®

Check for
updates

Towards Computer-Aided Security Life
Cycle Management for Critical Industrial
Control Systems

Florian Patzer'®), Ankush Meshram?, Pascal Birnstill!, Christian Haas®,
and Jiirgen Beyerer!2

! Fraunhofer Institute of Optronics, System Technologies and Image Exploitation
(IOSB), Karlsruhe, Germany
{florian .patzer,pascal.birnstill,christian.haas,
juergen.beyerer}@iosb.fraunhofer.de
2 Vision and Fusion Laboratory (IES), Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany
{ankush.meshram, juergen.beyerer}@kit.edu

Abstract. Critical infrastructure experienced a transformation from
isolated towards highly (inter-)connected systems. This development
introduced a variety of new cyber threats, causing high financial dam-
age, threatening lives and affecting the society. Known examples are
Stuxnet, WannaCry and the attacks on the Ukrainian power grid. To
prevent such attacks, it is indispensable to properly design, assess and
maintain countermeasures and security strategies throughout the whole
life cycle of the critical systems. For this, security has to be considered
and assessed for every system design and redesign. However, common
assessment tools and methodologies are not executed on a detailed sys-
tem knowledge and therefore they are enhanced with penetration tests.
Unfortunately, performing only abstract assessments is inadequate and
penetration tests endanger the availability of the tested systems. There-
fore, the latter cannot be performed on live systems executing critical
processes. In this paper, we address these issues for Industrial Control
Systems and explain how new concepts for continuous security-by-design
or model-based system monitoring and automated vulnerability assess-
ments can resolve them by exploiting new Industry 4.0 developments.

Keywords: ICS security - Critical infrastructure security
Security-by-design - Automated vulnerability assessment
Security life cycle management - Defense-in-depth - Knowledge base

1 Introduction

Many industrial systems (hereafter referenced as Industrial Control Systems
(ICS)) are classified as critical infrastructure. Due to high costs of down-times
or the respective risk for safety and public health, interruption of their processes
© Springer Nature Switzerland AG 2019

E. Luiijf et al. (Eds.): CRITIS 2018, LNCS 11260, pp. 45-56, 2019.
https://doi.org/10.1007/978-3-030-05849-4_4


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05849-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-05849-4_4

46 F. Patzer et al.

is usually unacceptable. Consequently, in contrast to office IT, the prioritized
security objective for ICS is availability and not confidentiality.

Unfortunately, ICS are generally very vulnerable to cyber attacks. One rea-
son for this situation is that the applied technologies were not designed to ful-
fill security requirements, since the systems in question were isolated from the
outside world for decades and thus isolated from many kinds of attacks. As a
consequence, the need for security has not been strong enough to support the
development of more secure technologies. In addition, the life time of ICS compo-
nents tends to be much longer than that of components in other domains. Thus,
insecure technology is still common in ICS. However, the mentioned isolation
does not exist anymore and most ICS operators have realized that to main-
tain availability and safety of their systems, they have to apply countermeasures
which will prevent attackers from endangering the systems.

Additionally, governments have reacted to the new threats by submitting new
laws which try to force the ICS operators to improve their systems’ security. For
example, by building security management systems and performing respective
security audits. To support the ICS operators at the design and implementation
of these measures, standard collections such as IEC 62443" and NIST SP 800-82 -
Guide to Industrial Control Systems (ICS) Security? have been elaborated.

Among others, the standards contain measures to maintain the security man-
agement systems and to ensure their effectiveness. This includes periodic vulner-
ability assessments, which are typically performed via “pen and paper” approach
and supplemented with penetration tests. However, pen and paper assessments
often cannot rely on a detailed technological view of the system (1). The avail-
able analyzing and testing techniques applied in penetration tests on the other
hand can lead to malfunctioning and outage of the systems under test (2). To
avoid such disruptions, in ICS penetration tests can be either omitted or just
performed on isolated test systems. The former is very dangerous, since there
is not even an indication for the effectiveness of the applied security measures,
for existing vulnerabilities or for system design-flaws. Thus, such issues are often
first recognized, once an attacker has already exploited them. To avoid this,
the common solution is the analysis and penetration of isolated testbeds [3].
Nevertheless, we argue that due to differences in configuration, state and in- or
outbound interfaces of the perimeter the test systems are not identical to the
real systems. Thus, this approach is generally inaccurate (3). In modern flexi-
ble plants, such rather static testbeds would even be incomparable to the real
system.

Moreover, the security of a system has to be assessed and improved over its
whole life cycle, meaning planning, engineering, deployment, operation, main-
tenance, adaptation and decommissioning of the system and its components.
In terms of security-by-design this includes not only every system design but
also every redesign. Such ongoing security evaluations and assessments require
current knowledge about the evolving system and do not scale without proper

! https://isa99.isa.org/TISA99%20Wiki/Home.aspx.
2 https://csrc.nist.gov/publications/detail /sp/800-82/rev-2 /final.


https://isa99.isa.org/ISA99%20Wiki/Home.aspx
https://csrc.nist.gov/publications/detail/sp/800-82/rev-2/final

Towards Computer-Aided Security Life Cycle Management for Critical ICS 47

computer-aided security analysis. To the best of our knowledge, solutions sup-
porting these necessary processes are currently not available for ICS (4).

Leveraging new Industry 4.0 concepts, such as digital twins (cf. Sect. 3)
and interoperable data exchange protocols for ICS devices, new and enhanced
security applications can be realized. These applications operate on detailed
technological information about the respective critical system without stressing
the system’s components and networks while providing comprehensive security
analysis and security life cycle management. We argue that with such security
applications the above mentioned issues (1)—(4) can be resolved.

In this work-in-progress paper, we introduce first concepts and results of our
research regarding such security applications (cf. Sects. 2.1, 2.2, 2.3 and 2.4).
All these applications rely on a computer-readable system knowledge base (i.e.
a digital twin). Moreover, we describe what kind of information is needed to be
collected by the knowledge base and how it is collected (cf. Sect. 2). Afterwards,
we discuss similar work and applicable related Industry 4.0 concepts (cf. Sect. 3).
Finally, we provide a discussion about specific issues and pitfalls which arise when
such a knowledge base is implemented for the ICS domain (cf. Sect. 4).

2 System Knowledge Base

Each device of an ICS comprises different types of security-relevant informa-
tion. Such information can be a device’s network configuration, software details,
applied security measures or available hardware interfaces. These classes can
further consist of subclasses. For example, a network configuration can contain
static information (e.g. a MAC address) and dynamic information, e.g open
ports. Open ports relate to services which can be described with static infor-
mation, like the type of a service and its version. In our concept, we let each
device (further called Device of Interest (Dol)) of the ICS hold a semantically
described model containing this information. Periodically or when certain values
have changed, the device updates its model’s corresponding values and offers this
model to the knowledge base (see Fig. 1). We call this process self-disclosure.
By building the knowledge base from this information, a digital copy of the real
system is generated and maintained. The Platform Industry 4.0 consortium? is
currently developing the Asset Administration Shell [12] which will implement
such a self-disclosure strategy (cf. Sect. 3) and should ideally be implemented
on every future component.

A second source of information are models sent by a user (user-based infor-
mation). As an example, this user could be an engineer creating a system design
or redesign using engineering tools. As output, these tools can generate a seman-
tic representation of the designs, e.g. as AutomationML model [15] or OPC UA
node set [1,7] which then embodies a model that can be taken as input by the
knowledge base.

Using these two types of information, the knowledge base consists of a rep-
resentation of the real system and another of the system’s design. These two

3 https://www.plattform-i40.de/T40 /Navigation/EN/Home/home.html.


https://www.plattform-i40.de/I40/Navigation/EN/Home/home.html

48 F. Patzer et al.

3

Security User (e.g. engineer)
Applications

Knowledge

Device Self-Disclosure
Base
Plant with

devices of interest

Fig. 1. A system knowledge base interacting with different agents

representation types can now be used by different security applications. Cer-
tainly, such a knowledge base can also be used by other types of applications,
but in this publication we concentrate on the security domain.

In the following sections, we describe the security applications we deem most
important to provide a high level of security in ICS. All these applications exploit
the knowledge base.

2.1 System Flaws and Continuous Security-by-Design

The first new security application is a vulnerability analysis tool for a type of vul-
nerability we classify as system flaw. This class consists of vulnerabilities which
are not found in common vulnerability databases and are not zero-day exploits.
Instead, system flaws are flaws within an ICS that can have a negative impact
on its security, for example, missing security measures like firewalls, or a flawed
network segmentation due to wrong VLAN affiliations, or undesired conduits
through dual homed computers. Further examples are policy violations within
a security zone due to firewall misconfiguration or hardware interfaces that are
not allowed, but nevertheless available. A System Flaw Analyzer (cf. Fig. 2) can
look for such a vulnerability by retrieving relevant information from the knowl-
edge base. It can then transform this information into facts (knowledge facts)
(e.g. Prolog facts?). The vulnerability being searched also gets described as facts
(vulnerability facts). The analyzer can use these facts as input for a reasoner
(e.g. Prolog) which will calculate whether all these facts can be true simultane-
ously. As a simplified example, the knowledge fact is_open(device, port) and the
vulnerability fact not(is_open(device, port)) cannot be true at once. Thus, the
System Flaw Analyzer can find these issues. The vulnerability facts can consist
of facts describing attack vectors, which formally describe what conditions the
attack would exploit, and facts representing security policies, describing what
conditions are allowed (or not allowed). This idea is mainly motivated by the

4 www.cse.unsw.edu.au/~billw/cs9414 /notes/prolog/intro.html#facts.


www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html#facts

Towards Computer-Aided Security Life Cycle Management for Critical ICS 49

vulnerability analysis of MulVal ([11], cf. Sect. 3) which uses this approach but
neither semantic models nor ICS applicable data exchange protocols.

y & Parametrize and start analysis

System Flaw Analyzer

Security Specialist Get analysis results
Resolve [\ Retrieve Request/
issues relevant respond with
or model additional
confirm . parts information
Continuous

Security-by-Design

& Encoded (re-)design
.

Engineer
Security Cross- - .
Tool disciplinary En/g(l:r:;(;rslng
Actions Communication

Fig. 2. The concept of continuous security-by-design

Until now the System Flaw Analyzer has only used the ICS representation.
However, by adding another step of intelligence to the analyzer, it can be used
for a concept we call continuous security-by-design, which can be seen in Fig. 2.
For this, the aforementioned engineer submits the model of a partial redesign
to the knowledge base. As described before, this can be created using common
engineering tools. Let’s assume the redesign model consists of a certain device
reconfiguration, namely a new IP address (this is a very simplified example for
better understanding). The System Flaw Analyzer can then be configured by
a security specialist to use the main model and apply the redesign to it. Sub-
sequently, the analyzer proceeds as described before but with one exception.
Every time it requests information from the knowledge base’s ICS representa-
tion to build the knowledge facts, it replaces the retrieved information with the
corresponding information of the redesign. In our example, it would replace the
device’s current IP address with the one specified in the redesign. As a result,
the analyzer would calculate on facts, representing the system as it will be when
the redesign is applied. The security specialist can then use the analyzer’s output
to identify necessary changes and measures. He can then assist the engineer to
improve the security of the redesign, which afterwards can be resubmitted to the
knowledge base. This process can then be repeated until the security specialist
has no more concerns about the changes. This allows a detailed computer-aided
assessment of the real ICS before it gets adapted. Thus, in contrast to common



50 F. Patzer et al.

automated vulnerability assessment concepts, our approach is able to find secu-
rity vulnerabilities before they exist in the real system and does not endanger
the system at any point in time.

Moreover, if the analyzed system model has the granularity of device config-
urations, it can even be used to (re-)configure the devices of interest accordingly,
as it is already common for network devices via NETCONF [5].

2.2 Known Vulnerabilities

Another type of vulnerability can also be identified using the knowledge base,
namely the known vulnerabilities. These vulnerabilities can be found in public
databases like the Open Source Vulnerability Database (OSVDB?®). The already
referenced application MulVal [11] uses such databases. It sends the vulnerability
precondition descriptions, retrieved from such databases, to the devices which
use special scanners to compare them to their own configuration and state. If
this comparison results in a successful match, the device notifies the MulVal
main application about the match, which can then conclude that the device has
the respective vulnerability.

Such applications can minimize the reaction time to new exploits and help to
manage them, e.g. by keeping track of them until patches are available. Thus, it
is desirable to support such applications for ICS. This goal can be achieved, when
the application (e.g. MulVal) queries the knowledge base for devices matching
the preconditions, instead of asking every device to perform a self-check for the
preconditions. The result would contain the vulnerable devices.

2.3 System Model Monitoring

In every complex ICS, the original design and the actual system tend to diverge
from each other as the time proceeds. In modern plants, this is even intended
since more and more flexibility within the system composition is introduced,
e.g. by Plug-and-Produce concepts [4]. Especially from a security point of view
this development is dangerous, since security measures cannot be maintained
accurately if the available view of the system is outdated. For example, firewall
rules might not be updated correctly, when the removal or addition of a device
which communicates through the firewall is not recognized.

However, when the knowledge base contains the representation of the design
and the real system, a security application, we simply call System Model Mon-
itoring, can compare these models to each other (e.g. on every update of the
knowledge base) and raise alerts when they differ. This enables the engineer and
security specialist to timely react to the issue.

2.4 Testbed Synchronization

We already argued why testbeds are important for ICS. Furthermore, as men-
tioned before their main disadvantage is their disability to represent the real

5 https://blog.osvdb.org.


https://blog.osvdb.org

Towards Computer-Aided Security Life Cycle Management for Critical ICS 51

system properly. The knowledge base consists of the information necessary to
synchronize a testbed with the real system. If the testbed devices support
the necessary protocols (cf. NETCONF Sect. 2.1), their configuration can be
updated by the knowledge base, or an additional synchronization application.
As a result, tests can be performed on a testbed, which is more comparable to
the real system.

There are even more security-related applications being out of scope for this
paper. Examples are the context provision for intrusion detection systems, the
improvements of pen and paper security assessments or the retrieval of crystal
box knowledge when penetration tests are being applied after all.

2.5 Modeling Language

The two types of models, self-disclosure- and user-based, are the core of the
knowledge base. Nevertheless, we did not define the modeling language which
is required to create and encode semantic models. A number of languages are
available to build such a model. Unfortunately, the available modeling languages
either support some of the necessary semantics but cannot be applied for rea-
soning (i.e. they are not directly convertible into facts, cf. Sect. 2.1) or they do
not support the necessary semantics but do support reasoning. However, vari-
ous available ICS devices already support protocols for information disclosure,
focusing on interoperability and therefore providing own modeling strategies.
As an example, industrial devices often support either OPC UA or oneM2M©,
whereas for network devices NETCONF with YANG [2] is more common. Since
the resource restrictions of the Dols will usually inhibit the simultaneous exis-
tence of multiple such protocol stacks and it would be futile to expect vendors
of different domains to deploy a common protocol stack only used for the here
described concepts, the knowledge base should be able to communicate with the
Dols using various protocols. Thus, a transformation from different languages
into a common one, which is also supported by reasoners, is inevitable. For
example, our current implementation of the knowledge base is connected to the
Dol’s via OPC UA (cf. Fig. 3) using the protocol’s own information model.
The received data gets then converted into OWL 2 DL to be able to perform
reasoning and leverage the strong tool support for OWL 2 DL. Nevertheless, the
here described concept of the knowledge base is not restricted to any certain
modeling language.

3 Related Work

Critical processes within ICS will be more and more equipped with so called dig-
ital twins [14]. Digital twins are digital representations of their physical “twin
system”. They do not have to consist of simulations or visual representations.

5 http://www.onem2m.org/.
" https://www.w3.org/TR,/owl2-primer/.


http://www.onem2m.org/
https://www.w3.org/TR/owl2-primer/

52 F. Patzer et al.

<UAvariable BrowseName="1:Destination" DataType="String" NodeId="1=11320" ParentNodeId="i=11316">
<DisplayName>Destination</DisplayName>
<Description>Destination</Description>
<References>
<Reference ReferenceType="HasModellingRule">1=78</Reference>
<Reference IsForward="false" ReferenceType="HasComponent">1=11316</Reference>
<Reference ReferenceType="HasTypeDefinition">1=63</Reference>
</References>
<Value>
<uax:String>anywhere</uax:String>
</Value>
</UAVariable>
<UAvariable BrowseName="1:Source" DataType="String" NodeId="i=11321" ParentNodeId="1=11316">
<DisplayName>Source</DisplayName>
<Description>Source</Description>
<References>
<Reference ReferenceType="HasModellingRule">{=78</Reference>
<Reference IsForward="false" ReferenceType="HasComponent">1=11316</Reference>
<Reference ReferenceType="HasTypeDefinition">1=63</Reference>
</References>
<Value>
<uax:String>anywhere</uax:String>
</Value>
</UAVariable>

Fig. 3. Example snipped of an OPC UA-based self-disclosure as XML export which
shows the source and destination fields of an IP Tables entry.

Instead a digital twin can consist of only a semantic model of a system. Depend-
ing on the use case, it can be composed of data with different focus. Common
digital twin concepts often focus on physical or process-related data. Based on
this data, applications like simulations, analysis or monitoring can be performed
without having to alter, endanger or stress the real system. The knowledge base
described in Sect. 2 is therefore a digital twin of critical systems, concentrating
on security-relevant information.

Although network components already support self-disclosure for years (e.g.
NETCONF or OF-config for Software-Defined Networking [10]), PLCs, human
machine interfaces (HMIs), industrial PCs or smart sensors either do not support
similar concepts or only for process-related data. However, the trend towards
such technology is already visible. For example, flexible and self-orchestrated
production concepts like the Asset Administration Shell (AAS) [12] and concrete
protocols like OPC UA have been developed. The AAS is a concept designed
precisely to empower devices to provide the service of self-disclosure. It even
consists of a security view, which should provide security-related information
as desired for security assessments. The amount of important industrial part-
ners of the AAS project shows the need for such a technology and strengthens
the impression that a wide range of future industrial components will support
this technology. Unfortunately, the concept and its implementations are not yet
sufficiently mature to be applicable for our approach. In the future, AAS imple-
mentations might provide a suitable self-disclosure solution for the here described
concept (cf. Sect. 2).

Automated vulnerability assessment tools, like OpenVAS®, have been avail-
able for years. However, most of these tools perform the same scans and pene-
tration techniques as manual penetration tests. As argued before, these are not

8 http://www.openvas.org/index.de.html.


http://www.openvas.org/index.de.html

Towards Computer-Aided Security Life Cycle Management for Critical ICS 53

applicable for critical systems and are therefore not further considered. More
relevant approaches are explained in the next paragraphs.

The Open Vulnerability Assessment Language (OVAL?) is a language to
encode configuration and vulnerability details for vulnerability assessments. An
OVAL scanner running on the device under test, can perform automated vulnera-
bility assessments by receiving OVAL-encoded vulnerability and related configu-
ration descriptions from a remote OVAL main application and comparing them
to its system’s configuration. However, due to their local view of the device,
OVAL scanners are limited to device vulnerabilities. Thus, they are not appli-
cable for the System Flaw Analyzer concept of Sect. 2.1. Even though to the
best of our knowledge no scanners and schemes exist, which can be applied to
common industrial components, it might, for example, be reasonable to support
OVAL as a language to interact with the knowledge base and use the OVAL
Systems Characteristics Schema to describe device configurations (cf. Sect. 2.5).

A system analysis approach using OVAL scanners is MulVal [11]. MulVal
is a concept which gathers vulnerabilities of devices by using OVAL scanners.
Additionally, network information is captured via routers and firewalls. All this
information is sent to a host running the main application. This application
transforms the information into Datalog, which is a subset of Prolog and can
therefore be transformed into Prolog facts directly. The same main application
receives a list of rules, written in Datalog as well, which define semantics of dif-
ferent kinds of exploits, compromise propagation, whitelist access policies and
multihop network access. As a result, Prolog can be run as a reasoner given the
facts derived from the device/network information and the facts representing the
rules. The idea of letting the devices provide security relevant information to a
system by themselves and running reasoners on that information is similar to
our approach in Sect. 2.1. However, MulVal is not designed for ICS, collects facts
instead of building semantic models and the reasoning concentrates on attack
graphs given the device vulnerabilities instead of analyzing the facts for compli-
ance to best practice. In contrast to the MulVal assumptions, in the industrial
domain various data formats and protocols have to be supported for informa-
tion gathering, and simultaneously a variety of different applications will use
this knowledge base (e.g. our security applications, digital twin implementations
or inventory tools). Even though in [13] the authors claim to propose a MulVal-
related solution for ICS, we could not find any evidence for that in the paper,
since the solution does not consider any of the typical ICS devices, architectures
or operating systems.

Further publications are available, either similar to MulVal [17], or extending
it to perform risk assessments using game theory [8], or focusing on the model
refinement [16]. The latter is an approach similar to our Unknown Vulnerability
Analyzer concept. It conceptually leverages automated scanning, which is not
recommended for ICS, as already mentioned, but can be used for our knowledge
base approach as well.

9 https://oval.mitre.org/language/.


https://oval.mitre.org/language/

54 F. Patzer et al.

A similar approach to MulVal was recently initiated in a series of IETF
drafts and RFCs by the IETF Security Automation and Continuous Monitoring
(SACM) working group!'’. The SACM WG describes a basic concept which con-
sists of an OVAL-scanner-like as well as a self-disclosure approach. Currently,
their work concentrates on endpoint security and the respective knowledge base
is a software inventory. In addition, they do not yet consider reasoning on the
captured data and do not take the peculiarities of the ICS domain into account.
However, the working group is still active and intends to elaborate and specify
further parts of the overall idea. Thus, in the future they might address more
issues which could support the implementation and adaptation of our concept.

Model-based vulnerability assessments like [6] and [9] try to benefit from
abstract models of the system (e.g. modelled in SysML!!) in order to run auto-
mated vulnerability assessments. These approaches are not using real configura-
tions and system states, which forces them to operate on a higher abstraction
layer than our approach. Due to this abstract view, most vulnerabilities that
could be identified on the knowledge base are not visible at the high level of
SysML models or similar models. In other words, approaches based on such
models have the issue of not representing the real system, but only an abstract
plan or view of the system with no guarantees of validity. However, the strate-
gies to identify vulnerabilities on high-level models might be useful to develop
respective strategies for our concept. Moreover, it might be reasonable to use
such abstract approaches in early design phases to support the planning of ini-
tial security measures and to use our approach afterwards.

4 Discussion

Since the knowledge base captures security relevant information about the Dols,
it can make the ICS even more vulnerable by providing an additional sweet spot
for attackers. Hence, each communication with the knowledge base has to ensure
confidentiality, integrity and authenticity of the data providing this information.
Furthermore, we strongly advice that every knowledge base instance supports at
least a level of security which is as high as the highest level of security provided
by any of its Dols. In addition, the same security level needs to be provided
by the applications using the knowledge base and their respective environment.
Moreover, the knowledge base should be hardened and tested intensively to
ensure that no data can leak.

Most embedded devices currently do not support security algorithms such as
en-/decryption, or signing and verifying messages. Therefore, they do not have
the resources and dependencies (e.g. libraries) such mechanisms would require.
Thus, our concept suffers from the same issue as the AAS, namely the infeasi-
bility to deploy the necessary security on such devices. This sets a limit for the
self-disclosure and respectively the knowledge base. To alleviate this issue, such

19 https://tools.ietf.org/wg/sacm/.
" https://sysml.org.


https://tools.ietf.org/wg/sacm/
https://sysml.org

Towards Computer-Aided Security Life Cycle Management for Critical ICS 55

devices can be reported by neighbored Dols. Afterwards, additional information
can be added by users manually to include the devices.

While developing applications using the data captured from self-disclosure,
it is important to keep in mind that this data is only as trustworthy as the Dols
themselves. For some information e.g. regarding network interfaces this is actu-
ally a disadvantage of the here described self-disclosure approach which common
network mapping techniques do not suffer from. However, for most information
this issue remains regardless of what information gathering technique is applied.

5 Future Work

In this paper, we presented our concepts for ICS security life cycle management.
For these concepts we currently implement a system knowledge base following
the described approach of Sect. 2. As already mentioned, the current version of
our implementation already supports OPC UA and a partial transformation to
OWL 2 DL. Additionally, we are working on a first version of the System Flaw
Analyzer for continuous security-by-design. This includes the evaluation of sev-
eral reasoning and ontology based analysis techniques and a rich transformation
from security best practices into logical statements. These implementations will
help us to evaluate and improve our here explained concepts further.

6 Conclusion

In this paper we motivated the advantages of a new system knowledge base
concept and how it improves and enables security applications. These security
applications accomplish a level of security for critical systems which is currently
not achievable. Unfortunately, currently available solutions of other domains are
not applicable for critical ICS due to specific requirements, such as to attain tech-
nological compatibility to industrial protocols and modeling languages, security
of the handled information, and feasibility of the knowledge base integration.
Thus, we expect our current work to be essential for the future of ICS security.

References

1. PLCopen and OPC Foundation: OPC UA Information Model for ITEC 61131-3.
Standard, OPC Foundation, March 2010

2. Bjorklund, M.: YANG - A Data Modeling Language for the Network Configuration
Protocol (NETCONF). RFC 6020, RFC Editor, October 2010. https://rfc-editor.
org/rfc/rfc6020.txt

3. CPNI: Cyber security assessments of industrial control systems: A good practice
guide, April 2011

4. Diirkop, L., Imtiaz, J., Trsek, H., Wisniewski, L., Jasperneite, J.: Using OPC-
UA for the auto configuration of real-time ethernet systems. In: 2013 11th IEEE
International Conference on Industrial Informatics (INDIN), pp. 248-253, July
2013. https://doi.org/10.1109/INDIN.2013.6622890


https://rfc-editor.org/rfc/rfc6020.txt
https://rfc-editor.org/rfc/rfc6020.txt
https://doi.org/10.1109/INDIN.2013.6622890

56

10.

11.

12.

13.

14.

15.

16.

17.

F. Patzer et al.

Enns, R., Bjorklund, M., Schoenwaelder, J., Bierman, A.: Network Configuration
Protocol (NETCONF). RFC 6241, RFC Editor, June 2011. https://tools.ietf.org/
html/rfc6241

Holm, H., Sommestadt, T., Ekstedt, M., Nordstréom, L.: Cysemol: Atool for cyber
security analysis of enterprises. In: 22nd International Conference and Exhibi-
tion on Electricity Distribution (CIRED 2013), p. 1109. IEEE, Piscataway (2013).
https://doi.org/10.1049/cp.2013.1077

OPC Unified Architecture - Part 1: Overview and Concepts. Standard, Interna-
tional Electrotechnical Commission, November 2016

Ji, Y., Wen, D., Wang, H., Xia, C.: A logic-based approach to network security
risk assessment. In: 2009 ISECS International Colloquium on Computing, Com-
munication, Control, and Management, pp. 9-14. IEEE, September 2009. https://
doi.org/10.1109/CCCM.2009.5267887

Lemaire, L., Vossaert, J., Jansen, J., Naessens, V.: Extracting vulnerabilities in
industrial control systems using a knowledge-based system. In: 3rd International
Symposium for ICS & SCADA Cyber Security Research 2015. Electronic Work-
shops in Computing, BCS Learning & Development Ltd (2015). https://doi.org/
10.14236 /ewic/ICS2015.1

ONF: Of-config 1.2 - openflow management and configuration protocol - onf ts-016.
Tech. rep., Open Networking Foundation (2014). https://www.opennetworking.
org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/
of-config-1.2.pdf

Ou, X., Govindavajhala, S., Appel, A.W.: Mulval: a logic-based network security
analyzer. In: Proceedings of the 14th Conference on USENIX Security Sympo-
sium, vol. 14. USENIX Association, Berkeley, CA, USA (2005). http://dl.acm.
org/citation.cfm?id=1251398.1251406

Plattform Industrie 4.0: Structure of the administration shell, April 2016. https://
www.plattform-i40.de/140/Redaktion/EN/Downloads/Publikation /structure-of-

the-administration-shell.pdf?__blob=publicationFile&v="7

Rakshit, A., Ou, X.: A host-based security assessment architecture for industrial
control systems. In: 2nd International Symposium on Resilient Control Systems,
pp. 13-18. IEEE (2009). https://doi.org/10.1109/ISRCS.2009.5251378

Rosen, R., von Wichert, G., Lo, G., Bettenhausen, K.D.: About the importance
of autonomy and digital twins for the future of manufacturing (2015). https://doi.
org/10.1016/j.ifacol.2015.06.141

Schmidt, N., Liider, A.: AutomationML in a Nutshell. AutomationML - The Glue
for Seamless Automation Engineering, November 2015

Wolf, J., Wieczorek, F., Schiller, F., Hansch, G., Wiedermann, N., Hutle, M.: Adap-
tive modelling for security analysis of networked control systems. In: Proceedings
of the 4th International Symposium for ICS & SCADA Cyber Security Research
2016. BCS Learning & Development Ltd., Swindon, UK (2016)

Zhang, S., Ou, X., Homer, J.: Effective network vulnerability assessment through
model abstraction. In: Holz, T., Bos, H. (eds.) DIMVA 2011. LNCS, vol. 6739, pp.
17-34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22424-9_2


https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc6241
https://doi.org/10.1049/cp.2013.1077
https://doi.org/10.1109/CCCM.2009.5267887
https://doi.org/10.1109/CCCM.2009.5267887
https://doi.org/10.14236/ewic/ICS2015.1
https://doi.org/10.14236/ewic/ICS2015.1
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
http://dl.acm.org/citation.cfm?id=1251398.1251406
http://dl.acm.org/citation.cfm?id=1251398.1251406
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/structure-of-the-administration-shell.pdf?__blob=publicationFile&v=7
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/structure-of-the-administration-shell.pdf?__blob=publicationFile&v=7
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/structure-of-the-administration-shell.pdf?__blob=publicationFile&v=7
https://doi.org/10.1109/ISRCS.2009.5251378
https://doi.org/10.1016/j.ifacol.2015.06.141
https://doi.org/10.1016/j.ifacol.2015.06.141
https://doi.org/10.1007/978-3-642-22424-9_2

	Towards Computer-Aided Security Life Cycle Management for Critical Industrial Control Systems
	1 Introduction
	2 System Knowledge Base
	2.1 System Flaws and Continuous Security-by-Design
	2.2 Known Vulnerabilities
	2.3 System Model Monitoring
	2.4 Testbed Synchronization
	2.5 Modeling Language

	3 Related Work
	4 Discussion
	5 Future Work
	6 Conclusion
	References




