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Symbiodiniaceae Diversity in Red Sea
Coral Reefs & Coral Bleaching

Maren Ziegler, Chatchanit Arif, and Christian R. Voolstra

Abstract

This chapter introduces Symbiodiniaceae, the diverse
group of dinoflagellate microalgae, that form an obligate
symbiosis with corals and other coral reef organisms. The
Symbiodiniaceae cells reside within the coral tissue, their
photosynthesis fuels the productivity and diversity of
coral reef ecosystem, and the breakdown of this symbio-
sis leads to coral bleaching and may entail the death of the
host. Here, we summarize Symbiodiniaceae taxonomy
and phylogeny and the molecular tools that are used to
study Symbiodiniaceae diversity in the Red Sea. We pro-
vide an overview over all described Symbiodiniaceae spe-
cies and discuss the functional diversity within this
phylogenetically diverse group as well as the implications
of this diversity for coral-Symbiodiniaceae pairings and
ecological niche partitioning in coral reef ecosystems. We
review host-Symbiodiniaceae associations of 57 host gen-
era in the Red Sea and discuss the emerging patterns in
light of their wider biogeographic distribution. Last, we
summarize how climate change-induced thermal anoma-
lies have repeatedly led to coral bleaching and mortality
in the Red Sea and how they threaten these reef ecosys-
tems, otherwise thought to be comparatively resilient. We
conclude with a perspective of important topics for
Symbiodiniaceae research in the Red Sea that have the
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potential to contribute to a broader understanding of the
basis of thermotolerance in this fragile symbiosis.
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5.1 Introduction

Coral reefs harbor the largest biodiversity of all marine eco-
systems (Connell 1978; Roberts et al. 2002). Scleractinian or
hermatypic, reef-forming, corals are primarily adapted to
live in the light-flooded zone of warm tropical and subtropi-
cal oceans (Kleypas et al. 1999). Despite the oligotrophic
conditions prevalent in these waters, coral reefs belong to the
most productive ecosystems (Connell 1978; Patton et al.
1977; Roberts et al. 2002). The key to the success of herma-
typic corals is the association with autotrophic dinoflagel-
lates of the family Symbiodiniaceae in an obligate symbiosis
(Muscatine and Porter 1977). More generally, a great variety
of coral reef invertebrate taxa has been found to host
Symbiodiniaceae  symbionts, such as soft corals
(Octocorallia) (Barneah et al. 2004; Benayahu et al. 1989;
Goulet and Coffroth 2003), sponges (Porifera) (Carlos et al.
1999; Vicente 1990), flat worms (Plathyelminthes) (Barneah
etal. 2007), soritid Foraminifera (Leutenegger 1984; Miiller-
Merz and Lee 1976; Pochon et al. 2010), and molluscs
(Mollusca) such as nudibranchs and tridacnid giant clams
(Belda-Baillie et al. 1999; Burghardt et al. 2005; Jeffrey and
Haxo 1968; Taylor 1968; Ziegler et al. 2014a).

The Symbiodiniaceae cells are located in the endodermal
tissue of their coral hosts where they are found in membrane-
bound modified lysosomes, the symbiosomes (Fig. 5.1;
Trench 1979; Wakefield and Kempf 2001). The spatial prox-
imity of this endosymbiotic association facilitates a system
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Fig. 5.1 Symbiodiniaceae cells are abundant in endodermal tissues
of Cnidarians. (A) Fluorescence image of the Cnidarian model organism
Aiptasia (strain CC7); Symbiodiniaceae cells are visualized through
chlorophyll fluorescence in dark grey/black, whereas the anemone’s body
is translucent; (B) stained tissue cross-section of polyps of the soft coral

of tight recycling of nutrients and metabolic products
(Muscatine and Porter 1977; Ridecker et al. 2015; Tanaka
et al. 2006; Trench 1979). The Symbiodiniaceae cells receive
protection from damaging ultraviolet radiation (UVR)
(Banaszak and Trench 1995a, 1995b) and are provided with
carbon dioxide (CO,) from the coral host, which they utilize
for their highly efficient photosynthesis (Falkowski et al.
1984; Muscatine and Porter 1977; Muscatine et al. 1989).
The photosynthates in turn, are passed on to the coral host,
typically as compounds of low-molecular weight such as
glucose, glycerol, and amino acids (Burriesci et al. 2012;
Markell and Trench 1993; Trench 1993). In a healthy coral,
photosynthesis can cover almost the entire energy demand of
the coral host (Muscatine 1990; Muscatine et al. 1984;
Muscatine and Porter 1977). Supported by high photosyn-
thetic production rates of their endosymbionts, corals secrete
calcium carbonate skeletons that give rise to the large three-
dimensional coral reef structures that in turn provide the
habitat complexity to support a large diversity of species
(Kawaguti and Sakumoto 1948; Pearse and Muscatine 1971).

The Red Sea represents a unique and rather extreme envi-
ronment with thriving coral reef landscapes. Because of its
long-term thermal regime at the upper limits of coral reef
occurrence, it represents a suitable location to explore the
perspectives of host-Symbiodiniaceae associations under cli-
mate change and to study their adaptation and acclimatiza-
tion mechanisms (Hume et al. 2016). Caused by long
geographic isolation and repeated extinction events, Red Sea
coral reef communities are characterized by a larger propor-
tion of endemic species than previously assumed (DiBattista
et al. 2013); amongst them many Symbiodiniaceae-bearing
host taxa, including e.g., octocorals (Fabricius and Alderslade
2001), scleractinian corals (Terraneo et al. 2014; Veron et al.

Bayerxenia with Symbiodiniaceae cells (arrowheads) located in the
endodermal tissue, which borders the cell-free mesogloea and is sur-
rounded by ectodermal tissue; (C) Symbiodiniaceae cells of strain SSBO1
(genus Breviolum, 1TS2 type B1) in culture. Scale bars = 20 pm.
Photocredit: (A & C) Fabia Simona, KAUST, (B) Maren Ziegler, KAUST

2015), and tridacnid clams (Richter et al. 2008). The evolu-
tionary trajectories of these host species affect the rates and
patterns of diversification of the associated symbionts
(Thornhill et al. 2014), but comprehensive data on the evolu-
tionary history of the host-Symbiodiniaceae system in the
Red Sea is wanting.

5.2 Symbiodiniaceae Taxonomy
and Phylogeny- Challenges

in Diversity Analyses

The term ‘zooxanthellae’ (Brandt 1881) is commonly used
to refer to dinoflagellate endosymbionts of the family
Symbiodiniaceae in the order Suessiales (LaJeunesse et al.
2018). However, this term originally includes any golden-
brown (‘xanthos’) algae of diatom and dinoflagellate origin
living in symbioses with animals (‘zoo’) (Blank and Trench
1985, 1986; Trench 1979). The family Symbiodiniaceae
(Fensome et al. 1993) was recently revised including a for-
mal description of 7 genera (i.e. Symbiodinium, formerly
clade A; Breviolum, formerly clade B; Cladocopium, for-
merly clade C; Durusdinium, formerly clade D; Effrenium,
formerly clade E; Fugacium, formerly clade F; Gerakladium,
formerly clade G) and the identification of further 8 lineages
that require taxonomic classification (LaJeunesse et al.
2018). Symbiodinium microadriaticum LaJeunesse 2017 was
the first Symbiodiniaceae species to be formally described
by Freudenthal (1962). This original description was later
found to be invalid because of the lack of a holotype that was
only designated in 2017 (LaJeunesse 2017). S. microadriati-
cum was isolated from the scyphozoid upside-down jellyfish
Cassiopea xamachana Bigelow, 1982 in the Bahamas by
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McLaughlin and Zahl (1957, 1959) and by David
A. Schoenberg from the same host in Florida in 1977
(LaJeunesse 2017). Because the first isolate of the species
was lost, the second isolate, also known under culture strain
number CCMP 2462/rt-061, was used to designate a species
holotype (LaJeunesse 2017); the genome sequence of this
species (strain CCMP2467) became recently available
(Aranda et al. 2016). Since the original description, S. micro-
adriacticum has been encountered in a range of hosts
throughout the Red Sea (LaJeunesse 2001; Sawall et al.
2014; Ziegler et al. 2014b), as well as in other oceans (Correa
and Baker 2009; LaJeunesse 2002; Reimer et al. 2007; Stat
and Gates 2008; Stat et al. 2009).

Initially, taxonomic studies on these microalgae were
hampered by the lack of distinguishing morphological attri-
butes in symbiosis and further aggravated by the difficulty to
maintain them in culture (Freudenthal 1962; Taylor 1969).
Until today, only members of Cladocopium can be morpho-
logically diagnosed and distinguished from other genera in
the family Symbiodiniaceae (LaJeunesse et al. 2018).
Consequently, S. microadriaticum was at first perceived as
the exclusive panmictic symbiotic dinoflagellate species in
cnidarians (Kevin et al. 1969; Taylor 1968, 1969), until stud-
ies on morphology, physiology, and biochemistry of cultured
isolates revealed distinct ecological features and led to the
description of several novel species in the family
Symbiodiniaceae (Table 5.1; Banaszak et al. 1993; Blank
and Trench 1985; Chang et al. 1983; Schoenberg and Trench
1980a, 1980b, 1980c; Trench and Blank 1987).

Until today, the establishment of cultures of different
Symbiodiniaceae species remains a challenge (Krueger and
Gates 2012; Santos et al. 2001). Hence, the advancement of
Symbiodiniaceae taxonomy and phylogeny was driven by
molecular techniques. Sequence analyses of the ribo-
somal small subunit (SSU) 18S rDNA revealed high phylo-
genetic divergence between Symbiodiniaceae lineages up to
that between taxonomic orders of non-symbiotic dinoflagel-
lates (Rowan and Powers 1992). The investigation of addi-
tional DNA marker regions, such as the ribosomal large
subunit (LSU) 28S rDNA together with 18S rDNA from a
wide array of invertebrate hosts corroborated these findings
and prompted the division into 9 phylogenetic clades, desig-
nated A to I (Coffroth and Santos 2005; Loh et al. 2001;
Pochon and Gates 2010; Pochon et al. 2004; Rodriguez-
Lanetty et al. 2001; Rowan 1998; Stat et al. 2006), and
later, a further subdivision into 15 genus-level lineages
(LaJeunesse et al. 2018). But not all Symbiodiniaceae spe-
cies are specific in their association with scleractinian corals.
For example, to date members belonging to clades H and 1
have only been encountered in association with benthic
Foraminifera (Pochon and Gates 2010; Pochon and
Pawlowski 2006; Pochon et al. 2001), while scleractinian
corals most commonly associate with Symbiodiniaceae of

the genera Symbiodinium, Breviolum, Cladocopium,
Durusdinium (formerly clade A to D), and occasionally with
the genera Fugacium and Gerakladium (formerly clade F
lineage Fr5 and clade G) as well as the undescribed genus
represented by clade F lineage Fr2 (Baker 2003; Coffroth
and Santos 2005; Rowan 1998).

The distinction into evolutionary subgeneric lineages has
received further support from sequence analyses of the chlo-
roplast LSU 23S (Santos et al. 2002) and the mitochondrial
cytochrome ¢ oxidase subunit 1 (COI) markers (Stern et al.
2010; Takabayashi et al. 2004). However, these investiga-
tions have also underlined limitations of such coarse taxo-
nomic approaches, highlighting the importance of addressing
discrete evolutionary units (i.e., species) at higher resolution.
Analyses using the fast-evolving, non-coding internal tran-
scribed spacer (ITS) regions of rDNA promised to fill this
gap and drove the sub-division into so called phylotypes
(hereafter referred to as ‘types’), designated by the clade fol-
lowed by an alphanumeric identifier (e.g., Al, C1, C2, etc.;
Baillie et al. 2000; LaJeunesse 2001; van Oppen et al. 2001).
Until today, hundreds of different (ITS2) Symbiodiniaceae
types have been discovered, but to date only 25 of them have
formally been described as biological species (Table 5.1).
While evidence attests reasonable validity to the ITS2 marker
for estimating Symbiodiniaceae species diversity in the
majority of cases (Sampayo et al. 2009; Thornhill et al.
2007), recent research efforts have been aimed at developing
more specific ITS2 primer pairs (Hume et al. 2018b) and a
novel analytical framework (http://symportal.org; Hume
et al. 2019) to delineate Symbiodiniaceae species diversity.
In addition, combinations of alternative molecular markers
including genes from all 3 compartments, i.e., chloroplast
(cp23S, psbA), mitochondrion (COI, cob), and nucleus
(nr28S, elf2), as well as microsatellites, are being analyzed
to resolve species relationships (Lajeunesse et al. 2012;
LaJeunesse and Thornhill 2011; LaJeunesse et al. 2014;
Pochon et al. 2012, 2014).

Overall, the most commonly used method for determina-
tion of Symbiodiniaceae types has been denaturing gradient
gel electrophoresis (DGGE) of polymerase chain reaction
(PCR) amplified ITS2 sequences, and approximately half
(46%) of all studies conducted in the Red Sea used this tech-
nique. A side effect of DGGE analyses on multicopy loci har-
boring intragenomic variation, such as I'TS2, is the occurrence
of heteroduplexes, which are mismatched DNA strands from
different ITS2 copies within a sample. Although this is some-
times seen as a disadvantage of DGGE ITS2 analyses, hetero-
duplexes have successfully been used as a diagnostic feature
that can increase DGGE resolution (Myers et al. 1985). One
further constraint of the DGGE technique is that the detection
limit of different Symbiodiniaceae types within mixed sam-
ples varies between clades and commonly ranges between 1
to 10%, which results in an underestimation of the total diver-
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sity (LaJeunesse et al. 2008; Thornhill et al. 2006b). Bacterial
cloning, on the other hand, which was used in about one fifth
(21%) of Red Sea studies, overestimates the diversity, because
it retrieves a high number of intragenomic ITS2 variants,
alongside the intergenomic variability within a sample (Arif
et al. 2014; Thornhill et al. 2007). The remaining third (29%)
of studies from the Red Sea used restriction fragment length
polymorphisms (RFLPs) of 18S rDNA, which was used in
Symbiodiniaceae molecular research early on (Rowan and
Powers 1991a, 1991b). So far, only one study (corresponding
to 4%) used high-resolution, high-throughput next-generation
sequencing (NGS), yielding a high number of ITS2 sequence
reads, thus capturing a high proportion of the diversity in
mixed Symbiodiniaceae assemblages and providing informa-
tion on the relative abundance of distinct sequence variants
within a sample (Ziegler et al. 2017).

5.3  Functional Diversity of Different

Host-Symbiodiniaceae Pairings

Symbiodiniaceae species can be attributed specific physio-
logical and biochemical properties, which reflect their adap-
tation to distinct environments. These adaptations translate
into different properties for the associated coral host, for
example by increasing growth rates in coral recruits depend-
ing on the Symbiodiniaceae type (Little et al. 2004).
Consequently, the ability to associate with different
Symbiodiniaceae types is an important factor influencing a
coral species’ distribution range (Rodriguez-Lanetty et al.
2001), metabolic performance (Cooper et al. 2011b), and
stress tolerance (Abrego et al. 2008; Berkelmans and van
Oppen 2006; Howells et al. 2012).

Between coral species, the niche partitioning in host-
Symbiodiniaceae associations is most commonly observed
along depth-mediated gradients of light and temperature,
where it is an important variable explaining depth zonation.
For example, photosynthetic properties of Durusdinium type
D1 symbionts in Pocillopora verrucosa Ellis & Solander,
1786 dominating shallow habitats between 0 — 6 m were dis-
tinct from those of Cladocopium type Clc in Pavona gigan-
tea Verrill, 1869, occurring in deeper water from 6 — 14 m
(Iglesias-Prieto et al. 2004). These host-specific symbionts
were adapted to different light regimes, and host-symbiont
fidelity contributed to vertical niche partitioning between the
2 coral species (Iglesias-Prieto et al. 2004). Observations of
four scleractinian genera over a large depth gradient in the
central Red Sea (Ziegler et al. 2015a) and within the genus
Agaricia in the Caribbean (Bongaerts et al. 2013) support the
concept of host-specific Symbiodiniaceae association as one
of the drivers of depth-niche partitioning between taxa.

A possible determinant of host-symbiont specificity is the
mode of symbiont acquisition. In brooding and some broad-

cast spawning corals, Symbiodiniaceae cells are directly
passed on to the offspring vertically (Trench 1987). In con-
trast, corals with horizontal symbiont transmission have sym-
biont-free gametes and each generation has to acquire
symbionts from the environment de novo (Trench 1987).
While vertical symbiont transmission avoids the risk associ-
ated with having to find new symbiont partners, as is the case
with horizontal transmission, the resulting tight co-evolution
may also limit the flexibility of the host to associate with a
wide (phylogenetic) range of symbionts. In fact, vertical sym-
biont transmission promotes the evolution of specialist symbi-
onts (LaJeunesse et al. 2004a). In contrast, each generation in
horizontally transmitting coral species can potentially yield
new host-symbiont combinations and the initial uptake of
Symbiodiniaceae is relatively flexible (Abrego et al. 2009;
Coffroth et al. 2001; Gémez-Cabrera et al. 2008; Little et al.
2004; Voolstra et al. 2009), although it may be limited by the
symbionts’ cell size (Biquand et al. 2017). Such flexibility
may be particularly important with regard to range expansions
(Grupstra et al. 2017) and global climate change (Decelle et al.
2018). However, studies addressing the connection between
different reproductive strategies and host-symbiont specific-
ity remain inconclusive, and hence, the issue remains a matter
of debate (Barneah et al. 2004; LaJeunesse et al. 2004a, 2004b;
Rodriguez-Lanetty et al. 2004; Stat et al. 2008; Thornhill et al.
2006a; van Oppen 2004).

Symbiont generalist coral species are characterized by
more flexible Symbiodiniaceae associations (Baker 2003). In
these generalist corals, the distribution of Symbiodiniaceae
can vary with irradiance levels within a single colony, and in
fact most of these coral colonies harbor more than one
Symbiodiniaceae genus and/or type at the same time, often in
uneven proportions (Mieog et al. 2007; Silverstein et al.
2012). This was first observed in Orbicella annularis Ellis &
Solander, 1786 and Orbicella faveolata Ellis & Solander,
1786, that harbored members of the genera Symbiodinium
and Breviolum in sun-exposed and Cladocopium in shaded
parts of the colonies (Rowan et al. 1997). Similar patterns
were later found in other coral species (Ulstrup and Van
Oppen 2003). However, spatial differences in association
within a single coral colony do not seem to be a universal
phenomenon, as e.g. within colonies of Pocillopora symbiont
types are distributed uniformly (LalJeunesse et al. 2008;
Pettay et al. 2011). More generally, it is assumed that in the
majority of cases only a single Symbiodiniaceae taxon is pre-
dominant in an individual coral (Goulet and Coffroth 2003;
Thornhill et al. 2009; Pettay et al. 2011; Baums et al. 2014).

Stratification of symbionts within generalist species also
exists between colonies along environmental gradients. For
example, some corals from the genera Madracis (Frade et al.
2008) and Orbicella (Rowan and Knowlton 1995) associate
with different Symbiodiniaceae in shallow and deep water.
In the Red Sea, it was recently demonstrated for Porites lutea
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that the symbiont community of a single coral host species is
variable across depth, cross-shelf location, and sampling
times (Ziegler et al. 2015b). These finding contradict the
concept of high symbiont specificity in Porites (Ziegler et al.
2015b) and highlight the need for more comprehensive sam-
pling efforts to study the diversity of host-Symbiodiniaceae
associations, in particular because this relationship is directly
compromised by the consequences of global climate change.

5.4 Symbiodiniaceae Diversity

in the Red Sea

Overall, 24 studies reported host-Symbiodiniaceae associa-
tions in the Red Sea, spanning 57 host genera belonging to
23 families and 8 orders that were associated with a total of
65 Symbiodiniaceae types from 5 genera (Symbiodinium,
formerly clade A; Breviolum, formerly clade B; Cladocopium,
formerly clade C; Durusdinium, formerly clade D; Fugacium,
formerly clade F / lineage Fr5; and representatives of clade F
lineages Fr2 and Fr4 with yet undescribed genera). Members
of the genus Cladocopium dominated the endosymbiont
assemblages throughout the Red Sea (Fig. 5.2). The majority
of host genera (49/57, 86%) were associated with members
of Cladocopium at least once and a total of 45 Cladocopium
ITS2 types were recorded (Table 5.2).

The most common ITS2 types were C1 and C41, present
in 23 and 21 genera across all Red Sea regions, respectively.
In contrast, other Cladocopium types displayed more spe-
cific associations with their host organisms. For example,
although considered a generalist type, Cladocopium C3 was
found in only 4 genera (Montipora, Pachyseris, Pocillopora,
and Xenia), and C38 was limited to Montipora, C161 and
C162 to Stylophora, C163 to Seriatopora, C39 to Agaricidae
(Gardineroseris, Leptoseris, Pachyseris, Pavona), and C65
to Alcyoniidae (Lobophytum, Sarcophyton, Sinularia)
(Table 5.2).

The genus Symbiodinium (formerly clade A) was found in
14 host genera, and it occurred in almost even proportions
along the Red Sea coast (Fig. 5.2). The overall third most
abundant type after Cladocopium C1 and C41 was
Symbiodinium Al, but its occurrence was limited to the
genus Montipora and the family Pocilloporidae (Pocillopora,
Seriatopora, and Stylophora), whose members belonged to
the most frequently sampled taxa.

The proportion of host genera found to harbor the genus
Durusdinium (formerly clade D) increased from 2 (6% of
sampled genera) in the north, 9 (30%) in the central north, 16
(57%) in the central Red Sea to 18 and 3 (each representing
75% of sampled genera) in the central south and the southern
Red Sea, respectively. More specifically, the genera
Acropora, Astreopora, Diploastrea, Gardineroseris, Pavona,
Pocillopora, and Porites changed from Symbiodiniaceae

assemblages consisting of the genera Symbiodinium and/or
Cladocopium to (additionally) containing Durusdinium
towards the southern localities of their respective distribu-
tions (Table 5.2). Other genera, such as Echinopora,
Montipora, and Stylophora were found to associate with
Durusdinium at some localities throughout their range.

The genus Fugacium (formerly clade F/ lineage Fr5) was
found in association with the foraminiferan genus Amphisorus
in the northern Red Sea. The clade F lineage Fr4 was found
in association with the foraminiferan genus Sorites in the
northern Red Sea, and the clade F lineage Fr2 was found in
association with both Foraminifera in the northern and with
the coral Stylophora in the central Red Sea. The genus
Breviolum (formerly clade B), uncommon to the Indopacific
region, was recorded once in association with P. verrucosa
(Ziegler et al. 2014b).

5.5 Biogeographic Patterns
in Symbiodiniaceae Diversity

and Host-Symbiont Associations

The presence of 65 Symbiodiniaceae types encountered in
57 host genera compares favorably with diversity estimates
from surveys in other locations. For instance, LaJeunesse
et al. (2004b, 2010) sampled a comparable, mixed host
assemblage consisting of 58 genera in the Andaman Sea
(Thailand) and observed only 37 Symbiodiniaceae types.
Similarly, 50 host genera in the Caribbean contained 35
Symbiodiniaceae types (LaJeunesse et al. 2003) and higher
numbers of host genera sampled in the Western Indian Ocean
(70) and the central Great Barrier Reef (GBR) (72) yielded
47 and 33 Symbiodiniaceae types, respectively (LaJeunesse
et al. 2004b, 2010), highlighting the high relative diversity of
Symbiodiniaceae in the Red Sea.

The distribution and occurrence of Symbiodiniaceae from
the different genera and lineages varies across biogeographic
regions. In the IndoPacific, the two main Symbiodiniaceae
genera associated with hard corals are Cladocopium and
Durusdinium. Hard coral-symbiont assemblages in the Red
Sea share the dominance of Cladocopium and the occurrence
of Durusdinium with those in the IndoPacific, however, they
are distinct with regard to the presence of Symbiodinium
symbionts in Pocilloporidae and few other species. The
genus Symbiodinium is rarely found in hard corals of the
IndoPacific region, while it is common in the Atlantic Ocean.
The presence and large diversity of the genus Breviolum in
the Caribbean and North Atlantic in turn separates these
Symbiodiniaceae assemblages from those in the Red Sea. In
the Caribbean, Breviolum, Cladocopium, Symbiodinium, and
Durusdinium, in descending order of prevalence, dominate
Symbiodiniaceae assemblages in hard corals, which are
considered to be more diverse in relation to the number of
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Fig. 5.2 Distribution of Symbiodiniaceae lineages (formerly
clades) in scleractinian corals (left pie charts) and other host organ-
isms (right pie charts) sampled along the coast of the Red Sea.
Symbiodiniacean clades correspond to the recently described genera:
former clade A, Symbiodinium; former clade B, Breviolum; former
clade C, Cladocopium; former clade D, Durusdinium; former clade F
lineage Fr5, Fugacium; and representatives of clade F lineages Fr2
and Fr4 with yet undescribed genera. Average summer sea surface tem-

peratures are depicted for the Red Sea basin (2004-2013) and sampling
sites are demarcated by black circles. Scale bar denotes distances
across the Red Sea. Sizes of pie charts denote the number of host genera
sampled in each region of the Red Sea (north, central north, central,
central south, and south, respectively) and the numbers in the pie charts
represent the number of ITS2 phylotypes encountered per clade at a
location. (Data based on references listed in Table 5.2)
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host species than their IndoPacific counterparts (LaJeunesse
et al. 2003). Data presented herein further points towards the
Red Sea as a hot spot of Symbiodiniaceae diversity.

Cladocopium types C1 and C3 are believed to be at the
basis of a series of regional adaptive radiation events in this
genus in the miocene-pleistocene transition (LaJeunesse
2005; Thornhill et al. 2014). Repeated radiation led to high
diversity within the genus Cladocopium (also reflected in its
name) compared to the other Symbiodiniaceae genera and
lineages (LaJeunesse et al. 2004b), and this pattern was also
apparent in the Red Sea, with 69% of all types belonging to
Cladocopium. The ancestral and globally occurring
Cladocopium types C1 and C3 were also found in the Red
Sea. While C1 represented the most widespread Cladocopium
type in the Red Sea, Cladocopium C3 was rather uncommon,
as opposed to other regions, where both types mostly occur
in co-dominance (LaJeunesse et al. 2003). A different type,
Cladocopium C41 so far only reported from Red Sea waters
(LaJeunesse 2005; Pochon et al. 2001; Ziegler et al. 2017)
was almost as ubiquitous as C1. Its sequence similarity with
C1, from which it is separated by a single base pair differ-
ence in the ITS2 region, suggests a diversification event, spe-
cific to the Red Sea.

Some Symbiodiniaceae types are strongly associated with
certain host taxa over large geographic ranges. For instance,
the association of Cladocopium type C65 with Alcyoniidae
extends beyond the Red Sea to other locations in the Western
Indian Ocean (LaJeunesse et al. 2010) and along the GBR
(Goulet et al. 2008a; LaJeunesse 2005; LaJeunesse et al.
2004b). Furthermore, Seriatopora hystrix associates with
Cladocopium C3nt in both the Red Sea and the GBR. But
while its association in the GBR is limited to symbionts from
the genus Cladocopium (Bongaerts et al. 2010; LaJeunesse
et al. 2003; Sampayo et al. 2007; Stat et al. 2008), it is addi-
tionally associated with symbionts from the genus
Symbiodinium in the Red Sea. Porites in turn, though widely
regarded a symbiont specialist coral for Cladocopium C3 in
the Persian Gulf (Hume et al. 2013) and CI15 in the
IndoPacific (see Franklin et al. 2012), was found to be
associated with a wide range of Symbiodiniaceae from the
genera Symbiodinium, Cladodopium, and Durusdinium
along the Red Sea coast. The diversity encountered in this
genus in the Red Sea equals that found in Caribbean Porites
(Finney et al. 2010; Green et al. 2010; LaJeunesse 2002,
2005), suggesting local, species-specific adaptive events
driving host-symbiont specificity.

Patterns of variable host-symbiont association have previ-
ously been related to latitudinal gradients of temperature and
inorganic nutrients (LaJeunesse 2002, 2005; LaJeunesse
et al. 2004b; Loh et al. 2001; Macdonald et al. 2008). For
instance, comparable to the reports of shifting
Symbiodiniaceae communities to Durusdinium dominance
for several host genera in warmer regions of the Red Sea

(Acropora, Astreopora, Diploastrea, Gardineroseris,
Pavona, Pocillopora, and Porites), Acropora tenuis in
Australia associated with Cladocopium in the south (C3) and
central region (C1, C3), i.e., the more temperate environ-
ments of the GBR, and with Cladocopium (C1) and
Durusdinium (D1) in the northern warmer parts (LaJeunesse
et al. 2004b; LaJeunesse et al. 2003). Latitudinal shifts in the
association between types within a genus were observed in P,
verrucosa, which associated with Symbiodinium A1 through-
out its distribution range and with Symbiodinium A21 at the
most southern location of the Red Sea (Sawall et al. 2014).
These latitudinal shifts of Symbiodiniaceae assemblages in
the Red Sea towards higher proportions of Durusdinium and
Symbiodinium type A21 symbionts is also apparent along
cross-shelf gradients, as evidenced by their presence in
warmer, nutrient enriched and more turbid nearshore reefs,
while being absent from colder offshore reefs in the central
Red Sea (Ziegler et al. 2015b). Cross-shelf and habitat spe-
cific shifts between the genera Cladocopium and Durusdinium
also occurred in coral communities in the GBR (Cooper
et al. 201 1a; Ulstrup and Van Oppen 2003), Palau (Fabricius
et al. 2004), and Indonesia (Hennige et al. 2010). Moreover,
corals harboring Durusdinium bleached less compared to
those harboring other Symbiodiniaceaen lineages (Baker
et al. 2004; Berkelmans and van Oppen 2006). Taken
together, these observations suggest a competitive advantage
for the respective coral host when associated with symbionts
from the genus Durusdinium under warmer and nutrient
enriched environmental settings (Berkelmans and van Oppen
2006; Stat and Gates 2011). However, not all host-symbiont
combinations show this effect (Abrego et al. 2008), and the
recently described ‘heat-loving’ Cladocopium thermophilum
Hume, D’Angelo, Smith, Stevens, Burt & Wiedenmann,
2018 does not belong to the assumed heat-tolerant genus
Durusdinium (Hume et al. 2015). This indicates that thermo-
tolerance is not associated with a specific Symbiodiniaceaen
lineage, but rather a type or species-specific trade that can be
found in some members of all Symbiodiniaceaen lineages
(Swain et al. 2017).

5.6  Coral Bleaching and Symbiosis
Breakdown
Coral bleaching is the dissociation of the coral-

Symbiodiniaceae symbiosis, during which the coral host
loses large proportions of Symbiodiniaceae cells leading to
the white, i.e., bleached appearance (Hoegh-Guldberg 1999).
Global climate change induced sea surface warming and
increased frequency and severity of temperature anoma-
lies are the main causes for mass bleaching and global coral
die-off events (Hoegh-Guldberg et al. 2007) that are becom-
ing more frequent and devastating as evidenced by the third
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global coral bleaching event that affected coral reefs across
the globe and devastated roughly one third (29%) of the coral
reefs in the northern GBR (Hughes et al. 2018a; Hughes
et al. 2018b). As most corals live very close to their upper
thermal limit (Jokiel and Coles 1990), they are already sus-
ceptible to only small deviations from the long-term minima
and maxima of temperature and other environmental factors
(Kleypas et al. 1999). The effects of thermal stress can be
aggravated when combined with eutrophication or imbal-
ance of inorganic nutrients (Réddecker et al. 2015;
Wiedenmann et al. 2012) and/or high solar irradiance (Fitt
et al. 2001; Lesser 1996), which can also trigger bleaching
on its own (Glynn 1993, 1996; Hoegh-Guldberg and Smith
1989; Kramer et al. 2013). Depending on the severity and
duration of the stressor, corals can recover from bleaching
events (e.g. Connell 1997). However, often coral bleaching
leads to the death of the host, entailing mass mortalities and
degradation of whole reefscapes (Hughes et al. 2018b;
Sheppard 2003).

Several processes in the photosynthetic apparatus of
Symbiodiniaceae are affected during coral bleaching. The
breakdown of photosynthetic pathways and the continued
absorption of light energy in photosystem II eventually exceed
the capacity for non-photochemical quenching (Gorbunov
et al. 2001; Wooldridge 2009) and ultimately lead to the pro-
duction of reactive oxygen species (ROS) (Lesser 1996;
Suggett et al. 2008; Tchernov et al. 2004; Warner et al. 1999).
The different ROS impair and damage the structure and func-
tion of proteins, lipids, and DNA (Fey et al. 2005; Hideg et al.
1995; Martindale and Holbrook 2002; Smith et al. 2005).
Consequently, ROS transgress to the coral host, causing fur-
ther oxidative stress that is linked to the onset of coral bleach-
ing (Lesser 1996; Smith et al. 2005) and initiation of apoptotic
pathways in the host (Tchernov et al. 2011). Notably, recent
studies suggest that other factors besides photodamage-
induced ROS must be considered to explain observed bleach-
ing phenomena (Tolleter et al. 2013; Diaz et al. 2016;
Pogoreutz et al. 2017). As such, the elucidation of the cellular
mechanisms underlying bleaching is an area of active investi-
gation and critical to the design of meaningful interventions
and mitigation strategies. Generally, coral species vary in their
bleaching tolerance, with branching growth forms, as preva-
lent in e.g. Acroporids and Pocilloporids, displaying higher
susceptibility than massive or encrusting species (Baird et al.
2009; Fitt et al. 2001; Loya et al. 2001; Stimson et al. 2002)
and these trends are also apparent in bleaching events reported
from the Red Sea (Table 5.3).

Similar to the flexible formation of host-symbiont rela-
tionships as a means to broaden the ecological niche, a resem-
bling process has been formulated as a response to stress
within individual colonies. The so-called ‘adaptive bleaching
hypothesis’ was proposed as a mechanism through which the

coral host can shift Symbiodiniaceae types to enhance its
resilience to environmental changes (Buddemeier and Fautin
1993). This process is based on replacement of one
Symbiodiniaceae type by another less abundant type (‘shuf-
fling’) or by intake of exogenous Symbiodiniaceae from the
environment (‘switching’) (Baker 2003). Background shuf-
fling, i.e., changing proportions of Symbiodiniaceae types
present in low abundances, may be a common phenomenon
(McGinley et al. 2012) and the emergence of rare, less-abun-
dant background Symbiodiniaceae can play a role during
acute stress events (Boulotte et al. 2016; Lee et al. 2016), or
as a source of adaptive potential over evolutionary time scales
(Hume et al. 2016). But generally, many Symbiodiniaceae
communities are stable over time (Thornhill et al. 2006a;
Thornhill et al. 2006b), even during exposure to changing
environmental conditions (Bongaerts et al. 2011), or when
recovering from stress events (Goulet and Coffroth 2003;
McGinley et al. 2012). Unfortunately, to date, there is a lack
of information on the dynamics of the host-Symbiodiniaceae
association during bleaching events in the Red Sea.

5.7  Coral Bleaching in the Red Sea

Coral reef ecosystems in the Red Sea thrive in warm seawa-
ter temperatures that exceed the tolerable limits of reef corals
elsewhere (Kleypas et al. 1999). Caused by a selective bot-
tleneck in the southern Red Sea possibly selecting for heat-
resistant populations, the cooler northern part of the Red Sea
is proposed to be a refuge for corals under global warming
(Fine et al. 2013; Osman et al. 2018). In line with this,
bleaching thresholds for corals in the Red Sea are higher
than for most locations in the GBR, Indo-Pacific, and the
Caribbean (Berkelmans 2002; Osman et al. 2018). In the last
global report on the status of coral reefs in 2008, an esti-
mated 82% of reefs in the Red Sea were classified at low risk
(Wilkinson 2008). However, growth rates of Diploastrea
heliopora have been declining since 1998 as a response to
increased water temperatures, indicating that global warm-
ing also poses a major threat for Red Sea coral reefs (Cantin
et al. 2010).

During the 1990s the Red Sea started to experience fre-
quent SST anomalies and abrupt warming (Raitsos et al.
2011), and this period coincides with the earliest reports of
coral bleaching in the Red Sea during the global coral bleach-
ing event in 1998 (Table 5.3). Earlier in situ bleaching data
from the region is wanting and large-scale surveys only
started to take place under the umbrella of the Regional
Organization for the Conservation of the Environment of the
Red Sea and Gulf of Aden (PERSGA) after its foundation in
1995. However, using coral cores to estimate growth rates, a
study by Cantin et al. (2010) suggests a possible thermal
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anomaly in the central Red Sea as early as 1941/1942, when
growth rates intermittently decreased by 44%.

The first recorded coral mortality in the Red Sea, which
was later attributed to a bleaching event, dates back to
Khawkhah (Yemen) where areas of large Goniastrea retifor-
mis, Montipora spp., and Porites spp. succumbed to bleach-
ing between 1996 and 1997 (Turak et al. 2007). While this
seemed to be a local event, the first large-scale coral bleach-
ing in the Red Sea was reported 1 year later during the 1998
global coral bleaching. A census of the central to northern
Saudi Arabian Red Sea coast during summer and fall of 1998
found 10% of surveyed reefs to be affected by bleaching
(DeVantier et al. 2005). The highest incidence occurred on
shallow reefs (<6 m) between Rabigh and Yanbu, at water
temperatures above 31 °C, which is 2 °C above the mean
monthly average. In the area around Rabigh bleaching
affected hard, soft, and fire corals with recently dead and
bleached colonies accounting for up to 90% of the total coral
cover (DeVantier et al. 2005). The most affected genera
included Acropora, Dipsastraea, Galaxea, Goniastrea,
Millepora, Pocillopora, and Porites (DeVantier et al. 2005).
The reefs outside Dungonab Bay on the western shore of the
Red Sea (Sudan) at roughly the same latitude were possibly
affected by this event too, as was suggested from their poor
health state during surveys in 2002 (PERSGA 2003). At the
same time, the northern Red Sea (i.e., coral reefs in Egypt)
(Kotb et al. 2004), the areas to the north of Yanbu, and areas
with coastal upwelling (DeVantier et al. 2005) were largely
unaffected.

Although reefs in the northern Red Sea largely escaped the
1998 bleaching event, coral cover was still declining in some
regions between 1998 and 2004 (Kotb et al. 2004). These
changes were attributed to local anthropogenic stressors, such
as coastal development, pollution, and tourism related activi-
ties (Kotb et al. 2004), as well as sporadic coral bleaching of
Montipora spp. in the Gulf of Agaba in the summers of 2002
and 2003 (Loya 2004). After 1998, coral recovery along the
Sudanese and Yemeni coastlines varied from almost no recov-
ery to areas with high levels of recruitment and regrowth until
2007 (Klaus et al. 2008; Kotb et al. 2004). In March 2007
extremely low tides exposed reef flats along large stretches of
coast in Egypt, Jordan, and Sudan leading to extensive coral
bleaching and mortality (Kotb et al. 2008). In October of the
same year a localized warm water event caused further coral
bleaching down to 20 m depth on the offshore archipelago of
‘Rocky Island’ in south Egypt (Kotb et al. 2008).

The next record of coral bleaching dates back to 2010,
where coral reefs in the central Saudi Arabian Red Sea near
Thuwal were exposed to up to 11 degree heating weeks
(Furby et al. 2013). Bleaching increased with proximity to
shore and in shallow areas, where the majority of corals was
affected; Oculinidae and Agaricidae being the worst impacted
with up to 80 — 100% bleaching (Furby et al. 2013).

Moreover, all anemone species bleached during the bleach-
ing event, incl. Heteractis magnifica, Entacmaea quadri-
color, Stichodactyla haddoni (Hobbs et al. 2013). Nearshore
reefs experienced subsequent mortality of many taxa, while
midshore and offshore reefs recovered to levels close to
before the bleaching (Furby et al. 2013). A study investigat-
ing spatial patterns of bleaching in Stylophora pistillata
largely supported the observations by Furby et al. (2013) and
highlighted fine scale bleaching patterns with nearshore pro-
tected corals being less affected than those from the exposed
side of the same reef, stating that: “Corals from the mildest
and the most extreme thermal environments escape mortal-
ity” (Pifieda et al. 2013). At the same time S. pistillata at
mesophotic depth (40 - 63 m) in the Gulf of Aqaba under-
went repeated seasonal coral bleaching and recovery during
the summers of 2010 and 2011 (Nir et al. 2014), questioning
the role of deep reefs as coral refuges at least in this location
(Fine et al. 2013; Glynn 1996). One more study published in
2012 reports on coral bleaching along the central Egyptian
coast from northern Hurghada to El Quseer mostly affecting
corals from the genera Stylophora, Galaxea, Acropora, and
Montipora, butitis unclear when this bleaching was observed
(Ammar et al. 2012).

The following El Nifo-Southern Oscillation (ENSO)
event during 2015 again hit coral reefs in the central and
southern Red Sea (Monroe et al. 2018; Osman et al. 2018;
Roik et al. 2015). Preliminary surveys along the Saudi
Arabian coast showed coral bleaching in the central south
around 20°N, with reefs up to 60 km offshore and down to
>20 m being severely affected (Osman et al. 2018). The reefs
around Thuwal (22°N) followed cross-shelf bleaching pat-
terns comparable to the reports from 2010 (Furby et al. 2013;
Monroe et al. 2018), while reefs in the Yanbu area (24°N)
and those north of Yanbu seemed largely unaffected (Osman
et al. 2018). Overall, bleaching susceptibility of coral genera
throughout the Red Sea was comparable to other geographic
provinces, with fast-growing branching Acroporids and
Pocilloporids being affected fastest and least likely to
recover. However, at the most impacted locations bleaching
was a mass phenomenon that affected all coral species.

As highlighted by the increasing numbers of bleaching
reports, coral reefs in the Red Sea are impacted by global cli-
mate change. Although phase shifts from coral-dominated to
algal-dominated habitats have not been reported from the Red
Sea yet, comparative surveys spanning the entire Red Sea
coast over 2 decades indicate increasing coral community
homogenization, loss of rare coral species, and a general
decline in coral colony sizes (Riegl et al. 2012). Further, the
2010 bleaching event resulted in almost complete local
extinction of certain taxa in some reefs and declines in diver-
sity and coral cover in many reefs (Furby et al. 2013). Of
note, bleaching is not the only cause of coral decline in the
Red Sea. Heavy construction activities around urban areas
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along the coast, oil spills, landfilling, pollutant discharge, and
effluents from desalination centers continue to threaten
coastal ecosystems in the Red Sea, but observations that
assess the effect of these stressors are rare (Ziegler et al. 2016)
and largely anecdotal.

Outlook: What Can We Learn from Red
Sea Algal Symbionts in Regard
to ‘Future Oceans’?

5.8

Coral host-Symbiodiniaceae associations provide the founda-
tion of reef ecosystems and studying their relationships is the
key to understanding the implications of changing environ-
mental conditions on coral reef functioning. One of the main
challenges in Symbiodiniaceae research to date is the scarcity
of properly described Symbiodiniaceae species and the diffi-
culties in assigning evolutionarily and ecologically distinct
lineages as species. Although the ITS2 marker has long been
used for this purpose and reasonable validity is attested to the
resolution of Symbiodiniaceae ITS2 types as species (Sampayo
et al. 2009; Thornhill et al. 2007), a multi-copy genetic marker
such as ITS2 poses various challenges for diversity analyses
(Arif et al. 2014; LaJeunesse and Thornhill 2011). At the same
time, and in combination with high throughput next-genera-
tion sequencing approaches, such intragenomic diversity may
be used to resolve between symbiont taxa at a level far sur-
passing previous approaches (Hume et al. 2019). In addi-
tion, efforts in developing alternative molecular markers will
benefit from Symbiodiniaceae genomes as an available
resource (Aranda et al. 2016; Lin et al. 2015; Shoguchi et al.
2013). Another line of research to overcome these challenges
is the establishment of cultured isolates of Symbiodiniaceae
from the Red Sea to further address Symbiodiniaceae species’
physiological and biochemical properties.

Despite the long research tradition in the northern Red
Sea, specifically in the Gulf of Aqaba, large parts of the Red
Sea remain difficult to study due to limited access. This is
highlighted by the limited number of studies on
Symbiodiniaceae diversity, their distribution and sampling
periods, but also the general lack of ecological data, such as
bleaching observations from the Red Sea. Thus, we advocate
extended sampling efforts on both coasts along the entire
Red Sea coast to enhance the understanding of
Symbiodiniaceae assemblage patterns in this understudied,
but globally important region. The large diversity of
Symbiodiniaceae communities in the Red Sea offers a unique
opportunity to study the ecological performance of distinct
host-symbiont combinations and shuffling/switching events
in relation to changing environmental conditions, but only
few studies have begun to do so (Sawall et al. 2014; Ziegler
et al. 2015b, 2018). Furthermore, the presence of an appar-
ently endemic, but regionally common type such as

Cladocopium C41 suggests regional adaptation and specia-
tion processes (Ziegler et al. 2017). This offers the opportu-
nity to investigate the origin of symbionts and adaptation to
local conditions (but see Hume et al. 2016).

Distribution patterns of Symbiodiniaceae in the Red Sea
support the putative role of members of the genus
Durusdinium in thermally challenged environments that
were previously observed elsewhere (Fabricius et al. 2004;
Hennige et al. 2010). First, Durusdinium occurs in warm
nearshore locations in the Red Sea, and second, it becomes
more ubiquitous among host species in the warmer southern
Red Sea. Beyond validating and extending the thermal toler-
ance of Durusdinium geographically, the Red Sea provides a
good place to identify other heat resistant symbiont types.
One of these may be found in Symbiodinium A21, which fol-
lowed a similar pattern of occurrence to that of Durusdinium.
These observations further warrant comparative investiga-
tions into the molecular, biochemical, and physiological
basis underlying thermotolerance of Symbiodiniaceae. The
application of functional genomic tools will aid in elucidat-
ing the molecular underpinnings of resilience to the extreme
environmental conditions in the Red Sea and thus contribute
to a broader understanding of the impacts of climate change
on coral reef ecosystems on a global scale.

Author Declaration Parts of subchapters 1, 2, 3, and 6 were part of the
first author’s PhD thesis.
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