
Interactive 3D Representation
as a Method of Investigating
Information Graph Features

Alexander Antonov(B) and Nikita Volkov

Lomonosov Moscow State University, Moscow, Russia
asa@parallel.ru, volkovnikita94@gmail.com

Abstract. An algorithm information graph is a structure of wide vari-
ety. It can tell a lot about algorithm features, such as computational com-
plexity and resource of parallelism, as well as about sequential operations
blocks within an algorithm. Graphs of different algorithms often share
similar regular structures — their presence is an indicator of potentially
similar algorithm behavior. Convenient, interactive 3D representation of
an information graph is a decent method of researching it; it can demon-
strate algorithm characteristics listed above and its structural features.
In this article we investigate an approach to creating such representa-
tions, implement it using our AlgoView system and give examples of
using a resulting tool.

Keywords: Information graph · Parallelism · AlgoWiki · AlgoView
Level parallel form

1 Introduction

An information graph of an algorithm is a DAG (directed acyclic graph), where
vertices stand for operations within an algorithm and edges stand for data depen-
dencies [1]. Its size and structure can thus depend not only on particular algo-
rithm features, but also on input data size and on an exact execution sample (the
latter happens only in case of a nondeterministic algorithm). Information graph
can demonstrate algorithm’s resource of parallelism, determine primary data
flows within it and show parts that require most computation to be executed.
Information graphs of different algorithms can possess similar regular structures,
demonstrating possible similarities in algorithms’ execution processes.

The graph itself can be represented in many forms, which allow to highlight
some particular features of its structure. These representations include the level
parallel form [1] and projections of a multidimensional graph on a hyperplane
with less dimensions. The number of dimensions is an algorithm characteristics
which can be defined as the maximum depth of cycle nests within an algorithm.
If it’s 3 or less, one can easily represent a graph in 3-dimensional space without
hiding its regular structure. Otherwise more complex methods may be required
c© Springer Nature Switzerland AG 2019
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2018, CCIS 965, pp. 587–598, 2019.
https://doi.org/10.1007/978-3-030-05807-4_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05807-4_50&domain=pdf
https://doi.org/10.1007/978-3-030-05807-4_50


588 A. Antonov and N. Volkov

to display such a graph with all regularities preserved. These include graph pro-
jections and macrographs (a generalization of information graphs, where vertices
can stand not only for operations, but also for whole information graphs of algo-
rithm’s subtasks).

2 Graph Visualization

Representing a graph in a visual form is overall a complex task with many
approaches to its solution. The exact approach depends on the primary goal of a
given graph visualization task. Most well-developed and widespread techniques
aim for automatically built images of really large graphs of, say, social networks
or worldwide web parts, with related vertices being grouped into clusters. An
example of this approach can be found in [2]. We, however, deal with small graphs
that have a feature their bigger brothers don’t — a strict, regular structure.
Information graphs therefore have much more in common with data flow and
control flow graphs used in compilation theory [3]. The limited size of studied
graphs comes from their definition — we can take input data size as small as we
want, if the graph still retains its regular structure.

3 The AlgoWiki Project

We came up with an idea of the AlgoWiki project a few years ago [4,5]. It’s main
purpose is to describe algorithms accenting their resource of parallelism, possi-
ble implementations for massively parallel systems, researching scalability [7]
and efficiency. However, new possible problems to solve appeared during it’s
development. These include investigating less-known algorithm characteristics,
such as data locality [8], building up a classification system for tasks, meth-
ods and algorithms, searching for algorithms that could be used as benchmarks
and creating supercomputer ratings based on these benchmarks. AlgoWiki is an
open web-resource [6] powered by MediaWiki engine. This project is supported
by Russian Science Foundation and officially led by a well-known scientist, pro-
fessor J. Dongarra (University of Tennessee, USA).

4 An Interactive Representation — Features
and Problems

A visual representation of an algorithm graph is definitely a powerful instrument
for researching its structure. There are, however, so many different information
graphs, that a viable and logical form of visual representation simply can’t be
the same for all of them. Modifications of a visual representation are very useful
for displaying certain algorithm features.

Moreover, our AlgoView system used in AlgoWiki to provide visual repre-
sentations of information graphs [9] generates 3D representations automatically,
based on XML algorithms descriptions (which, in their turn, are based on actual



Interactive 3D Representation as a Method 589

program code). This system defines every vertex of an information graph and its
position within a generated representation. Edges are defined by pairs of vertices
they connect. This information doesn’t give a unique representation of vertices
and edges, since we don’t know, how exactly graph edges should be displayed.
This causes certain technical difficulties.

4.1 Level Parallel Form of an Information Graph

A level parallel form is one of many ways to show an information graph. All
graph vertices are placed on a certain level, which is defined by two simple rules.
A vertex without data dependencies is placed on level one. For any other vertex
all sources of data dependencies are assigned to a certain level first; the vertex
is then given a level of maximum source level plus one. The main purpose of
such a representation is to show algorithm’s resource of parallelism. Another
one (used in our interactive representations) is to follow operation executions
within an algorithm. Our method of displaying an algorithm level parallel form
is shown in Fig. 1. The tool we created to show information graphs is available
online and interactive, so users should have a certain portion of control over what
they see on their screens. In the upper right corner of Fig. 1 a minimized control
panel used to manipulate the visualization and provide information can be seen.
It consists of several menus which can be maximized separately and allow to
easily acquire visualization projections, highlight level-parallel form levels, vertex
types, display information like axis names etc., but don’t possess scientific value
themselves and thus won’t be referred to later on.

Fig. 1. Possible way to display a level parallel form; vertices from current level are
shown in orange, previous levels are dark green, upcoming levels are light green. (Color
figure online)



590 A. Antonov and N. Volkov

4.2 Information Graph Projections

As it was said before, our visual representation of an information graph is
3-dimensional. However, regular structures within a graph aren’t necessarily
3-dimensional themselves. They can have both more and less dimensions. An
example of a “1-dimensional” structure is data broadcast. A 3-dimensional
representation can be projected on axis or plane to better display such low-
dimensional structures. A good projection brings more clearness into informa-
tion graph structure. For example, in Fig. 2 data dependencies are almost hidden,
while in Fig. 3 one can clearly see a basic data broadcast.

Fig. 2. A projection of an information
graph on oYZ plane; broadcast is almost
hidden.

Fig. 3. A projection of an information
graph on oXZ plane; broadcast can be
clearly seen.

4.3 Removing Edges Intersections

Intersections of edges within an information graph visual representation can be
divided into several categories: self-intersections, edges intersecting each other,
edges passing through vertices that are neither edge beginning nor edge ends.
Currently we use only one method to avoid too many edge intersections. If dis-
tance between the start and end vertices of an edge surpasses a certain thresh-
old, then Bezier curves are used to layout edges in 3-dimensional space instead
of straight lines. Curving extent can also be set to depend on distance between
vertices. A good display of this idea is given in Fig. 4.

Sometimes this algorithm doesn’t allow to remove all edge intersections, as
shown in Fig. 5. However, it at least excludes the possibility of edges completely
impositioning each other. In some cases intersection practically don’t affect one’s
ability to distinct different edges. An example of such a graph will be shown later
in Fig. 11.



Interactive 3D Representation as a Method 591

Fig. 4. Broadcasting is displayed with the help of Bezier curves.

Fig. 5. Edges still intersect, but don’t imposition each other.



592 A. Antonov and N. Volkov

4.4 Outer Parameters and Point of View

Besides key questions described above, one needs to address lesser tasks when
creating a visual representation of an information graph. The most obvious of
them is choosing a correct point of view for a given representation. With point
of view being a generalization of graph projections, different points of view can
simplify or complicate one’s understanding of an algorithm structure.

We decided to allow users to choose points of view themselves, while certain
points of view (such as projections) are saved, so current point of view can always
be reset to one of those.

Information graphs are also different for every given size of input data, which
is controlled by so-called outer parameters. These affect not only the size of
regular structures within an information graph, but also define whether some
vertices and edges are present in a graph or not. A good example of that is
Householder algorithm for QR-decomposition of a matrix [10]. There are N − I
additional blocks in it, and data is broadcasted from the first block to all of these
during every step of an algorithm. If N − I = 1, however, there’s only one block
and the broadcast nature of its data dependency from the first block is hidden.

4.5 Macrographs

In information graph definition nothing is said about what operations displayed
by vertices are, but it’s usually assumed that they are atomic tasks that cannot
be further subdivided into smaller parts. A macrograph is a generalization of
an information graph, in which operations displayed by vertices can be pretty
much anything, including whole information graphs of an algorithm subtask.
Two macrograph vertices have a data dependency between them, if there is a
data dependency between any pair of information graph vertices they represent.
A concept of macrograph is really useful for representing algorithms and methods
that basically consist of several more simple algorithms. Here we give a simple
display of a macrograph concept. In Fig. 6, you can see the already familiar
Givens method from Fig. 1, except for now vertices as displayed as macros, not
just simple operations. In Fig. 7, there’s a more thorough structure view of a
cyan colored macro vertex from Fig. 6, where green vertices stand for normal
operations and red octahedrons stay for input and output data.

5 A Library of Typical Information Graph Structures

5.1 The AlgoView System

Our AlgoView system, described in detail in [9], is a set of applications and
scripts used for creating interactive 3-dimensional representations of informa-
tion graphs. Here we give only a brief overview of it. The AlgoView system
includes two main functional tools — a 3D model generator written in C++
and a viewer, which is based on a set of web-pages with JavaScript and WebGL
utilities attached to it. It’s supported by server-executed node.js code, which
brings more functionality to an interactive representation, for example, allowing
user to re-generate 3D-models on server if needed.



Interactive 3D Representation as a Method 593

Fig. 6. Givens QR-decomposition method for N = 3. At each plane, all vertices but
the broadcasting ones display a 2D-vector rotation operation.

Fig. 7. A more detailed structure of a 2D vector rotation operation from Fig. 6.



594 A. Antonov and N. Volkov

Generator. An input for the generator is an XML file of known format. XML
files are also built automatically, but XML file builder doesn’t belong to the
AlgoView system. A set of 3D models representing the information graph is
generated. User is asked to provide values for all outer parameters listed in an
XML file.

Viewer. Users are supposed to interact with the viewer as follows: prepared 3D
models are stored on server. Users open web-pages containing 3D representations
in their browsers and JavaScript code is executed on client side. This code is
responsible for showing models in browser window and manipulating them.

Server Part. This includes node.js code executed on server, which allows to
upload new models to same web-page and to generate 3D models with new
parameters on server (where a copy of generator application is stored).

One can read more about AlgoView in the link given above. However, server
part isn’t described there, since it wasn’t even planned at that time. It’s being
developed at the moment.

5.2 A Library of Typical Information Graph Structures Based
on AlgoView

The AlgoView system provides quite a variety for possibilities to display informa-
tion graphs. These representations are already used to further describe certain
algorithms in AlgoWiki [11], but they can also be used for another purposes.
Many different algorithms possess similar regular structures. Some of these reg-
ular structures are very well known in terms of how deeply their resource of
parallelism and other characteristics are investigated. They are also encountered
in various algorithms very often and can be called typical. We decided to use
the AlgoView system to create a library of such typical regular structures.

The most common ones are 2- and 3-dimensional groups of vertices, which
form up a grid or a group of grids. The main difference between these structures
lies in the way of how data dependencies are organized. It’s convenient to divide
dependency patterns into categories not only by addressing them the way it’s
done in level parallel form, but also by paying attention how much coordinates
in n-dimensional space are different in a pair of vertices connected by a graph
edge. These categories are good for describing a complicated dependency pattern
as a combination of more simple ones. Moreover, they correspond very well to a
formal description of an information graph given in XML files, which are used
by the AlgoView system. Some of these typical structures are:

– N-dimensional sequential structures, as shown in Fig. 8;
– N-dimensional broadcasts, as shown in Fig. 9;
– Independent sets of sequential structures or broadcasts (Fig. 10);
– Same sets of sequential structures and broadcasts, but with dependencies

between them (Fig. 11);



Interactive 3D Representation as a Method 595

Fig. 8. A 2-dimensional sequential
structure.

Fig. 9. A 2-dimensional broadcast.

Fig. 10. A set of 1-dimensional, indepen-
dent, sequential structures.

Fig. 11. Two sets of 1-dimensional broad-
casts, dependent on each other.

– Schemes with oblique parallelism [10], as shown in Figs. 12 and 13;
– Same as previous category, but with additional broadcasts.

This basic set is already enough to display many structures seen in widely
used algorithms, such as [11,12]. More complex structures can be described as a
combination of these simple ones. Examples are in Figs. 14 and 15.

In addition to its main purpose, this library can, from our point of view,
help in solving other tasks. One of them is testing and further developing the
AlgoView system. In case of complex information graphs structures the sys-
tem build correct, but yet non-aesthetic 3D-models. Since information graph



596 A. Antonov and N. Volkov

Fig. 12. A parallel scheme. Fig. 13. A scheme with oblique paral-
lelism.

Fig. 14. Two 2-dimensional vertex groups
with parallelism, connected to each other.

Fig. 15. A 3-dimensional vertex group,
being a set of 2-dimensional schemes with
oblique parallelism

complexity doesn’t have any limits (expect for the maximum number of edges
for a graph of given size), we aren’t aiming for an ideal 3D-model generation
system. However, paying attention to structures common in real algorithms is,
in our opinion, definitely worth it.

Our plan is also make this regular structures library public with same inten-
tions as the whole AlgoWiki project. Just like with algorithms, we plan to further
classify these structures and create description pages for all of them. Every page
will contain an interactive representation of a given structure and examples of
algorithms utilizing it.



Interactive 3D Representation as a Method 597

6 Conclusion

In this paper, we have given a review of various algorithm features that can be
represented within an information graph, as well as methods to do so. We have
also provided data on our approach to visualizing information graphs considering
these features and provided an updated brief description of our AlgoView system.
In addition, our two latest ideas were discussed in this paper. The first one is
about creating a public library of typical structures found in information graphs
with the help of interactive 3D representations. A list of such structures was
described and examples of 3D representations were provided. The second idea
is all about finding algorithms that could be good benchmarks for massively
parallel systems, since we think a good sign of such an algorithm would be
numerous typical structures within it. Further research and implementation of
these two concepts is therefore our primary concern.

Acknowledgements. The results described in Sects. 1, 2 and 4 were obtained in
Lomonosov Moscow State University with the financial support of the Russian Sci-
ence Foundation (Agreement № 14–11–00190). The research is carried out using the
equipment of the shared research facilities of HPC computing resources at Lomonosov
Moscow State University supported by the project RFMEFI62117X0011.

References

1. Voevodin, V., Voevodin, Vl.: Parallel Computing. BHV-Petersburg, St. Petersburg
(2002)

2. Hu, Y.I., Shi, L.: Visualizing large graphs. WIREs Comput. Stat. 7(2), 115–136
(2015). https://doi.org/10.1002/wics.1343

3. Gold, R.: Control flow graphs and code coverage. Appl. Math. Comput. Sci. 20(4),
739–749 (2010). https://doi.org/10.2478/v10006-010-0056-9

4. Voevodin, V., Antonov, A., Dongarra, J.: AlgoWiki: an open encyclopedia of
parallel algorithmic features. Supercomput. Front. Innovations 2(1), 4–18 (2015).
https://doi.org/10.14529/jsfi150101

5. Voevodin, V., Antonov, A., Dongarra, J.: Why is it hard to describe properties
of algorithms? Procedia Comput. Sci. 101, 4–7 (2016). https://doi.org/10.1016/j.
procs.2016.11.002

6. Open Encyclopedia of Parallel Algorithmic Features. http://algowiki-project.org/
en. Accessed 13 Apr 2018

7. Antonov, A., Teplov, A.: Generalized approach to scalability analysis of parallel
applications. In: Carretero, J. (ed.) ICA3PP 2016. LNCS, vol. 10049, pp. 291–304.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49956-7 23

8. Antonov, A., Voevodin, V., Voevodin, Vl., Teplov, A.: A study of the dynamic char-
acteristics of software implementation as an essential part for a universal descrip-
tion of algorithm properties. In: 24th Euromicro International Conference on Par-
allel, Distributed, and Network-Based Processing Proceedings, pp. 359–363, 17–19
February 2016.https://doi.org/10.1109/PDP.2016.24

9. Antonov, A.S., Volkov, N.I.: An algoview web-visualization system for the Algo-
Wiki project. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2017. CCIS, vol. 753, pp.
3–13. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67035-5 1

https://doi.org/10.1002/wics.1343
https://doi.org/10.2478/v10006-010-0056-9
https://doi.org/10.14529/jsfi150101
https://doi.org/10.1016/j.procs.2016.11.002
https://doi.org/10.1016/j.procs.2016.11.002
http://algowiki-project.org/en
http://algowiki-project.org/en
https://doi.org/10.1007/978-3-319-49956-7_23
https://doi.org/10.1109/PDP.2016.24
https://doi.org/10.1007/978-3-319-67035-5_1


598 A. Antonov and N. Volkov

10. Householder (reflections) method for the QR decomposition of a square matrix,
real point-wise version. http://algowiki-project.org/en/Householder (reflections)
method for the QR decomposition of a square matrix, real point-wise version.
Accessed 13 Apr 2018

11. Givens method. http://algowiki-project.org/en/Givens method. Accessed 13 Apr
2018

12. Dense matrix multiplication (serial version for real matrices). http://algowiki-
project.org/en/Dense matrix multiplication (serial version for real matrices).
Accessed 13 Apr 2018

http://algowiki-project.org/en/Householder_(reflections)_method_for_the_QR_decomposition_of_a_
square_matrix,_real_point-wise_version
http://algowiki-project.org/en/Householder_(reflections)_method_for_the_QR_decomposition_of_a_
square_matrix,_real_point-wise_version
http://algowiki-project.org/en/Givens_method
http://algowiki-project.org/en/Dense_matrix_multiplication_(serial_version_for_real_matrices)
http://algowiki-project.org/en/Dense_matrix_multiplication_(serial_version_for_real_matrices)

	Interactive 3D Representation as a Method of Investigating Information Graph Features
	1 Introduction
	2 Graph Visualization
	3 The AlgoWiki Project
	4 An Interactive Representation — Features and Problems
	4.1 Level Parallel Form of an Information Graph
	4.2 Information Graph Projections
	4.3 Removing Edges Intersections
	4.4 Outer Parameters and Point of View
	4.5 Macrographs

	5 A Library of Typical Information Graph Structures
	5.1 The AlgoView System
	5.2 A Library of Typical Information Graph Structures Based on AlgoView

	6 Conclusion
	References




