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Abstract Spiral waves rigidly rotating in excitable media sometimes play a con-
structive role in self-organization, while in many cases they cause an undesirable
and dangerous activity. An understanding of spiral wave kinematics can help to
control or to prevent this self-sustained activity. A description of the spiral wave
kinematics performed by use of a free-boundary approach, reveals the selection prin-
ciple which determines the shape and the rotation frequency of spiral waves in an
unbounded medium with a given excitability. It is shown that a rigidly rotating spiral
in a medium with strongly reduced refractoriness is supported within an excitability
range restricted by two universal limits. At the low excitability limit, the spiral core
radius diverges, while it vanishes at the high excitability limit and the spiral wave
resembles the Yin-Yang pattern.

1 Introduction

An excitable medium can be considered as a population of active elements coupled
locally through diffusion-like transport processes. Each individual active element
is stable with respect to small external perturbations. However, it can be excited
by the application of a super-threshold stimulus. Therefore, an excitation induced
locally is able to propagate through the population of diffusively coupled elements
as a self-sustained wave. After a recovery process, the medium returns to the resting
state.

Rotating self-sustained spiral waves are among the most prominent examples of
self-organized patterns in excitable media. They have been observed in systems of
quite different nature like the social amoebae colonies [1] (see also chapter Spiral
Waves of the Chemo-Attractant cAMP Organise Multicellular Development
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in the Social Amoebae), the chemical Belousov–Zhabotinsky (BZ) reaction [2]
(chapter Chemical Oscillation and SpiralWaves), heart muscle [3] (chapter Spiral
Waves in the Heart), the retina of the eye [4] (chapter Yet More Spirals), the
oxidation of CO to CO2 on platinum single crystal surfaces [5] (chapter Shedding
Light on Chaos), yeast extracts during glycolysis [6] (chapter Yet More Spirals),
and so on.

In the simplest case, the spiral rotates rigidly and its tip describes a circular orbit
around the core [7, 8]. Varying the parameters of the midium one can effectively
control the motion of spiral waves which can be used to destroy undesirable wave
activity [9–12]. From this point of view the selection principles that determine the
shape and the rotating frequency of spiral waves have to be understood.

From a mathematical point of view the main dynamical features of a broad class
of excitable media can be simulated by a two-component reaction-diffusion system.

∂u

∂t
= DΔu + F(u, v), (1)

∂v

∂t
= DvΔv + εG(u, v). (2)

Here the local kinetics of an activator u and an inhibitor v is specified by the
nonlinear functions F(u, v) and G(u, v). The diffusion coefficients D, Dv and the
small multiplier ε are important control parameters. They are universal and appli-
cable to a broad variety of models (see chapter Reaction-Diffusion Patterns and
Waves.

From the experimental point of view, there is also some universality because there
are many common kinematical features of spiral waves observed in quite different
chemical and biological excitable media.

In this chapter we concentrate on an approximation of the reaction-diffusion
model, as indicated in Eqs. 1 and 2, that allows us to reach a deeper understand-
ing of the kinematical features of spiral waves. In the framework of this approach we
are interested mostly in the motion of the boundary restricting an excited region. We
will show that this so-called free-boundary approach essentially simplifies and gen-
eralizes the theoretical consideration of the spiral wave dynamics. Simultaneously,
this approach helps us to reveal such important medium parameters, which can be
measured experimentally.

2 Two First Steps Towards Spiral Wave Kinematics

In their seminal theoretical work, Wiener and Rosenblueth [13] showed in 1946 that
the self-sustained activity in the cardiac muscle can be associated with an excitation
wave rotating around an obstacle. In particular, they considered a motion of a wave
rotating around a round obstacle as shown in Fig. 1a. In this very simplified kinemat-
ical model, they assumed that an excited part of the propagating wave is restricted by
a very thin boundary consisting of a wave front (thick solid) and a wave back (thin
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solid). It was also assumed that all points of the boundary are moving in the normal
direction at the same velocity cn = const . If the radius of the circular obstacle is
given as R, the rotational frequency of the spiral wave should be ω = 2πR/cn . The
shape of thewave front is alsowell determined in this case and represents the involute
of the obstacle boundary. It means that the length of the interval AB of a tangent is
equal to the arc length AC (see chapter Spirals, Their Types and Peculiarities).
The wave back following the wave front has the same shape if turned around the
rotational center by the angle ωdu , where du is the duration of the excited state.

(a)

C
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φ

(b)

Fig. 1 Two examples of spiral wave kinematics. a Spiral wave rotating around a round unexcitable
obstacle (dark region). b Top view on a screw dislocation growing on a crystal surface

A second important example shown in Fig. 1b represents the shape of a screw
dislocation growing on a crystal surface [14]. In contrast to the first example, the
authors assumed that the normal velocity of the wave front is not a constant, but
strongly depends on the front curvature, namely

cn = cp − Dk, (3)

where cp is the velocity of a planar front and k is its curvature. In themodern literature
this relationship has obtained the name eikonal equation (see chapter Chemical
Oscillations and Spiral Waves). Note, that in this case the wave front is rotating
around a central point. In the vicinity of this point the front velocity cn vanishes, and
the front curvature reaches the value cp/D in accordance with Eq.3. The shape of
the wave front is suitably expressed in the polar coordinates (r, φ) with the origin at
the rotational center

x = r cos[φ(r) − ωr ], y = r sin[φ(r) − ωr ], (4)

where ω is the rotational frequency of the wave front.
A detailed numerical analysis has shown that an acceptable solution φ(r) of Eqs. 3

and 4 does exist only for a single value of the rotational frequency

ω = 0.331c2p/D. (5)

It is important that both shapes of the spiral wave fronts shown in Fig. 1 are approach-
ing the Archimedean spiral far away from the rotational center.
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3 Free Boundary Approach

The next relevant step in the understanding of the spiral wave kinematics has been
done by Pelcé and Sun [15]. They recognized that in both cases mentioned in Sect. 2
the wave front kinematics is completely independent of the wave back motion. In
contrast to this the wave front and the wave back are usually interacting with each
other. It can be clearly seen in Fig. 2, where a snapshot of a counterclockwise rotating
spiral is shown. This picture resembles a typical pattern of spiral wave rotatingwithin
a homogeneous chemical or biological medium around a core of finite size (see
chapter Reaction-Diffusion Patterns and Waves).

At one part of the excited state boundary the activator u is growing (du/dt > 0)
that corresponds to the wave front. At another part of the boundary du/dt < 0 that
corresponds to the wave back. These two parts meet each other at a so-called phase
change point [16]. This point q describes a circular pathway around the circulation
center, which represents the spiral wave core.

Another interesting point Q is located at the place, where the radial direction is a
tangent to the excited state boundary. Here the normal front velocity is orthogonal to
the radial direction and, hence, the point Q also describes a circular pathway around
the circulation center.

The kinematics of the wave front and the wave back are closely connected and
should be considered in parallel. To this aim it is very useful to describe the boundary
of the excited state by the so-called natural equation which determines the boundary
curvature k as a function of the arc length s counted from the phase change point q
[17, 18].

Then the Cartesian coordinates x(s), y(s) of the boundary and the angle Θ(s)
which determines the normal direction obey the obvious equations:

Θ(s) = Θ(0) −
∫ s

0
k(s ′)ds ′, (6)

x(s) = x(0) +
∫ s

0
cos(Θ(s ′))ds ′, (7)

y(s) = y(0) +
∫ s

0
sin(Θ(s ′))ds ′. (8)

During the boundary rotation, each of its point is moving at the velocity ωr
around the rotational center. This velocity can be represented as a sum of a normal
velocity cn(s) (orthogonal to the boundary) and the tangential velocity cτ (s) (along
the boundary), as drawn in Fig. 3. It was shown that for a rigidly rotating spiral these
two velocities and k(s) obey the following system of differential equations [17]

dcn
ds

= ω + kcτ , (9)

dcτ

ds
= −kcn . (10)
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Fig. 2 Spiral wave rotating
around a circular core. The
shaded region corresponds to
an excited state. The dotted
line depicts the trajectory of
the phase change point q
rotating around the
circulation center (+). Solid
lines indicate isolines of the
temporal derivative du/dt of
the activator. Taken from
[18]

Fig. 3 Normal velocity cn
and tangential velocity cτ of
a rotating boundary

After rescaling (S = scp/D, R = rcp/D,C = c/cp, K = Dk/cp,Ω = ωD/c2p),
Eqs. 9 and 10 transform into the dimensionless form

dCn

dS
= Ω + KCτ , (11)

dCτ

dS
= −KCn. (12)

Equations11 and 12 are the result of a pure kinematical consideration. To describe
the boundary shape of a spiral wave rotating in an excitable medium, this system
should be supplemented by the eikonal equation describing the velocity-curvature
relationship written in dimensionless form in accordance with Eq.3 as

C+
n = 1 − K+. (13)

The phase portrait of Eqs. 11–13 computed for Ω = 0.1333 is shown in Fig. 4.
A trajectory describing the wave front starts at the line, where C+

n (0) = 0 and
0 ≤ Cτ (0) ≤ 1. In Fig. 4 three trajectories of the system computed for different
Ct ≡ Cτ (0) are shown. At the beginning of all trajectories C+

n increases and
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C+
τ decreases. However, the normal velocity C+

n reaches a maximum and starts
to decrease along the trajectory computed for Ct = 0.3. Moreover, this trajectory
includes a part, where C+

n < 0, which contradicts the definition of a wave front. The
trajectory crosses the line Cn = 0 again at Cτ ≈ 0.61. This point can be considered
as the starting point of a separate, fourth trajectory, which firstly crosses the line
Cn = 1 and then approaches the nullcline Cn = 1 + Ω/Cτ for Cτ → ∞.

The trajectory computed for Ct = 0.5 crosses the line Cτ = 0 twice and also
approaches the nullcline Cn = 1 + Ω/Cτ for Cτ → ∞.

Fig. 4 The phase portrait of
the free-boundary equations
(Eqs. 11–13) corresponding
to Ω = 0.1333. Dashed lines
show nullclines of the
system (dCn/dS = 0 and
dCτ /dS = 0). Black dots
mark starting points of the
trajectories computed for
different values of
Ct ≡ Cτ (0). Dash-dotted
line corresponds to Ct = 0.3,
thick solid is obtained for
Ct = 0.42055. The first part
of the trajectory computed
for Ct = 0.5 is depicted by a
thin solid line and the
following part is shown by
dotted line. Taken from [18]

The front shapes corresponding to these two trajectories (Ct = 0.3 and Ct = 0.5)
are shown in Fig. 5a. They are obtained by substitution of the computed function K (s)
into Eqs. 6–8 with Θ(0) = π/2, X (0) = 0, and Y (0) = Ct/Ω . It can be seen that
the trajectory starting at Ct = 0.3 (dash-dotted line) has no physical sense. Another
trajectory, corresponding to Ct = 0.5, contains a part depicted by thin solid, which
can be considered as a front of a wave rotating within a disk of radius RD with
a no-flux boundary. The first intersection of this trajectory with the line Cτ = 0
corresponds to the point Q. The second intersection occurs at the disk boundary,
where C+

n = ΩRD . The part of the trajectory outside the disk of radius RD does not
match any rotating waves in excitable media. It resembles antispirals [19] or twisted
spirals [20] observed in oscillatory media.

By starting at Ct = 0.5 and continuously decreasing Ct one can compute trajec-
tories corresponding to an increasing disk radius RD . The limiting case RD → ∞ is
obtained for Ct = 0.42055 and is shown in Fig. 5b by the thick solid line. The corre-
sponding trajectory is presented in Fig. 4 by the thick solid. Obviously, this solution
of Eqs. 11–13 represents a spiral wave front in an unbounded medium rotating at the
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given angular velocity Ω . Asymptotics of this solution for S → ∞ can be specified
as in [17]

C+
n (∞) = 1, C+

τ (S) = √
2ΩS, K (S) =

√
Ω

2S
. (14)

Fig. 5 Wave front shapes
corresponding to the
trajectories shown in Fig. 4.
a Front shapes computed for
Ct = 0.3 (dash-dotted line)
and Ct = 0.5 (thin solid and
dotted lines). b Front shape
obtained for Ct = 0.42055.
Taken from [18] R

(a) (b)

D
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A repetition of similar computations for different values of Ω reveals a unique
relationship Ω = Ω(Ct ) depicted in Fig. 6. Here Ct varies within the whole physi-
cally available range 0 ≤ Ct ≤ 1. The angular velocity Ω vanishes at Cτ = 1. This
limiting case corresponds to the low excitability limit studied in [21], where an ana-
lytical expression Ω = 0.198(1 − Ct )

3/2 has been derived. This expression shown
by the dotted line in Fig. 6 approximates very well the relation found numerically for
Ct ≈ 1. However, it strongly deviates from numerical data obtained for small Ct .

Fig. 6 Angular velocity Ω

of a wave front as a function
of the tangential velocity Ct
of the spiral tip. The dashed
line depicts the
approximation given by
Eq.15. The dotted line
corresponds to the
asymptotic found in [21]
specified by the first term in
Eq.15. Taken from [18]

In another limiting case, the valueΩ = 0.331 computed forCt = 0 coincideswith
the result obtained firstly by Burton, Cabrera and Frank [14] for screw dislocations
growing on crystal surface (see chapter Appearance in Nature) and reproduced
later many times [17, 21, 22].

The suitable approximation of the relationship Ω(Ct ) obtained numerically for
the whole range 0 ≤ Ct ≤ 1 reads

Ω = 0.198(1 − Ct )
3/2 + 0.133(1 − Ct )

2. (15)
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It supplies a nice accuracy within the whole range 0 ≤ Ct ≤ 1, as can be seen in
Fig. 6.

Thus, the front shape of a rigidly rotating spiral wave and its angular velocity Ω

are uniquely determined by the tangential velocity Ct of the spiral tip.
The results obtained for the wave front have to be used to integrate Eqs. 11 and

12 for the spiral wave back taking into account that during the excited state, the
inhibitor value is increasing from v = v+ at the wave front till v = v− at the wave
back. The value v− of the inhibitor at the wave back can be found from Eq.2 under
the assumption that the value G(ue(v), v) remains practically constant and equal to
G∗ during the excited state. Note that for many systems under consideration, e.g.
cardiac tissue, the inhibitor diffusion Dv = 0, which simplifies the analysis.

Since the pattern is rotating at a constant angular velocity ω, the value of the
inhibitor near the wave back is expressed in accordance with Eq.2 as

v−(R) = v+ + G∗ε
ω

[γ +(R) − γ −(R)], (16)

where γ + and γ − specify the location of the front and the back, respectively, as
shown in Fig. 7. The thick solid line in Fig. 7 represents the front of the rotating
wave computed for a given value ofΩ = 0.1333. The front curvature K (s) obtained
during these computations has to be substituted into Eqs. 6–8 in order to determine
the front shape in the Cartesian and polar coordinates.

The inhibitor v− strongly affects the normal propagation velocity. In order to
reflect this fact, the eikonal equation (Eq.3) should be modified to

c−
n = cp(v

−) − Dk. (17)

Substituting the value v− expressed by Eq.16 into Eq.17 we get after rescaling

C−
n = 1 − K− − B

Ω
[γ +(R) − γ −(R)]. (18)

The multiplier B appearing in this dimensionless expression is a very important
control parameter and reads as

B = 2D

c20du
. (19)

In order to obtain the shape of the wave back Eqs. 11–12 and 18 have to be
integrated in the reverse arclength direction starting at S = 0 with initial conditions
C−
n (0) = 0 and C−

τ (0) = Ct . The obtained values of K−(S) have to be substituted
into Eqs. 6–8 with Θ(0) = π/2, X (0) = 0, and Y (0) = Ct/Ω in order to determine
the dependence γ −(R).

It is important to emphasize that the shape of the wave back is strongly depended
on the parameter B as shown in Fig. 7. It is expected for a physically correct solution
that the derivatives dγ −/dS and dR−/dS are positive. If B is relatively small, the
derivative dγ −/dS vanishes at some S and becomes negative (see dotted line). If B
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Fig. 7 Spiral wave shape
obtained for Ω = 0.1333.
The front shape corresponds
to Fig. 5b. The back shape is
computed from Eqs. 11, 12,
and 18 for different values of
the dimensionless parameter
B. Dotted and dashed lines
correspond to B = 0.2971
and B = 0.3008,
respectively. Thin solid line
corresponds to B = 0.2979
found by a trial and error
method. Taken from [18]

is relatively large, the derivative dR−/dS vanishes (see dashed line). Using a trial
and error method, one must vary the value of B trying to obtain the solution with the
asymptotic C−

n (−∞) = −1.

Fig. 8 The dimensionless
angular velocity of a rigidly
rotating spiral Ω = ΩFB(B)

selected as a solution of the
free-boundary problem
based on Eqs. 11–13, and 18
versus the dimensionless
parameter B characterizing
the excitability of the
medium. Taken from [18]

Thus, the obtained solution of the free-boundary problem for a spiral wave in
an unbounded medium is uniquely determined by the value of the dimensionless
parameter B for a given value of the angular velocity Ω . Repetition of these com-
putations for different values of Ω from the interval 0 < Ω < 1 yields the universal
relationship Ω = Ω(B) shown in Fig. 8.

4 Two Limiting Cases

There are two limiting cases which characterize the relationship shown in Fig. 8.
Firstly, our computations show that the highest angular velocityΩ = 0.331 is reached
at B = Bmin ≈ 0.211. Secondly, it is known that an undamped excitation wave in
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a two-dimensional medium is supported only if B < Bc ≈ 0.535 [23–25]. Hence,
in a medium with a strongly reduced refractoriness a rigidly rotating spiral can be
obtained only within the interval Bmin < B < Bc.

Fig. 9 The solution of the free-boundary problem Eqs. 11–13 and 18 corresponding to the limiting
cases a B = Bmin and b B = Bc

The solution of the free-boundary problem obtained for B = Bmin is illustrated in
Fig. 9a. Comparing Figs. 9a and 7 one can conclude that in this limiting case the point
Q coincides with the spiral tip q, and they both are located at the rotation center.
The radius of the spiral tip trajectory, Rq = Ct/Ω , vanishes in the limit B = Bmin .
The curvature KQ reaches the maximum KQ = 1. The shape of the wave front is
identical to that obtained by Burton, Cabrera and Frank [14]. The shape of the wave
back reproduces the front shape, except for the immediate vicinity of the spiral tip.
The wave back is turned by angle π with respect to the front, and the Cartesian
coordinates of the wave boundary and their first derivatives are smooth functions of
the arc length. In fact, in this limit the spiral wave form approaches the Yin-Yang
pattern.

In the second limiting case, B = Bc, the angular velocity vanishes and the radius
of the spiral wave core diverges. The shape of the spiral wave approaches the critical
finger first studied in [23] and illustrated in Fig. 9b. The boundary of the excited
region shown here undergoes a translational motion along the X axis at a constant
velocity. Obviously, this velocity should be equal to the velocity cp of a planar wave.

Thus, in a mediumwith a strongly reduced refractoriness the dimensionless angu-
lar velocity Ω is a unique monotonously decreasing function of the dimensionless
parameter B. This function Ω = Ω(B) changes between 0.331 and zero within the
interval Bmin < B < Bc. The radius of the spiral tip trajectory vanishes at B = Bmin

and diverges at B = Bc.
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5 Concluding Remarks

In this chapter we have demonstrated that the free-boundary approach allows us to
clarify the basic principles of spiral wave selection in excitable media. It is shown
that the rotational frequency and the spiral core radius in a medium with a short
refractoriness are completely determined by a single dimensionless parameter B
determined by Eq.19. The value of this parameter can be estimated numerically
or even analytically for quite different mathematical models. Moreover, it can be
obtained as a result of direct experimental measurements.

However, the kinematical description of the rigidly rotating spiral waves rep-
resented in this work is, in fact, only an important limiting case of a much more
complicated problem. As an example, three very important tasks, which should be
solved in the near future are listed below.

First of all, note that the propagation velocity of a stationary propagating wave
front is a nonlinear function of the front curvature [17]. A linear eikonal equation
(Eq.3) can be obtained only for ε = 0. For any ε > 0 there is a critical value of the
front curvature Kcr , which restricts the region, where undamped wave propagation is
supported. Point Q (see Fig. 7) is in stationary movement along a circular trajectory.
The wave front at this point is curved and its curvature cannot exceed Kcr . This also
restricts the angular velocity of a spiral wave [17]. This circumstance should be taken
into account, when a medium with B ≈ Bmin is considered [18].

Another very important issue is, of course, the role of the refractoriness of the
medium. This problem is currently not solved. An important step in this direction
is a recently developed kinematical description of a periodic sequence of the wave
segments [26].

Finally, the described kinematical theory is applicable to so-called trigger-trigger
waves [22]. However, under corresponding parameter variations, these waves can be
transformed to so-called trigger-phase waves [27–29]. Moreover, there is a contin-
uous transition between these two types of spiral kinematics [30], which should be
studied in detail.

Thus, the kinematical theory of spiral waves represents a very interesting and
intensively growing field for future investigations aimed, e.g., to find out efficient
ways to prevent or to suppress an undesirable and dangerous self-sustained wave
activity in excitable media.
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