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Abstract. Today advanced research is based on complex simulations
which require a lot of computational resources that usually are organized
in a very complicated way from technical part of the view. It means that
a scientist from physics, biology or even sociology should struggle with all
technical issues on the way of building distributed multi-scale application
supported by a stack of specific technologies on high-performance clus-
ters. As the result, created applications have partly implemented logic
and are extremely inefficient in execution. In this paper, we present an
approach which takes away the user from the necessity to care about an
efficient resolving of imbalance of computations being performed in differ-
ent processes and on different scales of his application. The efficient bal-
ance of internal workload in distributed and multi-scale applications may
be achieved by introducing: a special multi-level model; a contract (or
domain-specific language) to formulate the application in terms of this
model; and a scheduler which operates on top of that model. The multi-
level model consists of computing routines, computational resources and
executed processes, determines a mapping between them and serves as a
mean to evaluate the resulting performance of the whole application and
its individual parts. The contract corresponds to unification interface of
application integration in the proposed framework while the scheduling
algorithm optimizes the execution process taking into consideration the
main computational environment aspects.
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1 Introduction

The growth in the performance of computing systems (CS) for scientific comput-
ing and the increasing complexity of computer simulation models is one of the
leading trends in the development of information technologies. Currently, the
implementation of the exascale computing by 2020 is being discussed. On the
other hand, this performance increase is mainly associated with the complexity
of the CS architecture. Efficient use of this type of integrated CS in modelling
is a complex engineering task. In addition to that, following challenges emerge:

1. the need to use multi-scale and multi-physical models, various modelling
methods (grid and drains) in the solution of one applied problem;

2. the use of specialized computation resources (for example, graphics proces-
sors);

3. the problem of balanced spatial decomposition due to the complexity of the
geometry of the domain of definition;

4. dynamic change in the complexity of different parts of the problem: with
spatial decomposition due to the change in the geometry of the system or
due to the emergence of areas of high computational complexity (for example,
clustering of agents in multi-agent systems, slow convergence regions for grid
methods;

5. the development of cloud computing technologies, in which the CS architec-
ture is hidden from the user, and the need to meet their requirements.

This leads to a significant slowdown in the development of new simulation mod-
els, the use of obsolete technologies for parallel problem solving, the low effi-
ciency of resource allocation and, ultimately, the inability to master the exascale
computing system. In these circumstances, the traditional approach in which
the responsibility for the parallel performance of software implementation of the
model is assigned to the developer of the model is not efficient. Within the frame-
work of this project, the approach to the separation of the development process
of a simulation model from solving the problem of the efficient use of computing
resources is given, which should be solved automatically. At the same time, effi-
cient allocation of resources is impossible without knowledge of the internal logic
of models; therefore, a tool should be proposed for its formal description in the
resource allocation system and for providing the system with access to the task
decomposition; dynamic allocation of resources should be ensured. The develop-
ment of this approach for automatic resource allocation will significantly reduce
the complexity of implementing computationally complex simulation models,
allowing the developer to concentrate entirely on modelling methods, increase
the efficiency of using computing resources. The authors of the proposal are
sure that without the solution of these problems and the development of the
proposed approach, the CS’s exascale performance will not be accessible from a
practical point of view. Additionally, simplifying the implementation of models
stimulates interest in more complex modelling methods, for example, using mul-
tiscale approaches. In this paper, we present an approach for efficient execution
of multi-scale distributed applications with the dynamic overflowing workload.
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This approach includes dynamic (variable) graph model for allocating the struc-
ture of a multiscale distributed application as well as the unified framework for
constructing this graph model and applying the algorithm of efficient manage-
ment of executed tasks on dedicated computational resources.

2 Related Works

Since multiscale applications have a graph structure, the task of their planning
is generally considered as the task of planning composite applications. To date,
there is a wide variety of algorithms and methods for solving this problem. In [1],
the authors proposed a coevolutionary genetic algorithm (CGA) for planning
scientific composite applications that have execution deadlines. Experimental
studies have shown the high efficiency of the developed method for optimizing
the value of the resources used. However, this algorithm does not allow to opti-
mize further the execution time, which reduces the possibility of its use. The
heuristic IPEFT algorithm was proposed in [2]. The results of the experiments
showed a fairly low execution time for small applications, as well as better results
compared to the predecessors - HEFT and PEFT. Despite this, the authors’
experience with heuristic algorithms [3,4] shows that their ability to find opti-
mal solutions is very limited. An additional direction of research in the field of
planning composite applications is the study of the ways to ensure energy effi-
ciency of tasks. So in [5], the authors presented the heuristic EONS algorithm for
planning composite computations taking into account the energy consumption
of computing resources. But, since in most modern projects energy efficiency
is not a key factor for optimization, it must be considered in conjunction with
the implementation time and the cost of using resources. In [6] the methods of
planning composite applications in the conditions of time constraints and the
budget for the computing resources rent in the cloud environment are stud-
ied. The ideas of the planning algorithms proposed in the article are based on
concrete, well-structured templates of the composite application. This approach
is not always efficient because there are strict requirements for the structure
of the composite application, which in general will rarely be met. There are
works devoted to the development of systems for organizing the implementa-
tion and design of composite applications. For example, [7] presents a system
for modelling designing and integrating composite applications into a comput-
ing environment. Such systems are aimed at simplifying the process of creating
and executing applications. [8] presents a platform for organizing the planning
process based on the flow of tasks and the dependencies between them. The
main idea of the architecture of the platform is to present all the computational
tasks in one composite application, which expands due to the tasks entering the
platform. In [9], a detailed analysis of the types of multiscale applications, as
well as possible ways of their implementation in a distributed environment, is
given. The authors identified three types of applications: related, scalable and
prioritized applications. For each type, application examples were selected and
manual optimization was performed. As shown by the results of experimental
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studies, the use of knowledge about the nature of applications can significantly
accelerate their implementation. However, the authors did not offer automated
optimization paths, which is a critical drawback of the work. The cloud platform
for analyzing and visualizing multiscale data is presented in [10]. The platform
is based on the integration of tools and services for data analysis with services
for data storage and composite applications execution. The main objectives of
the platform development were to provide a convenient tool for modelling the
processing of multiscale data, their implementation with automatic scaling of the
computing environment and visualization of the analysis results (for example,
climate data). In [11], the authors analyze the capabilities of existing composite
application management platforms for efficient work with extreme-scale compos-
ite applications. Under extreme-scale composite applications, the authors mean
applications that require advanced high-performance computing technologies for
highly accurate predictive models based on the analysis of large volumes of multi-
scale data. The authors of [12] presented a modified version of the framework for
distributed execution of multi-scale MUSCLE-HPC applications. Its main advan-
tage over the previous version of MUSCLE-2 is the more efficient distribution of
tasks in high-performance clusters by analyzing the relationships between appli-
cations and the location of closely related tasks within a single cluster. Despite
the presented advantages, in MUSCLE-HPC, as well as in previous versions,
there are no mechanisms for optimizing the applications themselves during the
execution.

3 Multilevel Approach

This section describes basic parts of architecture of the proposed approach taking
into consideration problem statement aspects.

3.1 Problem Statement

As mentioned before, the main problem lays between complexity of model dis-
tributed blocks interconnection and infrastructure appropriate mapping. Con-
sider that application has execution environment that is organized as a computa-
tional grid G<V,E>, where V = {vj} corresponds to vertexes and E = {ej1,j2}
represents edges. Upon the environment, grid computational elements W = {wl}
form actual load of model logic. This elements may move in the environment
from one nodes to another each computational iteration. V nodes are divided
between computational resources R = {rm}. Let consider S = {wj

l } as current
distribution of actual load and define reorganization function

f(S1, S2) = Σ
cwj

l

ej,j′
· δjj′

δjj′ =

{
1, if j and j′ are on different resources
0, otherwise;

,∀j, j′ = 1, . . . , Jm,
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where cwj
l

- is amount of metadata needed to transfer load from vj to vj′ ; while
ej1,j2 corresponds to network channel throughput.

T (S) = maxm(ΣJm
j

w

pm
+ ΣjΣj′

wj

ej,j′
· τ j

j′)

τ j
j′ =

{
1, if there is actual load moving from j to j′

0, otherwise;
,∀j, j′ = 1, . . . , Jm,

Having these equations we can define the change environment criteria for the
optimization algorithm:

T (Sprev) · θ > f(Sprev, Snew) + T (Snew) · θ.

Here θ is statistically depending value that corresponds to the rate of chang-
ing of actual load through the elements of the environment.

3.2 The Approach

Our approach of efficient execution of distributed applications consists of 3 main
parts: a three-layer model of performance; a scheduling algorithm that uses the
model to estimate performance of an application in different configurations; the
partition-based model of computations that allows user to provide its own rou-
tines for computations. The basic concept is presented in Fig. 1.

Fig. 1. Three-tier design of architecture

To solve the problem of scaling using the proposed model we developed a
genetic-based algorithm to balance the workload on individual processes and thus
improve overall performance. The objective of the algorithm is to reconfigure
the computing resources based on the current load profiles generated by the
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computing processes on the resources. Concerning the task of modelling the
behaviour of the population in specified urbanized areas (see City-Simulator
application in Case Study section), the developed algorithm adaptively manages
the allocation of modelling areas to physical computing processes based on the
current specific load of these processes.

At the core of the model, there are few logical entities - “process”, “agent”, as
well as the matrix of process contiguity with each other. Based on the fact that
individual processes are responsible for modelling individual geographic areas,
and moving agents across the city imply moving only between adjacent areas
(in the simplest case), the adjacency matrix defines the subsequent area on the
agent path at each time point. In this case, if modelling processes on nodes
of computing clusters are placed arbitrarily, the absence of excessive network
interaction is not guaranteed.

3.3 The Scheduling Algorithm

To perform scheduling and rescheduling of partitions among all processes in
the distributed application, we implemented a special version of the genetic
algorithm (GA) as a part of our approach. The genetic algorithm was chosen
because its generality and ability to search through the whole solution space.

Our version of GA performs a search of optimal mapping between partitions
and processes.

The mutation operator is implemented as random choosing of a host process
for a random partition. As the crossover operator, the single-point crossover was
chosen. To speed up convergence of the algorithm, the mutation may happen
more than once per instance of the chromosome. The parameters of this GA
stayed the same for all experimental runs and were the following: size of pop-
ulation - 100, count of generations - 300, mutation probability - 0.7, crossover
probability - 0.3, selection operator - roulette wheel. The three-layer model was
used as a fitness function to estimate the resulting execution time of modelling
per iteration. The scheduling algorithm is used as before the start of the execu-
tion as during the runtime. In the latter case, the algorithm is being periodically
run according to a shift between the last estimated execution time of iteration
and the current value of that time.

3.4 The Partition-Based Model of Computations

To make the proposed approach working, it is necessary to introduce a model
to describe required computations. This model is responsible for: (a) integrating
of user-written computing functions into the framework based on the proposed
approach and (b) obtaining required for the three-layer model monitoring and
profiling data.

To achieve the stated goals, we propose the following model that can be easily
expressed on any high-level programming language.

Let introduce main entities: ai
t = <st, xt>, pkt = <Sp, {ai

t}>, ert+1 =
<{aj

t+1}, lat+1>, where ai
t is an agent, pkt is a partition, ert is an envelope, all
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of them in moment t. An agent represents data the computing should happen
on (xt - location of the agent in modeling space, st - the rest of data associated
with the agent). A partition represents an area in modeling space which has
a set of associated agents with it and some static information required for the
execution Sp. A partition serves as a unit of scaling. An envelope is a unit of
data transferring between two connected partitions.

The user has to supply two functions mu and gu to be used for computing
new state across all partitions and all agents on each node according to the
following transformations.

pkt+1 = mu(pkt , {ert})

lat+1 = gu(xt+1)

<pkt+1, {ert+1}> = f(m, g, pkt , {ert})

where mu - compute functions that implement the logic of modelling on the set
of agents belonging to the area and multiple agent inflows, gu - a function that
determines a partition the agent should reside to according to its new coordi-
nates xt+1 in the modelling space. Function f uses these user-defined functions,
partitions data and incoming flows of the agent to calculate new states and per-
form all service functionality including optimization of data exchange between
individual processes of the distributed applications.

4 Case Study: A Large Scale Multiagent Simulation
of Urban Traffic

4.1 Urban Traffic Simulation

To carry out experimental studies of the performance and scalability of the
proposed approach, a test case was developed for the field of multiscale mod-
elling of urban mobility of the population in urbanized areas. It was called City-
Simulator. In the developed example, we simulate the daily dynamics of people
moving around the city, taking into account the specifics of these movements -
from the sleeping areas to the city centre in the morning and from the centre
to the sleeping areas in the evening. The city is divided into areas of modelling,
the number of areas corresponds to the number of allocated computing resources
allocated to the application. Each area and agents inside it are modelled in inter-
relation with other areas because, during the simulation, agents move between
regions. This application assumes the dynamism of the computational load on
the processes associated with the movement of agents by location, each of which
is processed at the designated node for it.

Data on the mobility of the population on a city scale are simulated through
the software package sim city package, after which the output array is trans-
ferred to the sim district package software package, responsible for multiagent
modeling of individuals’ behavior on the scales of individual regions (in units),
the interaction between which does not involve large transmitted data and, as a
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consequence, is not a determining factor when planning placement on the nodes.
The microscale modelling of the behaviour of agents within a set of small areas
of the district (counted in hundreds, thousands and tens of thousands) is carried
out by multiple copies of the package sim object package. The amount of com-
munication between the instances of this package is most significant across the
entire application, as a result of which it is the determining one when planning
the placement of processes on the nodes, as provided by the extreme scaling (ES)
pattern [13]. An example of dividing a city into regions (the city is divided into
eight regions) and the general scheme of interaction taking into account intra-
and inter-district communication are presented on Fig. 2).

Fig. 2. Example of computations structure in distributed application City-Simulator

To configure the parametric performance models, the City-Simulator appli-
cation is profiled depending on the size of the simulated area and the number of
simulated agents. The experiments were conducted on the resources of the com-
puting cluster of the University ITMO. The number of simulated agents ranged
from 100 to 500 thousand in increments of 100 thousand. The width of the mod-
elling area varied from 5 to 15 km in increments of 2.5 km. The dependence of
the total calculation time and the time of data transfer between the modelling
blocks on the number of processes on which the sim object package packet is
placed, on one iteration is shown Fig. 3.

Figure 3 shows that the most intensive decrease in computation time is
observed in the range of 4 to 32 processes. Also, there is a significant increase
in the time spent on communication overhead, as the number of computing
processes increases. The initial reduction in communication time in each of the
scenarios (2–8 processes) is due to the placement of processes on one node from
the calculation of 8 processes to one physical computing node, which does not
cause network interaction between processes.
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Fig. 3. City-Simulator execution time dependence on number of processes

The obtained results of performance profiling clearly show that the dis-
tributed application build with static partitioning of modelled areas doesn’t scale
well and eventually can’t fully utilize available resources. With the growth of the
simulation scale and preserving the same or close patterns of agents dynamic -
e.g. increases in the number of agents and/or a number of areas - the problem
with efficient resources utilization is getting worse. The latter makes the user
wait more and thus slows down research speed. Using the proposed approach is
possible to ease the pain caused by this problem by improving scaling capabilities
of the application exploiting patterns in its dynamic.

For this test case, the application execution scheduling component can pro-
vide planning optimization through the methods described in The approach
section - accounting for agent movements between modelling areas when schedul-
ing tasks and load balancing of compute nodes by reconfiguring the grid.

4.2 Experimental Results

The experiments were carried out - with and without application of adaptations
of the computational template to the application. Activity modelling was carried
out for 6 million agents to produce simulations on a city scale both regarding the
size of the calculation area and regarding the size of the population of agents.
The application was planned for 100, 200, 500 and 1000 cores. The results of the
experiments are shown in Fig. 4. As can be seen from the graph, for experiments
without the use of adaptations, the total simulation time with changing in the
number of processes from 100 to 200 decreases (by 9%), but with a further
increase in the number of computing cores, the total execution time increases (by
7% at 500 cores and 33% for 1000 cores). Such an effect, first of all, is due to the
fact that when planning tasks, the adjacency matrices of the movements of agents
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are not taken into account, which entails a considerable increase in the network
interaction between the processes. In addition, the lack of reconfiguration of the
calculated grid also slows down the execution of the application due to the uneven
load on modelling processes. For the experiment with the use of adaptation, we
can see a decrease in execution time by 32% in the first case and by 18% in
the second one. Despite the slowing down of the rate for execution speedup, the
proposed approach can deliver significant improvement in efficiency of resource
utilization and thus to scale for the distributed application.

Fig. 4. Performance comparison of classical static partitioning approach and the pro-
posed approach in case of City-Simulator distributed application

The results of the experiments in the scenario using the modelling template
adaptations demonstrate a stable decrease in execution time with an increase
in the number of computational cores. However, it is worth noting that the
change in execution time slows down as the number of cores increases. This
is due to the fact that even with the use of adaptations of the computational
template with a large number of modelling processes, the contribution of network
interaction inevitably increases, which is not capable of completely levelling even
the InfiniBand data transmission channel.

To further analyze the results obtained, changes in the computational load of
modelling processes over time were investigated. Since the computational load
is expressed in terms of the number of simulated agents in a certain process, for
the simulation experiment with 1000 computational cores, data was collected
on the number of agents at each time point and the dynamics of the change in
the number of agents for scenarios with and without reconfiguration of the grid
was analyzed. Figures 5 and 6 show the graphs of three processes in which the
characteristic effects of the optimization performed by the PC EO are visible

For the process, the graphs of which are represented in Fig. 5, by reducing
the cell size it is possible to reduce the computational load on average from 2500
to 1000 agents per iteration. In the process, the graphs of which are shown in
Fig. 6, the situation was the reverse - at a certain stage of modeling the load
dropped and fell almost to zero. By distributing the load from other processes
it was possible to increase the workload of the process, thereby reducing the
probability of downtime.
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Fig. 5. Workload decreasing for a processes in City-Simulator

Fig. 6. Workload increasing for a processes in City-Simulator

Analysis of simulation results in individual processes showed that the recon-
figuration of the computational grid allows relatively equalizing the computa-
tional load on the processes that perform agent modeling of the movement of
people in the urban environment. This factor, coupled with the contiguity matri-
ces in the planning process, allows you to significantly optimize the execution of
the application and ensure its scalability on a large number of compute nodes.

5 Conclusion

The experimental case study demonstrated an improvement in execution time
with the growth of exploited cores for: up to 32% in case of 200 cores, up to 18%
in case of 500 cores thus showing that the proposed approach is able to deliver
significant improvement in efficiency of scaling for distributed applications. This
research is financially supported by The Russian Science Foundation, Agreement
#14-11-00823.
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