
Helping Teams to Help Themselves:
An Industrial Case Study on

Interdependencies During Sprints

Jil Klünder1(B) , Fabian Kortum1, Thorsten Ziehm2, and Kurt Schneider1

1 Leibniz University Hannover, Software Engineering Group, Hannover, Germany
{jil.kluender,fabian.kortum,kurt.schneider}@inf.uni-hannover.de

2 Arvato SCM Solutions, Hannover, Germany
thorsten.ziehm@arvato.com

Abstract. Software process improvement is a very important topic.
Almost all companies and organizations face the necessity for improve-
ment sooner or later. Sometimes, there is obvious potential for improve-
ment (e.g., if the number of developers does not fit the project size).
Nonetheless, fixing all obvious issues does not necessarily lead to a
“perfect” project. There are a lot of interdependencies between project
parameters that are difficult to detect – sometimes due to the influences
of social aspects which can be hardly grasped.

We want to support the process of improving daily work by simulating
and visualizing how project parameters evolve over time. Our approach is
based on building a System Dynamics model that takes into account key
performance indicators as well as assumptions about social aspects. In
the present case, we chose parameters of capacity, customer satisfaction,
and mood. The model uncovers interdependencies between the available
parameters. Furthermore, it is able to simulate consequences of different
preconditions and incidents during a sprint such as change requests.

In this contribution, we present our approach and apply it in a case
study with three agile teams in industry. We build a System Dynamics
model and use it for sprint simulations. Our analysis determined, e.g.,
the teams’ productivity during the sprint and their workload each day.
The simulation increased the teams’ awareness of the negative influences
due to interventions during the sprint.

Keywords: Process improvement · Simulation · System dynamics
Agile software development teams · Social aspects

1 Introduction

Companies strive for a good rate of successful projects. To reach this aim, they
often face the necessity for software process improvement. There are various
existing approaches to improve the development process [14]. However, it does

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
C. Bogdan et al. (Eds.): HCSE 2018, LNCS 11262, pp. 31–50, 2019.
https://doi.org/10.1007/978-3-030-05909-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05909-5_3&domain=pdf
http://orcid.org/0000-0001-7674-2930
https://doi.org/10.1007/978-3-030-05909-5_3


32 J. Klünder et al.

not necessarily suffice to apply the existing approaches. Implementing an agile
environment is a commonly used possibility to overcome many problems. Hence,
it is a common way to improve the process [14]. However, becoming agile is
not always the key [8]. The same problem may occur when implementing other
approaches to improve the development process. We expect that team mem-
bers lack an understanding for the interdependencies within the entire software
development process [13]. This lack can reduce the success when implementing
existing approaches.

We assume that a simulation model can increase this understanding by sim-
ulating and visualizing the dependencies [13]. In this contribution, we present an
objective, data-based approach for visualizing and discovering project dynamics
and tendencies which may be too subtle to be found by humans or which are
too obvious to recognize the major consequences. To facilitate the application
of our technique, we base our approach on already existing or easily collectible
data for example from tools like JIRA. Based on this data, we automatically
calculate correlations and interdependencies between the variables like produc-
tivity (represented by finished story points), mood (represented by scales from
psychology [20] or from a mood board with emoticons) or the capacity. These
calculations result in a System Dynamics model simulating and visualizing the
hypothetic state of a sprint with given preconditions. When a team is modeled
with System Dynamics, that team can use the model to recognize factors hin-
dering an optimal sprint or impediments that need to be resolved in order to be
more successful.

In this paper, we present our approach and its application in a case study at
Arvato SCM Solutions1. The company initiated a collaboration with the Leibniz
University Hannover considering fundamentals about methods and toolchains.
These fundamentals would reveal, e.g., the tendencies of sprint success criteria,
customer satisfaction during a sprint, or factors influencing a positive impression
by the client. The industry partner had already experienced general impediments
such as changing the scope of a sprint which has negative effects to reach the
sprint goal. During the kick-off of the collaboration, an interest in social inter-
actions and dependencies in the teams arose. The Software Engineering Group
at Leibniz University Hannover has some experiences in analyzing interactions
in a team such as the FLOW method2 for information flow analysis in devel-
oper teams or tools for the analysis of interactions in meetings [17]. Developers,
manager, Scrum master and product owner3 of the industry partner wanted to

1 https://scm.arvato.com/en.html.
2 http://www.se.uni-hannover.de/pages/en:projekte flow.
3 At Arvato SCM Solutions, the manager, Scrum master, and product owner build a

triumvirate for a team. The manager is responsible for the people management and
their personal evolution, the Scrum master is responsible for the processes in the
agile environment and the product owner is responsible for the enhancements of the
product and the functional stories.

https://scm.arvato.com/en.html
http://www.se.uni-hannover.de/pages/en:projekte_flow


Helping Teams to Help Themselves 33

know if these tools can be applied in an agile environment and if they can help
to get better results for a sprint if the teams know their social impediments.

Arvato SCM Solutions wanted to get a supportive tool helping a
development team to identify its impediments to reach the goal of
its sprints. In particular, such a tool would help Scrum master and
product owner to realize which influences their behavior can have.

As a further requirement, the team members should be able to understand
the outcome of the model, i.e. the result of the simulation needs to be reliable.
Otherwise, the team may refuse the model.

Building such a model is not trivial. While some parameters such as produc-
tivity (in terms of finished story points) can be easily quantified, others such
as mood cannot. Hence, we need to combine both qualitative and quantitative
data. We can formulate our research question as follows:

RQ: Is it possible to build a System Dynamics model including both qualitative
and quantitative data with comprehensible, i.e. traceable, results?

As a first step towards this aim, the researchers from Leibniz University
Hannover analyzed three development teams at Arvato SCM Solutions. The
teams had just started their agile transition to Scrum some months before the
study began. One team was in sprint number 22, another in sprint number 13
and the third team in sprint number 8 (with a length of two weeks per sprint).
The case study took place over a duration of 18 months starting with a data
collection and ending with the presentation of the model and its application.
The duration of the study was due to the explorative nature. Replications of
this study will not take that much time.

The simulation of the sprint and the analysis with the System Dynamics
model uncover i.a. the fact that the teams’ productivity increases towards the
end of a sprint. Some of the found issues can also be found in other teams.
Nonetheless, the model does not adequately represent the process and the inter-
dependencies between the variables in a team of another organization. Therefore,
we describe our approach to build the model. This procedure can be applied to
other teams with a different data set.

The paper is structured as follows: In the following section, we give an intro-
duction to System Dynamics. Previous work related to our research topic is
presented in Sect. 3. Section 4 gives an overview of the study we conducted at
Arvato SCM Solutions. It also provides information on building the model. We
discuss our results in Sect. 5 and conclude in Sect. 6.

2 Background: System Dynamics

System Dynamics was developed to understand the behavior of complex sys-
tems [3]. In the 1950s, Forrester [3] presented his approach for modeling differ-
ent parameters in order to understand industrial processes. System Dynamics
enables holistic analyses and simulations of complex and dynamic behaviors. The



34 J. Klünder et al.

simulation is based on a model taking into account relationships between var-
ious project parameters. Forrester [3] presented a strategy for identifying such
relationships and for modeling and simulating the interdependencies. We use
this approach to gain more profound insights into the interdependencies and the
project’s dynamics [4].

2.1 Causal Loop Diagrams

Causal loop diagrams visualize interrelations between different variables in a sys-
tem [3]. An example is visualized in Fig. 1. Mood (1), Productivity and Customer
Satisfaction are considered. A positive marked directed edge (2), a so-called
positive causal link, denotes a positive relation, i.e. if customer satisfaction
increases, mood also increases. It is also possible to visualize negative relation-
ships, i.e. if one parameter increases, the other one decreases and vice versa.
Such links are called negative causal links. One example for this relationship
is the influence of unexpected incidents during the sprint on mood: The more
incidents, the more dissatisfied developers, i.e. the lower the amount of positive
affect.

Fig. 1. Exemplary causal loop diagram visualizing a positive reinforcing loop.

A reinforcing feedback loop is defined to have an exponential increase
or decrease. Mathematically, this is equivalent to having an even number of
negative links (where 0 is also even). In Fig. 1, the reinforcing loop is visualized
by (3). A balancing feedback loop is associated with reaching a plateau. This
is equivalent to having an odd number of negative links. A balancing feedback
loop is denoted as visualized with a “B” (instead of the “R” in (3)) and an arrow
pointing counterclockwise [4].

2.2 Stock and Flow Diagram

Stock and flow diagrams concretize causal diagrams by quantifying the system.
They are used to study and analyze systems on a more detailed level. An example
is visualized in Fig. 2. These diagrams consist of stocks (1) and flows (3). A
stock represents an entity, i.e. parameter, that changes over time. A flow defines
the rate of a change in a stock. So far unknown influences and parameters can



Helping Teams to Help Themselves 35

be visualized by a cloud (2). In the given example, we have an influence of
something not specified (2) on mood (1). The rate of the influence is defined by
the flow (3).

Fig. 2. Exemplary stock flow diagram.

Each flow can be concretized by an equation. These equations and the feed-
back loops enable a simulation of the process. The better the equations define
the influences, the more accurate is the simulation in the end.

3 Related Work

This paper aims at analyzing interdependencies between different parameters
during a sprint. Some of these parameters are social aspects like communication
behavior [9,10]. Since soft factors can be hardly quantified, the commonly used
methods to analyze human beings are rather subjective. In this approach, we use
already established methods for modeling and simulating the specific context, for
instance with System Dynamics [3] to combine qualitative and quantitative
data.

Klünder et al. [9] quantify communication behavior using the so-called FLOW
distance. FLOW distance is a measure for indirections in information flow. Fur-
thermore, the authors measure moods and social conflicts using scales which are
established in psychology like the scale for positive and negative affect [20]. This
way, the authors are able to find statistically significant relationships between
communication behavior, mood, and social conflicts [9].

Herbsleb and Mockus [5] also investigate on communication behavior. They
analyze the behavior of co-located and distributed work teams. Their study
is based on quantified data from the source code change management and a
survey. The authors aim at finding causes for delay in distributed teams. Herbsleb
and Mockus [5] are able to uncover relationships between delay, communication,
coordination, and geographical distance. They report a decrease in the frequency
of communication with an increasing physical separation [5].

These studies base on subjective quantified data which often depends on the
perceptions of the team members (cf. [9]). All proposed metrics we are able to
measure are integrated into our approach.

To find interdependencies between qualitative and quantitative parameters as
well as to integrate assumptions, we modeled the results using System Dynamics.

The idea of simulating human factors and other project parameters is not
new. Abdel-Hamid and Madnick [1] investigated dynamic events in Software
Engineering. They present different case studies of large software projects.



36 J. Klünder et al.

Furthermore, they propose the use of metrics which help to measure the rel-
evant aspects. Based on the data records and their experiences, the authors
build system models with different complexities. Abdel-Hamid and Madnick [1]
give a detailed overview of various dynamic models underlining, for example, the
influence of productivity on the motivation of a development team. Furthermore,
they present an entire software project process chain.

Cao et al. [2] investigate dynamics in agile software development. They model
interdependencies between various agile methods and practices such as pair pro-
gramming, customer involvement or refactoring and organizational parameters
such as productivity or cost. The authors also use System Dynamics to generate
the simulation model [2].

Madachy [15] models communication behavior and other team parameters.
He simulates qualitative models to understand process dynamics. His work is
based on formal boundary expressions with a wide range of parameter settings.

Hoegl et al. [6] present a concept about the quality of teamwork. They iden-
tify factors influencing the success of software projects. They consider aspects
such as team performance and satisfaction. The relevant factors for teamwork
are communication, coordination, a balance of contribution, mutual support,
effort, and cohesion [6]. The authors base their results on an empirical study
providing data from 575 developers and project leaders in 145 German software
development laboratories [6].

Shiohama et al. [19] deal with the question of an appropriate iteration length.
They present a procedure to calculate the recommended iteration length by
simulating the sprint. They integrate parameters such as the development team,
the probability of incidents during the sprint and the complexity of the project.

In previous studies, Kortum et al. [11] have already explored team behavior
in academic software projects. The first models [7,11] base on machine learning
classifier and enable forecasts for key communication metrics. But these mod-
els only considered linear dependencies and few quantitative data. We want to
extend these approaches by also considering non-linear interdependencies [13]
and qualitative data.

In contrast to the already existing approaches, we do not want to answer a
specific question using our simulation. Indeed, we want to explore team dynamics
to uncover unexpected interdependencies. Nonetheless, we integrate results of
already existing models such as measurements, metrics and best practices for
setting up the model. Furthermore, we integrate data types which have – to the
best of our knowledge – not yet been considered in related approaches. These
are results from an interview study uncovering the information flow and results
from a workshop representing subjective assumptions about the relationships to
use unquantifiable data such as moods4.

4 There are possibilities to measure moods (e.g. with the PANAS scale [20]). But in
our case study, it was not possible to measure moods retrospectively.



Helping Teams to Help Themselves 37

4 Study: Setting up the Model

In order to examine the applicability of our approach, we conducted a case study
in a company. The whole study based on a collaboration between Arvato SCM
Solutions and the Leibniz University Hannover.

4.1 Methodology

Our general approach can be divided into several phases starting with the data
collection and ending in the simulation model. An overview of these phases is
visualized in Fig. 3.

Fig. 3. Overview of the process

(1) Phase one starts with interview studies to get to know the culture of the
company and the processes from an external viewpoint. We need to gain
these insights in order to prepare the causality model. The structure of the
interviews bases on the FLOW method [18] which is an already established
proceeding in software engineering to get an overview the information flow
within an organization and to get to know the process from different view-
points.

(2) Afterwards, we collect different kinds of easily available data records. It is
necessary to receive as much data as possible influencing the main issues
which should be analyzed with the simulation model. Later, it is possible
to integrate assumptions for non-accessible data (see (4)). We recommend
using data for example contained in JIRA such as productivity, finished and
open story points, sprint interruptions and so on.

(3) In phase three, we create a potential process model also visualizing assumed
dependencies between the collected data and other variables like mood. This
model does not necessarily rely on the data. Calculations are also not nec-
essary. This first instance of the process model only represents possible and
intuitive interdependencies between the variables. It will be validated later.

(4) During phase four, we integrate subjective perceptions from different team
members, Scrum master, and other involved persons. They are asked to rate



38 J. Klünder et al.

the causal effects in the process model (for example the influence of customer
satisfaction on team mood) and to specify and concrete the model. The more
different persons the more reliable and the more complete the subjective
results are. We recommend using a scale between -3 (for a strong negative
relation) and +3 (for a strong positive relation). A rating of 0 indicates
no relationship between the two variables. This way, the analyst gains an
overview and a first idea of relationships and dependencies. This step is very
important for the developers’ awareness of the final model.

(5) Afterwards, the analysis starts with a visual preparation of the data with
respect to history, temporal progressions and other effects. The analyst also
looks for relationships between variables in the data set that are easy to
detect. In the best case, these relationships also fit the interview study and
the model resulting from step (4).

(6) Phase six aims at creating the System Dynamics model. This step is the most
time-consuming one. A description on how to set up the model can be found
in [12] and [13]. We transfer the causality model into the System Dynam-
ics model. The relationships between different project parameters can be
retrieved using explorative data analysis for example with MINE [16]. This
analysis helps to detect dependencies between the variables. Furthermore,
the explorative analysis can detect relationships which have been unknown
so far. Afterwards, we need to formalize the dependencies in order to include
them into the System Dynamics model. We need further analyses, logical
associations and a clean-up of the data set with respect to missing data. In
this step, we can use the ratings from step (4). For example: In the case that
all developers state that the presence of the product owner during the sprint
is very important for their motivation, this fact needs to be considered in
the model even if there exist no underlying data. This way, we conclude the
model step by step. It gets more and more concrete and detailed. The whole
model might be too large. Hence, irrelevant factors (according to the aim of
the model) can be identified and eliminated. The model’s behavior in seldom
situations is also very interesting. Hence, the model should be analyzed by
running the simulation 1000 times.

(7) In the last step, we validate the insights from the model by comparing them
with the data sources, i.e. the development teams. This can be done best
during a workshop with the developers, the managers and the persons who
are responsible for the process. Presenting some behavior and structures
with the model may or may not lead to a “wow”-effect. The model aims
at increasing the awareness of the involved persons with respect to possibly
unknown or forgotten interdependencies. Hence, it is very good if the persons
agree with the model.

(8) Now, the persons can start using and testing the model by changing
some parameters like sprint interruptions. The more intuitively the model
behaves, the more they will rely on it. But some unexpected issues are also
important to show the impact of the model. It does not aim at forecasting
exact values, but it aims at visualizing the system’s behavior and increasing
the transparency of consequences in order to enable some improvements.



Helping Teams to Help Themselves 39

4.2 Execution: Case Study in Industry

The whole study at Arvato SCM Solutions was performed as on-site research,
where the researchers got to know the common behavior of managers, some
Scrum master, and developers. By being involved in meetings with regular team
members participating, the researchers could grasp a better understanding com-
pared to an external person about the collaboration structures and company
spirits. The collected impression and representative system data formed the
fundamentals of the idea of a simulation model about the team’s operational
behavior in such this exemplary company.

(1) Some weeks later, the interview studies started according to the FLOW
method [18]. A FLOW interview has a generalized process starting with
some general questions like tasks within the team or the years of experiences
of the interviewed person. This way, a basic understanding of the internal
processes in the Scrum teams and the information exchange with the product
owner and the customer emerged. For each task, the interviewee reports
about the outcome as well as incoming, controlling and supporting issues like
templates, knowledge or checklists [18]. The researchers interviewed three
persons: one product owner, one developer and one SQL expert who is part
of two teams. Descriptive data can be found in Table 1. The interviewees
are members of the teams we considered in the further analysis. The team
members were free to decide whether they wanted to give an interview or
not.

Table 1. Overview of the interviewees and the duration of the interviews

Interviewee I Interviewee II Interviewee III

Duration of the interview 2 h 1,5 h 2 hours

Team 1 2, 3 3

Team exists since 3 months 6 resp. 3 months 3 months

Team member since 3 months 6 resp. 3 months 3 months

Role Product owner SQL expert Developer

(2) One researcher from Leibniz University Hannover dedicated two weeks on-
site at Arvato SCM Solutions to gain deeper insight into communication
behavior and social aspects such as mood, productivity and the collabo-
ration between the team and the product owner. The researcher observed
three teams who agreed to participate in the study. Data from JIRA have
also been collected from all sprints such as burndown charts, i.e. the reduc-
tion of unfinished story cards during the sprint. The researchers received
data about sprint results, i.e. finished and not-finished story points, and the
burndown charts. Furthermore, data about the teams’ capacities and the
customer satisfaction which have been collected in the company right from



40 J. Klünder et al.

the beginning have also been included in the model. Unfortunately, there
was no data representing the mood of a single team, because the “mood
board” is used by all teams. Hence, it only represents the overall mood and
it was impossible to distinguish between the data from the three observed
teams and all the others in the company.

(3) Afterwards, the modeling phase started by drawing a causality diagram
mainly resulting from the insights of the work shadowing. It only con-
tains rather obvious dependencies and relationships. It was designed very
light-weighted with some keywords like mood, motivation, productivity and
capacity connected by directed arrows. The causality diagram is visualized
in Fig. 4. The researchers expect an influence of HR-Capacity, i.e., the avail-
ability or absence of developers, on the sprint and the commitment con-
stancy, i.e., the proportion of the story points the team wanted to finish
during the sprint and the story points which are finished. This parame-
ter influences customer satisfaction which influences the team mood. This,
in turn, influences the whole sprint which also influences burndown charts
and the customer satisfaction. The burndown chart represents the number
of already finished story points and is hence an indicator of commitment
constancy.

(4) The model in Fig. 4 was the basis for the next step. Two researchers met
some interested persons from the company in a two-hour-workshop. Two
Scrum master and four developers attended the workshop. One manager
also temporarily attended the workshop. The participants were asked to
rate the relevance of the relationships and find other dependencies. In pairs,
they completed the diagram, removed arrows, added weightings represent-
ing the number of influences of one parameter on another one, and so on.
We used a scale as proposed in the previous subsection in step (4). At the
end of this workshop, the researchers had an overall causality diagram rep-
resenting the perceptions of the persons who are involved in the process.
This step was important to increase the credibility of the model. The cumu-
lated results of this step are visualized in Fig. 5. Compared to Fig. 4, we
have much more parameters after this step. Most of the parameters from
step (3) remain, but the developers and the Scrum master stated a strong
influence of meetings like refinements, the retrospective and the review on
other factors. Furthermore, they rated the availability of the product owner
as important.

(5) Afterwards, the data analysis started. The researchers used system records
provided by JIRA and subjective responses about each sprints team capac-
ity and the customer satisfaction. They derived metrics such as productiv-
ity as a measure defined via finished story points per hour or the customer
satisfaction index derived from the customers’ ratings. The metrics were
combined for example with timely delivery and resource balancing. Addi-
tionally, timestamps have been divided into weekdays, holiday breaks and
other events that could influence the teams’ regular performances. Due to
the information on burndown charts, i.e. the relation of finished and remain-
ing story points, unplanned work (e.g. bug fixing) has also been considered.



Helping Teams to Help Themselves 41

Fig. 4. First causality diagram in the end of step (3)

Fig. 5. Causality Model with weighted relationships (+/-: positive/negative relation-
ship (i.e. “the more, the more”/“the more, the less”) in the direction of the arrow;
1/2/3: weak/medium/strong relationship)

These incidents could be recognized due to an increasing number of story
points in the sprint.

(6) In fact, all this information from the first five steps, especially the out-
come presented in Fig. 5, allow to derive a first System Dynamics model
based on the standardized stock-flow terminology [4]. In its very first build-
ing step, it only gives a system overview of all involved endogenous and
exogenous components [4]. For the formalization of functional equations
representing the interdependencies between various system components,
we applied exploratory factor analysis to describe historical JIRA data in
multi-functional equations. The dependencies and influencing factors with-
out available objective data records become distinctively equalized through
the rating from step (4).

The System Dynamics module for the productivity is visualized in Fig. 6
(marked with an (x)). This is one part of the whole System Dynamics model.
Additionally, a dashboard user interface was built for exploratory simulation
without a detailed need for knowing about every single module. A screenshot



42 J. Klünder et al.

can be found in Fig. 7. The System Dynamics model and dashboard interface
can be accessed and explored online5.

Performing this step for each of the variables and combining each of the
modules leads to the model presented in Fig. 6.

4.3 Verification and Validation

(7) For a better validation of the model’s functional units, the researchers mod-
ularized each central and relevant metric in a separate function block. The cor-
rect functional operating was approached with real input ranges, whereas the
outcome passed a plausibility test due to realistic operational ranges. Each func-
tional module such as the one for productivity (marked with an (x)) in Fig. 6
characterizes its internal factor and dependencies and become solely verified
in its input and outcome behavior according to experts expectations and data
records from the previous sprint.

To gain objective results, we performed a sensitivity analysis to consider
the influence of a given set of starting parameters for the simulation. Figure 8
visualizes the daily productivity dynamics within one sprint. The x-axis repre-
sents the day of the sprint, and the y-axis covers the productivity on a rational
scale. Since the model also takes weekends into account: The productivity is 0
some days. We have run 9000 sample simulations with the System Dynamics
model and randomly generated parameter settings within the realistic operat-
ing ranges. As visualized in Fig. 8, the 100 variations of parametric inputs show
that the common productivity follows a constant level for the first week of a
new sprint. The results also sample that most dynamics during a sprint occur
during the second half of a two weeks sprint. The course of the curves is com-
parable. Sensitivity analysis, in particular, involved the parameter inserts for a
sprint planning about available human resources (60–150 working hours) and
story points (80–120). There is an obvious increase in productivity in the last
days of the sprint which seems to keep its proportional distribution regardless
of whether teams have to face a high workload or not. In fact, the simulations
pointed out that the teams typically finish larger story cards upfront the end of
a sprint. Furthermore, they seem to finish story cards even with double speed
compared to tasks at the beginning of the sprint. The term “double speed” is
relative since the results also can be interpreted as that teams work slower at
the beginning of a sprint and increase their regular performance shortly before
the due date. In fact, the simulation uncovered some of the real situations that
could be also confirmed by the management about their perceived impression on
the team’s typical workload during a two weeks sprint. When teams faced real
pressuring situations due to last minute changes, customer claims, or an inappro-
priate sprint planning, the resulted team atmosphere became strongly affected,
whereas particular situations could be also matched within the system model.
This analysis based on a regular sprint with ten days and without extraordinary
events decreasing a team’s productivity such as holiday breaks. During sprints

5 The System Dynamics model is available via http://www.goo.gl/Bnavhb.

http://www.goo.gl/Bnavhb


Helping Teams to Help Themselves 43

Fig. 6. System dynamics Model. The productivity module is highlighted.



44 J. Klünder et al.

Fig. 7. Dashboard visualizing different sprint parameters after having entered given
preconditions

with breaks, for example, due to holidays, the peak of maximum productivity
appears to be more present right after the holidays, whereas the productivity
tends to reach its minimum right before the break.

4.4 Reliability of the Model

(8) To ensure the credibility of the entire model, some developers, Scrum master,
product owner, and manager used it with different inputs and decided on the
reliability of the results.6 The conjunctions of all function blocks with the system
resulted in statistical measures and subjective experience ratings as well. They
were also validated through data records. The practitioners tested the model
using different preconditions of sprints they had in mind. Some of the sprints
have been “regular” ones, i.e. sprints without incidents and a satisfying sprint
result in terms of story points, customer satisfaction etc. Others of the sprints
used for testing the model have been outliers, i.e. with many incidents like bugs,
fluctuations in the capacity due to illness and company-wide both pleasant and
unpleasant events. According to the practitioners in the three observed teams at
Arvato SCM Solutions, the model and the visualization with System Dynamics
simulates the sprints of the three teams very well. The visualization shows similar
sprint results in the simulation and as expected (in futurespective) and as it has
been (in retrospective) in real life.

The curve of mood during a sprint is also near to reality according to the
product owner and the developers. This was checked with sprints out of the
6 For validity reasons and to test the generalizability (to some extent) of the model, we

also asked team-external persons (but no company-external ones) to test the model.



Helping Teams to Help Themselves 45

Fig. 8. Productivity variance results from 100 sample simulations

period of data collection, including sprints after this phase and also with sprints
in other teams in the company environment at Arvato SCM Solutions.

All in all, the model behaves intuitively in many points. This is very impor-
tant for the reliability of the model. Nonetheless, there are some relationships
which have been perceived to have a lower relevance for the development process.

4.5 Results and Implications

We, i.e. the researcher, manager, Scrum master, and other team members,
detected some findings revealed by simulating real and potential sprints with
the model. In Table 2, we present some of these weaknesses with suggestions for
improvement. The suggestions and the causes for the findings are not complete.
The causes need to be identified. This still requires manual effort and background
knowledge. Combining the simulation with insights from the researcher’s hospi-
tation and the practitioners’ experience led to the following result.

5 Discussion

According to our results, we can affirm our research question. It is possible to
combine qualitative and quantitative data in a System Dynamics model and
maintaining the credibility.

5.1 Threats to Validity

There are some aspects and limitations which may have to threaten the validity
of our case study. According to Wohlin et al. [21], we categorize these aspects as
construct, internal, external and conclusion validity.



46 J. Klünder et al.

Table 2. Findings (F) revealed by the system dynamics model, possible causes (C)
and suggestions (S)

ID Description

F1 In the end of a sprint, the productivity increases

C1 The increase of productivity may be caused by too large story cards, the
developers cannot finish earlier

S1 The developers need to break down the story cards into smaller ones

C2 The developers may forget to change the state of a story card (in JIRA
and on the physical board)

S2 It is important that both boards are synchronized (latest in the next
daily). Furthermore, at least the state of a story card in JIRA needs to
represent the actual state of a story card

F2 There are often unfinished story points in the end of a sprint

C3 The goal of the sprint in the number of story points was unachievable

S3 Provide the possibility to learn from former sprints, e.g. how many story
points have been finished

C4 There have been too many incidents during the sprint leading to less
capacity

S4.1 Try to keep the number of incidents (e.g. helping other teams) small

S4.2 Get to know about planned support in other teams before the sprint starts

C5 There have been undetected dependencies between story cards.

S5 Spend as much time as necessary with planning the next sprint, i.e.
backlog refinement, Sprint planning etc

F3 Incidents influence the motivation, the mood and the productivity

S6 An incident goes along with adapting the plan. Often, the developers lose
focus and realize that they cannot reach their sprint goal. This mostly
leads to dissatisfaction

C6 It is often impossible to have no incidents. But avoiding firefighting
situations helps the team to keep focused.

F4 Positive incidents such as story cards that are excluded from the sprint
are not always good

C7 An exclusion of a story card creates the feeling of having much more time
for the other story cards. Hence, the productivity decreases

S7 The team should be aware of possible negative impacts of positive
incidents. However, with an increasing agile maturity, the team will be
satisfied with positive incidents without reducing the productivity

Construct validity. The presented model based on both objective and subjec-
tive measures. The causality diagram completely depends on the perceptions of
some team members and Scrum master. In the case where we do not have had
any objective data for the simulation model, we indicated the dependencies and



Helping Teams to Help Themselves 47

influences as supposed by the developers. This may have influenced the percep-
tions of the developers when seeing the overall model and its reliability.

Internal validity. In this contribution, we present the results of a case study with
three agile working teams within one organization. We used the data from all
teams simultaneously to create one overall diagram. Hence, we cannot make any
statements with overall validity. The three teams do not represent the whole
width of agile working teams. It is like a case study that generalizations are only
limited possible.

Conclusion validity. The data analysis was completely computer-supported. It
was based on the MINE [16] algorithm as presented in [12]. Hence, the analysis
is objective and the results based on the data, too. But we do not have any
objective data for mood. Since we wanted to include this parameter in the model,
we used subjective perceptions of experienced team members and Scrum master
reporting on the influences of mood on other parameters and vice versa. But
this data is only little reliable.

External validity. The results may not be over-generalized. But the proceeding
for the creation of the model may be applied to different kinds of teams, even
working in different contexts and with other work-organizations like the V-model.
Basing the model on the data of other teams or even on different kind of data
(i.e., different variables) will surely lead to a different model. At this time, the
model is team-specific. But including the data from other teams and extending
the model will allow generalizations.

5.2 Limitations for the Use in Industry

The model has restrictions when a team has a high degree of agile maturity. It
took more than a year to get the model and the visualization by System Dynam-
ics. In between most of the teams improved their skills. They improved their
technical skills, they improved the ability to handle impediments and interven-
tions in the sprint, they improved estimations of the stories, and they improved
the skills in team working, communication and other soft skills. In sum, they
improved their level of agile maturity. With the new team constellations, the
model is difficult to validate, because Arvato SCM Solutions does not collect all
the data needed as a database for the model anymore. Because of the agile matu-
rity, these teams do not need all kind of data for their continuous improvement
process.

Now the teams can handle interventions and changes in a sprint very well,
and they reached the defined goal of the sprint near to 100% defined as commit-
ted vs. achieved story points. Also, the product owner has high confidence in the
development team and therefore the mood is good – mostly. Because of the com-
bination of missing data and the stable mood, the model and the visualization
do not work anymore for our teams – at least in the current version.

Retrospectively, Arvato SCM Solutions could identify the same tasks for
improvement for a team through this simulation. For example, most of the stories



48 J. Klünder et al.

in a sprint were set to state “done” during the last three days in a sprint. This
could mean that the team is most productive only at the end of the sprint. But
according to the experiences of the managers at Arvato SCM Solutions, in most
cases, there are too many stories in a sprint with more than 13 story points for a
story, which is the largest possible number of story points for a single story card.
They are too big. The teams do not have a chance to finish this story earlier in
a sprint. One solution is to increase the ability of the team to split bigger stories
into smaller ones which require knowledge in story splitting.

A conclusion: The module and System Dynamics simulation is working very
well for teams which are in the transition from an old work environment to an
agile framework like Scrum. There is a need to collect a lot of data to use this
model and tooling. But using a ticket system like JIRA, facilitates the selection.
It is not easy to identify the correct actions for improvement. However, the
simulation will support a team to make their challenges more visible. Finding
the right solutions will depend on the team, and they have to try out different
ways.

5.3 Interpretation

Software process improvement is an important topic for many teams and orga-
nizations. However, detecting the potential for improvement is not always easy
since most processes are too complex to see the interdependencies “on the fly”.
Tools can support the detection of issues that may be improved.

Software development teams prefer support by tools and the management
tends to use visualizations. Visualizations like burndown charts show the current
state and the past progress of a sprint. This System Dynamics model can simulate
the next sprint and visualize a sprint result under different circumstances such as
added or deleted stories, added resources supporting the team, sick members or
members of vacation, etc. Based on the results, the team and the Scrum master
can identify the challenges and try different variants and find potential solutions.

This concrete model and the simulation are only helpful for teams when
they use Scrum as a work environment and do not have a mixture of a classic
work environment such as the waterfall model. The goal of a successful sprint
should be nearby 100% of achieving the committed stories and story points. A
permanent over- or under-commitment for a sprint does not help to get a stable
team result. Two other preconditions for using this model is to have a stable
team, and the sprints have to have a fixed length for a long time.

To use this model, it is important to have a good base of data and informa-
tion. All data about the sprints (stories, story points and the states of the stories)
should be in a ticket system like JIRA. The information about team capacity
and mood factor should be tracked in parallel. When this data is available for a
team, this model can be adopted by another organization.

In summary, this model can be a good addition to the general toolset for
Scrum. By simulating future sprints and running sprints from the past with
different circumstances, the challenges and impediments in a team can be better
analyzed – and supported by a tool. All these information can help a team and



Helping Teams to Help Themselves 49

the Scrum master to identify the next actions to increase their agile maturity
and in the end the productivity and profitability of a team.

A foresight: This model and its simulation is a good base for full-service
tooling which can be used by each Scrum team. All needed information for
the sprint (stories, story points, length of a sprint, etc.), the number of team
members, a capacity planning of the team and other parameters for soft factors
should be tracked in one tool. JIRA is a system which handles most of the
information when it is used as a ticket system by the development team. It is
also possible to develop add-ons in JIRA to put additional data into a sprint.
So an add-on for JIRA bringing in all needed parameters to the general sprint
data can be used to visualize sprints with a different view.

6 Conclusion

In this contribution, we presented strong synergies between different techniques
for analyzing teams. We combined statistical and information flow analysis to
build a System Dynamics model simulating interdependencies between various
team parameters in agile software development. We extended quantitative data
from JIRA by subjective ratings from the teams. This combination of objective
and subjective statements on interdependencies helped to form the simulation
model with a good prescription of dynamic team behavior during sprints.

The outcome of running the simulation fits the first expectations of both
the researchers and the developers as well as Scrum master, product owner, and
manager. Despite the model simulates the reality very well and is easy to use, the
time for the realization needs to be shortened to replicate this study. Currently,
the model is limited in the possibilities for the application. It may be adapted to
other teams and organizations, but at the moment, it is only applicable to the
development teams at Arvato SCM Solutions or comparable ones. But within
the scope of application, the model represents the reality very fine-grained and
reveals interdependencies which have not been observed before.

References

1. Abdel-Hamid, T., Madnick, S.E.: Software Project Dynamics: An Integrated App-
roach. Prentice-Hall Inc., Upper Saddle River (1991)

2. Cao, L., Ramesh, B., Abdel-Hamid, T.: Modeling dynamics in agile software devel-
opment. ACM Trans. Manag. Inf. Syst. (TMIS) 1(1), 5 (2010)

3. Forrester, J.W.: World Dynamics. Wright-Allen Press, Lawrence (1971)
4. Forrester, J.W.: System dynamics, systems thinking, and soft OR. Syst. Dyn. Rev.

10(2–3), 245–256 (1994)
5. Herbsleb, J.D., Mockus, A.: An empirical study of speed and communication in

globally distributed software development. IEEE Trans. Softw. Eng. 29(6), 481–
494 (2003)

6. Hoegl, M., Gemuenden, H.G.: Teamwork quality and the success of innovative
projects: a theoretical concept and empirical evidence. Organ. Sci. 12(4), 435–449
(2001)



50 J. Klünder et al.

7. Klünder, J., Karras, O., Kortum, F., Schneider, K.: Forecasting communication
behavior in student software projects. In: Proceedings of the 12th International
Conference on Predictive Models and Data Analytics in Software Engineering.
ACM (2016). https://doi.org/10.1145/2972958.2972961

8. Klünder, J., Schmitt, A., Hohl, P., Schneider, K.: Fake news: simply agile. In:
Proceedings of the Conference on Projektmanagement und Vorgehensmodelle 2017
(2017)

9. Klünder, J., Schneider, K., Kortum, F., Straube, J., Handke, L., Kauffeld, S.: Com-
munication in teams - an expression of social conflicts. In: Bogdan, C., Gulliksen,
J., Sauer, S., Forbrig, P., Winckler, M., Johnson, C., Palanque, P., Bernhaupt, R.,
Kis, F. (eds.) HCSE/HESSD -2016. LNCS, vol. 9856, pp. 111–129. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44902-9 8

10. Klünder, J., Unger-Windeler, C., Kortum, F., Schneider, K.: Team meetings and
their relevance for the software development process over time. In: Proceedings of
Euromicro Conference on Software Engineering and Advanced Applications (2017)

11. Kortum, F., Klünder, J.: Early diagnostics on team communication: Experience-
based forecasts on student software projects. In: Proceedings of the 10th Interna-
tional Conference on the Quality of Information and Communications Technology
(QUATIC), pp. 166–171. IEEE (2016)

12. Kortum, F., Klünder, J., Schneider, K.: Characterizing relationships for system
dynamics models supported by exploratory data analysis. In: Proceedings of the
29th International Conference on Software Engineering and Knowledge Engineer-
ing. KSI Research Inc. (2017)

13. Kortum, F., Klünder, J., Schneider, K.: Don’t underestimate the human factors!
exploring team communication effects. In: Felderer, M., Méndez Fernández, D.,
Turhan, B., Kalinowski, M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS,
vol. 10611, pp. 457–469. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69926-4 36

14. Kuhrmann, M., Diebold, P., Münch, J.: Software process improvement: a system-
atic mapping study on the state of the art. PeerJ Comput. Sci. 2, e62 (2016)

15. Madachy, R.J.: Software Process Dynamics. Wiley, Hoboken (2007)
16. Reshef, D.N., et al.: Detecting novel associations in large data sets. Science

334(6062), 1518–1524 (2011)
17. Schneider, K., Klünder, J., Kortum, F., Handke, L., Straube, J., Kauffeld, S.: Pos-

itive affect through interactions in meetings: the role of proactive and supportive
statements. J. Syst. Softw. 143, 59–70 (2018)

18. Schneider, K., Stapel, K., Knauss, E.: Beyond documents: visualizing informal
communication. In: Requirements Engineering Visualization, 2008. REV 2008, pp.
31–40. IEEE (2008)

19. Shiohama, R., Washizaki, H., Kuboaki, S., Sakamoto, K., Fukazawa, Y.: Estimate
of the appropriate iteration length in agile development by conducting simulation.
In: Agile Conference (AGILE), 2012. pp. 41–50. IEEE (2012)

20. Watson, D., Clark, L.A., Tellegen, A.: Development and validation of brief mea-
sures of positive and negative affect: the PANAS scales. J. Pers. Soc. Psychol.
54(6), 1063 (1988)

21. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1145/2972958.2972961
https://doi.org/10.1007/978-3-319-44902-9_8
https://doi.org/10.1007/978-3-319-69926-4_36
https://doi.org/10.1007/978-3-319-69926-4_36
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

	Helping Teams to Help Themselves: An Industrial Case Study on Interdependencies During Sprints
	1 Introduction
	2 Background: System Dynamics
	2.1 Causal Loop Diagrams
	2.2 Stock and Flow Diagram

	3 Related Work
	4 Study: Setting up the Model
	4.1 Methodology
	4.2 Execution: Case Study in Industry
	4.3 Verification and Validation
	4.4 Reliability of the Model
	4.5 Results and Implications

	5 Discussion
	5.1 Threats to Validity
	5.2 Limitations for the Use in Industry
	5.3 Interpretation

	6 Conclusion
	References




