense
structure less plasma is very well described by OEFTIS in 4th-order analytical
approximation or by the b-potential method with b = 2 (for details see Annex A4).

Let us now discuss timescales that are relevant for the application of the various
theories. Models that are based on the minimization of the free energy [e.g., the
Ecker–Kröll model (Ecker and Kröll 1963)] request thermodynamic equilibrium
and the obtained potential reduction is a reduction that corresponds to the Saha
equation. In fs-laser-produced plasmas (e.g., XFEL or UHI produced plasmas),
these preconditions are questionable. In addition, the resulting potential reduction in
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the free energy minimization procedure specifies à priori the energy reduction that
is consistent with a particular ionization and/or conductivity but is not necessarily
identical with the data from spectroscopic measurements (line shifts, line disap-
pearance in the continuum, etc.). This last point has historically already been
stressed by Ecker and Weizel themselves more than 60 years ago (Ecker and
Weizel 1956).

The discussions of the Ecker–Kröll model in the context of fs-XFEL data
(Ciricosta et al. 2012) are therefore likewise questionable, and the replacement of the
lattice and polarization functions in the Ecker–Kröll model (Ecker and Weizel 1956;
Ecker and Kröll 1963) by a simple constant (Ciricosta et al. 2012, 2016; Vinko et al.
2014) is more a particular fit to specific data rather than a modified model. Moreover,

as discussed above the AS-HF ionization potential depression energies DEK ¼
DEðfreeÞ

K � DEðsolidÞ
K scale for a variety of elements roughly like DEK / Zþ 1ð Þ4=3.

This scaling is an accidental coincidence with the EK model that shows a similar
scaling for the ionization potential depression in certain parameter regimes. A simple
fitting constant could therefore accidentally match some Z-scaled data.

Finally we note that the existence of a lattice structure and corresponding
application of models is not only a question of temperature but also of the timescale:
If the heating is almost instantaneous, electrons could be heated to high temperatures
(i.e., kTe � eF) while the ions are still immobile. Therefore, the ASP model can be
even applied for strongly heated electrons in the XFEL experiments: AS-HF ener-
gies and Fermi energies are well described. In this respect, Fig. 8.5 classifies the
overall experimental and physical landscape that is otherwise difficult to be cast into
coupling and degeneracy parameters only. We note that the ASP model provides
likewise excellent agreement for ionization potential depression in hollow crystals,
i.e., for double core hole configurations (Gournay and Rosmej 2022).

The present ASP model has also favorable properties via timescale effects. ASP
does not contain the total plasma particle thermodynamic equilibrium assumption
nor an equilibrium assumption between the ionized ion and the polarized plasma
(like in the Debye theory): It is essentially based on the solid and ionic state
energies (Fig. 8.1). At maximum, an equilibrium assumption for the conduction
band electrons is requested (for 0\pðTÞ\1 calculations). This is, however, a much
less restrictive condition as electrons at near solid density equilibrate on fs-time
scales. Similar arguments hold true for the finite temperature ion sphere model
OEFTIS. We note, that recent developments of non-equilibrium ion-sphere models
have been made to account for non-thermalized ionized electrons (Li et al. 2022).
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Chapter 9
The Plasma Atom

Abstract In this chapter the statistical description of atomic radiative-collisional
processes for complex heavy ions in electron atomic collisions is developed. The local
plasma frequency model and the Thomas-Fermi electron density distribution are
applied for the description of collisional processes making it possible to express the
atomic characteristics (energy structure and oscillator strengths) as well as transition
probabilities in terms of a functional of the electron density distribution inside atoms
and ions. TheFermimethod of equivalent photons allows to express the collisional rates
in terms of photo-excitation or ionization cross sections. The statistical description is
applied for efficient calculations of ionization cross sections and rates for different
highly charged ions demonstrating a very good correspondence with detailed quantum
mechanical calculations. Likewise, the dielectronic recombination rates obtained from
statistical models are compared with quantum results for different ionization states of
many chemical elements. The statistical method is in very good agreement with
sophisticated detailed level-by-level quantum calculations and is of much higher pre-
cision than the usually applied Burgess formula. Finally, the statistical approach is
applied for calculations of radiative energy losses of tungsten ions in hot thermonuclear
plasmas. The results for the low-density case (coronal condition) of magnetically
confined plasmas demonstrate a rather good correspondence with more detailed
numerical calculations and measurements. In addition, the transition from the
low-density corona condition to the high-densityBoltzmann limit can be described via a
simple application of detailed balance in the two-state approximation. In general, quite
reasonable precision of the statistical model for different kinds of radiative-collisional
processes is demonstrated. Moreover, general formulae and scaling relations can be
obtained from the statistical approach that would otherwise difficult to obtain.

9.1 The Thomas–Fermi Statistical Approach

From the earliest days of quantum mechanics, it has been clear that one could not
hope to solve exactly most of the physically interesting systems, especially those
with three or more particles. This has stimulated the development of a large variety
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of approximate methods such as the time-dependent and time-independent pertur-
bation theory, variational methods, and the Hartree method. The improvements of
the Hartree method, namely the Hartree–Fock–Slater and the Dirac–Hartree–Fock–
Slater (including the multiconfiguration Hartree–Fock (MCHF) method that
incorporates configuration interaction and intermediate coupling, or its relativistic
version MCDF—multiconfiguration Dirac–Fock method), are currently the most
general and widely used methods to study the atomic structure of atoms and ions
(Cowan 1981; Grant et al. 1980).

The theoretical description of multielectron systems and in particular the
structure of heavy atoms and ions is still challenging, and one of the traditional
approaches to this problem is the use of the Thomas–Fermi statistical theory (Fermi
1928; Gombas 1943, 1949, 1963; Lieb and Simon 1977; Kemister and Nordholm
1982). The Thomas–Fermi model represents the simplest way to take into account
not only the Pauli principle, but also the mutual electrostatic repulsion of the
electrons, at least in a general way, in a many-electron system. The starting point is
the only approximately correct idea that there is a fixed potential well and that it is
the same for all electrons. The model therefore gives a similar electron density for
all atoms. Although the model does not permit to provide very detailed information
about the atomic structure, it provides general insight into the properties of heavy
atoms, e.g., the electron density distribution, ionization energies, size of the atom/
ion, polarizability. The Thomas–Fermi model is also used to describe the equation
of state of highly compressed and ionized matter, has stimulated the development of
the density functional theory, and provides often a good starting point for more
complex self-consistent field calculations.

Apart the atomic structure itself, the study of the interaction of multielectron
atoms and ions with an electromagnetic field is of great practical interest due to
applications in material science, atomic physics, plasma physics, radiative proper-
ties of matter, spectroscopy. The statistical model provides the possibility of a
universal description of elementary processes (Astapenko et al. 2002, 2003) and
radiative properties (Demura et al. 2013, 2015a, b) and to extract general scaling
laws for all nuclear charges using the Thomas–Fermi density distribution nðrÞ. This
is of particular interest for the fusion science: In magnetic fusion, high-Z divertor
material (tungsten) is employed while in inertial fusion, high-Z materials (gold) are
used as a hohlraum material. The determination of the detailed atomic structure
(MCHF or MCDF) and corresponding radiative properties of these high-Z elements
is, however, very challenging. Therefore, approximate and/or general methods are
of great interest to derive the variety of requested properties. Moreover, more
general methods and scaling relations are particularly useful for implementation of
heavy element atomic physics in integrated simulations.

In the framework of the Thomas–Fermi model, the electron density distribution
of a particular element and charge state is given by
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n x; q; Znð Þ ¼ 32
9p3

� Z2
n �

u x; qð Þ
x

� �3=2
; ð9:1Þ

where

x ¼ r
rTF

; ð9:2Þ

rTF ¼ 9p3

128

� �1=3

� 1

Z1=3
n

¼ 0:8853 � Z�1=3
n ; ð9:3Þ

q ¼ Z
Zn

: ð9:4Þ

Zn is the nuclear charge, Z the ion charge, q characterizes the ionization degree and
rTF is the Thomas–Fermi radius. The Thomas–Fermi function u x; qð Þ can be
approximated by the Sommerfeld method (Sommerfeld 1932; Gombas 1949) which
is an exact particular solution of the Thomas–Fermi differential equation:

u x; qð Þ ¼ u xð Þ � 1� 1þ z xð Þ
1þ z0 xð Þ
� �k1=k2

" #
; ð9:5Þ

z xð Þ ¼ x
1443=2

� �k2
; ð9:6Þ

z0 xð Þ ¼ x0 qð Þ
1443=2

� �k2

; ð9:7Þ

u0 xð Þ ¼ 1

1þ z xð Þð Þk1=2
; ð9:8Þ

k1 ¼ 0:5 � 7þ
ffiffiffiffiffi
73

p� �
¼ 7:77200; ð9:9Þ

k2 ¼ 0:5 � �7þ
ffiffiffiffiffi
73

p� �
¼ 0:77200: ð9:10Þ

The reduced radius x0 qð Þ is determined from the boundary condition

x0
du x0ð Þ
dx

¼ �q: ð9:11Þ

In high-temperature plasma, i.e., when the ionization degree q ¼ Z=Zn is not too
low, the reduced radius can be approximated by
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x0 qð Þ ¼
2:96 � 1� q

q

� �2=3

if 0:2\q� 1

6:84 � 1
q3

if q\0:05

8>><
>>: : ð9:12Þ

The ionization energy of an atom or ion is then given by

IZ ¼ Z2
nRy �

128
9p2

� �1=3

� 2 � Z
Z5=3
n � x0 q; Znð Þ

( )
: ð9:13Þ

As can be seen from (9.13), the hydrogenic approximation Z2
n � Ry of the ion-

ization potential of an ion with charge Zn is corrected via the Thomas–Fermi
electron density distribution that depends on nuclear charge and ionic charge [factor
in parenthesis in (9.13)]. The comparison of the ionization energies obtained from
(9.13) with detailed Hartree–Fock calculations shows a reasonable agreement for
heavy elements over a wide range of ionization degrees (Demura 2015a, b). We
note that certainly more accurate descriptions of the ionization potentials can be
obtained from a direct fit to the vast amount of ionization potentials in dependence
of Z and Zn (Kirillow et al. 1975):

IZ � 0:221 � Ry � 1þ Zð Þ4=3

1� 0:96 � 1þ Z
Zn

� �0:257 : ð9:14Þ

Many modifications of the Thomas–Fermi model have been proposed in order to
include shell structure, improve ionization energies, and in particular to approach the
Hartree–Fock results for the electron density distribution (Dmitrieva and Plindov
1984; Fromy et al. 1996; Dyachkov et al. 2016). Also, modifications to derive the
average degree of ionization in a dense plasma have been proposed (Ying andKalman
1989). In addition, in order to improve the studies of the interaction of multielectron
atoms with an electromagnetic field the classical kinetic Vlasov equations with
self-consistent field has been proposed (Vinogradov and Tolstikhin 1989). It leads to
improvement for the calculation of elementary processes, e.g., photoionization cross
sections, and permits the calculation of the real part of the polarizability.

In the further developments to improve the statistical approach, one must not
lose sight of the requirement that the fundamental equations of the statistical model
of atoms, including the various corrections terms, should not be too complicated
and, in any case, not more complicated than the basic equations of the quantum
mechanical many-body approximation, e.g., the multiconfiguration Hartree–Fock
methods. One must always bear in mind that the statistical theory of atoms is only a
rough approximation of the quantum atom, and its advantage is its extreme sim-
plicity both in structure and application to determine the electron and potential
distributions of atoms, derive elementary processes in collisional–radiative regimes,
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to shed light into the detailed atomic structure calculations (in particular for heavy
atoms) and to derive general scaling laws that could be hardly obtained otherwise. It
is this practical philosophy that we bear in mind when we consider (9.1)–(9.13) for
the statistical framework of the atom/ion and the framework of the local plasma
frequency (to be discussed further below) in order to enlarge the standard statistical
Thomas–Fermi model also to elementary collisional–radiative processes and to the
radiative properties of heavy atoms and ions in plasmas.

9.2 The Local Plasma Frequency Approximation

9.2.1 Oscillator Strengths Distribution and Photoabsorption

The response of an atom to an external field of given frequency x can be conve-
niently discussed in terms of the properties of its differential oscillator strength
distribution f xð Þ that is directly related to the photoabsorption cross section of the
atom:

r xð Þ ¼ 2p2e2

mec
� f xð Þ: ð9:15Þ

The function f xð Þ may be considered to comprise all the fundamental infor-
mation on the quantum dynamics of atoms, but its quantum mechanical calculation
is rather challenging and laborious. The distribution of the local atomic density
determines a variety of elementary excitations with the classical plasma frequency.
Concerning the Zn- and frequency-dependence, we can identify three regions of
interest. In the low-frequency range, where

0� �hx
Ry

� 1; ð9:16Þ

the function f xð Þ essentially consists of the sharp lines familiar from optical
spectroscopy separated by frequency ranges of low absorption while it changes
irregularly with Zn and reflects in its details the atomic binding. In the
high-frequency range, where

�hx� Z2
nRy; ð9:17Þ

the function f xð Þ exhibits characteristic X-ray absorption edges. In the intermediate
frequency range, where

1� �hx
Ry

� Z2
n ; ð9:18Þ
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the contribution from intermediate shells of the atom is expected to overlap strongly
and f xð Þ becomes a smooth function on frequency. In this regime, excitations from
intermediate atomic shells can be coupled rather strongly: new collective reso-
nances of the atom as a whole become possible and a statistical approximation
should apply best to the dynamics of the atom.

In the framework of the statistical approximation, the spectral distribution
function f xð Þ is derived from the general dynamic equations describing the density
fluctuations induced in the atom by an external field. Using a local form of this
framework, it is found that coherences between the motion in different parts of the
atom causes modifications in f xð Þ that can be formulated in terms of a dispersion
denominator that identifies enhanced absorption as collective resonances of the
atom as a whole (Brandt and Lundqvist 1965). The oscillation frequency is
determined by the well-known formula for the electron plasma frequency

x rð Þ ¼ xp rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2ne rð Þ

me

s
; ð9:19Þ

where ne rð Þ is the local atomic electron density. xp rð Þ is called the local plasma
frequency LPF (see also Sect. 2.6). Comparison with the more general Vlasov
approach shows that the LPF model does not take into account the polarization field
induced by the external perturbation of the atomic electron density distribution
(Vinogradov and Tolstikhin 1989). However, it turns out that the discrepancy
between the LPF-statistical model for the photoionization cross sections is within
the accuracy of calculations of radiative and collisional processes for multielectron
ions by standard quantum mechanical codes and population kinetics (to be dis-
cussed below).

9.2.2 Fermi Equivalent Photon Method and Local Plasma
Oscillator Strength

The interaction of the plasma electrons with a heavy atom can be considered within
the framework of the Fermi approximation of equivalent photons (see Sect. 5.1).
The electric field of the equivalent photon flux is determined by the Fourier
expansion of the electric field of an electron, moving along with the classical
trajectory in the field of the ion being excited. In this formulation, for example, the
excitation of bound electrons in a multielectron ion is expressed in terms of the
photoabsorption cross section of (9.15).

In quantum mechanics of atoms, almost all plasma physics relevant atomic
characteristics can be approximated or expressed via the dipole oscillator strengths
(see also Chaps. 2 and 7). It is therefore of particular interest for the generalization
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of the applications of the plasma atom to derive an “effective plasma oscillator
strengths.” The determination of the classical oscillator strength follows from the
correspondence principle (see also Chap. 2). In fact, if we consider the atom as a
classical oscillator with an eigenfrequency equal to the local plasma frequency, we
can readily derive its response on periodic (harmonic) perturbations. This deter-
mines the dynamic response of the classical oscillator and via correspondence with
the quantum radiation emission we can identify a “plasma oscillator strength.”

The simplest relation between the induced dipole moment and the local electrical
field is given by

~pinduced ¼ a �~Elocal ð9:20Þ

(Note that the polarizability according to (9.20) is related to the quadratic Stark
constant, see Sects. 7.4.2, 7.8.2). In the classical description, the frequency
dependence of the oscillating atom under the action of a local electric field is given
by

me � €~xþme � c � _~xþme � x2
0 �~x ¼ q �~Elocal � exp �ixtð Þ; ð9:21Þ

where ~x is the amplitude, m the mass, c the damping constant, x0 the eigenfre-
quency of the oscillator, i.e., transition frequency, q the electric charge, and x is the
frequency of the local oscillating electric field. The stationary solution of (9.21) is
given by

~x tð Þ ¼ 1
x2

0 � x2 � icx
� q
me

�~Elocal � exp �ixtð Þ: ð9:22Þ

Because the induced dipole moment is given by

~pinduced ¼ q �~x tð Þ; ð9:23Þ

we obtain with the help of (9.20), (9.22), (9.23) for the dynamic polarizability

a xð Þ ¼ q2

me
� 1
x2

0 � x2 � icx
: ð9:24Þ

Generalizing (9.24) to several oscillation frequencies, we obtain

a xð Þ ¼ q2

me
�
X
n

1
x2

0n � x2 � ic0nx
: ð9:25Þ
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If we separate the dynamic polarizability (9.24) in the real and imaginary part,
i.e.,

a xð Þ ¼ <e að Þþ i=m að Þ; ð9:26Þ

we obtain

<e að Þ ¼ q2

me
�
X
n

x2
0n � x2

x2
0n � x2

	 
2 þ c20nx
2
; ð9:27Þ

=m að Þ ¼ q2

me
�
X
n

c � x
x2

0n � x2
	 
2 þ c20nx

2
: ð9:28Þ

For x ¼ 0; the real part of the polarizability (9.25) corresponds to the static
polarizability because the imaginary part (9.28) vanishes. In the local plasma fre-
quency model, (9.25) has to be transformed to the continuous case (see also
Sects. 2.3–2.6). In the spherical shell of thickness dr; we encounter a confined
charge of quantity dq ¼ e � 4pneðrÞ r2dr and we obtain instead of (9.25):

a xð Þ ¼ 4pe2

me
�
ZRatom

0

ne rð Þr2dr
x2

0n � x2 � ic0nx
; ð9:29Þ

where Ratom is the size of the atom. From (9.29), it follows with (9.19)

a xð Þ ¼
ZRatom

0

x2
p � r2 � dr

x2
0n � x2 � ic0nx

: ð9:30Þ

Equation (9.29) can be readily compared with the quantum mechanical result for
the polarizability, i.e.,

a xð Þ ¼ e2

me
�
X
n

f0n
x2

0n � x2 � ic0nx
ð9:31Þ

from which it follows that the term 4pneðrÞr2 dr can be interpreted as a local
strengths in the LPF model, i.e., the local plasma oscillator strength

fpðrÞ ¼ 4pneðrÞr2 dr ¼ fij: ð9:32Þ

The plasma oscillator strengths fpðrÞ are a central plasma atomic property that
allows to deal with collisional–radiative elementary processes that are usually
expressed in terms of the oscillator strengths fij for the transition i ! j. The
Regemorter formula of electron collisional excitation according to (5.90)–(5.94) is
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a typical example. In the LPF model, the indexes i; j are represented by the radial
coordinate r and the radial interval dr [see right part of (9.32)]. From (9.32), it
follows immediately that the plasma oscillator strengths fulfills the sum rule, i.e.,Z

dfij ¼ Zn � Z ¼ NðboundÞ
e : ð9:33Þ

9.3 Radiative Losses

9.3.1 General Relations

At low-density conditions, collisional excitation from the ground state to excited
states decays readily by spontaneous radiative transitions (Corona model, see also
Chap. 6) and the radiation losses are therefore determined by the collisional exci-
tation rates itself. In the framework of the Fermi equivalent photon method, the
radiation loss can therefore be expressed in terms of the photoexcitation rates in the
field of equivalent photons (Demura et al. 2013, 2015a):

Q ¼ nðfreeÞe

ZI=2ZnRy
0

dsRy � rphðsÞ � dIðCoulombÞðsÞ
ds

� �
E

¼ nðfreeÞe
4a0c Ry2ffiffiffiffiffiffi
3p

p � e2 �
ffiffiffiffiffiffiffiffiffiffi
Z2
nRy
kTe

s
�
ZI=2ZnRy
0

ds � rphðsÞ �
Z1

2RyZn
kTe

�s

du � e�u � gðs; uÞ
ð9:34Þ

with

s ¼ �hx
2Zn � Ry ; ð9:35Þ

u ¼ E
kTe

; ð9:36Þ

where a0 is the Bohr radius, c the speed of light, e the electron charge, Ry the
Rydberg energy, kTe the thermal electron energy, ne

(free) is the free electron density
(note, that the atomic electron density is designated with ne(r)), I is the ionization
potential of the ion with charge Z; and nuclear charge Zn, rph is the photoexcita-
tion–photoionization cross section, dIðCoulombÞðsÞ=ds �

E is the intensity of equiva-
lent photon flux per unit of reduced frequency interval ds averaged over the energy
E of the electron projectile scattered by the target and gðs; uÞ is the Gaunt factor,
describing the curvature of electron trajectory under its motion in the self-consistent
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field of the heavy ion or atom. In the Coulomb approximation, the Gaunt factor
becomes a function of the unique variable (Kogan et al. 1992):

m ¼ Zeff � Zn � Ry
kTe

� �3=2

� s
u3=2

; ð9:37Þ

g mð Þ ¼ p
ffiffiffi
3

p

4
� imHð1Þ0

im ðimÞ � Hð1Þ
im ðimÞ

n o
�

ffiffiffi
6

p

p
� ln 2

cm

� �1=
ffiffi
2

p

þ exp p=
ffiffiffi
6

p� �" #
;

ð9:38Þ

where Hð1Þ
im ðimÞ and Hð1Þ0

im ðimÞ are Hankel functions and its first derivative with the
argument im, c is the Euler constant (c ¼ expðCÞ � 1:78).

In the local plasma frequency model, the effective charge Zeff from (9.37) is
determined from the condition of equality of the Thomas–Fermi potential and the
local Coulomb potential at the point rs ¼ xs � rTF (rTF is the Thomas–Fermi radius
from (9.3)) that corresponds to the resonance condition of (9.19) expressed in terms
of the reduced frequency s of (9.35):

Zeff ¼ Zn � u xs; qð Þþ qxs
x0

� �
; ð9:39Þ

where u xs; qð Þ, q and x are defined in (9.1)–(9.11). For low frequencies, the
effective charge is equal to the ion charge Z, while in the high-frequency limit the
effective charge is the nuclear charge Zn. These limits are typically approximately
approached for s\0:1 (low-frequency limit) and s[ 30 (high-frequency limit).

Taking into account only bound states, the first integration over frequencies in
(9.34) extends up to the ionization threshold of the ion with charge Z while the
second integration over energies of the incident electron corresponds to the exci-
tation thresholds of atomic transitions in the statistical model. In the
LPF approximation, the photoabsorption cross section is given by (see also (3.136)
and (Rosmej et al. 2020a))

rph xð Þ ¼ 2p2e2

mec
� 4pr2x � neðrxÞ

dxpðrÞ
dr

����
����

ð9:40Þ

or, expressed in terms of the Thomas–Fermi electron density:

rph xð Þ ¼ pa20 �
3p3e2

16�hc
� s � x2s � uðxs; qÞ
u0ðxs; qÞ � uðxs; qÞ=xsj j : ð9:41Þ

Inserting (9.41) into (9.34), we obtain the final expression for the radiation loss
in the Corona limit:
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Q ¼ nðfreeÞe � p
3
ffiffiffiffiffiffi
3p

p � a30Ry2
4

�
ffiffiffiffiffiffiffiffiffiffi
Z2
nRy
kTe

s
�
ZI=2ZnRy
0

s � x2s � uðxs; qÞ � ds
u0ðxs; qÞ � uðxs; qÞ=xsj j

�
Z1

2RyZn
kTe

�s

du � e�u � gðs; uÞ:
ð9:42Þ

The radiation losses determined by (9.42) have been compared with detailed
collisional–radiative modeling of tungsten over a wide range of temperatures
(Demura 2015a), and it is found that (9.42) reproduces the rise of the radiation loss
at small temperatures as well as the minima and maxima in the emission (that
corresponds to the shell structure) at intermediate temperatures and the decrease at
very high temperature. As concerns the absolute values of radiation loss, it is found
that reasonable agreement is obtained setting gðs; uÞ � 2. At low temperatures,
however, the agreement is limited because the Corona model is not quite valid due
to the proximity of levels in low charged ions. Finally, we note that in order to
compare (9.42) with the detailed collisional–radiative modeling it is necessary, to
sum up the emission from (9.42) for every charge state and multiply with the
respective relative population (normalized to one) of this charge state.

9.3.2 Density Effects

The Corona approximation of the radiation loss (9.42) described above is valid in the
low-density high-temperature limit. As density increases and temperature decreases,
the Corona approximation becomes invalid and has to be replaced by the general
collisional–radiative model described in Chap. 6. In order to establish more general
expressions for the radiation loss in the framework of the local plasma frequency
approximation, let us first consider the Boltzmann limit (i.e., high-density limit). In the
Boltzmann limit, direct and inverse processes are related to the principle of detailed
balance that contains in the local plasma frequency approximation an equivalent
Boltzmann exponential factor with the plasma frequency, i.e., expð�hxP=kTeÞ.

Let us begin with the radiative terms expressed via the Einstein coefficients and
the Fermi equivalent photon method. The Einstein coefficients describing the
emission probability in terms of the emission oscillator strengths fif of particular
transitions i ! j are given by

Aij ¼ �2
e2

mc3
x2 fij: ð9:43Þ

The oscillator strengths in emission fif\0 and absorption fji [ 0 are connected
by the well-known relation
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�gi fij ¼ gj fji: ð9:44Þ

We also need to evaluate the contribution of induced emission or absorption,
using correspondingly the following relations for the Einstein coefficients of
induced emission

Bij ¼ p2c3

�hx3 Aij ð9:45Þ

and induced absorption

Bji ¼ gi
gj
� p

2c3

�hx3 Aij: ð9:46Þ

Let NEQPðxÞ the EQP number for a given frequency x per unit frequency
interval, Bij � NEQPðxÞ and Bji � NEQPðxÞ are the stimulated de-excitation and
excitation rates corresponding to the EQP flux. Then from the equality for the direct
and reverse processes, we obtain

Bij NEQPðxÞNi ¼ Bji NEQPðxÞNj; ð9:47Þ

where Ni; Nj are the populations of levels i; j. For the Boltzmann distribution of
level populations, i.e.,

Ni ¼ Nj exp½��hxij=kTe� ð9:48Þ

we obtain the following relation between direct and reverse processes

Bij NEQPðxÞ exp½��hxij=kTe� ¼ Bji NEQPðxÞ: ð9:49Þ

On the other hand, the excitation rate under the influence of the EQP flux could
be represented as the photoexcitation rate in terms of the photoabsorption cross
section. The probability of induced radiation is determined by the product of the
Einstein coefficient for induced radiation BijðxÞ and the radiation energy density
UrðxÞ (erg/cm3) with the polarization r. It is connected with the integral over solid
angles X of the radiation spectral intensity Irðx; kÞ with polarization r in the
direction, determined by the wave vector ~k and divided by the speed of light c:

Z
dx � UrðxÞ � BijðxÞ ¼

Z
dx � UrðxÞ � p

2c3

�hx3 � AijðxÞ

¼
Z

dx
1
c

Z
dX Irðx;~kÞ

� �
� p2c3

�hx3 � AijðxÞ:
ð9:50Þ

Assuming that the electrons have an unpolarized isotropic Maxwellian veloc-
ity distribution, the intensity of the EQP flux in the frequency interval
ds ¼ dx � ð�h=2Zn � RyÞ (see (9.35)) produced in the elastic scattering of the electron
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flux nðfreeÞe � te (te is the electron thermal velocity of the free electrons) by the
Coulomb center and averaged over the electron energy distribution could be
expressed as

Z
dX Irðx;~kÞ

� �
� dx ¼

Z
dX IðxÞ

� �
� dx

¼ nðfreeÞe � 4a0cRy
2ffiffiffiffiffiffi

3p
p � e2

Z2
nRy
kTe

� �1=2 Z1
2RyZn
kTe

� s

du exp½�u� g s; uð Þ

2
6666664

3
7777775
� ds:

ð9:51Þ

The photoabsorption cross section in the plasma model is given by (see also
(3.135))

rabs xð Þ ¼ 2 p2e2

me c

Z
ne rð Þ � d x� xp rð Þ	 
 � d3r: ð9:52Þ

The integral in (9.52) is the sum over the oscillator strengths of all transitions, while
a separate transition could be represented through the differential d3r [see also
comments related to (9.31)]:

drabs xð Þ ¼ 2 p2e2

me c
ne rð Þ d x� xp rð Þ	 


d3r: ð9:53Þ

Let us now derive the probability of EQP induced absorption within the LPF
model with the help of (9.43)–(9.53). We first transform the Einstein coefficient for
induced radiation to the LPF model with the help of (9.19), (9.33), (9.43)–(9.51):

Bij ¼ p2c3

�hx3 Aij ¼ 2p2e2

mex
neðrÞ d3r � d½x� xpðrÞ� � dx: ð9:54Þ

From (9.54), we obtain the Einstein coefficient of spontaneous emission:

AijðxÞ ¼ 2
e2

mec3
x2 neðrÞ d½x� xpðrÞ� d3r � dx: ð9:55Þ

Therewith all Einstein coefficients could be represented in the statistical model in
terms of the integral operators like in (9.52)–(9.55).

Then, in the two-state approximation for each pair of levels, we derive a pop-

ulation density balance equation for arbitrary free electron density nðfreeÞe , equating
the excitation rate via the EQP photoabsorption (from the lower state j) to the
de-excitation rate via the spontaneous and EQP-induced radiative decay (from the
upper state i):
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NjðrÞ � nðfreeÞe � 2 p
2a30ffiffiffiffiffiffi
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p Ry
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2
64

3
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¼ NiðrÞ � nðfreeÞe � 2 p
2a30ffiffiffiffiffiffi
3p

p Ry
kTe
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þ 2e2
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� x2
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#

with

spðrÞ ¼ xpðrÞ
Znxa

; ð9:57Þ

xa ¼ 2Ry
�h

; ð9:58Þ

uminðrÞ ¼ �hxpðrÞ
kTe

: ð9:59Þ

Note that nðfreeÞe is the total electron density of the free electrons that are scattered
by the atom while neðrÞ is the bound atomic electron density. Then the excited state
population Ni depends on density and is expressed via the lower state one Nj as
follows

NiðrÞ ¼ NjðrÞ �
R1
uminðrÞ e

�ug spðrÞ; u
	 


du

euminðrÞ
R1
uminðrÞ e

�ug spðrÞ; u
	 


duþ
ffiffiffiffiffiffiffiffiffiffiffiffi
3pkTe

p

nðfreeÞe p2a30
ffiffiffiffiffiffi
Ry

p � e2

mec3
� x

3
pðrÞ
x2

a

:

ð9:60Þ

From (9.60), we can see that it generalizes (9.48) for arbitrary densities. If the

free electron density nðfreeÞe is very large, the second term in the denominator of
(9.60) is very small compared with the first term and we obtain

NiðrÞ ¼ NjðrÞ � exp �uminðrÞð Þ ¼ NjðrÞ � exp � �hxpðrÞ
kTe

� �
: ð9:61Þ

According to (9.19), the plasma frequency depends on the atomic density;
therefore, according to (9.61) the Boltzmann relation NiðrÞ=NjðrÞ of levels depends
on radius. The radiation losses due to the transitions i ! j (corresponding to the
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local emission in the LPF model) can then be presented as an integral over fre-
quencies using (9.55):Z

Qijðx; rÞ � dx ¼
Z

�hx � NiðrÞ � Aijðx; rÞ � dx

¼ 2�he2

mec3
� NiðrÞ � x3

pðrÞ � neðrÞ � d3r:
ð9:62Þ

In order to obtain the radiation loss for one ion with nuclear charge Zn and
charge state Z; we express the excited state density in terms of the ground state
density to relate the radiative emission to a certain number of ions in the spherical
shell at radius r with thickness dr. Assuming that the excited state densities are
negligible compared to the ground state densities, we can assume that

P
j Nj � NZ

where NZ is the total density of ions with nuclear charge Zn and charge state Z.
Next, the total radiation loss QðZn; ZÞ is obtained from the sum of the contributions
from all possible transitions. In the statistical model, the summation over contri-
butions from the different transitions i ! j consists in summing over the level
populations Nj of different levels and integration over d3r. Therefore, the total
radiation losses QðZn; ZÞ in the framework of an effective two-state approximation
plasma model and Coulomb center effective charge take the form:

QðZn; ZÞ ¼ 2�he2

mec3
�
X
i

ZRatom

0

NiðrÞ � x3
pðrÞ � neðrÞ � d3r: ð9:63Þ

Substituting (9.60) into (9.62) and switching to the Thomas–Fermi dimension-
less reduced radius x and expressing neðxÞ and xpðxÞ via the Thomas–Fermi
function uðx; qÞ (e.g., (9.5)), we obtain a generalized analytical formula for the total

radiation loss per ion for arbitrary free electron density nðfreeÞe and electron tem-
perature Te:

Q Zn; Zð Þ
NZ � nðfreeÞe

¼ 4RyZ3xa

nðfreeÞe

e2

�hc

� �3 128
9p2

� �3=2

�
Zx0ðqÞ
0

x2 � uðx; q
x

� �15=4

� GðxÞ � RðxÞ dx

ð9:64Þ

with

GðxÞ ¼
Z1

uminðxÞ

e�u � gðx; uÞ � du; ð9:65Þ
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RðxÞ ¼ 1R1
uminðxÞ e

uminðxÞ�u � gðx; uÞ � duþD x; nðfreeÞe ; Te; Zn; q
� � ; ð9:66Þ

D x; nðfreeÞe ; Te; Zn; q
� �

¼ 1

nðfreeÞe

� 128
9p2

� �3=2

� e2

�hc

� �3

� Z3
n

p2a30
�
ffiffiffiffiffiffiffiffiffiffiffiffi
3pkTe
Ry

s

� uðx; qÞ
x

� �9=4

; ð9:67Þ

gðx; uÞ ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffi
Z2
effRy
kTe

s
� uminðxÞ
2u3=2

0
@

1
A; ð9:68Þ

uminðxÞ ¼ Zn � 128
9p2

� �1=2

� uðx; qÞ
x

� �3=4

� 2Ry
kTe

� �
: ð9:69Þ

Note that in (9.64)–(9.69), we have employed for consistency the Thomas–Fermi
model for the ionization potential (9.13). In the limit of low free electron densities,
(9.64)–(9.69) reproduce the result for the corona equilibrium; while in the opposite
limit of high densities, the result corresponds to the Boltzmann distribution of
atomic level populations.

The radiation losses of tungsten ions calculated from (9.64)–(9.69) are presented
in Fig. 9.1 for different values of free electron density: 1014, 1016, 1018, 1020 cm−3.
It is seen in Fig. 9.1 that these radiation losses are strongly suppressed with increase
of plasma density in the region of low temperatures. This actually corresponds to
the Boltzmann distribution of populations of excited states. When the second term

Fig. 9.1 Comparison of
radiation losses from tungsten
ions within the universal
statistical approach with the
numerical data from the
AIM-ADPAK and ADPAK
models
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D x; nðfreeÞe ; Te; Zn; q
� �

(9.67) in RðxÞ from (9.66) (that corresponds to spontaneous

emission), is much larger than the first one (corresponding to collisional
de-excitation), we return to the results of the corona limit, shown in Fig. 9.1 by the
solid black curve. In the opposite limit, when the de-excitation rate is much larger
than the rate of spontaneous emission, (9.62)–(9.67) take the form:

Q Zn; Zð Þ
NZ � nðfreeÞe

¼ 4RyZ3xa

nðfreeÞe

e2

�hc

� �3 128
9p2

� �3=2

�
Zx0ðqÞ
0

x2 � uðx; q
x

� �15=4

� e�uminðxÞ dx:

ð9:70Þ

This limit in the statistical approach is represented in Fig. 9.1 by “dashed-dot”
curves for various densities 1014, 1016, 1018, 1020 cm−3. Such dependence corre-
sponds to a near exponential increase of Q in the Boltzmann limit versus increasing
electron temperature Te. Asymptotically the “dotted” curves approach the
Boltzmann limit at lower temperatures and the coronal limit at higher temperatures.
This behavior is physically transparent. At low temperatures, the collisional
de-excitation rate coefficients are rather high. Then, with density increase the
de-excitation rates become larger than the spontaneous radiative decay, establishing
the Boltzmann type of equilibrium. On the other hand, for large temperatures, the
de-excitation rate coefficients decrease and then, with sufficiently low densities, the
de-excitation rates become smaller than the spontaneous radiative decay rate. In this
way, the coronal distribution of atomic populations is restored.

Let us now compare the results for the radiation loss calculated with the sta-
tistical approach with the detailed collisional–radiative model (see Chap. 6).
Figure 9.1 depicts the results from collisional–radiative model calculations for
tungsten (Kogan et al. 1992; Summers 1994; Post et al. 1977, 1995), blue crosses
and solid blue curve indicated as “AIM-ADPAK”. As already discussed in relation
with the corona approximation of (9.42), the comparison of the total radiation losses
with different models requests to sum up the line emission for every charge state.
This implies a need for the calculation of the ionic charge state distribution (see also
Chap. 6) to properly weight the radiation emission for each charge stage. In order to
compare the statistical model of (9.64)–(9.69) with detailed collisional–radiative
models, we employ the charge state distribution proposed by Post (1977). It can be
seen that the corona limit of the universal statistical approach (9.64)–(9.69) pro-
vides a reasonable approximation of the radiation losses within a factor of two in
the temperature interval from about 50–30.000 eV. For lower temperatures, the
emission peak near about 20 eV is not well reproduced. In this temperature range,
the atomic configurations are very complex and important deviations from the
corona model are encountered as discussed in relation with (9.70). It should be
noted that the precise determination of the ionic populations and the total loss rates
for heavy elements in dependence of temperature and density is a very complex
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problem that is controversy discussed up to present days in particular if M- and N-
shells are involved (Beiersdorfer et al. 2012; Scott and Hansen 2010; Piron et al.
2017). For example, average charge states Zh i of gold at about 1 keV temperature
at densities around 1021 cm−3 may differ as much as 10 for different calculations
(Scott and Hansen 2010) while it should be remembered that a change in average
charge state of only DZh i ¼ 1 results in an entirely different spectral distribution.
Moreover, high precision experiments are likewise very difficult, as independent
temperature, density, and charge state measurements are requested. For demon-
stration, Fig. 9.1 contains the experimental measurement of the radiation loss of
tungsten (Pütterich et al. 2010). The experimental error bars are of the same order as
the differences of different model calculations (Demura et al. 2015a; Pütterich et al.
2010).

Radiation loss related to radiative recombination and dielectronic recombination
is much lower than the total radiation loss in the depicted temperature interval
(Pütterich et al. 2010). Although the direct radiation loss related to dielectronic
recombination is not very important for the total radiation loss, it is very important
for the correct account of the ionization charge state distribution that in turn
influences on the total radiation loss.

The statistical model for arbitrary density according to (9.64)–(9.69) represents
therefore a useful approximation of the radiation loss for each charge state. Due to
the Thomas–Fermi model approximation, (9.64)–(9.69) provide a generalized
unified analytical description of the radiation loss for any heavy ion and allow to
study in a transparent manner several physical properties of the line radiation loss.
However, currently there exists no well-established theory to extend the statistical
model to a generalized analytical description that includes also the ionic charge
state distribution (resulting in a self-consistent total radiation loss calculation).
Below, we discuss their essential ingredients, namely the statistical approach to
ionization and dielectronic recombination.

Finally we note that for very high densities, the Thomas–Fermi atom size can
become comparable of the ionic interparticle distance, such that the boundary
condition at the periphery of the atomic electron density distribution could change.
This would change the behavior of the distribution itself. This effect is strongly
related to the ionization potential depression discussed in Chap. 8 and Annex A.4
and not specific to the statistical model but related to all types of collisional–
radiative modeling.

9.4 Statistical Ionization Cross Sections and Rates

We now show that the statistical approach allows one to obtain the expressions for
the total electron impact single ionization cross sections of multielectron ions and
related ionization rates. Indeed, instead of the intensity of equivalent photons we

can operate with the number of equivalent photons
dNðxÞ
dðx=xaÞ at given frequency x
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in the unit frequency interval dx in unit time interval at the fixed incident electron
energy E, which in the dimensionless form could be determined by the expression
(compare with (9.40), (9.41))

dNðxÞ
dðx=xaÞ ¼

c�h
e2

� �
� 1

2
ffiffiffi
3

p � xa

x
� Ry

E

� �
� g Z;

Ry
E

� �3=2

;
x
xa

; Zn

 !
: ð9:71Þ

Multiplying the number of EQP (9.51) by the photoionization cross section and
integrating over s from the reduced ionization potential IZ=ð2RyZnÞ up to the
reduced energy of electron projectile E=ð2RyZnÞ, we arrive in the Coulomb
approximation (9.37), (9.38) to the following expression for the electron ionization
cross section

ri Eð Þ ¼ p4a20
ffiffiffi
3

p

32
� Ry
E

�
ZE=ð2RyZnÞ

Ii=ð2RyZnÞ

g ZeffZn
Ry
E

� �3=2

�s
" #

� x2suðxs; qÞ � ds
u0ðxs; qÞ � uðxs; qÞ=xsj j :

ð9:72Þ

The corresponding statistical ionization rates are obtained by averaging the
ionization cross section of (9.72) over the Maxwellian energy distribution. This can
conveniently be performed by changing the sequence of integration and firstly
integrate over energies of the incident plasma electrons. This average concerns in

fact only the total flux of EQP number neffe te
dNðxÞ
dx

(nðfreeÞe is the plasma electron

density, and te is the corresponding thermal electron velocity). Then, the ionization
rate could be expressed as

RiðZn; q; TeÞ ¼ nðfreeÞe
a30xap3

ffiffiffiffiffiffi
3p

p

16

ffiffiffiffiffiffiffi
Ry
kTe

r
�

Z1
IZ

2ZnRy

x2suðxs; qÞ � ds
u0ðxs; qÞ � uðxs; qÞ=xsj j

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

�
Z1

2ZnRy
kTe

� s

e�u � gðmÞ � du

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

;

ð9:73Þ

where m is defined by (9.37).
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Figure 9.2 shows the ionization cross section for an open 4f-shell of a heavy
element, the tungsten W9+ ion, calculated with the statistical model of (9.72). Also
presented in Fig. 9.2 are the experimental data from (Stenke et al. 1995) and
relativistic excitation–autoionization distorted wave calculations (Loch et al. 2005).

Figure 9.2 demonstrates that the statistical model describes the experimental
data within a factor of two from threshold to high energies. The threshold for heavy
elements requests particular attention because excitation–autoionization as well as
excitation from metastable levels is of importance. It is very cumbersome to include
all necessary excitation–autoionization channels in a fully quantum approach, as
branching factors (for radiative and autoionization decay) have to be involved. In
this respect, the statistical model is very convenient because the statistical model
includes both direct and indirect contributions to ionization. Moreover, it is likewise
difficult in experiment, to measure pure direct excitation cross sections because the
electron beam results likewise in the excitation of metastable levels (highly pop-
ulated) from which ionization can also proceed.

Let us now consider ionization rates from open 4d-shell and open 4p-shell
configurations of Xe12+ and Xe20+, respectively, and compare the statistical ion-
ization rate coefficients of (9.73) with quantum mechanical calculations in the
Coulomb–Born exchange approximation of the direct ionization rate using
Vainshtein’s ATOM code (Vainshtein and Shevelko 1986; Sobelman and
Vainshtein 2006; Povyshev et al. 2001).

As can be seen from Fig. 9.3, also quite good agreement between the statistical
model and the quantum calculation are obtained. For low electron temperatures, i.e.,
when the effective ionization cross sections are near threshold, the quantum cross
sections provide systematically lower rates than the statistical model because the
depicted quantum calculations do include only the direct cross section.

Numerous comparisons with experimental data and different methods of rather
complex quantum mechanical ionization cross sections have been performed
(Demura et al. 2015b) and it is found that the statistical approach to ionization cross
sections constitutes an efficient and rather precise method for heavy elements and
permits easily inclusion of direct and indirect ionization contributions.

Fig. 9.2 Comparison of the
ionization cross section of
tungsten W9+ ions with
experimental data (Stenke
et al. 1995) and complex
collisional excitation–
autoionization distorted wave
calculations (Loch et al. 2005)
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9.5 Statistical Dielectronic Recombination Rates

Dielectronic recombination (see also Chap. 5 and review (Rosmej et al. 2020b)) is
the most effective recombination channel in electron–heavy ion collisions. Due to
the complex electronic structure of multielectron ions, the proper account of all
necessary channels is a very difficult task, in particular for open shell configura-
tions. In addition, in dense plasmas, dielectronic capture might effectively proceed
from excited states (see also Chap. 5) that considerably increases the quantum
channels for the dielectronic capture. Moreover, in heavy ions, numerous meta-
stable states may play the role of excited states even in rather low-density plasmas,
thereby increasing the numerical complexity of fully quantum calculations con-
siderably. At present, the dielectronic recombination of heavy ions is still under
controversial discussion and is one of the main sources of discrepancies between
different methods of calculations for radiation loss and ionic charge state distri-
butions. It is therefore of great interest to develop different methods for the cal-
culation of the dielectronic recombination in heavy ions that permit more general
studies including the analysis of scaling laws. As has been demonstrated in the
foregoing paragraphs, the statistical approach provides reasonable approximations
not only for the atomic structure, but for the calculations of elementary processes
too. We are therefore seeking to extend the approach of the local plasma frequency
approximation also to the dielectronic recombination.

9.5.1 General Formula

The general formula for the total dielectronic recombination rates DR can be written
as Sobelman and Vainshtein (2006)

Fig. 9.3 Comparison of the ionization cross section of Xeon ions with the quantum mechanical
calculations in Coulomb–Born exchange approximation for the direct ionization rate
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QDRðTÞ ¼ 4pRy
kTe

� �3=2

a30
gf
gi

�WR �
X
n;l

WAðn; lÞ
WR þWAðn; lÞ � exp � �hx

kTe
þ Z2

i Ry
n2kTe

� �� �
;

ð9:74Þ

where kTe is the electronic temperature in [eV], Ry ¼ 13:61 eV, gi and gf are the
statistical weights of the initial and final states of the atomic core, respectively. WR

is the radiative transition probability inside the core, WA is the autoionization decay
rate of an excited atomic energy level, �hx is the transition energy inside the core, Zi
is the ion charge, a0 is the Bohr radius, and n; l are the principle and orbital quantum
numbers of the captured electron, respectively. The radiative decay rate is expressed
simply in terms of the oscillator strength fij for the transition inside the core (c is the
speed of light):

WR ¼ 2x2fif
c3

: ð9:75Þ

In order to obtain the expression for the autoionization decay rate WAðn; lÞ, we
use a relationship between the decay rate WAðn; lÞ and the partial electron excitation
cross section rexðlÞ at threshold in the semiclassical representation. The quantities
WAðn; lÞ and rexðlÞ describe the mutually inverse processes, so the relationship
between them can be obtained from the detailed balance (see also Sect. 7.7.2)
between ions XZi þ 1 and XZi . Thus, we obtain

ð2lþ 1ÞgfWAðn; lÞ ¼ Z2
i

n3
xgi

rexðlÞ
p2a20

: ð9:76Þ

The electron excitation cross section in the semiclassical approximation takes the
form

rexcðlÞ ¼ 8p
3

�h
mete

� �2gf
gi
fifZ

�2
i ðlþ 1=2Þ2G xðlþ 1=2Þ3

3Z2
i

 !
; ð9:77Þ

where the function GðuÞ is given by (K1=2 and K3=2 are the Mcdonald functions)

GðuÞ ¼ u � K2
1=3ðuÞþK2

2=3ðuÞ
� �

: ð9:78Þ

Taking into account that the essential values of the argument of the GðuÞ function
are never close to zero, it is possible to replace GðuÞ by its asymptotic expansion:

G uð Þ � 3:4 � expð�2uÞ: ð9:79Þ
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Within these approximations, the autoionizing decay rate takes the form:

WAðn; lÞ ¼ 0:72 � xðlþ 0:5Þfij
n3

� exp � 2xðlþ 0:5Þ3
3Z2

i

 !
: ð9:80Þ

The sum of the oscillator strengths satisfies the Thomas–Reiche–Kuhn sum rule, i.e.,

Nbound
e ¼

X
f

fif : ð9:81Þ

As discussed in the foregoing paragraphs, the oscillator strengths in the statistical
model are expressed in terms of the atomic electron density neðr; q; ZnÞ (9.32) and
the statistical sum rule is given by ðNbound

e is the total number of bound electrons)

Nbound
e ¼

Z
neðr; q; ZnÞdV : ð9:82Þ

The application of the semiclassical statistical model to the general formula
(9.72) for the total DR is achieved by application of the relationships

X
f

fif !
Zr0
0

dr � 4pr2neðr; q; ZnÞ ð9:83Þ

and

Eif ! x¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pneðr; q; ZnÞ

p
: ð9:84Þ

After all substitutions, we obtain for the DR rates:

QDRðcm3=sÞ ¼ 0:61� 10�8 � QDRða:uÞ; ð9:85Þ
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ð9:86Þ

Aðx; lÞ ¼ 5:2� 106ðlþ 0:5Þ
exp �2xðxÞðlþ 0:5Þ3=3Z2

i

h i
Z3
i

ffiffiffiffiffiffiffiffiffiffi
xðxÞp ; ð9:87Þ
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xðxÞ ¼ 1:2 � Zn � uðxÞ
x

� �3=4

ð9:88Þ

with Teða:u:Þ ¼ TeðeVÞ=27:21 and t ¼ n=n1, where n1 is a minimal possible
quantum number. n1 is the lowest level, on which electron capture is possible and
corresponds to an energy of an incident electron Ei

Ei ¼ x� Z2
i

2n2
ð9:89Þ

that is equal to zero, i.e.,

0 ¼ x� Z2
i

2n21
: ð9:90Þ

From (9.90), it follows

n1 ¼ Ziffiffiffiffiffiffi
2x

p : ð9:91Þ

9.5.2 Orbital Quantum Number Averaged Dielectronic
Recombination Rates

In the simplest version of the statistical model, the atomic density, excitation
energies, and oscillator strengths do not depend on the orbital momentum quantum
number l. If we average the branching factor over orbital momentum we obtain for
the total dielectronic recombination rate:

QDRða:u:Þ ¼ 39:2
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ð9:92Þ

where the function Aðx; lÞ is given by (9.87), (9.88). Instead of averaging over the
branching factor, we may investigate averaging the autoionization decay rate ³ from
(9.80) over orbital quantum number, i.e.,
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: ð9:93Þ

For the corresponding total dielectronic recombination rate, we then obtain
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AðxÞ ¼ 4:56� 106

Z3
i

ffiffiffiffiffi
Zn
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: ð9:95Þ

9.5.3 Statistical Burgess Formula

It is of great interest to apply the statistical approach to the Burgess-Mertz formula
(Burgess 1964; Cowan 1981) for dielectronic recombination because this formula is
widely employed and cast into an entirely analytical expression (z is the spectro-

scopic symbol z ¼ Zn � NðboundÞ
e þ 1; while Zi ¼ Zn � NðboundÞ

e is the ion charge, see
also eqs. (5.138)–(5.143)):

QDR ðcm3=sÞ ¼ 10�13Bd � b3=2 � e�b�vd ; ð9:96Þ

Bd ¼ 480 fif
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� �3=2
½1þ 0:105ðzþ 1Þvþ 0:015ðzþ 1Þ2v2��1; ð9:97Þ
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; ð9:98Þ

vd ¼
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ðzþ 1Þ2
; ð9:99Þ

v¼ Eif

ðzþ 1Þ2Ry : ð9:100Þ
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The statistical version of the Burgess-Mertz formula is obtained, going from the
oscillator strength in (9.97) to the electron density and from the energy difference in
(9.100) to the plasma frequency employing (9.83) and (9.84), respectively. After
transformation to dimensionless variables, we obtain:

QDRðcm3=sÞ ¼ 10�13b3=2
Zx0
0

dx � x2BdðxÞe�bvdðxÞ; ð9:101Þ

BdðxÞ ¼ 135p3
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z2 þ 13:4
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A xð Þ ; ð9:102Þ

AðxÞ ¼ 1þ 0:105ðzþ 1ÞvðxÞþ 0:015ðzþ 1Þ2v2ðxÞ; ð9:103Þ

vðxÞ ¼ 2
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p
; ð9:104Þ

vdðxÞ¼
vðxÞ

1þ 0:015
z3

ðzþ 1Þ2
: ð9:105Þ

9.5.4 Statistical Vainshtein Formula

Several improvements to the Burgess formula have been proposed in the literature
(see also Chap. 5). In this respect, it should be remembered that the Burgess for-
mula is of interest due to its generality and great simplicity. The main drawback of
the Burgess formula is the single channel approach that could result in considerable
overestimation of the total dielectronic recombination rate (see Sect. 5.6.2.1). The
multichannel approach requests usually complex atomic structure calculations that
are very difficult to realize for heavy atoms. One of the most efficient general
improvements of the Burgess formula including a simplified multichannel approach
has been proposed by Vainshtein (Beigman et al. 1981; Sobelman and Vainshtein
2006) (see also Chap. 5). In the single channel approach, the Vainshtein formula
can be summarized as follows:

QDR ðcm3=sÞ ¼ 10�13Bdb
3=2e
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T ; ð9:106Þ
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ns ¼ nsðlÞ ¼ 137
n21rifðlÞ
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; ð9:108Þ
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; ð9:110Þ

where DEfi is the energy difference between initial i and final f levels, and rifðlÞ is
the partial excitation cross section at threshold. Implementation of the multichannel
approach results into a modification of the Bd factor, i.e.,
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that results into an effective reduction of the branching factor (Beigman et al. 1981).
Undertaking the substitutions of (9.83), (9.84) and replacing the sum over nl by
integrations, we obtain from (9.106)–(9.110):

QDRða:u:Þ ¼ 13:6
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If we average (9.102)–(9.114) over the orbital angular electron momentum l and
replace the sum over l by an integration, we obtain:

QDRða:u:Þ ¼ 98:1
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9.5.5 Numerical Comparison of Different Dielectronic
Recombination Models

For heavy ions, the quantum mechanical level-by-level calculations are very
complex and have so far mainly been carried out for closed shell configurations.
Only recently, also open shell configurations have been considered (Balance et al.
2010; Wu et al. 2015). In open shell configuration (such as the open 4p-, 4d-, 4f-
shells or even higher ones like the 5p-, 5d-, 5f-, 5g-shells), excitation–autoioniza-
tion channels are very complex and the overall completeness of quantum
mechanical level-by-level calculations should still be considered with care. The
analysis shows that order of magnitude disagreements can be excepted for low
temperatures while for high temperatures, different level-by-level quantum
mechanical models differ by about a factor of 2 while the Burgess-Mertz approach
may deviate by many orders of magnitude providing also an entirely inadequate
temperature dependence (Behar et al. 1996).

Let us compare first the various statistical approaches with detailed quantum
level-by-level calculations. Figure 9.4 shows statistical dielectronic recombination
rates nl-resolved according to (9.85)–(9.88), curve designated as “Statistical nl”; the
statistical DR rate with orbital average of the branching factor according to (9.92),
curve designated as “Statistical n”; the statistical approach with orbital average of
the autoionization rate according to (9.94), (9.95), curve designated as “Statistical
W(n)”; the Burgess DR rate according to (9.96)–(9.100), (9.101)–(9.105), curve
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designated as “Burgess”; the Vainshtein approach according to (9.106)–(9.110),
(9.113)–(9.115), curve designated as “Vainshtein nl”; the Vainshtein formula
averaged over orbital quantum number according to (9.116)–(9.118), curve des-
ignated as “Vainshtein n”; detailed quantum level-by-level calculations (Behar et al.
1996), curve designated as “quantum.” It can be seen that the statistical orbital
averaged method compares quite well with the detailed quantum calculations, as
does the l-averaged Vainshtein approach, in particular, these approaches describe
very well the critical low-temperature dielectronic recombination while the
Burgess-Mertz approach entirely fails in this region. Figure 9.4 demonstrates also
that the difference between the l-averaged branching factor and autoionization rate
in the statistical approach is rather small; only at very low temperatures, some
difference becomes visible.

The great advantage of the statistical model is its generality that also provides an
easy means to study scaling laws. Figure 9.5 shows the analysis of the scaling in
nuclear charge number Zn for fixed kTe ¼ 100 eV for the total dielectronic
recombination rate obtained from the various approaches discussed in Fig. 9.4. It
can be seen that the statistical l-averaged approaches as well as the l-averaged
Vainshtein approach provide a reasonable agreement with the numerical data from
complex quantum calculations.

As Figs. 9.4 and 9.5 demonstrate, the l-averaged approaches of the statistical and
the Vainshtein approach seem to correspond better with the complex quantum
mechanical level-by-level calculations, while the statistical and Vainshtein

Fig. 9.4 Comparison of
different statistical approaches
with quantum level-by-level
calculations for the Ni-like
sequence 3s23p63d10 of
tungsten W46+
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nl-approach provides systematically larger total dielectronic recombination rates.
The physical origin of this observation is difficult to explore and has not yet been
discussed in the literature. In fact, in the current statistical approaches (Leontyev
and Lisitsa 2016) multichannels as depicted by (9.111), (9.112) are not included.
Multichannels, however, as have been demonstrated in detail in Sect. 5.6.2.2 may
result in a decrease of total dielectronic recombination rate.

Below, we compare the different approaches with detailed quantum mechanical
level-by-level calculations of the dielectronic recombination rates. Figure 9.6
shows the total dielectronic recombination rates of Xenon Xe26+ and Gold Au51+

(Ni-like 3s23p63d10-configuration into which dielectronic capture proceeds) calcu-
lated with the l-averaged statistical model from (9.85), (9.93), (9.94) that employs
the Thomas–Fermi model of (9.1)–(9.13), the Burgess formula from (9.101)–
(9.105) and the quantum level-by-level calculations of Behar et al. (1996).

The statistical model compares quite well (within a factor of two) over a very
large temperature interval until very low temperatures while the Burgess approach
entirely fails to describe the total dielectronic recombination rate of heavy ions.
Similar observations are made for other isoelectronic sequences. Figure 9.7 shows a
comparison of the Sr-like and Zn-like dielectronic recombination of tungsten and a
comparison with detailed quantum mechanical level-by-level calculations (Wu et al.
2015).

Fig. 9.5 Scaling properties
in dependence of nuclear
charge Zn for kTe = 100 eV
for the various statistical
approaches compared to
quantum level-by-level
calculations for the Ni-like
sequence 3s23p63d10
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It is particular impressive that the statistical model provides a rather good
approximation of the total dielectronic recombination rate in the low-temperature
region that is numerically exceedingly difficult to treat by fully quantum
level-by-level calculations. Therefore, the statistical model in its simplest version of
(9.1)–(9.13), (9.85)–(9.91), (9.92)–(9.95) seems to provide even the possibility to
estimate the order of magnitude correctness of very complex quantum
level-by-level calculations. Moreover, it should be remembered that currently even
the most sophisticated quantum level-by-level calculations (Wu et al. 2015) have
been obtained only in the low-density limit (corona approximation) where the

Fig. 9.6 Comparison of the l-averaged statistical approach with the Burgess and quantum
level-by-level calculations for the Ni-like sequence 3s23p63d10 of Xenon Xe26+ and Gold Au51+

Fig. 9.7 Comparison of the l-averaged statistical approach with the Burgess and quantum
level-by-level calculations for the Sr-like sequence 4s24p64d2 of Tungsten W36+ and the Zn-like
sequence 4s2 of tungsten W44+
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branching factors are entirely determined by radiative and autoionization decay
rates while dielectronic capture is proceeding from the respective ground states of
the various charge states only. In high-density plasmas, however, collisional
depopulation due to electron collisional ionization or collisional transfer to other
levels (in particular of high nl-levels) strongly influences on the branching factors
(see Sect. 5.6). In addition, excited states are highly populated from which very
efficient channels of dielectronic recombination may proceed (Rosmej et al. 2020b).
This may entirely change the properties of the total dielectronic recombination
because dielectronic capture into excited states can be even more important than
corresponding capture to the ground state (Sect. 5.6.3.2). This effect has explicitly
been confirmed by high-resolution X-ray spectroscopy of dense laser-produced
plasmas where it was shown that dielectronic recombination into excited states
might exceed by many orders of magnitude the corresponding dielectronic
recombination into ground states (Rosmej et al. 1998; Petitdemange and Rosmej
2013; Rosmej et al. 2020b). As for high-Z elements and open M-, N- and O-shells,
excited states might be highly populated even at rather moderate electron densities.
Therefore, all current detailed quantum level-by-level calculations to determine the
dielectronic recombination have to be considered with care with respect to the
particular application. In this respect, the properties and the innovation potential of
the statistical model look very advantageous for the determination of the total
dielectronic recombination rates for heavy elements.

Finally we note that the inclusion of more levels in the detailed quantum
mechanical level-by-level calculations may not necessarily result only in an
increase of the dielectronic recombination rate, but can also lead to a decrease as
discussed in Sect. 5.6.2.1 and described by (9.111), (9.112). Therefore, at present,
the simple above-presented statistical method compares quite well with other
available much more complex methods of calculations and has the advantage of
generality and ease of application. In addition, there is much room for improve-
ments of the statistical model via improvements of the Thomas–Fermi model
(ionization energies, l-quantum number dependence, Vlasov approach instead of
the local plasma frequency, etc.).
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Chapter 10
Applications to Plasma Spectroscopy

Abstract Applications to plasma spectroscopy are presented for different types of
plasmas that are currently of great interest for science and applications: low-density
tokamak plasmas, dense optical laser-produced plasmas, high-current Z-pinch
plasmas, and X-ray Free Electron Lasers interacting with solids. The general
principles of plasma electron temperature and density measurements as well as the
characterization of suprathermal (hot electrons) and non-equilibrium phenomena
are presented. Particular attention is based on the innovative concepts of dielec-
tronic satellite and hollow ion X-ray emission. The effect of a neutral background
that is coupled to plasma ions via charge exchange is considered in the framework
of nonlinear atomic kinetics. Transient phenomena in the start-up phase, impurity
diffusion, sawtooth oscillations, and superthermal electrons are discussed for
magnetic fusion plasmas. For dense laser-produced plasmas and charge exchange
coupling of colliding plasmas, the dynamics of fast ions in space and energy dis-
tribution functions are presented. The interaction of XFEL with solids is considered
in the framework of a new kinetic plasma theory, where generalized atomic pro-
cesses provide a link from the cold solid until the hot diluted plasma. Three-body
recombination and Auger electrons constitute a generalized three-body recombi-
nation that is identified to play also a new role as a direct heating mechanism.
General principles and new theories are illustrated along with detailed comparisons
with experimental data.

10.1 The Emission of Light and Plasma Spectroscopy

The emission of light is one of the most fascinating phenomena in nature.
Everybody feels the beauty while looking at the colors appearing at sunset, when a
bolt of lightning illuminates the night, or when the emission of the aurora moves
like magic in the dark heaven. And every day, we are looking at something in order
to read information from a computer screen, to drive not into but around an
obstacle, to look into the eyes of the child to understand that it tries to hide that it
just burned off fathers’ stamp collection in an unlucky physical experiment.

© Springer Nature Switzerland AG 2021
F. B. Rosmej et al., Plasma Atomic Physics, Springer Series on Atomic, Optical,
and Plasma Physics 104, https://doi.org/10.1007/978-3-030-05968-2_10

459

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05968-2_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05968-2_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05968-2_10&amp;domain=pdf
https://doi.org/10.1007/978-3-030-05968-2_10


In general terms, we all use light to obtain information, to diagnose something,
to control or optimize a process, or to understand what is true and what is
right. And since the discovery of the spectral analysis, no one doubted that the
problems of describing atoms and matter would be solved once we had learned to
understand the language of atomic spectra and the emission of light.

Light also transports energy, and it is the flow of energy from sunlight that has so
much impacted on the evolution of our blue planet.

The “Radiative properties of Matter” is the related basic science, and their analysis
for diagnostic purposes is called “Spectroscopy”. Questions like “Why the heaven is
blue?”, “What is the temperature in the flame of a candle?”, and “What makes the
sun burning so wonderful?” have been the historical origin of scientific activity. We
also might ask what light is by itself? This is a difficult question: Although almost
everybody has some imagination what light is, it is difficult to say what it really is.

The light emission is accompanied by the transport of energy and the
well-known formula

Ex ¼ �hx ð10:1Þ

(where �h is the Planck constant and x the photon angular frequency) that manifests
in a scientific manner the double role of light: the beauty of photons when looking
at their various colors and the energy that is carried by them with their own velocity
– the speed of light c.

That any radiating source loses consequently energy via its own radiation has a
large impact on the evolution of the system itself. In general terms, the radiation
losses influence on the energy balance of the system that is coupled to the motion of
the particles from which the system is composed.

An impressive example of the importance of radiation losses is known from the
early days of the fusion research based on the magnetic confinement invented in the
50s by the two Russians Igor Tamm and Andrei Sakharov: The term tokamak was
likewise created by the Russians: “тopoидaльнaя кaмepa c мaгнитными
кaтyшкaми” (toroïdalnaïa kamera s magnitnymi katushkami = toroidal chamber
with magnetic coils). The radiation emission from the impurities in the tokamak had
been so large that it overcompensated the energy input leading to a plasma dis-
ruption. Only after generations of very intense and successful material research, the
number of impurity atoms and ions could drastically be reduced to maintain
tokamak discharges for more than minutes. A milestone in the tokamak research
can be attributed to the year 1969: The Kurchatov Institute in Russia, Moscow, has
announced to have obtained a tokamak discharge with an electron temperature of
kTe > 1 keV (means that the level of the right order of magnitude was reached
where fusion reactions become probable). The scientific western community did not
believe these results, and in 1969, an experimental group from England went to the
Kurchatov Institute to measure independently the electron temperature with
Thomson scattering. This group could only confirm the results announced by the
Russians, and in the following years, many countries followed the Russian way of
magnetic fusion research building many tokamaks all over the world.
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Plasma radiation plays likewise an important role in the inertial confinement fusion
(ICF). Here, fusion of the DT capsule is envisaged by means of powerful laser
installations like NIF, MEGAJOULE, and GEKKO. In the indirect drive, the radiation
field in the hohlraum (initiated by megajoule laser irradiation of the inner surface of
the hohlraum composed of an heavy element like gold) is supposed to deliver energy
to the capsule to evaporate in a homogenous manner (assuming that the hohlraum
radiation is very close to the blackbody radiation) the ablator surface that in turn
compresses the fusion material to ignition relevant parameters. In the direct drive
approach, laser radiation is directly interacting with the capsule. Today, many other
schemes of compression are investigated like fast ignition or shock ignition.

In astrophysics, radiation phenomena are strongly connected with the energy
transport in stars from the fusion source in the inner part of the star to its surface.
Therefore, so-called radiation transport plays an important role in star evolution.

Today, the study of the radiative properties of matter has proven to be one of the
most powerful methods to understand various physical phenomena. Plasma spec-
troscopy (Griem 1964, 1974, 1997; McWhirter 1965; Lochte-Holtgreven 1968;
Michelis and Mattioli 1981; Boiko et al. 1985; Lisitsa 1994; Fujimoto 2004;
Sobelman and Vainshtein 2006; Kunze 2009, Rosmej 2012a) provides essential
information about basic parameters, like temperature, density, chemical composi-
tion, velocities, and relevant physical processes (“Why the aurora is green at low
altitudes but red at larger ones?”, “Why can we look with X-rays into the human
body but not with visible light ?”,…).

The accessible parameter range of spectroscopy covers orders of magnitude in
temperature and (especially) density, because practically all elements of particular,
selected isoelectronic sequences can be used for diagnostic investigations. These
elements can occur as intrinsic impurities or may be intentionally injected in small
amounts (so-called tracer elements). This makes plasma spectroscopy also a very
interdisciplinary science.

The rapid development of powerful laser installations including X-ray Free
Electron Lasers, intense heavy ion beams, and the fusion research (magnetic and
inertial fusion) enable the creation of matter under extreme conditions never achieved
in laboratories so far. An important feature of these extreme conditions is the
non-equilibrium nature of the matter, e.g., a solid is heated by a fs-laser pulse and
undergoes a transformation from a cold solid to warm dense matter to strongly coupled
plasma and then to a highly ionized gas while time is elapsing. We might think about
using time-dependent detectors to temporally resolve the light emission in the hope to
have then resolved the problem. However, this is not so simple: There are not only
serious technical obstacles but also basic physical principals to respect. A simple
technical reason is that for 10 fs-laser radiation interacting with matter, we do not have
any X-ray streak camera available (the current technical limit is about 0.5 ps).
A simple principal reason is that the atomic system from which light originates has a
characteristic time constant (see also Sect. 6.2) that might be much longer than 10 fs.
The atomic system is therefore “shocked,” and any light emission is highly out of
equilibrium even if the experimental observation is time resolved. Note, that only
recently general studies of shocked atomic systems have begun (Deschaud et al. 2020).
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In high-energy-density physics, laser-produced plasmas, and fusion research, the
light emission in the X-ray spectral range is of particular interest: Only the X-ray
emission is in general able to exit the volume without essential photoabsorption.
Therefore, X-ray plasma spectroscopy is of particular interest to obtain information
from objects that are not well understood or to control certain processes that are
useful for applications (Renner and Rosmej 2019).

We are therefore looking to develop X-ray radiative properties and the related
atomic and plasma physics to study non-equilibrium states of matter. This is a
challenging field of activity for research and applications: Non-equilibrium atomic
kinetics (see Chap. 6) involve fascinating topics in atomic physics of dense plas-
mas, like the study of exotic dense states of matter (like hollow ions and hollow
crystals) with XFEL (Rosmej 2012a, b; Deschaud et al. 2020), the discovery by
high-resolution spectroscopy of a new heating mechanism like Auger electron
heating (Galtier et al. 2011; Rosmej 2012b; Petitdemange and Rosmej 2013), and
three-body recombination assisted heating (Deschaud et al. 2014), see also
Sect. 10.6.4.6. Radiative properties have likewise strong links and important impact
to magnetic confinement fusion (MCF), inertial confinement fusion (ICF), and
particular X-ray spectroscopy, and related atomic physics is a key element to study
matter irradiated by X-ray Free Electron X-ray Lasers (XFEL).

It is often not quite clear what is meant with the word “Equilibrium.” Does this
mean that the plasma parameters do not change in time, which means for a
parameter X:

@X=@t ¼ 0 ð10:2Þ

or does the word “Equilibrium” mean that the particle statistics follows certain
laws? Or something else?

In thermodynamics (Huang 1963; Reif 1965; Alonso and Finn 1968), the
“Equilibrium” of an isolated system is characterized by the maximum entropy1:

dS ¼ d k ln Wf g ¼ 0: ð10:3Þ

k is the Boltzmann constant, and W is the microscopic probability (probability
means “Wahrscheinlichkeit” in german) of a certain configuration which means the
probability P(N, N1, N2 … NM) to distribute N particles over M states with
respective populations N1, N2 … NM.

It is important to realize that conditions (10.2) and (10.3) are entirely different:
Thermodynamic equilibrium is not determined by ∂/∂t = 0. In other words, the
Saha–Boltzmann equation, the Planck radiation, the Maxwellian energy distribution

1Note that for a system with controlled constant temperature and volume, the Helmholtz free
energy F ¼ U � TS is minimum at thermodynamic equilibrium and for a system with controlled
constant temperature and pressure the Gibbs free energy G ¼ U � TSþ pV is minimum. Note
also the notions of thermal equilibrium, pressure equilibrium, and diffusive equilibrium (identity
of chemical potentials) to characterize “equilibrium” between two systems.
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function of free electrons,… are consequences of (10.3), and these laws cannot be
obtained from (10.2). These laws are the solution of (10.3) for different particle
statistics.

In most cases, laws obtained from (10.3) concern isolated systems, which means
that external forces do not play a role for the particle statistics. What does it mean
that external forces do not play an important role? In atomic physics, this means
that external forces have to be compared with the “Atomic Forces.” Let us consider
an example to illustrate this: the interaction of a high-intensity laser with a plasma.
The external force is the laser electric field Elaser:

Ilaser ¼ ce0 E2
laser

� �
: ð10:4Þ

Ilaser is the laser intensity, c the speed of light, and e0 the electrical permittivity.
Rewriting (10.4) in convenient units, we obtain:

Elaser �
ffiffiffiffiffiffiffiffiffiffi
E2
� �q

¼
ffiffiffiffiffiffi
I
ce0

r
¼ 19:4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I

W
cm2

� �s
V
cm

� �
: ð10:5Þ

The relevant forces for an ion in a plasma are the atomic ones. They can be
estimated with the simple Bohr atomic model:

EAtom � 1
4pe0

Z � e
a0n2=Zð Þ2 ¼

e
4pe0a20

Z3

n4
ð10:6Þ

or, expressed in convenient units

EAtom � 5:14� 109
Z3

n4
V
cm

� �
: ð10:7Þ

The standard atomic field, i.e., Ea.u. = 5.14 � 109 V/cm (see also Annex A.5) is
therefore obtained for a laser intensity of Ia.u. = 7.0 � 1016 W/cm2. This means,
e.g., that the 1s level of atomic hydrogen is weakly perturbed for laser intensities
being many orders of magnitudes lower than Ia.u..

Let us now consider the influence of the electrical laser field on the radiative
properties of atoms and ions in a plasma. Due to the interaction of the laser electric
field with the free electrons in the plasma, suprathermal electrons (or hot electrons)
are generated. They seriously alter the light emission. First, there is an enhanced
ionization due to hot electrons because ionization is more effective. The second
change concerns the qualitative distortion of ionic charge stage distribution (Rosmej
1997). The visualization of the distortion of the charge stage distribution by
high-resolution X-ray spectroscopy has been applied to inertial fusion hohlraums to
determine the time-dependent hot electron fraction and the relevant mechanism of
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hot electron generation (Glenzer et al. 1998). Let us define the suprathermal elec-
tron fraction according to:

fhot ¼ ne hotð Þ
ne bulkð Þþ ne hotð Þ : ð10:8Þ

ne,hot is the hot electron density, ne,bulk is the bulk electron density. ne,hot + ne,bulk is
therefore the total electron density, and (10.8) fulfills the normalization condition. It
is important to realize that even rather small amounts of hot electrons (low as of the
order of 10−5) might have a considerable influence on the radiative properties,
especially if the bulk electron temperature is low. This is due to the exponential
temperature dependence of the excitation (C) and ionization (I) rate coefficients (see
also Sects. 5.3.1 and 5.4.3), i.e.,

C / exp �DE=kTeð Þffiffiffiffiffiffiffi
kTe

p ; ð10:9Þ

I / exp �Ei=kTeð Þffiffiffiffiffiffiffi
kTe

p : ð10:10Þ

DE is the excitation energy of an atomic transition, Ei is the ionization energy of a
particular atomic level, and Te is the electron temperature.

It should be realized that small fractions of hot electrons can be produced already
with laser intensities of 1015 W/cm2 (Gitomer et al. 1986; Beg et al. 1997) and
therefore the value of the laser electric field above which an important influence on
the radiative properties is expected might be well below Ia.u. = 7.0 � 1016 W/cm2.
We note that suprathermal electrons generated in ICF hohlraums (e.g., generated by
SBS = Stimulated Brillouin Scattering) may lead to a preheat of the DT target
which in turn prevents efficient compression necessary to reach ignition.
Suprathermal electrons (hot electrons) are therefore a very actual problem in the
laser-driven inertial fusion ignition campaigns (Lindl 1995, Lindl et al. 2004, 2014;
Atzeni 2009). We note that in the more recently discussed shock ignition scheme
(Betti et al. 2007), suprathermal electrons impact on the fusion performance as an
important fraction of laser energy is coupled to hot electrons.

In tokamaks, much lower electric fields lead to the generation of suprathermal
electrons: Due to the low electron density, the collisional drag is small and even
electric field values of the order of some V/cm (the so-called Dreicer field, Wesson
2004) lead to runaway electrons: The collisional drag is insufficient to compensate
the electron acceleration due to the electric field and numerous circulations in the
tokamak may then lead to electron energies up to MeV. These MeV electrons
seriously influence on the fusion performance (e.g., electrons accelerated by lower
hybrid waves, investigation of suitable current drives). These two foregoing
examples show that the importance of an external force is not specified by an
absolute value but rather by the comparison of the external force with the relevant
“internal” one.
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Let us now consider the principle idea for spectroscopic diagnostics that is based
on line intensity ratios. Having once calculated the non-LTE level populations
according to (6.22), all combinations of line intensity ratios can be obtained:

Iji
Ij0i0

¼ xji

xj0i0

Aji

Aj0i0

nj
nj0

: ð10:11Þ

Of particular interest are those intensity ratios that depend only on one plasma
parameter. The ideal case of a temperature diagnostic is therefore given by

Iji
Ij0i0

¼ Gjij0i0 Teð Þ; ð10:12Þ

whereas the ideal case of a density diagnostic is represented by the relation

Ikl
Ik0l0

¼ cklk0l0 neð Þ: ð10:13Þ

The functions G and c are obtained from the solution of the system of rate equa-
tions (6.22). Having measured these intensity ratios with appropriate line emis-
sions, the application of (10.12), (10.13) provides readily temperature and density.
However, the solution of (6.22) shows that in general, the intensity ratio depends
both on temperature and density:

Iji
Ij0i0

¼ vjij0i0 Te; neð Þ: ð10:14Þ

One aim of spectroscopic research is to find line ratios whose dependence is
close to those of the ideal (10.12), (10.13). The difficulty in doing so lies in the fact
that (10.14) has multiple solutions, which means that for different sets of density
and temperature the same line intensity ratio is obtained (note that the
two-parameter dependence is a simplified case and opacity, hot electrons and
transient plasma evolution might considerably increase the complexity). It is
therefore necessary to employ several line ratios at the same time to avoid mis-
leading parameter information from single line ratios.

10.2 Dielectronic Satellite Emission

10.2.1 Electron Temperature

10.2.1.1 Satellite to Resonance Lines

Gabriel has introduced the dielectronic satellite transitions (see also Chap. 5) as a
sensitive method to determine the electron temperature in hot plasmas (Gabriel 1972)
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that is based on dielectronic capture and dielectronic recombination (see also Sect. 5.6
and review [Rosmej et al. 2020a]). In low-density plasmas, this method approaches
the ideal picture of a temperature diagnostic according to (10.12). Numerical cal-
culations show (see also Sect. 6.3.2 and following Figures 10.2 and 10.3) that also in
high-density plasmas, this method is still applicable and one of the most powerful
methods for electron temperature determination of hot dense plasmas.

Let us therefore consider the basic principles via an example: The dielectronic
satellites 2l2l′ near the Lyman-alpha line of H-like ions (Fig. 5.1 show the relevant
energy level diagram). As the He-like states 2l2l′ are located above the ionization
limit, a non-radiative decay to the H-like ground state (autoionization) is possible:

autoionization : 2l2l0 ! 1sþ e: ð10:15Þ

By first quantum mechanical principles, the reverse process, so-called dielec-
tronic capture, must exist:

dielectronic capture : 1sþ e ! 2l2l0: ð10:16Þ

The radiative decay reads

radiative decay : 2l2l0 ! 1s2lþ �hxsatellite: ð10:17Þ

The emitted photon is called a “satellite.” The satellite transition is of similar
nature like the resonance transition Lymana ¼ 2p ! 1sþ �hxLya except the cir-
cumstance that an additional electron is present in the quantum shell n = 2, the
so-called spectator electron. As the spectator electron screens the nuclear charge,
the satellite transitions are essentially located on the long wavelength side of the
corresponding resonance line. However, due to intermediate coupling effects and
configuration interaction, also satellites on the short wavelengths side are emitted
(see Fig. 10.1), so-called blue satellites (Rosmej and Abdallah 1998).

As the number of possible angular momentum couplings increases rapidly with
the number of electrons, usually numerous satellite transitions are located near the
resonance line (which often cannot be resolved spectrally even with high-resolution
methods). Figure 10.1 shows an example of the Lymana satellite transitions
obtained in a dense laser-produced magnesium plasma. The experiment shows also
higher-order satellites where the spectator electrons are located in quantum shells
n > 2 (configurations 2lnl′).

Let us now proceed to the genius idea of Gabriel to obtain the electron tem-
perature from satellite transitions. In a low-density plasma, the intensity of the
resonance line is given by

Iresk0;j0i0 ¼ nenk0
Aj0i0P
l0 Aj0l0

Ck0j0
� �

; ð10:18Þ
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where ne is the free electron density, nk′ the ground state density from which
electron collisional excitation proceeds (k′ is the 1s level in our example), Aj′i′ is the
transition probability of the resonance transition j′! i′ (the sum over A in the
denominator accounts for possible branching ratio effects), and Ck0j0

� �
is the elec-

tron collisional excitation rate coefficient from level k′ to level j′. The intensity of a
satellite transition with a large autoionizing rate (and negligible collisional channel)
is given by

Isatk;ji ¼ nenk
AjiP

l Ajl þ
P

m Cjm
Dkj
� �

: ð10:19Þ

Aji is the transition probability of the particular satellite transition, and Dkj
� �

is the
dielectronic capture rate coefficient from level k to the level j. The sums over the
radiative decay rates and autoionizing rates account for possible branching ratio
effects (in our simple example, only m = k exist, a particular upper-level 2l2l′ may
have more than one radiative decay possibilities j ! l). We note that already for the
Heb satellites, numerous autoionizing channels exist which are very important in
dense plasmas (Rosmej et al. 1998). As both intensities of (10.18), (10.19) are
proportional to the electron density ne and to the same ground state density (k′ = k),
the intensity ratio is a function of the electron temperature only, because the rate
coefficients Ch i and Dh i depend only on the electron temperature but not on the
density:

Fig. 10.1 Dielectronic satellite emission near Lyman-alpha of H-like Mg ions in a dense
laser-produced plasma (50 J, 15 ns, 1.064 lm). Spectral simulation of optically thick plasma has
been carried out with the MARIA code for an electron temperature of kTe = 210 eV, electron density
of ne = 3 � 1020 cm−3, effective photon path length Leff = 500 lm, inhomogeneity parameter s = 1.3
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Isatk;ji

Iresk0j0i0
¼ G Teð Þ: ð10:20Þ

The dielectronic capture rate (see also Chap. 5) is an analytical function and
given by

Dkj
� � ¼ aCjk

gj
gk

exp �Ekj=kTe
	 

kTeð Þ3=2

: ð10:21Þ

a = 1.6564 � 10−22 cm3 s−1, gj and gk are the statistical weights of the states j and
k, Cjk is the autoionizing rate in [s−1], Ekj is the dielectronic capture energy in [eV]
(see also Fig. 5.1), and kTe is the electron temperature [eV]. The intensity of a
satellite transition can therefore be written as

Isatk;ji ¼ anenk
Qk;ji

gk

exp �Ekj=kTe
	 

kTeð Þ3=2

: ð10:22Þ

Qk,ji is the so-called dielectronic satellite intensity factor and given by

Qk;ji ¼ gjAjiCjkP
l Ajl þ

P
m Cjm

: ð10:23Þ

The calculation of the dielectronic satellite intensity factors Qk,ji requests rather
complicated multiconfiguration relativistic atomic structure calculations which have
to include intermediate coupling effects as well as configuration interaction.

For the ease of applications, we provide an analytical set of all necessary for-
mulas for the most important cases to apply the temperature diagnostic via
dielectronic satellite transitions near Lya and Hea of highly charged ions. For the
dielectronic satellite intensity factor, the following formula can be employed:

Q ¼ 1010 s�1 C1 Zn � C2ð Þ
C3Z

C4
n þ 1

4

: ð10:24Þ

Table 10.1 provides the fitting parameters for the J-satellite near Lya as well as
for the k-satellite and the j-satellite near Hea for all elements with nuclear charge
6 < Zn < 30. We note that the k- and j-satellites are treated separately, as line

Table 10.1 Zn-scaled fitting parameters of dielectronic satellite intensity factors Q according to
(10.24), the range of validity is 6 < Zn < 30

Satellite C1 C2 C3 C4 Max. error (%)

J = 2p2 1D2–1s2p
1P1 5.6696E−1 1.4374E−8 5.8934E0 2.2017E−2 1.5

j = 1s12p2 2D5/2–1s
22p 2P3/2 3.4708E−1 1.5569E−7 4.9939E0 8.6347E−1 1.5

k = 1s12p2 2D3/2–1s
22p 2P3/2 2.4072E−1 6.7212E−9 5.9468E0 1.1362E0 3
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overlapping may request their separate analysis. Note that gk = 2 for the Lya-
satellites and gk = 1 for the Hea-satellites in (10.22). The dielectronic capture
energies can be approximated by

Ekj � d Zn þ rð Þ2Ry: ð10:25Þ

For the Lya-satellites 2l2l′, d = 0.5, r � 0.5, for the Hea-satellites 1s2l2l′,
d = 0.5, r � 0.1, and Ry = 13.6 eV. The electron collisional excitation rate coef-
ficients have been calculated with the Coulomb–Born exchange method including
intermediate coupling effects and effective potentials (using Vainshtein’s ATOM
code (Vainshtein and Shevelko 1986; Sobelman and Vainshtein 2006)) and fitted
into a simple Z- and b-scaled expression:

C; Teh i � 10�8 cm3 s�1

Z3

Eu

El

� �3=2 ffiffiffi
b

p
A
bþ 1þD
bþ v

exp � El � Euð Þ=kTef g ð10:26Þ

with

b ¼ Z2Ry
kTe

: ð10:27Þ

Z is the spectroscopic symbol (Z = Zn + 1 − N where Zn is the nuclear charge and
N the number of bound electrons), the fitting parameters A, v, and D are given in
Table 10.2.

El and Eu are the ionization energies of lower and upper states. If not particularly
available, they can be approximated by the simple expression

Ej � d Zn � rð Þ2Ry: ð10:28Þ

For the 1s-level, d = 1, r � −0.05; for the 2p levels, d = 0.25, r � −0.05; for
the 1s2 level, d = 1, r � 0.6, and for the 1s2p 1P1 level, d = 0.25, r � 1.

10.2.1.2 Rydberg Satellites

Higher-order satellites, namely 2lnl′ and 1s2lnl′, provide further possibilities for
plasma diagnostics even if single transitions are not resolved. A rather tricky variant

Table 10.2 Fitting parameters for Z- and b-scaled electron collisional excitation rates of H-like
Lya and He-like Hea, 1/32 < b < 32

Transition A v D Max. error (%)

Lymana = 1s 2S1/2–2p
2P1/2, 3/2 24.1 0.145 −0.120 4

Hea = 1s2 1S0–1s2p
1P1 24.3 0.198 1.06 6
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of electron temperature measurement which employs only satellite transitions has
been proposed in (Renner et al. 2001):

Isatn

Isat2
� Qn

Q2
exp � Zn � 0:6ð Þ2Ry

4kTe
1� 4

n2

� �( )
: ð10:29Þ

Qn and Q2 are the total dielectronic satellite intensity factors for the 2lnl′ ! 1snl′
and 2l2l′ ! 1s2l′ transitions, respectively. The considerable advantage of this
method is that it is even applicable, when the resonance line is absent due to high
photoabsorption or due to very low electron temperatures—a typical situation in
dense strongly coupled plasmas (Rosmej et al. 1997, 1998, 2000, 2003;
Renner et al. 2001).

We note that another important excitation channel for satellite transitions is via
electron collisional excitation from inner-shells. Concerning the above-discussed
example of satellite transitions near Lya, this excitation channel reads

inner-shell excitation : 1s2lþ e ! 2l2l0 þ e:

This excitation channel is important for satellite transitions with low autoion-
izing rates but high radiative decay rates. It drives satellite intensities, which allow
an advanced characterization of the plasma (determination of charge exchange
effects in tokamaks, characterization of suprathermal electrons, to be discussed
below). For electron temperature measurements, the inner-shell excitation channel
should be avoided.

Figure 10.2 shows the simulations of the spectral distribution near Lya carried
out with the MARIA code (Rosmej 1997, 1998, 2001, 2006, 2012a). Dielectronic
satellites 2l2l′ as well as 2l3l′-satellites are included in the simulations for a dense
plasma: ne = 1021 cm−3. Several 2l3l′-satellites are located at the blue wavelength
side of Lya. For these particular transitions, LS-coupling effects are as important as
the screening effect originating from the spectator electron. As can be seen,
numerous satellites are located at the blue wavelengths wing of the resonance line,
so-called blue satellites (Rosmej and Abdallah 1998).

Figure 10.3 shows the MARIA simulations of the spectral distribution near Hea,
dielectronic satellites 1s2l2l′, 1s2l3l′, 1s2l4l′, and 1s2l5l′ which are included in the
simulations. In all cases (Figs. 10.2 and 10.3), a strong sensitivity to electron
temperature is seen from dominating until vanishing dielectronic satellite contri-
bution. The blue curve in Fig. 10.3 shows the impact of the higher-order satellite
emission (n > 3) on the intensity near the resonance line Helium-alpha. It can
clearly be seen that higher-order satellites may still contribute considerably to the
overall line emission.

Figure 10.1 shows also the fitting of the experimental spectrum obtained in a
dense laser-produced plasma experiment taking into account opacity effects (im-
portant only for the Lya-line). A good match to the experimental data is obtained for
kTe = 210 eV and ne = 3 � 1020 cm−3. The effective photon path length was
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Leff = 500 lm (determined from the width of the Lyman-alpha lines as well as the
intensity ratio of the Lyman-alpha components), and the inhomogeneity parameter
(see (1.42)) was s = 1.3 (determined from the dip between the Lyman-alpha
components). An ion temperature of kTi = 100 eV is assumed, and a convolution
with an apparatus function k/dk = 5000 has been made. We note that the opacity
broadening of Lya has been used to stabilize the fitting of the radiation transport. In
this case, the line center optical thicknesses of Lyman-alpha lines are s0(Lya1/
2) � 6, s0(Lya3/2) � 12; those of the satellites are of the order of s0(2l2l
′) � 2 � 10−2. Figures 10.2 and 10.3 demonstrate that even in high-density plas-
mas, the temperature diagnostic via dielectronic satellite transitions works very
well.

10.2.2 Ionization Temperature

Gabriel has also introduced the “ionization temperature TZ” to plasma spectroscopy
in order to characterize ionizing and recombining plasmas (Gabriel 1972). In
general terms, the ionization temperature is the temperature used to solve (6.7),
(6.22) for a certain density setting the left-hand side to zero (stationary and
non-diffusive). This provides a certain set of ionic populations nZ. If in an

Fig. 10.2 MARIA
simulations of the dielectronic
satellite emission near
Lyman-alpha of H-like Mg
ions in dependence of electron
temperature, ne = 1021 cm−3

10.2 Dielectronic Satellite Emission 471



experiment the electron temperature is known (e.g., by means of the dielectronic
satellite method described above) and if, e.g., the ratio of the determined ionic
populations nZþ 1=nZ is smaller than it would correspond to the solution of (6.7),
(6.22) (left-hand side is zero), the plasma is called ionizing. If nZþ 1=nZ is larger, the
plasma is called recombining. The physical picture behind this is as follows: Let us
assume a rapid increase of the electron temperature that results in a subsequent
plasma heating (e.g., a massive target is irradiated by a laser). Due to the slow
relaxation time according to (6.48), the ionic populations need a considerable time
to adopt their populations to the corresponding electron temperature. In the initial
phase, the ionic populations are lagging behind the electron temperature and the
plasma is called ionizing. Only after a rather long time (order of sZ,Z+1), the ionic
populations correspond to the electron temperature. The simulations of Fig. 6.9
provide detailed insight for this example. At an electron density of 1021 cm−3, only
after 1 ns the ionic populations have been stabilized. It is important to note that not
the absolute time is important for the rapidity of the ionization but the inverse of the
rates that are density dependent (see (6.48)). In more general terms, the ionic
populations have stabilized after t > 1012 cm3 s/ne for the K-shell of highly charged
ions (see (6.50)).

Fig. 10.3 MARIA
simulations of the dielectronic
satellite emission near
Helium-alpha of He-like Mg
ions in dependence of electron
temperature, ne = 1021 cm−3.
The difference between the
blue and black curve near
Helium-alpha shows the
impact of higher-order
satellites 1s2lnl′ with n > 3
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Let us now assume that the electron temperature is rapidly switched off. Also in
this case, the ionic populations need the time according (6.48) to decrease the
plasma ionization. The plasma is therefore called recombining because higher
charge states disappear successively until the ionic populations correspond to the
decreased electron temperature.

In the original work of Gabriel, the radiation emission of the Li-like 1s2l2l′-
satellite transitions which had strong inner-shell excitation channels but low
dielectronic capture (e.g., the qr-satellites) and strong dielectronic capture but low
inner-shell excitation channel (e.g., the jk-satellites) have been employed to
determine the ionic populations of the Li-like and He-like ions (note that the
dielectronic capture channel for the Li-like 1s2l2l′-satellites is connected to the
He-like ground state 1s2 1S0, whereas the inner-shell excitation channel is con-
nected to the Li-like states 1s22l). In the work (Yamamoto et al. 2005), satellite
transitions near Lya have been employed to characterize the plasma regime. Also
other emission lines can be used in order to characterize the ionizing/recombining
nature of a plasma. The use of Rydberg line emission is another important example:
In recombining plasmas, the Rydberg series emission is enhanced whereas in
ionizing plasma, high n-members of the Rydberg series are barely visible.

The long time scale (6.48) to establish equilibrium in the ionic populations does
not permit to employ standard temperature diagnostics which are based on the
intensity ratio of resonance lines originating from different ionization stages, e.g.,
the line intensity ratio of the H-like Lya and the He-like Hea. For example, in
ionizing plasmas, the intensity of the He-like Hea is enhanced due to ionization that
is lagging behind the electron temperature, i.e., TZ < Te. Therefore, the electron
temperature is underestimated if the transient evolution is not taken properly into
account (if the time scale of characteristic changes of plasma parameters is much
shorter than the characteristic time scale).

10.2.3 Relaxation Times

For the temperature diagnostic based on dielectronic satellite transitions (as dis-
cussed above), the obstacle of the long relaxation times according to (6.48) does
practically not exist, because the employed line ratios concern only one ionization
stage which then cancels in the line ratio method. Therefore, independent of any
plasma regime (stationary, ionizing, recombining), the dielectronic satellite method
allows to access the electron temperature and this is yet another reason why
Gabriel’s idea to employ satellite intensities for the temperature diagnostic is really
a genius one.

Moreover, the response time of satellite transitions is much faster than for res-
onance lines according to (6.62). The reason is connected with the large autoion-
izing rate that has a characteristic time scale of the order of some 1..10 fs for L-shell
electrons. For atomic transitions of multiple excited states, (6.62) has therefore to be
modified according to (see also discussion of 1.105)
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sji ¼ 1
Aji þCji þCji þ

P
k Cjk

: ð10:30Þ

This means that satellite transitions respond on a time scale of about some fs
irrespective of any population mixing by collisional processes (Sect. 6.2.3). As the
dielectronic capture population channel is proportional to an exponential temper-
ature dependence (see (10.21), (10.22)), low electron temperatures are practically
cut off because the dielectronic capture energy (e.g., (10.25)) is very large for highly
charged ions:

ISatji highCkj
	 
 / exp �Ekj=kTe

	 

kTeð Þ3=2

: ð10:31Þ

In consequence, satellite transitions inherently cut off the low-density,
low-temperature recombining regime. This is an extremely important and useful
property in high-density plasma research as almost all high-density plasmas are
very short living. This effect can clearly be seen from Fig. 1.11: The satellite
transitions are confined near the target surface, whereas the He-like resonance and
intercombination lines (W and Y, respectively) exist also far from the target surface.

10.2.4 Spatially Confined Emission

Inspection of the dielectronic capture channel and the correspondingly induced
satellite line intensity (10.22) shows that the intensity is proportional to the square
of the electron density (because the ground state nk is proportional to the electron
density):

Isat highCð Þ / n2e : ð10:32Þ

Together with (10.31), the emission is therefore confined to high-density high
temperature plasma areas. This effect is clearly seen on Figs. 1.11 and 1.12:
Satellite transitions are visible just around the laser spot size. Line-of-sight inte-
gration effects are therefore minimized, as (10.31), (10.32) act like a “local emission
source.”

For Heb 1s3l3l′-satellite transitions, an even stronger density dependence is
expected. In high-density plasmas, their dominant excitation channel is dielectronic
capture from the 1s2l-states (Rosmej et al. 1998) and even density dependences up
to / n3e are possible. Figure 1.12 shows this effect on a space-resolved X-ray image
of Si. In the spectral range around the He-like Heb-line, the 1s3l3l′-satellites are
much more confined to the target surface than the 1s2l3l′-satellites (the Z-direction
is the direction of the expanding plasma).
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There is yet another wonderful property of satellite transitions which minimizes
line-of-sight integration effects with respect to photon–plasma interaction: Their
line center opacity (see Sect. 1.1.4) is small because the absorbing ground states
for, e.g., the 2l2l′ satellites transitions are the excited states 1s2l and not the atomic
ground state 1s2 (like it is the case for the He-like resonance line). The population
ratio n(1s2l)/1s2 is rather small even in high-density plasmas and the maximum
upper limit can be estimated from the Boltzmann relation. This results in a corre-
sponding very low line center opacity of the satellite transitions.

We note that radiation transport effects in satellite transitions have been observed
for Li-like 1s2l2l′ transitions (Kienle et al. 1995; Elton et al. 2000; Rosmej et al.
2002a). This, however, is an exceptional case because their absorbing ground states
coincide with the atomic ground and first excited states of the Li-like ions, namely
the 1s22l configuration. Also these obstacles can be avoided: employing
higher-order satellite transitions from multiple excited states, other multiple excited
configurations or even transitions from hollow ions (see also Sects. 10.6.4.2 and
10.6.4.3).

10.2.5 Electron Density

10.2.5.1 Collisional Redistribution

In dense plasmas, where electron collisions between the autoionizing levels become
of increasing importance (compared to the radiative decay rates and autoionizing
rates), population is effectively transferred between the autoionizing levels of a
particular configuration (e.g., the 2l2l′- and 1s2l2l′-configuration). These angular
momentum changing collisions (Vinogradov et al. 1977; Jacobs and Blaha 1980)
result in characteristic changes of the satellite spectral distribution, i.e., their total
contour (see also Sect. 5.6.3.3). In low-density plasmas, only those autoionizing
levels are strongly populated which have a high autoionizing rate because in this
case the dielectronic capture rate is large. This results in a high intensity of satellite
transitions that do have high autoionizing rates and high radiative decay rates.
Contrary, satellite transitions with high radiative decay rates but low autoionizing
rates have small intensities (because the dielectronic capture is small). In
high-density plasmas, population can be transferred via angular momentum
changing collisions from highly populated levels to low populated ones, resulting in
a density-dependent change of satellite line intensity. These characteristic changes
of the spectral distribution can then be used for density diagnostics.

Figure 10.4 shows the effect of angular momentum changing collisions
(“Density effect”) on the satellite transitions near Lya of highly charged Mg ions.
The simulations have been carried out with the MARIA code taking into account an
extended level structure: LSJ-split levels of different ionization stages for ground,
single, and multiple excited states have simultaneously been included. Strong
density effects are indicated by red errors. Not only the 2l2l′-satellites show strong
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density effects near k � 0.853 nm, but also the 2l3l′-satellites near k � 0.847 nm.
The density sensitivity of the 2l3l′-satellites starts for lower densities, because the
collisional rates between the 2l3l′-configurations are in general larger than those for
the 2l2l′-configuration (collisional rates C(2lnl′–2lnl″) increase with principal
quantum number n), whereas corresponding radiative rates (A / 1/n3) and
non-radiative rates (autoionization rate C / 1/n3) are smaller. Also indicated the
so-called blue satellite emission located on the blue wing of the resonance line
Lyman-alpha. These satellite transitions have negative screening (Rosmej and
Abdallah 1998) that is due to the strong effect of angular momentum coupling
(F-states). As can be seen from the Fig. 10.4, angular momentum changing colli-
sions have little effect on blue satellites.

Figure 10.5 shows the MARIA simulations of the spectral distribution for the
Li-like satellites near He-like Helium-alpha in dependence of the electron density.
Strong density effects are visible near k � 0.930 nm. Higher-order satellite tran-
sitions originating from the 1s2l3l′-, 1s2l4l′-, and 1s2l5l′-configurations have been

Fig. 10.4 MARIA
simulations of the dielectronic
satellite emission near
Lyman-alpha of H-like Mg
ions in dependence of electron
density at kTe = 100 eV. The
red flashes indicate the
intensity rise of particular
satellite transitions with
density. Blue satellites have
effective negative screening
due to strong angular
coupling effects
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included in the simulations, however, due to their large line overlap, density effects
are not strongly pronounced.

Angular momentum changing collisions for the satellite transitions 1s2l3l′ !
1s22l1 + hm near the Heb-line (Rosmej and Abdallah 1998, Petitdemange and
Rosmej 2013) are very useful: For aluminum, their density sensitivity is located in a
very convenient interval of about 1019–1022 cm−3 (corresponding to the critical

Fig. 10.5 MARIA simulations of the dielectronic satellite emission near Helium-alpha of He-like
Mg ions in dependence of electron density at kTe = 100 eV. The red flashes indicate the intensity
rise of particular satellite transitions with density
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density of almost all optical laser systems). Note, as radiative decay and autoion-
izing rates of 1s2l2l′-satellites are higher while angular momentum changing col-
lisions are smaller, their density sensitivity starts only at considerably higher
densities.

Even lower densities can be accessed via Be-like satellites (Rosmej 1994,
1995a): Dielectronic capture is not only coupled to the Li-like ground state
1s22s but likewise to the first excited state 1s22p (see also Sect. 5.6.2.3). As the
population of the 1s22p-states increases with density, the spectral distribution of the
dielectronic capture reflects likewise this density dependence. The critical density
for the 1s22p-states (i.e., when the radiative decay rate is equal to the collisional
rate) can be estimated according to (Rosmej 1994) with the following simple
analytical expression:

nðcritÞe � 2� 1014 � 10
0:05�Zn � ðZn � 2Þ3 � ðbþ 1:53Þ

b0:5 � ðbþ 4:3Þ ½cm�3�; ð10:33Þ

Fig. 10.6 Stark broadening
simulations of the
Lyman-alpha dielectronic
satellite emission of He-like
Mg ions in dependence of
electron density at
kTe = 100 eV
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b ¼ ðZn � 2Þ2 � Ry
kTe

: ð10:34Þ

Zn is the nuclear charge, kTe the electron temperature in [eV] and Ry ¼ 13:6 eV. For

example, for aluminum at kTe ¼ 100 eV, we obtain nðcritÞe � 2:5� 1017 cm3.

10.2.5.2 Stark Broadening of Dielectronic Satellites

In very-high-density plasmas (near solid density), the Stark broadening analysis of
satellites is very useful and has firstly been demonstrated for the 2l2l′- and 1s2l2l′-
satellites (Woltz et al. 1991).

Figure 10.6 shows the Stark broadening simulations for the 2l2l′-satellites of Mg
carried out with the PPP code (Talin et al. 1995, 1997) assuming a statistical
population between the autoionizing levels. It can clearly be seen that strong
density sensitivities are obtained only for densities ne > 1022 cm−3.

In order to access lower electron densities via Stark broadening analysis,
Rydberg-satellite transitions of the type 1s2lnl′ ! 1s22l1 + hm have been studied in
dense laser-produced plasma experiments with high spectral and spatial resolution
(Rosmej et al. 2001a; Skobelev et al. 2002). This has stimulated Stark broadening
calculations of Rydberg-satellite transitions (Rosmej et al. 2003) (see also discus-
sion in Sect. 1.5.2).

10.2.5.3 Stark Broadening of Hollow Ions

As discussed in Sect. 1.5.4, a hollow ion (HI) is an ion, where one or more internal
shells are entirely empty whereas higher shells are filled with 2 or more electrons.
The hollow ion configurations are multiple excited configurations and are therefore
also autoionizing configurations. Hollow ion transitions originating from the con-
figurations K0LN of highly charged ions, i.e., K0LN ! K1LN−1 + hmhollow, are of
particular interest for dense plasmas research: The hollow ion X-ray transitions
K0LN ! K1LN−1 + hmhollow can be easily identified as they are well separated from
other transitions and, due to the large autoionizing rate, they do have very small
opacity, very short emission time scale, and are sensitive to suprathermal electrons
and radiation fields (Rosmej et al. 2015). It is therefore of interest to supplement the
forgoing discussion (Sect. 1.5.4) with corresponding Stark broadening calculations.

Despite these outstanding properties for advanced diagnostics, hollow ion
emission is rather complex: The large number of levels and transitions does not
really permit ab initio simulations with a LSJ-split level structure to achieve
spectroscopic precision. When employing usual reduction methods, e.g., the
super-configuration method (Bar-Shalom et al. 1989) or a hydrogen-like approxi-
mation, the number of levels is reduced to a manageable number; however, the
number of transitions is also strongly reduced. This reduction considerably modifies
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the total contour of the hollow ion transitions (e.g., important for Stark broadening
analysis, see below) due to an average of transitions and other atomic data (tran-
sition probabilities, autoionizing rates, line center positions, etc.). It is therefore
very difficult, to obtain a spectroscopic precision (high-resolution analysis of the
spectral distribution) with the traditional super-configuration method. This reduc-
tion problem of the traditional super-configuration method has recently been solved
by the “Virtual Contour Shape Kinetic Theory VCSKT” (Rosmej 2006) that has
been discussed in detail in Sect. 6.3.

Figure 10.7 shows detailed Stark broadening calculations (carried out with the
PPP code) for the hollow Mg ion X-ray transitions K0LN ! K1LN−1 + hm,
kTe = 100 eV for N = 1–5. Line intensities within one configuration K0LN have
been calculated assuming a statistical population for all LSJ-split levels in order not
to mask the Stark broadening with population effects for different plasma densities.
All hollow ion electric dipole transitions and all energy levels have been included in

Fig. 10.7 Stark broadening
simulations of the hollow ion
X-ray transitions K0LX !
K1LX�1 þ �hxHI in magnesium
(normalized to peak) in
dependence of electron
density at kTe = 100 eV
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the simulations (note that the minimum number of levels/transitions is 17/48 for the
N = 2 configuration, 34/246 for the N = 3 configuration, 60/626 for the N = 4
configuration, and 65/827 for the N = 5 configuration; the number of Stark tran-
sitions is of the order of 106). Transitions from different charge states have been
normalized to maximum peak intensity. It can be seen from Fig. 10.7 that the
emission from different ionization stages is essentially separated and that strong
changes of the total contours emerge for near solid density plasmas. For densities
less than 1022 cm−3, numerous single transitions are resolved (lower spectrum in
Fig. 10.7). The low-density simulation indicates that the broadening of the total
contour is not only determined by the Stark broadening of single transitions but also
importantly by the oscillator strengths distribution over wavelengths. VCSKT
provides also an appropriate answer here (see also Sect. 6.3.2.4): All line transitions
are included in the simulations with their correct line center positions and oscillator
strengths distribution over wavelengths (opposite to the traditional super-
configuration method where new artificial line center positions are calculated
from certain averages of LSJ-levels).

10.2.5.4 Interference Effects in Stark Broadening of Hollow Ions

Let us finish the Stark broadening analysis of HI with a discussion of interference
effects (Griem 1964, 1974, 1997; Sobelman and Vainshtein 2006). As the lower
states of the hollow ion configurations are autoionizing states by itself (states K1LN
−1), the number of lower levels is also large and interference effects between upper
and lower levels become important (see also Sect. 1.5.3).

Figure 10.8 compares Stark profile simulations for the hollow ion X-ray tran-
sitions K0L3 ! K1L2 + hm with and without taking into account interference effects
(intensities are normalized to peak). It can clearly be seen that interference effects
lead to a considerable narrowing of the total contour as well as to a shift of the
intensity peak of the total contour. Note that line narrowing effects due to

Fig. 10.8 Stark broadening
simulations of the hollow ion
X-ray transitions K0L3 !
K1L2 þ �hxHI in magnesium
(normalized to peak) showing
the impact of the interference
effects on the total contour,
ne = 3 � 1023 cm−3,
kTe = 100 eV
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interferences have originally been discussed for non-autoionizing levels
(Aleseyev and Sobelman 1969).

10.2.5.5 Non-statistical Line Shapes

The traditional method of line shape calculations employs the so-called statistical
lines shapes where the atomic level population of the corresponding configurations
is assumed to be in statistical equilibrium (Griem 1974, 1997). In dense plasmas,
however, the use of intercombination lines or other forbidden lines is of interest due
to their advantageous properties with respect to opacity because despite of their low
oscillator strengths, non-statistical effects in level populations (see Chap. 6) might
drive intensities that are of the order of usual resonance lines. It is therefore of great
interest to study non-statistical effects for the line shape calculations (so-called
dynamical line shapes).

Figure 10.9 demonstrates the effect of so-called dynamical line shapes for the
He-like resonance and intercombination lines of aluminum when the non-statistical
populations of the 1s2l-levels are taken into account. The line shape calculations
have been performed with the PPP code; the dynamical properties of the level
populations have been calculated with the MARIA code employing a relativistic
atomic structure (LSJ-split), multipole transitions, cascading and ionization balance.
Figure 10.9 demonstrates the case for He-like aluminum (spectral range of the

Fig. 10.9 Comparison of statistical and dynamical line shapes of the X-ray transitions K1L1 !
K2 þ �hx in He-like aluminum for ne = 1021 cm−3, kTe = 100 eV. MARIA simulations of the
dynamical level populations include LSJ-split level structure, electric and magnetic multipole
transitions, and ionization balance calculation
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He-like resonance line W = 1s2p 1P1−1s
2 1S0 and intercombination line

Y = 1s2p 3P1−1s
2 1S0) for an electron density of ne = 1021 cm−3 and an electron

temperature of kTe = 100 eV. The simulations show that the intercombination line
shape (Y) is essentially modified: Intensity and line wings are enhanced by about an
order of magnitude providing a larger diagnostic potential as believed in the
framework of the statistical line shape approach only. The two smaller peaks near
0.781 and 0.788 nm are due to Stark-induced transitions from the 1s2s 1S0 and
1s2s 3S1 levels, respectively. Note that the PPP code does not include multipole
transitions and the intensity of the transition originating from the 1s2s 3S1 level is
therefore entirely due to the Stark mixing but not due to the magnetic quadrupole
contribution (see discussion in Sect. 1.2.2).

10.3 Magnetic Fusion

10.3.1 Neutral Particle Background and Self-consistent
Charge Exchange Coupling to Excited States

The confinement of the plasma is one of the most important issues in magnetic
fusion research, and intensive efforts have therefore been devoted to the under-
standing of the particle transport. However, the physical processes that underlie
plasma transport in toroidally confined plasmas are not so well understood. The
plasma transport induced by Coulomb collisions (so-called classical or neo-classical
transport) is often much less than what is actually observed (Engelhardt 1982;
Hulse 1983; Pasini et al. 1990) and thus the transport is called anomalous.

Methods which determine the particle transport independent of theoretical
plasma models are therefore of fundamental importance in the magnetic fusion
research. Spectroscopic methods have turned out to be very effective, and one of the
most powerful methods is based on the space- and time-resolved observation of the
line emission from impurity ions (Engelhardt 1982; Hulse 1983; Pasini 1990).
Emission spectroscopic methods (so-called passive methods) receive a renewed
interest in view of the future installation ITER (International Thermonuclear
Experimental Reactor, construction has begun in 2010 at Cadarache in France
(ITER 2019)) because the strong radiation hazard during fusion operation combined
with the large minor radius will not allow efficient use of many diagnostics (in
particular active ones) that are currently in use at mid-sized tokamaks.

The radiation emission of the impurities (and also those from the neutral H/D/T)
is simulated from an atomic physics model (see also Chap. 6):

@nZ
@t

þr C
*

Z

� �
¼ �nZ IZ;Zþ 1 þ TZ;Z�1 þRZ;Z�1 þDZ;Z�1

	 

þ nZ�1 IZ�1;Z

	 

þ nZþ 1 TZþ 1;Z þRZþ 1;Z þDZþ 1;Z

	 

:

ð10:35Þ
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C
*

Z is the particle flux (Z indicates the charge of the ion). With given temperature
and density profiles, one tries to match the experimental observations by a best fit of

C
*

Z. For these purposes, it turned out to be convenient to split the flux into a

diffusive and convective term according to C
*

Z ¼ �DZrnZ þV
*

ZnZ, DZ is the dif-
fusion coefficient (note that DZ is the diffusion coefficient whereas DZ,Z−1 is the
dielectronic recombination rate coefficient connecting the charge states “Z” and

“Z − 1”) and V
*

Z is the convective velocity. These parameters are then varied in a
numerical procedure in order to best fit the spectral emission data. The importance
in this type of analysis lies in the fact that it provides a plasma
simulation-independent information (independent from, e.g., turbulence models) for
the diffusion coefficient and the convective velocity (Hulse 1983).

Under real experimental conditions of magnetically confined fusion plasmas, the
impurity ions do interact with the plasma background H/D/T via charge exchange.
This in turn leads to a change of the radial charge state distribution of the impurity
ions, an effect which has a large impact for the analysis and the interpretation of
possible particle transport: Diffusion in space (particle transport) and diffusion in
charge states (charge exchange) are of similar nature in the framework of the
traditional particle transport analysis (via diffusion coefficients D and convective
velocities V (Rosmej and Lisitsa 1998; Rosmej et al. 1999a, Shurygin 2004)). This
can easily be seen from the more generalized equation

@nZ
@t

þr C
*

Z

� �
¼ �nZ IZ;Zþ 1 þ TZ;Z�1 þRZ;Z�1 þDZ;Z�1 þCxZ;Z�1

	 

þ nZ�1 IZ�1;Z þCxZ�1;Z

	 

þ nZþ 1 TZþ 1;Z þRZþ 1;Z þDZþ 1;Z þCxZþ 1;Z

	 

:

ð10:36Þ

CxZ, Z−1 etc., indicate possible charge exchange processes between the radiating
test element (e.g., intrinsic impurities) and other species (namely, hydrogen, deu-
terium, tritium, and helium). Let us assume that the partial derivative is zero and
integrate the set of (10.36) over space. The integration over space transforms the
diffusion term into the so-called tau-approximation. Note that the tau-approximation
is a rather powerful method of particle transport analysis which even permits to
study details of the line emission not only of resonance lines but from forbidden
lines too (Rosmej et al. 1999a; Rosmej and Lisitsa 1998). In the
“tau-approximation” (10.36) takes the form
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nZ IZ;Zþ 1 þTZ;Z�1 þRZ;Z�1 þDZ;Z�1
	 
þ nZ CxZ;Z�1 þ 1
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� �

¼ nZ�1 IZ�1;Z
	 
þ nZ�1 CxZ�1;Zþ 1

sZ�1;Z

� �

þ nZþ 1 TZþ 1;Z þRZþ 1;Z þDZþ 1;Z
	 
þ nZþ 1 CxZþ 1;Z þ 1

sZþ 1;Z

� �
:

ð10:37Þ

sZ, Z+1 etc., are the respective diffusion times. It is clearly seen that diffusion/
transport (represented by the tau-terms in (10.37)) are of the same origin as charge
exchange processes (Cx-terms in (10.37)). It is therefore difficult to characterize the
particle transport on the basis of (10.35): If the charge exchange is a free parameter
as well as diffusion DZ and convective velocity VZ, their significance is not so
evident as charge exchange (diffusion in charge states) and particle transport (dif-
fusion in space) are overlapping effects.

In order to circumvent this difficulty, a self-consistent analysis has been pro-
posed (Rosmej et al. 2006a, b) to eliminate the free parameters for the charge
exchange: The coupling is a self-consisted excited states coupling of the tracer
(impurity) kinetics to the plasma background (H,D,T) via atomic physics processes
(charge exchange). The matrix coupling elements Mji(H,D,T,X) can schematically
be written

Mji H;D; T ;Xð Þ ¼ nH;D;T
j nXi rCxji Vrel

D E
: ð10:38Þ

H, D, T indicate the hydrogen, deuterium, tritium, and X is a spectroscopic tracer
element (e.g., He, an intrinsic impurity or any other element intentionally intro-
duced for diagnostic purposes), nH;D;T

j is the population density of the elements (H,

D,T) in state “j”, nXi is the population density of the tracer element in state “i”, rCxji is
the charge exchange cross section from state “j” to state “i” between the elements
(H, D, T) and X, Vrel is the relative particle velocity, and the brackets indicate an
average over the particle energy distribution functions. As the coupling matrix
elements according to (10.38) contain the product of different population densities,
the system of equations (H, D, T) and (X) is nonlinear (even in the optically thin
plasma approximation). The self-consistent numerical simulation of multi-ion
multilevel (LSJ-split) non-LTE atomic kinetic systems coupled by charge exchange
processes via the excited states coupling matrix (10.38) has been realized in the
numerical code “SOPHIA” (Rosmej et al. 2006a; Rosmej 2012a).

The coupling matrix approach according to (10.38) lies in the fact that the
selection rules for the charge exchange processes are respected: Charge transfer
from excited states is directly coupled to excited states. Therefore, the population
flow due to charge exchange is consistently treated without any free parameter
along with the population flow of usual collisional–radiative processes. The excited
states coupling also avoids critical divergences which arise from the strong scaling
of the charge exchange cross sections with principal quantum number “n”:
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rCx / n4 (classical scaling). In fact, under typical conditions of ITER, the hydrogen
excited states populations increase rapidly due to the increasing statistical weights.
Combined with the charge exchange scaling, this results finally in an effective
divergence / n6. This charge exchange-driven divergence is therefore much more
pronounced than the well-known divergence of the partition sum (quadratic
divergence).

Table 10.3 shows the importance of the excited state-driven charge exchange
processes. The neutral fraction depends strongly on electron temperature but also on
the neutral flow from the walls to the plasma center (to be discussed in detail below,
Sect. 10.3.2). For about n > 15, excited state contributions become even more
important than the ground state contribution. At n = 20, all charge exchange flow is
driven by excited states rather than the ground state. Therefore, any level cutoff (see
also Chap. 8) is highly critical and numerical simulations are rather instable. In this
respect, also the effective rate coefficients proposed in (Abramov et al. 1985) have
to be employed with caution.

In the framework of the self-consistent excited states coupling approach (Rosmej
et al. 2006a), no critical level cutoff is present (or necessary) because charge
exchange and collisions are treated on a unique footing: A large charge exchange
flow into highly excited states is directly redistributed by collisions between even
higher excited/next ionization states before radiative decay can populate the ground
states. Figures 10.10a,b visualize schematically the relevant mechanisms in the
self-consistent model. Figure 10.10a shows the thermal limit nthermal corresponding
to usual collisional–radiative processes. Above this limit, Partial-Local-
Thermodynamic-Equilibrium (PLTE) holds true, i.e., a Boltzmann-level popula-
tion starting from a certain principal quantum number n. This corresponds to the
condition that collisional de-excitation is much more important than radiative decay
rates (indicated as “C � A” in Fig. 10.10a). As radiative decay rates decrease

Table 10.3 Population density nH multiplied by the 4th power of the principal quantum number

Principal quantum number nHðnÞ � n4 nHðnÞ � n4=nHðn ¼ 1Þ
n = 1 1.16D−03 1.00D+00

n = 2 1.24D−06 1.07D−03

n = 3 7.18D−07 6.21D−04

n = 4 3.28D−06 2.84D−03

n = 5 1.17D−05 1.01D−02

n = 10 6.66D−04 5.77D−01

n = 15 7.40D−03 6.41D+00

n = 20 4.12D−02 3.57D+01

n = 25 1.57D−01 1.36D+02

The second column indicates the absolute fraction whereas the third column indicates the relative
importance with respect to the hydrogen ground state 1s. The plasma parameters are kTe = 3 eV,
ne = 1013 cm−3. The populations nH are normalized according to R nH = 1. Note that the neutral
fraction depends strongly on temperature but also on the flow of neutrals from the wall to the
plasma center
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strongly with principal quantum number (approximately A / n�3 in the hydrogenic
approximation) while collisional rates are strongly increasing (approximately
C / n4 between the states n ! nþ 1 neglecting Gaunt-factor variations) PLTE
starts from high lying levels. In the hydrogenic approximation, this condition can be
formulated for a plasma consisting of electrons, ions, and atoms as follows:

ne;crit � 6� 1019Z7 nthermal � 1ð Þ2nthermal�2

n3thermal nthermal þ 1ð Þ2nthermal þ 2

kTe eVð Þ
Z2 Ry

� �1=2

cm�3 �
: ð10:39Þ

ne,crit is the critical electrons density in [cm
−3] above which a Boltzmann population

of levels, i.e.,

nj
ni

¼ gj
gi
exp � EZ

i � EZ
j

� �
=kTe

n o
ð10:40Þ

holds true for all levels with principal quantum number larger than nthermal, kT is the
electron temperature in [eV], Z is the ionic charge, Ry = 13.6 eV, gi and gj are the
statistical weights of the lower and upper levels, EZ

i and EZ
j are the respective state

energies (note, that EZ
i � EZ

j [ 0). For hydrogen (Z = 1), nthermal = 1 (corre-
sponding that all levels are distributed according to a Boltzmann population) and
kTe = 1 eV from which it follows ne,crit � 1 � 1018 cm−3. Note that, e.g., for
H-like molybdenum and kTe = 2 keV the critical density is very high: ne,crit �
2 � 1029 cm−3 showing that it is not the absolute density, which is of importance to
obtain thermodynamic equilibrium conditions but rather the relation between the
collisional and radiative decay rates. Equation (10.39) has a well-defined asymptote
for large quantum numbers nthermal:

Fig. 10.10 Principle mechanisms of the self-consistent excited states coupling of charge
exchange and thermalization by collisions, a standard collisional–radiative thermalization,
b collisional–radiative thermalization perturbed by charge exchange flow
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because
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nthermal!1

nthermal � 1
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( )
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54:6

: ð10:42Þ

Therefore, we can write

ne;crit � 6� 1019Z7
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1
n3thermal
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n4thermal
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ð10:43Þ

Equation (10.43) shows that the critical electron density scales with the 7th
power of the principal quantum number and with the 7th power of the effective
charge.

Figure 10.10b shows the case, when charge exchange flow (indicated by the
blue arrows) populates the levels: The thermal limit nthermal is changed to nCxthermal
because collisional rates have to be compared now not only to radiative decay but
also to charge transfer rates (indicated by C � A, Cx in Fig. 10.10b). As can be
seen from Table 10.3, charge exchange from excited states strongly competes with
the charge exchange from the ground state and at, e.g., n = 15, the contribution of
excited states is already more than six times greater than the ground state, while,
e.g., for n = 25, the contribution of excited states is more than 100 times greater
than from the ground state. The contribution of excited states is therefore diverging
(indicated schematically with nCxf ðdiv:Þ in Fig. 10.10b). Whether the diverging
charge exchange contribution strongly perturbs the standard collisional–radiative
model depends, whether the radiative decay rates from the states nCxf ðdiv:Þ transfer
this diverging channel to the ground state or not. A diverging charge exchange
contribution to the ground state would result into a strong perturbation of all col-
lisional excitation–ionization processes, e.g., the ionization equilibrium and radia-
tion loss. Therefore, a direct coupling of the excited states charge exchange
contributions, via, e.g., effective charge exchange rates (Abramov et al. 1985)
would be a highly critical and instable situation.

Let us therefore consider the situation more closely in the framework of the
self-consistent model, where charge exchange from excited states is coupled to the
excited states while all excited states (including the donor and target particles) are
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explicitly included in the collisional–radiative model. The final quantum number nf
for the charge transfer process from the neutrals (H/D/T) to the impurity ions with
effective charge Zeff can be estimated from the classical over barrier model as
follows:

nf � ni � Zeffffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffiffiffiffiffi

Zeff
p � 1=

ffiffiffiffiffiffiffi
Zeff

pp ; ð10:44Þ

where ni is the principal quantum number of the donor projectile from which charge
transfer proceeds (H/D/T in our case), Zeff is the effective charge of the acceptor ion
before charge transfer. For example, charge transfer from the hydrogen ground state
into H-like argon: ni ¼ 1, Zeff � 17 resulting in ni � 8 (note that different models
provide slightly different principal quantum numbers, e.g., according to (Ostrovsky
1995; Cornelius et al. 2000) ni � 10). From (10.43), it follows that for a certain
electron density, PLTE is achieved for principal quantum numbers larger than

nthermal � 373

n1=7e ðcm�3Þ
� kTe eVð Þ

Z2
effRy

� �1=14

: ð10:45Þ

This means that all charge exchange flow into principal quantum numbers nf that
are larger than the thermal limit from (10.45) (for a certain fixed electron density
and temperature) is rapidly thermalized and does not contribute to the ground state
population, i.e., if the condition

nf [ nthermal ð10:46Þ

holds true. In order to estimate whether condition (10.46) covers a parameter
interval of practical interest for magnetically confined plasmas, let us assume an

electron temperature kTe ¼ 0:5 � Z2
effRy and the asymptotic scaling nf � ni � Z3=4

eff of
(10.44). We then obtain from relation (10.46) and (10.45)

Zeff [
2500

n4=3i � n4=21e

: ð10:47Þ

As Table 10.3 demonstrates, excited states contributions start to rise with

increasing quantum number nðH=D=TÞ
i � 4. This increase is physically connected

with the transition to PLTE for a certain high-n-quantum number. Let us therefore
estimate the thermal limit (10.45) for ne ¼ 1013 cm�3 and kTe ¼ 3 eV, i.e., the

parameters of Table 10.3: nðH=D=TÞ
thermal � 4:4. The thermal limit therefore corresponds

approximately to the quantum number from which on excited states contributions

start to diverge (see Fig. 10.10), i.e., nðH=D=TÞ
thermal � nCxf ðdiv.Þ. We therefore can

approximate ni in (10.47) by ni � 355 � n1=7e resulting into
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Zðthermalized�CxÞ
eff [ 1; ð10:48Þ

where the upper index thermalized—Cx indicates that the divergent charge exchange
flow is essentially thermalized rather than decaying to the ground state. From the
kinetic point of view, the charge exchange flow decreases the impurity charge
state from Z þH ! ðZ � 1Þþ p while the thermalization due to collisions (which
is a thermalization with the continuum) increases the charge state from
ðZ � 1Þþ e ! Zþ 2e. Therefore, the impurity charge state is essentially unchanged.
As relation (10.48) demonstrates, for almost all impurities of interest thermalization
takes place and is also approximately independent from the electron density.

Detailed numerical self-consistent calculations carried out with the SOPHIA
code (Rosmej et al. 2006a; Rosmej 2012a) demonstrate that the thermal limit
(10.39) is slightly increased if charge exchange is consistently coupled to excited
states. This is indicated in Fig. 10.10b with the new thermal limit nCxthermal. The
increase, however, is rather moderate, and the general mechanism of thermalization
according to (10.48) is not changed (indicated with “I � Cx” for nCxf ðdiv:Þ in
Fig. 10.10b). Therefore, the strong charge exchange flow into the excited state
coupled system is naturally stabilized for almost all systems of practical interest. In
consequence, this flow does not lead to a divergent population of the atomic levels.
This means, that on the one hand, no artificial (and therefore uncertain) level cutoff
is needed to stabilize the system and, on the other hand, the number of levels
included in the simulations is not very critical (if a few principal quantum numbers
are included that are larger than nCxthermal). The last point is a very advantageous
additional feature despite of the continuous controversial discussion of the ion-
ization potential depression (see Chap. 8).

It is important to emphasize that (10.48) doesNOTmean that excited states charge
exchange contributions can effectively been neglected in fusion relevant plasmas. On
the contrary, particle transport studies have to consider simultaneously charge
exchange effects as both phenomena enter in a very similar manner in the general
system of population equations (see 10.37). The drawback in standard methods that
employ free parameters for particle transport and charge exchange is that these two
parameters are very difficult to separate from each other because charge exchange
effects and particle transport effects overlap (in other words: at fixed spatial position
r1 for a certain charge state Z1 a change from Z1 to (Z1 − 1) can be induced by charge
exchange with a neutral particle, however, the charge state (Z1 − 1) can also be
obtained at position r1 if an ion with charge (Z1 − 1) diffuses from a position r2 to the
position r1). Therefore, both cases result into the same charge state (Z1 − 1) at r1, but
their physical origin and interpretation is quite different (Rosmej et al. 2006a;
Shurygin 2008). In the self-consistent model, charge exchange is not a free parameter
but consistently calculated from the populations of the acceptor and donor particles
and the “overlap of free parameters” does not exist. The calculations itself are sta-
bilized including explicitly excited states for the impurity particles and also the
neutral particles that are then coupled to each other via charge exchange (which is
selective in n-quantum numbers). Therefore, the free parameter for charge exchange
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is removed from the system of equations (because it is calculated consistently along
with all populations; see, e.g., (10.38)) and the only free parameter that remains in the
system is related to the particle transport as desired for diagnostics.

10.3.2 Natural Neutral Background and Neutral Beam
Injection: Perturbation of X-ray Impurity Emission

The particle transport discussion related to (10.35) was based on the ionic charge
state distribution. X-ray spectroscopy, however, can provide a much more rich
information via the high-resolution X-ray spectral distribution. In particular, it
enables to distinguish with the help of particular selected atomic systems to extract
detailed information of charge exchange and impurity transport. In this context, a
dedicated experimental and theoretical analysis of the He-like lines W, X, Y, Z, the
He-beta resonance line (W3: = 1s3p 1P1−1s

2 1S0), intercombination line
(Y3: = 1s3p 3P1−1s

2 1S0) as well as the Li-like satellites 1s2l2l′–1s22l″ of highly
charged impurity ions have been undertaken (Rosmej 1998; Rosmej et al. 1999a,
2006a, b; Rice et al. 2018; Rosmej and Lisitsa 1998).

Figure 10.11 shows the time-resolved soft X-ray impurity spectrum (Rosmej
et al. 1999a) from the TEXTOR tokamak (solid black curve) of gas puff injected

Fig. 10.11 Time-resolved X-ray impurity spectrum (t = 3.5–3.6 s) of gas puff injected argon
during neutral beam injection. The red flash indicates a strong rise of Li-like satellite emission
when charge exchange is included in the theory bringing the MARIA simulations in very close
agreement to the data
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argon during neutral beam injection with 1.2 MW. The high spectral resolution
enables the distinct observation of the He-like lines W = 1s2–1s2p 1P1, X = 1s2–
1s2p 3P2, Y = 1s2–1s2p 3P1, Z = 1s2–1s2s 3S1 and also to separate numerous
Li-like satellites from the 1s2l2l′-configuration (indicated in Fig. 10.11 as m = 1s
[2p2 1S] 2S1/2–1s

22p 2P3/2, n = 1s[2p2 1S] 2S1/2–1s
22p 2P1/2, s = 1s[2s2p 1P] 2P3/2–

1s22s 2S1/2, t = 1s[2s2p 1P] 2P1/2–1s
22s 2S1/2, q = 1s[2s2p 3P] 2P3/2–1s

22s 2S1/2,
r = 1s[2s2p 3P] 2P1/2–1s

22s 2S1/2, a = 1s[2p2 3P] 2P3/2–1s
22p 2P3/2, b = 1s[2p2 3P]

2P3/2–1s
22p 2P1/2, c = 1s[2p2 3P] 2P1/2–1s

22p 2P3/2, d = 1s[2p2 3P] 2P1/2–

1s22p 2P1/2, k = 1s[2p2 1D] 2D3/2–1s
22p 2P1/2, j = 1s[2p2 1D] 2D5/2–1s

22p 2P3/2,
and 1s2lnl′–1s2nl′). The dotted blue curve shows the spectral collisional–radiative
MARIA simulations when charge exchange is not included in the simulations. The
resonance line W and the higher-order 1s2lnl′-satellites are very well described
indicating that the electron temperature is about kTe = 1700 eV.

However, important discrepancies between theory and experiment are likewise
observed: The qr-satellite emissions are much to low (indicated by the left red flash)
and also the (Z, j)-intensity is too low (see right red flash). The MARIA simulations
including line-of-sight integration effects (Rosmej 1998; Rosmej et al. 1999a) and
charge exchange coupling to the neutral background result in an almost perfect
agreement: The qr-satellite intensities are very well described and also the
(Z, j)-intensity is in excellent agreement. Atomic structure calculations indicate
that the qr-satellites have high radiative decay rates (A(q) = 1.01 � 1014 s−1,
A(r) = 8.73 � 1013 s−1) while their autoionizing rates are rather moderate
(C(q) = 1.86 � 1012 s−1, C(r) = 1.28 � 1013 s−1) compared to the strongest ones
(C(j) = 1.42 � 1014 s−1). Therefore, these satellite transitions have strong contri-
butions from electron collisional inner-shell excitation and small dielectronic
recombination contribution. As charge exchange processes shift the ionic charge
state distribution to lower values, Li-like population increases thereby increasing
the qr-satellite intensities via inner-shell excitation. As charge exchange in the
MARIA code (Rosmej 1997, 1998, 2001, 2006, 2012a, b) is not only coupled to
the ground states but to excited states too, charge exchange from the H-like ground
state to the 1snl-states drives additional cascading flow (Rosmej and Lisitsa 1998)
that terminates in the triplet system essentially with the states 1s2l 3L (from which
the forbidden lines X, Y, and Z originate; see also Chap. 1). This effect is strongest
for the Z-line as the comparison with the blue- and green-dotted lines demonstrate
(see also right red flash indicating the relative intensity difference).

Let us outline below the framework of the self-consistent simulation of X-ray
impurity spectra where the impurity ions are coupled to the neutral background by
charge transfer processes. The line-of-sight integrated spectral distribution I(x) of
the impurity ions is calculated according to

I xð Þ ¼
Z1
�1

X
ji

Za
r¼0

Iji r; xð Þdr
8<
:

9=
;U x� xð Þdx: ð10:49Þ
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The summation is performed over the various line transitions from “i” to “j”; the
convolution integral takes into account the apparatus profile UðxÞ which can be
assumed for almost all practical purposes to be a Voigt profile with user specified
Gaussian and Lorentzian widths. The integration in space is carried out over the
central line of sight along the minor radius a. The local spectral distribution for a
single transition is given by

Iji r;xð Þ ¼ nj rð ÞAjiuji r;xð Þ: ð10:50Þ

nj is the upper-level density, Aij is the spontaneous transition probability, and uij(x)
is the local emission profile. The upper-level population density is obtained from
the solution of the system of rate equations taking into account the temperature and
density profile along the minor radius, Te(r) and ne(r):

dnj rð Þ
dt

¼
XN
i¼1

ni rð ÞWji rð Þ � nj rð Þ
XN
k¼1

Wjk rð Þ ð10:51Þ

with

Wji ¼ Cji þAji þ Iji þ Tji þDji þCji þRji þCxji: ð10:52Þ

The matrix C describes the collisional excitation/de-excitation, A the sponta-
neous radiative decay, I the ionization, T the three-body recombination, D the
dielectronic capture, C the autoionization, R the radiative recombination, and Cx the
charge exchange process. The rates Cxij themselves depend not only on the cross
sections and corresponding rate coefficients but also on the level populations of the
neutral particles. If a matrix element does not exist physically, its value is zero. The
sum extends over all ground and excited states (that are explicitly taken into
account in the simulations). Therefore, the spectral emission is calculated simul-
taneously with the proper ionization balance. The convective derivative d/dt on the
left-hand side of (10.51) contains the partial derivative @=@t and the impurity
transport that is consistently applied to all ground, single, and double excited states.

Charge exchange processes are incorporated in the system of rate equations for
the impurity ions through the matrix elements Cxij (10.52). These elements are
proportional to the population densities of a particular state of the neutral species.
Because only relative changes in the experimental spectrum are analyzed here
(relative to the electron density), these processes can be conveniently described
with an effective charge exchange parameter:

Cxeffab ¼
PnNmax

j¼1 nNj Cxab; j
� �
ne

¼ Cxab
ne

: ð10:53Þ

ne is the electron density, nj
N are the population densities of the neutrals, nmax

N is the
maximum number of high n-states present in a real plasma (typically nmax

N = 20–
25), Cx; jh i are the charge exchange rate coefficients from the neutral state nj

H (j = 1
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ground state, j > 1 excited states). The last expression in (10.53) relates the
effective charge exchange parameter Cxeffab to the rate matrix Cxab in (10.52). It is
further convenient to define the dimensionless relative effective fraction feff of
neutrals through the relationship

Cxab
� �

eff ¼ feff Cxab; 1
� � ð10:54Þ

with

feff ¼
nN1 1þ PnNmax

i¼2
nNi
nN1

Cxab; i
� �
Cxab; 1
� �

 !

ne

¼ nN1
Zmean nN0

1þ
XnNmax

i¼2

nNi
nN1

Cxab; i
� �
Cxab; 1
� �

 ! ð10:55Þ

and

Zmean ¼ ne
nN0

: ð10:56Þ

Zmean is the average charge with respect to all types of impurity ions present in
the plasma:

ne ¼
X
i

Zini ¼ nN0 Zmean: ð10:57Þ

The last expression in (10.57) expresses the number of free electrons per neutral
particle density n0

N and Zmean. With this definition, the last expression of (10.55) has
the advantage that it depends only on relative populations of the neutrals (total
number of neutrals and neutrals in the ground state) and is, therefore, independent
of the normalization condition. Note, that if all excited states are neglected, feff is the
relative fraction of the neutrals compared to the electrons. The brackets h i denote
the averaging over the ion distribution function. In the case of H/D/T (hydrogen/
deuterium/tritium), n0

N is the population of the neutral H/D/T.
The sum inside the brackets of (10.55) describes the influence of the charge

exchange from excited states of the neutrals. The factor feff determines the contri-
bution of charge exchange processes to the impurity kinetic system according to
(10.51).

Figure 10.12 shows the sensitivity of the X-ray impurity spectra to the charge
exchange parameter feff. Due to the large cross sections for the charge exchange
processes, the sensitivity starts already with about feff = 10−6. As the charge
exchange cross sections scale with the 4th power of the principal quantum number
of the neutral species, excited state contributions can significantly contribute to the
effective cross section (Abramov et al. 1985; Rosmej and Lisitsa 1998) as
demonstrated in Table 10.3. The parameter feff is, therefore, not strictly equal to the
neutral fraction. The fraction of neutrals
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fneutral ¼
PnNmax

j¼1 nNj
ne

ð10:58Þ

can be calculated from the collisional–radiative rate equations for the neutrals
because the relevant local temperature and density are usually known from various
diagnostics. This, however, is not so simple as the penetration of neutrals from the
wall to the center significantly increases the fraction of neutrals in the plasma center
(typically many orders of magnitude). Let us therefore investigate the modeling of
the neutral systems in more detail. The population densities nj

N of the neutrals have
to be determined from a system of rate equations including the penetration of
neutrals from the wall to the center:

dnNj
dt

¼
XnNmax

j

nNi W
N
ji � nNj

XnNmax

k

WN
jk ; ð10:59Þ

WN
ji ¼ AN

ji þCN
ji þRN

ji þ INji þ INp; ij þ TN
ji þDN

ji þCxN;imp
ji ; ð10:60Þ

DN
ji ¼ neCij; eff : ð10:61Þ

The matrix D specifies the neutral particle penetration in a global sense. A more
detailed transport analysis is given below. Level populations are normalized
according to

Fig. 10.12 MARIA spectral
charge exchange—cascading
modeling of X-ray argon
impurity spectra in
dependence of the effective
neutral fraction feff. The
electron temperature is
kTe = 1.5 keV, electron
density ne = 2 � 1013 cm−3,
heavy particle temperature
kTi = 0.9 keV. The spectral
resolution is k/dk = 5000
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XnNmax

i¼0

nNi ¼ 1: ð10:62Þ

Normalization according to (10.62) means that the probability pj for the popu-
lation of the level j is nj

N = pj. In this case, the matrix A describes the spontaneous
radiative decay rates, C the collisional excitation/de-excitation rates, R the radiative
recombination rates, I the ionization rates, T the three-body recombination rates, Ip
the proton ionization rates, Cx the charge exchange rates between the neutral
species and the impurity ions. Introducing an “effective impurity ion” with density
nimp and charge Zimp according to

1þ nimp

nN0
Zimp ¼ Zmean ð10:63Þ

we can derive an explicit expression for the Cx-rate in the frame of the classical
picture for charge exchange cross sections (Rosmej and Lisitsa 1998):

CxN;imp ¼ nimprCxVimp ¼ 8pa20n
4Vimp Zmean � 1ð ÞnN0 : ð10:64Þ

where Vimp is the relative velocity between the neutrals and the impurity ions. The
charge exchange rates according to (10.64) have the advantage that they do not
explicitly contain the impurity density nimp (which is rather difficult to determine
experimentally) and are instead proportional to (Zmean − 1). Note that in the
numerical calculations, any charge exchange cross sections and semi-empirical for-
mulas (Nakai et al. 1989) can be employed. It is important to note that proton
collisions (in particular proton-induced ionization Ip of highly excited states) have an
important impact on the collisional–radiative modeling of the neutral system and have
therefore been included for all states in the quasi-classical approach (Garcia et al.
1969; Gryzinski 1965). Numerical studies of the neutral system show (Rosmej and
Lisitsa 1998) that one can choose C01,eff > 0 and all other Cij,eff = 0 while d/dt = 0.

Then Ceff: = C01, eff can be determined in a self-consistent manner together with feff
and in turn permits to extract the fraction of neutral atoms fneutral (see also (10.58))
and the characterization of the penetration of the neutral species from the wall to the
center through Ceff (see also (10.61)). Physically, Ceff: = C01, eff can be interpreted
as follows. We have an inflow of neutral particles in the ground state (1s 2S1/2) from
the wall to the center into a volume element containing protons and neutrals with
given ne and Te. The continuous inflow causes an effective increase of the neutral
density and changes therefore the effective ionization balance for given ne and Te in
that volume element. The normalization condition (10.62) puts into proper weight
the effect of the inflow for all populations nj.

The inflow of neutrals from the wall to the center leads to an accelerated con-
vergence of the self-consistent model due to the effective reduction of excited state
populations that originate from the three-body recombination p + e + e ! H
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(n) + e. In practice, the proton population decreases considerably as the fraction of
neutrals may rise many orders of magnitude (e.g., from about 10−8 to 10−5 for
ohmic discharges at the TEXTOR tokamak (Rosmej et al. 1999a)). Writing

sp ¼ 1
neCeff

ð10:65Þ

the physical meaning of sp is an effective proton lifetime. Due to the relation
(10.56), we can formulate also an expression for the electron lifetime sne :

sne ¼
1

neCeffZmean
: ð10:66Þ

The neutral fraction is thus self-consistently obtained by coupling the population
kinetics of the neutrals and the impurities via charge exchange:

fneutral ¼ 1
ZmeannN0

XnNmax

j¼1

nNj ðne; Te;Ceff ; feffÞ: ð10:67Þ

As mentioned in relation with (10.58) in a self-consistent simulation, the fraction
according to

fH ¼ nHð1sÞ
ne

ð10:68Þ

is not strictly equivalent to the relative number of neutral particles (Rosmej and
Lisitsa 1998). In fact, in a self-consistent simulation, the neutral system is simul-
taneously also calculated in a collisional–radiative modeling in order to calculate
charge exchange from excited states (see (10.38) and the discussion in relation to
Table 10.3). These neutral particle simulations may likewise include also particle
transport, e.g., a neutral flux from the wall to the center (Rosmej et al. 1999a;
Rosmej and Lisitsa 1998). As the total number of neutrals is different from the
number of neutrals in the ground state 1s, (10.68) is not identical to the relative
number of neutral particles. Simulations show (Rosmej et al. 1999a, 2006a; Rosmej
and Lisitsa 1998) that (10.68) is, however, a very convenient simulation parameter:
In fact, X-ray spectra can be first fitted with the help of the parameter (10.68) and
then, this parameter is recalculated in the self-consistent simulation to obtain
excited states contributions from the donor atoms and the neutral density according
to (10.58) that may include neutral flow from the wall to the center. The best fit to
the data presented in Fig. 10.11 has been obtained for fH = 1.7 � 10−5.

We note that radiative cascading contributions to the q-satellite intensity from
the 1s2lnl′-states in the simple standard Corona approximation have been studied
(Bernshtam et al. 2009), and it was found that it contributes considerably if com-
pared with the dielectronic recombination channel. This is not surprising because
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the q-satellite has a rather ineffective dielectronic recombination channel (low
satellite intensity Q-factor) and the radiative cascading contribution for the q-
satellite (and also for other satellite transitions that have low Q-factors). Therefore,
the cascading has to be compared rather with the inner-shell excitation channel
(which is the dominating one for the q-satellite) than with the dielectronic capture
channel. In this case, one can see that for typical parameters of the spectra of
Fig. 10.11 cascading contributions are negligible. Moreover, the cascading con-
tributions for the r-satellite are entirely negligible (Bernshtam et al. 2009) even if
compared to the dielectronic recombination channel only. However, as the spec-
trum of Fig. 10.11 demonstrates, the r-satellite shows a very similar behavior as the
q-satellite, and therefore, cascading properties are not at the cause of their intensity
rise (left red flash in Fig. 10.11) discussed here.

We note that the general case of cascading contributions to satellite transitions
including charge exchange has been investigated theoretically and experimentally
(Rosmej et al. 2006c) and it was found that it gives rise to a considerable
enhancement of the intercombination satellite transitions originating from the 1s2p2
4P states, i.e., the transitions h = 1s[2p2 3P] 4P1/2–1s

22p 2P3/2, i = 1s[2p2 3P] 4P1/2–

1s22p 2P1/2, f = 1s[2p2 3P] 4P3/2–1s
22p 2P3/2, g = 1s[2p2 3P] 4P3/2–1s

22p 2P1/2,
e = 1s[2p2 3P] 4P5/2–1s

22p 2P3/2. The physical origin of the strong cascading
contribution in the triplet system of the autoionizing states is that they accumulate
in the lowest configuration 1s[2p2 3P] 4P.

Figure 10.13 shows a sensitivity study of the charge exchange enhanced q-satellite
intensity. For these purposes, the intensity line ratios between the q- and k-satellites
are depicted because the k-satellite is well separated in the experimental spectra from
Fig. 10.11 and because it has low charge exchange sensitivity due to small inner-shell
excitation channel (high autoionizing rate C(k) = 1.34 � 1014 s−1). As Fig. 10.13
demonstrates charge exchange sensitivity starts already from fractions as low as 10−7

(see also Fig. 10.12). This strong sensitivity is due to the very large value of charge

Fig. 10.13 MARIA
simulations of satellite
intensities in dependence of
the neutral beam fraction,
kTe = 1700 eV,
ne = 2 � 1013 cm−3

498 10 Applications to Plasma Spectroscopy



exchange cross sections in the classical over barrier regime (see also Annex A.1 that
presents a summary of numerous elementary processes).

Also included in Fig. 10.13 is a curve that shows the intensity ratio of the k-
satellite and with the He-like resonance line W. The W-line intensity is essentially
driven by electron collisional excitation from the He-like ground state 1s2 1S0 while
the k-satellite intensity is essentially due to dielectronic capture from the He-like
ground state. Therefore, charge exchange-driven shifts of the ionic distribution have
almost no effect on this line ratio as confirmed by the simulations.

Figure 10.14 shows the time-resolved argon X-ray emission after the neutral
beam injection NBI was switched off. As can be seen, the dashed blue curve (where
charge exchange is not included in the simulations) results already in a rather good
agreement with the data for an electron temperature of kTe = 1300 eV. As indicated
by the red flash, the q-satellite intensity, however, is again not in good agreement,
albeit less pronounced as compared to Fig. 10.11. This indicates that although the

Fig. 10.14 Time-resolved
X-ray argon impurity
spectrum (t = 3.9–4.0 s) after
switching off the neutral beam
injection at t = 3.7 s. The red
flash indicates that even after
neutral beam injection an
enhanced neutral background
remains

Fig. 10.15 Experimental
satellite intensities in
dependence of different
intensities of neutral beam
injection and different line of
sights (NBI1 and NBI2)
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neutral beam injection is switched off still charge exchange from neutrals impact on
the X-ray emission, i.e., there exists an important residual neutral background.
Quantification of the residual neutral background is demonstrated with the green
curve that shows the MARIA simulations including charge exchange: Excellent
agreement is obtained for fH = 6 � 10−6.

Figure 10.15 shows the experimental peak intensity ratio of the q- and k-satel-
lites in dependence of the neutral beam injection power. This demonstrates that with
increasing NBI-power, the ratio continuously rises (solid and open squares) and
relaxes to a common level (solid and open circles) after switching off the NBI
injection.

For the NBI 1 (solid symbols) the line of sight for the X-ray emission crosses the
injection direction, while for NBI 2, no geometrical crossing occurs (open sym-
bols). As can be seen, open and sold circles coincide within the error bars. These
results suggest that the neutral beam is rapidly thermalized creating an enhanced
neutral background. Due to the large sensitivity of this method, even the neutral
background in purely ohmic discharges could successfully be determined (Rosmej
et al. 1999a).

As Figs. 10.11 and 10.14 demonstrate, the self-consistent charge exchange
MARIA simulations provide excellent agreement between theory and
experiment (Rosmej 1998, 2012a; Rosmej et al. 1999a). The impact of charge
exchange on impurity spectra has later also been found to be of importance in other
experiments of magnetically confined plasmas (Beiersdorfer et al. 2005). However,
the statements of (Beiersdorfer et al. 2005) that large enhancement factors of 6 and
more for the Z-line were found in (Rosmej et al. 1999a) that disagree with their
measurements are incorrect. In addition, the analysis (Beiersdorfer et al. 2005) did
not include any self-consistent consideration and an incomplete discussion of the Z-
line intensity. In fact, it should be remembered that opposite to the W-line, the Z-
line intensity is strongly plasma parameter dependent due to its cascade sensitivity
and inner-shell ionization population channel (e.g., see above discussion of charge
exchange). Therefore, the surprises announced in (Beiersdorfer et al. 2005) that
their observations show quite different Z-line intensities as compared to (Rosmej
et al. 1999a) are also irrelevant as the plasma temperatures in (Beiersdorfer et al.
2005) and (Rosmej et al. 1999a) are quite different: Much higher electron tem-
peratures result in an entirely different proportion of recombination and inner-shell
ionization contributions, and the same holds true for the different intensities of the
qr-satellites (Rosmej and Lisitsa 1998).

Further serious discrepancies between simulations and experimental data for the
W3 and Y3 argon line emission in a well-diagnosed tokamak have also been stated
by (Beiersdorfer et al. 1995). However, these statements and related discussions
turned out also to be in error and consistently performed multilevel multi-ion stage
simulations carried out with the MARIA code (Rosmej 1997, 1998, 2001, 2006,
2012a) that included cascading, line-of-sight integration, spectral simulations
including overlapping 1s2l3l′- and 1s3lnl′-satellites, advanced intermediate
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coupling, and configuration interaction demonstrated excellent agreement with the
data (Rosmej 1998).

The W3 and Y3 lines have attracted renewed attention in recent
very-high-resolution X-ray spectroscopic measurements for advanced confinement
mode studies at the C-mod tokamak at MIT (Rice et al. 2018). The key issues
concerning the X-ray diagnostics has been the simultaneous observation of the W3
and Y3 lines and the two types of satellites transitions 1s3l3l′–1s23l′ and 1s2l3l′–
1s22l. The important point in this simultaneous observation of satellite transitions is
that temperature can be fixed with rather high precision while studying the impact
of impurity transport, charge exchange, and cascading. As has been demonstrated,
the MARIA simulations provide very good agreement with the data (Rice et al.
2018). Moreover, it should be emphasized that the MARIA code analysis was based
on the complete simulation of the spectral distribution that permits increased sta-
bility in the analysis. On the other hand, line ratios provide only limited information
as in almost all practical applications, simultaneously several effects have to be
studied: temperature, density, particle impurity transport, charge exchange, flow of
neutral from the wall to the center, …. These effects are very difficult to take into
account simultaneously via line ratios. For example, as demonstrated in Figs. 10.11
and 10.14, line overlap from different type of transitions can be very important (the
overlap of higher-order satellites 1s2lnl′ with the W-line, the overlap of the 1s3lnl′-
satellites with the W3 line, the overlap of the j-satellite with the Z-line, etc.). Due to
this line-overlap problematic, corrected line ratios (corrected for overlapping
satellite transitions) have emerged in the literature. However, these line ratios are
not of great practical use because the primary line ratio becomes multiparameter
dependent. If line overlap is important, only total spectral simulations (Rosmej
1998; Rosmej et al. 1999a, b, 2000, 2001c; Rosmej and Lisitsa 1998) as demon-
strated with the MARIA code provide an efficient analysis.

Finally we note that charge exchange processes turned out to be also important
in dense hot plasmas, e.g., in laser-produced plasmas (Rosmej et al. 1999b, 2002a,
2006c, Monot et al. 2001), Z-pinches (Rosmej et al. 2001b, 2015). Also hollow ion
X-ray emission has been identified with charge exchange between highly charged
ions and low-charged ions (Rosmej et al. 2015).

10.3.3 Transient Phenomena in the Start-up Phase

Figure 10.16 shows the time-resolved X-ray impurity spectra for an inductively
heated tokamak discharge with residual argon (argon that remained in the machine
from the gas puff injected argon of the previous discharge). Figure 10.16a shows
the start-up phase at t = 0.1–0.2 s. Strong enhancements (indicated by red flashes)
of the qr-satellites and the (Z, j)-lines are observed. The qr- and (Z, j)-intensities
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decrease continuously with time (Fig. 10.16b,c) and approach an almost stationary
case for t > 0.4 s (see Fig. 10.16d).

Fig. 10.16 Time-resolved X-ray impurity spectra from residual argon gas in the heating phase of
an inductively driven tokamak discharge. a At t = 0.1–0.2 s, the Li-like satellites qr show up with
large intensity that is continuously decreasing with time, b t = 0.2–0.3 s, and c t = 0.3–0.4 s. At
t = 0.4–0.5 s d almost stationary conditions are reached
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In the start-up phase, increased intensities of the qr- and (Z, j)-lines are due to
charge exchange processes and also due to transient effects. Figure 10.17 displays
therefore the transient calculation (∂nj/∂t 6¼ 0; see (10.51)) of the Argon impurity
spectra carried out with the MARIA code. The simulations employ the measured
values of electron temperature Te(r = 0, t) and electron density ne(r = 0, t).
Time-resolved spectral emission has been summed in the intervals from t = 0.1–
0.2 s and t = 0.2–0.3 s in order to be compared with the time-resolved measure-
ments of Fig. 10.16. For better demonstration of the transient effects, the spectra for
both time intervals have been normalized to the peak intensity of the W-line. It
should be emphasized that the time-dependent simulations include not only the
ground states, but also all excited (single and double excited) states. Therefore, the
simulations keep also track of the photon relaxation effects discussed in Sect. 6.2
along with the relaxation effects of the ionization balance.

Due to the fast rising electron temperature (e.g., kTe = 380 eV at t = 0.1 eV,
kTe = 1100 eV at t = 0.3 s), the ionization balance lags behind the corresponding
electron temperature resulting in an increased fraction of Li-like ions compared to
stationary calculations. This creates the condition for a rise of the relative intensity
of the qr-satellites (inner-shell excitation) and the Z-line (inner-shell ionization). In
addition, other satellites, that have strong dielectronic recombination channels, are
relatively enhanced because the electron temperature is on the average lower in the
interval t = 0.1–0.2 s compared to the interval t = 0.2–0.3 s. As can be seen from
the comparison of the different simulations, the satellite enhancement effects for the
time interval starting from t = 0.1–0.2 s are rather small (see Fig. 10.17) and for
t = 0.2–0.3 s and for later times (until the end of the discharge), these effects are
found to be negligible (Fig. 10.17).

As can be seen from the comparison of the experimentally measured X-ray
spectra (Fig. 10.16a) and the simulations (green curve in Fig. 10.17), the transient

Fig. 10.17 Time-dependent MARIA simulations of argon X-ray impurity spectra from residual
argon gas in the heating phase of an inductively driven tokamak discharge. The simulations take
into account the experimentally measured temperature and density evolution. Time-dependent
spectra have been summed up in the time intervals from 0.1 to 0.2 s and 0.2 to 0.3 s and
normalized to the W-line peak intensity for better demonstration of transient effects

10.3 Magnetic Fusion 503



relaxation effects do not allow to fully explain the strong intensity increase of the
qr-satellites (red flash in Fig. 10.16a). Therefore, most of the intensity rise can be
attributed to charge exchange with the neutral background; see Fig. 10.12 green
curve. The determined neutral fraction for the time interval t = 0.1–0.2 s is about
(2 ± 1) � 10−5, and the determined electron lifetime is about (0.1 ± 0.05) s. These
results are also in good agreement with Monte Carlo simulations of the neutrals
(Rosmej et al. 1999a).

If the intensity rise of the qr-satellites in Fig. 10.16 is essentially attributed to
charge exchange, the continuous decrease of the qr-satellites after the start-up phase
until the stationary case (Fig. 10.16d) indicates that the neutral fraction in the
start-up phase is much larger than in the stationary phase of the discharge. This is
understandable because in the start-up phase, the electron temperature is much
lower than in the stationary phase.

10.3.4 Impurity Diffusion and s-Approximation

Also impurity diffusion impacts on the spectral distribution, in particular on the
relative intensities of the qr-satellites and the X-, Y-, Z-lines discussed above. As
has been demonstrated with detailed numerical calculations of the exact radial
diffusion equation (Rosmej et al. 1999a), the intensities of the qr-satellites and even
the complex interplay of the X-, Y-, Z-line intensities can be reasonably described
by the so-called s-approximation. In this approximation, the diffusion term is
replaced by

r njV
	 
! nj

sD
ð10:69Þ

in the population kinetic system (10.51). From the comparison of the numerical
calculations of the exact diffusion equation and the s-approximation, one can
deduce the approximate relation (Rosmej et al. 1999a)

D � aD � Dx
2

sD
; ð10:70Þ

where D is the impurity diffusion coefficient (Hulse 1983), Dx is the characteristic
width of the particular charge state, aD is a constant that depends on the geometrical
parameters of the magnetically confined plasma and sD is the characteristic time
scale for the diffusion in tau-approximation (10.69) to be used in (10.51).

Figure 10.18a shows the impact on the X-ray spectral distribution for different
parameters sD in a self-consistent charge exchange simulation described above. For
the simulations of the spectra of Fig. 10.18, aD � 0:16 and Dx � 35 cm have been

504 10 Applications to Plasma Spectroscopy



Fig. 10.18 Self-consistent MARIA simulations of charge exchange and impurity diffusion.
a Influence of impurity diffusion on the self-consistent charge exchange simulations. Noticeable
diffusion effects start only for s-parameters 1/sD > 20 s, b self-consistent simulations of an
inductively heated discharge. Excellent agreement with the time-resolved data in the interval
t = 0.8–1.8 s is obtained for feff = 5.7 � 10−6

Fig. 10.19 Space-resolved self-consistent charge exchange simulation of an inductively heated
discharge. Noticeable diffusion effects start only for s-parameters 1/sD > 20 s
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deduced from numerical calculations (Rosmej et al. 1999a); therefore, Dð1=sD ¼
20=sÞ � 4� 103 cm2=s while Dð1=sD ¼ 100=sÞ � 2� 104 cm2=s. Taking into
account the experimental errors, the value Dð1=sD ¼ 20=sÞ � 4� 103 cm2=s rep-
resents an upper limit (compare the blue solid curve with the dotted black curve).
As a noticeable influence on the X-ray spectra starts only with this value but this
value is much larger than previously measured diffusion values D � 100�
1000 cm2=s (Rapp et al. 1997; Tokar 1995; Ongena et al. 1995), the essential rise
of the intensity is due to charge exchange as demonstrated with Fig. 10.18b that
shows excellent agreement with the data for an effective charge exchange parameter
feff = 5.7 � 10−6. Note, that the simulations include the spatial variation of the
plasma parameters. Figure 10.19 visualizes the local emission (note that the local
emission is correlated to the dependence on major radius, the emission presented
starts at the minor radius r = 0 that corresponds to a major radius of R = 183 cm)
from the simulations that have been summed up for the final fit of the line-of-sight
integrated data of Fig. 10.18b. It is important to note that all spectral details are very
well reproduced: (a) higher-order satellite intensities and k-satellite intensity with
respect to the W-line (indicating a correct description of the electron temperature),
(b) perfect agreement with the intensities of the X-, Y-, and Z-lines indicating that
cascading driven by charge exchange and other processes are well described,
(c) perfect agreement with the qr-satellites indicating a correct description of the
charge exchange-induced shift of the ionization balance.

It is important to note that the detailed description of the X-, Y-, and Z-line
intensities and the satellites identify and distinguish charge exchange and impurity
diffusion effects. This important diagnostic property of the high-resolution X-ray
diagnostic is demonstrated in Table 10.4.

The Y-line continuously decreases with increasing impurity diffusion parameters
D, while the Z-line firstly decreases and then increases. The decrease is related with
the fact that with rising diffusion parameters D, the recombination source (from the
H-like ground state) is reduced thereby reducing the cascading contributions to the
line intensity. In this respect, the Y- and X-lines behave very similar because of
the similar upper state configurations 1s2p 3PJ. The same holds true for the Z-line,
however, for larger D-values inner-shell ionization contribution from the Li-like
ground state 1s22s 2S1/2 for the Z-line comes into play that finally enhances the
intensity. This contribution is negligible for the X- and Y-lines because here
inner-shell ionization proceeds from the excited states 1s22p 2P3/2,1/2 that have very
low population; see (10.33). The qr-satellite intensity rises continuously with
increasing D-values because of increasing population of the Li-like ground state
that enhances the inner-shell excitation channel 1s22s + e–1s2s2p + e.

Table 10.5 shows the corresponding simulations in the s-approximation. It is
impressive to observe that even the subtle details of the line intensities (continuous
decrease of the Y-line, decrease and increase of the Z-line, continuous increase of
the qr-satellites) are well described in the s-approximation. One therefore observes
that the s-approximation has spectroscopic/diagnostic precision.
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Therefore, the excellent agreement in all spectral features of the X-, Y-, and Z-
lines as demonstrated in Fig. 10.18b points on the importance of charge exchange
in the data as X-, Y-, and Z-lines are increased and not decreased.

Finally we note that the relative interplay between cascading, inner-shell ion-
ization, and inner-shell excitation depends on the electron temperature: For large
temperatures, dielectronic satellite intensities are decreased relative to the W-line
and the reduced population of the Li-like ionization stage reduces inner-shell ion-
ization and inner-shell excitation channels, while recombination channels might be
increased due to increased H-like ionic population. In the opposite case, i.e., small
electron temperatures, dielectronic satellite contributions are enhanced relative to

Table 10.5 Same like Table 10.4, however, calculations are performed in the framework of the s-
approximation, Te(r = 0) = 1600 eV and ne(r = 0) = 2 � 1013 cm−3

1/s (s−1) 0.3 1 3 10 20 50 100 160 200 350 600

(RZ)/(RZ)s=∞ 0.999 0.998 0.994 0.985 0.979 0.981 1.01 1.06 1.10 1.24 1.49

(RY)/(RY)s=∞ 0.999 0.998 0.994 0.982 0.970 0.950 0.934 0.925 0.921 0.913 0.907

(Rq)/(Rq)s=∞ 1.01 1.03 1.08 1.27 1.55 2.35 3.67 5.23 6.25 10.0 16.2

Values are normalized to the case s ¼ 1

Fig. 10.20 Time-resolved temperature and density measurements for neutral beam-heated
TEXTOR tokamak discharges. a and b show the total time interval of the discharge, c and
d show the saw tooth oscillations in temperature and density with high temporal resolution
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the X-line, inner-shell ionization and inner-shell excitation are enhanced due to high
populations in the Li-like ionization stage while recombination channels are small
due to small populations of the H-like ions.

10.3.5 Non-equilibrium Radiative Properties During
Sawtooth Oscillations

The detailed description of the radiative properties of non-stationary and
non-equilibrium plasmas plays a key role in modern tokamak research. The com-
plexity arises due to the simultaneous presence of external sources for plasma heating
and magnetic hydrodynamic plasma activity that results in sawtooth oscillations.
Figure 10.20 shows an example of time-resolved measurements of the electron
temperature (Fig. 10.20a, measured with the electron cyclotron method) and density
(Fig. 10.20b, measured with HCN-interferometry) at a mid-size tokamak for the total
period of the discharge including the ramp up phase, neutral beam heating, and the
plasma disruption. During neutral beam injection, important sawtooth oscillations in
temperature and density are observed that are depicted in Fig. 10.20c, d with very
high temporal resolution. For the inductively driven regime, no such regular oscil-
lations are observed. The sawtooth amplitude during neutral beam injection is very
large, dðkTeÞ � 0:5 keV at a mean temperature of about kTe � 1:75 keV while the
amplitude for the electron density is about dðneÞ � 1:5� 1012cm�3 at a mean
electron density of about ne � 2:85� 1013 cm�3. The oscillation period is about
Tsawtooth � 50ms. The rising phase of the sawtooth is well resolved (see
Fig. 10.20c, d), while the so-called sawtooth crash is essentially unresolved.

The simulation of the associated non-equilibrium radiative properties is impor-
tant for spectroscopic diagnostics and also for the correct prediction of the maxi-
mum radiation heat load on the inner walls. The correct description of atomic
kinetics and radiative properties for these conditions requests a self-consistent
solution of the kinetic equations for the electron distribution function as well as for
atomic energy state populations. The fundamental quantities are the
time-dependent-level populations, and we therefore start with the consideration of
fluctuations in the atomic and ionic levels (Rosmej and Lisitsa 2011).

10.3.5.1 Fluctuations and Atomic Level Populations

Let us start from the Boltzmann-type kinetic equation for the seven-dimensional
single-particle distribution function f1 ~V ; ~r; t

	 

(~r is the particle position vector and

~V the particle velocity vector):
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df1 ~V ;~r; t
	 

dt

¼ @f1 ~V ;~r; t
	 

@t

þ~V
@f1 ~V ;~r; t
	 

@~r

þ
~F
m

@f1 ~V ;~r; t
	 

@~V

¼ Cf : ð10:71Þ

Cf indicates the collisional term which cuts the hierarchy of the many-particle
distribution function. The single-particle distribution function is normalized to the
total number of particles

n ~r; tð Þ ¼
Z

d3r f1 ~V ;~r; t
	 


: ð10:72Þ

The particle distribution function according to (10.71) leads to a direct link to the
atomic level populations nj via the rate coefficient matrix Wij (see also (10.51),
(10.52)):

dnj
dt

¼ �nj
XN
i¼1

Wji þ
XN
k¼1

nkWkj; ð10:73Þ

Wji ¼ Cji þAji þ Iji þ Tji þDji þCji þRji: ð10:74Þ

The collisional rate coefficients are linked via the particle distribution function
(in particular the electron energy distribution function) according to

C; I;Rð Þji ¼
Z1
DEji

dE r C;I;Rð Þ
ji Eð ÞV Eð ÞF Eð Þ ð10:75Þ

with

E ¼ 1
2
m~V2; ð10:76Þ

F Eð Þ ¼ 1
n ~r; tð Þ f1

~V ;~r; t
	 
 @V

@E
: ð10:77Þ

For the dielectronic capture process and the three-body recombination, these
expressions differ because the dielectronic capture is a resonance process and the
three-body recombination involves the energy distribution of two particles (with
energies E1 and E2 after ionization, energy E before ionization and double differ-
ential cross section rIji, to be discussed in more detail in Sect. 10.4):

Dji ¼ p2�h3ffiffiffi
2

p
m3=2

e

gj
gi
Cji

Z1
0

dE d ES;Eð ÞF Eð Þffiffiffiffiffi
ES

p ; ð10:78Þ
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Tji ¼ p2�h3

m3=2
e

gi
gj

Z1
0

dE1

Z1
0

dE2
Effiffiffiffiffiffiffiffiffiffi
E1E2

p rIji E;E1ð ÞF E1ð ÞF E2ð Þ: ð10:79Þ

Equations (10.71)–(10.79) provide a complete link of the atomic level popula-
tions to the kinetic description of any time- and space-dependent phenomena. In
optically thin plasmas, the local radiative emission of the atomic system is then
given by

I x;~r; tð Þ ¼
XN
i¼1

XN
j¼1

�hxjinjAjiuji xð Þ; ð10:80Þ

where xji is the transition frequency, ujiðxÞ the local emission line profile, and
N the total number of levels. The observed emission is given by the integration over
the line of sight and the convolution of the spectral distribution with the apparatus
profile UðxÞ:

I x; tð Þ ¼
Zþ1

�1
dx0

ZR
r¼0

dr I x0; r; tð ÞU x0 � xð Þ: ð10:81Þ

The spatial and temporal dependences of temperature T ~r; tð Þ and density n ~r; tð Þ
can be directly obtained from the particle distribution function f1 ~V ;~r; t

	 


T ~r; tð Þ ¼ m
3 k

Z
~V2f1 ~V ;~r; t

	 

d3r: ð10:82Þ

10.3.5.2 Histogram Technique

The temporal distribution of the density is given by (10.72). If the variation of
temperature and density in time are independent of each other, a histogram tech-
nique can be applied to T ~r; tð Þ and n ~r; tð Þ to obtain the distribution functions of
temperature and density, GT T;~rð Þ and Gn n;~rð Þ, respectively. The distribution
functions GT and Gn can then be measured in experiments, e.g., by means of probe
measurements, cyclotron emission, interferometry or spectroscopic measurements
of the atomic radiation emission.

For observations sufficiently long compared to the fluctuation time scale, the
emission of a single bound–bound transition is given by
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Iji x; tð Þ ¼
Zþ1

�1
dx0

ZR
r¼0

dr
Z1

T¼0

dT
Z1
n¼0

dn GT T; rð ÞGn n; rð Þ � Bji r; T; n;xji;x
0	 

U x0 � xð Þ;

ð10:83Þ

Bji r; T; n;xji;x
0	 
 ¼ �hxjiAjinj r; T; nð Þuji xji;x

0; r; T; n
	 


: ð10:84Þ

In order to provide practical use of the functions GT and Gn and the expressions
according to (10.83), (10.84), density and temperature fluctuations have to be
independent and the time constant of the response function of the “observation
system” has to be small compared to the time constant of the fluctuations. For
spectroscopic measurements, the relevant relaxation constants are those of the
system of differential equations (10.73).

Two classes of relaxation constants turn out to play an important role for the
response function of the radiation to fluctuations: (a) the relaxation of the photon
emission itself (see Sect. 6.2.2) and (b) the relaxation of the ion charge state distribution
(see Sect. 6.2.1). The relaxation of the photon field is given by (see also (6.62)):

sji ¼ 1
Aji þCji þCji

: ð10:85Þ

Aji is the radiative decay rate from level j to level i and Cji at Cij are the corresponding
collisional processes. This means that even at extremely low-density plasmas, the
relaxation time is rather fast due to the usually high radiative decay rate. For the
hydrogen Balmer-alpha transitions (n = 3, n′ = 2) (10.85) gives s < 7.6 � 10−9 s−1.
This time is usually much shorter than the fluctuation time. Therefore, photon
relaxation does usually not play a role in turbulent plasmas. However, collisional
processes from metastable levels can considerably enhance (orders of magnitude) the
relaxation constant as this couples a “slow” time constant of forbidden transitions to
the atomic level from which the resonance line origins. A characteristic example is
the magnetic quadrupole transition Z = 1s2s 3S1–1s

2 1S0. For example, for neon (used
for radiative cooling in mid-size tokamaks), the radiative decay rate is
s(Z) = 1.3 � 10−4 s, whereas for the resonance transition W = 1s2p 1P1–1s

2 1S0 the
time constant is s(W) = 1.1 � 10−11 s. Therefore, the photon emission of the Z-line
is not relaxed on the usual time scale of turbulence, whereas the photon emission of
the W-line represents almost instantaneously compared to the fluctuation time
(if collisional coupling (see Sect. 6.2.3) between the singlet and triplet levels is
negligible). The relaxation behavior of the ion charge state distribution is quite dif-
ferent (see also (6.48)):

sZ;Zþ 1 ¼ 1
IZ;Zþ 1 þ TZþ 1;Z þRZþ 1;Z þDZþ 1;Z

: ð10:86Þ

I is the ionization rate, T the three-body recombination rate, R the radiative recom-
bination rate, and D the dielectronic recombination rate. In low-density plasmas, these
rates are very small and the corresponding time constant is very large.

512 10 Applications to Plasma Spectroscopy



The relaxation of the ionization balance is of importance if the intensity I of a
particular line is intended to be used for turbulence analysis. The reasons are
manifold: The intensity is not only given by the collisional excitation rate coeffi-
cient from the ground state, but also by the ionic fraction of the ground state itself,
determined in turn by ionization and recombination processes. For highly charged
ions, numerical calculations show (see (6.50)) that the K-shell emission has reached
quasi-stationary conditions if

nes� 3� 1011 cm�3 s; ð10:87Þ

where ne is the electron density in [cm−3] and s is the time after which the ionic
fractions are in equilibrium. For magnetically confined fusion plasmas, the
quasi-stationary condition (10.87) is usually a rather stringent condition for the
radiation emission of highly charged impurity ions, because the density is of
the order of 1012–1015 cm−3 providing a relaxation time of the ionic fraction of
about s = 3 � 10−1 to 3 � 10−4 s. This time constant is usually much larger than
the fluctuation time scale.

The distribution functions GT and Gn can be directly linked to the energy dis-
tribution function F(E) via the single rate coefficients of the W-matrix:

Z1
T¼0

dT
Z1
n¼0

dn
Z1
DE

dE rX E; nð ÞV Eð ÞFM E; Tð ÞGT Tð ÞGn nð Þ

¼ ntot

Z1
DE

dE rX E; nð ÞV Eð ÞF Eð Þ:
ð10:88Þ

The integral equation relates the distribution functions GT and Gn to the particle
energy distribution function F(E). A solution to (10.88) can be found, expanding
F(E) to multiple Maxwellians:

F Eð Þ ¼
XN
i¼1

fiFM E; Tið Þ: ð10:89Þ

Inserting (10.89) into (10.88), we obtain

GT Tð ÞGn nð Þ ¼
XN
i¼1

fid T � Tið Þd n� nið Þ: ð10:90Þ

We note that an arbitrary distribution function might not be expanded in terms of
Maxwellian functions. However, with respect to the radiative properties of the
atomic system it turns out to be very useful to approximate the energy distribution
function by multiple Maxwellians. In particular, the approximation by three
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Maxwellian distribution functions provides an effective approximation and also a
clear physical interpretation:

F Eð Þ ¼ f1F
M E; T1ð Þþ f2F

M E; T2ð Þþ f3F
M E; T3ð Þ; ð10:91Þ

where FM is the Maxwellian energy distribution function according to

FM Eð Þ ¼ 2
ffiffiffiffi
E

pffiffiffi
p

p exp �E=kTð Þ
kTð Þ3=2

: ð10:92Þ

The first term in (10.91) is the “bulk electron temperature T1 = Tbulk”, the second
the “hot electron temperature T2 = Thot”, and the third the “recombination tem-
perature T3 = Trec”. The bulk electron fraction is given by

f1 ¼ fbulk ¼ ne bulkð Þ
ne bulkð Þþ ne hotð Þþ ne recð Þ : ð10:93Þ

The hot electrons fraction is defined by

f2 ¼ fhot ¼ ne hotð Þ
ne bulkð Þþ ne hotð Þþ ne recð Þ ; ð10:94Þ

whereas the recombination fraction is defined by

f3 ¼ frec ¼ ne recð Þ
ne bulkð Þþ ne hotð Þþ ne recð Þ : ð10:95Þ

In order to ensure the normalization of the total distribution function F(E),
(10.91), namely

Z1
0

F Eð ÞdE ¼ 1; ð10:96Þ

the fraction f1 is determined by the relation

f1 ¼ 1� f2 � f3: ð10:97Þ

We note that the temperatures T1, T2, and T3 are not temperatures in a ther-
modynamic sense but just the parameters of the distribution function according to
(10.92).

If f2 = f3 = 0, F(E) according to (10.92) describes a Maxwellian energy distri-
bution function with the temperature Tbulk. Hot electrons do have a considerable
effect on ionization, excitation, and inner-shell processes and are described by the
hot electron temperature Thot. An excess of low energy electron will lead to
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enhanced recombination processes, and this effect is described by Trec. The
respective rate coefficients are given by

Xji ¼ 1� f2 � f3ð ÞXM
ji T1ð Þþ f2X

M
ji T2ð Þþ f3X

M
ji T3ð Þ: ð10:98Þ

For the three-body recombination, this expression differs due to the double
integration over the double differential ionization cross section:

Tji ¼ 1� f2 � f3ð Þ2Tji T1ð Þþ f 22 Tji T2ð Þþ f 23 Tji T3ð Þþ nji; ð10:99Þ

nji ¼ 2f2 1� f2 � f3ð Þ V1V2r
T
ji

D E
þ 2f3 1� f2 � f3ð Þ V1V3r

T
ji

D E
þ 2f2f3 V2V3r

T
ji

D E
:

ð10:100Þ

Even in the case of multiple Maxwellians, the “mixed term” VaVbrTji

D E
cannot

be reduced analytically and has to be evaluated numerically. This numerical inte-
gration is extremely time consuming. Numerical calculations carried out with
non-Maxwellian simulations of the MARIA code show that the “mixed term” can
be reasonably approximated by

VaVbr
T
ji

D E
� 0:95

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tji Tað Þ � Tji Tbð Þ

q
� Tji Tað Þ

Tji Tbð Þ
� �0:1

; ð10:101Þ

where Ta < Tb.

Fig. 10.21 Model sawtooth
of the electron temperature,
a initial and final temperature
are identical and b the final
temperature ends at the
maximum temperature of the
oscillation
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10.3.5.3 Time-Dependent Charge State Evolution

Figures 10.20 have shown that the neutral beam injection induces a rather periodic
part of the oscillation while a small stochastic part is onset on these oscillations. In
order to investigate the effect of the periodic oscillations on the radiative properties,
we employ two different types of “model sawtooth” that are presented in
Fig. 10.21. Figure 10.21a shows a model sawtooth, where initial and final tem-
peratures are identical while for the model sawtooth shown in Fig. 10.21b, the final
temperature is the maximum temperature of the oscillation. Similar model saw-
tooths are applied for the density oscillations. The time-dependent parameters
ne(t) and Te(t) are then employed in the MARIA simulations to calculate
time-dependent atomic populations, (10.73)–(10.80).

The two types of model sawtooths according to Fig. 10.21a, b allow explaining
the basic principles of the transient radiative properties, the evolution of the charge
state distribution, and spectroscopic diagnostics. Figure 10.22 shows the oscilla-
tions of the average charge Zeff of argon ions under sawtooth oscillations from
Fig. 10.21 taking into account temperature and also density oscillations (see
Fig. 10.20). It can be seen that about 2 oscillations after the onset of the sawtooth
activity are needed to obtain regular charge state oscillations (indicated by the red
flash in Fig. 10.22). During the oscillation, the average charge is highly out of
equilibrium and oscillates (green flash in Fig. 10.22) about between Zeff = 16.5–
16.6. As can be seen from the simulation for the model sawtooth (b), the average
charge never reaches the value that corresponds to the highest temperature in the
oscillation (indicated with blue flash in Fig. 10.22) and also never reaches the
average charge values that correspond to the lowest temperature in the oscillation
(indicated by the lower horizontal dotted line). This demonstrates that at any instant
of the oscillation, the charge state is highly out of equilibrium. Moreover, as can be
seen from the rise and fall of the oscillations in Fig. 10.22, the charge state evo-
lution is not able to follow the sawtooth crash, instead a rather smooth decrease of
Zeff is observed.

Fig. 10.22 Evolution of the
average charge Zeff of argon
under sawtooth oscillation,
a initial and final temperature
are identical and b the final
temperature ends at the
maximum temperature of the
oscillation
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The “out of equilibrium features” are a consequence of the characteristic ion-
ization time scale, (10.86). It should be emphasized that these non-equilibrium
effects have nothing to do with a limited time resolution, but rather with the “in-
ternal” atomic time scale that does not allow to respond quickly enough to external
forces. In other words, these relaxation effects are still observed even if the time
resolution is infinitely large.

10.3.5.4 Time-Dependent Evolution of Line Intensities

The temporal emission of impurity lines is of great interest for diagnostic purposes,
e.g., for impurity transport investigations via temporal decay of line intensity
studies, certain temporal behavior of line emissions signaling the development of a
plasma disruption. Figures 10.23 and 10.24 show the temporal evolution of the
H-like Lyman-alpha emission of argon under sawtooth oscillations type (a) and
type (b) (Fig. 10.21). Figure 10.23 shows an almost instantaneous fall off of the
intensity when the sawtooth crash appears because the photon relaxation time is

Fig. 10.23 Evolution of the
intensity of Lyman-alpha of
argon under sawtooth
oscillation where initial and
final temperatures are
identical (Fig. 10.21a). The
relaxation of the Lyman-alpha
photons permits to follow the
sawtooth crash

Fig. 10.24 Evolution of the
intensity of Lyman-alpha of
argon under sawtooth
oscillation where the final
temperature is identical to the
maximum temperature of the
oscillation (Fig. 10.21b). The
sawtooth crash can be
followed; however, the
sawtooth emission slope is
perturbed and not identical to
the original one
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very small due to the strong Z-scaling of the photon transition probability
A / Z4

eff

	 

. The oscillations in the fall-off phase do not completely return due to

non-relaxed ion charge state distribution as discussed in relation with Fig. 10.22.
In order to position the time-dependent results with respect to the stationary limits
of the extreme parameters of the oscillation, Fig. 10.24 shows the Lyman-alpha
emission for the model sawtooth of Fig. 10.21b. It can clearly be seen that the
Lyman-alpha intensity oscillates between the stationary limits corresponding to
kTe = 1.6 and 2.0 keV. Also indicated in Fig. 10.24 is the analysis about the
capacity to resolve the sawtooth oscillation. The two dashed vertical green lines
indicate that the sawtooth crash can be well resolved; however, the slope of the
Lyman-alpha intensity (solid black line) is not fully corresponding to the original
slope indicated by the red dashed line. Therefore, the evolution of the absolute
intensity of the H-like resonance line is not able to fully “resolve” the sawtooth
oscillations.

10.3.5.5 Enhanced Radiation Heat Load

Depending on the plasma parameters with respect to the radiating atom/ion, the
oscillatory behavior of electron temperature and density may also induce a con-
siderable increase of the radiation heat load (Rosmej and Lisitsa 2011). This is
demonstrated in Fig. 10.25 with the help of the He-like resonance line W of argon.
It can be seen that with the onset of the oscillation, an increased radiation heat load
is observed, indicated as “heat load type 1” in Fig. 10.25. After stabilization of the
oscillatory response, an oscillatory increase of the radiation heat load is observed,

Fig. 10.25 MARIA simulations of the temporal evolution of the radiation heat load. The start of
the sawtooth oscillation leads to a considerable increase of the radiation heat load “heat load 1”
compared to the stationary case at 2 keV while during the oscillatory phase, periodic radiation heat
load increases “heat load 2” are observed
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indicated as “heat load type 2” in Fig. 10.25. During the oscillatory phase, also
reduced radiation heat load is observed. The increased radiation heat load (means
increased compared to the stationary case indicated with dotted lines in Fig. 10.25)
is due to the characteristic time scale of the ionic distribution (see (10.86)): The
temperature rises more rapidly than the characteristic time scale of the ionic dis-
tribution; therefore, instantaneous electron collisional excitation at high tempera-
tures takes place from non-relaxed (enhanced) ground states (in the current example
the He-like ground state 1s2 1S0).

The increased radiation heat load of type 1 and type 2 may have dramatic
consequences for the plasma confinement as material damages can be induced. It is
therefore of great interest for the future experimental reactor ITER to have tem-
porally resolved line emissions available that are calibrated in the sense of a
“precursor diagnostic” to shut off the machine before destructive radiation heat load
develops.

We note that Fig. 10.25 demonstrates the principle mechanisms of the increased
radiation heat load via a transparent example. In practice, the increased radiation
heat load can develop for any other ionization stage, line emission, and impurity

Fig. 10.26 Evolution of the
line intensity ratio of
Lyman-alpha and
Helium-alpha of argon under
sawtooth oscillation where the
final temperature is identical
to the maximum temperature
of the oscillation
(Fig. 10.21b). Neither the
sawtooth crash nor the slope
can correctly be followed via
the line ratio

Fig. 10.27 Evolution of the
line intensity ratio of the
He-like dielectronic satellite
J = 2p2 1D2–1s2p

1P1 and
Lyman-alpha of argon under
sawtooth oscillation where the
final temperature is identical
to the maximum temperature
of the oscillation
(Fig. 10.21b). Sawtooth crash
and slope can approximately
be followed via the satellite
resonance line ratio
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atom/ion in dependence of the electron temperature. For heavy element impurities
(such as tungsten), increased radiation heat load can therefore develop in many
different spectral ranges.

10.3.5.6 Time-Dependent Line Intensity Ratios

For spectroscopic and diagnostic applications, it is of great interest to study diag-
nostic line ratios during sawtooth oscillations. Figure 10.26 shows the temporal
evolution of the intensity ratio of the H-like Lyman-alpha line and He-like reso-
nance line W of argon that is frequently employed for temperature diagnostics. It
can be seen that during sawtooth oscillation of type (b) (Fig. 10.21b), the line
intensity ratio oscillates between the stationary values corresponding to
kTe = 1.6 keV and kTe = 2.0 keV (dotted lines indicated with “1.6 keV” and “2.0
keV” in Fig. 10.26) while these limits are never reached during the oscillation.
Therefore, this line ratio has not the capacity to serve as a time-resolved temperature
diagnostic during sawtooth oscillation.

As can also be seen from Fig. 10.26, the line ratio displays only a limited
capacity to resolve the slope of the sawtooth and entirely fails to describe the
sawtooth crash.

Figure 10.27 shows the temporal evolution of the satellite-to-resonance line
ratio, i.e., the intensity ratio of the transition J = 2p2 1D2–1s2p

1P1 and the cor-
responding H-like Lyman-alpha line 2p 2P1/2,3/2–1s

2S1/2. This line ratio is a very
convenient temperature diagnostic as discussed above (see Sect. 10.2.1.1). It can be
seen from Fig. 10.27 that this line ratio has a great capacity to resolve even the
oscillatory phase of the sawtooth: rising slope and sawtooth crash are well

Fig. 10.28 Evolution of the line intensity ratio of the He-like intercombination line Y and
resonance line W of argon under sawtooth oscillation where the final temperature is identical to the
maximum temperature of the oscillation (Fig. 10.21b). Sawtooth crash and slope are strongly
perturbed and differ strongly from the original model sawtooth (Fig. 10.21b) while the oscillatory
amplitudes are strongly outside the interval corresponding to the stationary values
for kTe = 1.6 keV and kTe = 2.0 keV
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described and close to the original form (Fig. 10.21b) of the sawtooth. Note that the
sawtooth crash leads to a rise of the ratio because the satellite-to-resonance line
ratio increases with decreasing temperature.

Figure 10.28 demonstrates the temporal evolution of the He-like intercombi-
nation Y and resonance line W ratio during sawtooth oscillation. It can clearly be
seen that this ratio is highly out of equilibrium: The ratio may be considerably
smaller and larger than the corresponding stationary values (indicated with dashed
lines “1.6 keV” and “2.0 keV” in Fig. 10.28). Also slope and crash of the line ratio
do not well correspond to the original sawtooth.

10.4 Suprathermal Electrons

10.4.1 Non-Maxwellian Elementary Atomic Physics
Processes

According to (10.73), (10.74), the atomic populations nj are related to the ele-
mentary atomic physics processes via the transition matrixWij. Each matrix element
Wij is the sum over the rates of all relevant elementary atomic physics processes. If
particle correlations can be neglected in the calculation of the elementary atomic
physics processes, the rates (units of [s−1]) can be composed into a product of
particle densities and rate coefficients, i.e.,

dnj
dt

¼ �nj
XN
i¼1

Wji þ
XN
k¼1

nkWkj ð10:102Þ

with

Wji ¼ ne � Cji þAji þ ne � Iji þ n2e � Tji þ ne � Dji þCji þ ne � Rji þ � � � : ð10:103Þ

Equation (10.103) explicitly lists the most important elementary processes in a
plasma, i.e., electron collisional excitation/de-excitation rate coefficients Cij and Cji

(in units of [cm3 s−1]), if the electron density is in units of [cm−3]), radiative decay
rates Aij (units of [s−1]), electron collisional ionization Iij (units of [cm3 s−1]),
electron-induced three-body recombination rate coefficient (units of [cm6 s−1]),
dielectronic capture Dij (in units of [cm3 s−1]), autoionization Cij (in units of [s−1]),
and radiative recombination rate coefficient Rij (in units of [cm3 s−1]). The dots on
the right-hand side of (10.103) indicate further processes that might be important
for particular applications (e.g., charge exchange as discussed in Sect. 10.3, heavy
particle processes, radiation field terms). The rate coefficients X = Cij, Iij, Dij, Rij, Tij
have to be determined from integrals over the respective cross sections and the
electron energy distribution functions F(E). For X 6¼ T, we have
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Xji ¼
Z1
E0

dE rXji Eð ÞV Eð ÞF Eð Þ: ð10:104Þ

rXji is the cross section for the process “X” for the transition i ! j, V is the relative
velocity of the colliding particles and E0 is the threshold energy (if no threshold
exist E0 = 0). The energy distribution function is normalized according to

Z1
0

F Eð Þ � dE ¼ 1: ð10:105Þ

In the nonrelativistic approximation

V Eð Þ ¼
ffiffiffiffiffiffi
2E
me

r
: ð10:106Þ

For the three-body recombination coefficient Tij, one has to take care of the fact
that the energy distribution function of simultaneously 2 particles (“1” and “2”) has
to be taken into account:

Tji ¼ p2�h3

m2
e

gi
gj

Z1
0

dE1

Z1
0

dE2
Effiffiffiffiffiffiffiffiffiffi
E1E2

p rIji E;E1ð ÞF E1ð ÞF E2ð Þ ð10:107Þ

or, in convenient units

Tji ¼ 1:3949� 10�26 � gi
gj
�
Z1
0

dE1

Z1
0

dE2
Effiffiffiffiffiffiffiffiffiffi
E1E2

p rIji E;E1ð ÞF E1ð ÞF E2ð Þ ½cm6 s�1�

ð10:108Þ

with E, E1, and E2 in [eV] and r in [cm2]. rIji E;E1ð Þ is the double differential
ionization cross section for the transition i ! j, gi and gj are the statistical weights
of the level i and j, respectively, and

E ¼ DEji þE1 þE2; ð10:109Þ

where DEji is the ionization energy. Numerical calculations have shown (Green and
Sawada 1972; Clark et al. 1991; Faucher et al. 2000) that the double differential
cross section can be cast into a product of a single ionization cross section rIji Eð Þ
and a probability X E;E1ð Þ:

522 10 Applications to Plasma Spectroscopy



rIji E;E1ð Þ ¼ rIji Eð Þ � X E;E1ð Þ ð10:110Þ

with

ZðE�E1Þ=2

0

X E;E1ð ÞdE1 ¼ 1: ð10:111Þ

The advantage in the decomposition of the double differential cross sections
according to (10.110) lies in the fact that the single ionization cross section rIji Eð Þ is
readily provided by atomic physics codes while the probability function X E;E1ð Þ
can be approximated by an analytical function:

X E;E1ð Þ ¼ 1
E � Eið Þ � E2 þ aE2

i

	 

� 2 � aþ 1ð Þ � E2

i þ
b � EþEið Þ � E1 � 0:5 � E � Eið Þð Þ4

E � Eið Þ3
( )

; ð10:112Þ

where Ei is the ionization energy. From the analysis of H-like Coulomb–Born
exchange ionization cross sections from 1s until 6 h, the fitting parameters “a” and
“b” can be approximated with a � 14.4 and b � 160 (Clark et al. 1991) and also
be applied for non-hydrogenic ions. For highly charged ions, the fitting parameters
describe in general well (within 20%) the double differential cross sections; how-
ever, for neutral or near neutral atoms/ions and multiple-filled shells, the agreement
is less accurate in particular at small parameters E1/(E − Ei).

For practical application of (10.104), it is necessary to establish the link between
the direct and inverse cross sections because in non-Maxwellian plasmas, the
principle of detailed balance cannot be employed to extract the inverse rate coef-
ficient from the direct rate coefficient. For the cross section of the rate coefficient
Cij, we need to relate the collisional excitation cross section to the collisional
de-excitation cross section (see also Sect. 7.7.2):

rji E
0ð Þ ¼ gi

gj
rji E

0 þDEji
	 
E0 þDEji

E0 ; ð10:113Þ

where E and E0 are the electron energies before and after scattering, respectively.
These two energies are related to each other via the excitation energy DEji:

E ¼ E0 þDEji: ð10:114Þ

Relation (10.113) is known as “Klein–Rosseland equation.” For a Maxwellian
electron energy distribution, direct and inverse rate coefficients are directly related
by
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Cji ¼ Cji � gigj � exp DEji
	 


: ð10:115Þ

Applying the same method outlined in Sect. 7.6.2, we can relate the ionization
cross section for the ionization rate coefficient Iij to the three-body recombination
equivalent cross section (note that the index characterizes a state “i” before ion-
ization and the index “j” a state after ionization):

rTji E1;E2ð Þ ¼ p2�h3

m2
e
� gi
gj
� Effiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1 � E2
p � rIji E;E1ð Þ; ð10:116Þ

where E is the electron energy before ionization and E1 and E2 are the electron
energies after ionization. These three energies are related to each other via the
ionization energy Ei:

E ¼ Ei þE1 þE2: ð10:117Þ

Comparing (10.107) and (10.116), the three-body recombination rate coefficient
can be represented as a double integral over the three-body recombination equiv-
alent cross section, i.e.,

Tji ¼
Z1
0

dE1

Z1
0

dE2 r
T
ji E1;E2ð ÞF E1ð ÞF E2ð Þ: ð10:118Þ

For a Maxwellian energy distribution function, the three-body recombination
coefficient can be directly expressed via the ionization rate coefficient, i.e.,

Tji ¼ Iji � gi2gj
� 2p�h2

mekTe

� �3=2

� exp Ei=kTeð Þ

¼ 1:6564� 10�22 � Iji � gigj �
exp Ei=kTeð Þ

kTeð Þ3=2
½cm6 s�1�:

ð10:119Þ

For the last relation in (10.119), Iij in [cm3 s−1], kTe and Ei in [eV] (ne in [cm−3] in
(10.103)).

Concerning the radiative recombination rate coefficient Rij, it is conveniently
expressed in terms of the photoionization cross section that is related to the radiative
recombination cross section

gi � rizji �hxð Þ ¼ 2mec2E

�h2x2
� gj � rrji Eð Þ; ð10:120Þ

where E is the energy of the photoionized electron and �hx is the photon energy.
These energies are related to each other via the ionization energy Ei:
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�hx ¼ Ei þE: ð10:121Þ

Relation (10.120) is known as the “Milne equation.” The radiative recombina-
tion rate coefficient is therefore given by

Rji ¼
Z1
0

rrji Eð Þ � V Eð Þ � F Eð Þ � dE ð10:122Þ

or, expressed in terms of the photoionization cross section:

Rji ¼ gi
gj
� 1ffiffiffi

2
p � m3=2

e � c2
�
Z1
0

rizji Ei þEð Þ � Ei þEð Þ2ffiffiffiffi
E

p � F Eð Þ � dE ð10:123Þ

or, in convenient units

Rji ¼ 2:8616� 1019 � gi
gj
�
Z1
0

rizji EiþEð Þ � Ei þEð Þ2ffiffiffiffi
E

p � F Eð Þ � dE ðcm3 s�1Þ ð10:124Þ

with E and Ei in [eV] and r in [cm2] (ne in [cm−3] in (10.103)).
Because the dielectronic capture is the inverse process of autoionization, we can

apply a similar method than in Sect. 7.6.2 to determine the dielectronic capture rate
coefficient:

Dji ¼ p2�h3ffiffiffi
2

p
m3=2

e

gj
gi
Cji

Z1
0

d ES;Eð Þ � F Eð Þffiffiffiffiffi
ES

p � dE: ð10:125Þ

Es is the dielectronic capture energy. The d-function in (10.125) appears because
the dielectronic capture is a resonance processes: Only continuum electrons that
meet exactly the atomic resonance energy can take part in a capture process.
Therefore, (10.125) takes the form

Dji ¼ p2�h3ffiffiffi
2

p
m3=2

e

� gj
gi
� Cji � F ESð Þffiffiffiffiffi

ES
p ð10:126Þ

or, in convenient units (Cji in [s−1], ES in [eV], F in [1/eV])

Dji ¼ 2:9360� 10�40 � gj
gi
� Cji � F ESð Þffiffiffiffiffi

ES
p ½cm3 s�1�: ð10:127Þ

For a Maxwellian energy distribution function, (10.126) takes the form
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Dji ¼ 1:6564� 10�22 � gj
gi
� Cji � expð�ES=kTeÞ

kTeð Þ3=2
ðcm3 s�1Þ ð10:128Þ

with kTe and ES in [eV] (ne in [cm−3] in (10.103)).

10.4.2 Pathological Line Ratios

Due to the increased parameter space for non-Maxwellian electrons, it is difficult to
derive general conclusions like for Maxwellian plasma. An important insight into
non-Maxwellian atomic kinetics, however, can be obtained in the framework of the
“Hot Electron Approximation”. In this approximation, only fbulk and fhot (see
(10.93), (10.94)) are retained to approximate the non-Maxwellian energy distri-
bution function F(E), i.e.,

F E; Tbulk; Thotð Þ ¼ 1� fhotð ÞFM E; Tbulkð Þþ fhotFM E; Thotð Þ: ð10:129Þ

FM(E,Tbulk) and FM(E,Thot) are Maxwellian energy distribution functions with the
parameters Tbulk and Thot (note that Tbulk and Thot are not temperatures in a ther-
modynamic sense but just convenient parameters), fhot is the fraction of the hot
electrons which are described by the energy distribution function FM(E,Thot). Many
experiments with hot dense plasmas have shown (e.g., dense laser-produced plas-
mas, dense pinch plasmas) that (10.129) is a reasonable approximation to the
measured distribution function (e.g., obtained by means of the bremsstrahlung).
Moreover, Thot is often much larger than Tbulk. In this case, it is convenient to speak
of a “bulk” electron temperature Tbulk and to interpret Thot as a hot electron tem-
perature Thot, while fhot is the hot electron fraction that is defined by

Fig. 10.29 MARIA
simulations of the intensity
ratio of the J-satellite and
H-like Lya of Ar for different
hot electron fractions fhot in
dependence of the bulk
electron temperature,
ne = 1022 cm−3,
kThot = 20 keV
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fhot ¼ ne hotð Þ
ne bulkð Þþ ne hotð Þ : ð10:130Þ

ne(bulk) is the density of the “bulk” electrons and ne(hot) those of the hot or
suprathermal electrons.

The introduction of the “bulk” and “hot” electron temperature permits to
understand the basic effects of suprathermal electrons on the radiation emission, the
spectral distribution, and line intensity ratios. Figure 10.29 shows the intensity line
ratios of the He-like J-satellite and the H-like Lya of argon for different fractions of
hot electrons, kThot = 20 keV, ne(hot) + ne(bulk) = 1022 cm−3. The case fhot = 0
corresponds to a Maxwellian plasma, and the numerical simulations are close to the
analytical model discussed above (10.18)–(10.28). Deviations from the analytical
model for very low temperatures are due to collisional–radiative effects. The
monotonic dependence on the electron temperature indicates a strong sensitivity for
electron temperature measurements. Hot electron fractions, however, lead to a
non-monotonic behavior. This is connected with the different asymptotic behavior
of the cross sections for the collisional excitation and the dielectronic capture: For
the collisional excitation, all electrons whose energy is larger than the excitation
energy contribute to the excitation; the dielectronic capture, however, is a resonance
processes and only those electrons in the continuum contribute to the cross section
which match the resonance energy (see (10.125)). Therefore, hot electrons con-
tribute strongly to the collisional excitation of the resonance line but only little to
the dielectronic capture of the satellite lines. As for low bulk electron temperatures,
the hot electron-induced collisional excitation is large compared to those of the bulk
electrons; the intensity ratio is much lower than for a Maxwellian plasma. For high
bulk electron temperatures, the hot electrons do not contribute much compared to
the bulk electrons and the curves for f > 0 approach those for f = 0.

Fig. 10.30 MARIA
simulations of the intensity
ratio of the H-like Lya-line
and the He-like resonance line
W of Ar for different hot
electron fractions fhot in
dependence of the bulk
electron temperature,
ne = 1022 cm−3,
kThot = 20 keV
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The red arrows in Fig. 10.29 show the principle difficult for diagnostics: The same
line ratio can be obtained for three different sets of parameters: (1) kTbulk = 0.5 keV,
f = 3%, (2) kTbulk = 1.17 keV, f = 3%, (3) kTbulk = 1.24 keV, f = 0. Of particular
importance is the difference between the solutions (1) and (3): low bulk temperature
and hot electrons versus a high electron temperature without hot electrons. This
example indicates the general difficult to interpret the measurements: This difficulty is
not connected with the particular selection of the resonance line and the satellite
transitions but is based on the general asymptotic dependence of the cross sections
(resonance process and threshold process). Therefore, all line ratios of any resonance
line and its satellite transitions are affected in a similar manner.

Figure 10.30 shows the line ratios of the H-like Lya and He-like Hea of argon,
ne = 1022 cm−3, kThot = 20 keV. In a Maxwellian plasma (fhot = 0), the strong
monotonic dependence is very convenient for temperature diagnostics. The pres-
ence of hot electrons, however, rises considerably the intensity ratio for lower bulk
electron temperatures due to increased ionization induced by hot electrons: 1s2 + e
(hot) ! 1s + 2e.

The red arrows in Fig. 10.30 indicate an example of the principle difficult for
diagnostics due to multiple solutions for the same line intensity ratio:
(1) kTbulk = 400 eV, fhot = 0.1, (2) kTbulk = 930 eV, fhot = 0. Also this example
shows that the neglect of hot electrons leads to a considerable overestimation of the
bulk electron temperature. It should be noted that the intensity ratio of Fig. 10.30
poses other difficulties in transient plasmas: In ionizing plasmas, the ionic popu-
lations are lagging behind the electron temperature and therefore the Lya emission
is lower than it would correspond to the given electron temperature. In other words,
using the stationary line intensity ratio (i.e., neglecting the ionizing nature of the
plasma) underestimates the electron temperature. In recombining plasmas, the
electron temperature is overestimated because the Lya intensity is too large for the
given electron temperature. The line intensity ratio of Lya and Hea is therefore more

Fig. 10.31 MARIA
simulations of the intensity
ratio of the He-like
intercombination line Y and
the He-like resonance line
W of Ar for different hot
electron fractions fhot in
dependence of the total
electron density,
kTbulk = 600 eV,
kThot = 20 keV
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indicative for the ionization temperature and not for the electron temperature as
often erroneously stated.

Figure 10.31 shows the line intensity ratio of the He-like intercombination line
Y = 1s2p 3P1 ! 1s2 1S0 + hm and the He-like resonance line W = 1s2p 1P1 ! 1s2
1S0 + hm, kTbulk = 600 eV. The continuous decrease of the line intensity ratio with
increasing density is due to an effective collisional population transfer from the
triplet system to the singlet system. As the intercombination transition has a rather
low transition probability compared to the resonance line (spin forbidden transition
in the LS-coupling scheme), the population of the triplet system is much larger than
those of the singlet system. Therefore, the transfer of population from the singlet to
the triplet system is smaller than opposite resulting in an effective population
transfer from the triplet to the singlet levels. This in turn results in a decrease of the
line intensity ratio. As Fig. 10.31 indicates, the density sensitivity of this line
intensity ratio is strong and can therefore be used as an electron density diagnostic.

Hot electrons, however, result in an overall decrease of the intensity ratio for all
electron densities. This effect is due to the different asymptotic dependence of direct
and exchange excitation cross sections (see also discussion in Sect. 5.5.2):

rdirect / lnE
E

; ð10:131Þ

rexchange / 1
E3 : ð10:132Þ

In a pure LS-coupling scheme, the collisional excitation from the ground state to
the triplet levels is carried only by the exchange part of the cross section. Due to the
strong decrease of the exchange cross sections with increasing impact energy
(compared to the direct cross section), the hot electron-induced excitation for the
singlet levels is much larger than for the triplet levels. This results in a strong
decrease of the line ratio and in turn to a large overestimation of the electron density
when hot electrons are neglected. We note that this effect is not connected with the
particular line ratio of the Y- and W-lines: It is a consequence of the general
asymptotic dependence of the cross sections according to (10.131), (10.132).
Therefore, all line ratios which are based on resonance and intercombination line
transitions are perturbed in a similar manner. The red arrows in Fig. 10.31 (cal-
culated for kTbulk = 600 eV, kThot = 20 keV) indicate an example of the principle
difficult of density diagnostics due to multiple solutions for the same line intensity
ratio: (1) ne = 2 � 1020 cm−3, fhot = 3%, 2) ne = 1.2 � 1021 cm−3, fhot = 0.0. This
example shows that the neglect of hot electrons leads to a considerable overesti-
mation (order of magnitude) of the electron density.

Let us consider the influence of intermediate coupling effects. For the transitions
1s2 + e ! 1s2l 1,3L + e, the excitation cross sections in intermediate coupling rIC
can be written (see Sect. 5.5.2) as follows:
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rIC ¼ Qdrdirect þQerexchange: ð10:133Þ

For example, for the excitation of the resonance line W (cross section
1s2 1S0 + e ! 1s2p 1P1 + e) and the intercombination line Y (cross section
1s2 1S0 + e ! 1s2p 3P1 + e), we have in the pure LS-coupling scheme:
QLS

d Wð Þ ¼ 2, QLS
e Wð Þ ¼ 0:5, QLS

d Yð Þ ¼ 0, QLS
e Yð Þ ¼ 0:5. For argon, the angular

factors are only slightly different in the intermediate coupling scheme:
QIC

d Wð Þ ¼ 1:9684, QLS
e Wð Þ ¼ 0:5, QLS

d Yð Þ ¼ 0:0316, QLS
e Yð Þ ¼ 0:5. The inter-

mediate coupling angular factors Q indicates that the triplet levels have a small
admixture of the direct cross section. This admixture is, however, of importance
for rather heavy elements, e.g., for molybdenum we have QIC

d Wð Þ ¼ 1:515,
QLS

e Wð Þ ¼ 0:5, QLS
d Yð Þ ¼ 0:485, QLS

e Yð Þ ¼ 0:5. In conclusion, even in the inter-
mediate coupling scheme (note that the above simulations presented in Fig. 10.31
include intermediate coupling effects), the discussion concerning the asymptotic
behavior of the excitation cross sections (10.131), (10.132) remains valid.

What is the general conclusion from Figs. 10.29, 10.30 and 10.31? The standard
line ratios are excellent methods for density and temperature diagnostics in sta-
tionary Maxwellian plasmas. However, for plasmas containing hot electrons, the
development of other methods is mandatory. Of primary importance are the stable
determination of the bulk electron temperature and the hot electron fraction.

10.4.3 Bulk Electron Temperature

Let us consider a plasma whose electron energy distribution function is given by
(10.129), (10.130). The rate coefficients for the processes “X” are then given by

Xh i ¼ 1� fhotð Þ X; Tbulkh iþ fhot X; Thoth i: ð10:134Þ

For the three-body recombination rate coefficient Th i, the expression is more
complicated due to the need for simultaneously two energy distribution functions of
the continuum electrons:

TRh i ¼ 1� fhotð Þ2 TR; Tbulkh iþ f 2hot TR; Thoth i
þ 2fhot 1� fhotð Þ TR; Tbulk; Thoth i: ð10:135Þ

The first term describes the usual three-body recombination at a temperature
Tbulk ( TR; Tbulkh i being the three-body recombination rate coefficient at temperature
Tbulk) the second one those at a temperature Thot ( TR; Thoth i being the three-body
recombination rate coefficient at temperature Thot). The last term is a mixed term
which requests the integration over the double differential cross section (see
(10.118)). This term cannot be expressed by simple combinations of usual
three-body coefficients with Tbulk and/or Thot like the first and second terms of
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(10.135). As discussed in relation with (10.101), this is very inconvenient for
numerical simulations because the double integration in a multilevel multi-ion stage
atomic system requests considerable computational resources. The “mixed” term of
(10.135) can be roughly approximated by

TR; Tbulk; Thoth i � 0:95
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TR; Tbulkh i TR; Thoth i

p Tbulk
Thot

� �0:1

; ð10:136Þ

where Tbulk < Thot.
Let us now consider an innovative method to determine the electron bulk tem-

perature in dense plasmas containing hot electrons (Rosmej 1995b) that is based on
the analysis of the X-ray line emission of a He-like satellite and the He-like Rydberg
series 1snp 1P1 ! 1s2 1S0 + hm of highly charged ions. The intensity of a He-like
satellite with high radiative and high autoionizing rate is given by (see also Fig. 5.1)

Isatk;ji ¼ �hxjinenk k ¼ 1sð Þ 1� fhotð Þ DR; Tbulkh iþ f DR; Thoth if g : ð10:137Þ

The rate coefficient of the dielectronic recombination is given by (see also
(10.20)–(10.23))

DR; Th i ¼ a
Qk;ji

gk

exp �Ekj=kT
	 

kTð Þ3=2

; ð10:138Þ

where Qk,ji is the satellite intensity factor defined in (10.23), Ekj is the capture
energy.

If the electron density is sufficiently high to ensure a balance between the levels
“1s” and “1snp 1P1” via collisional ionization and three-body recombination, we
can determine the population density of the 1snp 1P1-level analytically:

nen 1snp1P1
	 


1� fhotð Þ I; Tbulkh iþ f I; Thoth if g
� n2en 1sð Þ 1� fhotð Þ2 TR; Tbulkh iþ f 2hot TR; Thoth iþ 2fhot 1� fhotð Þ TR; Tbulk; Thoth i

n o
:

ð10:139Þ

From (10.137) and (10.139), the intensity ratio of the dielectronically captured
satellite and theHe-likeRydberg series is given by [note that the term TR; Thoth i is rather
small because TR; Th i decreases strongly with increasing temperature; see (5.50):

Isatk;ji

In
¼ xji

xn

nen 1sð Þ 1� fhotð Þ DR; Tbulkh iþ fhot DR; Thoth if g 1� fhotð Þ I; Tbulkh iþ f I; Thoth if g
Annen 1sð Þ 1� fhotð Þ2 TR; Tbulkh iþ f 2hot TR; Thoth iþ 2fhot 1� fhotð Þ TR; Tbulk; Thoth i

n o :

ð10:140Þ
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An is the spontaneous transition probability of the Rydberg series 1snp 1P1 ! 1s2
1S0; xJ and xn are the transition frequencies of the satellite and Rydberg transitions.
Developing (10.140) in the series of fhot gives

Isatk;ji

In
¼ xji

xn

DR; Tbulkh i � I; Tbulkh i
An � TR; Tbulkh i � 1þ fhot � G1 þ � � �f g ð10:141Þ

with

G1 ¼ I; Thoth i
I; Tbulkh i þ

DR; Thoth i
DR; Tbulkh i � 2

TR;Tbulk; Thoth i
TR; Tbulkh i : ð10:142Þ

With

DR; Tbulkh i ¼ 1
g 1sð Þ �

2pð Þ3=2�h3
2 mekTbulkð Þ3=2

� Qk;ji � exp �Ekj=kTbulk
	 
 ð10:143Þ

and

TR;Tbulkh i ¼ I; Tbulkh i � gn
2g 1sð Þ �

2pð Þ3=2�h3
mekTbulkð Þ3=2

� exp En=kTbulkð Þ ð10:144Þ

the intensity ratio of (10.141) can be written as

Isatk;ji

In
¼ xji

xn

Qk;ji

Angn
exp �Ekj þEn

kTbulk

� �
� 1þ f � G1 þ � � �f g: ð10:145Þ

Calculations show that for almost all practical cases, G1 < 1. This indicates that
the zero-order approximation of (10.145), namely

Isatk;ji

In

����
0�order

¼ xji

xn
� Qk;ji

An � gn � exp �Ekj þEn

kTbulk

� �
ð10:146Þ

is of extraordinary importance: (10.146) represents the ideal case of a bulk electron
temperature diagnostic in non-Maxwellian plasmas, i.e., (see also (10.12), (10.13))

Iji
Ij0i0

¼ Gjij0i0 Tbulkð Þ: ð10:147Þ

With respect to (10.147), it is important to note that the zero-order approxi-
mation does not depend on the hot electron fraction but still describes the line ratios
very accurately: That is why this approximation is of great interest to determine the
bulk electron temperature in non-Maxwellian plasmas. An extremely useful He-like
satellite transition is the J-satellite (2p2 1D2 ! 1s2p 1P1 + hm) because of its large
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autoionizing rate, high radiative decay rate, and its simplicity in experimental
registration (see, e.g., Fig. 10.1).

A further advantage of (10.146) is that it contains only a few atomic data. These
data can be expressed in an analytical manner with high precision. For An, we
propose the following expression:

An ¼ A0 � aZ2
eff

	 
 � nðn� 1Þ2n�2

ðnþ 1Þ2nþ 2 Z4
eff s�1 �

; ð10:148Þ

Zeff ¼ Zn � r: ð10:149Þ

Note that the first factor in (10.148) takes into account intermediate coupling effects
which strongly depend on the nuclear charge Zn. With A0 = 4.826 � 1011,
a = 7.873.107, r = 0.8469, a precision better than 6% is reached for all n for
elements in the interval Zn = 6–32 (practically all elements of practical interest for
diagnostics). The dielectronic satellite intensity factor for the J-satellite has already
been described by (10.24). The energies in (10.146) can be approximated by

E1s;J þEn ¼ 13:6 eV
3
4
Z2
n þ

3
4

Zn � 0:4ð Þ2� Zn � 0:5ð Þ2� 1� 1
n2

� �� �
ð10:150Þ

with a precision better than 2%. For example, for Zn = 18 and n = 4, the exact data
are: A4 = 1.21 � 1013 s−1, QJ = 4.30 � 1014 s−1, E1s,J + E4 = 2.55 keV, whereas
the analytical formulas (10.148)–(10.150) provide A4 = 1.19 � 1013 s−1,
QJ = 4.36 � 1014 s−1, E1s,J + Ei,4 = 2.56 keV. This indicates a sufficiently high
precision of the simple analytical expressions for diagnostic applications.

Fig. 10.32 MARIA simulations of the intensity ratios Lya/W, J/Lya and J/1snp 1P1 of Ar in a
dense plasma containing hot electrons, ne = 1022 cm−3, kTbulk = 600 eV, kThot = 20 keV. Also
indicated the analytical zero-order approximation for the ratio J/1s4p 1P1 of (10.146) to determine
the bulk electron temperature. Red dashed and red dotted curves are the standard line ratios for the
determination of the electron temperature that shows a strong dependence with respect to the hot
electron fraction
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Figure 10.32 shows the numerical simulations of the intensity ratio of the
He-like J-satellite line and the Rydberg series for n = 2–7 (solid black lines) in
dependence of the hot electron fraction fhot, the bulk electron temperature is
kTbulk = 600 eV, the total electron density is ne = 1022 cm−3, and the hot electron
temperature is kThot = 20 keV. Also shown in Fig. 10.32 are the intensity ratios of
Lya/W and J/Lya which has been discussed in connection with Figs. 10.29 and
10.30. Figure 10.32 demonstrates an impressive stability of the intensity ratios J/
1snp 1P1 even for very large hot electron fractions up to 10%. For such large hot
electron fractions, the standard line intensity ratios are already off by an order of

Fig. 10.33 Energy-level
diagram showing the
collisional coupling of
Rydberg states 1snl with the
continuum (see (10.139)),
the dielectronic capture to the
2l2l′-states from the H-like
ground state 1s 2S1/2 (see
(10.137)) and the relevant
radiative decay rates

Fig. 10.34 Experimental
X-ray spectrum from a dense
Mega-Ampère Z-pinch driven
with argon showing the
H-like Lyman-alpha line (2p),
Lyman-beta line (3p), the
He-like J-satellite, and the
He-like series 1snp 1P1−1s

2

1S0
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magnitude which means that they are meaningless for a temperature diagnostics.
Figure 10.32 also indicates that for higher Rydberg series transitions, the intensity
ratio is only very weakly dependent on the hot electron fraction because the ther-
malization threshold to ensure PLTE has already been reached. This is demon-
strated schematically in Fig. 10.33 which also explains the basic characteristics of
the bulk electron temperature diagnostic with the help of an energy level diagram.

Figure 10.32 presents also the results of the zero-order approximation (10.146)
for the 1s4p 1P1-line. Excellent agreement is seen between the numerical
non-Maxwellian simulations and the zero-order analytical approximation. This
confirms the great importance of the zero-order approximation to determine the
bulk electron temperature and the practical realization of (10.147).

Let us apply the bulk electron temperature measurement to the X-ray emission
spectra of a dense Mega-Ampere Pinch driven with argon (Rosmej et al. 1993).
Figure 10.34 shows the soft X-ray spectrum in the spectral range from the H-like
Lyman-alpha line with corresponding satellites until the He-like series limit of
1snp 1P1−1s

2 1S0. Table 10.6 shows the electron temperatures deduced from the
line ratios of (10.146). It can be seen that the bulk electron temperature stabilizes at
about kTbulk = 1.3 keV. This indicates that the collisional coupling of the 1snl-
states with the continuum (see Fig. 10.33) is effective starting with principal
quantum number of about n = 7. The last column of Table 10.6 presents the critical
densities obtained from (10.39) for Z = 17 and kTbulk = 1.3 keV. As the line ratios
stabilize at about n = 7, the right column can be used to estimate the electron
density that are in agreement with density measurements of different methods
(Rosmej et al. 1993).

We note that the satellite to Rydberg transition method for the determination of
the bulk electron temperature can be transferred to different satellite transitions in
order to optimize the application under various experimental constraints, e.g., the
use of the Lyman-beta satellites (Rosmej et al. 2009).

Table 10.6 Bulk electron
temperatures deduced from
the experimental spectrum of
Fig. 10.34 with the help of the
zero-order approximation of
(10.146)

I(J)/I(1snp) kTbulk (keV) ne,crit (cm
−3)

n = 4 0.7 ± 0.1 1.7 � 1022

n = 5 0.9 ± 0.1 3.4 � 1021

n = 6 0.9 ± 0.1 9.4 � 1020

n = 7 1.2 ± 0.2 3.2 � 1020

n = 8 1.3 ± 0.2 1.2 � 1020

n = 9 1.3 ± 0.2 5.3 � 1019

Right column indicates the critical density obtained from (10.39)
for kTbulk = 1.3 keV and Z = 17
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10.4.4 Hot Electron Fraction

10.4.4.1 Hot Electron Perturbed Satellite and Resonance Line
Intensities

Having once determined the bulk electron temperature, the intensity ratios of the
He-like 2l2l′-satellites with the Lya line can be used for the determination of the hot
electron fraction if resonance line intensity and satellite intensity are well approx-
imated by

Iresk0;j0i0 � nenk0
Aj0i0P
l0 Aj0l0

Ck0j0
� �

; ð10:151Þ

Isatk;ji � anenk
Qk;ji

gk

exp �Ekj=kTe
	 

kTeð Þ3=2

: ð10:152Þ

If the energy distribution function is described by (10.129), (10.130) and the rate
coefficients by (10.134) the fraction of hot electrons is then given by

fhot � 1

1þ R CR; Thoth i � DR; Thoth i
DR; Tbulkh i � R CR; Tbulkh i

; ð10:153Þ

where the line intensity ratio R is

R ¼ Isatk;ji

Iresk0;j0i0
: ð10:154Þ

The relevant rate coefficients of (10.153) are given by

CR; Th i ¼ Aj0i0P
l0 Aj0l0

Ck0j0 ; T
� �

; ð10:155Þ

DR; Th i ¼ a
Qk;ji

gk

exp �Ekj=kT
	 

kTð Þ3=2

: ð10:156Þ

In order to best fulfill the parameter range of validity of (10.156), the use of the
He-like J-satellite (see also discussion above) is recommended. Equations (10.24)–
(10.28) provide the necessary data for the 2l2l′- and 1s2l2l′-satellites and their
corresponding resonance lines. In high-density plasmas, the range of validity of
(10.151)–(10.156) might be limited (in fact, (10.151), (10.152) are strictly valid
only in the framework of the Corona model and negligible inner-shell contribution
of the dielectronic satellite emission) and other methods have to be developed.
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10.4.4.2 Qualitative Distortion of the Ionic Charge State Distribution

Suprathermal electrons are routinely excited in high-intensity laser-produced
plasmas via instabilities driven by nonlinear laser–plasma interaction. Their accu-
rate characterization is crucial for the performance of inertial confinement fusion as
well as astrophysical and high-energy-density experiments.

In view of the pathological line ratios in non-Maxwellian plasmas discussed
above, it is therefore mandatory to develop alternative spectroscopic methods for
the determination of the hot electron fraction. Let us therefore consider the ionic
fractions in dense plasmas with and without fractions of hot electrons. Fig. 10.35
shows the MARIA simulations for ne = 1021 cm−3, Leff = 300 lm and fhot = 0.0
(solid curves) and fhot = 0.09 (dashed curves), kThot = 20 keV. The comparison
between the solid and the dashed curves shows that a qualitative deformation of the
ionic fractions has taken place. The arrow indicates a particular strong rise of the
H-like abundance for lower bulk electron temperatures, whereas other ionic frac-
tions (He-, Li-, Be-like) are much less influenced. This qualitative deformation can
in turn be used for the determination of the hot electron fraction by visualizing the
various fractions via the X-ray line emissions from the H-, He-, Li-, Be-, B-, C-like
ions (Rosmej 1997).

Experimentally, it is difficult to observe simultaneously the line emission from
H- and He-like ions (K-shell emission) and those of Li-, Be-, B-, C-like ions (L-
shell emission) due to the strongly different spectral ranges (requesting a) different
types of spectrometers and b) their relative intensity calibration). However, by
means of inner-shell satellite transitions 1s2sn2pm ! 1s22sn2pm−1 + hm this draw-
back can be circumvented (Rosmej 1997): The wavelength interval of all line
transitions is located in a similar spectral range (K-shell), and all transitions are
therefore simultaneously observable with one type of spectrometer.

Figure 10.36 show the MARIA simulations of the soft X-ray emission spectra of
titanium in a dense optically thick plasma, ne = 1021 cm−3, Leff = 300 lm.
Figure 10.36a shows the simulation for fhot = 0.0, kTe = 2.3 keV, Fig. 10.36b
shows the simulation for fhot = 0.0, kTe = 1.0 keV, and Fig. 10.36c shows the

Fig. 10.35 MARIA
simulations of the ionic
fractions of titanium in dense
optically thick plasmas
containing hot electrons,
ne = 1021 cm−3,
Leff = 300 lm for different
hot electron fractions,
fhot = 0.0 (solid curves),
fhot = 0.09,
kThot = 20 keV (dashed
curves)
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MARIA simulation for fhot = 0.09, kTbulk = 800 eV, and kThot = 20 keV. As
Fig. 10.36b demonstrates the Lya emission is practically absent for low electron
temperatures, whereas the Ka-satellite series is strongly pronounced. At high
electron temperatures (Fig. 10.36a), the Lya-emission is strong; however, the Ka-
satellites series of Be- B- and C-like ions is practically absent. This reflects the
general behavior of the ionic charge state distribution depicted in Fig. 10.35 (see
also Fig. 6.5): The ionic populations of highly charged ions (nuc, H-like) are never
at the same time as large as those for low-charged ions (Be-, B-, C-like). In
non-Maxwellian plasmas, however, large fractions of highly and low-charged ions
(see arrow in Fig. 10.35) can exist simultaneously. This circumstance is related to

Fig. 10.36 MARIA
simulations of the spectral
distribution (linear scale,
normalized) of titanium in
dense optically thick
non-Maxwellian plasmas,
ne = 1021 cm−3,
Leff = 300 lm, a fhot = 0.0,
kTe = 2.3 keV, b fhot = 0.0,
kTe = 1.0 keV, c fhot = 0.09,
kTbulk = 800 eV,
kThot = 20 keV
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the fact that for hot electrons, the exponential factor in the expression for the rate
coefficients is close to 1 because kThot is larger than the threshold energies (exci-
tation, ionization). Therefore, the shell structure is not anymore strongly reflected in
the distribution of ionic populations. The “admixture” of a considerable fraction of
H-like ions simultaneously with Li-, Be-like ions is then connected with the fol-
lowing: the ionization rate for the bulk electrons is in strong competition with the
hot electron-induced rate. However, the ionization of the He- and H-like ions is
essentially driven by the hot electrons as the rate coefficients for the bulk electrons
are exponentially small. Therefore, hot electrons lead only to a minor decrease of the
low-charged ions (Be-, B-, C-like) but to a strong increase of the H-like ions with
corresponding simultaneously strong Lya emission and Ka-satellite series emission.

The characteristic distortion of the ion charge stage distribution can in turn be
used for the determination of the hot electron fraction (Rosmej 1997). This method
has successfully been applied in laser-driven inertial fusion experiments to deter-
mine the time- and space-resolved hot electron fraction in the NOVA-hohlraums
(Glenzer et al. 1998). For these purposes, tracer elements of titanium have been
mounted into the hohlraum and time-resolved X-ray spectra (spectral interval as
shown in Fig. 10.36) have been recorded. Figure 10.37 shows the time-dependent
hot electron fraction as inferred from the non-Maxwellian time-dependent MARIA
simulations. The maxima correspond to the rise of the pulse-shaped laser irradiation
of the hohlraum and reach hot electron fractions up to about 10% (Fig. 10.37, left
scale). Simultaneous measurements of the stimulated Raman scattering (SRS),
Fig. 10.37 (right scale), indicate a clear correlation with the spectroscopic inferred
hot electron fraction. This allowed identifying the parametric SRS instability as the
main source of hot electron production.

10.4.4.3 Temporal Shifts of the Hot Electron Fraction

Suprathermal electron production driven by instabilities in laser–plasma interaction
(Kruer 1988) is of paramount interest for the inertial confinement fusion

Fig. 10.37 Hot electron
fraction fhot as inferred from
the time-dependent MARIA
simulations of titanium X-ray
spectra. The hot electron
fractions correlate with the
SRS losses and reaches
fractions up to about 10%
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(ICF) science and high-energy-density physics (HEDP). In the direct drive scheme,
hot electrons can cause degradation in the performance of ICF capsules by fuel
preheat and reduced compressibility of the capsule (Glenzer et al. 1998; Lindl
1995; Lindl et al. 2004, 2014). In the fast ignition scheme (Tabak et al. 2005), laser
coupling to fast electrons determines the efficiency of the energy delivery to the
ignition region. In the shock ignition scheme (Betti et al. 2007), the fuel is ignited
from a central hot spot heated by a strong spherically convergent shock. The laser
intensities required to launch this shock exceed the threshold of parametric insta-
bilities (such as stimulated Raman scattering or two-plasmon decay), which couple
a significant fraction of the laser energy to hot electrons.

Hydrodynamic simulations of laser–plasma interactions for pulse durations of
the order of 0.1–10 ns and intensities I � k2 ¼ 1013�1016 W/cm2 are highly chal-
lenging as nonlinear processes play an important role. These kinetic processes
cannot be directly incorporated into large-scale hydrodynamic models because of a
large disparity of temporal and spatial scales. A detailed characterization of hot
electrons as well as the plasma evolution via independent methods is therefore
mandatory to validate large-scale hydrodynamic approaches that are at its infancy.
In this context, X-ray spectroscopy and non-thermal atomic physics are of particular
interest due to their potential for a unique characterization of hot electrons inside the
relevant plasma.

As demonstrated in relation with Fig. 10.37, the time evolution of the hot
electron generation is also of great interest. These timing issues receive a renewed
interest for the shock ignition scheme as recent experiments have demonstrated that
hot electron onset has a strong influence on the shock strength (Theobald et al.
2015).

Due to the typical ns-time scale in high-energy-density research and inertial
fusion applications, time-resolved information can also be extracted from the spatial
evolution of the X-ray emission as the radiating ions propagate in space of the order
of Vion � slaser � 107 cm/s � 1 ns ¼ 100 lm. Such displacements can be easily
resolved with space-resolved X-ray spectroscopy employing curved X-ray Bragg
crystals (Renner and Rosmej 2019). Figure 10.38 shows an example of the

Fig. 10.38 Space-resolved X-ray spectrum of copper irradiating a solid copper foil with a ns
kilojoule laser. K-alpha emission is excited by hot electrons and extends far behind the original
target surface due to the fast-propagating ions. The double image is a particular advantageous
feature of the vertical Johann geometry
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space-resolved K-alpha emission of copper produced by the irradiation of copper
foils with a ns kilojoule laser (Smid et al. 2019). Due to the vertical Johann
geometry, registration of a double-sided image is possible (Renner et al. 1997) that
greatly increases the experimental precision (see also Chap. 8). Due to kilojoule
energy, intensities up to 1016 W/cm2 are achieved that generate hot electrons. The
hot electrons propagate into the cold copper foil and drive K-shell ionization of
rather low-charged ions which results into the typical K-alpha radiation (indicated
with Ka1 and Ka2 in Fig. 10.38). Due to the backward ion acceleration, the K-alpha
emission extends far behind the original target position of the order of 50 lm; see
Fig. 10.38. In front of the target, the plasma is strongly heated resulting in higher
charge states and corresponding satellite emission from higher charge states
(indicated as “satellite emission” in Fig. 10.38). Due to the high spectral resolution,
the satellite emission originating from open M-shell configurations (indicated as
“ionized” in Fig. 10.38) can be separated from open L-shell emission (indicated as
“highly ionized” in Fig. 10.38).

The simulations demonstrate that the spatial evolution of these satellites and Ka1

and Ka2 emission is sensitive to the hot electron evolution due to the qualitative
distortion of the ionic populations as discussed above (Sect. 10.4.4.2). Moreover,
due to the backward acceleration of the ions, timing issues of the hot electrons can
be addressed: Ions propagate backwards but X-ray emission is only excited if the
hot electrons propagate into the backward moving ions. The extension of the K-

Fig. 10.39 Space-resolved
simulation of the X-ray
spectrum of copper irradiated
with a 0.35 ns, 700 J laser
pulse with k = 1.315 lm.
Cold K-alpha emission
extends far backwards
(positive axial position) with
respect to the “heated
emission” when the onset of
the hot electrons generation is
displaced relative the
maximum of the laser pulse
by 400 ps
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alpha emission behind the original target position and its relative displacement to
the “heated emission” is therefore characteristic for the onset of the hot electrons as
demonstrated with the simulations in Fig. 10.39. This method includes the spatial
grid variation obtained from two-dimensional hydrosimulations which have been
employed to deduce relative time shifts for the onset of the hot electron generation
with respect to the laser pulse maximum (Smid et al. 2019). The temporal infor-
mation deduced from high-resolution X-ray spectroscopy is of great interest to test
and develop large-scale hydrodynamic simulations that are currently at its infancy
(Smid et al. 2019).

10.5 Space-Resolved Measurements of Fast Ions

10.5.1 Spatial Resolution of Plasma Jets

Large efforts are made to create homogenous dense plasmas under extreme con-
ditions to provide samples and emission properties, which can be directly compared
with theory. Unfortunately, dense hot laboratory plasmas show almost always large
variations of the plasma parameters over space, and, in consequence a large vari-
ation of the spectral emission (see, e.g., Fig. 10.38). As spatial parameter grid
reconstructions are difficult to implement for grid averaged data, X-ray spec-
troscopy with spatial resolution is frequently applied to obtain supplementary

Fig. 10.40 Space-resolved plasma jets consisting of highly charged radiating aluminum ions.
a X-ray pinhole image (left) and schematic geometry of the jet emission (right), b two-dimensional
X-ray imaging realized with a spherically curved Bragg crystal
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information. Spatial resolution can be realized with a slit mounted at a suitable
distance between the source and the X-ray crystal; however, luminosity is drasti-
cally reduced. Space resolution can also be obtained without slits employing
X-ray-focusing optics realized with curved X-ray crystals. The most commonly
used curved crystal arrangements are the Johann geometry, the vertical Johann
geometry, the Johannson geometry, the Chauchois geometry that employ cylin-
drically curved crystals while two-dimensional curved crystals (including the
spherical ones) allow to achieve at the same time high spectral and spatial resolution
while maintaining high luminosity (Renner and Rosmej 2019). Two particular
methods turned out to be extremely useful for dense plasma research:

(1) the vertical Johann geometry (Renner et al. 1997) which is extremely suitable
for line profile investigations: Spatial resolution of some lm can be achieved
(therefore, image plates with about 50 lm resolution seriously limit
high-resolution spectroscopy and line shape analysis becomes a very critical

Fig. 10.41 X-ray pinhole emission and two-dimensional X-ray imaging of highly charged
aluminum plasma jet interaction with the residual gas. Rear-side and front-side emission show
characteristic differences that depend on the particular X-ray transition
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issue; note that even in case of Charged Coupled Devices CCD the 13 lm pixel
size sets a serious limitation for high-resolution spectroscopy), while simulta-
neous extremely high spectral resolution of about k/dk � 6000 can be realized.
The spectral range, however, is rather limited, permitting only to observe, e.g.,
the H-like aluminum Lymana line and corresponding satellite transitions. Due
to the appearance of double-sided spectra, the geometry can provide line shift
measurements without reference lines,

(2) the spherical X-ray crystals (Faenov et al. 1994; Skobelev et al. 1995) which do
provide simultaneously high spectral (k/dk � 1000–6000, dependent on the large
geometrical variations) and spatial resolution (about 10–30 lm), large spectral
windows (permitting, e.g., to observe all the Ka-satellite series until the He-like
resonance line W for aluminum (Rosmej et al. 2001c)) and large spatial window
(up to cm with 10 lm resolution) and the possibility of X-ray microscopic
applications (two-dimensional X-ray imaging). For example, the two-dimensional

Fig. 10.42 a Schematic geometrical arrangement of fast ion Doppler shift measurements of X-ray
spectral lines. The first spectrometer is positioned at very low angle a � 0 while the second
spectrometer is located typically at angles a[ 30	. b The comparison of these two spectra allows
deducing shifts originating from the fast ion velocities

Fig. 10.43 Experimental
determination of the fast ion
distribution function from the
optically thin part of the
Doppler shifted emission. The
distribution function is
reasonably well approximated
with a Maxwellian function
with a temperature parameter
kTion = 1.35 MeV
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imaging permits to determine the angle of laser-produced plasma jet diffusion in
space in dependence of the ionic charge state; see Fig. 10.40.

The two-dimensional X-ray imaging realizes a two-dimensional spatial resolu-
tion with one axis in the Z-direction of the laser propagation while the other
direction is along the wavelengths scale. Therefore, the spectral resolution is lim-
ited. The key point in the experimental realization is to slightly defocus the spec-
trometer so that spatial resolution along the wavelengths axis is obtained but to tune
the defocusing in a manner to maintain still a spectral resolution that allows
identifying the line transitions of interest.

Figure 10.41 shows the spatial variation of the plasma jet emission in colliding
plasmas when a highly ionized plasma jet interacts with the residual gas in the target
chamber (Rosmej et al. 2006c). The upper part of Fig. 10.41 shows the geometry and
the X-ray pinhole emission of the rear-side and front-side emissions. The lower part of
Fig. 10.41 shows the two-dimensional X-ray imaging that allows resolving particular
line emission (spectral resolution) along with spatial resolution. The spatial variation
of the resonance and intercombination lines is drastically different. Moreover, usually
very weak intercombination satellite transitions originating from the 1s[2p2 3P] 4P-
states show very large intensities. These changes are induced by charge transfer
process from the low-charged residual gas to the highly ionized plasma jets (Rosmej
et al. 2006c). Therefore, space-resolved X-ray spectroscopy has identified charge
exchange coupling between the colliding plasmas (jet and residual gas).

The detailed spatial information of the radiating plasma jets provides a unique
characterization of (a) the interaction between the jet and the residual gas, and
(b) their mutual coupling via charge transfer. Therefore, charge exchange is also of

Fig. 10.44 Space-resolved X-ray emission (left) and X-ray pinhole emission (right) of highly
charged fluorine plasma jet in dependence of different focal lens positions. At highest intensities,
the Doppler shift of the He-like resonance line W is very pronounced
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considerable interest in high-density plasmas to shed more light into the complex
theory of colliding plasmas.

10.5.2 Energy Distribution of Fast Ions

A further important application of space-resolved spectroscopy is the experimental
determination of the energy distribution function of fast ions in dense laser-produced
plasmas measured via line shifts of spectrally highly resolved resonance lines. These
shifts are induced by the directionally Doppler shift. Figure 10.42a shows schemat-
ically the principal geometrical arrangement of the measurement. The measurements
request two identical spectrometers positioned at very small and at large angles. The
comparison of these two spectra then allows attributing the observed relative shift to
the fast ion velocity. Figure 10.42b shows the line profile of the H-like fluorine Lya
and the strongly pronounced “blue” line wing. The Doppler shifted position which
corresponds to an ion energy of E = 3.6 MeV is indicated.

Fast ion velocity distribution functions can then be deduced from the optically
thin part of the Doppler shifted emission. Figure 10.43 shows that the ion velocity
distribution function is reasonably approximated by a unidirectional Maxwellian
function with a temperature parameter of kTion = 1.35 MeV (Rosmej et al. 1999c,
2002b). These types of measurements provide critical information to test kinetic
plasma simulations.

Figure 10.44 shows the space-resolved Doppler line shift measurements for
different laser irradiation conditions employing a laser pulse with duration 15 ns,
laser wavelength 1.06 lm, and laser energy of 10–60 J. The different focus con-
ditions are realized via different positions of the focusing lens. Also seen from
Fig. 10.44 is a correlation of the spatial extension of the spectrally resolved plasma
jets (Z-axis, direction of the expanding plasma) and the X-ray pinhole measure-
ments (Fig. 10.44).

Fast ion velocities in dense plasmas lead to differential shifts of emission and
absorption coefficients which may lead to considerable modification of optically
thick lines shapes as discussed in Sect. 1.1.4 (Fig. 1.4). For this reason, the analysis
of the energy distribution function as discussed in Fig. 10.43 has been limited to the
line wings, which are optically thin.

Fast ion velocities may also contribute directly to excitation and ionization
processes via the W-matrix in the atomic population kinetics. Important examples
are the redistribution of population in the fine structure of H-like ions (2s 2S1/2,
2p 2P1/2, 2p

2P3/2) due to a collisional coupling of the 2s 2S1/2 and 2p 2P1/2 levels.
Their energy difference is very small (Lamb shift), and heavy particle collisions are
therefore effective. Other examples are the collisional proton ionization of hydrogen
levels with large principal quantum numbers, which turned out to be an important
effect in magnetic fusion research (Rosmej and Lisitsa 1998) to analyze charge
exchange processes (see Sects. 10.3.1 and 10.3.2).
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A very rough estimate of the importance of collisional cross sections induced by
fast ions can be made (in some cases) via the classical approach: If the ion velocity
Vion is much smaller than the effective Bohr velocity Vn for an electron with
principal quantum number n, the ion-induced cross section might be negligible:

r � 0 : Vion 
 Vn ¼ V0
Zeff
n

: ð10:157Þ

V0 is the Bohr velocity (2.19 � 108 cm/s) and Zeff is the effective charge of the
target ion where the atomic transitions are induced. More detailed calculations of
heavy particle collisional cross sections are proposed (Sobelman and Vainshtein
2006; Gryzinsky 1965).

10.6 Atomic Physics in Dense Plasmas with X-ray Free
Electron Lasers

XUV and X-ray Free Electron Lasers (XFELs) have provided the high-energy-
density physics community with outstanding tools to investigate and to create matter
under extreme conditions never achieved in laboratories so far. The key parameters of
existing XFEL installations (LCLS in USA, EU-XFEL in Germany, SACLA in
Japan) are micro- and even sub-microfocusing to achieve intensities in access to
1016 W/cm2, short pulse lengths (10–100 fs), tunable photon energy (1–30 keV),
small bandwidth (some 10 eV at about 10 keV in SASE mode and about 1 eV in
self-seeded mode), and high repetition frequency (some 10 Hz up to 100 Hz),
allowing to accumulate thousands of shots to improve signal-to-noise ratios.

This makes XFEL installations distinct different from well-known synchrotron
radiation facilities. The brilliance of XFEL’s is more than ten orders of magnitude
higher than modern synchrotrons, and this allows to photoionize inner-shells of almost
every atom in a solid crystal in a single pulse. As the pulse duration is of the order of
the Auger time scale an exotic state of matter, a “Hollow Crystal” can be created. The
decay of crystalline order can be initiated by a burst of Auger electrons with energies
in the X-ray range that heat up the hollow crystal as identified with high-resolution
spectroscopy (Galtier et al. 2011) in the first high-energy-density experiment at the
XUV–FEL FLASH (Riley et al. 2009). This is distinct different to synchrotrons:
Auger electron production is rare compared to the total number of atoms, and Auger
electrons do not allow changing the physical properties of the crystal.

Next, the tunable photon energy combined with the small bandwidth permits to
pump selected atomic transitions in the X-ray range. Compared to the well-known
pumping of low energy transitions by optical lasers, X-ray pumping will allow
outstanding steps forward. The first experiment of X-ray pumping of dense plasmas
that have been produced by a powerful auxiliary optical laser has been performed at
LCLS at SXR (Seely et al. 2011). In this experiment, it has successfully been
demonstrated that efficient changes in the atomic populations of highly charged ions
induced by XFEL can be achieved (Moinard et al. 2013; Rosmej et al. 2016). As it
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has been the case for laser-induced fluorescence (LIF) with standard optical lasers, a
revolutionary impact is expected via the photopumping of X-ray transitions. In
addition to standard LIF, X-LIF will allow to study isoelectronic sequences due to
the large range of tunability of the XFEL photons. As synchrotrons might not allow
selective efficient X-ray pumping (drastic change of atomic populations), XFEL
facilities have opened a new world for scientific activity.

An important further technical process has been made at XFEL’s by reducing the
width of the energy distribution function: In the so-called seeded-mode, a band-
width down to some eV is reached at some keV photon energies. This has led to the
first experiment to scan X-ray line shapes in dense plasmas (created with a powerful
auxiliary optical laser) at LCLS at MEC (Rosmej et al. 2018).

10.6.1 Scaling Laws to Move Atomic Populations
with XFEL

10.6.1.1 Description of Time- and Energy-Dependent XFEL Radiation

Let us assume that time and energy dependence of the XFEL radiation are inde-
pendent from each other and can therefore be described by the functions fFEL tð Þ and
~NFEL Eð Þ. The number of photons per volume/time/energy is then given by:

~NFEL E; tð Þ ¼ ~NFEL Eð ÞfFEL tð Þ; ð10:158Þ
Zþ1

�1
fFEL tð Þdt ¼ 1: ð10:159Þ

We assume a Gaussian energy dependence to simulate the narrow bandwidth of
the XFEL:

~NFEL Eð Þ ¼ ~N0
1ffiffiffi

p
p

CFEL
exp � E � EFELð Þ2

C2
FEL

 !
; ð10:160Þ

CFEL ¼ dE=2
ffiffiffiffiffiffiffi
ln 2

p
: ð10:161Þ

EFEL is the central energy of the radiation field, ~NFEL Eð Þ is the number of photons/
volume/energy, ~N0 is the peak number of photons/volume, dE is the bandwidth.
Assuming a Gaussian time dependence, the number of photons Ntot;s per pulse
length s is given by

548 10 Applications to Plasma Spectroscopy



Ntot;s ¼
Z1
0

dE
Z

volume

dV
Zþ s=2

�s=2

dt ~NFEL E; tð Þ � 2Acs~N0 erf
ffiffiffiffiffiffiffi
ln 2

p� �

� 0:761 � Acs~N0: ð10:162Þ

A is the focal spot area, s is the XFEL pulse width (FWHM). For estimations, the
error function can be approximated by

erf ðxÞ ¼ 1ffiffiffi
p

p
Zx
0

e�t2 � dt

� 1
2
� e�x2

2
� 0:3480242

1þ 0:47047 � x�
0:0958798

1þ 0:47047 � xð Þ2 þ 0:7478556

1þ 0:47047 � xð Þ3
" #

:

ð10:163Þ

The laser intensity ~IFEL E; tð Þ per bandwidth energy and time interval is related to
the photon density ~NFEL E; tð Þ via

~IFEL E; tð ÞdEdAdt ¼ ~NFEL E; tð ÞE � dEdVdt: ð10:164Þ

Integrating the XFEL beam over a full width at half maximum with respect to
energy and time, �IFEL;dE;s (energy/time/surface) is given by (assuming a Gaussian
time dependence):

�IFEL;dE;s ¼
ZdE=2

�dE=2

dE
Zs=2

�s=2

c � dtE � ~N E; tð Þ � 4EFELc~N0erf
2

ffiffiffiffiffiffiffi
ln 2

p� �

� 0:579 � c � EFEL � ~N0 ð10:165Þ

or, in convenient units

�IFEL;dE;s � 2:8� 10�9
~N0

cm3

� �
EFEL

eV

� �
W
cm2

� �
: ð10:166Þ

The number of photons Ntot;s is related to the intensity �IFEL;s via (d is the focal
spot diameter)

�IFEL;s ¼ 2 � erf
ffiffiffiffiffiffiffi
ln 2

p� �
� Ntot;s � EFEL

ps � d2=4 � Ntot;s � EFEL

s � d2 : ð10:167Þ
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10.6.1.2 Photoionization

In order to change atomic populations by irradiation of matter with XFEL, pho-
toionization rates need to be larger than corresponding electron ionization rates and,
in case of photopumping, photoexcitation rates need to be larger than corresponding
spontaneous radiative decay rates. In order to obtain analytical formulas, we con-
sider the hydrogen-like approximation for an arbitrary atom with effective charge
Zeff and an atomic level with principal quantum number n and energy

En ¼ Z2
eff � Ry
n2

; ð10:168Þ

where Ry ¼ 13:6057 eV: For the case of photoionization this leads to the following
relation:

Zþ s=2

�s=2

dt
Z1
En

dErizn Eð Þc~NFEL E; tð Þ[ neIn: ð10:169Þ

rizn EFELð Þ is the photoionization cross section from level n; ne is the electron density,
In is the electron collisional ionization rate, c the speed of light. Employing the
Kramers classical cross section for the photoionization (see also Sects. 3.3 and 3.7
and review [Rosmej et al. 2020b]),

E[En : r
iz
n Eð Þ ¼ 2:9� 10�17 E5=2

n

Z � E3 cm2 � ð10:170Þ

and the Lotz-formula for the electron collisional ionization (see Sect. 5.3.1), i.e.,

In ¼ 6� 10�8 � Ry
En

� �3=2

�
ffiffiffiffiffi
bn

p
� e�bn � ln 1þ 0:562þ 1:4bn

bn 1þ 1:4bnð Þ
� �

cm3s�1 �
; ð10:171Þ

bn ¼
En

kTe
: ð10:172Þ

Equations (10.168)–(10.172) provide the following estimate (peak intensity
IFEL ¼ cEFEL ~N0):

IFEL [ 3� 10�8 � ne cm�3	 
 � Z �
ffiffiffiffiffi
bn

p
� e�bn � ln 1þ 0:562þ 1:4bn

bn 1þ 1:4bnð Þ
� �

W
cm2

� �
ð10:173Þ

assuming EFEL ¼ En þ 3dEðdE 
 EFELÞ for effective photoionization. For
ne ¼ 1021 cm�3, Zeff ¼ 13, bn ¼ 2 (10.173) delivers IFEL [ 3� 1013 W/cm2.
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10.6.1.3 Photoexcitation

Let us now consider the relations for the X-ray photopumping of line transitions
(i.e., resonant photopumping). In order to influence strongly via photoexcitation on
the atomic populations, photoexcitation rates need to be larger than corresponding
spontaneous radiative decay rates:

Zþ s=2

�s=2

dt
ZDEnm þ d~E=2

DEnm�d~E=2

dE rabsnm Eð Þc~NFEL E; tð Þ�Amn: ð10:174Þ

rabsnm Eð Þ is the photoabsorption cross section for the transition from level n to level m
and Amn is the spontaneous radiative decay rate from level m to level n; d~E is an
effective width for the XFEL interaction with the atomic transition. The photoab-
sorption cross section is given by

rabsnm Eð Þ ¼ E
4p

Bnmunm Eð Þ: ð10:175Þ

Bnm is the Einstein coefficient of stimulated absorption that is related to the Einstein
coefficient of spontaneous radiative decay according to

Bnm ¼ 4p3�h3c2

E3

gm
gn

Amn; ð10:176Þ

unm Eð Þ is the normalized local absorption line profile:

Zþ1

�1
unm Eð ÞdE ¼ 1: ð10:177Þ

We assume a Gaussian line profile with full width at half maximum, i.e.,

FWHM ¼ 2
ffiffiffiffiffiffiffi
ln 2

p
CG ð10:178Þ

and a width parameter

CG ¼ DEnm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kTi=Mc2

p
ð10:179Þ

corresponding to a Doppler profile to obtain analytical estimates:
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unm Eð Þ ¼ 1ffiffiffi
p

p
CG

exp � E � DEnm

CG

� �2
" #

ð10:180Þ

and (d~E is the bandwidth)

4 ln 2

d~E2
¼ 1

C2
G

þ 1

C2
FEL

: ð10:181Þ

If the XFEL photon energy is exactly tuned to the transition energy, e.g.,
EXFEL ¼ DEnm EXFEL ¼ DEnm, (10.160), (10.161), (10.174)–(10.181) provide the
following estimate:

IFEL [ 2� 105DE3
nm

gn
gm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FWHM2

FEL þFWHM2
G

q W
cm2

� �
ð10:182Þ

with DEnm and FWHM in [eV]. For H-like Al Lya, DEnm ¼ 1728 eV, gn ¼ 2,

gm ¼ 6, we obtain IXFEL ¼ 4� 1015 W/cm2 (assuming
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FWHM2

FEL þFWHM2
G

q
¼

10 eV). The relation (10.182) indicates an important scaling law:

IFEL / Z6: ð10:183Þ

Therefore, extremely high brilliance of XFEL’s is needed to pump X-ray tran-
sitions. Assuming a spot diameter of d ¼ 2 lm, pulse length s ¼ 100 fs, photon
energy EXFEL ¼ 1:7 keV and a laser intensity of �IFEL;s ¼ 1016 W/cm2, a minimum
of about Ntot;s ¼ 2� 1011 photons in the XFEL pulse is requested according
(10.167) to effectively move atomic populations in the X-ray energy range.
Currently operating/planed Free Electron Laser facilities fulfill these requirements.
We note that relation (10.183) does not depend on the electron density and the
intensity estimate holds therefore true for low- and high-density plasmas.

10.6.2 Atomic Kinetics Driven by Intense Short Pulse
Radiation

Radiation field quantum mechanics in second quantization (Heitler 1954; Pike and
Sarkar 1995) and quantum kinetics (Rautian and Shalagin 1991) is the most general
approach to study the interaction of radiation fields with atoms while the quantum
kinetic approach via the density matrix theory (see Chap. 7) is the most general
approach to determine atomic populations (that are at the heart of almost all properties
of matter). On a unique footing, these approaches allow describing atomic population
and coherences and provide all necessary quantum matrix elements to take into account
the relevant elementary atomic processes (cross sections) and field-atom interactions.
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Under the assumption of broadband illumination and/or large collisional
broadening, the non-diagonal density matrix elements are negligible compared to
the diagonal ones (atomic populations) and the so-called rate equation atomic
population kinetic approach becomes valid (Loudon 2000). In order to keep the
presentation transparent, we employ for the below presentation the rate equation
kinetics in its most general form as outlined in Chap. 6. This approach will be
supplemented below to take into account an external intense short pulse radiation
field to describe the XFEL interaction with matter. We therefore start from (6.22)–
(6.28); however, the transition matrix elements have to be supplemented with a
radiation field term driven by the XFEL, i.e.,

Wji ¼ W col
ji þW rad

ji þWFEL
ji : ð10:184Þ

The radiation field matrix elements WFEL
ji for the external XFEL radiation are

given by

WFEL
ji ¼ WFEL;PI

ji þWFEL;SR
ji þWFEL;SA

ji þWFEL;SE
ji ; ð10:185Þ

WFEL;PI
ji ¼

Z1
�hxji

d �hxð ÞrPIji �hxð Þc~N �hxð Þ; ð10:186Þ

WFEL;SR
ji ¼ ne

p2c�h3ffiffiffi
2

p
m3=2

e

gi
gj

Z1
0

dE
F Eð Þffiffiffiffi

E
p rPIji �hxji þE

	 

~N �hxji þE
	 


; ð10:187Þ

WFEL;SA
ji ¼ p2c3�h3Aji

gj
gi

Z1
0

d �hxð Þuji xð Þ
�h

~N �hxð Þ
�hxð Þ2 ; ð10:188Þ

WFEL;SE
ji ¼ p2c3�h3Aji

Z1
0

d �hxð Þuji xð Þ
�h

~N �hxð Þ
�hxð Þ2 : ð10:189Þ

WFEL;PI
ji describes photoionization, WFEL,SR stimulated radiative recombination,

WFEL;SA
ji stimulated photoabsorption, WFEL;SE

ji stimulated photoemission. rPIji is the
photoionization cross section, F Eð Þ the energy distribution function of the con-
tinuum electrons, Aji the Einstein coefficient of spontaneous emission, uji the line
profile, c the speed of light, �h is the Planck constant, gi the statistical weight of a
bound state, x the angular frequency of the external radiation field, xji the atomic
transition frequency, and ~N is the number of external photons (those of the Free
Electron Laser) per unit volume and energy. We note, that (10.186–10.189) assume
that the concept of standard ionization and excitation probability per unit time in
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Fermi’s golden rule and in Einstein’s theory of stimulated emission and absorption
is still valid. This assumption breaks down for ultra-short pulses [Rosmej et al.
2021]: numerical calculations carried out in terms of a generalized probability for
the total duration of pulses in the near-threshold regime demonstrate essentially
non-linear behavior, while absolute values may change by orders of magnitude for
typical ultra-short XFEL and High-Harmonic Generated HHG pulses [Rosmej et al.
2021].

In optically thick plasmas, the spectral intensity distribution of an atomic tran-
sition i ! j with frequency xji is given by (see also Sect. 1.1.4):

IjZiZ xð Þ ¼ �hxjZiZ

4p
� njZ � AjZiZ � KjZiZ � UjZiZ x;xjZiZ

	 

: ð10:190Þ

njZ is the population of the upper-level j, AjZiZ is the spontaneous transition prob-
ability for the transition j ! i, KjZiZ is the lambda-operator to describe radiation
transport effects [Sect. 1.1.4, e.g., (1.33)] and UjZiZ x;xjZiZ

	 

is the associated

optically thick emission line profile (see Sect. 1.1.4, (1.34)). Equation (10.190)
indicates a strong interplay between the atomic structure (means transition proba-
bilities AjZiZ ) and atomic populations kinetics (population densities njZ ). The total
spectral local distribution is then given by

I xð Þ ¼
XZn
Z¼0

XNZ

jZ¼1

XNZ

iZ¼1

IjZiZ xð Þ: ð10:191Þ

Equation (10.191) is of great practical interest: It is the spectral distribution that
is accessible via X-ray spectroscopic measurements. In plasmas where opacity in
line transitions is important KjZiZ\1 and a generalized optically thick line profile
has to be invoked (see (1.34) of Sect. 1.1.4). If also radiation transport in the
continuum is important, the generalized radiation transport equation has to be
solved (Mihalas 1978). Such experimental situations, however, should be avoided:
The photon absorption in the continuum of a line transition is not at all redistributed
in the line itself, but redistributed in a large spectral interval due to the large “width”
of the continuum (in other words the “line photon” is lost). Therefore, under such
circumstances diagnostic ratios would rather be meaningless than useful. In order to
properly design experiments that avoid radiation transport in the continuum, the
continuum opacities sff (free–free opacity) and sfb (free–bound opacity) should be
sff\0:01 and sfb\0:01 (the opacities can be estimated from (1.54) and (1.55). It is
also desirable to avoid as much as possible the bound–bound opacity and ensure
sji \ 0:1 (see, e.g., (1.56), (1.57)). This strong estimate is related to the fact that in
most cases of XFEL research, X-ray transitions from autoionizing states are
recorded: Radiation transport related to autoionizing levels is very harmful for
spectroscopic diagnostic studies, as the reemission after absorption is almost sup-
pressed due to the large autoionizing rates (Kienle et al. 1995), i.e., a small
branching factor
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pji ¼ AjiP
l Ajl þ

P
k Cjk þ

P
m Cjm

� �Nji

: ð10:192Þ

pji is the probability that a photon from a line transition j ! i is reemitted, Aji is the
radiative decay,

P
l Ajl;

P
k Cjk and

P
m Cjm are the total radiative decay rates,

autoionizing rates and collisional rates leading to a depopulation of the upper-level
j; and Nji is the number of photon scatterings. As an example let us consider
aluminum and the j-dielectronic satellite (discussed in Table 10.1):
Aji ¼ 1:31� 1013 s�1;Cjk ¼ 1:29� 1014 s�1. Even if we set

P
m Cjm ¼ 0 the

remission probability is very low, pji ¼ 9:18� 10�2.
Finally we note that bound–bound opacity of a transition that is emitted,

absorbed, and reemitted in a dense plasma should not be confused with the opacity
of XFEL-induced resonant pumping.

10.6.3 Interaction of XFEL with Dense Plasmas

10.6.3.1 General Features of XFEL Interaction with Dense Plasmas:
Simulations

Figure 10.45 shows an experimental scheme for a typical pump probe experiment.
A powerful optical laser is irradiating a solid target to create a dense plasma plume.
The target is mounted on a rotating cylinder in order to accumulate spectra to
improve the signal-to-noise ratio. The XFEL is then triggered with respect to the
optical laser and focused into the dense plasma plume to pump X-ray transitions.
A high-resolution (high spectral and spatial) X-ray spectrometer is employed to
record the spectral distribution of the pumped X-ray transitions in dependence of
the target distance (along Y-axis in Fig. 10.45).

Let us follow the principle steps of XFEL interaction with a dense plasma with
the MARIA simulations described above taking also into account all radiation field
terms of (10.184)–(10.189) and a detailed LSJ-split atomic atomic/ionic level
system including ground, single, and multiple excited and hollow ion states from
various charge states (Rosmej and Lee 2007).

Figure 10.46 shows the evolution of the average charge (solid curve) when an
intense pulsed radiation field (dashed curve) is interacting with dense magnesium
plasma:

Zh i ¼
XZn
Z¼0

nZZ; ð10:193Þ

where nZ is the ionic population of charge Z (see (6.29)). The plasma density is
ne ¼ 1021 cm�3, the temperature kTe ¼ 40 eV. Opacity effects of the internal
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atomic/ionic radiation are included via an effective photon path length of Leff =
10 µm (see Sect. 1.1.4). The XFEL pulse duration is s ¼ 100 fs, photon energy
EXFEL ¼ 1850 eV and the photon density is ~N0 ¼ 1023 cm�3. The maximum laser
intensity is then

Imax ¼ cEfFEL;max � ~N0 ¼ 4:8 � 10�9fFEL;max

~N0

cm3

� �
E
eV

� �
W
cm2

� �
; ð10:194Þ

where fXFEL;max is the maximum value (fXFEL;max ¼ 0:246 in Fig. 10.46) of the
normalized time-dependent function of the laser intensity; see (10.158), (10.159),
Imax ¼ 2:2� 1017 W/cm2. Before the XFEL pulse interacts with the Mg plasma
plume, the average charge state is about Zh i � 7:4 that rises dramatically during the
interaction with the XFEL pulse. The system shows shock characteristics: After

Fig. 10.46 MARIA
simulations of the temporal
evolution of the XFEL pulse
and the average charge state
of a dense Mg plasma,
EFEL = 1850 eV, s = 100 fs,
Imax = 2.2 � 1017 W/cm2,
ne = 1021 cm−3, kTe = 40 eV,
Leff = 10 lm

Fig. 10.45 Principle scheme of a pump probe experiment when intense XFEL radiation interacts
with dense plasma produced by a powerful auxiliary optical laser
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laser pulse maximum, the average charge state is still increasing (at about
t ¼ 10�13 s), then stays almost constant for a few ps, then decreases on a 100 ps
time scale followed by a very slow final equilibration phase (10–100 ns). We note,
that general characteristics of shocked atomic systems have been explored in
[Deschaud et al. 2020].

Let us follow the shock characteristics in more detail via the ionic populations.
Figure 10.47 shows the charge state evolutions of the bare nucleus (nuc), H-like
ions (H), He-like ions (He), and Li-like ions (Li). Figure 10.47a shows the case
when the photon energy EXFEL ¼ 1850 eV is larger than the ionization potential of
the He-like Mg ground state Ei 1s2 1S0ð Þ ¼ 1762 eVð Þ. Before the XFEL pulse, the
ionic fractions nuc, H, and He are negligibly small due to the low electron tem-
perature of the plasma plume. With the onset of the XFEL pulse, He-like and H-like
ionic fractions rise rapidly. The population of the fully stripped Mg (“nuc” in
Fig. 10.47a) stays very small, because the XFEL photon energy does not allow
direct photoionization of the H-like ground state. The slight rise at the beginning of
the XFEL pulse is connected with collisional excitation–ionization processes in the
dense plasma.

Figure 10.47b shows a simulation when the photon energy is larger than the
ionization potential of the H-like ground state. Like in Fig. 10.47a, before the
XFEL pulse, the ionic fractions of the bare nucleus, H- and He-like ions are
negligibly small due to the low electron temperature of the plasma plume. With the
onset of the XFEL pulse, Li-like, He-like, and H-like ionic fractions rise rapidly. At
about laser pulse maximum, the fraction of H-, He-, and Li-like ions drop again
because the XFEL photons are photoionizing the H-like ground state 1s 2S1/2
because the photon energy of EXFEL ¼ 3100 eV keV is larger than the ionization
potential of H-like Mg ground state Ei 1s 2S1=2

	 
 ¼ 1963 eV
	 


. The depletion of

Fig. 10.47 MARIA simulations of the temporal evolution of the ionic fractions after interaction
of the XFEL pulse with a dense Mg plasma plume, a EFEL = 1850 eV, s = 100 fs,
~N0 ¼ 1023cm�3, Imax = 2.2 � 1017 W/cm2, ne = 1021 cm−3, kTe = 40 eV, Leff = 30 lm,
b EFEL = 3100 eV, s = 100 fs, ~N0 ¼ 1023cm�3, Imax = 3.7 � 1017 W/cm2, ne = 1021 cm−3,
kTe = 30 eV, Leff = 30 lm
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almost all electrons from the atomic system makes the plume transparent to the
XFEL radiation as no more absorption is possible: The absorption is saturated.
When the pulse is off, H-like, He-like, and Li-like ionic fractions increase as
recombination starts from the bare nucleus. At even later times (about t = 10−10 s),
all ionic fractions (nuc, H, He, Li) decrease due to the overall cooling of the plume
(rise of ionic fractions of low-charged ions not shown in Fig. 10.47b).

Figures 10.47 demonstrate that in the photoionization regime, the tuning of the
XFEL beam allows selection of different charge states (i.e., cutoff of charge states
that have ground state ionization energies above the photon pumping energy).

10.6.3.2 X-ray Pumping of Dense Plasmas

In the resonant pumping scheme, the tuning of the XFEL energy allows to selectively
pump bound–bound transitions and induce corresponding fluorescence, so-called
X-ray laser-induced fluorescence, so-called X-LIF (Rosmej et al. 2016, 2022).

Figure 10.48 presents the first X-LIF spectra of dense aluminum plasma
observed at LCLS for different X-ray pumping energies and for X-ray pulses
delayed by 100 ps (Moinard et al. 2013; Rosmej et al. 2016, 2022). For reference,
the upper spectrum (red curve) shows the spectral emission of the Al plasma created
by the optical YAG laser only (i.e., X-ray pump was absent). Dominating transi-
tions are the He-like resonance line 1s2 1S0–1s2p

1P1 and the intercombination line
1s2 1S0–1s2p

3P1 (W and Y in Fig. 10.48) of 11 times ionized aluminum. XFEL
pumping at 1597 eV (curve labeled as “He-like” for pumping of helium-like atomic
states) matches the atomic transition W that in turn results in a strong intensity
increase (factor 4) of the W-line (note that all spectra have been normalized to the
peak intensity).

The pumping at lower energies introduces abrupt changes in the spectral dis-
tribution. In particular, the pumping at 1587 eV corresponds to the transitions
K2L1 + hmXFEL ! K1L2. The pumped states are therefore the Li-like (10 times
ionized aluminum) autoionizing levels 1s2l2l′. Although the transitions that origi-
nate from these states are of very low intensity for the upper red curve (no pump),
the X-ray pumping results in a strong intensity increase. X-ray pumping at 1570,
1551, and 1531 eV corresponds to X-LIF of the autoionizing Be-like (nine times
ionized aluminum) states K1L3, the B-like (eight times ionized aluminum) states
K1L4, and C-like (seven times ionized aluminum) states K1L5. Here, K and L denote
the population of the inner atomic shells.

It is important to emphasize that emission lines, being weak or entirely absent in
the dense optical laser-produced plasma (e.g., the Be-, B-, and C-like transitions)
have been pumped to intensities that exceed even those of the resonance line
W (that is not pumped and its occurrence is only due to thermal excitation inside the
dense optical laser-produced plasma, upper red curve in Fig. 10.48).

The possibility of strong signal rise in the X-ray range from non-observable
intensities to excellent signal-to-noise ratios is further demonstrated in Fig. 10.49.
The figure demonstrates a rise in signal levels for the Be-like satellite X-ray
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transitions by a factor of 300 (the lower red spectrum has been shifted down by a
factor of 10 for better comparison) implying that the charge state distribution can be
probed in low-temperature dense plasmas (strongly coupled) that would not be
observable otherwise.

Figure 10.49 demonstrates likewise that X-LIF can move non-observable
bound–bound transitions to excellent signal levels. The two-electron transitions of
the Be-like satellites, i.e., 1s2s22p1 1P1−1s

22p2 1D2 are not observable in the
spectrum from the dense optical laser-produced plasma (red dotted curve in
Fig. 10.49) but moves to a good signal-to-noise ratio due to X-ray pumping.

Figure 10.50 demonstrates transient resonant pumping by setting different delay
times between the maximum of the optical laser pulse and the XFEL pulse in the
range of Dt = −50 ps to +300 ps. Figure 10.50a shows the spectral distribution in the
high-quality X-ray emission spectra of aluminum for Dt = 0 ps. The blue curve
shows the best fit from a transient non-LTE simulation carried out with the MARIA
collisional–radiative kinetics code described above. The simulations include the exact
overlap integrals of line profiles of the atomic transitions and the energy distribution
function of the XFEL for resonant and non-resonant pumping. In addition, the XFEL
pulse was resolved in time and brought to interaction with the plasma at a given

Fig. 10.48 Experimental spectra of resonant XFEL pumping of dense plasmas produced with an
auxiliary optical laser. The upper spectrum (red, linear scale) shows the X-ray emission from the
optical laser-produced plasma only that is dominated by the He-like resonance line W and
intercombination line Y. The pumping energies (blue numbers, spectral positions indicted with
flashes) fall into the spectral window of the X-ray spectral distribution of the
K2LN + EXFEL ! K1LN+1 transitions (N = 1–4). The induced emission (solid black curves, linear
scale, normalized to peak emission) from the He-like to C-like charge states corresponds to
emission from ionic core hole states K1LN+1. When the X-ray pump is on, strong intensity rises of
X-ray transitions (X-ray laser-induced fluorescence X-LIF) from Li-like until C-like ions are
observed. The X-ray pumping moves the intensities by many orders of magnitude
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temperature and density. A spectral distribution was then calculated at every time step
and then summed up until convergence was reached to compare simulations with
data. The simulations presented in Fig. 10.50a (blue curve) are obtained for an
electron temperature of 100 eV and electron density of 1 � 1021 cm−3. Despite a
simple zero-dimensional model, the blue curve provides a rather good fit to the

Fig. 10.49 Experimental spectrum of XFEL pumped dense aluminum plasma at
EXFEL = 1570 eV (indicated with dashed blue line). X-LIF increases the Be-like satellite intensity
by about two–three orders of magnitude (compared to the emission from optical laser only, red
dotted curve) moving even non-detectable transitions (e.g., the two-electron transitions indicated
by blue flash) to excellent signal-to-noise ratios

Fig. 10.50 Experimental spectra of transient X-ray pumping at different delay times Dt with
respect to the optical laser pulse. a Time-dependent non-LTE simulations for Dt = 0 ps carried out
with the MARIA code, b experimental X-LIF spectra for Dt = −50 ps and +300 ps
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measured data. We note that the plasma density is distinctly higher (order of mag-
nitude) than that obtained from the non-LTE fit of the optical laser-produced plasma
(upper red curve in Fig. 10.48). This is consistent because XFEL absorption and
subsequent X-LIF take place at higher densities for the geometry shown in
Fig. 10.45. The spectral distribution is far from LTE, as demonstrated by the com-
parison of the blue and green curves, cf. Figure 10.50a. Non-LTE effects are therefore
important even for high densities because high autoionizing rates and fs time scales
do not permit effective collisional redistribution.

In conclusion, the first transient X-ray pumping of dense optical laser-produced
plasmas presented in Figs. 10.48 and 10.49 demonstrates the great potential of
X-ray laser-induced fluorescence (X-LIF) in dense plasma atomic physics and
high-energy-density physics (Rosmej et al. 2016, 2022).

10.6.4 Beating the Auger Clock

10.6.4.1 Photoionization Versus Autoionization

Photoionization of inner atomic shells creates multiple excited states that can decay
via non-radiative transitions. Let us consider the photoionization from the K-shell:

K2LXMYNZ þ hmXFEL ! K1LXMYNZ þ ephoto ð10:195Þ

(e.g., iron is described by the configuration K2L8M14N2). The photoionized state is
multiple excited and can decay via radiative and non-radiative (autoionization,
known as Auger effect in solid-state physics) transitions. Let us consider a simple
example (Y = 0, Z = 0):

K1LX ! radiative decay : K2LX�1 þ hmKa

non�radiative decay : K2LX�2 þ eAuger

� �
: ð10:196Þ

Radiative and non-radiative decay processes in the X-ray energy range have
extensively been studied in the very past (Flügge 1957). Particularly synchrotrons
have been employed for advanced studies of X-ray interaction with solid matter.
Synchrotron radiation, however, is not very intense, allowing occurrence of pho-
toionization of inner-shells only as a rare process (means a negligible fraction of the
atoms in the crystal are photoionized thereby leaving the solid system almost
unperturbed). This situation is quite different for XFEL’s outlined above: Their
brilliance is more than ten orders of magnitude higher than those of most advanced
synchrotrons. Photoionization of inner-shells may therefore concern almost every
atom in the crystal structure leading to essential perturbations and corresponding
dramatic changes in the physical properties of matter.

In terms of elementary processes, XFEL-driven photoionization rates allow to
compete even with the Auger rates (autoionizing rates C are very large, order of
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1012–1016 s−1). The necessary XFEL intensities to “compete“ with the Auger effect
can be estimated according to (see also (10.169)):

Zþ s=2

�s=2

dt
Z1
En

dErizn Eð Þc~NFEL E; tð Þ[C: ð10:197Þ

Assuming a photon energy EFEL of the XFEL which is sufficient to proceed
toward effective photoionization, namely EFEL = En + 3dE, (dE 
 En, En is the
ionization energy of the inner-shell with principal quantum number “n”), we obtain
the following estimate:

IFEL [ 4� 10�1 � C � Z
4

n3
W
cm2

� �
: ð10:198Þ

As autoionizing rates scale approximately like C / Z0 (means almost inde-
pendent of Z in the hydrogenic approximation) the Z-scaling of (10.198) is
approximately given by

IFEL / Z4: ð10:199Þ

Let us consider the photoionization of the K-shell of Al I as an example:
Z � 10.8, n = 1, C � 1014 s−1, IFEL > 5 � 1017 W/cm2. As microfocusing is a
standard setup at the XFEL installations (usually realized with Beryllium lenses),
intensities of the order of 1017 W/cm2 can be achieved allowing photoionization of
inner-shells to compete with the Auger rate. Also sub-microfocusing was demon-
strated employing a four-mirror focusing system in Kirkpatrick–Baez geometry.
This allowed to reach focal spot sizes down to 0.05 lm and intensities up to
1020 W/cm2 (achieved at the SACLA XFEL (Mimura et al. 2014)). We note that
the competition between the photoionization of inner-shells and the autoionization
means that the change in atomic populations due to photoionization is essential
compared to the Auger rate that destroys the inner-shell excited autoionizing state.

10.6.4.2 Hollow Ion Formation

Apart the threshold intensity of (10.198), the characteristic Auger time scale is
another important issue. Before XFEL’s became available for dense plasma physics
experiments, it was proposed (Rosmej 2007, Rosmej and Lee 2007) on the basis of
simulations carried out with the MARIA code that “beating the Auger clock” will
allow massive creation of hollow ions and permit their observation via the char-
acteristic X-ray emission. Let us consider the relevant physics via an example:
creation of hollow ion K0LX configurations and corresponding characteristic
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inner-shell X-ray emission. We start from the K2LX configurations. Photoionization
of the K-shell creates the state

K2LN þ �hxXFEL ! K1LN þ ephoto;1: ð10:200Þ

In order to proceed with interesting processes from the XFEL-produced single
hole state K1LX, the duration of the XFEL pulse (being responsible for the first
photoionization) must be of the order of the characteristic Auger time scale. As the
operating VUV/X-ray FEL facilities propose the requested pulse durations (order of
10–100 fs), photoionization may further proceed from the single K-hole state to
produce a second K-hole (hollow ion):

K1LN þ �hxXFEL ! K0LN þ ephoto;2: ð10:201Þ

The existence of the double K-hole configuration K0LX can easily be identified
via the characteristic hollow ion X-ray transitions that are located approximately
between Lya and Hea of highly charged ions (Faenov et al. 1999; Rosmej et al.
2015):

K0LN ! K1LN�1 þ �hxhollow: ð10:202Þ

Ab initio calculations with the MARIA code that include radiation field physics
(see Sect. 10.6.2) demonstrate that hollow ion production is effective and observ-
able levels of characteristic X-ray emission are achieved. These simulations have
lead to a proposal for hollow ion research in dense plasmas at planed XFEL
installations (Rosmej 2007, Rosmej and Lee 2007).

The central wavelengths of hollow ion emission groups can be approximated by
(Rosmej et al. 2015):

kðK0LN ! K1LN�1Þ � 1:215� 10�7 m

Zn � rLya � rL � ðN � 1Þ	 
2 ; ð10:203Þ

rLya ¼ �a1ðZn � 3Þ � a3ðZn � 3Þ3 ð10:204Þ

with a1 = 6.17094 � 10−4 and a3 = 9.15902 � 10−6 resulting in an approximation
with spectroscopic precision for Zn = 3–56 (Zn is the nuclear charge).
Equation (10.204) includes the negative screening that is important for higher Z-
elements, e.g., for Zn = 56, rLya = −1.397. From Hartree–Fock calculations, we
obtain a screening constant for the L-shell electrons, rL � 0.07 for He-like until
O-like ions for each supplementary electron in the L-shell.

In order to estimate which hollow ion transitions are located between the H-like
Lya and He-like Hea transitions, we can estimate the transition energies in the
optical electron model:
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DE ¼ 3
4
Z2
effRy; ð10:205Þ

where Ry = 13.6058 eV and the effective charge is given by

Zeff ¼ Zn � r: ð10:206Þ

Zn is the nuclear charge and r is a screening constant. For the He-like resonance
line Hea = 1s2p 1P1–1s

2 1S0, the screening constant can be approximated by

rHea ¼ r0 � a1ðZn � 8Þ � a3ðZn � 8Þ3; ð10:207Þ

where r0 = 0.50417, a1 = 3.4565 � 10−3, a3 = 1.16632 � 10−5. The application
of this formula results in wavelength calculations with spectroscopic precision for
Zn = 6–56 (note that the approximation according to (10.207) includes also nega-
tive screening effects for high Z-elements).

Figure 10.51 shows the time evolution of the characteristic X-ray emission of
H-like Lya (2p–1s), He-like resonance line (1s2p

1P1–1s
2 1S0) as well as the X-ray

emission originating from hollow ions: K0L2–K1L1 and K0L3–K1L2. The MARIA
simulations have been carried out for an intense XFEL beam that is interacting with
a dense Mg plasma (see Fig. 10.45) with electron density ne = 1021 cm−3 and
electron temperature kTe = 30 eV. The photon energy is EFEL = 3100 eV, pulse
duration s = 100 fs, and a photon density ~N0 ¼ 1023 cm�3 (corresponding to an
intensity of Imax = 3.7 � 1017 W/cm2). As can be seen from Fig. 10.51, the
intensity of the hollow ion X-ray emission is of the order of the H-like and He-like
resonance line emissions that are known to be observable.

Let us clearly identify the real importance of the successive photoionization for
the hollow ion X-ray emission (10.200)–(10.202). Figure 10.52 shows the temporal
evolution when all photoionization channels are included in the simulations (solid
curves) and when photoionization from and to the states that involve a K1-electron

Fig. 10.51 MARIA
simulations of the temporal
evolution of various line
intensities after interaction of
the XFEL pulse with a dense
Mg plasma plume,
EFEL = 3100 eV, s = 100 fs,
~N0 ¼ 1023 cm�3,
Imax = 3.7 � 1017 W/cm2,
ne = 1021 cm−3, kTe = 30 eV
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are artificially switched off (dashed curves in Fig. 10.52). It can clearly be seen that
the hollow ion X-ray emission is practically absent when photoionization from K1 is
off: The remaining intensities are due to collisional effects. This means that in a
proof of principal simulation with the MARIA code, hollow ion production and
corresponding X-ray emission have been identified as driven by successive pho-
toionization from K2 and K1-electron states (see flash in Fig. 10.52). This is
equivalent to say that the XFEL allows beating the Auger clock to proceed toward
successive K-shell ionization before the autoionization/Auger effect disintegrates
the upper states.

The above-predicted double K-hole states produced via double inner-shell pho-
toionization (see relations (10.200)–(10.202)) (Rosmej 2007; Rosmej and Lee 2007)
had later been observed in experiments at the XFEL LCLS (Cryan et al. 2010).

Hollow ions can also be excited in a regime where photoionization is followed
by resonant photoexcitation (Rosmej et al. 2015):

K2LN þ �hxXFEL ! K1LN þ ephoto;1; ð10:208Þ

K1LN þ �hxXFEL ! K0LNþ 1; ð10:209Þ

K0LNþ 1 ! K1LN þ �hxhollow: ð10:210Þ

Contrary to the regime of double photoionization (10.200)–(10.202), pho-
toionization followed by resonant photoexcitation depends strongly on the photon
energy because the photon energy has to be large enough for single K-shell pho-
toionization and, at the same time, need to match the resonance energy. In this
respect, ionization potential depression may therefore have an important influence
on the spectral distribution as it may permit to excite emission from higher charge
states. This has been extensively explored in [Deschaud et al. 2020] where a general

Fig. 10.52 MARIA simulations of the temporal evolution of various line intensities after
interaction of the XFEL pulse with a dense Mg plasma plume, EFEL = 3100 eV, s = 100 fs,
~N0 ¼ 1023 cm�3, Imax = 3.7 � 1017 W/cm2, ne = 1021 cm−3, kTe = 30 eV
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method of ionization potential depression analysis has been proposed that was
based on a 2-dimensional map (frequency of target emission versus XFEL photon
frequency) of highly resolved hollow ion X-ray emission.

Figure 10.53 shows a simulation of the hollow ion X-ray emission of aluminum
coupling the time-dependent atomic population kinetics (see (10.184)–(10.189)
and (6.22)–(6.28)) of the energy balance equation (Deschaud et al. 2014; Rosmej
et al. 2015)

dE
dt

¼ Pabs � Prad; ð10:211Þ

where Pabs is the power absorbed from the radiation field and Prad is the power
emitted via radiative recombination, spontaneous and stimulated emission.
A photon energy of EXFEL = 1660 eV was chosen permitting strong emission
around the inner-shell transitions originating from the K0L5 configuration (see blue
bar in Fig. 10.53). In dense plasmas, collisional ionization may further populate
higher charge states and emission up to K0L3 is therefore observed. Also shown in
Fig. 10.53 is a simulation for EXFEL = 3000 eV (dashed line). The comparison
between the solid black and dashed line in Fig. 10.53 demonstrates that the regime
of photoionization-excitation (10.208)–(10.210) can strongly increase the popula-
tion of a certain hollow ion state.

10.6.4.3 X-ray Emission Switches for Ultrafast Dense Matter
Investigations

The X-ray emission of hollow ions discussed in the forgoing paragraph provides
outstanding possibilities to investigate dense exotic states of matter that just exist
during the interaction of the XFEL pulse with matter (Rosmej et al. 2007).
Figure 10.54 shows the temporal evolution of the hollow ion X-ray emission

Fig. 10.53 Hollow ion X-ray
emission excited by a
combination of
photoionization–resonance
photoexcitation,
EXFEL = 1660 eV,
sXFEL = 80 fs, IXFEL = 1017

W/cm2 including the temporal
evolution of the plasma
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K0L3 ! K1L2 þ hmHollow ion of Fig. 10.51 on a linear intensity scale (Rosmej and
Lee 2007). The simulations demonstrate that the FWHM of the X-ray emission is
only 50 fs and temporally located very close to the XFEL pulse. Therefore, dense
matter properties that are just produced during the XFEL interaction can be studied
via the hollow ion X-ray emission emitted from the matter under study.

Let us discuss in more detail the outstanding properties of the characteristic
hollow ion X-ray emission for the K0LX-configurations for dense matter
investigations:

(a) Small opacity of hollow ion X-ray transitions
Spectroscopic investigations of dense matter suffer usually from opacity effects
because even in the X-ray range, a line photon can be absorbed and reemitted
many times. In this respect, X-ray hollow ion transitions have the advantageous
feature of almost negligible opacity. This can be understood as follows. The
hollow ion opacity effects can be estimated considering a simple balance
equation for the populations K1LN (absorbing lower states) and K2LN−2 (atomic
ground state) that is driven by dielectronic capture:

n K1LN
	 


AþCf g � n K2LN�2	 

ne DCh i; ð10:212Þ

where ne DCh i (where ne is the electron density) is the dielectronic capture rate into
the state K2LN−2 that is balanced by radiative decay A and autoionization C of state
K1LN. This provides

n K1LNð Þ
n K2LN�2ð Þ � ne � g K1LNð Þ

g K2LN�2ð Þ � a �
C

AþC
� exp �EC=kTeð Þ

kTeð Þ3=2
; ð10:213Þ

where a is the constant for dielectronic capture a ¼ 1:66� 10�22 cm3 s�1ð Þ, ne the
electron density in [cm−3], the electron temperature kTe in [eV], EC is the capture
energy in [eV], autoionizing rate C in [s−1] and radiative decay rate A in [s−1]. Let
us estimate the right-hand side of (10.213):

Fig. 10.54 MARIA
simulations of the temporal
evolution of the hollow ion
X-ray emission induced by
the interaction of a XFEL
pulse with a dense Mg plasma
plume, EFEL = 3100 eV,
s = 100 fs, ~N0 ¼ 1023cm�3,
Imax = 3.7 � 1017 W/cm2,
ne = 1021 cm−3, kTe = 30 eV
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n K1LNð Þ
n K2LN�2ð Þ �

ne
cm�3 � 10 � 2� 10�22 � 1 � 10�5. . .10�9	 


: ð10:214Þ

Therefore even for an electron density of 1023 cm−3, the population of K1LN is
about three–seven orders of magnitude smaller than those of the states K2LN−2. The
line center bound–bound opacity for a Doppler broadened line can then be esti-
mated by (see also Sect. 1.1.4)

s0;ij � 1:08� 10�10 kji
ðmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðamuÞ
Ti eVð Þ

s
fji
nðK1LNÞ
ðcm�3Þ

Leff
ðlmÞ ; ð10:215Þ

where Ti is the ion temperature, M the number of nucleons, k the wavelength, f the
oscillator strength, n(K1LN) the absorbing lower-level density, and Leff the effective
photon path length. Let us assume a dense laser-produced plasma with an electron
density of ne = 1023 cm−3, ion temperature of Ti = 1 keV, and the plasma
dimension of Leff = 30 lm. Assuming an aluminum plasma, M = 27,
k = 7 � 10−10 m, f = 0.2, average charge state of 10, a fraction of 0.1 in the charge
states K2LN−2 (resulting in a density n(K2LN−2) � 0.1 � 1023 cm−3/10 = 1021 cm−3

and, according to (10.124), in an absorbing ground state density of
n(K1LN) � 1014–1018 cm−3). The line center opacity is therefore about
s0 hollowð Þ � 10�6. . .10�1 
 1. Note that at the same time resonance line opacity
is many orders of magnitude larger, s0 resonanceð Þ � 103 � 1. Hollow ion X-ray
emission is therefore expected to escape even from a super-dense plasma, whereas
resonance line emission is strongly absorbed.

(b) Suppression of low-density recombining plasmas
A further advantageous property concerns the transient evolution (Rosmej et al.
2007). Resonance line emission is not only sensitive to collisional excitation at
high densities but to the low-density recombination regime too (due to radiative
cascades). Therefore, interesting high-density features that usually appear at the
beginning of the laser pulse may be seriously masked by high intensity but
low-density emission.

K0LN-Hollow ion formation (N = 3–8), however, is rather insensitive to the
radiative recombination regime because this population process has to proceed from
the hollow ion states K0LN−1: XðK0LN�1Þþ e ! XðK0LNÞþ �hxrad:recom. The states
K0LN−1 are barely populated as dielectronic capture XðK1LN�2Þþ e ! XðK0LNÞ
and collisional inner-shell excitation XðK1LN�1Þþ e ! XðK0LNÞþ e have to pro-
ceed from single K-hole states (rather than from highly populated ground states). In
addition, dielectronic capture rate coefficients DCh i are very small at low temper-
atures (radiative recombination regime) because in the X-ray spectral range the
capture energy EC is very large (order of keV). This results practically in an almost
exponential cutoff of the capture rate
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DCh i / kTeð Þ�3=2 � exp �EC=kTeð Þ: ð10:216Þ

Therefore, single K-hole configurations are barely populated and in turn double
K-hole configurations too. The same holds true for inner-shell excitation from K- to
L-shell. Therefore, the population of hollow ion configurations is not expected to be
sensitive to the long lasting radiative recombination regime (see also Fig. 10.51).

In conclusion due to small opacity, negligible influence of overlapping
low-density recombining regimes and the short time scale (some 10 fs, see
Fig. 10.54) hollow ion X-ray emission is a very suitable diagnostic for the study of
short living dense matter samples because interesting properties of dense matter
samples exist essentially only during the period of laser-matter interaction itself
(Rosmej and Lee 2007; Rosmej et al. 2007, 2009; Deschaud et al. 2020). We note
that X-ray streak cameras may help to suppress emission from the recombination
regime, see Fig. 10.51; however, they will hardly be able to streak down to 50 fs
(current limits are about 0.5 ps).

10.6.4.4 Transparent Materials and Saturated Absorption

A material is transparent to photons at certain energies, if neither photoabsorption
nor photopumping is effective at these photon wavelengths. As the photon
absorption is related to the various photon opacities (see (1.54)–(1.56)), this effect is
strongly related to the density of the atomic populations: In the case of photoion-
ization, it is the population density of the state that is photoionized, in the case of
photopumping it is the lower state of the atomic transition.

As has been shown in the forgoing paragraphs, XFEL radiation allows to
effectively change atomic populations in the X-ray energy range. This permits also
to selectively deplete atomic populations. If these populations are related to
photoionization/photopumping transparency to the XFEL radiation itself is induced
and a so-called saturated absorption regime is achieved.

Saturated absorption has been observed at the XUV–FEL FLASH (Nagler et al.
2009) in the framework of the spectroscopic beam time proposal at FLASH
(Riley et al. 2009) irradiating solid Al foils with a 92 eV FEL beam in the pho-
toionization regime:

1s22s22p63s23p1 þ �hxXFEL ! 1s22s22p53s23p1 þ ephoto: ð10:217Þ

As photoionization of a 2p-electron from the 2p6-configuration is the most
effective and a second photoionization (means the creation of a 2p4-configuration)
seems energetically not probable the ionization of almost all 2p6-configurations will
induce transparence to the 92 eV XUV-laser radiation. Solid aluminum has
therefore turned transparent for 92 eV photons. We note that transparency is limited
by the principle of detailed balance: Stimulated photoemission (10.189) and stim-
ulated radiative recombination (10.187) sets a definite limit to that what can actually
be observed. Also three-body recombination in dense matter will destroy the hole
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states, thereby driving the saturation regime to higher intensities (see also
Sect. 10.6.4.6).

Saturated absorption implies enhanced homogeneity of the irradiated material, as
no more geometrical energy deposition peaks exist. This effect is well known from
the stopping of relativistic heavy ion beams in matter: If the Bragg peak is placed
outside the target, almost homogenous parameter conditions are meet
(Kozyreva et al. 2003; Tauschwitz et al. 2007).

The term “transparent aluminum” is also known to the non-scientific society
from the science fiction series “Stark Trek” (Wiki 2021): The chief engineer M.
Scott has invented transparent aluminum to fabricate windows that have the
strength and density of solid aluminum for its use to transport whales in an
aquarium. This has moved XFEL research to the frontiers of science fiction
(Larousserie 2009).

10.6.4.5 Exotic States of Dense Matter: Hollow Crystals

According to (10.165), a typical XFEL intensity at some keV photon energy
implies a photon density ~N0 of the order of solid density:

~N0 ¼ IFEL;dE;s
4 � c � erf 2 ffiffiffiffiffiffiffi

ln 2
p	 
 � EFEL

� 3:6� 108 �
IFEL;dE;s W=cm2

� �
EFEL eVð Þ 1=cm3

 �
:

ð10:218Þ

E.g., for IFEL;dE;s ¼ 1017 W/cm2 and EFEL ¼ 2000 eV we obtain
~N0 ¼ 1:8 � 1022 cm�3. Therefore, inside the XFEL light pencil there exists a
photon for almost every atom in the lattice structure. Due to X-ray pulse durations

Fig. 10.55 Schematic evolution of XFEL interaction with matter. a Interaction with cold solid,
b interaction with heated solid, c–d evolution of dense matter; see text
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that are of the order of (or even smaller) than the characteristic Auger time scale, the
irradiation of solids with XFEL allows a sudden photoionization of inner-shells for
almost all atoms in the lattice. Consequently, almost every atom is transformed to
an autoionizing state followed by a massive burst of Auger electrons on the time
scale of some 10 fs.

Figure 10.55 schematically illustrates these processes and the subsequent evo-
lution. In Fig. 10.55a, a high-intensity XFEL beam interacts with the solid and
creates for almost every atom a photoelectron. Therefore, almost every atom has
lost one electron in the inner-shell leading to the creation of a very exotic state, a
dense hollow crystal (Fig. 10.55b). Due to the core hole vacancies, the hole states
are autoionizing and decay on the Auger time scale (some 10 fs). Therefore, the
hollow crystal is a very short living exotic state of matter with subsequent transi-
tions to Warm Dense Matter (Fig. 10.55c) and strongly coupled plasmas
(Fig. 10.55d).

10.6.4.6 New Role of Elementary Processes: Auger Electron
and Three-Body Recombination Heating

As demonstrated by (10.218), almost every atom in the lattice structure is con-
cerned by the creation of photo- and Auger electrons. Therefore, Auger and pho-
toelectrons have also near solid density. The photoelectrons have kinetic energy

Fig. 10.56 Simulation of the time evolution of the electron temperature in XUV–FEL interaction
with solid aluminum (solid black curve). Dashed red curve shows a simulation suppressing the
three-body recombination rates by a factor of 10. The dramatic difference between the red dashed
and solid black curves identifies three-body recombination as an important mechanism in the
material heating. Simulation parameters: IFEL = 1016 W/cm2, EFEL = 92 eV, sFEL = 15 fs
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Ephoto given by the difference of the XFEL photon energy EXFEL and the ionization
energy Ecore of the core electron, i.e.

Ephoto ¼ EXFEL � Ecore; ð10:219Þ

while the Auger electrons have characteristic energies that correspond to the
dielectronic capture energy (see also Fig. 5.1). The photoelectron kinetic energy
can therefore be close to zero if the XFEL is tuned exactly to the ionization energy.
This is distinct different for the Auger electrons that have kinetic energies corre-
sponding to the capture energy that is independent of the photon energy (if the
photon energy exceeds the ionization energy to create a core hole state). As the
capture energy of core hole states is of the order of 0:5 � Z2

effRy, the Auger electron
kinetic energy is very large because it is of the order of the core hole ionization
energy. Therefore, Auger electron kinetic energy constitutes an important contri-
bution to the material heating in XFEL solid matter interaction.

Due to the high density, Auger and photoelectrons equilibrate rapidly with the
“cold” conduction band electrons (fs…10 fs time scale) thereby creating a common
“bath” of dense electrons with a temperature much less than the original kinetic
energies. Therefore, efficient three-body recombination (due to high density and
low temperature) into the original hole states can take place from this bath of dense
electrons. As can be seen from (10.117), three-body recombination between the
atom/ion and the two continuum electrons with energies E1 and E2 transfers back
the ionization energy Ei to the continuum electron with energy E, i.e.,

E � E1 � E2 ¼ Ei: ð10:220Þ

Three-body recombination influences therefore on the heating of dense matter
(Deschaud et al. 2015) as indicated schematically in Fig. 10.55b, c. Therefore, the
well-known elementary processes photoionization, autoionization, and three-body
recombination contribute also directly to the material heating and attribute a new
role to these elementary atomic physics cross sections in the XFEL-induced
material heating.

The importance of three-body recombination for the material heating is
demonstrated in Fig. 10.56. via a zero-dimensional simulation of the XUV–FEL
interaction with solid aluminum (Deschaud et al. 2015) solving (10.184)–(10.189),
(10.211) for an intensity of IFEL = 1016 W/cm2, photon energy of EXFEL = 92 eV,
and pulse duration of s = 15 fs. The solid black curve shows the time evolution of
the electron temperature, while the dashed red curve shows the electron temperature
when the three-body recombination rates are reduced by a factor of 10. The green
dashed-dot curve shows the electron temperature when the collisional ionization
rates are reduced by a factor of 10. The comparison of the red dashed curve and the
solid black curves identifies the important role of three-body recombination as a
heating mechanism: Suppressing the three-body recombination by a factor of 10
reduces the maximum temperature considerably (note that changing one elementary
processes in a consistent simulation may induce also changes for other processes;
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therefore, the change in the electron temperature as shown in Fig. 10.56 is only
presented to qualitatively indicate the influence of three-body recombination).
Therefore, turning back the ionization energy to the continuum according to
(10.220) is important for the material heating. At the same time, the absorbing
ground states are recreated from which further photoabsorption in the light pencil
can take place. This phenomenon strongly influences on the absorption of the
material and at high intensities, one atom can even absorb more than one photon
during the FEL pulse duration.

A corresponding effect is seen for collisional ionization. If it is reduced by a
factor of 10 (see green dashed-dotted line in Fig. 10.56), the electron temperature
increases. This indicates that collisional ionization is an important energy loss
mechanism for the energy balance (10.211).

In order to study and validate the various heating mechanisms with independent
methods, high-resolution spectroscopic studies have been undertaken (Galtier et al.
2011) in the framework of the first high-energy-density experiment at the XUV–
FEL FLASH (Riley et al. 2009). Figure 10.57 shows the experimental spectrum of
aluminum in the spectral range from 12 to 20 nm. The blue curve in Fig. 10.57a
shows a simulation of the Ne-like transitions 1s22s22p53l ! 1s22s22p6 þ �hxAlVI of
Al IV. The comparison of the data (back curve) with the simulations (blue curve)
identifies the principal transitions near 16 nm that are originating from the reso-
nance transitions 1s22s22p53s ! 1s22s22p6 þ �hx but shows strong discrepancies
near 13 nm where potentially the resonance transitions 1s22s22p53d !
1s22s22p6 þ �hx are located. Also systematic discrepancies are observed on the red
wings of both types of resonance transitions (indicated with red flashes in
Fig. 10.57a). Atomic structure calculations show that the experimentally observed
intensities on the red wing of the 3s- and 3d-resonance transitions near 13 and
16 nm can be attributed to Na-like (red dashed curve in Fig. 10.57b) and Mg-like
(red solid curve in Fig. 10.57b) dielectronic satellite transitions of the type
K2L7M2 ! K2L8M1 þ �hxsat and K2L7M3 ! K2L8M2 þ �hxsat, respectively.
Taking into account these satellite transitions results in a perfect agreement with the
data as demonstrated in Fig. 10.57b (green solid curve).

The simulations show that the spectral distributions of these Na- and Mg-like
satellite transitions are very sensitive to the electron temperature. Figure 10.58
demonstrates this temperature sensitivity for the Na-like satellites. The best fit to the
data (Fig. 10.57b) is obtained for kTe ¼ 25 eV� 10 eV. The intriguing point of the
use of the Na-like and Mg-like dielectronic satellite transitions is that their corre-
sponding upper states are autoionizing with very large Auger rates to ground and
excited states (Petitdemange and Rosmej 2013). Therefore, the characteristic time
of photon emission sji is very small as it is dominated by the Auger rates:

sji ¼ 1
Aji þCji þCji þ

P
k Cjk

� 1P
k Cjk

� 1. . .10 fs: ð10:221Þ
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Fig. 10.57 MARIA simulations of the XUV spectra induced by XUV–FEL interaction with solid
aluminum. a Simulations taking into account only the Ne-like transitions K2L7M1

–K2L8 (blue solid
curve), b simulations taking into account the Ne-like transitions K2L7M1

–K2L8 as well as
transitions from dielectronic satellites of Na-like (red dashed curve) and Mg-like (red solid curve)
aluminum, K2L7M2

–K2L8M1 and K2L7M3
–K2L8M2 respectively

Fig. 10.58 MARIA
simulation of the spectral
distribution of the Na-like
dielectronic satellites
K2L7M2

–K2L8M1 of
aluminum in dependence of
the electron temperature
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Consequently, the corresponding emission is closely related to the instants of
XUV–FEL interaction with the near solid matter (see also discussion in relation
with Figs. 10.51 and 10.54). It is important to note that for the temperature
determination, only the spectral distribution of the Na-like and Mg-like dielectronic
satellites has been used while the intensity contribution from the Ne-like resonance
lines (blue curve in Fig. 10.57a) is only taking into account to obtain the correct
contribution of the Na-like and Mg-like satellites. In fact, the simulations demon-
strate that the Ne-like resonance contributions show emission at about 8 eV, which
is significantly lower than the temperature obtained from the satellite contribution
(Galtier et al. 2011). This is understandable because the resonance line intensities
have also contributions from the low-density, low-temperature recombining regime
(see also discussion in relation with Fig. 10.51) because their radiative decay rates
are of the order of 109–1011 s indicating self emission about 0.1 ns after interaction,
i.e., much after the XFEL-pulse interaction with matter.

In order to develop a consistent picture for the spectral interpretation, we can
estimate the electron density from the Saha–Boltzmann equation (see (6.11))
applied to the two different charge states corresponding to the upper states of the
Na- and Mg-like dielectronic satellite transitions. This can be realized because the
best fit of the data presented in Fig. 10.57b delivers likewise the integral intensity
ratio of the Na- and Mg-like satellite emission. This results in a density estimate of
ne � 5� 1022 cm�3 (Galtier et al. 2011) and indicates that the emission spectra
have been recorded while the material density is still at a significant fraction of the
solid density (but still some expansion of the heated solid aluminum has already
taken place). Assuming a simple adiabatic model for the plasma expansion, electron
temperature decreases about a factor of 0.42 (assuming a density decrease from
solid density to ne � 5� 1022 cm�3) compared to the case where immobile matter
(zero-dimensional model) is heated. Therefore, the maximum temperature of the
simulations presented in Fig. 10.56 has to be decreased by about a factor of 0.42 to
be compared with the data. With these corrections, we obtain from the simulations
(Fig. 10.56) of the experiment (Fig. 10.57) an electron temperature of about kTe �
0:42� 40�50ð Þ eV ¼ 17�21 eV (note that the experimentally measured intensity
is uncertain by about a factor 2 resulting in the given temperature interval of about
40–50 eV for the simulations (Deschaud et al. 2014). This value is in reasonable
agreement with the spectroscopic measurement of kTe � 25� 10ð Þ eV.

The particular remarkable point in this agreement is that the spectroscopically
determined temperature is significantly higher than expected from a model that invokes
photoelectron heating only. Assuming an ionization potential of the 2p6 electron of
Ecore = 73 eV (LII- and LIII-edges of solid cold aluminum), the photoelectrons have
kinetic energies of Ephoto = EXFEL − Ecore = 92 eV − 73 eV = 19 eV. Assuming
photoionization to the bottom of the valence band (due to heating the Fermi distribution
creates free places below the Fermi energy) results in a kinetic energy of
Ephoto = EXFEL −Ecore + eF = 92 eV − 73 eV + 12 eV = 31 eV (eF = 12 eV is the
Fermi energy of solid cold aluminum). Thus, a kinetic energy of 19–31 eV is rapidly
distributed among the four electrons in the valence band (because cold solid aluminum
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has three valence band electrons). Assuming an equal distribution of the kinetic energy
among the four electrons results in an electron temperature of about 8 eV. This value is
significantly lower than the spectroscopic measurements.

Therefore, for the first time spectroscopic analysis has identified a new heating
mechanisms, Auger electron and three-body recombination heating, as important
processes in the material heating in FEL interaction with solids (Galtier et al. 2011)
while reasonable agreement with emerging simulations was obtained.

It is interesting to see from the simulations of Fig. 10.56 that an electron tem-
perature of about 28 eV is obtained at maximum pulse (see blue dashed line in
Fig. 10.56). This value is close to a temperature, obtained from photoelectron and
Auger heating only. This can be seen as follows. The Auger kinetic energy is about
70 eV resulting into an additional heating of the valence band electrons that have
already been heated to about 8 eV from the photoelectron kinetic access energy.
Assuming equal energy partition between 3 electrons at 8 eV and one electron at
70 eV results into an average electron temperature of about 24 eV.

With respect to Fig. 10.55, we arrive therefore at the following approximate
qualitative picture of solid material heating in XUV- and X-ray FEL interaction.
After intense XFEL irradiation of a solid, almost every atom has a core hole from
photoionization, Fig. 10.55a. Photoelectron kinetic energy preheats the valence
band electrons. As the core hole states are autoionizing, Auger electron kinetic
energy rapidly contributes to the material heating, Fig. 10.55b. As almost every
atom is concerned, photoelectrons and Auger electrons have near solid density and
three-body recombination from the valence band heated electrons refills the core
holes resulting into a further material heating, Fig. 10.55c. The three-body
recombination results also into a recreation of absorbing states thereby increasing
further absorption and heating. After the laser pulse is off, a warm dense matter
sample and ion displacements develop (Fig. 10.55c) resulting finally in a strongly
coupled plasma, Fig. 10.55d. The various steps shown in Fig. 10.55a–d are selected
in order to roughly guide the origin of some physical mechanism. Really, there is
considerably overlap between these regimes and impact of other phenomena (e.g.,
non-Maxwellian energy distributions).

We finally note that in principle synchrotron radiation may also produce Auger
electrons via photoionization of inner-shells; however, the low intensity makes
Auger emission a rare process compared to an important number of atoms that are
not concerned (note that this is not a contradiction to the fact that Auger electron
spectra can be well measured). Therefore, no heating of the crystal is induced via
Auger electron heating. Moreover, synchrotron radiation does not allow pho-
toionization on the Auger time scale. Therefore, creation of exotic states of matter
such as “hollow crystals” and “transparent solids” are almost impossible.
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10.6.5 Generalized Atomic Physics Processes

Numerical atomic structure calculations show that transitions in solids involving
hole states are reasonably approximated by the free atom approach. For example,
for aluminum, that has been discussed above Hartree–Fock calculations (Cowan
1981) that contain only the Al II configurations 1s22s22p63s2, 1s22s22p53s23p1,
1s22s12p63s23p1, and 1s12s22p63s23p1 provide for the Ka-transitions a wavelength
of about 0.833 nm whereas the measured values are about 0.834 nm. Even for the
Kb-transition, the calculated value of 0.793 nm is in reasonable agreement with the
measurements of 0.796 nm. This indicates that the framework of the standard
atomic population kinetics as outlined in Chap. 6 might be useful (including some
corrections) for the populations of inner-shells that play a key role for the energy
deposition in the XFEL interaction with matter (and also for spectroscopic
diagnostic).

10.6.5.1 Generalized Three-Body Recombination and Autoionization

In order to maintain the standard rate equation approach for the core hole popu-
lation kinetics, it looks therefore reasonable for the above-discussed example of
aluminum to designate the atomic structure of the solid according to 1s22s22p6(VB)3

where (VB)3 indicates the valence band that is occupied with three electrons (i.e.,
the conduction band for the present case of aluminum). In order to make this
spectroscopic designation meaningful, we need to establish a population kinetic link
between the core 1s22s22p6 and the valence band (VB)3. This link has to be
established from the cold solid to the heated solid. This is equivalent to the defi-
nition of transition matrix elements WkZ0 jZ that create this link via generalized
atomic physics processes (Deschaud et al. 2014) in order to establish the core hole
kinetics via the set of equations

dnjZ
dt

¼ �njZ
XZn
Z0¼0

XNZ0

iZ0 ¼1

WjZiZ0 þ
XZn
Z 0¼0

XNZ0

kZ0¼1

nkZ0WkZ0 jZ ; ð10:222Þ

where the levels jZ are generalized levels that contain the core hole states and the
valence band while the corresponding matrix elements WkZ0 jZ are generalized matrix
elements. For transparence of the discussion, let us first consider the Auger effect
(directly related to core hole states) that has been identified above as an direct
important heating mechanism:

ð1s22s22p5; 1s22s12p6; 1s12s22p6ÞðVBÞ3 ! 1s22s22p6ðVBÞ1 þ eAuger: ð10:223Þ

The processes according to relation (10.223) are important characteristic tran-
sitions in the cold solid state. These processes need to be matched to the free atom
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and extended up to high temperatures. For these purpose, let us consider for a
moment the valence band electrons (VB)3 as “free” electrons that recombine via
three-body recombination with the cores 1s22s22p5, 1s22s12p6, and 1s12s22p6. For
better transparency, we split the valence band (VB)3 into (VB)2(VB)1 in order to
depict two electrons that recombine with the cores:

ð1s22s22p5; 1s22s12p6; 1s12s22p6ÞðVBÞ2ðVBÞ1 ! 1s22s22p6ðVBÞ1 þ e: ð10:224Þ

Comparing relation (10.223) with (10.224), we realize that left-hand sides and
right-hand sides are formally equivalent for the same core hole states. This hints to
the idea that the characteristic Auger process in solids might be described by a
“generalized three-body recombination”:

ð1s22s22p5; 1s22s12p6; 1s12s22p6ÞðVBÞ2ðVBÞ1 ! 1s22s22p6ðVBÞ1ðVBÞ1:
ð10:225Þ

The generalization consists of two parts: First, the three-body recombination
turns into the Auger rate for cold solid matter, and, second, turns into the standard
three-body recombination if the temperature is high. Is it possible to generalize also
other atomic physics processes in order to be consistent for the whole population
kinetics?

10.6.5.2 Generalized Collisional Excitation, Ionization,
and Dielectronic Capture

Let us continue with collisional excitation. Excitation from the core to the valence
band (VB) has to be considered as ionization:

1s22s22p6ðVBÞ1ðVBÞ1 ! ð1s22s22p5; 1s22s12p6; 1s12s22p6ÞðVBÞ1ðVBÞ2:
ð10:226Þ

Within the same philosophy resonant capture to the VB according to

1s22s22p6ðVBÞ1ðVBÞ1 ! ð1s22s22p5; 1s22s12p6; 1s12s22p6ÞðVBÞ2ðVBÞ1 ð10:227Þ

is therefore a generalized ionization process for the core 1s22s22p6. This is con-
sistent with the principle of detailed balance: Resonant capture is the inverse pro-
cess of autoionization; autoionization is considered as a generalized three-body
recombination.
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10.6.5.3 Generalized Fluorescence and Radiative Recombination

What remains is fluorescence of an electron from the VB to a core level:

ð1s22s22p5; 1s22s12p6; 1s12s22p6ÞðVBÞ1ðVBÞ2 ! 1s22s22p6ðVBÞ2 þ �hx:

ð10:228Þ

This corresponds to a generalized radiative recombination process. This gener-
alized process represents therefore fluorescence at low temperature and turns into
standard radiative recombination for high temperatures.

Relations (10.223)–(10.228) indicate that the link from the core to the valence
band is realized by generalized processes while they are readily modified for dif-
ferent ionization stages. We note that transitions within the core, such as radiative
decay (e.g., K-alpha transitions), are incorporated in the standard manner as
motivated above.

10.6.5.4 The Heated Solid and Generalized Atomic Fermi–Dirac Rate
Coefficients

We now need to treat the case of a heated solid. As the Pauli principle drives the
behavior of the VB electrons in the cold solid, the Fermi–Dirac statistics for the
electron energy distribution function and also for the calculation of the rate matrix
elements WjZ iZ0 of (10.222) has been proposed for the calculation of the W-matrix
elements (Deschaud et al. 2014, 2020). The use of the Fermi–Dirac distribution
function leads to important differences compared to the Maxwell–Boltzmann
statistics that is usually employed in atomic population kinetics. The Fermi–Dirac
distribution function of electrons in the valence band is given by

FFDðe; TeÞ ¼ 1
2p2ne

2me

�h2

� �3=2 ffiffi
e

p
e e�l Teð Þ½ �=kTe þ 1

; ð10:229Þ

where l(T) is the chemical potential that is determined from the normalization
condition

Z1
0

FFD � de ¼ 1: ð10:230Þ

At high temperatures, the Fermi–Dirac electron energy distribution function
naturally tends to the Maxwell–Boltzmann distribution function ensuring the con-
nection between the solid state and the plasma state. Thus, the notation
1s22s22p6(VB)3 (see relation (10.223)) corresponding to the cold solid state will

10.6 Atomic Physics in Dense Plasmas with X-ray Free Electron Lasers 579



designate, in the plasma picture, the configuration 1s22s22p6 with three free elec-
trons per atom in the electron energy distribution function.

Particular attention must be paid to the Pauli exclusion principle. For each
process of the transition matrix element WkZ0 jZ of (10.222), the vacancy of the free
states has to be accounted for. For example, in the cold solid, all the free states are
occupied with energy located below the Fermi energy eF. Therefore, any transition
into these states is forbidden. The solution to the Pauli principle in atomic kinetics
is the use Pauli-blocking factors according to

P E; Teð Þ ¼ 1� 1
1þ exp E � l Teð Þ½ �=kTeð Þ

� �
: ð10:231Þ

At high temperature, (10.231), it is equal to one (note that the high temperature

limit of the chemical potential is given by l Teð Þ � �kTe �

ln mekTeð Þ= 2p�h2n2=3e

� �h i3=2
Þ and the model reproduces the classical one but is

smaller than one for low temperatures where the occupation of the free states below
the Fermi edge decreases. At kTe = 0, there is no space in the distribution below eF
and thus, the factor is equal to 0 and blocks every rate transferring electrons below
eF.

Let us illustrate the introduction of this factor for the process of collisional
excitation included in (10.222). Its rate coefficient between the state configurations
iZ0 and jZ is calculated from

CiZ0 jZ ¼
Z1

DEiZ0 jZ

rexiZ0 jZ eð Þ �
ffiffiffiffiffiffi
2e
me

r
� FFD eð Þ � P e� DEiZ0 jZ

	 
 � de; ð10:232Þ

where rexjZiZ0 eð Þ is the collisional excitation cross section and DEiZ0 jZ is the difference
of energy between the two configurations. A free electron with energy e collides
with a bound electron and loses a part of its energy. In this process, the electron
moves in the electron energy distribution function from the energy e to the energy
e0 ¼ e� DEiZ0 jZ . The Pauli-blocking factor accounts here for the space available in
the EEDF at e0.

Let us investigate the principle of detailed balance if Fermi–Dirac distribution
function and Pauli-blocking factor are involved. The number of collisional exci-
tations Nex

iZ0 jZ
per unit time and unit volume between the states iZ0 and jZ driven by

electron collisions with electrons of energy e in the energy interval de and sec-
ondary electrons of energy e′ in the interval de′ is given by (ne is the electron
density)
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Nex
iZ0 jZ

¼ ne � niZ0 � rexiZ0 jZ eð Þ �
ffiffiffiffiffiffi
2e
me

r
� FFD eð Þ � P e0ð Þ � de: ð10:233Þ

In the same manner, the number of collisional de-excitations per unit time from
jZ to iZ0 is given by

Nde�ex
jZiZ0

¼ ne � njZ � rde�ex
jZiZ0

e0ð Þ �
ffiffiffiffiffiffi
2e0

me

s
� FFD e0ð Þ � P eð Þ � de0: ð10:234Þ

In local thermodynamic equilibrium (LTE), these two quantities (10.233) and
(10.234) are equal. Using the relation e ¼ e0 þDEiZ0 jZ with gives de ¼ de0 we obtain

NiZ0

NjZ
� rexiZ0 jZ eð Þ �

ffiffiffi
e
e0

r
� FFD eð Þ
FFD e0ð Þ �

P e0ð Þ
P eð Þ ¼ rde�ex

jZiZ0
e0ð Þ: ð10:235Þ

If we substitute the population ratio NiZ0=NjZ by the Boltzmann population (that
holds true in thermodynamic equilibrium), we obtain from (10.235)

rde�ex
jZiZ0

e0ð Þ ¼ rexiZ0 jZ eð Þ � giZ0
gjZ

� e
e0
: ð10:236Þ

Relation (10.236) is equivalent to the Klein–Rosseland formula of (10.113) and
does not anymore depend on the electron temperature (see also discussion in
Sect. 7.7.2). Therefore, the Fermi–Dirac electron energy distribution function
combined with the Pauli-blocking factor from (10.231) is consistent with the
principle of microreversibility. In the classical case, i.e., using a Maxwell–
Boltzmann electron energy distribution function without Pauli-blocking factors, we
obtain exactly the same relation, namely (10.113). In the degenerate case, the
Pauli-blocking factors are necessary to assure the principle of microreversibility.

We can also verify that a consistent introduction of the Pauli-blocking factors,
for all the other processes of the transition matrix WiZ0 jZ involving the VB, allows
one to maintain detailed balance from low to high temperatures. In particular, two
Pauli-blocking factors have to be invoked for the collisional ionization process as
two electrons are ejected. The inverse processes are then calculated using the
principle of detailed balance, as in the Maxwell–Boltzmann classical case.

The number of collisional ionization events per second and unit volume Niz
iZ0 jZ

from the configurations iZ0 to jZ driven by impacting electrons in the energy interval
de with energy e and secondary electrons in the interval de0 with energy e0 is given
by:

N iz
iZ0 jZ

¼ neniZ0 �
driziZ0 jZ
de0

�
ffiffiffiffiffiffi
2e
me

r
� FFD eð Þ � P e0ð Þ � P e00ð Þ � de � de0: ð10:237Þ
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driziZ0 jZ=de
0 is the differential collisional ionization cross section. The two

Pauli-blocking factors in expression (10.237) account for the available space at the
energies of the secondary electrons. In the same manner, the number of three-body
recombination events N3b

jZiZ0
from configuration jZ to iZ0 is given by

N3b
jZiZ0

¼ n2e � njZ �
dr3bjZiZ0
de0

� P eð Þ �
ffiffiffiffiffiffi
2e0

me

s
�
ffiffiffiffiffiffiffi
2e00

me

s
� FFD e0ð Þ � FFD e00ð Þ � de0 � de00;

ð10:238Þ

where dr3bjZiZ0=de
0 is the three-body differential cross section, e0 and e00 the energies

of two incoming electrons, and e the energy of the secondary electron. For a system
in thermodynamic equilibrium, the two quantities from (10.237) and (10.238) are
equal. Employing the relation of energy conservation e ¼ DEiZ0 jZ þ e0 þ e00 (see also
(10.117)) where for a fixed value of de0, one has de ¼ de00, we obtain

1
ne

� NiZ0

NjZ
� FFD eð Þ
FFD e0ð Þ � FFD e00ð Þ �

P e0ð Þ � P e00ð Þ
P eð Þ � dr

iz
iZ0 jZ

de0
�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
me � e
2e0 � e00

r
¼ dr3bjZiZ0

de0
: ð10:239Þ

In thermodynamic equilibrium, the relation between the populations of two
configurations of different ionization stages is given by the generalized Saha–
Boltzmann law, i.e.,

niZ0
njZ

¼ giZ0
gjZ

� exp DEiZ0 jZ þ l Teð Þ	 

=kTe

 �
: ð10:240Þ

Using (10.231), (10.237)–(10.240), we obtain the following relation between the
differential cross sections of ionization and three-body recombination:

giZ0
gjZ

� e
e0 � e00 �

p2�h3

2me
� dr

iz
iZ0 jZ

de0
¼ dr3bjZiZ0

de0
: ð10:241Þ

This expression is equivalent to the microreversibility relation and therefore
provides the proof of a consistent implementation of the Fermi–Dirac distribution
function and the Pauli principle. Indeed, the microreversibility relation does not
depend on the plasma parameters. One can verify that the same microreversibility
relation is obtained with a classical treatment, i.e., a Maxwell–Boltzmann distri-
bution, the classical Saha–Boltzmann law and without Pauli-blocking factors (see
also (10.107), (10.116), note that expression (10.116) employs the single electron
ionization cross section rather than the differential one as in (10.241)). In the
framework of the Fermi–Dirac statistics, it can only be obtained with the inclusion
of the Pauli-blocking factors. The total rate for the collisional ionization is therefore
given by
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IiZ0 jZ ¼ ne �
Z1
0

Z1
DEiZ0 jZ

driziZ0 jZ
de0

�
ffiffiffiffiffiffi
2e
me

r
� FFD eð Þ � P e0ð Þ � P e00ð Þ � de0 � de; ð10:242Þ

whereas the three-body recombination rate is given by

TjZiZ0 ¼ n2e �
Z1
0

Z1
0

dr3bjZiZ0
de0

�
ffiffiffiffiffiffiffiffiffiffi
4e0e00

m2
e

s
� FFD e0ð Þ � FFD e00ð Þ � P eð Þ � de0 � de00: ð10:243Þ

In the classical case (high temperature), the Pauli-blocking factors are P = 1 and
the Fermi–Dirac distribution function turns into the Maxwell–Boltzmann distribu-
tion. In order to establish a link between the cold and heated solid based on relations
(10.223)–(10.228), we employ the probability formalism discussed in Sect. 6.3.2.
The generalized three-body recombination rate can therefore be written as

T ðGÞ
jZiZ0

¼ 1� f ðTÞð Þ � CjZiZ0 þ f ðTÞ � TjZiZ0 : ð10:244Þ

CjZ0 iZ0 is the Auger rate for the cold solid from state jZ to state iZ0 and TjZiZ0 is the free
atom three-body recombination rate. The driving term for the probability is the
“free space” determined from the Fermi–Dirac statistics:

f ðTÞ ¼
Z1

lðTÞ

FFDðe; TÞde: ð10:245Þ

Fig. 10.59 Generalized three-body recombination rate coefficient “TBRC” of Al. The Fermi–
Dirac and Maxwell–Boltzmann rates are also displayed
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At zero temperature f(T = 0) = 0, the rate (10.244) is equal to CjZiZ0 while at high
temperatures f(T) approaches 1 and the rate tends to TjZiZ0 as it should be.

Figure 10.59 shows the generalized three-body recombination rate coefficient
from (10.244) using a solid-state Auger rate. For comparison, the three-body
coefficient TBRC integrated over a Fermi–Dirac distribution (10.243) is also
shown. It can clearly be seen that the probability formalism provides the transition
from the cold solid to the heated solid. With this new approach, we generalize the
role of the Auger decay presented above: From a state with an inner-shell hole, the
generalized three-body recombination recombines an electron and provides a new
target for a further photoionization. At high temperature, the collisional ionization
can compete with the three-body recombination and take out this electron. The
equilibrium between the three-body recombination, the photoionization, and the
collisional ionization is very important to properly calculate the energy deposition.

We now consider radiative recombination and apply likewise the probability
method for the generalized processes depicted in relation (10.228):

RðGÞ
jZiZ0

¼ 1� f ðTÞð Þ � AjZiZ0 þ f ðTÞ � RjZiZ0 ; ð10:246Þ

where AjZiZ0 is the fluorescence probability in the cold solid from state jZ to state iZ0

and RjZiZ0 is the radiative recombination rate given by (see also (10.122)):

RjZiZ0 ¼
Z1
0

rrjZiZ0 eð Þ �
ffiffiffiffiffiffi
2e
me

r
� FFD eð Þ � de: ð10:247Þ

Fig. 10.60 Experimental
XUV fluorescence spectra of
aluminum irradiated with
XUV–FEL photons at 92 eV
and pulse duration of 15 fs in
dependence of the irradiation
intensity. Ab initio
simulations with the
generalized atomic physics
approach that only varies the
XUV–FEL intensity results in
a good agreement with the
data
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The radiative recombination cross section is related to the photoionization cross
section via the Milne relation of (10.120).

Finally, we note that Fermi–Dirac rate coefficients have also been considered by
(Aslanyan and Tallents 2015), however, all essential calculations concerning the
Fermi–Dirac rates and the Pauli-blocking factors as well as their impact on the
XFEL interaction with matter is essentially a repetition of the work of
(Deschaud et al. 2014).

10.6.5.5 Fluorescence Emission of Warm Dense Matter

Figure 10.60 shows the simulations (Deschaud et al. 2015) of the XUV fluores-
cence spectra and the comparison with the measurements. Despite of the simplicity
of the generalized approach that employs a simple Fermi–Dirac distribution func-
tion (instead of the much more complex molecular dynamics (MD) or density
functional theory (DFT) simulations of the solid electronic structure and density),
the simulation of the spectral distribution of the fluorescence spectra (using
(10.245)) demonstrates very good agreement with the data [Vinko et al. 2010]
obtained during the FLASH experimental campaign [Riley et al. 2009]. Note, that
the calculations based on the density functional theory DFT [Vinko et al. 2010]
have been questioned [Iglesias 2011] and the critics to the DFT calculations of
[Vinko et al. 2014] have been renewed by [Rosmej 2018, Karasiev and Hu 2021]).

The simulations include the full time history for a certain irradiation intensity
from which then the final electron temperature (see, e.g., Fig. 10.56) has been
deduced. Note that in the experiments, the variation of the irradiation intensity has
been realized by defocusing the focusing optics and experimental measurements of
the irradiation intensity are somewhat uncertain (within a factor of about two). The
simulations for different intensities shown in Fig. 10.60 provide a quite good match
for the various fluorescence spectra (spectra have different offset for better pre-
sentation). For the two lowest intensities (first two spectra from bottom), simula-
tions for different intensities have been presented to demonstrate the sensitivity of
the spectral distribution with respect to the data. At the highest intensities shown in
Fig. 10.60 (spectrum at the top), line intensity develops due to the strong heating of
the solid. The line emission near 16 nm corresponds to those observed for very high
irradiation intensities as demonstrated in Fig. (10.57) and is due to 3s–
2p transitions.

Figure 10.60 demonstrates that the electron excitation due to the XUV–FEL
irradiation of a solid changes considerably the electron band structure. At tem-
peratures much above 1 eV, line emission of ionized aluminum develops indicating
that the heated valence band structure starts to disappear while for temperatures
below some eV, a warm dense matter sample that emits fluorescence radiation
exists.
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Annexes

A.1 Summary of Simple General Formulae of Some
Elementary Atomic Physics Processes

The hydrogenic approximations combined with the concept of an optical electron
which moves into an effective Coulomb potential with effective charge Zeff as well
as the classical model allow reasonable estimates for quite a large number of
important elementary processes. Below, there are given useful analytical expres-
sions to estimate various rate coefficients (averaged over a Maxwellian energy
distribution function) and cross sections.

Electron temperatures and energies are in units of [eV], Ry = 13.6 eV, n and
m are principal quantum numbers unless otherwise stated.

A.1.1 Transition Energies and Radiative Decay Rates

Transition energies (n and m are principal quantum numbers of the lower and upper
states, respectively):

DE ¼ Z2
effRy

1
n2

� 1
m2

� �
:

Effective charge (Pi is the number of electrons in the atomic shell with principal
quantum number i):

Zeff nð Þ ¼ Znuc �
XZnuc�1

i¼1

rn;iPi:

Screening constants:
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n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

i = 1 0.3125 0.9380 0.9840 0.9954 0.9970 0.9980 0.9990

i = 2 0.2345 0.6038 0.9040 0.9722 0.9979 0.9880 0.9900

i = 3 0.1093 0.4018 0.6800 0.9155 0.9796 0.9820 0.9860

i = 4 0.0622 0.2430 0.5150 0.7100 0.9200 0.9600 0.9750

i = 5 0.0399 0.1597 0.3527 0.5888 0.7320 0.8300 0.9000

i = 6 0.0277 0.1098 0.2455 0.4267 0.5764 0.7248 0.8300

i = 7 0.0204 0.0808 0.1811 0.3184 0.4592 0.6098 0.7374

Rate of spontaneous radiative transitions:

Amn ¼ A m ! nð Þ � 1:57� 1010Z4
eff

nm3 m2 � n2ð Þ ½s�1�; m[ n:

Oscillator strength:

fnm � 1:96

n5m3 1
n2

� 1
m2

� �3 ; m[ n:

A.1.2 Electron Collisional Excitation and De-excitation

If n < m, the electron collisional excitation rate coefficient can be approximated by

Cex n ! mð Þ ¼ 3:15� 10�7fnm
Ry
DE

� �3=2 ffiffiffi
b

p
e�b p bð Þ ½cm3s�1�:

For Zeff > 0:

p bð Þ ¼ 0:2757e�1:3b b� b2

4
� ln bð Þ � 0:5772

� �
þ 0:2 1� e�4:5b� �

:

For Zeff = 0:

p bð Þ ¼
if b� 0:4 : 0:27566 � b� b2

4
þ b3

12
� ln bð Þ � 0:57722

� �

else 0:066

ffiffiffiffiffiffiffiffiffiffiffi
bþ 2

p
bþ 0:127

8>><
>>:

9>>=
>>;;

DE ¼ Em � En;

b ¼ DE
kTe

:
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The de-excitation rate coefficient is given by

Cdex m ! nð Þ ¼ Cex n ! mð Þ gn
gm

eb:

We remember the relation between the oscillator strength and radiative decay
rate:

Ajiðs�1Þ ¼ 0:667027

k2 cmð Þ
gi
gj
fij:

A.1.3 Electron Collisional Ionization and Three-Body
Recombination

If Pn is the number of electrons in the quantum shell, the ionization rate coefficient
can be approximated by

In ¼ 6� 10�8Pn
Ry
En

� �3=2 ffiffiffiffiffi
bn

p
e�bna bnð Þ ½cm3s�1�;

a bð Þ ¼ �eb Ei �bð Þ � ln 1þ 0:562þ 1:4b
b 1þ 1:4bð Þ

� �
;

Ei(x) is the exponential integral:

Ei xð Þ ¼ �
Z1
�x

e�t

t
dt; x[ 0;

bn ¼
En

kTe
:

The three-body recombination rate coefficient can be estimated according to

Tji ¼ 2� 10�31 Ry
En

� �3Pngn
gj

b2n a bnð Þ ½cm6s�1�:

A.1.4 Radiative Recombination

If Qn is an angular factor which takes into account the Pauli principle the recom-
bination rate is given by

A.1 Summary of Simple General Formulae of Some Elementary Atomic … 595



R nð Þ ¼ 5:2� 10�14 Qn Zeff b
3=2
n c bnð Þ ½cm3s�1�;

c bð Þ ¼ �ebEi �bð Þ � ln 1þ 0:562þ 1:4b
b 1þ 1:4bð Þ

� �
;

bn ¼
En

kTe
;

Qn � 1� N
2n2

:

Also the sum (for n� n1) of the radiative recombination rates can be expressed
in analytical form:

Rtot n� n1ð Þ ¼ 2:6� 10�14 Zeffn1 b
1=2
n

� ln 1:78b1ð Þþ g b1ð Þ 1þ b1=n1ð Þf g½cm3s
�1 �;

b1 ¼
Z2
effRy
n21kTe

;

g bð Þ ¼ �ebEi �bð Þ;

g bð Þ � ln 1þ 0:562þ 1:4b
b 1þ 1:4bð Þ

� �
:

n1 is the principal quantum number from which the sum is taken over all
higher-lying excited states. Note that the summation formula should not be applied
to ground states as it does not include the Pauli principle.

A.1.5 Dielectronic Recombination

The effective dielectronic recombination rate coefficient can be calculated with the
help of the Burgess formula:

DZþ 1;Z a0að Þ ¼ 4:8� 10�11 fa0 aBd b
3=2 e�bvd ½cm3s�1�;

b ¼ zþ 1ð Þ2Ry
kTe

;

vd ¼
v

1þ 0:015
z3

zþ 1ð Þ2
;

v ¼ DE

zþ 1ð Þ2Ry :

z is the spectroscopic symbol (z = Zn – Nbound, where Nbound is the number of bound
electrons) and fa0a is the oscillator strength for the resonance transitions (transitions
to the ground state): dipole transition a0 ! a with transition energy ΔE (in eV). It is
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usually sufficient to consider only the first, second, and third transition to the
ground state as the oscillator strength is rapidly decreasing with increasing principal
quantum number.

If the first resonance transition is a Δn = 0 transition, the branching factor Bd is
given by

Bd ¼ zv
z2 þ 13:4

� �1=2 1

1þ 0:105 zþ 1ð Þvþ 0:015 zþ 1ð Þ2v2 :

For Δn 6¼ 0:

Bd ¼ zv
z2 þ 13:4

� �1=2 0:5

1þ 0:210 zþ 1ð Þvþ 0:030 zþ 1ð Þ2v2 :

Note, that the Burgess formula should be used with care, as it might overestimate
the dielectronic recombination by orders of magnitude (see Sect. 5.6).

A.1.6 Charge Exchange

A.1.6.1 Single-electron Charge Exchange

If charge exchange is classically allowed (over-barrier transitions), the cross section
can be estimated according to (Z is the charge of the receptor ion)

rðCxÞ � 4pa20p
4 1þ

ffiffiffi
Z

p	 
2
:

p is the effective principal quantum number of the donor atom (I is the ionization
potential of quantum shell p)

p ¼
ffiffiffiffiffiffi
I
Ry

s
:

Charge exchange is selective in principle quantum number q of the receptor ion:

qZ�1 � p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ffiffiffi
Z

p � 1=
ffiffiffi
Z

p� �q :

The orbital distribution is given by

A.1 Summary of Simple General Formulae of Some Elementary Atomic … 597



Wnl ¼ rnl
rn

:

The regime of weak mixing (at low-collision velocities, the Stark mixing of
states is low) can be estimated according to

Wnl ¼ 2lþ 1ð Þ � n� 1ð Þ!½ �2
nþ lð Þ! � n� 1� lð Þ! :

If n; l 	 1, the Wnl distribution takes the form

Wnl � 2lþ 1
n

� exp � l � lþ 1ð Þ
n

� �
:

In the case of strong mixing, a statistical distribution is obtained:

Wnl ¼ 2lþ 1
n2

:

A.1.6.2 Multiple-electron Charge Exchange

Multiple-electron charge exchange in the over-barrier regime at low velocities can
be estimated within the framework of the so-called classical absorbing sphere
model (Janev et al. 1985). Single-, double-, and triple-charge exchange cross sec-
tions are given by

rðCxÞ1 � pa20 R2
1 � R2

2 � R2
3

� �
;

rðCxÞ2 � pa20 R2
2 � R2

3

� �
;

rðCxÞ3 � pa20R
2
3;

R1 � 2Ry
2

ffiffiffi
Z

p þ 1
I1

;

R2 � 2Ry
2

ffiffiffiffiffiffiffiffiffiffiffiffi
Z � 1

p þ 1
I2

;

R3 � 2Ry
2

ffiffiffiffiffiffiffiffiffiffiffiffi
Z � 2

p þ 1
I3

;

where rCx1 , rCx2 and rCx3 are the single-, double-, and triple-charge exchange cross
sections, respectively. R1,R2, and R3 are the corresponding classical radii, and I1, I2,
and I3 are the corresponding ionization potentials in [eV], Ry = 13.6 eV. As before,
Z is the charge of the receptor ion.
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A.2 Simple General Formulae for Collisional–
Radiative Processes in Hydrogen

A.2.1 Energies

For hydrogen, the energy levels are specified by the principal quantum number
n and are given by

EH nð Þ ¼ Ry

1þ me

mp

Zeff;H nð Þ
n2

¼ 13:5983 eV
Zeff;H nð Þ

n2
;

Zeff;H nð Þ ¼ 1:0000:

For the energy difference between the 2s and 2p levels, we take

DE ¼ E n ¼ 2ð Þ � E n ¼ 1ð Þf g dk
k

¼ 10:2 eV
4:45� 10�13

1215� 10�10 � 3:7� 10�5 eV:

A.2.2 Spontaneous Transition Probabilities

For transitions np! 1s, np! 2s, ns! 2p, nd! 2p, the following exact analytical
formulas have been adopted for the so-called Lyman- and Paschen-series:

A np ! 1sð Þ ¼ 8� 109 � 28

9
n n� 1ð Þ2n�2

nþ 1ð Þ2nþ 2 s�1� �
;

A np ! 2sð Þ ¼ 8� 109 � 211

9
n n2 � 1ð Þ n� 2ð Þ2n�3

nþ 2ð Þ2nþ 3 s�1� �
;

A ns ! 2pð Þ ¼ 8� 109 � 29

9
n3 n� 2ð Þ2n�3

nþ 2ð Þ2nþ 3 s�1
� �

;

A nd ! 2pð Þ ¼ 8� 109 � 214

9 � 5
n3 n2 � 1ð Þ n� 2ð Þ2n�4

nþ 2ð Þ2nþ 4 s�1� �
:

These transition probabilities have to be averaged over the respective statistical
weights gn ¼ 2n2 for the quantum level n:
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A n ! 1ð Þ ¼ 8� 109 � 28
3

n� 1ð Þ2n�2

n nþ 1ð Þ2nþ 2 s�1� �
;

A n ! 2ð Þ ¼ 8� 109 � 29
9

n n� 2ð Þ2n�3

nþ 2ð Þ2nþ 3 1þ 12 n2 � 1ð Þ
n2

þ 25 n2 � 1ð Þ
nþ 2ð Þ n� 2ð Þ

 �
s�1
� �

;

A n ! 2sð Þ ¼ 6
2n2

A np ! 2sð Þ ¼ 8� 109 � 211
3

n2 � 1ð Þ n� 2ð Þ2n�3

n nþ 2ð Þ2nþ 3 s�1� �
;

A n ! 2pð Þ ¼ 8� 109 � 29
9

n n� 2ð Þ2n�3

nþ 2ð Þ2nþ 3 1þ 25 n2 � 1ð Þ
nþ 2ð Þ n� 2ð Þ

 �
s�1
� �

:

For larger principal quantum numbers, the following analytical asymptotic for-
mula is proposed that is accurate within a few %:

A n0 ! nð Þ � 1:57� 1010

nn03 n02 � n2ð Þ � 1þ 2

5
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ n0

p � 1ffiffiffi
n

p þ 3
� 1ffiffiffiffi

n0
p þ 3

 �
s�1� �

:

The hydrogen 2s-level decays via two-photon decay and its transition probability
is given by

Að2s 2S1=2 � 1s 2S1=2Þ ¼ 8:2291 s�1:

A.2.3 Radiative Recombination

The radiative recombination rate for the processes

pþ e ! H nð Þþ �hx

has been fitted into the following formula (for n < 10):

Vrrh i ¼ 10�8A
ffiffiffi
b

p bþD
bþ v

cm�3s�1� �
;

b ¼ Ry
Te

:

For
1
16

� b� 8; (i.e., 1:7 eV� b� 220 eV), the fitting formula provides an accu-

racy better than about 10% for all values of b and n. The following table contains
the fitting parameters.
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nl A v D

1 3.98 � 10−6 0.419 0.02

2 1.89 � 10−6 1.07 0.02

2s 5.57 � 10−7 0.306 0.0

2p 1.37 � 10−6 1.76 0.0

3 1.16 � 10−6 2.00 0.03

4 7.76 � 10−7 2.78 0.03

5 5.54 � 10−7 3.54 0.03

6 4.00 � 10−7 3.83 0.02

7 3.09 � 10−7 4.44 0.02

8 2.45 � 10−7 5.01 0.02

9 1.98 � 10−7 5.54 0.02

For principal quantum numbers n > 9, the following expression is adopted:

Vrrh i ¼ 5:20� 10�14 b3=2n ebn Ei bnð Þ;

bn ¼
EH nð Þ
Te

:

The exponential integral Ei(bn) can be approximated within a few percent by

Ei bnð Þ � e�bn ln 1þ 0:562þ 1:4bn
bn 1þ 1:4bnð Þ

� �
:

A.2.4 Electron Collisional Excitation and De-excitation

Quantum mechanical calculations of cross sections for the transitions nl! n′l′ have
been summed over all angular momenta l, l′ in order to obtain cross sections and
rate coefficients for the processes

H nð Þþ e ! H n0ð Þ þ e:

Rate coefficients for the transitions from the ground state, i.e., n = 1 ! n′ have
been fitted into the following formula:
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Vrex 1 ! nð Þh i ¼ 10�8

n2
f nð ÞC1

ffiffiffiffiffi
bn

p bn þ 1þC2

bn þC3
ln C4 þ C5

bn

� �
e�DE=Te ;

f nð Þ ¼ na
n2

n2 � 1

� �3=2n n� 1ð Þ2n�2

nþ 1ð Þ2nþ 2 ;

bn ¼
EH nð Þ
Te

;

DE ¼ EH 1ð Þ � EH nð Þ:

For
1
16

� bnn
2 � 32 (i.e., 0:43 eV� Te � 220 eV), the fitting formula provides an

accuracy better than about 4% for all values of b and n. The following table
contains the fitting parameters. a has been fixed to a = 0.75.

n C1 C2 C3 C4 C5 Δmax/%

2 1.5485 � 102 1.0123 � 102 1.1168 � 101 1.6272 � 100 2.4689 � 10−1 0.6
3 1.5464 � 100 7.9704 � 103 7.8003 � 100 2.0652 � 100 7.1971 � 10−2 2.4
4 1.0358 � 100 8.0008 � 103 4.5476 � 100 2.1340 � 100 2.9540 � 10−2 3.4
5 7.7698 � 10−1 7.9794 � 103 3.0132 � 100 2.1026 � 100 1.5099 � 10−2 3.6
6 5.8235 � 10−1 7.9708 � 103 2.1232 � 100 2.1147 � 100 9.7984 � 10−3 3.8
7 4.5254 � 10−1 7.9900 � 103 1.5852 � 100 2.1244 � 100 6.9830 � 10−3 3.9
8 3.6339 � 10−1 8.0109 � 103 1.1923 � 100 2.0889 � 100 4.8699 � 10−3 4.1
9 2.4012 � 10−1 9.9983 � 103 9.4891 � 10−1 2.0875 � 100 3.7632 � 10−3 4.1

For large principal quantum numbers, we derived a n-scaled formula based on
the numerical calculations for n = 4, 5, 6, 7, 8, and 9:

hVrex 1 ! nð Þi ¼ 10�8

n2
f nð ÞC1

ffiffiffiffiffi
bn

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bn þ 1þC2

p
bn þC3

ln n0:6C4 þ C5

bn

� �
e�DE=Te ;

f nð Þ ¼ na
n2

n2 � 1

� �3=2n n� 1ð Þ2n�2

nþ 1ð Þ2nþ 2 ;

bn ¼
EH nð Þ
Te

;

DE ¼ EH 1ð Þ � EH nð Þ:

Taking the above formula with a = 2.3304 � 10−1, C1 = 3.0877 � 103,
C2 = 1.4249 � 101, C3 = 3.5330 � 100, C4 = 1.0098 � 100, C5 = 3.5575 � 10−2

an accuracy better than 15% is achieved for all values of n and b.
Electron collisional process from the 1s level into the 2s- and 2p-level as well as

from the 2s-level into the 2p-level are described by the following fitting formula:
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Vrex ns ! 2lð Þh i ¼ 10�8A
E 2lð Þ
E nsð Þ

� �3=2

�
ffiffiffi
b

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ DE

Te

r � bþ 1þD
bþ v

� exp �DE
Te

� �
cm3s�1� �

;

b ¼ Ry
Te

;

DE ¼ E nsð Þ � E 2lð Þ:

n A v D

1s-2s 1.83 � 101 8.96 2.20

1s-2p 3.89 � 101 6.64 � 10−2 −0.70

2s-2p 1.30 � 103 2.53 3.00

For
1
16

� b� 32 (i.e., 0:43 eV� Te � 220 eV), the fitting formula provides an

accuracy better than about 23% for all values of b.
For transitions between excited states, an accuracy as provided by a

Regemorter-type expression is sufficient:

Vrex n ! n0ð Þh i ¼ 3:15� 10�7f n ! n0ð Þ Ry
DE

� �3=2 ffiffiffi
b

p
e�bn p bnð Þ;

DE ¼ EH nð Þ � EH n0ð Þ;
bn ¼

DE
Te

;

f is the oscillator strength and p is an effective Gaunt factor. The required oscillator
strengths are obtained from the transition probabilities determined in the above
paragraphs and the general relation between the oscillator strength and the transition
probability, namely

f ðn ! n0Þ ¼ 1

4:339� 107ðEn � En0 Þ2
gðn0Þ
n

Aðn0 ! nÞ

with En and En′ in [eV]. For the Gaunt factor the following expression is proposed

p bð Þ ¼
if b� 0:4 : 0:27566 � b� b2

4
þ b3

12
� ln bð Þ � 0:57722

� �

else 0:066

ffiffiffiffiffiffiffiffiffiffiffi
bþ 2

p
bþ 0:127

8>><
>>:

9>>=
>>;:

These formulas provide the correct asymptotic behavior for low and high
energies and an accuracy better than 3% for all values of b.

De-excitation rates are obtained from the principle of detailed balance (note that
DEij is a positive quantity):
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Vrex i ! jð Þh i ¼ Vrdex j ! ið Þh i gi
gj
exp DEij=Te

	 

:

A.2.5 Ionization and Three-Body Recombination

Ionization rates for the processes

H nð Þþ e ! pþ 2e

are fitted to the following formula:

Vrizh i ¼ 10�8 1
n2

ffiffiffi
b

p A
bþ v

bþ 1þD
bþ 1

1

1þ b
EH nð Þ
Ry

0
BB@

1
CCA

1=2

e�EH nð Þ=Te cm3s�1� �
;

b ¼ Ry
Te

:

The following table contains the corresponding fitting parameters. For all values

of n = 1–9 and
1
16

� b� 32 (i.e., 0:5 eV� b� 220 eV), the fitting is accurate

within 10%.

n A v D

1 8.72 0.276 −0.59

2 6.13 � 103 47.3 0.72

3 2.93 � 106 3.28 � 103 0.48

4 8.98 � 106 2.62 � 103 0.35

5 1.18 � 107 1.33 � 103 0.43

6 3.99 � 106 1.91 � 102 0.36

7 3.15 � 106 1.34 � 102 0.180

8 3.56 � 106 8.88 � 101 0.110

9 7.74 � 106 7.65 � 101 0.110

Ionization out of the levels 2s and 2p is described by the following fitting
formula:

Vrizh i ¼ 10�8

2l0 þ 1

ffiffiffi
b

p A
bþ v

bþ 1þD
bþ 1

1

1þ b
EH nð Þ
Ry

0
BB@

1
CCA

1=2

e�EH nð Þ=Te cm3s�1� �
;

b ¼ Ry
Te

:
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nl A v D l0
2s 2.72 � 104 7.68 � 102 0.60 0

2p 4.35 � 103 5.15 � 101 0.90 1

For the 2s level, the accuracy is better than 17%, for the 2p level better than 6%

for all values of b in the interval
1
16

� b� 32 (i.e., 0:5 eV� b� 220 eV).

In order to provide ionization rates for any values of n � 7 and b the following
fitting formula has been developed:

Vrizh i ¼ 10�8

n2
ffiffiffi
b

p An6

bþ v
bþD
bþ f nð Þ e

�b cm3s�1� �
;

f nð Þ ¼ 10þ c
n4

;

b ¼ EH nð Þ
Te

:

With A = 5.7669, v = 0.2401, D = 0.6719 and c = −4.252 � 103, the fitting
formula provides an accuracy better than 30% for all values of n � 7 and b

(
1
16

�Ry=Te � 32).

The three-body recombination rate coefficient Vrtr j ! ið Þh i is calculated from
the principle of detailed balance:

Vrtr j ! ið Þh i ¼ Vriz i ! jð Þh i gi
2gj

2p�h2

mekTe

� �3=2

exp DEij=kTe
� �

or, written in convenient units (energies and temperatures in eV):

Vrtr j ! ið Þh i ¼ Vriz i ! jð Þh i � 1:656� 10�22 gi
gj

exp DEij=Te
� �
Teð Þ3=2

cm6

s

� �
:

gi and gj are the statistical weights of the states before and after ionization,
respectively.

A.2.6 Matrix Elements Including Phase Sign, Oscillator Strengths,
and Energies of nlj-Split Levels

Matrix elements including phase sign, oscillator strengths, and energies for an
LSJ-split level structure have been calculated for the states nlj from n = 1–6, l =
0–5 and all j. Designations of levels, principal quantum numbers, orbital quantum
numbers, statistical weights, and energies are given in the following table:
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N° n l g E (eV)

1 1 0 2 0.0000000000D+00

2 2 1 2 1.0198832906D+01

3 2 0 2 1.0198834783D+01

4 2 1 4 1.0198878221D+01

5 3 1 2 1.2087521013D+01

6 3 0 2 1.2087521649D+01

7 3 2 4 1.2087534174D+01

8 3 1 4 1.2087534440D+01

9 3 2 6 1.2087538645D+01

10 4 1 2 1.2748559996D+01

11 4 0 2 1.2748560297D+01

12 4 2 4 1.2748565493D+01

13 4 1 4 1.2748565660D+01

14 4 3 6 1.2748567261D+01

15 4 2 6 1.2748567379D+01

16 4 3 8 1.2748568202D+01

17 5 1 2 1.3054525858D+01

18 5 0 2 1.3054526031D+01

19 5 2 4 1.3054528639D+01

20 5 1 4 1.3054528758D+01

21 5 3 6 1.3054529499D+01

22 5 2 6 1.3054529605D+01

23 5 4 8 1.3054529897D+01

24 5 3 8 1.3054529981D+01

25 5 4 10 1.3054530186D+01

26 6 0 2 1.3220729319D+01

27 6 1 2 1.3220729379D+01

28 6 2 4 1.3220730958D+01

29 6 1 4 1.3220731054D+01

30 6 3 6 1.3220731411D+01

31 6 2 6 1.3220731517D+01

32 6 4 8 1.3220731580D+01

33 6 5 10 1.3220731636D+01

34 6 3 8 1.3220731690D+01

35 6 5 12 1.3220731748D+01

36 6 4 10 1.3220731748D+01

Note that the total quantum number j can be calculated from the relation
g = 2j+1. Matrix elements [in atomic units], oscillator strengths and wavelengths
[in Angstroem] are given in the following table:
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N° of level i N° of level j ikr jkh i [a0] fij kji [10
−10 m]

1 2 1.0543386372D+00 1.3887965000D−01 1.2156706897D+03

1 4 1.4910583918D+00 2.7776000000D−01 1.2156647299D+03

1 5 4.2249347333D−01 2.6430490000D−02 1.0257206358D+03

1 8 5.9750643218D−01 5.2862900000D−02 1.0257197873D+03

1 10 2.4932974013D−01 9.7081700000D−03 9.7253483531D+02

1 13 3.5261371639D−01 1.9417245000D−02 9.7253407245D+02

1 17 −1.7117838949D−01 4.6858355000D−03 9.4974071836D+02

1 20 −2.4208910812D−01 9.3721600000D−03 9.4974071836D+02

1 27 −1.2790755570D−01 2.6495730000D−03 9.3780136952D+02

1 29 −1.8089361240D−01 5.2994400000D−03 9.3780136952D+02

2 3 4.2443122876D+00 4.1420190000D−07 6.6053632268D+09

3 4 6.0024434964D+00 1.9171535000D−05 2.8542596510D+08

3 5 −2.5045849469D+00 1.4513075000D−01 6.5645738360D+03

2 6 −7.6737985611D−01 1.3624130000D−02 6.5645634088D+03

4 6 1.0853346629D+00 1.3626207500D−02 6.5647232960D+03

2 7 −5.4859663395D+00 6.9630150000D−01 6.5645217004D+03

4 7 −2.4534483987D+00 6.9631325000D−02 6.5646781097D+03

3 8 −3.5419042309D+00 2.9024485000D−01 6.5645251760D+03

4 9 −7.3603593382D+00 6.2668550000D−01 6.5646642064D+03

3 10 −1.0486923895D+00 3.4349250000D−02 4.8626493838D+03

2 11 3.1332304525D−01 3.0662410000D−03 4.8626455695D+03

4 11 −4.4313865789D−01 3.0666425000D−03 4.8627313916D+03

2 12 1.9763026422D+00 1.2199145000D−01 4.8626341268D+03

4 12 8.8382902926D−01 1.2198922500D−02 4.8627218557D+03

3 13 −1.4830525288D+00 6.8696650000D−02 4.8626379410D+03

4 15 2.6515146649D+00 1.0979262500D−01 4.8627180413D+03

3 17 6.3392490629D−01 1.4057715000D−02 4.3416527558D+03

2 18 1.8769032278D−01 1.2323195000D−03 4.3416497151D+03

4 18 −2.6545276469D−01 1.2324720000D−03 4.3417181319D+03

2 19 −1.1282249318D+00 4.4527800000D−02 4.3416451541D+03

4 19 −5.0455371026D−01 4.4526425000D−03 4.3417150911D+03

3 20 8.9649755435D−01 2.8114965000D−02 4.3416481948D+03

4 22 −1.5136815662D+00 4.0074875000D−02 4.3417135707D+03

2 26 1.3175152958D−01 6.4256800000D−04 4.1028608198D+03

4 26 −1.8633727395D−01 6.4264400000D−04 4.1029219177D+03

3 27 4.4446123041D−01 7.3126550000D−03 4.1028621775D+03

2 28 7.6792644965D−01 2.1829640000D−02 4.1028581044D+03

4 28 3.4342316671D−01 2.1828827500D−03 4.1029192022D+03

3 29 6.2855952145D−01 1.4625150000D−02 4.1028608198D+03

4 31 1.0302849858D+00 1.9646542500D−02 4.1029192022D+03

5 6 1.0396520293D+01 8.4204300000D−07 1.9495576770D+10

5 7 1.1624128376D+01 2.1783980000D−05 9.4205821143D+08

6 8 1.4703026865D+01 3.3873555000D−05 9.6927466337D+08

8 9 1.5595423907D+01 6.2628600000D−06 2.9490757393D+09

6 10 −4.4699726888D+00 1.6179470000D−01 1.8755976318D+04
(continued)
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(continued)

N° of level i N° of level j ikr jkh i [a0] fij kji [10
−10 m]

7 10 1.5063615968D+00 9.1870275000D−03 1.8756330993D+04

5 11 1.9980383976D+00 3.2326810000D−02 1.8755947944D+04

8 11 −2.8258780048D+00 3.2331300000D−02 1.8756328156D+04

5 12 8.7422227653D+00 6.1887400000D−01 1.8755800404D+04

8 12 3.9097694628D+00 6.1890225000D−02 1.8756180609D+04

6 13 −6.3212383461D+00 3.2356580000D−01 1.8755814590D+04

7 13 −6.7360646606D−01 1.8370990000D−03 1.8756169260D+04

9 13 2.0208821893D+00 1.1023203333D−02 1.8756296944D+04

7 14 −1.5858488843D+01 1.0182272500D+00 1.8756123861D+04

9 14 −4.2383754190D+00 4.8487066667D−02 1.8756251545D+04

8 15 1.1729225657D+01 5.5700575000D−01 1.8756129536D+04

9 16 −1.8954619524D+01 9.6974500000D−01 1.8756223171D+04

6 17 1.8488134109D+00 4.0489515000D−02 1.2821473474D+04

7 17 −5.6051251458D−01 1.8607637500D−03 1.2821639214D+04

5 18 7.9483539821D−01 7.4836100000D−03 1.2821462867D+04

8 18 −1.1241406831D+00 7.4844875000D−03 1.2821640540D+04

5 19 −3.4326859317D+00 1.3958090000D−01 1.2821428394D+04

8 19 −1.5351641773D+00 1.3958262500D−02 1.2821606065D+04

6 20 2.6145563148D+00 8.0975500000D−02 1.2821435024D+04

7 20 2.5064955494D−01 3.7209675000D−04 1.2821600762D+04

9 20 −7.5196846381D−01 2.2326883333D−03 1.2821660429D+04

7 21 5.1467926724D+00 1.5689012500D−01 1.2821591480D+04

9 21 1.3755319930D+00 7.4708550000D−03 1.2821649821D+04

8 22 −4.6054939461D+00 1.2562457500D−01 1.2821592806D+04

9 24 6.1516048435D+00 1.4941910000D−01 1.2821644517D+04

5 26 4.7273192521D−01 3.1021840000D−03 1.0940991151D+04

8 26 −6.6858438156D−01 3.1025225000D−03 1.0941116666D+04

6 27 1.1168369771D+00 1.7314775000D−02 1.0940991151D+04

7 27 −3.2345454192D−01 7.2615475000D−04 1.0941116666D+04

5 28 2.0185098460D+00 5.6558750000D−02 1.0940971841D+04

8 28 9.0271019453D−01 5.6558750000D−03 1.0941097356D+04

6 29 1.5794184552D+00 3.4628405000D−02 1.0940981496D+04

7 29 1.4464272260D−01 1.4520992500D−04 1.0941097356D+04

9 29 −4.3393884511D−01 8.7129916667D−04 1.0941145631D+04

7 30 2.7937873777D+00 5.4173900000D−02 1.0941097356D+04

9 30 7.4666516295D−01 2.5796583333D−03 1.0941135976D+04

8 31 2.7081390689D+00 5.0903225000D−02 1.0941097356D+04

9 34 3.3392163147D+00 5.1594066667D−02 1.0941135976D+04

10 11 −1.8980909754D+01 1.3298330000D−06 4.1146319042D+10

10 12 −2.4009761258D+01 3.8819515000D−05 2.2553807150D+09

11 13 −2.6843222983D+01 4.7335870000D−05 2.3119223326D+09

12 14 −2.4603540035D+01 6.5539475000D−06 7.0138505576D+09

13 15 −3.2212503975D+01 1.0924952500D−05 7.2126308692D+09

15 16 −2.9406866902D+01 2.9084850000D−06 1.5052324060D+10
(continued)
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(continued)

N° of level i N° of level j ikr jkh i [a0] fij kji [10
−10 m]

11 17 −6.9631817018D+00 1.8172555000D−01 4.0522263614D+04

12 17 3.5240377639D+00 2.3272565000D−02 4.0522952317D+04

10 18 3.7627294360D+00 5.3064900000D−02 4.0522210638D+04

13 18 −5.3217004845D+00 5.3071825000D−02 4.0522952317D+04

10 19 −1.2758886267D+01 6.1014100000D−01 4.0521866296D+04

13 19 −5.7061678764D+00 6.1017725000D−02 4.0522607962D+04

14 19 2.5798359576D+00 8.3149066667D−03 4.0522819872D+04

11 20 −9.8469851870D+00 3.6342190000D−01 4.0521879540D+04

12 20 −1.5758701934D+00 4.6538050000D−03 4.0522568230D+04

15 20 4.7277463446D+00 2.7924250000D−02 4.0522819872D+04

12 21 −2.1807194345D+01 8.9118500000D−01 4.0522475520D+04

15 21 −5.8282661256D+00 4.2437816667D−02 4.0522727161D+04

13 22 −1.7118326853D+01 5.4914975000D−01 4.0522488764D+04

14 22 −6.8946878035D−01 5.9388700000D−04 4.0522700673D+04

16 22 3.0834473067D+00 8.9085625000D−03 4.0522819872D+04

14 23 −3.2833273019D+01 1.3468010000D+00 4.0522660940D+04

16 23 −6.3187733718D+00 3.7411112500D−02 4.0522780139D+04

15 24 −2.6064733772D+01 8.4875366667D−01 4.0522660940D+04

16 25 −3.7382402069D+01 1.3093925000D+00 4.0522740406D+04

10 26 1.4703917819D+00 1.2505235000D−02 2.6258417690D+04

13 26 −2.0795734663D+00 1.2506592500D−02 2.6258729123D+04

11 27 −2.8319393241D+00 4.6386690000D−02 2.6258428813D+04

12 27 1.3090618343D+00 4.9557700000D−03 2.6258718000D+04

10 28 5.0806138416D+00 1.4929995000D−01 2.6258323150D+04

13 28 2.2721646048D+00 1.4930402500D−02 2.6258640141D+04

14 28 −8.8653017717D−01 1.5152575000D−03 2.6258729123D+04

11 29 −4.0048569401D+00 9.2768600000D−02 2.6258334272D+04

12 29 −5.8539029891D−01 9.9102175000D−04 2.6258623458D+04

15 29 1.7562128282D+00 5.9463933333D−03 2.6258729123D+04

12 30 −8.0396697518D+00 1.8692555000D−01 2.6258606774D+04

15 30 −2.1486931542D+00 8.9011933333D−03 2.6258712439D+04

13 31 6.8164683584D+00 1.3437280000D−01 2.6258606774D+04

14 31 2.3692871354D−01 1.0822686667D−04 2.6258695755D+04

16 31 −1.0595917334D+00 1.6234437500D−03 2.6258751368D+04

14 32 −9.7392645400D+00 1.8287400000D−01 2.6258695755D+04

16 32 −1.8743152170D+00 5.0797862500D−03 2.6258745807D+04

15 34 −9.6092629583D+00 1.7802466667D−01 2.6258695755D+04

16 36 −1.1088643482D+01 1.7779412500D−01 2.6258740246D+04

17 18 3.0008063230D+01 1.9066210000D−06 7.1730805657D+10

17 19 −3.9697519168D+01 5.3693400000D−05 4.4575875479D+09

18 20 4.2438024636D+01 6.0169200000D−05 4.5460080592D+09

19 21 −4.6489972766D+01 1.1378732500D−05 1.4424107130D+10

20 22 −5.3259848444D+01 1.4712262500D−05 1.4641468202D+10

21 22 −1.2424948019D+01 6.6811433333D−08 1.1697989859D+11
(continued)
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(continued)

N° of level i N° of level j ikr jkh i [a0] fij kji [10
−10 m]

21 23 −4.1676378708D+01 2.8221466667D−06 3.1158280125D+10

22 24 −5.5566154993D+01 4.7434316667D−06 3.2953466163D+10

23 24 −8.0206132240D+00 1.6609812500D−08 1.4705672547D+11

24 25 −4.7450655110D+01 1.4137125000D−06 6.0472480537D+10

17 26 −6.0705011099D+00 7.5026900000D−02 7.4597819541D+04

20 26 8.5855986133D+00 7.5036325000D−02 7.4599121182D+04

18 27 −9.9963119971D+00 2.0344515000D−01 7.4597909307D+04

19 27 −6.2944488986D+00 4.0331675000D−02 7.4599076298D+04

17 28 −1.7545320353D+01 6.2675050000D−01 7.4597101413D+04

20 28 −7.8468417326D+00 6.2679300000D−02 7.4598403030D+04

21 28 5.6873588360D+00 2.1951433333D−02 7.4598717220D+04

18 29 −1.4136252495D+01 4.0685580000D−01 7.4597146295D+04

19 29 2.8147481441D+00 8.0651875000D−03 7.4598313261D+04

22 29 −8.4444742419D+00 4.8393450000D−02 7.4598762104D+04

19 30 2.8837469167D+01 8.4654575000D−01 7.4598133726D+04

22 30 7.7072164276D+00 4.0312333333D−02 7.4598582566D+04

23 30 −3.7627216579D+00 7.2062137500D−03 7.4598717220D+04

20 31 −2.3540221142D+01 5.6410175000D−01 7.4598133726D+04

21 31 −1.5199670384D+00 1.5678746667D−03 7.4598492798D+04

24 31 6.7976006282D+00 2.3518750000D−02 7.4598717220D+04

21 32 4.1834311008D+01 1.1877046667D+00 7.4598447914D+04

24 32 8.0510400288D+00 3.2991912500D−02 7.4598672335D+04

23 33 5.7424650817D+01 1.6784187500D+00 7.4598627451D+04

25 33 8.6570941799D+00 3.0516660000D−02 7.4598717220D+04

22 34 3.4467587709D+01 8.0624116667D−01 7.4598447914D+04

23 34 7.2412472009D−01 2.6688875000D−04 7.4598582566D+04

25 34 −4.2840205760D+00 7.4730180000D−03 7.4598717220D+04

25 35 6.3616431347D+01 1.6479030000D+00 7.4598672335D+04

24 36 4.7630564288D+01 1.1547157500D+00 7.4598582566D+04

26 27 4.3450707612D+01 1.3939010000D−06 2.0571022716D+11

27 28 5.8754619678D+01 6.6773250000D−05 7.8519159535D+09

26 29 6.1448830864D+01 8.0238100000D−05 7.1472820147D+09

28 30 7.2404340281D+01 1.4539105000D−05 2.7381406714D+10

29 31 7.8827627571D+01 1.7611017500D−05 2.6793951358D+10

30 31 1.9350853880D+01 1.6104865000D−07 1.1771079042D+11

30 32 −7.4476870257D+01 3.8314950000D−06 7.3290524041D+10

32 33 −6.2881464558D+01 6.7429212500D−07 2.2265447502D+11

31 34 8.6539758390D+01 5.3128683333D−06 7.1363350246D+10

32 34 −1.4333068597D+01 6.9141012500D−08 1.1281761253D+11

33 36 −9.4797280670D+00 2.4604620000D−08 1.1094285446D+11

34 36 −8.4795679514D+01 1.2670612500D−06 2.1546859883D+11
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A.3 Simple General Formulae for Collisional–
Radiative Processes in He0+ and He1+

A.3.1 Energies

Helium II (He1+)

Energy levels specified by the main quantum number n are given by

EHe1þ nð Þ ¼ Ry

1þ me

2mp þ 2mn

Z2
eff;He1þ nð Þ

n2
¼ 13:6038 eV

Z2
eff;He1þ nð Þ

n2
:

With

EHe1þ nð Þ ¼ 54:4182 eV
1
n2

we obtain

Z2
eff;He1þ nð Þ ¼ 4:00019:

Statistical weights:

gHe1þ nð Þ ¼ 2n2:

For the energy difference between the 2s and 2p levels, we take

DE ¼ E n ¼ 2ð Þ � E n ¼ 1ð Þf g dk
k

¼ 40:8 eV
5:26� 10�13

303:7� 10�10 � 7:1� 10�4 eV:

Helium I (He0+)

EHe0þ n; Sð Þ ¼ Ry

1þ me

2mp þ 2mn

Z2
eff;He0þ n; Sð Þ

n2
¼ 13:6038 eV

Z2
eff;He0þ n; Sð Þ

n2

with

Z2
eff;He0þ n ¼ 1; S ¼ 0ð Þ ¼ 1:80739

for n = 1. For n > 1, we develop the following formulas:
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Z2
eff;He0þ n; S ¼ 0ð Þ ¼ 1� c1 þ c2n2

c3 þ nc4

with c1 = −4.1589 � 10−2, c2 = 2.6773 � 10−2, c3 = −1.1905 and c4 = 3.0429 and

Z2
eff;He0þ n; S ¼ 1ð Þ ¼ 1þ c1 þ c2n2

c3 þ nc4

with c1 = −3.1897 � 10−1, c2 = 1.6946 � 10−1, c3 = −2.9979 and c4 = 3.0850.
For all n- and S-quantum numbers, an accuracy better than 10−4 is achieved.

For the neutral helium, we consider the metastable-resolved energy levels
1s2s 1S0, 1s2s

3S1, 1s2p
1P1, and 1s2p 3P012 (averaged over J-quantum number):

Level Energy (eV)

1s2s 1S0 3.97162

1s2s 3S1 4.76404

1s2p 1P1 3.36575

1s2p 3P012 3.61938

Statistical weights:

gHe0þ n; S ¼ 0ð Þ ¼ n2;

gHe0þ n; S ¼ 1ð Þ ¼ 3n2:

A.3.2 Spontaneous Transition Probabilities

Helium II (He1+)

AHe1þ n ! 1ð Þ ¼ 8� 109 � 28
3

n� 1ð Þ2n�2

n nþ 1ð Þ2nþ 2 Z
4
eff;He1þ nð Þ s�1� �

;

AHe1þ n ! 2ð Þ ¼ 8� 109 � 29
9

n n� 2ð Þ2n�3

nþ 2ð Þ2nþ 3

� 1þ 12 n2 � 1ð Þ
n2

þ 25 n2 � 1ð Þ
nþ 2ð Þ n� 2ð Þ

 �
Z4
eff;He1þ nð Þ s�1� �

:

For larger principal quantum numbers, we employ the formula

AHe1þ n0 ! nð Þ �
1:57� 1010 Z4

eff;He1þ nð Þ
nn03 n02 � n2ð Þ

� 1þ 2

5
ffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ n

p � 1ffiffiffiffi
n0

p þ 3
� 1ffiffiffi

n
p þ 3

 �
s�1� �

:
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The H-like 2s-level decays via two-photon decay and its transition probability is
given by

Að2s 2S1=2 � 1s 2S1=2Þ ¼ 5:2661� 102 s�1:

Transitions from high n-levels to the 2s and 2p states are obtained from the
following formulas:

A n! 2sð Þ ¼ 2
2n2

A np! 2sð Þ ¼ 8� 109 � 211
9

n2 � 1ð Þ n� 2ð Þ2n�3

n nþ2ð Þ2nþ3 Z4
eff;He1þ nð Þ s�1� �

;

A n! 2pð Þ ¼ 8� 109 � 29
9

n n� 2ð Þ2n�3

nþ2ð Þ2nþ3 1þ 25 n2 � 1ð Þ
nþ2ð Þ n� 2ð Þ

 �
Z4
eff;He1þ nð Þ s�1� �

:

Helium I (He0+)
Transition probabilities A(1s2 1S0 ! 1snp 1P1), A(1s

2 1S0 ! 1s2p 3P1), and
A(1s2 1S0 ! 1s3p 3P1) are given in the following table:

n A(1s2 1S0 ! 1snp 1P1)/s A(1s2 1S0 ! 1snp 3P1)/s

2 1.80 � 109 1.76 � 102

3 5.66 � 108 5.61 � 101

4 2.46 � 108 –

5 1.28 � 108 –

6 7.19 � 107 –

7 5.07 � 107 –

8 3.43 � 107 –

9 2.37 � 107 –

10 1.81 � 107 –

The averaged transition probabilities A(n ! 1, S = 0) =
3
n2

� A(1s2 1S0 !
1snp 1P1) are fitted into the following formula:

AHe0þ n ! 1; S ¼ 0ð Þ ¼ 3A 2� r
n

	 
4 n� 1ð Þ2n�2

n nþ 1ð Þ2nþ 2 s�1� �

with A = 6.469 � 1010 and r = 0.4306, the fitting formula provides an accuracy
better than 6% even for all values n = 2–10. For the transition probabilities from the
triplet system to the ground state, only two values are of importance:

AHe0þ 2 ! 1; S ¼ 1ð Þ ¼ 4:40� 101 s�1;

AHe0þ 3 ! 1; S ¼ 1ð Þ ¼ 6:23� 100 s�1:

A.3 Simple General Formulae for Collisional–Radiative … 613



For larger main quantum numbers, the intercombination transitions are obtained
from a 1/n3-scaling law:

AHe0þ n ! 1; S ¼ 1ð Þ ¼ 1:38� 103

n5
s�1

(note that the n5-scaling law arises from the statistical weight average of the triplet
levels). For all other transitions in the singlet system into n = 2, we use the fol-
lowing formula:

AHe0þ ;S n ! 2; Sð Þ ¼ 0:95
8� 109 � 29

9
n n� 2ð Þ2n�3

nþ 2ð Þ2nþ 3 Z4
eff;He0þ 2; Sð Þ

� 1þ 12 n2 � 1ð Þ
n2

þ 25 n2 � 1ð Þ
nþ 2ð Þ n� 2ð Þ

 �
s�1� �

with S = 0 and 1.
For larger principal quantum numbers, the averaged transition probabilities are

dominated by transitions with high angular momentum, i.e., l′ =n′ –1 ! l = l′−1.
Zeff-values for these high angular momenta energy levels are very close to 1 and
singlet and triplet values practically do not differ, see table:

n l E(n, S = 0)/eV Zeff
2 (S = 0) E(n, S = 1)/eV Zeff

2 (S = 1)

3 d 1.51332 1.00118 1.51374 1.00146

4 f 0.85038 1.00017 0.85039 1.00018

5 g 0.54418 1.00005 0.54418 1.00005

6 h 0.37789 1.00002 0.37789 1.00002

7 i 0.27763 1.00001 0.27763 1.00001

For n′, n > 2, we propose the following formula:

AHe0þ ;S n0 ! n; Sð Þ �
1:57� 1010Z4

eff;He0þ ;S n; Sð Þ
nn03 n02 � n2ð Þ

1þ 2

5
ffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ n

p � 1ffiffiffi
n

p þ 3
� 1ffiffiffiffi

n0
p þ 3

 �
s�1
� �

with

Z2
eff;He0þ n� 3; Sð Þ � 1:00:

with S = 0 and 1. Note that the above formula contains only the Zeff-value of the
lower energy.
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The above formulas permit to determine radiative decay rates for H-like ions
within about 5% for all values of n′ and n and also increases the accuracy for neutral
helium to about 5% for n′, n > 2.

Transition probabilities involving metastable and ground states are given in the
following table:

Transition A/s−1

1s2s 1S0 ! 1s2 1S0 5.13 � 101 s−1

1s2s 3S1! 1s2 1S0 1.27 � 10−4 s−1

1s2p 1P1! 1s2 1S0 1.71 � 109 s−1

1s2p 3P012 ! 1s2 1S0 5.95 � 101 s−1

1s2p 1P1! 1s2s 1S0 1.93 � 106 s−1

1s2p 3P012 ! 1s2s 3S1 1.15 � 107 s−1

1s2p 1P1! 1s2s 3S1 1.55 � 100 s−1

1s2s 1S0 ! 1s2s 3S1 1.51 � 10−7 s−1

1s2p 3P012 !1s2s 1S0 0.0

Finally, we note very convenient general formulas for the determination
of spin-allowed and spin-forbidden transitions (Rosmej et al. 2007) for the cases
n, n′ > 2:

AHe0þ n0S0 ! nSð Þ ¼ 1:57� 1010

nn03 n02 � n2ð Þ � g n0S0 ! nSð Þ s�1� �
:

For spin-allowed transitions in the singlet system (S0 ¼ 0 ! S ¼ 0, i.e.,
ss-transition) and in the triplet system (S0 ¼ 1 ! S ¼ 1, i.e., tt-transition), the
following g-function is proposed:

gss;tt ¼ C1 � 1þ C2

n0 þ n
þ C3 � n02

n0 þ nð Þ2� n02 � n2ð Þ

( )
:

For the intercombination transitions (S0 ¼ 0 ! S ¼ 1 and S0 ¼ 1 ! S ¼ 0 i.e.,
st- and ts-transitions, respectively) one has to take into account intermediate cou-
pling effects that are very important for high-n and high-l-values. Due to the wave
function mixing, intercombination transitions can be of the same order of magni-
tude as allowed transitions [Rosmej et al. 2007] and general formulas are very rare.
The following g-function is proposed:

gst;ts ¼ C1 � n0 � nð ÞC2 �n0C3 :

The table presents the fitting parameters for spin-allowed and intercombination
transitions:

A.3 Simple General Formulae for Collisional–Radiative … 615



Transition type C1 C2 C3 Accuracy (%)

ss 0.9510 −1.6234 −3.3480 3.9

tt 0.8598 0.3796 −5.3992 3.7

st 2.8856 0.8862 −2.2736 31

ts 1.2884 0.9304 −2.4436 28

Due to the large wave function mixing, collisional processes for intercombina-
tion transitions can be estimated with the help of a Regemorter-type formula (in
particular for suprathermal electrons) employing the intercombination transition
probabilities given above.

A.3.3 Radiative Recombination

Helium II (He1+)

The radiative recombination rate for the processes

He2þ þ e ! He1þ nð Þþ �hx

has been fitted into the following formula (for n < 10):

Vrrh i ¼ 10�8A
ffiffiffi
b

p bþD
bþ v

cm�3s�1
� �

;

b ¼ Ry
Te

(note that above formula contains the ratio Ry/Te and not 4 Ry/Te). For
1
16

� b� 8

(i.e., 1:7 eV� b� 220 eV), the fitting formula provides an accuracy for all values of
n better than 10%. The following table contains the fitting parameters:

n A v D

1 1.64 � 10−5 0.133 0.01

2 8.53 � 10−6 0.418 0.02

2s 2.39 � 10−6 0.108 0.0

2p 6.05 � 10−6 0.529 0.0

3 5.46 � 10−6 0.725 0.02

4 3.87 � 10−6 1.06 0.02

5 3.00 � 10−6 1.59 0.03

6 2.35 � 10−6 1.99 0.02

7 1.90 � 10−6 2.38 0.03

8 1.56 � 10−6 2.77 0.03

9 1.31 � 10−6 3.15 0.03
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For principal quantum numbers n > 9, the following expression is adopted:

Vrrh i ¼ 5:20� 10�14b3=2n ebn Ei bnð Þ;

bn ¼
EHe1þ nð Þ

Te
:

Helium I (He0+)
The radiative recombination rate for the processes

He1þ 1s 2S1=2
� �þ e ! He0þ n;2Sþ 1 L

� �þ �hx

has been fitted into the following formula (for n < 10):

Vrrh i ¼ 10�8 QA
ffiffiffi
b

p bþD
bþ v

cm�3s�1� �
;

b ¼ Ry
Te

;

Q ¼ 1=4 if S ¼ 0

3=4 if S ¼ 1

 �

for excited states while Q = 1 if n = 1 (note, that the Pauli principle is included in

the fitting parameter A). For
1
16

� b� 8 (i.e., 1:7 eV� b� 220 eV), the fitting

formula provides an accuracy better than about 10% for all values of b and n. The
following table contains the fitting parameters:

nl A v D

1 4.66 � 10−6 0.0736 0.00

2 1.91 � 10−6 0.51 0.04

1s2s 1S0 6.19 � 10−7 8.99 � 10−2 0.0

1s2s 3S1 7.21 � 10−7 5.69 � 10−2 0.0

1s2p 3P012 1.39 � 10−6 1.53 0.0

1s2p 1P1 1.79 � 10−6 0.939 0.0

3 1.10 � 10−6 1.37 0.08

4 7.19 � 10−7 2.07 0.08

5 5.02 � 10−7 2.60 0.07

6 3.73 � 10−7 3.24 0.07

7 2.88 � 10−7 3.85 0.07

8 2.23 � 10−7 4.14 0.06

9 1.81 � 10−7 4.66 0.06
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For principal quantum numbers n > 10, the following expression is adopted:

Vrrh i ¼ 5:20� 10�14 Q b3=2n ebn Ei bnð Þ;

bn ¼
EHe0þ nð Þ

Te
;

Q ¼ 1=4 if S ¼ 0

3=4 if S ¼ 1

 �
:

A.3.4 Dielectronic Recombination

Helium II (He1+)
For the dielectronic recombination that exist only for He1+, two types of pro-

cesses are considered:

He1þ 1sð Þþ e ! 2l nl ! 1s nlþ �hx2

1s 2lþ �hxn

 �
! 1s2 þ �hx0

n
�hx0

2

 �

and

He1þ 1sð Þþ e ! 3l nl ! 1s nlþ �hx3

1s 3lþ �hxn

 �
! 1s2 þ �hx0

n
�hx0

3

 �
:

The dielectronic recombination rate coefficient is approximated by the following
formula:

Vrdh i ¼ 10�8Ab3=2 e�bv cm3s�1� �
;

b ¼ 4Ry
Te

:

Autoionizing states A v

2lnl′ 3.10 � 10−4 0.744

3lnl′ 5.48 � 10−6 0.888

The dielectronic recombination rates are dominated by the configurations 2lnl′.
Contributions from higher orders, like the nln′l′-configurations (n, n′ > 2), are
negligible. The above formulas can be applied coupling the H-like ground state to
the He-like like ground state via the given dielectronic recombination rate
coefficient.

More detailed considerations of the dielectronic recombination coupled to
excited states can be found in Guedda et al. (2006, 2007).
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A.3.5 Electron Collisional Excitation and De-excitation

Helium II (He1+)
Quantum mechanical calculations of cross sections for the transition nl ! n′l′

have been summed over all angular momenta l, l′ in order to obtain cross sections
and rate coefficients for the processes

He1þ nð Þþ e ! He1þ n0ð Þ þ e:

Rate coefficients for the transitions from the ground state, i.e., n = 1 ! n′ have
been fitted into the following formula:

hVrex 1 ! n0ð Þi ¼ 10�8 EHe1þ n0ð Þ
EHe1þ 1ð Þ

� �3=2

A
ffiffiffi
b

p bþ 1þD
bþ v

e�DE=Te cm3s�1
� �

;

DE ¼ EHe1þ 1ð Þ � EHe1þ n0ð Þ;
b ¼ Ry

Te

(note that the expression for b does not contain the factor 22, because a scaling
factor of 0.25 has been introduced for the calculations in order to obtain the same

energy interval like for hydrogen). For
1
16

� b� 32 (i.e., 0:43 eV� b� 220 eV),

the fitting formula provides an accuracy better than about 2% for all values of b and
n. The following table contains the fitting parameters.

n′ A v D

2 5.87 4.77 � 10−2 −0.72

3 4.99 3.30 � 10−2 −0.84

4 4.79 2.35 � 10−2 −0.88

5 4.71 2.28 � 10−2 −0.89

6 4.66 2.51 � 10−2 −0.89

7 4.63 2.63 � 10−2 −0.89

8 4.61 2.70 � 10−2 −0.89

9 4.60 2.78 � 10−2 −0.89

For large principal quantum numbers, we derived a n-scaled formula based on
the numerical calculations for n′ = 4, 5, 6, 7, 8, and 9:
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Vrex 1 ! nð Þh i ¼ 10�8

n2
f nð ÞC1

ffiffiffiffiffi
bn

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bn þ 1þC2

p
bn þC3

ln n � C4 þ C5

bn

� �
e�DE=Te ;

f nð Þ ¼ na
n2

n2 � 1

� �3=2n n� 1ð Þ2n�2

nþ 1ð Þ2nþ 2 ;

bn ¼
EH nð Þ
Te

;

DE ¼ EHe1þ 1ð Þ � EHe1þ nð Þ:

It is remarkable that with a = 0.38753, C1 = 4.2011 � 104, C2 = 1.2997 � 102,
C3 = 1.3126 � 102, C4 = 7.8875 � 10−1, C5 = 2.7627 � 10−2 an accuracy better
than 5% is achieved for all values of n and b. EH(n) is given in A.2.1.

For transitions between excited states with large principal quantum numbers, we
employ a Regemorter-type expression:

Vr n ! n0ð Þh i ¼ 3:15� 10�7f n ! n0ð Þ Ry
DE

� �3=2 ffiffiffi
b

p
e�bn p bnð Þ;

DE ¼ EHe1þ nð Þ � EHe1þ n0ð Þ;
bn ¼

DE
Te

;

where f is the oscillator strength and p the effective Gaunt factor. The required
oscillator strengths are obtained from the transition probabilities determined in the
above paragraphs and the general relation between the oscillator strength and the
transition probability. We employ the following Gaunt factor:

p bð Þ ¼ 0:2757e�1:3b b� b2

4
� ln bð Þ � 0:5772

� �
þ 0:2 1� e�4:5b� �

:

This formula provides the correct asymptotic behavior for low and high energies
and an accuracy better than 5% for all values of b.

For the electron collisional process from the 2s-level into the 2p-level, we
employ the following fitting formula:

Vrex 2s ! 2pð Þh i ¼ 10�8A
ffiffiffi
b

p bþ 1þD
bþ v

cm3s�1� �
;

b ¼ Ry
Te

:

n A v D

2s-2p 2.14 � 102 2.25 3.35
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For
1
16

� b� 32 (i.e., 0:43 eV� Te � 220 eV), the fitting formula provides an

accuracy better than about 5% for all values of b (note that Ry/Te is employed and
not 4Ry/Te).

Collisional de-exciation is calculated from the excitation rates as described in
Annex A.3.1.

Helium I (He0+)
Due to the singlet and triplet structures, the calculations of the cross sections in

neutral Helium are much more complicated: also cross sections from singlet to
triplet states are requested which cannot be approximated by any Regemorter-type
expression. We distinguish therefore four different types of transitions.

I. He0þ n ¼ 1; S ¼ 0ð Þþ e ! He0þ n0; S ¼ 0ð Þþ e;

these transitions lead to a strong population of the excited singlet levels through
collisions from the ground state.

Rate coefficients for the transitions from the ground state, i.e., n = 1 ! n′ have
been fitted into the following formula:

Vrex 1 ! nð Þh i ¼ 10�8

n2
f nð ÞC1

ffiffiffiffiffi
bn

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bn þ 1þC2

p
bn þC3

ln C4 þ C5

bn

� �
e�DE=Te ;

f nð Þ ¼ na
n2

n2 � 1

� �3=2
n n� 1ð Þ2n�2

nþ 1ð Þ2nþ 2 ;

bn ¼
EH nð Þ
Te

;

DE ¼ EHe0þ 1ð Þ � EHe0þ nð Þ:

For
1
16

� bnn
2 � 32 (i.e., 0:43 eV� Te � 220 eV), the fitting formula provides an

accuracy better than about 4% for all values of b and n. The following table
contains the fitting parameters. a has been fixed to a = 0.3.

n′ C1 C2 C3 C4 C5 Δmax/%

2 1.8128 � 103 4.4878 � 100 5.4878 � 100 1.5134 � 100 1.0478 � 10−1 1.3

3 4.5137 � 102 2.1152 � 102 5.0594 � 100 1.5360 � 100 3.7746 � 10−2 1.6

4 1.3811 � 103 4.4394 � 100 1.7340 � 100 1.5156 � 100 1.6433 � 10−2 1.9

5 1.9392 � 102 2.8594 � 102 1.5315 � 100 1.5255 � 100 1.1232 � 10−2 1.7

6 2.0475 � 102 1.5987 � 102 1.0326 � 100 1.5171 � 100 7.4141 � 10−3 1.8

7 1.0388 � 103 1.8963 � 100 5.9016 � 10−1 1.4962 � 100 4.7582 � 10−3 2.0

8 4.6740 � 102 1.3220 � 101 5.4899 � 10−1 1.5017 � 100 3.8854 � 10−3 2.0

9 1.3774 � 102 1.2765 � 102 4.4985 � 10−1 1.5036 � 100 3.0905 � 10−3 2.1

For large principal quantum numbers, we derived a n-scaled formula based on
the numerical calculations for n = 4, 5, 6, 7, 8, and 9:
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Vrex 1 ! nð Þh i ¼ 10�8

n2
f nð ÞC1

ffiffiffiffiffi
bn

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bn þ 1þC2

p
bn þC3

ln n0:1C4 þ C5

bn

� �
e�DE=Te ;

f nð Þ ¼ na
n2

n2 � 1

� �3=2n n� 1ð Þ2n�2

nþ 1ð Þ2nþ 2 ;

bn ¼
EH nð Þ
Te

;

DE ¼ EHe0þ 1ð Þ � EHe0þ nð Þ:

Taking the above formula with a = 2.8828 � 10−1, C1 = 1.6571 � 103,
C2 = −3.4064 � 10−1, C3 = 6.5951 � 10−1, C4 = 1.3230 � 100, C5 = 1.3372 �
10−2, an accuracy better than 15% is achieved for all values of n and b.

II. He0þ n ¼ 1; S ¼ 0ð Þþ e ! He0þ n0; S ¼ 1ð Þþ e,

these transitions lead to a strong population of the excited triplet levels through
exchange collisions from the ground state. Rate coefficients for the transitions from
the ground state, i.e., n = 1 ! n′ have been fitted into the following formula:

Vrex 1 ! nð Þh i ¼ 10�8

n2
f nð ÞC1

ffiffiffi
b

p bC2

bþC3
e�DE=Te ;

f nð Þ ¼ n2

n2 � 1

� �3=2n n� 1ð Þ2n�2

nþ 1ð Þ2nþ 2 ;

b ¼ Ry
Te

:

For
1
16

� b� 32 (i.e., 0:43 eV� Te � 220 eV), the fitting formula provides an

accuracy better than about 9%. We note that the introduction of the fitting exponent
C2 provides a better description of the high energy fall than the standard formulas
being proportional to bn

3/2. The following table contains the fitting parameters.

n′ C1 C2 C3 Δmax/%

2 1.4455 � 102 6.9433 � 10−1 3.0607 � 10−1 6.8

3 2.9826 � 102 6.6088 � 10−1 1.7122 � 10−1 9.6

4 3.7799 � 102 6.1672 � 10−1 1.1785 � 10−1 8.5

5 4.1927 � 102 5.9992 � 10−1 8.1190 � 10−2 7.9

6 4.4504 � 102 5.8875 � 10−1 5.9438 � 10−2 7.8

7 4.6308 � 102 5.9198 � 10−1 4.2183 � 10−2 8.5

8 4.7360 � 102 5.7756 � 10−1 3.4819 � 10−2 9.8

9 4.8923 � 102 5.8679 � 10−1 2.6089 � 10−2 9.1
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For large principal quantum numbers, we derived a n-scaled formula based on
the numerical calculations for n = 4, 5, 6, 7, 8, and 9:

Vrex 1 ! nð Þh i ¼ 10�8

n2
f nð ÞC1

ffiffiffi
b

p bC2

bþC3
e�DE=Te ;

f nð Þ ¼ na
n2

n2 � 1

� �3=2
n n� 1ð Þ2n�2

nþ 1ð Þ2nþ 2 ;

b ¼ Ry
Te

:

Taking the above formula with a = 1.7440 � 10−1, C1 = 2.1931 � 102,
C2 = 6.1083 � 10−1, C3 = 1.9344 � 100, an accuracy better than 9% is achieved
for all values of n and b.

III. He0þ n; S ¼ 0ð Þþ e ! He0þ n0 ¼ n; S ¼ 1ð Þþ e,

these transitions are very important to obtain a decreasing importance of
metastables of the triplet system with increasing density (note that these transitions
are very rare in the literature). Correct population of the triplet excited states of
helium is very important to incorporate, e.g., charge exchange processes. The
numerical calculation of these cross section data include all combinations of angular
momenta (monopole, dipole, quadruple, octupole….) and all multiplicities j (e.g.,
for n = n′ = 5: l = 0–4 and l′ = 0–4, j = 0–8, see also Sect. 5.5.2):

rex n ! n0ð Þ ¼ 1
n2

Xlþ l0j j

j¼ l�l0j j

Xn�1

l¼0

Xn0�1

l0¼0

2lþ 1ð Þrj nl ! n0l0ð Þ:

Summed rates are fitted into the following expression:

Vrex n; S ¼ 0 ! n0 ¼ n; S ¼ 1ð Þh i ¼ 10�8 EHe1þ n0; S ¼ 1ð Þ
EHe1þ n; S ¼ 0ð Þ

� �3=2

� A
ffiffiffi
b

p bþD
bþ v

e�DE=Te cm3s�1� �
;

DE ¼ EHe0þ n; S ¼ 0ð Þ � EHe0þ n0 ¼ n; S ¼ 1ð Þ;
b ¼ Ry

Te
:

(note that ΔE is negative as line strengths have been calculated from singlet to

triplet system). For
1
16

� b� 32 (i.e., 0:43 eV� b� 220 eV), the fitting formula

provides an accuracy better than about 2% for all values of b and n. The following
table contains the fitting parameters.
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n = n′ A v D

2 6.39 � 101 2.17 0.01

3 2.78 � 102 4.53 0.00

4 4.91 � 102 8.17 0.00

5 1.23 � 103 1.33 � 101 0.00

6 2.04 � 103 2.04 � 101 0.00

7 2.65 � 103 2.78 � 101 0.00

8 4.69 � 103 4.61 � 101 0.00

9 4.58 � 103 5.40 � 101 0.00

For large principal quantum numbers, we derived a n-scaled formula based on
the numerical calculations for n = 4, 5, 6, 7, 8, and 9:

Vr n ! n0ð Þh i ¼ 10�8

n2
C1n

a
ffiffiffi
b

p bC2

bþC3
e�DE=Te ;

DE ¼ EHe0þ n; S ¼ 0ð Þ � EHe0þ n0 ¼ n; S ¼ 1ð Þ;
b ¼ Ry

Te
:

Taking the above formula with a = 1.3339 � 100, C1 = 2.6840 � 102,
C2 = 9.4216 � 10−1, C3 = 4.2964 � 101, an accuracy better than 65% is achieved
for all values of n and b (note that more accurate fits may not provide necessarily
improved accuracy as the accuracy of calculation for Δn = 0 transitions is about a
factor of 2).

IV.
He0þ n� 2; S ¼ 0ð Þþ e ! He0þ n0 � 2; S ¼ 0ð Þþ e;

He0þ n� 2; S ¼ 1ð Þþ e ! He0þ n0 � 2; S ¼ 1ð Þþ e;

these transitions provide the necessary exchange of populations between the
excited states. For all transitions ΔS = 0 and Regemorter-type formulas provide a
good approximation:

Vrex n ! n0ð Þh i ¼ 3:15� 10�7f n ! n0ð Þ Ry
DE

� �3=2 ffiffiffiffiffi
bn

p
e�b p bnð Þ;

DE ¼ EHe01þ nð Þ � EHe0þ n0ð Þ;
bn ¼

DE
Te

:

f is the oscillator strength and p(b) the effective Gaunt factor. The required oscillator
strengths are obtained from the transition probabilities determined above. For the
Gaunt factor, we employ the expression
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p bð Þ ¼
if b� 0:4 : 0:27566 � b� b2

4
þ b3

12
� ln bð Þ � 0:57722

� �

else 0:066

ffiffiffiffiffiffiffiffiffiffiffi
bþ 2

p
bþ 0:127

8>><
>>:

9>>=
>>;:

Concerning the metastable level, we consider the electron collisional process
from the 2s-level into the 2p-level employing the following fitting formula:

Vr 1s2lLS ! 1s2l0L0S0ð Þh i ¼ 10�8 Eup

Elow

� �3=2 A
2l0 þ 1

ffiffiffi
b

p
bþ v

F DSð Þe�DE=Te cm3s�1� �
;

F DSð Þ ¼ bþ 1þD if DS ¼ 0

bþD if DS ¼ 1

 �
;

DE ¼ Elow � Eup;

b ¼ Ry
Te

:

Transition A v D ΔS l0
1s2s 3S1 ! 1s2s 1S0 2.79 1.66 0.0 1 0

1s2s 3S1 ! 1s2p 3P012 49.5 0.95 8.55 0 0

1s2s 3S1 ! 1s2p 1P1 3.64 1.52 0.0 1 0

1s2s 1S0 ! 1s2p 3P012 5.30 1.08 0.0 1 0

1s2s 1S0 ! 1s2p 1P1 53.5 1.22 13.3 0 0

1s2p 3P012 ! 1s2p 1P1 8.76 1.59 0.0 1 1

For
1
16

� b� 32 (i.e., 0:43 eV� Te � 220 eV), the fitting formula provides an

accuracy better than about 10% for all values of b (note that even in the case
ΔS = 0, there is an exchange part in the cross section and the total sum of direct and
exchange part has been fitted in that case into the formula for ΔS = 0).

Collisional de-excitation is calculated from the excitation rates as described in
Annex A.2.4.

A.3.6 Ionization and Three-Body Recombination

Helium II (He1+)
Ionization rates for the processes

He1þ nð Þþ e ! He2þ þ 2e

are fitted to the following formula:
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Vrizh i ¼ 10�8

8n2
ffiffiffi
b

p A
bþ v

bþ 1þD
bþ 1

e�EHe1þ nð Þ=Te cm3s�1� �
;

b ¼ 4Ry
Te

:

The following table contains the corresponding fitting parameters. For all values

of n = 1–9 and
1
4
� b� 128 (i.e., 0:5 eV� b� 220 eV), the fitting is accurate

within 10%.

n A v D

1 6.22 0.216 −0.590

2 9.08 � 102 1.10 � 101 1.44

3 1.21 � 104 2.04 � 101 1.14

4 6.61 � 104 3.00 � 101 1.23

5 2.00 � 105 2.76 � 101 0.780

6 4.93 � 105 2.61 � 101 0.530

7 7.47 � 105 3.30 � 101 0.230

8 2.09 � 106 3.41 � 101 0.180

9 4.44 � 106 3.61 � 101 0.120

In order to provide ionization rates for any values of n � 7 and b, the following
fitting formula has been developed:

Vrizh i ¼ 10�8

8n2
ffiffiffi
b

p An5

bþ v
bþD
bþ f nð Þ e

�b cm3s�1� �
;

f nð Þ ¼ 3þ c
n4

;

b ¼ 4 � EH nð Þ
Te

:

With A = 1.1426 � 101, v = 3.5913 � 10−1, D = 2.4579 � 100 and c = 6.8156
� 103, the above fitting formula provides an accuracy better than 20% for all values

of n � 7 and b (
1
4
� 4Ry=Te � 128).

Concerning metastable levels, we consider here the ionization out of the levels
2s and 2p and fit the rates to the following fitting formula:

Vrizh i ¼ 10�8

8 2l0 þ 1ð Þ
ffiffiffi
b

p A
bþ v

bþ 1þD
bþ 1

e�EHe1þ nð Þ=Te cm3s�1� �
;

b ¼ 4Ry
Te

:
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n A v D I0
2s 2.46 � 102 2.52 � 101 3.90 0

2p 6.84 � 102 9.10 0.95 1

For the 2s level, the accuracy is better than 8%, for the 2p level better than 5%

for all values of b in the interval
1
4
� b� 128 (i.e., 0:5 eV� Te � 220 eV).

Three-body recombination is calculated from the ionization rates as described in
Annex A.2.5.

Helium I (H0+)
Ionization rates for the processes

He n; Sð Þþ e ! He1þ þ 2e

are fitted to the following formula:

Vrizh i ¼ 10�8 1
n2

ffiffiffi
b

p mA
bþ v

bþ 1þD
bþ 1

� 1

1þ b
EHe0þ n; Sð Þ

Ry

0
BB@

1
CCA

1=2

e�EHe0þ n;Sð Þ=Te cm3s�1� �
;

b ¼ Ry
Te

;

m ¼ 2 if n ¼ 1

1 if n� 2

 �
:

The following table contains the corresponding fitting parameters. For all values

of n = 1–9 and
1
16

� b� 32 (i.e., 0:5 eV� Te � 220 eV), the fitting is accurate

within 10%.

n A v D

1 1.79 0.100 −0.510

2 4.04 � 103 3.93 � 101 0.950

3 1.65 � 106 1.91 � 103 0.460

4 6.30 � 106 1.86 � 103 0.330

5 1.28 � 107 1.45 � 103 0.430

6 3.86 � 106 1.85 � 102 0.350

7 4.84 � 106 1.13 � 102 0.310

8 6.23 � 106 7.61 � 101 0.230

9 9.30 � 106 6.49 � 101 0.170
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In order to provide ionization rates for any values of n � 6 and b, the following
fitting formula has been developed:

Vrizh i ¼ 10�8

n2
ffiffiffi
b

p An5

bþ v
bþD
bþ f nð Þ e

�b cm3s�1
� �

;

f nð Þ ¼ 10þ c
n4

;

b ¼ EH nð Þ
Te

:

With A = 8.4667 � 101, v = 1.8865 � 10−1, D = 5.3907 � 10−1, and
c = 8.3805 � 102, the fitting formula provides an accuracy better than 10% for all

values of n � 6 and b (
1
16

�Ry=Te � 32).

Concerning metastable levels, we consider here the ionization out of the levels
1s2s 1S0, 1s2s

3S1, 1s2p
1P1 and 1s2p 3P012. Data are fitted to the following formula:

Vrizh i ¼ 10�8 1
2l0 þ 1

ffiffiffi
b

p A
bþ v

bþ 1þD
bþ 1

� 1

1þ b
EHe0þ n; Sð Þ

Ry

0
BB@

1
CCA

1=2

e�EHe0þ n;Sð Þ=Te cm3s�1� �
;

b ¼ Ry
Te

:

Level A v D l0
1s2s 1S0 7.76 � 102 120.6 0.1 0

1s2s 3S1 4.17 � 102 15.8 0.05 0

1s2p 1P1 4.14 � 103 50.5 1.0 1

1s2p 3P012 3.28 � 103 46.6 1.15 1

For the 1s2s-levels, the accuracy is better than 22%, for the 1s2p-levels better

than 6% for all values of b in the interval
1
16

� b� 32 (i.e., 0:5 eV� Te � 220 eV).

Three-body recombination is calculated from the ionization rates as described in
Annex A.2.5.
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A.3.7 Matrix Elements Including Phase Sign, Oscillator
Strengths, and Energies of nlj-Split Levels

Matrix elements including phase sign, oscillator strengths, and energies for an
LSJ-split level structure have been calculated for the H-like He II (He1+) states nlj
from n = 1–6, l = 0–5 and all j. Designations of levels, principal quantum numbers,
orbital quantum numbers, statistical weights, and energies are given in the fol-
lowing table:

N° n l g E (eV)

1 1 0 2 0.0000000000D+00

2 2 1 2 4.0813272140D+01

3 2 0 2 4.0813305651D+01

4 2 1 4 4.0813998142D+01

5 3 1 2 4.8371547614D+01

6 3 0 2 4.8371557179D+01

7 3 2 4 4.8371762682D+01

8 3 1 4 4.8371762735D+01

9 3 2 6 4.8371834300D+01

10 4 1 2 5.1016914617D+01

11 4 0 2 5.1016918535D+01

12 4 1 4 5.1017005364D+01

13 4 2 4 5.1017005503D+01

14 4 2 6 5.1017035715D+01

15 4 3 6 5.1017035836D+01

16 4 3 8 5.1017050924D+01

17 5 1 2 5.2241329093D+01

18 5 0 2 5.2241331054D+01

19 5 1 4 5.2241375557D+01

20 5 2 4 5.2241375708D+01

21 5 2 6 5.2241391176D+01

22 5 3 6 5.2241391315D+01

23 5 3 8 5.2241399040D+01

24 5 4 8 5.2241399083D+01

25 5 4 10 5.2241403718D+01

26 6 0 2 5.2906436533D+01

27 6 1 2 5.2906437979D+01

28 6 1 4 5.2906464806D+01

29 6 2 4 5.2906464971D+01

30 6 2 6 5.2906473913D+01

31 6 3 6 5.2906474035D+01

32 6 3 8 5.2906478506D+01
(continued)
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(continued)

N° n l g E (eV)

33 6 4 8 5.2906478564D+01

34 6 4 10 5.2906481246D+01

35 6 5 10 5.2906481250D+01

36 6 5 12 5.2906483038D+01

Note that the total quantum number j can be calculated from the relation
g = 2j+1. Matrix elements [in atomic units], oscillator strengths, and wavelengths
[in Angstroem] are given in the following table:

N° of level i N° of level j ikr jkh i [a0] fij kji [10
−10 m]

1 2 5.2682085636D−01 1.3875710000D−01 3.0378400702D+02

1 4 7.4499002699D−01 2.7748380000D−01 3.0377857353D+02

1 5 2.1099507736D−01 2.6379260000D−02 2.5631634091D+02

1 8 2.9839170775D−01 5.2758600000D−02 2.5631522814D+02

1 10 1.2441232688D−01 9.6731700000D−03 2.4302566933D+02

1 12 1.7594874397D−01 1.9347070000D−02 2.4302519297D+02

1 17 −8.5289593601D−02 4.6551585000D−03 2.3732969088D+02

1 19 −1.2062103245D−01 9.3108350000D−03 2.3732946373D+02

1 27 −6.3478326321D−02 2.6114840000D−03 2.3434611552D+02

1 28 −8.9774842625D−02 5.2233150000D−03 2.3434602693D+02

2 3 2.1213549918D+00 1.8473335000D−06 3.6997769406D+08

3 4 3.0002088177D+00 7.6356300000D−05 1.7904088992D+07

3 5 −1.2514149539D+00 1.4499455000D−01 1.6403839279D+03

2 6 −3.8323688474D−01 1.3598340000D−02 1.6403745956D+03

4 6 5.4217667006D−01 1.3606960000D−02 1.6405321745D+03

2 7 −2.7413928866D+00 6.9583400000D−01 1.6403298886D+03

4 7 −1.2261012383D+00 6.9589550000D−02 1.6404874589D+03

3 8 −1.7695205778D+00 2.8991610000D−01 1.6403372672D+03

4 9 −3.6782605813D+00 6.2629700000D−01 1.6404720478D+03

3 10 −5.2367309981D−01 3.4276955000D−02 1.2151011946D+03

2 11 1.5621586858D−01 3.0502365000D−03 1.2150964312D+03

4 11 −2.2099194090D−01 3.0519350000D−03 1.2151833691D+03

3 12 −7.4053101163D−01 6.8544350000D−02 1.2150904770D+03

2 13 9.8731127826D−01 1.2184155000D−01 1.2150869045D+03

4 13 4.4154526347D−01 1.2183627500D−02 1.2151726500D+03

4 14 1.3246570743D+00 1.0965652500D−01 1.2151690771D+03

3 17 3.1619517158D−01 1.3996175000D−02 1.0849139833D+03

2 18 9.3277283933D−02 1.2180140000D−03 1.0849101860D+03

4 18 −1.3195340857D−01 1.2186640000D−03 1.0849794921D+03

3 19 4.4714413496D−01 2.7989550000D−02 1.0849092366D+03

2 20 −5.6323515853D−01 4.4410080000D−02 1.0849063886D+03

4 20 −2.5188303201D−01 4.4406075000D−03 1.0849747449D+03
(continued)
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(continued)

N° of level i N° of level j ikr jkh i [a0] fij kji [10
−10 m]

4 21 −7.5566875360D−01 3.9967625000D−02 1.0849737954D+03

2 26 6.4905812278D−02 6.2407250000D−04 1.0252422609D+03

4 26 −9.1817320562D−02 6.2439775000D−04 1.0253033052D+03

3 27 2.2099568857D−01 7.2349300000D−03 1.0252448043D+03

3 28 3.1252217611D−01 1.4468695000D−02 1.0252422609D+03

2 29 3.8255318319D−01 2.1679660000D−02 1.0252397176D+03

4 29 1.7107847530D−01 2.1677210000D−03 1.0253007615D+03

4 30 5.1325133580D−01 1.9510722500D−02 1.0252999137D+03

5 6 5.1964061126D+00 3.1638560000D−06 1.2962348253D+09

5 7 5.8100687326D+00 8.8933300000D−05 5.7649045043D+07

6 8 7.3490809850D+00 1.3599535000D−04 6.0316471756D+07

8 9 7.7950603030D+00 2.6633950000D−05 1.7324773478D+08

6 10 −2.2332723176D+00 1.6162020000D−01 4.6868602990D+03

7 10 7.5242596190D−01 9.1722550000D−03 4.6872235320D+03

5 11 9.9789242413D−01 3.2268740000D−02 4.6868354949D+03

8 11 −1.4116906054D+00 3.2287050000D−02 4.6872164439D+03

6 12 −3.1577918066D+00 3.2314250000D−01 4.6866990771D+03

7 12 −3.3637515058D−01 1.8332060000D−03 4.6870622850D+03

9 12 1.0092598727D+00 1.1001866667D−02 4.6871898641D+03

5 13 4.3680651666D+00 6.1831100000D−01 4.6866813610D+03

8 13 1.9537261369D+00 6.1843025000D−02 4.6870622850D+03

8 14 5.8609613290D+00 5.5655250000D−01 4.6870091291D+03

7 15 −7.9253093721D+00 1.0176557500D+00 4.6870091291D+03

9 15 −2.1181800823D+00 4.8460866667D−02 4.6871349334D+03

9 16 −9.4727135678D+00 9.6920783333D−01 4.6871083544D+03

6 17 9.2291223527D−01 4.0377025000D−02 3.2039145200D+03

7 17 −2.7920337529D−01 1.8475725000D−03 3.2040850834D+03

5 18 3.9622424428D−01 7.4421200000D−03 3.2039054128D+03

8 18 −5.6049632184D−01 7.4457075000D−03 3.2040834274D+03

6 19 1.3050652667D+00 8.0738950000D−02 3.2038764355D+03

7 19 1.2482435800D−01 3.6928700000D−04 3.2040461669D+03

9 19 −3.7451634894D−01 2.2161933333D−03 3.2041057841D+03

5 20 −1.7142785676D+00 1.3931000000D−01 3.2038681564D+03

8 20 −7.6669325542D−01 1.3931855000D−02 3.2040461669D+03

8 21 −2.3000620886D+00 1.2538520000D−01 3.2040337469D+03

7 22 2.5712976433D+00 1.5670107500D−01 3.2040329189D+03

9 22 6.8720222027D−01 7.4616866667D−03 3.2040925357D+03

9 23 3.0732996173D+00 1.4923771667D−01 3.2040859115D+03

5 26 2.3430506454D−01 3.0497050000D−03 2.7340070948D+03

8 26 −3.3144081804D−01 3.0510975000D−03 2.7341367207D+03

6 27 5.5605781257D−01 1.7176460000D−02 2.7340119178D+03

7 27 −1.5967977257D−01 7.0818050000D−04 2.7341361178D+03

6 28 7.8632466099D−01 3.4347865000D−02 2.7339956400D+03

7 28 7.1389288497D−02 1.4155095000D−04 2.7341198385D+03
(continued)
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(continued)

N° of level i N° of level j ikr jkh i [a0] fij kji [10
−10 m]

9 28 −2.1419176570D−01 8.4948200000D−04 2.7341626474D+03

5 29 1.0061669877D+00 5.6239000000D−02 2.7339902142D+03

8 29 4.4998536072D−01 5.6239775000D−03 2.7341198385D+03

8 30 1.3499587692D+00 5.0616050000D−02 2.7341144121D+03

7 31 1.3938573724D+00 5.3961550000D−02 2.7341144121D+03

9 31 3.7251643883D−01 2.5694516667D−03 2.7341572209D+03

9 32 1.6659753963D+00 5.1391016667D−02 2.7341548091D+03

10 11 −9.4874850284D+00 4.3197240000D−06 3.1647591541D+09

11 12 −1.3417669371D+01 1.9149105000D−04 1.4279069213D+08

10 13 −1.2001284991D+01 1.6035470000D−04 1.3641682040D+08

12 14 −1.6101464875D+01 4.8195025000D−05 4.0850062140D+08

13 15 −1.2297803148D+01 2.8096875000D−05 4.0875367637D+08

14 16 −1.4698713513D+01 1.3417165000D−05 8.1521240307D+08

11 17 −3.4781790607D+00 1.8145075000D−01 1.0126026881D+04

13 17 1.7595814849D+00 2.3217370000D−02 1.0126746433D+04

10 18 1.8787374628D+00 5.2940650000D−02 1.0125985531D+04

12 18 −2.6577456899D+00 5.2968975000D−02 1.0126729891D+04

11 19 −4.9179764535D+00 3.6278080000D−01 1.0125646470D+04

13 19 −7.8664993011D−01 4.6405950000D−03 1.0126365968D+04

14 19 2.3602425325D+00 2.7849783333D−02 1.0126614094D+04

10 20 −6.3736618286D+00 6.0932750000D−01 1.0125613392D+04

12 20 −2.8508487737D+00 6.0947950000D−02 1.0126365968D+04

15 20 1.2876782181D+00 8.2894016667D−03 1.0126614094D+04

12 21 −8.5521100361D+00 5.4848250000D−01 1.0126233639D+04

15 21 −3.4410064572D−01 5.9195016667D−04 1.0126490029D+04

16 21 1.5389825539D+00 8.8805025000D−03 1.0126614094D+04

13 22 −1.0896416503D+01 8.9039675000D−01 1.0126233639D+04

14 22 −2.9123126164D+00 4.2402383333D−02 1.0126481759D+04

14 23 −1.3023966457D+01 8.4801516667D−01 1.0126423863D+04

15 24 −1.6408257294D+01 1.3459900000D+00 1.0126423863D+04

16 24 −3.1578243335D+00 3.7389425000D−02 1.0126547926D+04

16 25 −1.8681697519D+01 1.3086012500D+00 1.0126506571D+04

10 26 7.3130397524D−01 1.2378725000D−02 6.5616694063D+03

12 26 −1.0344767148D+00 1.2384267500D−02 6.5619854337D+03

11 27 −1.4116474719D+00 4.6124505000D−02 6.5616798243D+03

13 27 6.5001137343D−01 4.8895750000D−03 6.5619819607D+03

11 28 −1.9961384017D+00 9.2228850000D−02 6.5615860635D+03

13 28 −2.9061190681D−01 9.7737750000D−04 6.5618881913D+03

14 28 8.7192842213D−01 5.8654183333D−03 6.5619923797D+03

10 29 2.5342204992D+00 1.4865350000D−01 6.5615721733D+03

12 29 1.1334334804D+00 1.4867155000D−02 6.5618847184D+03

15 29 −4.3903461013D−01 1.4870816667D−03 6.5619923797D+03

12 30 3.4002205381D+00 1.3379865000D−01 6.5618534625D+03

15 30 1.1732287429D−01 1.0619518333D−04 6.5619611228D+03
(continued)
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(continued)

N° of level i N° of level j ikr jkh i [a0] fij kji [10
−10 m]

16 30 −5.2471954713D−01 1.5931312500D−03 6.5620132178D+03

13 31 −4.0127029969D+00 1.8634237500D−01 6.5618534625D+03

14 31 −1.0724525916D+00 8.8735166667D−03 6.5619611228D+03

14 32 −4.7961306414D+00 1.7746900000D−01 6.5619437580D+03

15 33 −4.8634295293D+00 1.8248433333D−01 6.5619437580D+03

16 33 −9.3596542645D−01 5.0689487500D−03 6.5619958527D+03

16 34 −5.5372513801D+00 1.7741375000D−01 6.5619889067D+03

17 18 1.5001143084D+01 5.4071150000D−06 6.3208735236D+09

18 19 2.1215239903D+01 2.4536205000D−04 2.7860093707D+08

17 20 −1.9845199301D+01 2.2488710000D−04 2.6597487289D+08

19 21 −2.6625200749D+01 6.7817925000D−05 7.9378989543D+08

20 22 −2.3240464435D+01 5.1629475000D−05 7.9443075941D+08

21 23 −2.7777699949D+01 2.4775700000D−05 1.5766659664D+09

22 24 −2.0833402241D+01 1.3766800000D−05 1.5961010389D+09

23 25 −2.3719889904D+01 8.0600025000D−06 2.6504784510D+09

17 26 −3.0267465352D+00 7.4640050000D−02 1.8641228018D+04

19 26 4.2817182363D+00 7.4678475000D−02 1.8642528580D+04

18 27 −4.9885775301D+00 2.0275560000D−01 1.8641242032D+04

20 27 −3.1371520667D+00 4.0089550000D−02 1.8642492139D+04

18 28 −7.0535358063D+00 4.0536915000D−01 1.8640488124D+04

20 28 1.4025392294D+00 8.0132350000D−03 1.8641740934D+04

21 28 −4.2081126630D+00 4.8089600000D−02 1.8642175392D+04

17 29 −8.7577720434D+00 6.2492150000D−01 1.8640429272D+04

19 29 −3.9172845936D+00 6.2509825000D−02 1.8641732525D+04

22 29 2.8318636637D+00 2.1778166667D−02 1.8642172589D+04

19 30 −1.1751167180D+01 5.6253000000D−01 1.8641480268D+04

22 30 −7.5675345540D−01 1.5552163333D−03 1.8641923124D+04

23 30 3.3845496376D+00 2.3331375000D−02 1.8642138953D+04

20 31 1.4399946756D+01 8.4470600000D−01 1.8641483071D+04

21 31 3.8487468547D+00 4.0227316667D−02 1.8641914715D+04

24 31 −1.8715341660D+00 7.1340150000D−03 1.8642136150D+04

21 32 1.7211615450D+01 8.0450483333D−01 1.8641791386D+04

24 32 3.6014935336D−01 2.6418412500D−04 1.8642012818D+04

25 32 −2.1307899176D+00 7.3979220000D−03 1.8642141756D+04

22 33 2.0896249892D+01 1.1858288333D+00 1.8641794189D+04

23 33 4.0215877936D+00 3.2940987500D−02 1.8642010015D+04

23 34 2.3791555176D+01 1.1528925000D+00 1.8641934335D+04

24 35 2.8691833454D+01 1.6767175000D+00 1.8641934335D+04

25 35 4.3255334009D+00 3.0486630000D−02 1.8642066075D+04

25 36 3.1785489261D+01 1.6462250000D+00 1.8642015621D+04

26 27 2.1735529073D+01 8.3705800000D−06 8.5719452155D+09

26 28 3.0739190428D+01 3.2725270000D−04 4.3852644457D+08

27 29 2.9392173223D+01 2.8564190000D−04 4.5934155734D+08

28 30 3.9433824907D+01 8.6734850000D−05 1.3614712155D+09
(continued)
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(continued)

N° of level i N° of level j ikr jkh i [a0] fij kji [10
−10 m]

29 31 3.6221721643D+01 7.2840575000D−05 1.3678204895D+09

30 32 4.3293277359D+01 3.5155733333D−05 2.6990924233D+09

31 33 −3.7260079667D+01 2.5670983333D−05 2.7379030420D+09

32 34 −4.2422489500D+01 1.5102075000D−05 4.5247011583D+09

33 35 −3.1460467629D+01 8.1423575000D−06 4.6154534293D+09

34 36 −3.4852649778D+01 5.3334240000D−06 6.9181466042D+09

A.4 Ionization Potential Depression: Level
Delocalization and Line Shifts

In a low-density environment, where atoms and ions are essentially free, atomic
population kinetics of gases and plasmas has been very successful in many different
scientific and technical disciplines. As density increases, the free atom model breaks
down resulting in a perturbation of the atomic energy levels. The perturbation of
atomic levels manifests itself essentially in a broadening and a shift. These per-
turbations can be observed in high-resolution spectroscopic experiments via the
analysis of the line broadening, the line shift and the disappearance of the line
emission (corresponding to the ionization potential depression IPD of the upper
level).

The IPD is of great interest for applications in thermodynamics and also for the
understanding of the various radiative properties (emission, absorption, scattering).
Since decades, the working horse in dense plasma atomic physics has been a plasma
screening potential that acts as a perturber for the free atom Hamiltonian. Of par-
ticular interest is the self-consistent finite temperature ion sphere SCFTIS model: it
allows to combine dense plasma effects in a very general manner with the numerical
solution of the Schrödinger or Dirac equation and allows reaching spectroscopic
precision. Recent measurements have, however questioned our understanding in the
precision of the Multi-Configuration-Dirac-Fock Self-Consistent Finite
Temperature Ion Sphere model MCDF-SCFTIS: it was claimed [Beiersdorfer et al.
2019] that measured line shift values are significantly smaller than predictions from
the self-consistent-field ion-sphere model. However, a more profound analysis of
the situation has discovered [Li and Rosmej 2020] that the self-consistent ion
sphere model is in excellent agreement with the data and that the claimed dis-
crepancies of [Beiersdorfer et al. 2019] are no conceptual ones of the ion sphere
model but are just due to a limited precision of the employed 2nd-order approxi-
mation of the arbitrary perturbation potential method APPM while the original
APPM [Rosmej et al. 2011] provides excellent agreement with the measurements.

Due to the complexity of the self-consistent numerical calculations of the MCDF
and the Poisson equations applications are not very convenient neither for dense
plasma atomic physics studies nor for integrated simulations in high-energy density
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physics. Moreover, analytical approximations for precise quantum states are rather
rare and had been developed mostly for rather specific cases. Application of the
SCFTIS model for non specialists was therefore very difficult. In the following, we
close this gap proposing general and easy to use analytical formulas that do not
request specific knowledge in atomic physics nor numerical resources. The
developed formulas are based on the analytical b-potential method proposed
recently [Li and Rosmej 2020].

A.4.1 The Analytical b-potential Method

The energy shift of an N-electron system is approximated by (in atomic units, i.e.
DE in units of 2Ry ¼ 2� 13:6057 eV, R in units of the Bohr radius
a0 ¼ 0:529177 � 10�8 cm)

DEi �
XN
i¼1

Nf

R
� 1þ 1

x� 1
� 1� rx�1

i

� �
Rx�1

� �� �
; ðA4:1Þ

where

x ¼ 3� b
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nf

R � kTe

r
: ðA4:2Þ

The ion sphere radius R is given by

4
3
pR3 � ne ¼ Zn � Nb; ðA4:3Þ

ne the electron density in units of 1=a30, kTe the electron temperature in units of 2Ry,
Zn is the nuclear charge, Nb is the number of bound electrons and Nf is the number
of free electrons in the ion sphere that is determined from the quasi-neutrality
condition:

Nf ¼ Zn � Nb: ðA4:4Þ

rx�1
i

� �
is the mean value of rx�1

i of the ith-bound electron (in units of a0) that can be
approximated analytically according
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rx�1
i

� � � �1ð Þn�l�1

2n
� n

2 � Zeff
i

� �x�1

�
Xn�l�1

i¼0

�1ð Þi
C iþ 1ð Þ �

C 2lþ 3þ iþ bð Þ � C 2þ iþ bð Þ
C 2lþ 2þ ið Þ � C n� l� ið Þ � C lþ 3� nþ iþ bð Þ;

ðA4:5Þ

b ¼ x� 1; ðA4:6Þ

where n and l are the principal and orbital quantum number of the ith-electron,
respectively. The effective nuclear charge can be calculated according

Zeff
i ¼ n

ffiffiffiffiffiffiffiffiffiffi
2 Eij j

p
; ðA4:7Þ

where Ei is the energy of the ith-electron in units of 2Ry (means Ei is the ionization
energy of the ith-electron). C zð Þ is the Gamma function:

C zð Þ ¼
Z1
0

tz�1 � e�tdt: ðA4:8Þ

If the argument of the Gamma function is integer, we have simply

C nþ 1ð Þ ¼ n!: ðA4:9Þ

Due to possible non-integer values of the x-parameter (A4.2), the Gamma
function for non-integer arguments is in generally requested. In that case, the
integral can be calculated by an analytical approximation for all relevant values
z[ 0:

C zþ 1ð Þ �
ffiffiffiffiffiffi
2p

p
� zþ cþ 0:5ð Þzþ 0:5�e�z�c�0:5

� c0 þ c1
zþ 1

þ c2
zþ 2

þ c3
zþ 3

þ c4
zþ 4

þ c5
zþ 5

þ c6
zþ 6

þ e

� �
:

ðA4:10Þ

With c ¼ 5:0, c0 ¼ 1:0, c1 ¼ 76:18009173, c2 ¼ �86:50532033,
c3 ¼ 24:01409822, c4 ¼ �1:231739516, c5 ¼ 0:120858003 � 10�2, c6 ¼
�0:536382 � 10�5 the error ej j\2 � 10�10 which is more than sufficient for the
present purpose.

Physically, the b-parameter describes the slope of the free electron distribution
function inside the ion sphere and can be approximated by an analytical repre-
sentation according
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Pf rð Þ ¼ Nf � r
R

	 
x
: ðA4:11Þ

Pf rð Þ has the correct limit of the uniform electron gas model for which x ¼ 3
(infinite temperature). b is a parameter that characterizes the self-consistent electron
distribution in the ion sphere, e.g. for a Maxwellian electron distribution the
MCDF-SCFTIS simulations are well matched for b � 2 while IPD values of near
solid density matter could be described with b � 4, the so-called b4-potential (re-
maining lattice structure) [Li et al. 2019, Li and Rosmej 2020].

A.4.2 Simple Analytical Formulas for Line Shifts

If only one electron is involved in the atomic transition (corresponding to the
overwhelming number of cases), the corresponding spectral shift DEshift can be
easily calculated by the difference of the energy shift between the two orbits i and
j involved, i.e. for the transition j ! i:

DEshift j ! ið Þ ¼ Nf � 1
x� 1

� 1
Rx

� rx�1
j

D E
� rx�1

i

� �	 

: ðA4:12Þ

Let us apply the analytical b-potential method for demonstration to the line shift
in dense plasmas. We consider Heb ¼ 1s3p 1P1 ! 1s2 1S0 of Cl15+ for kTe ¼
600eV , ne ¼ 5 � 1023cm�3, b ¼ 2, i ¼ 1s2 1S0, Ei ¼ 3658:34eV , j ¼ 1s3p 1P1, Ej ¼
386:69eV from which it follows (in atomic units): Nf ¼ Zn � Nb ¼ 17� 2 ¼ 15,
ne ¼ 0:07409, kTe ¼ 22:05, Ei ¼ 134:44, Zeff

i ¼ 16:40, Ej ¼ 14:211, Zeff
j ¼ 15:99,

R ¼ 3:643, x ¼ 2:725, b ¼ 1:725, rx�1
i

� � ¼ 1:942 � 10�2, DEi ¼ 6:500, rx�1
j

D E
¼

0:7171, DEj ¼ 6:321 and finally DEshift j ! ið Þ ¼ 6:321� 6:500 ¼ �0:179, i.e.
DEshift j ! ið Þ ¼ �4:87eV (red shift). This value (shown with black solid square in
Fig. A.4.1) is in excellent agreement with the numerical calculations in the
framework of the MCDF-SCFTIS (red crosses in Fig. A.4.1) [Li and Rosmej 2020].
The figure shows also the measurements [Beiersdorfer et al. 2019] of the line shift
of Heb of Cl15+ in dependence of electron density that demonstrates also excellent
agreement for all other densities. The curve with solid black squares of Figure A.4.1
shows the analytical result of the b-potential method according (A4.1–A4.12): it
demonstrates very good agreement with the numerical MCDF-SCFTIS simulations
and the data for all densities. The analytical b-potential method has therefore
spectroscopic precision.

Figure A.4.2 demonstrates the application of the b-potential method for near
solid density plasma, where lattice effects may remain (for more detailed discussion
see [Li et al. 2019; Li and Rosmej 2020]. The figure shows the experimental
measurements of Hea ¼ 1s2p 1P1 ! 1s2 1S0 of Al

11+ [Stillman et al. 2017] and the
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numerical MCDF-SCFTIS simulations (red crosses connected with solid red line).
It can be seen, that the MCDF-SCFTIS simulations are very far from the data. The
solid blue circles show MCDF-simulations that include the b-potential for b = 4
(so-called b4-potential method [Li and Rosmej 2020]) while the dashed blue curve
includes to these simulations the apparent shifts due to line overlap from higher
order satellites and other effects (for details see [Stillman et al. 2017]). Excellent
agreement with the measurements is observed. Figure A.4.2 includes also the
results form the analytical b-potential method (i.e. (A4.1–A4.12)) for b ¼ 4, black
solid curve. Excellent agreement with the much more complex MCDF simulations
(solid blue circles connected with solid blue curve) is observed. Figure A.4.2
demonstrates therefore the capacity of the b-potential method to imitate lattice
effects in ionization potential depression and also line shifts [Li et al. 2019, Li and
Rosmej 2020]. However, to what extend the b-potential method could imitate lattice
effects for b[ 2 at temperatures much larger than the Fermi temperature remains an
open question and is subject to active research. We note, that for near solid density
plasmas with temperatures near the Fermi temperature, the Atomic-Solid-Plasma
Model ASP (see Chapter 8) has provided excellent agreement with the data.

A.4.3 Quantum Number Dependent Line Shift and Level
Delocalization: High Precision 4th-order Analytical Formulas

A more simplified representation of the arbitrary perturbation potential method
APPM [Rosmej et al. 2011] has been developed in [Li and Rosmej 2012, 2020] via
2nd and 4th order expansions in terms of non-fractional matrix elements (i.e. with
integer b-values of (A4.6) that have then analytical solutions).

Below, we recommend the 4th-order quantum number dependent analytical
approximation of the IPD in the optical electron approximation for dense hot
plasmas that is given by [Rosmej 2018, Li and Rosmej 2020] (in atomic units):

DEIPD ¼ Z
R0

� F \r[ ;\r2 [ ;\r3 [ ;\r4 [ð Þ
F R0;R2

0;R
3
0;R

4
0

� � ; ðA4:13Þ

F x1; x2; x3; x4ð Þ � R2
0

2
� x22

6

þ 4
3

ffiffiffi
p

p �
ffiffiffiffiffiffiffiffiffi
Z

kBTe

r
� R3=2

0 � 2
5
� a1x1 þ a2x

2
2 þ a3x

3
3 þ a4x

4
4

� � �
ðA4:14Þ

\r[ ¼ 1
2Zeff

3n2 � l lþ 1ð Þ� �
; ðA4:15Þ
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Figure. A.4.2 Comparison of line shift measurements of Hea of Al11+ in dense laser produced
plasma with different models for kTe = 250 eV: b4-potential in MCDF calculations (blue solid
circles connected with blue solid line), analytic b4-potential line shift model (solid black line,
(A4.1–A4.12)), MCDF-SCFTIS model (red crosses connected with solid red line). The dashed
blue line includes apparent line shift corrections due to line overlap and other effects, see text

Figure. A.4.1 Comparison of line shift measurements of Heb of Cl15+ in dense laser produced
plasma with different models for an electron temperature of kTe = 600 eV: analytic 2nd-order
expansion (blue solid line), analytic 4th-order expansion (blue crosses connected with blue dashed
line, (A4.13–A4.20)), multi-configuration Dirac-Fock self-consistent finite temperature ion sphere
model (red crosses connected with red dashed lines) [Li and Rosmej 2020] and the analytic
b-potential method (solid black squares connected with dashed black line, (A4.1–A4.12))
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\r2 [ ¼ n2

2Z2
eff

5n2 þ 1� 3l lþ 1ð Þ� �
; ðA4:16Þ

\r3 [ ¼ n2

8Z3
eff

35n2 n2 � 1
� �� 30n2 lþ 2ð Þ l� 1ð Þþ 3 lþ 2ð Þ lþ 1ð Þl l� 1ð Þ� �

;

ðA4:17Þ

\r4 [ ¼ n4

8Z4
eff

63n4 � 35n2 2l2 þ 2l� 3
� �þ 5l lþ 1ð Þ 3l2 þ 3l� 10

� �þ 12
� �

;

ðA4:18Þ

Zeff ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ELSJ

nl

�� ��q
; ðA4:19Þ

R0 � 0:62035 � Z=ni\Z[ð Þ1=3: ðA4:20Þ

DEIPD is the ionization potential depression energy in atomic units [units of 2Ry],
1Ry ¼ 13:6057eV , ELSJ

nl is the ionization potential (in [eV]) of the optical electron
with principal/orbital quantum numbers nl that moves in an effective Coulomb
potential with charge Zeff in the free atom/ion picture, z is the spectroscopic symbol,
i.e. z = Z + 1 where Z is the ion charge Z = Zn − Nb, ni is the ion density in atomic
units (i.e. in units of 1=a30, R0 is the ion sphere radius in atomic units (i.e. in units of
a0 ¼ 0:529177 � 10�8cm) (vanishing wavefunction at r = R0 has been assumed),
<Z> is the average charge of the plasma, kBTe is the electron temperature in atomic
units (i.e. in units of 2Ry) and the fit parameters are a1 ¼ 0:77383, a2 ¼ 0:36112,
a3 ¼ �0:01605, a4 ¼ 0:000385182.

From its conception the above representation is in form of an analytical Optical
Electron Finite Temperature Ion Sphere (OEFTIS) model [Rosmej 2018] (see also
Chapter 8): an effective potential is calculated from an effective charge Zeff seen by
the optical electron. The ionization potential depression formula is cast into an
entirely analytical description that only needs energies and nl-quantum numbers of
the free atom/ion configuration as it employs only matrix elements with integer
exponents (i.e. \r1 [ , \r2 [ , \r3 [ , \r4 [ ). The overall necessary data for
application of the 4th-order formula are therefore readily available even for
non-specialists in atomic physics.

As the above ionization potential depression formula is nl-quantum number
dependent and takes into account the effective potential via Zeff for each state (i.e.
the exact ionization potential ELSJ

nl ), the formulas can readily be employed to cal-
culate line shifts for the transition j ! i:

DEshift j ! ið Þ ¼ DEIPD jð Þ � DEIPD ið Þ: ðA4:21Þ
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Note, that the well-known and widely applied formulas for the ionization
potential depression like the Stewart-Pyatt formula [Stewart and Pyatt 1996] and the
Ecker-Kröll formula [Ecker and Kröll 1963] (see also Chapter 8) do not have the
capacity to determine line shifts as upper and lower states do not depend on
quantum numbers.

Let us apply the analytical 4th-order approximation for demonstration to the line
shift in dense plasmas. We consider Heb ¼ 1s3p 1P1 ! 1s2 1S0 of Cl15+ for
kTe ¼ 600eV , \Z[ ¼ 15, ne ¼ ni\Z[ , ne ¼ 5 � 1023cm�3, i ¼ 1s2 1S0,
Ei ¼ 3658:34eV , j ¼ 1s3p 1P1, Ej ¼ 386:69eV from which it follows (in atomic
units): Z ¼ Zn � Nb ¼ 17� 2 ¼ 15, ne ¼ 0:07409, ni ¼ 6:734 � 10�3, R ¼ 3:643,
kTe ¼ 22:05, Ei ¼ 134:44, Zeff

i ¼ 16:40, Ej ¼ 14:211, Zeff
j ¼ 15:99,

r1i
� � ¼ 9:1477 � 10�2, r2i

� � ¼ 1:1157 � 10�2, r3i
� � ¼ 1:7010 � 10�3, r4i

� � ¼
3:1121 � 10�4, Ej ¼ 14:211, Zeff

j ¼ 15:99, r1j
D E

¼ 7:8156 � 10�1, r2j
D E

¼
7:0368 � 10�1, r3j

D E
¼ 6:9296 � 10�1, r4j

D E
¼ 7:3656 � 10�1, DEi ¼ 6:407, DEj ¼

6:227 and finally DEshift j ! ið Þ ¼ 6:227� 6:407 ¼ �0:180, i.e. DEshift j ! ið Þ ¼
�4:90eV (red shift). This value (shown with blue cross in Fig. A.4.1) is in excellent
agreement with the numerical calculations in the framework of the MCDF-SCFTIS
(red crosses in Fig. A.4.1) [Li and Rosmej 2020]. For completeness, we mention
the results from the 2nd-order expansion (see also Chapter 8):
DE2nd�order

shift j ! ið Þ ¼ �9:14eV .
The curve with blue crosses (connected with dashed blue line) in Figure A.4.1

shows the application of the 4th-order formulas ((A.4.13–A.4.21) to the line shift of
Heb ¼ 1s3p 1P1 ! 1s2 1S0 of Cl15+ for kTe ¼ 600eV . Also very good agreement
with the numerical calculations and the data is observed. The Figure depicts also the
2nd-order quantum number dependent approximation developed in [Li and Rosmej
2012]: it provides reasonable estimates of the line shift within about a factor of two.
Although the 2nd-order approximation has limited precision, it has the advantage to
allow more easily and partially analytic studies of scaling relations with respect to
quantum numbers, effective charges and other parameters.
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A.5 Atomic Units and Constants

cgs MKSA

Planck constant: �h ¼ 1:05457 � 10�27erg s 1.05457 � 10−34 Js
Boltzmann constant: k ¼ 1:38066 � 10�16erg=K 1.38066 � 10−23 J/K
Electron mass: me ¼ 9:10939 � 10�28g 9.10939 � 10−31 kg
Speed of light: c ¼ 2:99792 � 1010cm=s 2.99792 � 108 m/s

Electron charge: e ¼ 4:80321 � 10�10stat coulomb 1.60218 � 10−19 C
Rydberg: Ry ¼ mee4

2�h2
¼ 2:17987 � 10�11erg 2.17987 � 10−18 J

Bohr radius: a0 ¼ �h2

mee2
¼ 5:29177 � 10�9cm 5.29177 � 10−11 m

Fine structure constant: a ¼ e2
�hc ¼ 1=137:036 1/137.036

Proton mass: mp ¼ 1:67262 � 10�24g 1.67262 � 10−27 kg
Neutron mass: mn ¼ 1:67493 � 10�24g 1.67493 � 10−27 kg
Atomic mass unit: u ¼ 1:66054 � 10�24g 1.66054 � 10−27 kg
Loschmidt number: L ¼ 6:02274 � 1023 6.02274 � 1023
Gas constant: R ¼ 8:31451 � 107ergmol�1K�1 8.31451 J mol−1 K−1

Electrical permittivity: e0 ¼ 1 8.85419 � 10−12 C2/m2N

Magnetic permittivity: l0 ¼ 1 4p � 10−7 Vs/Am

Some useful relations:

1J ¼ 107erg, 1eV¼̂11604:4K, 1Ry ¼ 13:60569253 eV , 1Ry¼̂
109:737315685 cm�1, Ry ¼ 2:179870 � 10�11erg, 1eV ¼ 1:602176 � 10�12erg,
1stat Volt ¼ 299:792Volt hc=e ¼ 1:239841930 � 10�6 JmC�1, e=hc ¼
8:06554429 � 105 J�1m�1C, Eð1000 cm�1Þ¼̂EðeVÞ=8.065545, Eð1000 cm�1Þ¼̂
EðRyÞ=109.7373.

Atomic units:

Length: a0 ¼ h2e0
pmee2

¼ 5:29177 � 10�11 m Energy: 2Ry ¼ 2 � mee4

8e20h
2 ¼ 27:2114 eV

Velocity: V0 ¼ e2
2he0

¼ 2:18770 � 106 m/s Time: T0 ¼ a0
V0

¼ 2:41887 � 10�17 s

E-Field: E0 ¼ e
4pe0a20

¼ 5:14222 � 1011 V/m Mass: me ¼ 9:10939 � 10�31 kg

Angular
momentum:

L0 ¼ �h ¼ mea0V0 ¼ 1:05457:10�34 Js

Speed of
light:

ca:u ¼ CMKSA
V0

¼ 1
V0
� 1ffiffiffiffiffiffiffi

e0l0
p ¼ 1

a ¼ 137:036

For more details on atomic constants see [Mohr et al. 2012].
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