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Abstract. A system to process seismic signals of vehicles passing
between two sensor stations had been developed and experimented. To
evaluate the feasibility of the system before field test with a real vehicle
and to support the classification model with artificial data later, the input
seismic data were simulated from Green’s method function that accounts
only for Rayleigh surface wave. The system using the Machine Learning
Classification method SVM to classify data collected from two stations
at any time have the state of passed or not. By processing the signal,
the system could detect whether the vehicle had passed the crossing line
or not with the accuracy of 99.10% for simulated data and 94.22% for
experiment data. The experiment and results suggested that processing
seismic signals to monitor control lines is feasible.
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1 Introduction

The monitoring tasks over an area for vehicle detection have many applica-
tions, most commonly for security over an interested area. For example, a chem-
ical weapons production facility needs to detect illegal or suspicious movements
quickly, so an official can take suitable actions in response. For a wide surveillance
zone, it would be costly and difficult to only use personnel to cover the area com-
pletely. For alternative technology solutions, many motion detectors are developed
with unsuitable characteristic such as the Active Sensors with high energy con-
sumption that needed power supplement regularly are impractical in many cases.

For peace-keeping and security tasks, the system is required to have a medium
- large working range, can sustain for a long period of time and does not emit
signal that notify any unwanted party. Thus, the author’s approach turns to the
seismic wave analyzing. This is a passive detection technique, so the equipment

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

T. Q. Duong and N.-S. Vo (Eds.): INISCOM 2018, LNICST 257, pp. 178–190, 2019.

https://doi.org/10.1007/978-3-030-05873-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05873-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-05873-9_15


Analyzing Seismic Signal Using Support Vector Machine 179

would not emit any signal to the environment. At the same time, it is also
cheaper, smaller and has a wider range of working than some other sensors.

For the passive detection methods, a large proportion of research is based on
processing acoustic signal, image and infrared signal [3,5,9]. Seismic signal, on
the other hand, is being studied less because it is more complicated. It consists
of different types of wave, propagates in different forms, with different speeds
and directions, and are dependent on the geology of the interested environment.

Despise all the difficulty, this is still an attractive research approach for the
stated problem. The reasons for that was the seismic waves are less sensitive to
Doppler effects, noises introduced by the moving vehicle and atmosphere com-
pare to sound, image, and infrared signals. Seismic wave also holds the possibility
for non-line of sight detection at significant range (Table 1).

Table 1. Capabilities of the seismic detection method [10]

Target type Detection range (m)

Vehicles-wheeled (light) 200

Vehicles-wheeled (heavy) 400

Vehicles-tracked (light) 500

Vehicles- tracked (heavy) 1000

The seismic wave is categorized into two main type: body waves (e.g. com-
pressional (P) wave, shear (S) wave) and surface waves (e.g. Rayleigh wave, Love
wave). At the measuring point, the signal collected is the sum of both body waves
that propagate in three dimensions through the interior of the earth and the sur-
face waves that propagate in two dimensions through the surface of the earth.
This property tells us that the diminishing rate of a signal for surface waves is
R2, much less than R3 of the body waves. Hence, most of the signal gather at
sampling point come from surface waves.

When considering surface waves, Rayleigh wave holds the largest proportion
of impact energy, 67%, while that of the shear wave and the compressional wave
are 26% and 7% [8]

The seismic wave propagation to the surrounding in a spherical surface for
body waves and in a circle for surface waves. Though there are multiple kinds
of waves, when the faraway target are detected, only the Rayleigh wave, which
accounted the most part of the energy in the seismic wave, can be relied on to
analyze. Hence, in this research, the main focused were simulating and analyzing
Rayleigh wave for vehicle detection.

2 Experiment

The experiment took place on the site of Hanoi University of Science and Tech-
nology, Hanoi, Vietnam in 28 Apr. 2018. The target of the experiment was to
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collect seismic signal generated from the vehicle motion to test the function of
the detection system.

In the experiment, the following equipments was used: two sensor stations
each with a geophones LGT-20D10 and a circuit with opamp OPA2134PA for
collecting data; 3 marking stations each with one motion sensor module HC-
SR501 for marking the begin, the end and the threshold; two notebook comput-
ers, two Arduino Uno, battery, relay SRD-12VDC-SL-C, IC LM7805CV TO220
and connecting cables.

The experiment use the default Arduino 10-bit ADC port with internal refer-
ence voltage of 5 V. To eliminate the 50 Hz ‘hum’ noise from the power grid, the
Arduinos are power by the Notebook’s battery through the connecting cables.
The circuit with opamp OPA2134PA was built to offset signal with 2.5 V base
and 0 gain. The experiment setup with two Sensor stations S0, S1 and three
Marking stations M0, M1, M2 is described in the figure below. When there is
motion at M0 or M2, the signal collected from the geophones transmitted to
the offset circuit, converted to digital and recorded in a Arduino for each geo-
phone with Sampling frequency of 400 Hz. The M1 sensor marking the threshold
would notify both Arduino when the vehicle moved past it and saved labeling
data. To synchronize the starting, threshold and stopping moment between both
Arduinos, each of the three Marking stations is connected to both Arduinos by
connecting cables. After collected, the data were manually transfered into the
notebook for later processing (Fig. 1).

Fig. 1. Experiment setup

The geophones were placed 0.15 m underground and 0.5 m away from roadside
of the testing common road made of asphalt. The Marking stations were placed
at roadside with the height of 0.25 m from the road surface. The geophone testing
range is Rmax and the distance between the geophones are D. The vehicle were
measured at three different speeds V, with three repetitions for each. The speeds
were controlled by the driver watching the speedometer so that any acceleration
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and deceleration happened outside M0-M2 range and the speed was remained
constant between them. Recording was started and stopped automatically when
the sensors at Marking station detected vehicle motion in the road. The vehicle
used in the experiment was a KIA Morning 2015 car.

3 Method

3.1 Simulated Data Generation

Firstly, a simple quarter car model (QCM) had been used by the author to repre-
sent the forces exerted to the ground as the vehicle move over irregular surfaces.
For wheeled vehicles moving over the perfectly flat ground, the irregularity forces
were still presented due to the small gaps in tire treads. To justify QCM as a
valid vehicle simplification, several assumptions had been made [7]:

– A point contact patch assumption is deemed sufficient as typical wavelengths
of generated Rayleigh waves are greater than the characteristic dimensions of
a vehicle.

– Total vehicle mass is distributed evenly to all wheel stations at all time.
– The road surface is rigid.
– Freezing the low frequency ‘body bounce’ vibration (around 1–2 Hz). This

assumption can be made since the generated ground vibrations are usually
at high frequency.

In Fig. 2, the Ft represented the force exerted by the compression of the
tire spring due to the vertical displacement of the wheel zr. Thus, the vertical
displacement of the wheel could be represented by a Frequency response function
(FRF) with the input zr(t).

The input zr(t) as shown in Fig. 2 is the elevation changes caused by the tire
tread and the irregularity of the surface road. For simplicity, the variation in
surface profile over which the wheel (modeled as a point contact) traverses could
be estimated as a finite series of a half sine wave pulses.

{
zr (t) = zrmax

sin (2πftrt) for zr (t) ≥ 0
zr (t) = 0 otherwise

(1)

The frequency of the input ftr could be calculated by the corresponded mov-
ing velocity V of the vehicle over the tread pitch a. Using a simple Fourier
Integration, the input in the frequency domain had the expression:

zr (ω) =
∫ ∞

−∞
zr (t) e−iωtdt (2)

According to the QCM, the displacement of the wheel from its static position
are described in the equation:
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Fig. 2. A quarter car vehicle model

Mw
∂2zw

∂2t
+ Bs

∂zw

∂t
+ (Kt + Ks) zw = Ktzw (vt) (3)

where Kt and Ks are the Tire compliance and the Suppressing spring stiffness
individually. Using Fourier transform to solve Eq. (3), the elevation of the wheel
in the frequency domain is:

zw (ω) =

ω2
1 zr (ω)√

(ω2
0 − ω2)2 + (2ωα)2

exp

[
−i tan−1

(
2ωα

ω2
0 − ω2

)]
(4)

where ω0 = ((Kt + Ks)/Mw)1/2 is the Hop resonance frequency, ω1 =
(Kt/Mw)1/2 is the Tire “bouncing” resonance frequency and α = Bs/2Mw is
the Normalized damping coefficient.

Having both the displacement of the wheel and the input signal in the fre-
quency domain, the equation of the force spectrum for a single wheel axle could
be established:

Ft (ω) = Kt[(zw (ω) − zr (ω)] (5)

The QCM described above is only valid for modeling a single axle wheel
displacement. Considering the effects of multiple axles, a simple superposition
of all-wheel hop displacement responses should be taken to establish the ground
force spectra. The wheel hop response differently at each axle differs by a phase
shift that depended on the distance from it to the front axle E1n divided by the
vehicle forward speed V
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Fmw
z (ω) = Fz (ω) .

(
1 + exp

(
iω

E12

V

)
+ exp

(
iω

E13

V

)
. . .

+ exp
(

iω
E1N

V

))
(6)

where Fz(ω) is the force spectrum for a single wheel axle.
Another thing needed to be calculate is the Rayleigh determinant and its

derivative:

F (k) =
(
2k2 − k2

s

)2 − 4k2vlvs (7)

where k is the projected distance onto the z = 0 plane of the current wave
vector, vl, s = (k2 − kl, s

2)1/2 are no specified expressions, kl,s = ω/cl,s are the
wavenumber of bulk longitudinal and shear acoustic waves. cl = [(λ + 2μ)/ρ]1/2

is the phase velocities of bulk longitudinal acoustic waves, cs = (μ/ρ)1/2 is the
phase velocities of shear acoustic waves, where λ = 2μσ/(1−σ) is the Lame first
parameter, σ is the Poisson’s ratio, μ is the shear modulus and ρ is the soil mass
density.

Note that in the consideration case, the contribution of bulk waves to the
ground vibration field generated on the surface are proportional to (kl ·r)−2 and
(ks · r)−2 respectively for longitudinal and shear waves, where r is the distance
from the vibration source to the observation point. For comparison, the Rayleigh
waves contribution is proportional only to (kR r)−1/2. Thus, further calculations
will take into account only the contribution of Rayleigh surface waves (in Eq. (7):
k = kR, where kR is the wave number of a Rayleigh wave).

Solving equation F(k) = 0 [6], the kR was achieved as the real root of this
equation, thus also determined the velocity of Rayleigh waves cR = ω/kR. Taking
account of attenuation of generated ground vibrations in the ground result in
kR = (ω/cR)(1 + iγ), where 0 < γ � 1 is the Loss factor which describes the
linear dependence of a Rayleigh wave attenuation coefficient on frequency ω.

Next, the vibration spectra generated by the vehicle-induced ground forces
using Green’s function method (taking into account only generated Rayleigh
surface waves) were expressed:

vz (ω) =(
2π

kR.r

) 1
2 (−iω) kRkSvsvl

2πμF ′ (kR)
Fmw

z (ω) . e−kRγ.r. eikRr− 3π
4

(8)

where F (kR) is the derivative of F(k) taken at k = kR and R is the distance
from the vibration source to the observation point.

To develop a more robust system, a family of NON-LINEAR moving tracks,
which still satisfy the requirement that the moving velocity is a constant, needed
to be generated. Thus, the experiment setup was developed and described in
Fig. 3.



184 T. Duong Nhat and M. Nguyen Thi Phuong

Fig. 3. Simulated experiment setup

where the two sensors were placed at O1 and O2 which have the distance between
two points is D and Rmax is the working radius of the geophone.

There were infinite number of Nonlinear moving tracks from line y=D to line
y=0, but to satisfy the requirement of constant moving velocity, the solutions
were limited than before. Thus, the moving track of vehicle was chosen as a
function of a circle in Descartes coordinate system.

(x − x0)
2 + (y − y0)

2 = R2 (9)

{
x = x0 + Rsin

(
V
R t + ϕ

)
y = y0 + Rcos

(
V
R t + ϕ

) (10)

To applied the simulated location r to Eq. (8), notice that the distance r
from the vehicle to the observation point here is a constant. Since the vehicle
was moving continuously while collecting data, the distance from the vehicle to
the observation point was also varied. To use the Eq. (8), some assumption is
required to simplify the problem.

The traveling distance of the vehicle were divided into n small bins. An
assumption had been made that when the vehicle is inside a bin, the distance
between it and the observation point remained unchanged and equaled to the
distance of the center of the bin to the observation point. Thus, the Eq. (8)
could be used to obtain a vertical displacement spectrum for each bin with its
corresponding Rn (Fig. 4).

After acquiring a set of vertical displacement of the wheel in the frequency
domain with respect to each Rn to the observation point, performed Inverse
Discrete Fourier Transform (Inverse Fast Fourier Transform to be precise) and
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Fig. 4. Vehicle travel distance is divided into small bins in which all data inside a bin
have the same distance Rn to the observation point.

merged all data with respect to each bin defined before. The result simulated
signal has the form in Fig. 5.

The parameters used in the simulation process were shown in Table 2.

Fig. 5. Simulated signals of 2 sensors. Each peak at the time when the vehicle is closest
to the sensors.

3.2 Data Classification with Support Vector Machines (SVM)

SVM is a supervised learning model with associated learning algorithms that
analyze data used for classification and regression analysis. It was first proposed
by Cortes and Vapnik [4]. In 1992, a method to create a nonlinear classifier is
proposed by Boser, Guyon and Vapnik [2]. This method applied Kernel trick,
originally proposed by Aizerman et al. [1], to maximum the margin hyperplane.
Since there are available library that had been optimized, the Sklearn library
had been chosen to implement SVM.

After acquiring the labeled data, an attempt was made to train the model
directly with the Raw data by SVM algorithm. The result was very poor and
highly sensitive to the skewness of the data. Looking back into Green’s function
method to find the vertical displacement in Eq. (8), it shown that the displace-
ment was dependence on the distance in the Frequency Domain but not in the
Time Domain. Thus, the main features to train the model was chosen to be the
transformed data in the frequency domain.
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Table 2. The simulated parameters

QCM parameters Symbol/Unit Kia Morning 2015

Total vehicle mass Mv/kg 940

Mass of wheel Mw/kg ∼15

Number of wheel Nw 4

Vehicle forward velocity V/kmh−1 5, 10, 15

Tread pitch a/m 1.409−3

Magnitude of discontinuity zrmax/m 0.005

Wheelbases E12/m 2.385

Soil mass density ρ/kgm−3 1800

Shear modulus μ/Nm−2 4x107

Loss factor γ 0.05

Poisson’s ratio σ 0.25

Geophone testing range Rmax/m 10

Distance between geophones D/m 20

Distance between threshold to S0 DS0/m 10

Distance between threshold to S1 DS1/m 10

The hyperparameter window size was chosen to represent the number of data
taken to analyzed at each individual sampling moment. As a common practice,
the Discrete Fourier Transform (DFT) was not used directly to convert data from
the time domain to the frequency domain. Instead, the Fast Fourier Transform
(FFT) was chosen for the increase in preprocessing speed. Thus, the hyperpa-
rameter window size is chosen as windowsize = 2n with n is a positive integer
and window size is bound by windowsize ≤ number of data. After that, the
data was padded with the size according to the window size.

Because each feature of a data was not completely independent, the ground
velocity varies in different ranges [Min, Max] of different datasets, performing
Min Max Scaling or Normalization were needed on all Fourier transformed fea-
tures. After that, the Min and Max values was added as two new features for
each data.

Next, the transformed data set were randomly divided into the Training set,
the Cross-Validation set and the Test set with ratio 8:1:1. Then, the Standardiza-
tion procedure were performed on each feature so that they have mean=0 and
standard deviation=1. That was the final step of the preprocessing procedure.

After that, the model was trained with the preprocessed Training set using
the Sklearn SVM library.

Finally, the hyperparameter window size was tested and evaluated on the
classification model. Since hyperparameters depend on the characteristic of the
dataset, the window size was chosen by testing with different value on the dataset
to see which would bring the highest accuracy. To test the effect of the different
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window sizes with different dataset size, a test on multiple simulated datasets
were made and the result are shown in Sect. 4.

4 Result and Discussion

4.1 Result

Simulated Data Generation. After choosing the size of the data set as 2048
(211) number of data, 40 simulated datasets were generated with the randomized
starting point, velocity, Non-linear moving tracks as presented in Sect. 3.1. A
results of the moving track and simulated signals in the time domain were shown
in Fig. 6.

A result of experiment data were shown in Fig. 7.

Fig. 6. A sample of track and simulated signal in the time domain.

Data Classification. The effect of the different window sizes with different
number of SIMULATED dataset can be seen in Table 3:
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Fig. 7. A sample of track and simulated signal in the time domain.

Table 3. (SIMULATED DATA) Accuracy with different window sizes and different
number of training datasets

Window size (2n)

1 2 3 4 5 6 7 8 9

No. of training dataset 5 87.60 93.46 96.00 97.75 98.83 99.02 96.88 93.36 88.28

10 87.60 94.78 97.07 99.02 99.02 99.17 98.29 95.85 91.11

15 87.01 93.42 97.20 98.70 99.19 99.12 98.57 96.58 92.84

20 86.35 94.19 96.97 98.56 98.80 99.39 98.93 97.56 94.53

25 86.99 94.39 97.01 98.81 99.18 99.02 99.18 97.38 95.02

30 86.10 93.96 97.51 98.31 99.19 99.19 98.96 97.84 94.84

35 85.81 93.71 97.15 98.63 99.26 99.26 99.20 97.81 94.53

40 86.01 93.63 97.16 98.68 99.05 99.28 99.13 97.96 95.47

Table 4. (EXPERIMENT DATA) Accuracy with different window sizes and different
number of training datasets

Window size (2n)

1 2 3 4 5 6 7 8 9

No. of training dataset 1 98.83 98.83 98.59 98.59 98.83 99.53 99.06 97.66 96.96

2 98.71 98.61 98.71 97.64 99.04 98.93 97.86 93.35 93.89

3 97.30 97.18 95.92 95.23 94.48 94.25 94.66 95.00 96.84

4 93.83 94.68 94.60 94.43 95.02 94.09 94.85 96.38 97.32

5 95.61 95.34 95.61 95.14 95.47 95.20 93.51 93.95 95.03

6 95.12 93.97 94.59 94.64 94.28 94.19 92.51 90.63 92.15

7 94.96 93.69 93.11 91.12 90.87 89.60 89.80 90.52 90.44

8 93.90 93.81 92.11 90.07 89.35 88.42 87.02 87.67 88.24

9 94.90 93.87 93.23 90.76 90.32 88.03 87.97 88.82 88.84

The effect of the different window sizes with different number of EXPERI-
MENT dataset can be seen in Table 4:

The predicting accuracy of the system trained with all nine EXPERIMENT
datasets are shown in Fig. 8 in which the dash-line shown training accuracy while
the other shown cross-validation accuracy.
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Fig. 8. Accuracy over window size with nine datasets.

Choosing the window size that brought the highest accuracy in a large size
dataset, the window size= 6 was chosen for SIMULATED data and window
size= 1 for EXPERIMENT data. To not be biased by the cross-validation data
set, a final analysis on a Blind Test Set that the model has never seen before
was used to evaluate the system and result in the accuracy of 99.10% for SIM-
ULATED data and 94.22% for EXPERIMENT data.

Some conclusions can be made in Fig. 8 and Table 4. Overall, the predicting
accuracy of the system are very high. Beside, there were a slight decrease in the
accuracy when more datasets was added and the more datasets were used, the
smaller the window size would bring the highest accuracy. This result implied
that the current datasets were still not large enough to generalize the model
to reach its best potential. Thus, acquiring more data and combining with the
artificial datasets to train the model would much likely increase the predicting
accuracy.

4.2 Discussion

At present state, a working system have been constructed to collect and ana-
lyze seismic signal generate from a moving vehicle. Preprocessing and Machine
Learning techniques are used to classify acquired data thus determined whether
the vehicle have passed the threshold or not.

The tests has been conducted only on a common road at HUST university
using a 2015 KIA Morning car. Further tests are needed for integrating the arti-
ficial data and acquiring more data with different vehicle types to develop more
robust analyzing system. With a small modification, the system can be made to
work in real-time that satisfy the requirements of a long-lasting, unnoticeable,
robust vehicle detection system with large monitoring range.
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