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Abstract The extraordinary physicochemical and functional features offered by the
starch material segregated from various sources of plants, such as rice, corn and
wheat, are put into use for a large extent of applications. The physicochemical
features of starch namely lipids content, a ratio of amylose to amylopectin, the size
distribution of granule play a significant role to grasp the concept related to the
mechanism on the functionality of starch in various systems. The starch-modified
chemistry along with a large number of reactive sites carries the biologically active
compounds as biocompatible carriers and are metabolized in the human body
quickly and comfortably. The current chapter focusses on the different composites
made up of starch along with polymers like polylactic acid, polycaprolactone,
polyhydroxy alkaloid where the synthesis, chemistry and application part are
greatly discussed. Further, the physicochemical stability of the nanocomposites
relating the specific structure is compared in addition to their deployment in various
industrial applications.

1 Introduction

In the present era, the everyday human life is entirely governed by the automated
systems supported by the advancedmaterialswith novel functionalitieswhere a variety
of synthesis approaches are adopted so as to form the human-made materials for the
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betterment of life quality (Arfin and Athar 2018). In a similar way, the biomaterials
from the renewable resources are the user-friendly substances and also considered to
be the ideal ones for many different applications in several scientific fields like
biotechnology, biomedicine, biofuels and bioenergy (Arfin et al. 2014; Arfin 2015).
The naturally obtained materials are regarded as the sustainable ones with not much
lessening to the efficiency and can be produced in high quantities with minimal
reaction processes that can be employed in a variety of applications (Mohammad et al.
2015). Within the class of nature derived biomaterials, the starch-derived materials
have attractedmany advanced applications by taking advantage of the physiochemical
and functional characteristics supported by the reactive oxygen containing groups. The
products derived from starch-based materials have generated high level of interest in
the design and formulation of green-based technology considering the raising treat
posed by fossil-based product. Molecularly, the unique signature of starch as a
heterogeneous material makes it the most essential and useful biocompatible material
compared to all other polymers of natural origin (Arfin and Tarannum 2017). It occurs
naturally and is the second extensive polysaccharide after cellulose. The various
sources of starch are shown in Fig. 1.

Starch is available in the granules form and is composed by joining different
glucose molecules through the glycosidic bonds (Mograkar and Arfin 2017). The
features of starch granules such as chemical composition, size and structure are
dependent on the original state from where it is derived. Starch contains two
macromolecules namely the amylopectin and the amylose. In the architecture of
starch, the amylopectin and the amylose constitute the basic signature, structurally
showing the amylose appearing as a linear structure of 1,4 linked glucose units,
while the highly branched structure of short 1,4 chains linked by 1,6 bonds rep-
resents amylopectin (Nasseri and Mohammadi 2014). The structures of the
respective macromolecules are represented in Fig. 2.

Fig. 1 Different sources of starch, its extraction and applications into different sectors
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As mentioned earlier, the structural architecture of the starch granules is directly
influenced by the orientation in space of both the amylose and amylopectin units.
The amylose molecules are oriented parallel between each unit and between
adjacent chains held by hydrogen bonding. The orientation is also implicated in
defining the chemistry of starch, influencing its water absorption capacity, degra-
dation rate, gelatinization, etc (Mograkar and Arfin 2017; Nasseri and Mohammadi
2014).

As interesting as these properties entail starch in its natural form suffers from a
number of limitations. Poor mechanical properties and high permeation are some of
the few limitations of natural starch materials. However, process improvement
following the doping of starch granules with filler materials or blending of the
starch granules with other polymer-based materials to form starch-based
nanocomposites has significantly ameliorated the aforementioned limitations. The
chemistry was made possible owing to the interfacial molecular bridges between the
starch matrix and the incorporated nanofiller (Ghanbarzadeh et al. 2011; Zuraida
et al. 2012; Olsson et al. 2013; Gutiérrez et al. 2014; Famá et al. 2012).

1.1 Biodegradable Packaging Materials

Lorcks in 1997 proposed the properties and applications of plastics (Lörcks 1998).
The biodegradable plastics stand out as a rare invention and substitute for the
pollution creating plastics. Typically owed to its high biodegradability and less
half-life, they can be disposed or degraded following environmental-friendly
manner. Plastics are the polymers made up of monomers through chemicals reac-
tions. Condensation polymerization and polyaddition (chain and step reaction) are
the necessary processes for plastic making.

Fig. 2 Structures of amylose and amylopectin
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• In poly-addition, the chemical reactions occur which forms polymers from
monomers. For this process, energy and catalyst are mostly required. In some
cases where the availability of insufficient catalyst/energy, the addition of
monomers results in the loss of hydrogen movement that further restricts the
separation of by-products.

• In case of poly-addition step reactions, the sufficient movement of hydrogen
bonds results in the prevention of double bonded activities.

• Also, the poly-condensation reaction in which the actual plastic formation takes
place and is a step reaction.

According to the properties and structure, they are classified into different classes.
They may be thermoplastics, thermosets, polymer blends, elastomers and semi-
conductor thermoplastics. This quest for biodegradable plastics leads to a number of
engineering efforts that involved blending of either synthetic polymer or biopoly-
mers with starch-based materials. Among many different applications, the important
application of starch-based materials being the environmental safe biodegradable
plastics production. In addition for being relatively cheap, spread widely in nature,
the starch-based materials also possessed good oxygen barrier and biodegradability
(Fabunmi et al. 2007). Starch has been used as a reinforcement/fillers polymer
matrix, in the production of thermoplastic starch prepared following the plasticiza-
tion of starch in the presence of plasticizers (e.g. glycerol), and it is also used in the
production of synthetic polymer films like polylactic acid (PLA), polycaprolactone
(PCL) and polyhydroxyalkanoate (PHA) (Avérous and Pollet 2012).

2 Biodegradable Starch-Based Nanocomposites

As mentioned earlier, the limitations associated with nature-based starch materials
are readily overcome by converting the starch matrix into nanocomposites while
retaining their active green chemistry. The search for biodegradable materials
further reinforces the drive towards contextual application of starch-based materials
reinforced with either natural or synthetic polymers specifically to meets the
industrial demand for food packaging, surgery, pharmaceutical, biomedical appli-
cations (Bouyer et al. 2012). Of greater interest, cellulose, clays and number of
synthetic materials are recently used as fillers in the development of biodegradable
starch-based compounds (Thakur et al. 2012, 2014; Hassani and Nafchi 2014;
Thakur and Thakur 2014). Preceding sections will cover development into the
chemistry of starch-based nanocomposites.

2.1 Starch–Clay Nanocomposites

The formation of starch nanocomposites using various fillers has significantly
improved the quality of starch-based materials. In comparison to the conventional
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clays, the chart of nano-fillers to improve the efficiency of starch was found to rank
the top (Mondragón et al. 2008). Avella et al. (2005) discovered that the starch–clay
nanocomposite could be used for the food packaging purpose. The use of the
nanoparticle in the different starch-based clays was applied to produce the
starch-based film for packaging. Use of such materials for preparing films increases
the properties of the packaging films and also tensile strength and modulus. The
central aspect of this product is that it is the novel biodegradable material used
especially for food packaging purpose.

Clay is a polymer composite of silicate consisting of a central positive charge
silicon ion sandwiched by a negatively charged oxygen ion linking another silicon
ion in a progressive manner. This arrangement can assume a different combination
consisting of sheets arranged either in tetrahydral [SiO4]4 or octahedral
[AlO3(OH)3]6 shape. Among these structural silicates, the clay composites con-
sisting of two-dimensional layered silicates (montmorillonite) are widely used
owing to its higher percentage of water molecules in the layer available for cation
exchange processes (Huang et al. 2006; Ikeo et al. 2006). The cation exchange
processes and the ease of intercalation make this clay types flexible and compatible
with other polymer like starch. Park et al. (2002) introduced the preparation of
hybrid composite of starch–clay. The process used for the preparation was melt
intercalation. Natural and the starch–clays which are organically modified were
only used for hybrid preparation. The storage modulus of this hybrid was higher in
comparison with other composites.

The widely reported processing techniques used in the intercalation starch/clay
are in situ intercalative polymerization, intercalation of polymer and melt interca-
lation (Schlemmer et al. 2010; Barzegar et al. 2014). In addition to the ion exchange
processes, the polymerization processes that required the application of heat or
passing of irradiation or use of a catalyst to facilitate the swollen up of the clay in
the presence of a liquid monomer is called in situ intercalative polymerization.
Conversably, in melt intercalation processes, the solvent molecules are reportedly
desorbed from the silicate layer during the polymerization process allowing easy
flow of the incoming polymer. This method is considered a greener approach and
highly compatible with environmental best practices. In the intercalation of poly-
mer, the polymer is dissolved in a suitable solvent in order to exfoliate (uniformly
dispersed silicate layers in a continuous polymeric matrix) layered clays into a
single platelet. This method is influenced by the choice of polymer/solvent pairs
and is considered environmentally unfriendly owed to the use of unfriendly solvents
(Cui et al. 2015).

In order to overcome the poor water resistance, poor tensile strength and high
brittleness of starch materials, a number of efforts in addition to the use of nanoclay
as discussed earlier are reported (Zabihzadeh 2010; Jamshidian et al. 2010;
Takegawa et al. 2010). Early study shows that the reinforcement of potato starch
with 5% clay significant increases %E and tensile strength by >20 and 25%,
respectively, and further shows a reduction in water vapour transmission rate by
35% (Park et al. 2003). Avella et al. (2005) and Pandey and Singh (2005) in a
separate study reported increase in mechanical properties potato starch–clay
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nanocomposite films and cornstarch–clay films, respectively. The cornstarch/clay
nanocomposites following a study conducted by Huang et al (2006) reported about
450 and 20% increase in the tensile strength and strain, respectively, with the
addition of 5% clay. In another study, reinforcement of Cará root starch/hectorite
films with 30% clay level increases the tensile strength of the nanocomposites 70%
and elongation at break (%E) decreased by 50% (Wilhelm et al. 2003). This
observed improvement in both thermal stability and water absorbance capacity of
the starch–clay composites makes it an attractive candidate for packaging materials
(Chiou et al. 2007). Table 1 is a list of few process development made in engi-
neering starch–clay nanocomposites.

Noble efforts were also made by using biopolymer extracted from cellulose,
gelatin, chitosan and plant-based extracts to prepare starch-based nanocomposites.
This quest for biodegradable polymers leads to the discovery that microorganism

Table 1 Engineering starch–clay nanocomposites

Preparation/methods Result References

Green starch/clay nanocomposites
were prepared by solution-induced
intercalation method using starch,
jute, glutaraldehyde, nanoclay and
glycerol

In the study, the thermal stability and
mechanical strength of the prepared
composite were significantly
improved with the addition of
glutaraldehyde and nanoclay

Iman and
Maji
(2012)

Bio-nanocomposite films were
prepared from potato starch by
casting method using halloysite
nanoclay as the reinforcing materials

The incorporation of halloysite
nanoclay into the polymer matrix
decreased the permeability of the
material to gaseous molecules and
improved the mechanical properties.
Tensile strength increased from 7.33
to 9.82 MPa and elongation at break
decreased from 68.0 to 44.0% with
the filler addition

Hassani
and Nafchi
(2014)

The biodegradable trays of cassava
starch and organically modified
montmorillonite were prepared using
a baking process

In the study, the stress at break of the
samples was observed to be strongly
affected on incorporation of the
nanoclay

Matsuda
et al.
(2013)

In this study, biodegradable starch–
clay nanocomposites were prepared
by incorporating a dilute clay
dispersion to a starch solution that
was followed by co-precipitation in
ethanol

Well-dispersed starch–clay
nanocomposites were obtained

Chung
et al.
(2010)

In this study, a film blowing
technique was used to prepare the
starch–clay films using
hydroxypropyl distarch phosphate
and five different kinds of clays as
materials

High tensile strength and improved
barrier properties were observed in
the prepared starch–clay film
nanocomposites. Furthermore, a drop
in glass transition temperature (Tg)
and better heat endurance were
equally observed

Gao et al.
(2012)
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can synthesize biopolyesters from both natural and synthetic monomers. The bio-
polyesters synthesized through this process include but not limited to thermoplastic
starch (TPS), polylactic acid (PLA), polycaprolactone (PCL), and polyhydrox-
yalkanoate (PHA) (Avérous and Pollet 2012).

2.2 Starch–Polylactic Acid (PLA) Composites

Muller et al. (2017) proposed in their recent work about the use of PLA-starch
composite for making biodegradable food packaging plastics. The replacement of
pollution creating plastics was done by using the plastic made from PLA and starch.
Interestingly, PLA is nature-based materials derived from sugar stock, rice and corn
by fermentation and chemical conversion of the sources to dextrose and then to
lactic acid using poly-condensation processes (Rydz et al. 2015).

The suitable liquids for PLA in which it is soluble are acetonitrile, chloroform,
benzene, ethyl acetate, acetone etc and is not soluble in ethanol, methanol and
water. The biochemical aspects of this material being the biocompatibility,
biodegradability, environmental friendly, renewable, and readily hydrolyzes to
natural, nontoxic products on disposal. Most of food packaging industries require
PLA for making biodegradable plastics. It has hydrophobic nature. Thus, before
using PLA the drying of the pallets should be done at about 60–100 °C. This
process modifies it physically (Lim et al. 2008). It has application in the tissue
engineering field for wound healing (Armentano et al. 2013). It is resistant to
elasticity, which enables it to be rigid plastic and brittle.

The properties of PLA and starch match each other. On the combination of both
these materials, the product form will be more efficient and without creating any
issue whatever it may be economical or pollution. As described PLA is hydrophobic
whereas starch is hydrophilic, this makes the processing of the material difficult. The
product obtained from PLA and starch is used in the food packaging industries. The
films and packaging materials formed by the combination of PLA and starch are
found to have enhanced properties as compared to the ones which are formed from
the individual materials. By varying the ratios of starch and PLA, the blend can be
made. It serves as the best alternative for reducing pollution caused due to plastics.
The obtained plastic will have the properties of antioxidant and antimicrobial. The
plastic or film has excellent flexibility and mechanical properties. However, the PLA
material when applied alone, suffers from the required indices of efficient
biodegradability which is a must so as to use in the industrial application due to its
brittleness. Hence, the combination of PLA with other thermoplastic materials like
polyethylene glycol (PEG) or dispersed nanoclay into the matrix found to signifi-
cantly improved its biodegradability and associated marketability (Rydz et al. 2015).

Sheth et al. (1997) proved about the use of PLA and PEG for making the plastic
whereby varying the concentrations of both materials, and the composite can be
prepared. Depending on the concentrations, the mixture becomes partial miscible
and miscible. If PLA is more than 50% of a mixture, then PEG crystallinity
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increases, and if PEG is more than 30%, then the weight loss occurs and it will be
mainly due to PEG as it gets dissolved. Also, the tensile strength decreases if PEG
is high in concentration. Ayana et al. (2014) prepared the composite from ther-
moplastic starch (TPS), PLA and dispersed nanoclay. Potato starch was in situ
gelatinized. The thermo-mechanical properties and tensile strength of the composite
were increased by the use of PLA and clay. The synthesis of novel material was
done in the environmental fever, so that it can be used as a packaging material also.

In another study, solvent casting methods using N,N-dimethylacetamide was
used to prepare uniformly dispersed cellulose nanofibrils using bleached wood
pulp/PLA with PEG to improve the interfacial bonding/adhesion between the
matrix and the fibre. In the study, the tensile strength increases by 28.2% and
similar increases in the percentage elongation by 25% following the addition of
PEG to the blend (Qu et al. 2010). One-step extrusion process was used to prepare
binary and ternary TPS/PLA-PCL nanocomposites. The result from the study
shows that at 36% plasticizer (glycerol), a transition temperature for the TPS/
PLA-PCL nanocomposites was recorded at −57 °C. It was further observed that
varying up the TPS concentration in the blend has a direct impact towards
increasing the strain at break (Sarazin et al. 2008).

2.3 Cellulose Fibre

Cellulose in addition to its natural responsibility as shielding material in main-
taining the rigidity of plant also presents remarkable properties for various appli-
cations. Cellulose-based fibres derived from nature are widely used to reinforce
polymer composites due to its compatibility with many polymer matrixes.
Essentially, the chemistry between the cellulose nanofibre and the polymer matrix
enables excellent dispersion of the reinforcement species within the matrix. The
molecular structure and interfacial similarity of the cellulose material further
favours effective chemistry among many different matrix species (Rydz et al. 2015).
This organic polymer is widely spread in nature and consisting of D-anhy-
droglucopyranose units linked together with b-(1-4) glycosidic bonds (Thakur et al.
2010, 2012). Despite being nature derived, is a poor material to dissolve in aqueous
media. However, further modification following simple esterification or etherifi-
cation of the hydroxyl groups was reported to confer a solubility characteristic in
water (Mischnick and Momcilovic 2010).

Wan et al. (2009) used a biodegradable reinforcement in the form of bacterial
cellulose nanofibres. They discussed the entire phenomenon occurring during the
formation of nanocomposite. The method used was solution impregnation. The
comparison was made between the nanocomposite of cellulose and starch and
the unreinforced starch. Sorption diffusion process was used for the kinetic analysis,
and then the different parameters were determined. The study of tensile strength and
microbial attacks was performed. The use of bacterial cellulose in making of
nanocomposites increases the strength and ability to resist the attack of microbes.
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This can have broad application in the protection of the environment. In another
study, Khan et al. (2010) improved the properties of cellulose by synthesizing a
water-soluble methylcellulose (MC)-based biodegradable nanocomposite films. In
the study, simple mechanical processes involving stirring and sonication in the
presence of plasticizer (glycerol), vegetable oil and Tween 80 were followed under
room temperature. The outcome of the study revealed that the addition of CN
enhanced the mechanical and barrier properties of MC-based films. Similarly, a
decrease in water vapour permeability was observed indicating the moisture barrier
properties of MC-based films. Zhou et al. (2009) follow a low energy pathway to
synthesis cellulose-based nanocomposite from bacterial cellulose nanofibrils coated
with hydroxyethyl cellulose (HEC). The experiment was conducted by press drying
of the water suspension of the cellulose nanofibres. The characterization revealed a
material with encouraging tensile strength and optical transparency.

The potential of hydroxypropyl methylcellulose (HPMC)/cellulose whiskers
nanocomposite films as suitable material for packaging applications was investi-
gated and reported. The addition of cellulose nanowhiskers was observed to have a
direct relationship with increase in tensile strength, Young’s modulus and the water
barrier properties of the composite films (Sáinz et al. 2010, 2011). Furthermore,
carboxymethyl cellulose (CMC) is another water-soluble derivative of cellulose
often combines with carbon nanotubes (CNTs) as fillers to reinforce polymer
nanocomposites. The CNTs in the presence of plasticizer (glycerine) were reported
to have improved the strength and stiffness of the CMC polymer nanocomposite
(Choi and Simonsen 2006).

2.4 Starch-Polyhydroxy Alkaloid (PHA) Composites

Molyneux (1993) gave their review on the isolation, characterization and applica-
tion of PHA. It is the class of phytochemicals. It is a newly discovered class, and
therefore, the analysis and detection are ongoing. Polyhydroxy is the compounds
which have the active inhibitory property of glycosidase. The activities depend on
the stereochemistry and the hydroxyl groups. For the processing of glycoproteins in
organisms, PHA is needed so that the biological mechanisms get regulated. It is
proved that glycoproteins are indirectly the enhancer of the immune response
(Molyneux 1993). The source of PHA is ground plant material. It can be extracted
by using ethanol or methanol or water by just varying the proportion of solvent.
Since few compounds isolated at each time, chemical determination is limited.
Mass spectroscopy, UV-Vis spectroscopy, nuclear magnetic resonance spec-
troscopy and X-ray crystallography are the characterization technique for PHA.

In the class of starch-based biodegradable polymers, PHA has the highest
degradation rate of about 100% and thus stands out as a remarkable eco-friendly
biosynthetic polymer of the century. The microorganisms synthesize this material
intracellularly by means of a carbon-based chemical approach and can be stored as
an energy reservoir (granules) (Jendrossek and Handrick 2002; Shan et al. 2011).
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The storage granules in the bacteria following anaerobic respiration converts the
stored granule into a hydroxyl acid homopolyester, derivatives of PHA called or
poly(3-hydroxybutyrate) (PHB). The PHB and its copolymers consisting of few
units of hydroxyvalerate (HV), and significant amount of hydroxybutyrate
(HB) units (PHBV) is the product of the anaerobic degradation of the granules
(El-Hadi et al. 2002; Lenz and Marchessault 2005).

Study revealed that the amount of HV units in PHBV significantly improved the
mechanical and physical properties compared to its homopolymer (PHB) (Choi and
Park 2004). Similarly, the HV units provide a platform for the properties to be
modified to suits specific objectives (Hu et al. 2004; Shang et al. 2011; Ferreira
et al. 2002). Thus, this unique disposition allowed modification such as the addition
of plasticizer, formation of blends with other biopolymers such as PCL, polylac-
tides, starch and cellulose (El-Hadi et al. 2002; Ferreira et al. 2002).

Reis et al. (2008) studied the characteristics of the composite film formed by the
combination of PHB-HV (polyhydrixybutyrate-hydroxyvalerate) maize starch
prepared by means of a casting method. The use of maize makes the blend more
economical as compared to the original PHB-HV blend. As the concentration of
starch varies, the properties vary including the parameters like Young’s modulus
and tensile strength. In a separate study, similar solution casting methods were used
to PHB/HV and organo-modified mica composites. The preparation was achieved
by dispersing the modified clay in chloroform to produce a material with interca-
lated structures (Garcia and Lagaron 2010; D’Amico et al. 2012). Other study also
reported the preparation of organo-modified clay/PHB, PHB/HV and PHB/PCL
(Bordes et al. 2008; Botana et al. 2010; Bruzaud and Bourmaud 2007).

2.5 Starch–Polycaprolactone (PCL) Composites

Polycaprolactone) (PCL) is a highly versatile nature-based polyester with low
melting point and viscosity derived essentially from oil-producing plants. There are
supporting materials widely recruited to reinforce the mechanical properties of
polymer like collagen or gelatin to form PCL/collagen or PCL/gelatin nanofibrous,
a material suitable for tissue engineering purposes (Sohier et al. 2014; Choi et al.
2008). The beauty of PCL-based material is their simple method of preparation,
using simple conventional melt blending technologies to synthesize same. The PCL
material can be blended with other biopolymers for improving the fundamental
properties to suit the specific objectives that range from food packaging to
biomedical applications (Ludueña et al. 2011).

Lo et al. (2010) studied the morphology and properties of the composites made
from PCL-starch and PCL-pine composite in the presence of silane as coupling agent.
The formed composites were observed to be non-toxic and highly biodegradable,
thus showing good prospect in the design of food packaging materials. The
mechanical properties of layered silicate/starch PCL blend nanocomposites were
investigated by Pérez et al. (2007). In the study, melt intercalation method followed

166 F. Mohammad et al.



by compression moulding was used to prepare the nanocomposites. The character-
ization using various instruments shows a strong intercalated silicate or starch PCL
blend nanocomposites. In another study, the efficacy of modified PCL-based
nanocomposites was investigated using melt intercalation on a twin-screw extruder.
The study shows that the modification processes improve the stability and chemical
compatibility of the PCL with the clay, leading to the formation of a dispersed
material with strong mechanical stability (Ludueña et al. 2011). In the milt interca-
lation processes, it was observed that shear forces are responsible for further breaking
down of the PCL/clay to nanoform. The same author further reported that the
exfoliation of the PCL/layered is facilitated by the chemical compatibility between
the PCLmatrix and clay layers (Homminga et al. 2005). Processing technique such as
the melt intercalation methods is reported by a number of researchers to produce
largely an exfoliated and well-intercalated material (Pantoustier et al. 2002; Gain
et al. 2005). Similar intercalation/exfoliation structure was reported by solvent
casting (Wu et al. 2000), by swelling effect under ultrasonic agitation (Ludueña et al.
2011). Other process improvement in the synthesis of PCL-based nanocomposites
was also reported (Chang et al. 2009; DeKesel et al. 1997; Pérez et al. 2008).

Fibre-based PCL nanocomposites were also synthesized and reported. Azimi
et al. (2014) synthesize different forms of fibre-based PCL nanocomposites, and
according to their content, they were used in the different areas of biomedical field.
The choice of using PCL in the preparation being aliphatic polyester was highly
biodegradable. Furthermore, the fibre was selected because it is environmentally
friendly and biocompatible. The study reported that the formed PCL fibres are a
good candidate for tissue engineering and drug delivery applications.

2.6 Starch-Polyethylene Terephthalate (PET) Composites

Siracusa and co-workers have given the review on the use of PET as a
biodegradable polymer (Siracusa et al. 2008). They have presented the complete
review on the use of plastics. It is not possible to replace the plastic, but to a certain
extent it is possible. The consumption of plastics is more than about 200 million,
and hence, it is the critical issue. The substitute for the petrochemical-based plastics
is an important point of the discussion.

The United States-based chemist E.I. du Pont developed the polymer PET when
he was trying to make textile fibres. It is a thermoplastic polymer, and the main
components or monomers required for the synthesis of PET are ethylene glycol and
terephthalic acid. The esterification process converts two monomers mainly into
alcohol and an organic acid with ester and water. But PET is a polymer; hence, it
can also be called as “polyester”, where it is resistant to moisture and so it can be
used for the packaging-related applications in food, textile and agriculture industry.
It can also be used for preparing fibre for clothes as it does not have colour, clearly
transparent and semi-crystalline in nature. In order to increase the strength and other
associated properties, it can be used by combining with the other materials like
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CNTS and glass. It is straightforward to use PET for everyday applications as
compared to many other synthetic fibres where the PET is considered to be cheap,
non-breakable unlike glass, and the most interesting thing with this material being
its recycling property. It is a lightweight material but very strong. Since it is
lightweighted, less amount of compound is required and transport also becomes
easy with less consumption of fuel. It can be easily used in food packaging
industries because it has the property which does not affect food and water when
gets in contact with it (Xie et al. 2015).

2.7 Starch–Gelatin Nanocomposites

Gelatin is a soluble protein-based biopolymer consisting of a-amino acids linked by
peptide bonds (Guillen et al. 2011). They form the basic component in the design of
drug capsules and in food industry as additive used in preserving the composition of
food active ingredient. The biochemical properties of gelatin such as its high
hydrophilicity were exploited in the design of nanofibrous systems with the ability
to affect cell–tissue regeneration or engineering (Lee et al. 2012; Jafari et al. 2011;
Zhuang et al. 2010).

The property of gelatin was made better by blending it with compatible materials
such as PCL, polyaniline (PAN)–CNTs to form engineered nanofibrous scaffolds. Li
et al. (2013a) introduced the use of gelatine starch octenyl succinic anhydride
(OSA) to enhance the stability and properties of orange oil in water emulsion. The
cornstarch was modified by using OSA before blending it with gelatine. This OSA
starch absorbs the interface of oil and water and acts as a stabilizer. Another cited
example is blending of PCLwith gelatin to form gelatin/PCL-blended nanofibres. The
blending was reported significantly to enhance the proliferation of tissue cells (Gupta
et al. 2009). Other study byLi et al. shows a significant enhancement in themyocardial
proliferation following the blending of gelatin with PAN (Li et al. 2006). Also, some
similar end results in terms of tissue-cell proliferation and engineering were obtained
following the blending of gelatin with chitosan to obtain chitosan/gelatin hybrid
nanofibers (Jafari et al. 2011; Dhandayuthapani et al. 2011; Qian et al. 2011).

In addition to biomedical applications as discussed above, George and
Siddaramaiah (2012) in a separate study observed that blending of gelatin to CNTs
results in the formation of percolated networks of CNTs within the gelatin matrix.
The obtained gelatin/CNT matrix was observed to have significantly improved
mechanical properties of the films, thus providing adequate properties for the design
of packaging materials.

2.8 Chitosan-Based Films

Structurally, the unique signature of chitosan lies on the solution sensitivity of the
positive charged NH2 groups in its molecular chains (Poverenov et al. 2014).
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This structural characteristic increases the advantages of chitosan as a matrix
material and nanoenforcement in composite formation (Rydz et al. 2015; Yu et al.
2014). These cationic properties increase the adsorption capacity of the polymer, its
biocompatibility and biodegradability (Yu et al. 2014; Shawky et al. 2012;
Nitayaphat and Jintakosol 2014; Popuri et al. 2014).

Chitosan is a product of de-acetylated chitin made up of about greater than 5000
units of glucosamine and readily found in nature in whole body of fungi, sea
animals like crabs, insects and shrimp shells. The chitosan from the crustacean is
extracted by the de-acetylation of the parent chitin while enzymatic extraction is
used to extract same from fungi (Arfin and Mohammad 2016). The de-acylated
chitosan consists of b-1,4 linkage of D-glucosamine and N-acetyl-D-glucosamine
(Mohammad et al. 2015) and possesses excellent properties with the wide range of
application, as excipient in drug formulation and reinforcement materials in the
design of non-toxic biodegradable packaging.

As highlighted above, chitosan-based films related to its physiochemistry play a
key role in the formulation of biodegradable packaging materials with properties
that could increase the shelf life of food (Wang et al. 2018). Aider (2010) in an
effort to develop a biodegradable material for packaging purposes introduced the
application of chitosan bio-based films as a substitute for fossil-based packaging
material. This effort attracted considerable interest owing to the rising cases of food
spoilage relating to food storage and security. The most common method of pre-
serving food using chitosan-based materials is in vacuum packaging where pure
chitosan film is used in the vacuum preparation (Saiz et al. 2013). Studies further
show that chitosan within nanorange compared to microparticle has a better
chemistry in forming packaging materials. Similarly, reinforcement or blending
chitosan with other polymer fillers or plasticizers was reported to have improved the
mechanical properties and chain mobility of the composites (Gol et al. 2013; Garza
et al. 2015; Vimaladevi et al. 2015).

An excellent chitosan/gelatin composite based on emulsion of oil in water was
prepared and reported by Rui et al. (2017). The reaction between the polymers was
favoured by hydrogen bonding (Rui et al. 2017) leading to the formation of bio-
compatible film and micro-carriers used for animal cell culture on a large scale
(Taravel and Domard 1993). Other effort reported also involved in the union of chitin
and starch. In a study, Chang et al. (2010a, b) generated the starch from glycerol
plasticized potato using casting/evaporation method to make the starch–chitin
nanoparticles. The formed nanoparticles when tested are found to improve the tensile
strength, water vapour bearing, and increased glass transition temperature, i.e. all the
characteristic features are mostly required to check the suitability for a material to be
good or not towards packaging-related applications. Both acetylated chitin and
de-acetylated chitin were blended to produce chitin/chitosan nanofibres as material
for tissue engineering and other biomedical applications (Jayakumar et al. 2010).

An interesting effort was presented by Jantanasakulwong et al. (2016), intro-
duced the blending of thermoplastic starch (TPS) with chitosan and rubber. In the
study, the thermoplastic plastic was prepared by using plasticizer (glycerol), cas-
sava starch and chitosan. Due to the NH2 group, the reaction of chitosan with any
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other group becomes easy and fast. In a study, the blend leads to increase
mechanical strength and tensile strength forming a low weight composite. Lopez
et al. (2014) in a separate experiment used chitin, chitosan and thermoplastic
cornstarch to formulate a biodegradable film by thermo-compression method. The
modifications were done in the film by the addition of chitosan. Increase in crys-
tallinity was obtained. The obtained film was of very efficient quality, i.e. with a
smooth surface and homogeneous nature. There were no cracks or pores in the film.
The combination of chitin and chitosan increases the elastic modulus and strength.

The chemistry exerted between chitosan and cellulose leads to the formation of a
composite film that exhibited improved water vapour barrier property and reduced
bacterial adhesion on the packaging material (Xiao et al. 2013; Bansal et al. 2016;
Li et al. 2013a, b; Sundaram et al. 2016). A cited example shows and increases in
shelf life of cheese and wheat bread preserved using a packaging material made
from chitosan/carboxymethyl cellulose film (Sundaram et al. 2016). Similar
chemistry was also exploited to develop different chitosan/cellulose films (Gol et al.
2013; Noshirvani et al. 2017; Chen et al. 2016; Liu et al. 2013). Table 2 is a
summary of selected events on efforts made in using chitosan-based composite in
food industries and other related applications.

Table 2 Different types of starch–chitosan-based composites

Preparation/methods Result References

The study reported on the
reinforcing effect of chitin whiskers
(ChW) in PVA matrix

The result shows that the tensile
strength and the mechanical
properties of the polymer increase to
1880 MPa and 535 toughness (68 J/
g) at 5 wt% ChW loading.
Furthermore, tensile modulus was
observed to reach its peak value of
50 GPa at 30 wt% ChW loading

Uddin et al.
(2012)

The study covered the preparation
of bio-based nanocomposite films
using cellulose whiskers as the
reinforcing phase and chitosan as
the matrix

The results showed that the whisker
content enhances the mechanical
properties of the composites. The
tensile strength of the composite
films in the dry state increased from
85 to 120 MPa with increasing filler
content from 0 to 20 wt%

Li et al. (2009)

In this study, chitosan was used to
reinforced nanocrystalline cellulose
and reported the mechanical and
barrier properties nanocomposite
film

The nanocomposites showed a 25%
increase in tensile strength and n
87% increase in tensile modulus at
this CNC content reported an
optimum content of 5 wt% of CNC
in chitosan matrix

Khan et al.
(2012)

In this study, a packaging material
was fabricated using glycerol
plasticized starch matrix films
reinforced with chitosan
nanoparticles by physical
crosslinking

The nanocomposites show a good
degree of dispersion, an increase in
tensile strength and storage modulus

Chang et al.
(2010a, b)

(continued)
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Table 2 (continued)

Preparation/methods Result References

The researchers prepared bio-based
plastics for packaging using
eugenol-loaded chitosan
nanoparticles by extrusion method.
The base materials used in the study
consist of mixture of cassava, rice
and waxy rice flours

The incorporation of the base
materials with eugenol introduced
some changes in the
physicochemical properties of the
composites. The elongation at break
behaved as the matrix. The
incorporation of these nanoparticles
caused a reduction of WVP,
indicating that this property was
enhanced by the incorporation of the
nanofillers

Woranucha and
Yoksana (2013)

The study reported on porous
CNTs/chitosan composite with
lamellar structure prepared by ice
templating

The incorporation of chitosan leads
to a well-defined microchannel
porous structure that is
biodegradable and biocompatible
with promising adsorption
properties

Wu and Yan
(2013)

The study reported on novel
chitosan/PVA thin adsorptive
membranes modified with amino
functionalized multi-walled carbon
nanotubes

The formed nanocomposites
effectively remove Cu(II) from
water. Thus, the composite systems
could offer exclusive properties as a
composite in the removal of heavy
metal ions and treatment of
wastewater

Salehi et al.
(2012)

The study talked about the synthesis
of multi-walled CNTs/chitosan
polymer composite modified glassy
carbon electrode for sensitive
simultaneous determination of
levodopa and morphine

The CNTs-filled chitosan
demonstrated a modulated release of
dexamethasone

Babaei and
Babazadeh
(2011)

The researchers prepared polymeric
composites containing chitosan/
CNTs for improved blood
biocompatibility and bone tissue
engineering

The study shows that the
manipulation of CNTs/chitosan
composites leads to the formation of
scaffold with promising properties
for cell–tissue engineering
applications

Sahithi et al.
(2010)

In this study, chitosan/alginate was
developed via layer-by-layer
electrostatic deposition edible
coating on fresh-cut melon model

The obtained film showed excellent
gas-exchange performance and
water vapour permeability property.
The chitosan/alginate film displayed
great potential for food packaging

Da Silva et al.
(2013)

The researchers incorporated
photoactive of chlorophyll, essential
oil and carvacrol in chitosan/
cyclodextrin films to prepare a
bioactive food packaging material

The incorporation of the
cyclodextrin increased the tensile
strength of chitosan film and also
enhanced the antimicrobial activities
of the film

Sun et al. (2014),
Higueras et al.
(2014)

(continued)
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Table 2 (continued)

Preparation/methods Result References

Caseinate, with excellent
thermoplastic and film-forming
properties, was combined with
chitosan to prepare chitosan/
caseinate film, through ionic
interaction to form a coating
material for paper packaging

Improvement like water vapour
permeability

Khwaldia et al.
(2014)

In the study, controlled release of
nisin from HPMC, sodium
caseinate, PLA and chitosan was
investigated for active packaging
applications

The material was observed to be
favourably used in extending the
shelf life of packaged foods

Iman and Maji
(2012)

Combination of nisin and
e-polylysine with chitosan coating
inhibits the white blush of fresh-cut
carrots

When the chitosan/e-polylysine/
nisin film was applied to fresh-cut
carrots, the carrots showed the
inhibited respiration rate, the
declined ascorbic acid, the
decreased growth of microorganism
and the suppressed synthesis of
white blush and lignin

Song et al.
(2017)

The extent of Maillard reaction on
antioxidant properties was
investigated using chitosan–glucose
conjugates

The chitosan/glucose films, with
enhanced antioxidant property, were
observed to effectively delayed the
declines of total soluble solids,
decreased decay and weight loss,
suppressed respiration rate and
ensured better berry texture and
higher sensory scores of food

Kosaraju et al.
(2010)

The antimicrobial activity of
lysozyme–chitosan was
investigating and its effects in
prolonging the shelf life of chicken
eggs during storage

Lysozyme–chitosan films were
reported to enhance the freshness of
the egg during storage, improve
shell strength and maintain the
internal quality

Yuceer and
Caner (2014)

A film-based gelatin reinforce with
chitosan was reported to
demonstrate improved properties for
the fabrication of fish packaging

Films based on chitosan/gelatin
were reported to show improved
properties, like mechanical
properties and barrier properties,
against water vapour and light

Hosseini et al.
(2016),
Kowalczyk et al.
(2015)

The mechanical/antimicrobial
properties of PVA reinforced
chitosan and chitosan/PVA/clay
nanocomposites were investigated
for its application in food packaging

The PVA was observed to
contribute to the plasticization and
improves the water and oxygen
barrier properties of the obtained
films, affirming its suitability as
food packaging material

Wang et al.
(2018),
Giannakas et al.
(2016)

The study reported the synthesis and
characterization of nanoamphiphilic
chitosan dispersed PLA–
bionanocomposite films for
packaging application

The formed films demonstrated
improved thermal, mechanical and
gas barrier properties

Pal and Katiyar
(2016)

(continued)
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2.9 Starch–Propolis-Based Composites

Propolis is a natural resinous blend extracted from plants buds, honey, wax and
vanilla naturally utilized as anti-predator and sealant in maintaining beehives
(Hashemi 2016). The material composition of raw propolis consists mainly of 50%
resins, 30% waxes, 10% essential oils, 5% pollen and 5% of various organic
compounds (Park et al. 2002; Burdock 1998; Pietta et al. 2002; Huang et al. 2014).
The antioxidant, antimicrobial and antifungal activities of propolis are recently
utilized by food industries as a preservative in food packing material in addition to
other uses, especially in pharmaceutical (Wagh 2013).

Table 2 (continued)

Preparation/methods Result References

The study reported on the
antimicrobial properties of
composite films derived from PLA/
starch/chitosan blended matrix

The increase in the tensile and
thermal properties of the
nanocomposite film further verified
the promising use of the obtained
material in packaging food

Bie et al. (2013)

The application of
chitosan-g-salicylic acid towards
arresting postharvest losses was
investigated.

The formed nanocomposites were
reported to alleviate the chilling
injury and were able to preserve the
quality of cucumber

Zhang et al.
(2015)

The study reported on the effect of
chitosan/nanosilica coating on the
physicochemical characteristics of
longan fruit under ambient
temperature

The chitosan/nanosilica films were
observed to lower the decay of food
by preventing the membrane
structure from peroxidation, thus
preserving the quality and
elongating the storage shelf life

Shi et al. (2013)

The study investigated the barrier
properties of nanosilicon carbide/
chitosan nanocomposites for food
packaging application

In the study, the nanosilicon carbide
incorporated chitosan
nanocomposite films was reported
to substantially decrease the oxygen
barrier properties and enhances the
thermal stability and strengthen the
chemical resistance of the film

Pradhan et al.
(2015)

The molecular dynamics
simulations of hydration effects on
solvation, diffusivity and
permeability properties were
investigated on chitosan/chitin films

The film-forming ability of the
chitin blended with chitosan was
reported to introduce special
properties on the films such as lower
oxygen permeability. The chitosan/
silver nanoparticle
bionanocomposite films on the other
hand were also reported to have
improved the mechanical and
barrier properties of the obtained
films

McDonnell et al.
(2016)
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The assessment of propolis as a suitable material for food packaging was also
reported by da Silva et al. (2013). The purpose of the study was to prepare a
powdered form of propolis with a good antioxidant property, storage stability and
dispensability in both aqueous and alcohol medium. The antimicrobial properties of
propolis were used as a bio-additive in coatings to control fruit quality losses. For
this purpose, chitosan containing propolis-ethanolic extract was used as the coating
material. The results showed a reduced deterioration index and infection diameter
of the fungus Colletotrichum gloeosporioides, as compared to the control papayas,
thus elongating the shelve life of the fruit by two days (Barrera et al. 2015). In a
similar development, a patent filed by Mizuno (1989), further confirmed the active
role played by propolis as a preservative in food packing material. Tosi et al. (Tosi
et al. 2007) used the bactericidal and bacteriostatic properties of propolis by agar
diffusion and plate culture methods. By relating the zone of cellular growth inhi-
bition with the propolis extracts concentration, a linear inhibition response was
obtained, thus confirming the suitability of propolis as component for food
preservation.

Other study showed the effectiveness of blending propolis with biopolymers.
Chitosan film containing beeswax was prepared as a coating material to prolong the
shelf life of strawberries on storage following layer-by-layer coating method. In the
study, the composite was observed to modify the respiration rates, slowed down
the metabolism of the fruit and at the same time preserved the physical architecture
and taste of strawberries (Velickova et al. 2013). In another study, chitosan film
containing propolis extract high in polyphenols was developed. In another study,
chitosan film containing propolis extract high in polyphenols, were developed,
where the characteristics of the resultant films reported for high tensile strength,
elongation at break, and antioxidant activity due to the increased addition of pro-
polis to the chitosan polymer. The blending of chitosan with the propolis further
reduces the water vapour/oxygen permeability index, thus improving the potentials
of employing the chitosan-based propolis films as active materials for the food
packaging (Siripatrawan and Vitchayakitti 2016).
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