®

Check for
updates

Enhancing Object-Oriented Programming
Pedagogy with an Adaptive Intelligent
Tutoring System

Methembe Dlamini® and Wai Sze Leung®™)

Academy of Computer Science and Software Engineering,
University of Johannesburg, Johannesburg, South Africa
methembedlamini@yahoo.com, wsleung@uj.ac.za

Abstract. Challenges to teaching programming include a lack of struc-
tured teaching methodologies that are tailored for programming subjects
while the benefits of providing programming students with individual
attention are not easily addressed due to high student-to-teacher ratios.
This paper describes how adaptive intelligent tutoring systems may rep-
resent a potential solution assisting teachers in delivering individualized
attention to their students while also helping them to discover effective
ways of teaching a core programming concept such as object-oriented
programming. This paper investigates how adaptability in traditional
intelligent tutoring systems are achieved, presenting an adaptive peda-
gogical model that uses machine learning techniques to discover effective
teaching strategies suitable for a particular student. The results of a pro-
totype of the proposed model demonstrate the model’s ability to clas-
sify the student models according to their learning style correctly. The
knowledge obtained can be applied by educators to make better-informed
choices in the formulation of lesson plans that are more appropriate to
their students.

Keywords: Intelligent tutoring systems
Pedagogical decision-making - Adaptability - Artificial intelligence
Machine learning

1 Introduction

Aside from providing students with individualized attention, the deployment of
Intelligent Tutoring Systems (ITSs) may also serve as a source of information
that helps guide teachers in making better-informed pedagogical decisions.

Much merit exists in introducing programming at lower school levels, as world
development is seen to rely on technology [32] and critical thinking skills relevant
to surviving the information age are seen to be developed from learning to code
[15]. Calls for programming to be taught at early academic stages are increasingly
gaining traction [32], however, there are equally voices raising legitimate, realistic
concerns: are teachers adequately equipped to teach coding [26]?

© Springer Nature Switzerland AG 2019
S. Kabanda et al. (Eds.): SACLA 2018, CCIS 963, pp. 269-284, 2019.
https://doi.org/10.1007/978-3-030-05813-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05813-5_18&domain=pdf
http://orcid.org/0000-0002-8007-8021
http://orcid.org/0000-0002-9015-6329
https://doi.org/10.1007/978-3-030-05813-5_18

270 M. Dlamini and W. S. Leung

Unfortunately, the reality is that teachers struggle to come up with effective
ways to teach programming [12,15,19,24]. In some cases, teachers are simply
not trained to be computer science teachers [26]. This paper, however, focuses
on other factors, specifically limited time, limited resources, high student-to-
teacher ratios, and student diversity [1,12,19,24], all of which make it difficult
for a teacher to devise lessons that cater for particular learning needs [11]. There
is thus a need for tools that can assist teachers in monitoring individual students,
gathering useful information to improve pedagogical decision-making.

ITSs have been used effectively to offer individual attention to students [8,
21,23,31]. Existing implementations, however, make use of predetermined rules
to tailor content, thus lacking the ability to adapt and discover new knowledge
about teaching. We propose introducing changes to the traditional ITS model,
enabling it to autonomously discover effective teaching strategies and student
preferences so that the knowledge generated from such ITSs may be used by
human teachers to improve their teaching techniques and make informed lesson
planning decisions. This paper presents an Adaptive Pedagogical Model (APM)
that is capable of improving teaching strategies by means of machine learning
in order to assess the learning preferences for different kinds of students.

The remainder of this paper is organized as follows: Sect.2 reviews sev-
eral research areas, specifically on traits that determine academic performance,
teaching strategies, intelligent tutoring systems, and machine learning. Section 3
describes the proposed APM, the adaptation approach and its generic adaptation
algorithm. Section 2.2 presents the details of the prototype that was implemented
to test the APM, leading to an evaluation of the APM in Sect.5. Finally, the
paper concludes in Sect. 6 with a summary of the findings.

2 Related Work

2.1 Need for Adaptive Tutoring

Proponents of student-centered education theory have long highlighted the need
for individualized learning mechanisms that allow a student to select their
learning path [7,22,34]. The proliferation of eLearning platforms has opened
up numerous opportunities to realize student-oriented learning where teachers
merely guide and empower their students to take charge of their learning pro-
cess [22].

The rationale for providing students with individualized learning paths is
quite straight-forward: students are diverse—they have different backgrounds,
have different learning objectives, and possess different learning styles [3,7].

Given that research has demonstrated a very strong correlation between
academic performance and personality traits [9,27] and that students tend to
respond better when offered tutorials that are dynamic, intelligent, and catering
to their individual attention [1], the aforementioned individualized characteris-
tics are clear indicators that the ‘one-size fits all’ approach can no longer be
considered appropriate. Medical education, for example, believes that students
should be allowed to pursue individualized learning while meeting standardized

Enhancing Programming Pedagogy with an Adaptive ITS 271

outcomes as this would assist in developing the student’s ability to self-regulate
their own learning, something considered crucial to staying current in an ever-
changing field [22]. Since programming can be closely linked to the rapid pace
at which technology evolves, it would stand to reason that cultivating a practice
of remaining abreast of developments in the discipline would be quite beneficial.

Personality Models. Over the years, several personality models have been
proposed to address the notion that individuals with differing characteristics are
seen to learn and digest information differently [9,30]. Because personality traits
are used to make pedagogical decisions [16], a system or human tasked with
selecting appropriate teaching strategies to deliver content may benefit from
having a better understanding of these personality models.

One of the most adopted models is the Five Factor Model of Personality
Traits (FFM). The FFM is a framework made up of the dimensions of Agree-
ableness (likability and friendliness), Conscientiousness (ability to be dependable
and always have the zeal to achieve), Emotional Stability, Extraversion (level of
socialization with other students and activity), and Openness (imaginativeness,
broadmindedness, and artistic sensibility) [29]. For the purpose of this paper, we
will be considering the FFM to model our students’ behaviors.

Teaching Strategies. Teaching strategies are methods of presenting content to
students and are used to personalize learning experiences based on the students’s
preferred learning style [1]. While students have different learning preferences, it
is difficult to discover factors that affect each student’s preferred learning style
[17]. Among teaching methods, the most common assumption is that students
learn better if the instruction is provided in a format that matches the preferences
of the student (e.g., for a ‘visual learner’, the appropriate strategy would be to
emphasize on the visual presentation of information) [17].

As with personality models, several theories on learning styles exist, the
most common of these following the theory of multiple intelligences [6], and
the Visual, Auditory, Read, and Kinesthetic (VARK) Model [17]. These models
classify students using different measures and designations, with some classifying
the student according to modalities of learning and perceptual styles while others
refer to cognitive style, personality type, and aptitudes [5].

Controversy. Although research reveals the existence of learning styles, oth-
ers argue that this hypothesis has not been adequately and properly tested,
citing the lack of sufficient scientific reports to support their rigor [5]. Despite
this reservation, researchers argue that there is value in identifying appropriate
teaching strategies rather than treating all students the same way [1,6].

As such, it would be beneficial to prepare content in different formats so
that they can be presented to accommodate students with their various learn-
ing styles. The challenge then lies in ensuring that the most effective teaching
strategy can be correctly identified. For I'TSs, there will need to be some way in

272 M. Dlamini and W. S. Leung

which personality traits can be correctly classified, and an appropriate teaching
strategy selected. The next section will look at the components that make up
an I'TS to establish how the aforementioned tasks can be achieved.

2.2 Intelligent Tutoring Systems

Intelligent Tutoring Systems (ITS) are computerized learning systems that have
the ability to personalize the learning experience of students [21]. Figure 1 depicts
the traditional ITS model which comprises four components, namely: user inter-
face, pedagogical model, student model, and knowledge base [21]. The arrows in
Fig. 1 represent communication flow between the different components. The ITS
components work together during the tutoring process as follows:

Student Model

A
Y
The Interface The .
1 «— Pedagogical
Module
1 v
Knowledge

Base

Fig. 1. Components of an ITS according to [10]

1. User Interface: The user interface is the main point of communication
between the machine and the human user (in this case, the student). Inter-
faces may vary depending on the ITS implementation although most recent
ITSs are conversational in nature and have dialog-based interfaces [25].

2. Pedagogical Model (PM): The PM is the reasoning component of the sys-
tem, forming the decision-making component of the software. It is encoded
with a rule interpreter to process and interpret rules [21]. Attempts to
improve adaptability within an ITS will require that designers and developers
focus on improving the decision-making strategies within this component.

3. Knowledge Base (KB): The KB contains the curriculum content and facts
necessary for understanding, formulating and for solving problems [21].

4. Student Model (SM): The SM represents the student’s emerging knowledge
and skills. Information such as learning preferences, past learning experiences,
and advancement may also be stored to help aid adaptability during the
teaching process [21].

Enhancing Programming Pedagogy with an Adaptive ITS 273

ITS implementations vary according to the relative level of intelligence of the
components. For example, projects focusing on intelligence in the domain mod-
ule may generate complex and novel problems while those with an emphasis on
teaching strategies may concentrate on intelligence in student models, attempt-
ing to identify student characteristics, learning curves, and learning styles among
other information.

Adaptability in ITSs generally occurs by tailoring feedback for each indi-
vidual student to improve their learning experience [14]. This experience can
be further enhanced by complementing the personalized feedback with adaptive
pedagogical strategies. Such strategies will not only help students but will also
ensure that knowledge accumulated by ITSs is accessible to educators.

The ability to achieve autonomy and adaptive pedagogical strategies is often
accomplished through the use of Machine Learning (ML) techniques. Given the
extensive possibilities and alternatives when it comes to classifying the person-
alities of students, coupled with identifying an appropriate teaching strategy, it
would be challenging, if not possible, to ensure that all outcomes are correctly
implemented and catered for. ML thus plays a significant role in the construc-
tion of an adaptive ITS that will discover the necessary knowledge that would
otherwise take a human a long time to figure out [18]. The following sub-section
investigates ways how ML can be applied to achieve adaptive pedagogy in ITSs.

2.3 Machine Learning for Intelligent Tutoring Systems

In essence, ML eliminates the need for explicit domain modeling [2]. Instead,
the tasks of engineering the knowledge are automated as ML enables the I'TS to
learn autonomously from educational datasets. Examples of such systems include
AutoTutor and ActiveMath [33].

Although existing ITS implementations have used ML for student modeling,
content sequencing, and tailoring feedback [4], little work has been done to use
ML to improve pedagogical decision-making. As ITSs operate, they accumulate
data about different students and their learning preferences. The data accumu-
lated by the ITS may be used to update the decision-making strategies of the ITS
continuously. The ability to continuously train ITSs may be achieved through
the use of ML techniques capable of learning over time, these techniques are
known as incremental machine learning (IML) [20].

Common IML techniques include Naive Bayes Classifier (NBC), K-Nearest
Neighbor (KNN), and Incremental Support Vector Machines (ISVM). A study
comparing these IML techniques for implementation in ITSs revealed that ISVMs
perform excellently but at the cost of requiring a large amount of training data.
KNN had a tendency to introduce bias which in its selection due to the algo-
rithm’s nature of always selecting the most frequent class. Ultimately, NBC was
not only generally simpler to implement, but also outperformed its peers. For
these reasons, NBC was considered for the implementation of our adaptive I'TS.

274 M. Dlamini and W. S. Leung

3 An Adaptive Pedagogical Model for ITSs

This paper proposes an adaptive pedagogical model which uses past tutoring
experiences to adjust future pedagogical decision-making strategies. Figure 2
shows the architecture of an ITS that incorporates the proposed model. The
proposed model is based on the traditional ITS architecture described in Fig. 1.
All basic four components (User interface, Student model, and Knowledge Base
are included, however, to make the ITS adaptive some components were added.
The proposed model adds a central component to facilitate tutorial dialogs and
the expert model for evaluation of student performance during and after tutorial
sessions. Feedback from the expert model is used as learning input by the APM.
The APM itself is divided into components which are explained in sub-sections
that follow below.

Client Server

Adaptive Pedagogical Model

‘ Student Model (SM) (APM)

A
Learning Element (LE)

A Decision Making Component

User] (DMC) 13 Knowledge
Interface Central Component (CC) Base
(un < T «B

Y

J

A Problem Selector (PS)

Teaching Strategy Selector
Y (TSS)

{ Expert Model (EM)

Fig. 2. The adaptive pedagogical model

The APM follows a horizontal approach rather than a longitudinal approach
to achieve adaptability. This means that instead of tracking a single student’s
interaction history, the model records and utilizes the tutorial history of all
students using the ITS.

AILITS instances (hosted separately on client devices) interact with a central
server. The model uses a machine learning algorithm to parse and discover pat-
terns in the information that is obtained. These observed patterns then become
future decision-making policies for the ITS. As the ITS continues to offer tutorial
sessions, each upcoming interaction output is then used to update the decision-
making policies continuously.

The APM does not act independently but also depends on other ITS com-
ponents such as the Knowledge Base and Student Model. In Figure 2 the arrows
illustrate how information flows from component to computer during tutorial

Enhancing Programming Pedagogy with an Adaptive ITS 275

sessions. In the following sub-sections, the components that make up the APM,
namely the Problem Selector, Teaching Strategy Selector, and Learning Element,
are discussed.

3.1 Problem Selector (PS)

The PS is responsible for deciding on a problem to present to the ITS’s student
for solving. Ideally, the problem selected is one that is perceived to be neither
too challenging to frustrate, nor too simple to bore the student. This decision
is based on the Student Model, Problems, and a Selection Policy. Information
from the Student Model includes personality traits and information relating to
the student’s current progress.

As information from tutorial interactions with students continue to flow
in, a machine learning algorithm produces a selection policy and continuously
improves upon it. The algorithm described below shows the steps and decisions
made during the selection of the optimal problem:

Inputs. An array of features extracted from the student model which include:

— Current topic.
— List of questions that the student has already solved successfully.
— Personality dimensions: may assume values ‘low’/‘medium’/‘high’.

Processing. Problem selection involves the following steps:

ACCEPT <- list of unsolved problems for the current topic.

FOR EACH problem in problems DO
Compute pass probability(pPass) of given student model;
Compute fail probability(pFail) of given student model;
Calculate the difference between pPass and pFail;

END FOR

RETURN <- Optimal problem (one with the minimum difference
between the probability of a pass and fail.

Output. The optimal problem to be tackled (the problem where the probability
of a failure is almost the same as the probability of a pass, hence the problem is
deemed as neither too challenging nor too simple).

After problem selection, the next task is to choose the optimal teaching
strategy to help the student come to a solution. This process is handled by the
Teaching Strategy Selector.

276 M. Dlamini and W. S. Leung

3.2 Teaching Strategy Selector (TSS)

The TSS determines the best teaching strategy for the problem based on the
Student Model, selected problem, and selection policy. The goal of the TSS is to
identify the appropriate learning style that is proven to be effective in improving
the learning gains of the student based on their learning style and the current
content that is being delivered. To accomplish this, the TSS makes use of Naive
Bayes to discover patterns in order to predict outcomes of given strategies prior
to the delivery of the tutorial.

In this paper we combine the theory of multiple intelligences and VARK to
derive teaching strategies. Choosing from these strategies depends on various
factors that include the student’s cognitive style, personality type, and aptitude.
Information on these factors is obtained from the student model for the strategy
selector to establish the appropriate strategy.

Inputs. An array of features from the student model include:

— Selected problem (output of the problem selector).
— Personality dimensions: may assume values ‘low’/‘medium’/‘high’.

Processing. Teaching strategy selection involves the following steps:

ACCEPT <- list of teaching strategies applicable to the problem(P)
at hand.
FOR EACH strategy in strategies DO
Compute pass probability(pPass) of the strategy for P;
Compute fail probability(pFail) of the strategy for P;
IF pPass >= pFail THEN
Calculate difference between pPass and pFail;
Add strategy to candidate list (item with pass-likelihood);
ELSE
Ignore the strategy;
END IF
END FOR

RETURN <- Optimal teaching strategy (one with the greatest
difference between pPass and pFail) from candidate list.

Output. The optimal teaching strategy for the problem that was selected by
the problem selector. Options of the output are either: visual strategy, auditory
strategy, kinesthetic strategy, or read and write strategy.

3.3 Learning Element (LE)

The LE basically receives, extract values that are to be used by the Naive
Bayes algorithm during the process of problem and teaching strategy selection

Enhancing Programming Pedagogy with an Adaptive ITS 277

described above. Information is received after every tutorial session and the LE
extracts the student’s personality traits, the student’s performance on the prob-
lem that was tackled, and the teaching strategy used to deliver content.

To achieve incremental machine learning through Naive Bayes, the LE
updates a frequency table that contains all statistical figures obtained from the
LE overtime. During each update values are not converted to probabilities, con-
version is done only when a decision has to be made (i.e., during problem and
teaching strategy selection). Using such a strategy ensures that the Naive Bayes
always uses updated values as input and thus is adaptive.

In summary, the LE updates values that are used as inputs to the Naive
Bayes algorithms used by the PS and TSS, these updates are done after every
tutorial session in order to achieve incremental learning.

4 A Conversational Adaptive Intelligent Tutoring System

To evaluate our proposed adaptive pedagogical model, we developed a prototype
mobile conversational intelligent tutoring system (CITS) designed to introduce
the programming concept of object-oriented programing (OOP) to Computer
Science students.!

4.1 Architecture

The ITS is implemented on a client-server architecture. Students are thus able to
interact with the system via different client applications that are all connected
to a single central server.

The two main functionalities of the server are to store knowledge (curriculum
content) and to record previous tutorial experiences which can then be used
internally by the ITS to self-improve, and externally by human teachers to derive
pertinent student information as observed by the ITS.

4.2 Client Application

The client application serves as the interface between the user (student) and the
ITS. The client has an internal database (SQLite) which is used to maintain a
Student Model and also store content that is currently being tutored for easy
retrieval.

The client application works in tandem with a server maintaining the central
database which handles the curriculum information, pedagogical strategies, and
previous tutorial data.

Tutorials are presented in dialog format. The ITS initiates a conversation by
presenting a problem and engaging the student in a conversation that helps the
student to construct a solution. The dialog is also used as a diagnostic tool to
measure the student’s understanding of a particular concept. The conversation
is driven by a six-step cycle which is discussed in the subsection below.

! The software is available for researchers upon e-mail request: wsleung@uj.ac.za.

278 M. Dlamini and W. S. Leung

As shown in Fig. 3, the main tutorial screen has a dialog section and an input
bar. The dialog section displays the chat history as speech bubbles which show
messages passed between student and ITS.

object oriented programing

Prof Amigo has entered text

e)

Fig. 3. Screenshot of tutorial conversation between student and ITS client

Since the conversation is in natural language, cosine similarity [28] is used to
evaluate the student’s inputs. The student’s input text is represented as a vector
which is compared with all possible responses known by the ITS. The text most
similar to the student‘s input is then considered, ideally if the cosine of two given
vectors is close to one then the two texts are considered similar while a value
closer to zero denotes different texts.

As an example, the ITS contains a set of expected correct responses and
wrong responses for each question. During a conversation, the student’s response
is compared with all expected responses and the response that is most similar
to the student’s input is considered. The subsection that follows discusses the
speech constructs use to guide the conversation.

The Six-Step Tutorial Cycle. The ITS makes use of six speech constructs
adopted from [13] to guide the conversation. The length of the conversation is
dependent on the student’s performance.

1. The Main Question is output by a Naive Bayes algorithm and a decision
tree. An optimal problem is selected based on previous tutorial experiences.

Enhancing Programming Pedagogy with an Adaptive ITS 279

2. A Hint (short question) is presented to highlight a missing concept, given
that a student’s response is not satisfactory.

3. A Pump (question aimed at drawing more information from the student) is
presented. For example: “Do you want to add to your response?”

4. Prompts (leading questions) are presented to the student to help to build
an answer.

5. Assertions (detailed solutions) are given to the student after all conversation
turns have revealed that the student is failing to solve the given problem.

6. A Summary (recapitulation of the problem and solution) might be presented
by the ITS. In some cases the student provides the summary which is then
used to evaluate the student’s understanding.

The speech constructs of above form conversation cycles whereby each cycle
begins with either the ITS’s question or a question posed by the student. During
the conversation, pumps are presented when there are missing concepts in the
student’s response. If the student fails to cover all essential concepts, an interior
cycle of pumps, hints, prompts, and assertions is formed until the problem is
fully solved before a summary is given.

After the ITS has given a summary of the tutorial, the student will be asked
if there are any remaining questions about the problem that was just addressed.
The cycle then starts again until the problem is solved. In cases where the ITS
does not have a solution, an apology is displayed.

The APM uses a student’s characteristics to make a prediction of performance
to choose the optimal problem and teaching style to suit the characteristic set.
These characteristics form part of the student model.

Student Model (SM). Student’s characteristics that affect academic perfor-
mance change as the student learns. In particular, factors that influence change
include the frequency of interactions with the ITS, and the mood of the student.

SM variables include personality traits as derived from the FFM. The SM also
keeps track of the student‘s progress, alongside the outcomes of each tutorial.
Tracking progress eliminates the possibility of repeating problems. For decision
making, the APM depends partly on information obtained from the SM. The
SM is dynamically updated, based on feedback from the APM.

4.3 Central Server (CS)

The CS contains the APM and the Knowledge Base (KB). The KB contains
the curriculum, teaching strategies, and historical information from previous
tutorials. This information is used by the APM to make pedagogical decisions.

In the Knowledge Base, content is organized into topics. Each topic is made
up of questions (problems) of varying levels of difficulty. Each question has one
or more solutions and is made up of the concepts that the student needs to
cover when answering the questions. For each question, there are hints, prompts,
pumps, assertions and a summary. After each tutorial session, the student model

280 M. Dlamini and W. S. Leung

and results of the interaction are saved in the KB. These values are used to
compute frequency tables used by a Naive Bayes Classifier.

As indicated previously, the information generated by the APM is meant for
both internal (the APM itself) and external use. Potentially, teachers seeking to
improve their teaching strategies and lesson plans could very well take advantage
of the findings established by the APM in their own pedagogical decision-making.

4.4 Pedagogical Analytics for Teachers

Information generated by the ITS during operation may be analyzed by human
teachers to improve their pedagogical decision-making. Examples in which the
ITS’s acquired knowledge can assist are discussed below. Table 1 shows a sample
display of information on the percentage of success in using different teaching
strategies to teach selected topics. Such information may help human teachers
in selecting the most effective teaching strategies to deliver particular content.

Table 1. Sample Data: different teaching strategies to teach different problems

Topic | 1st Strat. | 2nd Strat. | 3rd Strat.
Top. 1|60% 10% 30%
Top. 2| 25% 75% 0%
Top. 3| 98% 1% 1%
Top. 4| 5% 45% 50%

Table 2. Information about students using the ITS

Student | Problems tried per day | Passed | Failed
Stud. 1 |20 17 3
Stud. 2 | 5 0 5
Stud. 3 | 50 10 40

For example, as shown in Table 1, the first teaching strategy yields better
results when used to teach Topic 3, whereas poor performance is obtained when
the same strategy is used on Topic 4. Thus, a teacher can easily make an informed
choice on which strategy to use when presenting these topics.

Another example of useful information which may be used by human teach-
ers is shown in Table 2: it summarizes the performance of each student using the
ITS. This information gives the teacher insights on their students, thus identi-
fying potential at-risk students that require intervention. In our example, the
information shows that Student 2 only attempted five problems for the day and
failed all attempts. The teacher could seek out the student in question in an
attempt to provide them with more personal (and human) attention.

Enhancing Programming Pedagogy with an Adaptive ITS 281

5 Evaluation of the Adaptive Pedagogical Model

The ability to make appropriate pedagogical decisions is at the center of the
Adaptive Pedagogical Model. Appropriate in this context is measured by the
model’s ability to recognize a teaching strategy that yields high academic per-
formance when used to tutor a given problem to a specified student model.
Simulated student models were used during the testing phase where the pref-
erences of each student model group (similar characteristics) were predefined.
During simulation, the adaptive pedagogical model’s performance is measured
by its ability to identify a student model and match it with the appropriate
problem and teaching strategy. Analyses from two different perspectives follow.

5.1 Pedagogical Decision-Making Patterns

Instances in which the APM was able to match a student model with the appro-
priate problem and corresponding teaching strategy are expressed as a percent-
age of all APM decisions made at selected points in time.

The results reveal inconsistencies in decision-making initially, as shown by the
sharp edges at the beginning of the graph in Fig. 4. However, as time progresses,
the graph is smoothing. This trend shows that the APM is learning over time
and is thus able to make consistent decisions as shown by the gradual smooth
increase in elevation after time 56.

I coints

perfomance (%)

65
60 Time 56
55 points: 57.894736842105

Y 00;8) PP &@Pgn Q/')Q eb? zz;vQD @@@é’ @bQ @Q?‘ @rgjm{be«% @Q)Q @be‘ EIEL TS LEL
K K & L @ g
COCEEESESEEEEEEEEEEEEEEEEEEEEES

Fig. 4. Representation of past tutorial records based on prediction success statistics

Inconsistency in initial stages may be explained as due to the initial false data
that the model was given to start the learning process. When exposed to the
actual learning environment the model starts learning and pedagogical decisions
made become consistent.

282 M. Dlamini and W. S. Leung

5.2 Teaching Strategy Selection Patterns

Monitoring the decisions made by the APM on choosing a strategy for a given
problem for similar student models reveals that the APM is able to identify a
strategy that performs well with each distinct group of student model.

- visual auditory - read and write

visual teaching strategy

auditory teaching strategy

1 ~~ read and write
20 =

0 \\//\—j_— teaching strategy
0 N\ . .

Fig. 5. Graphical representation of teaching strategy selection statistics over time

On identifying an optimal strategy, the APM continues to use the same
strategy on students with similar characteristics. This trend can be seen in Fig. 5.
As soon as the APM learns the best strategy, the graph of that strategy continues
to rise. This rise is due to increases in the selection frequency of that strategy
as compared to other strategies.

The two results reveal that patterns are emerging from the pedagogical
decision-making data gathered. The results did reveal inconsistencies in decision-
making initially. However, as time progressed, the graph smoothed, showing that
the APM has managed to learn over time. On the other hand, focusing on the
teaching strategy selection choices reveals that the APM can identify a strategy
that performs well on a given student model as the APM then continues to use
the same strategy on students with similar characteristics.

6 Conclusions

This paper presented the APM which is capable of identifying and adapting its
teaching strategies to best suit their student. As proof of concept, an implemen-
tation of the APM in the form of a prototype conversation ITS that focused
on teaching object-oriented programming principles was deployed for testing.
By making use of the Naive Bayes algorithm, the prototype successfully demon-
strated its ability to classify the learning style model of the ‘students’ it inter-
acted with, coming up with teaching strategies deemed appropriate for the iden-
tified learning style.

Enhancing Programming Pedagogy with an Adaptive ITS 283

Such a system can be a useful tool in the programming classroom in the fol-
lowing ways: first, it can serve as a personalized tutoring companion to students,
offering them one-on-one revision. Second, through its interactions with students,
the ITS can provide human teachers with the necessary information regard-
ing the learning styles of their students, enabling the teachers to make better-
informed pedagogical decisions. Lastly, less-experienced programming teachers
may also learn from the ITS’s successes and failures.

References

1. Baine, D., Mwamwenda, T.: Education in southern Africa: current conditions and
future directions. Int. Rev. Educ. 40(2), 113-134 (1994)

2. Beck, J., Woolf, B.P.; Beal, C.R.: ADVISOR: a machine learning architecture for
intelligent tutor construction. In: Joint Proceedings of the 17th National Confer-
ence on Artificial Intelligence and 12th Conference on Innovative Applications of
Artificial Intelligence, pp. 552-557 (2000)

3. Caputi, V., Garrido, A.: Student-oriented planning of e-learning contents for Moo-
dle. J. Netw. Comput. Appl. 53, 115-127 (2015)

4. Chrysafiadi, K., Virvou, M.: Student modeling approaches: a literature review for
the last decade. Expert Syst. Appl. 40(11), 4715-4729 (2013)

5. Cuevas, J.: Is learning styles-based instruction effective? a comprehensive analysis
of recent research on learning styles. Theor. Res. Educ. 13(3), 308-333 (2015)

6. Davis, K., Christodoulou, J., Seider, S., Gardner, H.: The theory of multiple intel-
ligences. In: Cambridge Handbook of Intelligence, pp. 485-503 (2011)

7. Dorga, F.A., Lima, L.V., Fernandes, M.A., Lopes, C.R.: comparing strategies for
modeling students learning styles through reinforcement learning in adaptive and
intelligent educational systems: an experimental analysis. Expert Syst. Appl. 40(6),
20922101 (2013)

8. Evens, M.W.; et al.: CIRCSIM-Tutor: an intelligent tutoring system using natural
language dialogue. In: Proceedings of 12th Midwest AI and Cognition Science
Conference, pp. 16-23 (2001)

9. Felder, R.M., Silverman, L.K.: Learning and teaching styles in engineering educa-
tion. Eng. Educ. 78(7), 674-681 (1988)

10. Freedman, R.: What is an intelligent tutoring system? Intelligence 11(3), 15-16
(2000)

11. Ghadirli, H.M., Rastgarpour, M.: A web-based adaptive and intelligent tutor by
expert systems. In: Meghanathan, N., Nagamalai, D., Chaki, N. (eds.) Advances
in Computing and Information Technology. Advances in Intelligent Systems and
Computing, vol. 117, pp. 87-95. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-31552-7_10

12. Gomes, A., Mendes, A.J.: Learning to program — difficulties and solutions. In: ICEE
2007 Proceedings of the International Conference on Engineering Education, pp.
283-287 (2007)

13. Graesser, A.C.: Conversations with autotutor help students learn. Int. J. Artif.
Intell. Educ. 26(1), 124-132 (2016)

14. Gross, S., Mokbel, B., Hammer, B., Pinkwart, N.: Learning feedback in intelligent
tutoring systems. Kiinstliche Intelligenz 29(4), 413-418 (2015)

https://doi.org/10.1007/978-3-642-31552-7_10
https://doi.org/10.1007/978-3-642-31552-7_10

284

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

M. Dlamini and W. S. Leung

Kalelioglu, F., Giilbahar, Y.: The effects of teaching programming via scratch on
problem solving skills: a discussion from learners’ perspective. Inf. Educ. 13(1),
33-50 (2014)

Kim, J., Lee, A., Ryu, H.: Personality and its effects on learning performance:
design guidelines for an adaptive e-learning system based on a user model. Int. J.
Ind. Ergonomics 43(5), 450-461 (2013)

Klement, M.: How do my students study? an analysis of students’ of educational
disciplines favorite learning styles according to VARK classification. Procedia Soc.
Behav. Sci. 132, 384-390 (2014)

Knight, W.: AI’s language problem (2016). https://tinyurl.com/y7r9haju
Koorsse, M., Cilliers, C., Calitz, A.: Programming assistance tools to support the
learning of IT programming in South African secondary schools. Comput. Educ.
82, 162-178 (2015)

Kulkarni, P., Ade, R.: Prediction of student’s performance based on incremental
learning. Int. J. Comput. Appl. 99(14), 10-16 (2014)

Latham, A.M., Crockett, K.A., McLean, D.A., Edmonds, B., O’Shea, K.: Oscar:
An intelligent conversational agent tutor to estimate learning styles. In: FUZZ 2010
Proceedings of IEEE International Conference on Fuzzy Systems, pp. 1-8 (2010)
Lockspeiser, T.M., Kaul, P.: Using individualized learning plans to facilitate
learner-centered teaching. J. Pediatr. Adolesc. Gynecol. 29(3), 214-217 (2016)
Melis, E., Siekmann, J.: ACTIVEMATH: an intelligent tutoring system for mathe-
matics. In: Rutkowski, L., Sieckmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.)
ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 91-101. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24844-6_12

Milne, I., Rowe, G.: Difficulties in learning and teaching programming — views of
students and tutors. Educ. Inf. Technol. 7(1), 55-66 (2002)

Padayachee, I.: Intelligent tutoring systems: architecture and characteristics. In:
SACLA 2002 Proceedings of 32nd Annual Conference of the Southern African
Computer Lecturers’ Association (2002)

Partovi, H.: Should Computer Science Be A Mandatory Class In U.S. High Schools?
(2017). https://tinyurl.com/yddfe2n7

Pashler, H., McDaniel, M., Rohrer, D., Bjork, R.: Learning styles: concepts and
evidence. Psychol. Sci. Public Interest 9(3), 106-119 (2008)

Perone, C.S.: Machine Learning: Cosine Similarity for Vector Space Models (Part
III). Technical report (2013). http://blog.christianperone.com/2013/09/

Poropat, A.E.: A meta-analysis of the five-factor model of personality and academic
performance. Psychol. Bull. 135(2), 322-338 (2009)

Saucier, G., Goldberg, L.R.: The language of personality: lexical perspectives on
the five-factor model. In: The Five-Factor Model of Personality: Theoretical Per-
spectives, pp. 21-50 (1996)

Schulze, K.G., Shelby, R.N., Treacy, D.J., Wintersgill, M.C., VanLehn, K.: Andes:
an active learning, intelligent tutoring system for newtonian physics. Themes Educ.
1(2), 115-136 (2000)

Sterling, L.: An education for the 21st century means teaching coding in schools
(2015). https://tinyurl.com/ybuqoh56

Susarla, S.C., Adcock, A.B., van Eck, R.N., Moreno, K.N., Graesser, A.: Devel-
opment and evaluation of a lesson authoring tool for AutoTutor. In: ATED 2003
Supplemental Proceedings, pp. 378-387, Sydney (2003)

Wan, S., Niu, Z.: A learner-oriented learning recommendation approach based on
mixed concept mapping and immune algorithm. Knowl.-Based Syst. 103(3), 28-40
(2016)

https://tinyurl.com/y7r9haju
https://doi.org/10.1007/978-3-540-24844-6_12
https://tinyurl.com/yddfe2n7
http://blog.christianperone.com/2013/09/
https://tinyurl.com/ybuqoh56

	Enhancing Object-Oriented Programming Pedagogy with an Adaptive Intelligent Tutoring System
	1 Introduction
	2 Related Work
	2.1 Need for Adaptive Tutoring
	2.2 Intelligent Tutoring Systems
	2.3 Machine Learning for Intelligent Tutoring Systems

	3 An Adaptive Pedagogical Model for ITSs
	3.1 Problem Selector (PS)
	3.2 Teaching Strategy Selector (TSS)
	3.3 Learning Element (LE)

	4 A Conversational Adaptive Intelligent Tutoring System
	4.1 Architecture
	4.2 Client Application
	4.3 Central Server (CS)
	4.4 Pedagogical Analytics for Teachers

	5 Evaluation of the Adaptive Pedagogical Model
	5.1 Pedagogical Decision-Making Patterns
	5.2 Teaching Strategy Selection Patterns

	6 Conclusions
	References

