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Abstract. In the present paper, an efficient approach for solving the
time-consuming multicriterial optimization problems, in which the opti-
mality criteria could be the multiextremal ones and computing the cri-
teria values could require a large amount of computations is proposed.
The proposed approach is based on the reduction of the multicriterial
problems to the scalar optimization ones with the use of the minimax
convolution of the partial criteria, on the dimensionality reduction with
the use of the Peano space-filling curves, and on the application of the effi-
cient information-statistical global optimization methods. An additional
application of the block multistep scheme provides the opportunity of the
large-scale parallel computations with the use of the graphics process-
ing units (GPUs) with thousands of computational cores. The results of
the numerical experiments have demonstrated such an approach to allow
improving the computational efficiency of solving the multicriterial opti-
mization problems considerably – hundreds and thousands.
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1 Introduction

The multicriterial optimization (MCO) problems are classified as the most gen-
eral statements of the decision-making problems – the statement of MCO prob-
lems covers many classes of optimization problems, including unconstrained opti-
mization, nonlinear programming, global optimization, etc. The opportunity to
set several criteria is very useful in the formulating of the complex decision-
making problems and is used in the applications widely. Such practical impor-
tance has caused a high activity of research in the field of the MCO problems. As
a result of the performed investigations, a large number of the efficient methods
of solving the MCO problems have been proposed and a great number of the
applied problems have been solved – see, for example, the monographs [1–4] and
the reviews of the scientific and practical results in the field [5,6].

The present paper is devoted to the solving of the MCO problems, which
are used for formulating the decision-making problems in the design of complex
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technical objects and systems. In such applications, the partial criteria could
take a complex multiextremal form, and computing the values of the criteria
could require a large amount of computations. In such conditions, finding even
a single efficient decision requires a significant amount of computations whereas
finding several decisions (or the complete set of these ones) becomes a problem
of high computation costs.

Among the directions used for solving the MCO problems widely, the scalar-
ization approach utilizing some methods of the partial criteria convolution to
a single scalar criterion is applied – see, for example, [2,4,7]. Among such
approaches, there are the methods of finding the decisions, which are the clos-
est to the ideal one or to the compromised ones, or to the prototypes existing
actually, etc. Among such algorithms, there exists the method of successive con-
cessions, in which some tolerances to possible values of criteria are introduced.
The scalarization of a vector criterion allows reducing the solving of a MCO
problem to solving a series of the multiextremal optimization problems and,
therefore, utilizing all existing highly efficient global search algorithms for the
multicriterial optimization.

One of the promising approaches to solving the time-consuming global opti-
mization problems consists in utilizing the graphics processing units (GPUs).
At present, a GPU is a high-performance flexible programmable massive paral-
lel processor, which can provide solving many complex computational problems
[15]. However, the use of the GPU computational potential in the field of global
optimization is quite limited. As a rule, GPUs are used for the parallelization of
the algorithms, which are based on the random search concept in any way (see
[16–18]). A review of this direction is given in [19].

Further structure of the paper is as follows. In Sect. 2, the multicriterial opti-
mization problem statement is given and the basics of the developed approach
are considered, namely the reduction of the multicriterial problems to the scalar
optimization ones using the minimax convolution of the partial criteria and the
dimensionality reduction using the Peano space-filling curves. In Sect. 3, the par-
allel global search algorithm for solving the reduced scalar optimization problems
is described and the block multistep scheme of the dimensionality reduction,
which provides the opportunity to use the GPUs with thousands of computa-
tional cores is presented. Section 4 includes the results of numerical experiments
confirming the proposed approach to be a promising one. In Conclusion, the
obtained results are discussed and main possible directions of further investiga-
tions are outlined.

2 Problem Statement

The multicriterial optimization (MCO) can be defined as follows:

f(y) = (f1(y), f2(y), . . . , fs(y)) → min, y ∈ D, (1)

where y = (y1, y2, . . . , yN ) is the vector of the varied parameters, N is the
dimensionality of the multicriterial optimization problem being solved, f(y) is
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the vector efficiency criterion, and D is the search domain representing an N -
dimensional hyperparallelepiped

D = y ∈ RN : ai ≤ yi ≤ bi, 1 ≤ i ≤ N (2)

at given boundary vectors a and b.
Without loss of generality, the values of partial criteria in the problem (1)

are supposed to be non-negative, and the decreasing of these ones corresponds
to increasing efficiency of the decisions y ∈ D.

In the present work the problem (1) will be considered in application to
the most complex decision-making problems, in which the partial criteria fi(y),
1 ≤ i ≤ s could be multiextremal, and obtaining the criteria values at the points
of the search domain y ∈ D could require a considerable amount of computations.
Let us suppose also the partial criteria fi(y) to satisfy the Lipschitz condition

|fi(y′) − fi(y′′)| ≤ Li‖y′ − y′′‖, y′, y′′ ∈ D, 1 ≤ i ≤ s. (3)

where Li is the Lipschitz constant for the functions fi(y), 1 ≤ i ≤ s and ‖ ∗ ‖
denotes the Euclidean norm in RN .

The general approach to solving the MCO problem applied in the present
work consists in the reduction of solving the MCO problems to the solving of a
series of one-dimensional optimization problems:

min φ(x) = F (λ, y(x)), x ∈ [0, 1], (4)

where

F (λ, y(x)) = max ((λifi(y(x)), 1 ≤ i ≤ s) (5)

is the minimax convolution of the partial criteria of the MCO problem with the
use of the vector of the convolution coefficients

λ = (λ1, λ2, . . . , λs) ∈ Λ ⊂ Rs :
s∑

i=1

λi = 1, λi ≥ 0, 1 ≤ i ≤ s (6)

and y(x) is a continuous and unambiguous mapping of the interval [0, 1] onto
the N -dimensional search domain D – see, for example, [8–10].

3 GPU-Based Parallel Computations for Solving
the Multicriterial Optimization Problems

The convolution of the partial criteria applied within the framework of the devel-
oped approach and the dimensionality reduction allow reducing the solving of
the MCO problem (1) to solving a series of the reduced multiextremal prob-
lems (4). And, therefore, the problem of the development of the methods for
solving the MCO problems is resolved by the opportunity of a wide use of the
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global search algorithms. The state of the art in the field of global optimization
is presented comprehensively enough, for example, in [8,20,21].

In the present work, the global search algorithm developed within the frame-
work of the information-statistical theory of the multiextremal optimization is
proposed to use for solving the reduced problems (4). This theory served as a
basis for the development of a large number of algorithms, which have been
substantiated mathematically, have demonstrated high efficiency, and allowed
solving many complex optimization problems in various fields of application
[8,9,22–25].

The approach proposed for the organization of the parallel computations
when solving the time-consuming multiextremal optimization problems is based
on the simultaneous computing of the partial criteria values in the MCO problem
(1) at several different points of the search domain D. Such an approach provides
the parallelization of the most time-consuming part of the global search and is a
general one – it can be applied for many global search methods in various global
optimization problems.

3.1 Parallel Algorithm of Global Search for Finding the Efficient
Decisions in the Multicriterial Optimization Problems

Within the framework of this approach, the multidimensional generalized par-
allel algorithm of global search (PAGS) for finding the efficient decisions of the
multicriterial optimization problems constitutes the basis for the developed opti-
mization methods. The general computational scheme of the algorithm can be
described as follows [8–10].

Let p is the number of employed parallel computers (processors or cores) of
a computational system with shared memory. The initial two iterations of the
algorithm are performed at the boundaries of the interval x0 = 0, x1 = 1. Besides
these boundary points, the algorithm should perform additional iterations at the
points xi, 1 < i ≤ p, which can be defined a priori or computed by any auxiliary
computational procedure. Then, let k, k > p global search iterations have been
completed, at each of which the computing of the value of the minimized function
φ(x) from (4) (hereafter called a trial) has been performed. The choice of the
points for trials performed within the next iteration in parallel is determined by
the following rules.

Rule 1. Renumber the trials points of the completed search iterations by the
lower indices in the order of increasing coordinate values

0 = x0 < x1 < · · · < xi < · · · < xk = 1. (7)

Rule 2. Compute current estimate of the Hölder constant of the reduced
function φ(x):

m =

{
rM, M > 0
1, M = 0

,M = max
1≤i≤k

|zi − zi−1|
�i

(8)
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where zi = φ(xi), �i = N
√

xi − xi−1, 1 ≤ i ≤ k. The constant r, r > 1 is the
reliability parameter of the algorithm.

Rule 3. Compute the characteristic R(i) for each interval (xi−1, xi), 1 ≤ i ≤ k
according to the expression

R(i) = �i +
(zi − zi−1)2

m2�i
− 2

(zi + zi−1)
m

, 1 ≤ i ≤ k, (9)

Rule 4. Arrange the characteristics of the intervals (xi−1, xi), 1 ≤ i ≤ k
obtained according to (9) in the decreasing order

R(t1) ≥ R(t2) ≥ · · · ≥ R(tk−1) ≥ R(tk) (10)

and select p intervals with the indices tj , 1 ≤ j ≤ p having the maximum values
of the characteristics.

Rule 5. Perform new trials at the points xk+j , 1 ≤ j ≤ p placed in the inter-
vals with the maximum characteristics from (10) according to the expressions

xk+j =
xtj + xtj−1

2
− sign(ztj − ztj−1)

[
|ztj −ztj−1|

m ]N

2r
, 1 ≤ j ≤ p. (11)

Stopping condition for the algorithm, according to which the execution of
the algorithm is terminated, consists in checking the lengths of the intervals, in
which the scheduled trials are performed, with respect to the required accuracy
of the problem solution i.e.

�t ≤ ε, 1 ≤ tj ≤ p. (12)

Various modifications of this algorithm and the corresponding theory of conver-
gence are presented in [8,9].

3.2 Multilevel Decomposition of the Parallel Computations

Further development of the methods of the parallel computations in the multicri-
terial global optimization problems and, therefore, the expansion of the possible
quantity of the employed processors/cores can be ensured by the use of one more
dimensionality reduction method in the decomposition scheme of the MCO prob-
lems (1) – the multistep scheme of decomposition of the optimization problems
[8,9,25,26]. According to this scheme, the solution of a multidimensional opti-
mization problem can be obtained by solving a series of nested one-dimensional
problems:

min {φ(y) : y ∈ D} = min
a1≤y1≤b1

min
a2≤y2≤b2

. . . min
aN≤yN≤bN

φ(y). (13)

The original multistep reduction scheme (13) can be generalized for the use
in combination with the dimensionality reduction scheme based on the Peano
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curves [27]. According to the generalized block multistep scheme, the vector of
variables y ∈ D of the global optimization problem (1) is considered as a set of
the block variables

y = (y1, y2, . . . , yN ) = (u1, u2, . . . , uM ), (14)

where the ith block variable ui is a vector with the dimensionality Ni of the
elements of the vector y taken sequentially i.e.

ui = (yni+1, yni+2, . . . , yni+Ni
),

n0 = N0 = 0, ni = ni−1 + Ni−1, 1 ≤ i ≤ M
(15)

and N1 + N2 + · · · + NM = N .
Using the new variables, main equation of the multistep reduction scheme

(13) can be rewritten in the form

min {φ(y) : y ∈ D} = min
u1∈D1

min
u2∈D2

. . . min
uM∈DM

φ(y). (16)

where the subdomains Di, 1 ≤ i ≤ M are the projections of the initial search
domain D onto the subspace corresponding the variables ui, 1 ≤ i ≤ M . As a
result, in the generalized block multistep reduction scheme, the nested subprob-
lems

φi(u1 . . . ui) = min
ui+1∈Di+1

φi+1(u1 . . . ui, ui+1), 1 ≤ i ≤ M − 1 (17)

are the multidimensional ones, and the dimensionality reduction method based
on the Peano curves can be applied to solve these ones.

To provide the parallel computations in the block multistep reduction scheme,
at each decomposition level one can generate several optimization problems
simultaneously for the parallel solving of these ones [26,27] (see Fig. 1). The
resulting set of problems to be solved in parallel can be controlled by means of
the predefined parallelization vector

π = (π1, π2, . . . , πM ), (18)

where πi, 1 ≤ i < M is the number of subproblems being solved in parallel at
the (i + 1)th level of decomposition arising as a result of performing the parallel
iterations at the ith level. For the M th level, the quantity πM means the number
of parallel trials in the course of minimization of the function

φM (u1, . . . , uM ) = φ(y1, . . . , yN ) (19)

with respect to the variable uM at fixed values u1, . . . , uM−1, i.e. the number
of values of the objective function φ(y) computed in parallel. Then, the total
number of the employed processors/cores will be

∏
= 1 +

M−1∑

i=1

i∏

j=1

πj (20)
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The resulting multilevel scheme of parallel computations allows ensuring the
efficient employment of all processors/nodes available in the high-performance
systems with a large number of the computational nodes (including the ones
with the distributed memory). The generation of a large number of optimization
problems solved in parallel initiates a promising direction on a wide employment
of GPUs with a large number of computational cores. This direction has been
tested in solving the time-consuming global optimization problems [28–30]. In the
present work, the possibility of utilizing the GPUs for solving the multicriterial
optimization problems has been evaluated.

Fig. 1. General scheme of generating the parallel problems using the block multistep
dimensionality reduction scheme

The PAGS algorithm combined with the block multistep scheme of dimen-
sionality reduction will be called hereafter Generalized Parallel Algorithm of
Global Search (GPAGS).

4 Results of Numerical Experiments

The numerical experiments have been carried out on the Lobachevsky super-
computer at State University of Nizhni Novgorod (operating system – CentOS
6.4, management system – SLURM). Each supercomputer node included 2 Intel
Sandy Bridge E5-2660 2.2 GHz, 64 Gb RAM processors. The central processor
units were the 8-core one (i. e. total 16 CPU cores per a node were available). At
each node, three NVIDIA Kepler K20X GPUs were installed. To provide parallel
computations MPI and CUDA technologies are applied.

The evaluation of the efficiency of the developed approach for solving the
MCO problems without using the computational accelerators has already been
performed earlier [11–14]. Let us consider, for example, the results of experiments
from [13]. For comparison, a bicriterial test problem proposed in [31] was used:

f1(y) = (y1 − 1)y2
2 + 1, f2(y) = y2, 0 ≤ y1, y2 ≤ 1. (21)

As a solution of this MCO problem, the construction of a numerical approxima-
tion of the Pareto domain (PDA) was considered. For evaluating the quality of
approximation, the completeness and the uniformity of the coverage of the Pareto
domain were compared with the use of the following two indicators [13,31]:
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– The hypervolume index (HV) defined as the volume of the subdomain of the
values of the vector criterion f(y) dominated by the points of the Pareto
domain approximation. This indicator characterizes the completeness of the
Pareto domain approximation (a higher value corresponds to more complete
coverage of the Pareto domain).

– The distribution uniformity index (DU) of the points from the Pareto domain
approximation. This indicator characterizes the uniformity of coverage of the
Pareto domain (a lower value corresponds to more uniform coverage of the
Pareto domain).

Within the described experiment, five multicriterial optimization algorithms
were compared: the Monte-Carlo (MC) method, the genetic algorithm SEMO
from the PISA library [5,32], the Non-uniform coverage (NUC) method [5], the
bi-objective Lipschitz optimization (BLO) method proposed in [32], and the
serial variant of the GPAGS algorithm proposed in the present paper.

Total for the GPAGS algorithm 50 subproblems were solved at various val-
ues of the convolution coefficients λ distributed in Λ uniformly. The results of
experiments from [13] are presented in Table 1.

Table 1. Results of numerical experiments from [13] for the test problem (21)

Method Iterations PDA points HV DU

MC 500 67 0.300 1.277

SEMO 500 104 0.312 1.116

NUC 515 29 0.306 0.210

BLO 498 68 0.308 0.175

GPAGS 370 100 0.316 0.101

The results of performed experiments have demonstrated the GPAGS algo-
rithm to have a considerable advantage as compared to considered multicriterial
optimization methods even in solving relatively simple MCO problems.

In the present paper, the numerical experiments were conducted in order to
evaluate the efficiency of the developed approach in solving the MCO problems
with the use of the GPUs. In the conducted series of experiments, the solving
of the bicriterial six-dimensional MCO problems (i.e. N = 6, s = 2) has been
performed. As the test problem criteria, the multiextremal functions obtained
with the use of the GKLS generator [33] were used.

In the course of experiments, 50 multicriterial problems of this class have
been solved. In each problem, the search of the Pareto-optimal decisions was
performed for 10 convolution coefficients λ from (4) distributed in Λ uniformly
(i.e. 500 global optimization subproblems have been solved). In solving the prob-
lems, two levels of the block dimensionality reduction scheme were used. At the
first level of the reduction scheme, the optimization with respect to the first
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two variables was performed (i.e. u1 = (y1, y2), N1 = 2). The optimization with
respect to the rest variables was performed at the second decomposition level
(i.e. u2 = (y3, y4, y5, y6), N2 = 4). Trials at the second decomposition level are
executed on GPU. Computations are implemented in accordance with the mas-
ter/slave scheme which is not required any data communication between GPUs.
Trial points are sent by CPU just before every iteration and are stored in the
GPU global memory.

As the parameters the accuracy of the method ε = 0.025 and the reliability of
the method r = 6.5 for the first level of the block reduction scheme and r = 4.5
for the second level of decomposition were used. The results of the numerical
experiments are presented in Table 2.

Table 2. Comparison of the times of solving of the six-dimensional bicriterial MCO
problems

Nodes P Th P*Th Core type Time, s Speedup

1 1 16 16 CPU 7 186.4 1.0

16 16 16 256 CPU 957.3 7.5

16 32 4 032 129 024 GPU 529.9 13.6

16 64 2 016 129 024 GPU 291.8 24.6

16 128 1 008 129 024 GPU 272.4 26.4

32 128 2 016 258 048 GPU 214.9 33.4

32 256 1 008 258 048 GPU 253.2 28.4

In Table 2, the column “Nodes” shows the number of the supercomputer
nodes employed, the column P shows the number of the parallel subproblems
generated at the first level of the block reduction scheme (the parameter π1 from
(18)), the column Th shows the number of generated points of trials performed
in parallel at the second decomposition level (the parameter π2 from (18)).

The results of experiments presented in the first row show the averaged time
of solving of the MCO problems with the use a single computational node of the
supercomputer (π1 = 1, π2 = 16). In the second row of the table, the averaged
time of solving of the MCO problems with the use of sixteen computational nodes
of the supercomputer (π1 = 16, π2 = 16) is given. As follows from the presented
results, the resulting speedup of the computations was 7.5 times. In the rows
3–7, the averaged times of solving the MCO problems with the use of 16 and
32 supercomputer nodes are given. At each node, 3 GPUs were employed. The
number of parallel subproblems generated at the first level of the block reduction
scheme (the parameter π1 from (18)) ranged from 32 to 256 whereas the number
of generated points of trials performed in parallel at the second decomposition
level (the parameter π2 from (18)) ranged from 1008 to 4032. Total number of
employed GPU cores was 129024 with using 16 nodes, and 258048 with using 32
nodes. The maximal speedup of computations achieved was 33.4 times.
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It is worth noting that the speedup of computations in the time depends
on the time of computing the values of the criteria of the MCO problem being
solved. This time is relatively small in the test optimization problems, but it
can be essential when solving the applied problems in various scientific and
technical applications. As a result, along with the evaluation of the achieved
speedup of computations in the time, it is reasonable to evaluate the speedup of
computations with respect to the reduction of the number of iterations performed
in the course of computations. The results of experiments performed to evaluate
such speedup are presented in Table 3.

Table 3. Comparison of the number of iterations when solving the six-dimensional
bicriterial MCO problems

Nodes P Th P*Th Core type Iterations Speedup

1 1 16 16 CPU 12 279 179.8 1.0

16 16 16 256 CPU 808 858.8 15.2

16 32 4 032 129 024 GPU 3 086.5 3 978.4

16 64 2 016 129 024 GPU 2 426.9 5 059.6

16 128 1 008 129 024 GPU 2 910.2 4 219.4

32 128 2 016 258 048 GPU 1 581.5 7 764.4

32 256 1 008 258 048 GPU 2307.5 5 321.4

The results of experiments presented above demonstrate the speedup of com-
putations with respect to the reduction of the number of performed global search
iterations to be considerable. Thus, when employing 16 computer nodes, the
speedup can be more than 5000 times whereas when employing 32 computer
nodes – more than 7700 times.

5 Conclusion

In the present paper, an efficient approach for solving the complex multicrite-
rial optimization problems, in which the criteria of optimality can be the mul-
tiextremal ones, and the computing of the criteria values can require a large
amount of computations has been proposed. The proposed approach is based
on the reduction of the multicriterial problems to the scalar optimization ones
by means of the minimax convolution of the partial criteria, the dimensionality
reduction with the use of Peano space-filling curves, and the application of the
efficient information-statistical methods of global optimization.

The opportunity of the large-scale parallel computations is provided by appli-
cation of the block multistep dimensionality reduction scheme and by the use of
the GPUs with many thousands computational cores. The results of numerical
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experiments have shown the developed approach to allow reducing the compu-
tational costs of solving the multicriterial optimization problems considerably –
by hundreds and thousands times.

The results of the performed experiments have demonstrated the developed
approach to be a promising one and to require further investigations. First of
all, it is necessary to continue carrying out the numerical experiments on solving
the multicriterial optimization problems at larger number of the partial criteria
of efficiency and for larger dimensionality of the optimization problems being
solved.
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