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Abstract Pattern formation is one of nature’s most fascinating phenomena. Starting
with the evolution of life: cells and compartments start to differentiate such that
they are able to undertake different tasks leading to life of complex organisms.
Additionally, cells are able to release messenger substances, which may lead to an
aggregation of cells as in the slime mold Dictyostelium discoideum. In this chapter,
the formation of wave patterns, especially of spirals in non-equilibrium systems, is
described. Starting with the revision of important aspects contributing to the historical
development of synergetics, oscillating chemical reactions, such as the Belousov—
Zhabotinsky reaction are described. Some theoretical aspects of reaction-diffusion
systems and wave propagation in excitable media are outlined. The development
and propagation of waves and thus, of spirals is described in such systems. At the
end, the Belousov—Zhabotinsky reaction embedded in a compartmentalized system,
namely an emulsion, is studied. Under the chosen conditions target patterns or spirals
with segmented wave fronts evolve. These segmented waves (dashes) develop from
a smooth one due to an instability. However, instead of forming a spiral turbulence,
these dashes remain in an ordered configuration and form beautiful patterns.

1 Historical Remarks

Moving reaction waves occur in our everyday life even if we do not see them by eye.
A remarkable example is our heart, in which waves trigger it to pump blood through
our body (see chapter Spiral Waves in the Heart). The first person, who mentioned
the existence of moving waves in a homogeneous medium was R. Luther in 1906 [1].
He already came to the conclusion that an autocatalytic reproduction of a chemical
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species must be involved. Furthermore, Luther was able to give an equation for the
calculation of the wave velocity v:

v=avkDC, (D

where D represents the diffusion coefficient, k a rate constant of the chemical reac-
tion, C a concentration and a a numerical constant. However, Luther gave no deriva-
tion for his equation.

Based on the work by Luther, B.P. Belousov started in 1951 to work on chemical
oscillations in the catalyzed oscillatory bromate oxidation of citric acid. Since nobody
believed in oscillating chemical reactions, Belousov was not able to publish his work
before 1984 [2]. A.M. Zhabotinsky modified the reaction described by Belousov in
1961 in a fashion, which is still used today: the bromation of malonic acid, catalyzed
by ferroin, which shows a color change from red to blue [3]. In 1974, Field and Noyes
studied a semi-quantitative model of wave propagation in the reaction described by
Belousov and Zhabotinsky. In their work, they were able to derive the equation given
by Luther in 1906 [4]. Another remarkable aspect in the work of Luther was his
comparison between chemical waves in a homogeneous medium and nerve impulses
spreading over cell membranes, although he had no evidence for his suggestion [1].
In fact, there are structural analogies between both systems. The propagation velocity
of a nerve pulse can be estimated using the Hodgkin—Huxley equation [5], which
describes the propagation of stimuli throughout a nerve cell. They modeled the cell
membrane as an electrical circuit, where the flow of ions can only be realized through
ion selective channels and derived an equation which facilitate the calculation of the
propagation of a nerve pulse over a membrane.

Oscillations in chemical systems were known much earlier than the propagating
waves mentioned above. A brief summary of these historical experiments is given
in the following: Already in 1829 F.F. Runge studied the contraction of a droplet
of sulfuric acid on an area covered with mercury. He placed the acid on top of the
mercury, where the droplet runs flat. Touching both with an iron wire, the acid con-
tracts and forms a drop around the wire. Additionally, he observed that the mercury
twitches slightly after touching. This system is nowadays known as the oscillating
mercury heart [6]. At the end of the 19th century, R.E. Liesegang observed periodic
precipitation patterns in gels (cf. Liesegang Rings, Spirals and Helices). In 1899
W. Ostwald observed the oscillating hydrogen production during the dissolution of
chrome in acids. A theory of a hypothetical chemical reaction showing oscillations
was given by A. Lotka in 1910. A more detailed description of his model is given
in the next section. K.F. Bonhoeffer discovered in 1941 activity waves on passive
iron wires. These wires were made passive by immersing them into sulfuric acid.
Touching them with a piece of zinc, whereby it is locally cathodically polarized, an
activity wave of local dissolution of the iron propagated along the wire [6].
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2 Oscillations in Chemical Systems

The most prominent oscillating chemical reaction is the Belousov—Zhabotinsky (BZ)
reaction. This reaction was first introduced by B.P. Belousov as a catalytic model for
cancer cycles in which cerium ions are used instead of protein bounded metal ions,
which are normally used by enzymes in living cells [6]. He described a periodic
color change between colorless and yellow. In the default configuration, which is
nowadays used, the color change in the BZ reaction is realized by the catalyst ferroin
(Fe(1,1 O—phenanthrolin)%*), which changes its color from red to blue upon oxidation.
In its reduced state, it has a positive charge of two and in its oxidized state it has a
positive charge of three. In the reaction, an organic substrate (usually malonic acid)
is oxidized by bromate in an acidified milieu via the metal ion catalyst (ferroin) [7].
The ion Br™ is playing the role of the inhibitor and HBrO; acts as the activator of the
system since it is autocatalytically produced. The overall BZ reaction is governed by
the oxidation of malonic acid due to bromination:

3HT +3 BrO; + 5 CH,(COOH); — 3 BrCH(COOH); + 2HCOOH + 5H0 + 4 CO,.

The entire reaction consists of a set of different chemical reactions that can
be subdivided into three processes: First, the inhibitor Br~ is consumed until its
concentration falls below a certain concentration, which triggers the second process.
This process contains the autocatalytic production of the activator HBrO,. Further-
more, the metal catalyst ferroin is oxidized in this process, which is responsible for
the color change to blue. When the reduced version (red color) of the catalyst is
depleted, the third process sets in. Here, malonic acid is brominated and the metal
catalyst is reduced and gets back its red color. Additionally, Br™ is produced in the
last process. Due to the increase of its concentration, the first process will be activated
again [7]. If the above described system is stirred, it shows color oscillations in bulk.
However, if it is performed in a Petri dish, it shows—depending on the initial con-
centrations of the reactants—spontaneously evolving patterns such as target patterns
or spirals (see Sect.4).

Another example of an oscillating reaction is the Briggs—Rauscher reaction, which
is an oscillating iodine clock, cyclically changing its color from colorless to gold to
blue. The reaction consist of the following ingredients: potassium iodate, hydrogen
peroxide, perchloric acid, malonic acid, manganese(Il)-sulfate and starch. This reac-
tion works at room temperature, which makes it suitable for demonstrations (contrary
to the Bray reaction, which is an early precursor of the Briggs—Rauscher reaction).
The reaction shows visible concentration changes in iodine and the concentration of
the iodine ion fluctuates. When the iodide concentration reaches a certain value, a
starch complex is formed, which appears in blue color [8].

A theoretical analysis of a periodic reaction was given in 1910 by A. Lotka [6].
Nowadays it is referred to as Lotka—Volterra model. It represents a hypothetical
chemical homogeneous system, which shows oscillations and is described by the
following three reactions:
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A+ X, 25 0x,,
X1+ X2 -2 2X,, @)
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From the chemical point of view, the autocatalytic step (production of X») in the
second equation does not make much sense, since the molecule X; must transform
in presence of X, into X, as well. Thus, nowadays it is used to describe the relation
between a predator and its prey. In this case, X is referred to as rabbit, X, represents
the predator (e.g., a lynx), A is the food of the rabbit and F' quantity of the lynx
having died of natural causes (with the death rate k3).

The reactions from Eq.(2) result in a pair of nonlinear differential equations
indicating the rates of change of the concentrations of the chemical species X; and
X,. The amount of food and the death rate (i.e., A and k3) are assumed to be constant:

d[X]/dt = k([ X(1[A] — ko[ X (][ X2],

d[X>]/dt = ko[ X2][X1] — k3[Xo2], ©)
where k; are constant reaction rates, and the values in brackets the concentrations
of the corresponding species. Spoken in the predator-prey context, the oscillations
occur in the amount of rabbits and lynx. If enough rabbits are present to feed on,
the population of lynx will increase. However, this larger population will consume
more rabbits, such that their population decreases and with this also the population
of lynx.

3 Waves in Chemical Systems

3.1 Reaction-Diffusion Systems

Many patterns in nature arise in so-called reaction-diffusion!systems (cf. chapter
Reaction-Diffusion Patterns and Waves). In these systems, a chemical reaction
occurs locally and is transported in space by diffusion. A prominent reaction showing
such patterns is the unstirred BZ reaction (Fig. 1). For a classical reaction-diffusion
system, only one chemical component (here: u) is required:
2
=D . @)

D,, denotes the diffusion of the component u, x the spatial dimension, ¢ the time
and f the reaction term. This is a partial differential equations with diffusion. If a
second component is involved in this process, one typically speaks of an activator-
inhibitor system. In this case, one of the species is produced autocatalytically, whereas
the other one inhibits this production. Thus, Eq. (4) extends to:
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D, and D,, represent the diffusion of the corresponding species u and w, respectively.

Fig. 1 Target patterns and
spiral waves in the BZ
reaction. The dark spots are
small bubbles, since gas is
produced during the reaction
(Image courtesy: S.C.
Miiller, personal
communication)

In 1952 Alan Turing was the first, who described such systems mathematically.
He showed that a chemical system will form stationary patterns, if some conditions
for the diffusion constants are fulfilled, namely the diffusion of the activator must
be much slower than that of the inhibitor [9]. The experimental observation of the
patterns predicted by Turing took several decades, since the demanding conditions
on the diffusion coefficients of activator and inhibitor in chemical solutions made it
experimentally challenging. A “trick” was necessary to reduce the diffusion coeffi-
cient of the activator. In 1990 the first experimental observation of Turing patterns
was realized by V. Castets et al. in the chlorine-dioxide-iodine-malonic acid reaction,
as he trapped the activator in a gel matrix [10]. In nature, Turing patterns occur during
morphogenesis, e.g., on animal skins.

In 1968 Prigogine and Lefever [11] formulated reaction-diffusion equations while
they extended Turing’s equations, such that their equations could explain the differ-
entiation of biological cells with the aid of reactions and substance exchange of two
different types of molecules. They declared the role of diffusion in a system hav-
ing two tasks: First, diffusion increases the stability of a system, but second, it also
increases the variety of perturbations, which are compatible with the macroscopic
equations of change.

3.2 Excitable Media

Excitability is an important concept in biology and chemistry. Common examples in
nature are the brain and the heart (cf. chapter Spiral Waves in the Heart). Through
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these media electric pulses propagate forcing to change their state for a short time
[12]. An important example from the chemical field represents the BZ reaction [13].
In such systems a perturbation is overdamped, if it is smaller than a certain threshold.
A large perturbation, however, causes a response of the former. Due to the complete
recovery of the system after the passage of an excitation wave, many of those can
travel trough it. A single wave pulse is sketched in Fig.2. The wave propagates
towards the left. In its front, the medium is excitable. A perturbation induces a wave
traveling through the system, where the wave front itself is in the excited regime.
Behind the pulse, the medium must recover and is in the refractory state. When the
system has fully recovered, a new perturbation can induce a new wave pulse. Within
a spatially distributed excitable medium the excitation propagates from one point to
the neighboring one by local coupling realized by diffusive transport [12]. Due to
the interplay of diffusion and chemical reactions, waves of excitation can propagate
through the medium, forming patterns like spiral waves in space or oscillations in
time [13] (see Sect.4).

Fig. 2 Sketch of a [U] X excited
propagating concentration 4

wave [u] over time. Before
the system is perturbed, it is
in the excitable regime (low
concentration of u). After it
has passed the excited
regime, it must recover, since <
the concentration of u is
lower than in the excitable
state, which makes it
immune to a new

perturbation excitablé

propagation direction

©

perturbation

4 Creation and Propagation of Spiral Waves

The propagation of waves in excitable media depends mainly on diffusion. Its velocity
v can be calculated with the help of Eq. (1) with D, k and C being diffusion coefficient,
rate coefficient and concentration of the activator u, respectively. When several waves
emerge, such as concentric circles (see Fig. 1; also called target pattern)—induced
by a pacemaker in the system (e.g., an impurity)—wave propagation is governed by
the so-called dispersion relation of the system. It is defined as the velocity of a wave
v divided by the distance between single waves, i.e., the wavelength A. In general,
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this relation is positive in the BZ reaction, which means that the velocity of a wave
decreases with decreasing distance between the waves [14]:

dv

— > 0. 6

T (6)
Additionally, the velocity of a wave depends on its curvature K (which is equal the
inverse radius r of a wave). Plain waves are faster than curved ones. This fact is
described by the following equation, which is called eikonal equation:

1
v=vyg— DK =vy— D-. (7
r

Here v describes the velocity of a curved wave in the normal direction, v the velocity
of a plain wave, and D is the diffusion coefficient. The eikonal equation describes,
how the velocity of waves decrease with increasing curvature and it also places
a stability condition on the wave front, since a uniform curvature of a wave is a
stable solution of Eq. (7) [14]. This means that perturbations of the wave front, e.g.,
due to an obstacle balance out. Additionally, it is obvious that a critical curvature
exists, where wave propagation fails:

Kepig = 8
crit — D . ( )
This plays a crucial role in the formation of spiral waves. At the tip of a spiral, the
highest curvature that is possible in the system is adopted, and with this, the velocity
is lowest there.

In Fig. 3 the process of the formation of a pair of counter-rotating spiral waves
is depicted. The propagating wave front (1) reaches an obstacle (e.g., a region of
lower excitability), which causes the break up of the wave front (2). After leaving
the obstacle, the wave front remains broken and at the open wave ends an additional
velocity component is present, which is perpendicular to its initial one (3). The wave
starts to curl yielding a slower propagation velocity at the tips (cf. Eq.(7)). Each
open end forms a spiral, having an opposite sense of rotation (i.e., opposite chirality)
(4). In the end, spirals of Archimedean shape have formed, rotating around a fixed
center, called the spiral core, which is the organizing center of the spiral. In the direct
vicinity of the core, however, the shape differs slightly from the Archimedean [15]
(see involute in chapter Spirals, Their Types and Peculiarities).

The spiral tip is a singularity in the medium at which the spiral has the greatest
curvature. This means that the normal velocity of a curved wave becomes zero
(v = 0, cf. Eq. (7)) and the tip moves tangentially along a circular trajectory, since the
high curvature prohibits movement into the normal direction (Fig.4) [16]. The area
enclosed by the trajectory is called the spiral core and is not excitable. Spirals have
the ability to organize an excitable medium, as they can take up the highest possible
frequency in the medium. The value of this frequency is determined by the medium
itself, as it depends, among other things, on its excitability. Higher frequencies do
not exist, since otherwise, the excitation front would run into the refractory regime
of its predecessor.
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Fig. 4 Superposition of images of the spiral tip during one rotation around the core in pseudo-
colors. The area never touched by the wave is colored in orange (copyright by Hess, Markus,
Miiller, Plesser, Dortmund 1987)

In the two-dimensional (2D) BZ reaction, spiral waves, target patterns or simple
oscillations can occur and run through the entire system. Target patterns can be
induced by touching the medium in a single spot with a silver wire for a few seconds.
On the surface of the wire bromide ions (which act as the inhibitor) are bound,
which locally reduces the concentration of these ions in the reaction. This induces
the autocatalytic formation of the activator HBrO, (cf. Sect. 2). Spiral waves emerge,
when an enclosed wave front is disturbed, such that it ruptures (Fig.3). This can be
forced, if a wave front is treated with an air jet. Even an obstacle can force the wave
front to break, if it is large enough (otherwise the wave fronts will merge behind the
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obstacle and no open wave end is created). With these methods, one gets always a
pair of counter-rotating spirals as shown in the lower half of in Fig. 1. The initiation of
a single spiral needs a little more experimental skills. Here a thin (quasi 2D) reaction
container can be used, where a gel, in which the BZ reaction runs, is filled up to half.
Then, a wave is initiated with a silver wire near one boundary. When one end of the
wave reaches the boundary, the reaction container is filled up with the BZ gel and the
wave can now propagate into the regime of the new gel. This method is described in
detail in Ref. [17].

The wave propagation velocity v in the BZ reaction depends on the chemical
composition of the reaction mixture, which determines the speed of the reaction and
the transport processes. Especially, v is governed by the proton concentration [H™]
and bromate concentration [BrOj | (cf. Eq. (1)) [18]:

v ~ kD, [H][BrO; ], ©))

where k, is the reaction rate of the activator and D, its diffusion coefficient. If the
initial concentrations of malonic acid, sulfuric acid and sodium bromate are high
compared to the concentration of ferroin, homogeneous oscillations occur in the
system. A comparable ratio between ferroin and the other three reactants yields
reduction waves in the BZ medium.

The BZ reaction can be inhibited by oxygen, which diffuses up to 2mm depth
into the liquid layer. The inhibition occurs due to oxidation of malonic acid by
ferroin. When atmospheric oxygen diffuses into the reaction, malonic acid is no
longer available for the reaction, since its radicals are caught by oxygen [19]. Thus,
it is advisable to perform experiments in a closed container.

5 Patterns in Microemulsions

The BZ reaction can be embedded on the one hand into a gel, which does not affect
any properties of the reaction, such as diffusion of chemical species. On the other
hand, the reaction can be loaded into an emulsion, which is a mixture of oil and
water. In the system discussed here, only water-in-oil emulsions are considered (i.e.,
a little amount of water in much oil). The small water droplets are stabilized with a
surfactant and have a size of a few nanometers, leading to the name microemulsion.
They have certain physical properties, which are discussed in the following.

5.1 Physical Properties of Microemulsions

Almost everything in an emulsion is governed by the volume ratio between water
and oil (cf. Fig.5). Additionally the amount of surfactant is also important, since it
is responsible for the stability of the system. Unless enough surfactant is available,
the interface between water and oil cannot be fully covered with the surfactant and
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no defined structure is formed. In Fig.5 (right) possible configurations of the water
phase in a microemulsion are depicted, together with a phase diagram which shows
how the ratio between water, oil and surfactant affects the emerging configurations.
Here, mainly the L, phase is considered, i.e., spherical water droplets, surrounded by
amonolayer of the surfactant diffusing through the oil phase. The droplets collide and
merge, forming droplet clusters, which can split again. As the solvent, a saturated
hydrocarbon is used, like octane or hexane. The used surfactant is sodium-bis(2-
ethylhexyl) sulfosuccinate (AOT, Fig.5 (left)), which shows the L, phase over a
wide range of concentrations. AOT is an anionic surfactant consisting of a polar
head group (SO3) and two hydrophobic tails [20].

20%
wat7 YI (octane)
0
0)

S0

80%

o

20%

Fig. 5§ Left: Sketch of the surfactant AOT with its polar head group SO3 . Right: Phase diagram
of the water-AOT-oil system. The L, phase is a reverse microemulsion (water-in-oil microemul-
sion), in which most of the experiments in this work are performed. Ly — hexagonal phase;
LC — lamellar phase (liquid crystal). Reprinted by permission from Springer: Patterns of Nan-
odroplets: The Belousov-Zhabotinsky-Aerosol OT-Microemulsion System, V. K. Vanag and 1. R.
Epstein [21], copyright 2008

The properties of an emulsion can be described with the help of two parameters:
The molar ratio w between water and AOT concentration [22]

[H20]
w= ,
[AOT]

(10)
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and the volume droplet fraction of the dispersed phase ¢,, which is the ratio of the
sum of the individual volumes of water (Vi) and AOT (V4 07) and the entire volume
of the emulsion:

_ Vw+Vior
Vw + Vaor + Vou

®a (1)

With the help of w, the droplet radius R,, of the water core (without the AOT-molecule
[23]) can be estimated with the empirical equation

R, [nm] = 0.17w. (12)

To calculate the radius of the droplet including the surfactant, the length of the AOT-
molecule must be added (& 1.1 nm) [24]. ¢, acts as an order parameter of the system,
since it determines the configuration of water, oil and AOT (cf. Fig.5).

5.2 Percolation

When changing the amount of water, the droplets of the L, phase merge and form
water channels pervading the entire medium. This process is called percolation. In
general it means that components of a system form connected clusters. If a cluster
reaches all ends of a system, the latter is percolated. Some practical examples are
water in a coffee filter or forest fires and their models.

In a mircoemulsion, the first infinite droplet cluster is formed around a droplet
fraction of 0.5, which is referred to as critical droplet fraction ¢, [24]. Due to
this network of water channels, viscosity and electric conductivity increase as well.
For ¢; < ¢.,, the droplets move nearly freely in the oil phase. The emulsion has a
high viscosity due to the large amount of oil and its electric conductivity is close to
that of pure oil. Above ¢, the number of such clusters increases rapidly [25] and with
them the electric conductivity. In fact, the latter can be used to measure the critical
droplet fraction, above which the system is percolated. Thus, percolation causes a
threshold-like behavior of physical quantities.

5.3 BZ Reaction in Microemulsions

Embedding the BZ reaction in a microemulsion (referred to as BZ-AOT system),
which shows the L, phase, changes the emerging patterns significantly compared to
the aqueous BZ reaction. The reaction only runs within the water droplets, such that
the diffusion coefficient of the activator is reduced. It diffuses with the same velocity
as the droplet itself. Some products of the BZ reaction, such as molecular bromine
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Br, and the radical BrOj3, which are inhibitors of the system, are soluble in the oil
phase and can diffuse out of the droplets. Thus, their diffusion coefficient rises by
10-100 of the initial value. Hence, the conditions for Turing patterns are fulfilled (cf.
Sect. 3) and the corresponding stationary patterns can occur in the BZ reaction [24].
Note that Turing patterns can only occur below the percolation threshold, due to the
conditions on the diffusion coefficients of activator and inhibitor.
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Fig. 6 Overview of patterns occurring in the BZ reaction embedded in a micro-
emulsion. The patterns in the right column (above a chemical concentration relation of 0.1 M)
are generated with another catalyst (bathoferroin). Reprinted by permission from Springer: Patterns
of Nanodroplets: The Belousov-Zhabotinsky-Aerosol OT-Microemulsion System, V. K. Vanag and
I. R. Epstein [21], copyright 2008

Figure 6 shows an overview of patterns, which can occur in a microemulsion,
depending on the ratio between the chemicals (sulfuric acid, sodium bromate and
malonic acid), and the droplet fraction. Above the percolation transition, a bimodal
distribution of the droplet radius is found (below the transition, only one radius
is found) [21], favoring the formation of discontinuously propagating waves (like
jumping, rotating and bubble waves) and dash waves (see Fig. 6, above a chemical
concentration relation [H;SO4][NaBrO3]/[MA] of 0.1 M). The latter develop from
a smooth wave front, which splits up such that coherently moving wave segments
separated by lateral gaps occur [21, 24]. These waves will be discussed briefly in the
following section.
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5.4 Segmented Waves

Segmented (or dash) waves occur mainly, when two pools of droplets exist, with radii
of around 2 and 20nm [21]. This is typical when using the catalyst bathoferroin, which
is a derivate of the default catalyst ferroin. However, spirals cannot be induced in a
controlled way as described in Sect. 4, but they have to form spontaneously (e.g., due
to an impurity or small concentration differences). In the reaction with bathoferroin,
dash waves or spirals, as well as discontinuously propagating waves, such as rotating
and jumping waves evolve (Fig.0).

Figure 7a shows dash waves in the upper left corner, with a negative (concave)
curvature and (b) spiral waves with a positive (convex) curvature. Segmented waves
evolve from ordinary (smooth) waves, which become unstable with time. They show
so-called ripples, which means that some regions of the wave are propagating slower
than their neighboring regions, and the curvature of these slow regimes becomes
negative (box in Fig. 7b). In the course of time, the wave breaks in these regions, such
that small segments of the original wave remain, which travel through the medium
as if the wave front still exists. The instability occurs only, if the inhibitor diffuses
fast (compared to the activator) and causes a wave break-up [26]. The former acts
transverse to the wave front and it may occur through lateral inhibition or a kinetic
interaction of the wave with a reactant in front of it [27, 28]. The segmentation of
wave fronts always starts near the center of a spiral, since the curvature is highest
there.

Dashes of one wave front propagate into the gaps of its precursor, which means
that the dashes are displaced by the length of a dash relative to their precursor. In
the dashes, the inhibitor is primarily generated, diffusing faster than the activator,
and suppressing the autocatalytic reaction in the neighboring gaps. Additionally, this
increases the time until the the medium has recovered when the subsequent wave
front reaches it [21, 24]. The displacement of the dashes is visualized with the help
of superposition of frames over time (Fig. 7c and d). The length of the dashes vary
between 90 and 163+ 2 pum and the length of the gaps from 40 to 104 42 pm.
Convex wave fronts show a splitting of dashes, when reaching 1.7 to 1.9 £0.1 times
their initial length. This is depicted in Fig. 7d (red box), since the dashes propagate
away from each other. For a concave curvature (as in Fig. 7c, black box) a merging of
dashes can be found. The gaps get smaller, such that the dashes move closer together
until they merge. Splitting or merging of the dashes was not found for a curvature
K between —0.10 and 0.21 £0.1 mm~', i.e., for almost plain wave fronts—here, the
dashes propagate straightforward without changing their length.
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Fig. 7 Snapshots of patterns in the bathoferroin-catalyzed BZ-AOT system with @ = 12
(pq = 0.455) at t = 224.8 min a in octane (size of images: 3 x 3mm?2) and b in hexane (size of
images: 5.9 x 6.1 mm?). Superposition of binarized images ¢ in octane between 180.0 and 189.2 min
and d in hexane between 220.0 and 227.9 min with time interval of 40s. Note that black lines in the
superposition images represent the bright wave front. Reprinted with permission from P. Ddhm-
low, V. K. Vanag, and S. C. Miiller, Phys. Rev. E 89, 010902 (2014) [29]. Copyright 2014 by the
American Physical Society

The frequency distribution of the curvature, where splitting of dashes occurs, is
shown in Fig. 8. For a mean curvature, the number of splitting dashes is much higher
than that for small or large curvatures, since large curvatures occur only near the
spiral core, where the number of dashes is much smaller than at the outer wave
fronts.

The merging of wave fronts due to a decreasing distance between single seg-
ments is closely related to those studied in Ref.[30]. If the distance between the
segments is smaller than the width of the wave front (i.e., the autocatalytic band),
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Fig. 8 Histogram of the 25 A s B B B A I
curvature K of a wave front
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segments merge. An equal distance between both yields a constant length of single
dashes. In our case, the distance between the dashes is also governed by the curvature
of the initial wave. The segments are additionally forced to reduce their distance to
each other at concave curvature of the initial wave front. A plain wave, where the
distance between single dashes and the width of the wave front is equal shows a
straight forward propagation of the segments, without any variations in length, as
already described in Ref. [30].

6 Summary and Conclusion

Pattern formation in reaction-diffusion systems represents an important phenomenon
in biological morphogenesis. In the early stages of the development of synergetics,
people were fascinated by oscillatory chemical reactions, such as the mercury heart
[6] or a periodic color change in the BZ reaction [2]. However, the scientific com-
munity doubted its existence, since self-organization of systems contradicted the
increase in entropy and thus the second main theorem of thermodynamics. However,
patterns can only form in systems, which are far away from thermodynamic equi-
librium and have an energy- and/or mass transfer with their environment. This fact
resolves the conflict.

In this chapter, the chronological sequence of important historical experiments
contributing to the development of synergetics was given, especially in the context
of pattern formation in reaction-diffusion systems. The most prominent example
presents the BZ reaction, which shows both: periodic oscillations in a stirred solution
and spatially expanding waves in an undisturbed system. The wave propagation in the
spatially extended BZ reaction was studied in detail, and the influencing factors on
the wave velocity (i.e., concentrations of reactants, reaction rate, diffusion, curvature
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of the wave front and dispersion relation) and the mechanism of the formation of
spiral waves were described.

Additionally, it is possible to load the BZ reaction into a water-in-oil emulsion,
which afflicts the relation of the diffusion coefficients of activator and inhibitor
significantly. This enables the system to form a wide range of possible patterns such
as Turing patterns, discontinuously propagating waves (such as bubble and jumping
waves) and segmented waves (cf. Fig. 6). Segmented waves evolve from an ordinary
wave (target pattern or spiral wave), due to an instability. These dashes split or merge,
depending on the curvature of the initial wave front, such that their length remains
within a certain interval. However, the length of the gaps play an important role.
Single segments are either able to curl and form new spirals or propagate ahead (as
shown in Fig. 7). Larger gaps between the dashes would mean that not the entire area
between the segments will be inhibited, wave propagation will become possible and
the segments can start to curl and a spiral turbulence will develop.

We find that spiral waves represent an interesting and fascinating pattern, which
can be found in many biological and chemical systems, as described throughout this
book. They organize the medium in which they occur and oust many other pattern
with time.
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