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Foreword

According to one of our most famous books, the bible, at the beginning the world was
completely disordered. This is also reflected by our present view of the “big bang”
initiating the expansion of the universe from an initial state of non-equilibrium. But
interactions between the constituents and the general laws of physics led to the for-
mation of astronomic structures, among which the galaxies contain already the ele-
ment of spirals, as, for example, expressed by the term “spiral nebula.”

When life developed on our planet, a large group of animals, the ammonites,
with characteristic spiral shapes were widely existing for many millions of years,
and this structural element is also found with many other living systems.

On the other hand, the emerging human culture adopted very soon the symbol of
a spiral, as can be found as relicts in many different places. Apart from its symbolic
character, the spiral inspired through its aesthetic appeal many artists until today.
Attempts to understand the formation of spirals date back to ancient times where a
simple prescription for their construction is attributed to Archimedes, the most
famous mathematician of this period.

The physical origin of these structures in nature has to be traced back to their
roots from a state far from equilibrium, and theory permits their modeling in many
cases. In chemistry, for example, the interplay between reaction and diffusion may
cause the formation of various spatiotemporal structures, including spirals. The
study of these phenomena is the object of intense current research.

The present book provides an extensive overview of the various aspects of the
appearance of these fascinating structures ranging from the arts to natural sciences
and even medicine. In particular, it should become clear how these different phe-
nomena are linked together in a general sense.

Berlin, Germany
November 2018

Gerhard Ertl
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Preface

The unfolding of ordered and irregular structures and their temporal evolution is an
omnipresent phenomenon in our natural environment. Their presence and their
formation and decay are fascinating features of the world where we live. There exist
a plethora of shapes and dynamics that play an important role not only in the living
and inanimate nature and the natural sciences, but also in cultural history and the
arts, reaching back many thousand years. As of today, these are still essential both
for living organisms and non-living materials.

These structures are not only the phenomena to be observed, but also the objects
to be investigated. Already in the 19th century, Friedlieb Ferdinand Runge
(1794–1867) carried out many experiments relevant to spatially inhomogeneous
reactions. He used special paper for identifying chemical species by their color, thus
setting the basis for paper chromatography. When dropping at regular time intervals
chemical substances on a paper impregnated with a reactive counterpart, he dis-
covered a large number of solution pairs for which this procedure results, upon
spreading of the drops into the surrounding area, in quite spectacular, symmetric, and
colorful structures. He called them “Bilder” (paintings). He published them in two
self-printed books “Color chemistry. Sample images for friends of beauty and for use
by sketchers, painters, decorators, and printers, prepared by chemical interaction”1

and “The formative tendency of substances illustrated by autonomously developed
images”2 (both originally in German). His work made an impression and constitutes
a salient contribution to the research on self-organization.

1 F. F. Runge, Farbenchemie. Musterbilder für Freunde des Schönen und zum Gebrauch für
Zeichner, Maler, Verzierer und Zeugdrucker, dargestellt durch chemische Wechselwirkung (Color
chemistry. Sample images for friends of beauty and for use by sketchers, painters, decorators, and
printers, prepared by chemical interaction) (self-published, Berlin, 1850).
2F. F. Runge, Der Bildungstrieb der Stoffe. Veranschaulicht in selbständig gewachsenen Bildern
(The formative tendency of substances illustrated by autonomously developed images)
(self-published, Oranienburg, 1855).
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Thus, Runge is considered as a pioneer on pattern formation. In fact, in his
systems ring-shaped regions of precipitate can be observed (see the right painting in
the figure below), for which experimental evidence was presented by Deiss.3 The
work of the Chemist Liesegang gave ample proof of this phenomenon by his
systematic studies in 1896 and in later years.

The left and middle images show two examples which SCM managed to pro-
duce by himself. If you like to make such “Runge’s paintings” by yourself, we
recommend to look at the recipes given in the book of Harsch and Bussemas.4

Among the multitude of structures, spirals and vortices possess a special fasci-
nation, being part of the eternal theme of interaction between science and art. Many
spirals and vortices appear in our universe: in stone carvings, architecture, sculp-
ture, decoration, performing arts, and literature on the one hand and, on the other
hand, in many natural appearances/phenomena like spiral galaxies, hurricanes,
snails, helices of proteins, and many others.

Our idea to edit a book about spirals and vortices goes back for more than
30 years. SCM presented on the occasion of inaugurating his new laboratory some
experiments: pattern formation in some chemical reactions in liquids, in gels, as
well as on filter papers. There appeared concentric circles, hexagonal patterns,
spirals, helices, and some more complicated forms. For KT such phenomena were
completely new, although she worked as a scientist in the same institute. As a
specialist of pattern formation, SCM explained how and why such interesting
shapes occur. Since this presentation, KT has started to look for suitable motives in
the surrounding world. Amazingly there are so many regular and irregular forms:
pattern on the sand at seashores, the shape of airplane turbines, short-term patterns
during rice cooking, various motives in textiles, photographs of tornadoes etc.

3E. Deiss, Über Runge-Bilder und Liesegangringe auf Filtrierpapier. Kolloid Z. 89, 146–161
(1939).
4G. Harsch and H. H. Bussemas, Bilder, die sich selber malen. Der Chemiker Runge und seine
Musterbilder für Freunde des Schönen (DuMont Buchverlag, Köln, 1985).
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Here, in this book, we write about spirals and vortices: demonstrating their beauty,
their amazing and impressive aesthetic nature, their important role inmathematics and
natural sciences, and their impact on artisticmasterpieces. Everybodywho has a sense
of curiosity—not only scientists or would-be scientists—is welcome to read this
volume. But, in order to avoid unnecessary misunderstanding, we emphasize that we
will concentrate our discussion mainly on scientific points of view. We will not touch
ethereal or religiousmeanings of spirals or vortices. On this basis, readers are certainly
encouraged to talk to each other and exchange their views with historians, artists,
musicians, writers, mathematicians, physicists, chemists, biologists, medical scholars
as well as with all people who work in interdisciplinary fields.

In Part I, readers are taken on an aesthetic and scientific journey through the
world of spiral forms, introducing various spirals and vortices as they appear in the
following chapters: Cultural History, Appearance in Nature, and The Arts and
Beyond. As an inset in the second chapter, we talk about the theme “Science meets
the Arts,” focusing on work by Johann Wolfgang von Goethe who is not only the
famous writer of novels, poetry, and dramas, but also author of Works on Natural
Science (Naturwissenschaftiche Schriften). There he formulates his thoughts and
ideas about spirals in the metamorphosis of plants and animals.

As the next, in Part II spirals and vortices of various shapes and in various
modalities are introduced. Andrey Polezhaev provides relevant mathematical data
on spirals in two- and three-dimensional polar coordinate systems with mathe-
matical equations. In an inset of his chapter, pioneering works of the painter and
mathematician Albrecht Dürer are shown: how he draws the Archimedean spiral

The team
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and a helix-like spiral with compass and ruler. Acoustic Spirals written by KT is a
piece on tonal equivalents of spirals discovered by her in the musical work of
Johann Sebastian Bach.

After mathematics, there follows chemistry in turn (Part III). As mentioned
above, the patterns of Runge and of Liesegang are both caused by the chemical
reaction of two substances, distributed inhomogeneously in space. The essential
differences between their systems are the chemicals used and the matrix in which
the reactants move (filter paper or aqueous gel). Both have in common that they
represent some of the earliest manifestations of chemical self-organization dis-
playing color and beauty. Sabine Dietrich writes about Liesegang structures, which
belong to mainly quiescent spirals. On the other hand, there are different kinds of
spirals: rigidly rotating spirals and irregularly moving spirals. SCM explains how
spirals start rotating and shows instructive examples. Subsequently, Patricia Pfeiffer
presents works on Chemical Oscillations and Spiral Waves. She shows some his-
torical experiments of the Belousov–Zhabotinsky reaction, as well as her own new
experiments of pattern formation in microemulsions. Harm H. Rotermund describes
the CO oxidation on platinum observed by the photoemission electron microscope
and analyzes the surface reactions.

Spirals and vortices appear also in biology, physiology, and medical fields (Part
IV). Cornelius J. Weijer tells a story about social amoebae, which build spiral-formed
aggregates. A fatal rhythm of atrial or ventricular fibrillation as induced by rotating
spiral waves is presented by Alexander Panfilov. Niklas Manz shows some diseases
causing spiral patterns to evolve on tongue or skin. In the last chapter of this part, we
offer some more spirals and vortices in biology and biomedicine: glycolytic oscilla-
tions, calcium waves, spreading depression, and epilepsy.

In the last part (Part V), three theoretically oriented articles are presented for
better understanding the creation of spirals and vortices. Markus Bär explains, by
using several reaction–diffusion models, how spiral patterns are built in nature, in
chemical reactions, and in biological systems. Next, Simon Syga and co-authors
stand at a different angle, which means not for continuous systems but for discrete
ones, and construct spirals by means of a cellular automaton model. Vladimir
Zykov concludes this volume with his treatise on the Kinematics of Spiral Waves in
Excitable Media, investigating what is essential to determine their shape and
rotation frequency, in order to prevent dangerous activity of self-organizing rotating
vortices (e.g., hurricanes, tornadoes, and fibrillations in the heart).

We, as the editors, hope that all readers will enjoy to see many spirals and
vortices from various scientific points of view. And we hope to write about further
developments of these fields in the near future.

Acknowledgements
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Part I
Spirals and Vortices in Our Universe

Natur und Kunst, sie scheinen sich zu fliehen
Und haben sich, eh’ man es denkt, gefunden.

Nature and art, they seem to flee from each other
And have, before one may reflect, found their common ways.

— Johann W. von Goethe



Cultural History

Kinko Tsuji and Stefan C. Müller

Abstract We introduce various spirals which were made during the time from
11,000 BC (Neolithic Period) to 1500 AD (early Renaissance). Concentric circles
were created much earlier (40,000–20,000 BC). For the period between 5000 and
2000 BC spirals in Megalithic arts, Scythian treasures and Japanese clay figures are
presented as examples. From 2000 to 1 BC spirals are found worldwide: in Europe,
Egypt, Thailand, India, or South America. From 1 to 1500 AD a large number of
spirals in Christian, Moslem and Buddhistic cultures were created. At the end spirals
and vortices in the Nordic, Medieval and Renaissance arts are exhibited.

1 Introduction

Concentric circles in rock art found in Columbia or Australia are among the old-
est geometric shapes created by homo sapiens. These date back to 40,000 until
20,000 BC. Much later, in the new stone age (Neolithic Period) from 8000 BC on,
spiral patterns (mathematicallymore complicated than circles) were carved on stones
and temple walls in many places all over the world, for example, in Newgrange (Ire-
land), Gobekli Tepe in Turkey and on Malta. At the same time spiral patterns also
appeared on Greek potteries, Scythian ornaments, Japanese clay figures, and other
objects.

A simple question, although difficult to answer, is why spiral patterns or other
symbols (swastikas, meanders, serpents,...), as well, appeared in the ancient cultures

K. Tsuji (B)
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e-mail: kts@shimadzu.eu
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4 K. Tsuji and S. C. Müller

independently in various places. There was no obvious way to communicate with
each other. How did these symbols come to be universally shared?

Since they are frequently found in places ofworship, it is often believed that spirals
at that time probably had some religious or mythological meaning. The spiral might
indicate an eternal life outward and death inward, or renewal, rebirth and growth. The
old dies away and is replaced with the new. On the other hand, geometrically spiral
forms have just developed from simple lines or curved line segments. Therefore, any
intelligent ancient people could create/draw spirals. However, we will not discuss
the possibility of a deeper meaning of spirals here but show some typical examples
of spirals in our human history from the pre-historic period on to the middle ages
and the Renaissance period, leaving it to the readers to think about the particular
properties of spirals.

The sections of this chapter are divided according to the arrow of time: Sect. 2
“Older than 5000 BC”, Sect. 3 “From 5000 to 2000 BC”, Sect. 4 “From 2000 to
1 BC”, and Sect. 5 “From 1 to 1600 AD”. Spirals/vortices in various cultures are
shown chronologically with some exceptions where there is a temporal overlap of
two cultures.

For further introductory reading some general books are suggested [1–3].

2 Older than 5000 BC

RockArts in Chiribiquete National Park andNitmilukNational Park

Symbolic paintings have been created by mankind ten thousands of years ago.
Prehistoric paintings on vertical rock faces in the Amazonian wilderness in Colom-
bia were recently photographed and filmed. The once populous Karijona Tribe most
likely painted these masterpieces. The tribe continues to live uncontacted in the vast
rainforest. Anthropologists and explorers have studied the region for hundreds of
years [4, 5].

Images of rock art of this age have been discovered, for instance, in Chiribiquete,
Columbia (Fig.1). A remarkable symbol here is the set of concentric circles close to
a boat, as if the boat people are close to a dangerous eddy.

Concentric circles (“target patterns”) belong to the earliest elements of symbolic
art, as documented also in the Nitmiluk National Park in the Northern Territory of
Australia. In this park some of Australia’s oldest Aboriginal art can be seen. On the
sandstone of a gorge system paintings appear in many styles, believed to date back
40,000 years. “Targets” are frequently used, but some of them seem to exhibit breaks
at their centers, perhaps a first step to create spiral-shaped symbols [6].

Drawing spirals instead of circles may not appear to require much imagination.
Both symbols ask the painter to draw circular or almost circular traces. But there is a
basic topological difference: a spiral drawn this way starts at some point and ends at
another, whereas the circle rotates without beginning or ending. Naively this looks
like a simple difference, but conceptually it is a very big one. From the historical
point of view the symbolic use of spirals may have evolved much later than that of
circular patterns. (Details on the difference between circles and spirals are described
in the introduction of chapter Appearance in Nature.)
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Fig. 1 Rock art in Chiribiquete, Columbia. Photograph: F.F. Bonell/Ecoplanet

3 From 5000 to 2000 BC

3.1 Megalithic Art in the Neolithic

Some of the most ancient spirals, painted on a wall or carved into stone, have been
discovered in Ireland. The first farmers who settled in Ireland, sometime before
3000 BC, arrived here from the Mediterranean, bringing with them the skills of
crop-growing, domestication of animals and pottery. They came by the Atlantic
sea-route and made their way northwards and westwards. Their most characteristic
monuments are the great megalithic tombs for collective burials, the earliest works
of architecture which survive in France, Britain and Ireland.

The most elaborate of these tombs are the passage-graves - large round mounds
of stone covering a burial chamber. There is a magnificent tomb we can admire at
Newgrange, built around 3200 BC, placing it prior to other mainstream guesses at
the ages of Stonehenge and the Egyptian pyramids (Fig. 2). Newgrange is located
west of Drogheda on the north side of the river Boyne [7].

This art in Ireland is purely abstract - spirals, zig-zags, meanders, and many other
forms - and the designs have been placed onto the tombs by carving with a stone
point, quartz or flint, because this was before the knowledge of metal. This abstract
art obviously had a deeply felt religious significance, a meaning now lost to us.

Other outstanding examples can be found on Gavrinis island, which is a small
island situated in the Gulf of Morbihan in Brittany, France. It contains the Gavrinis
tomb, a megalithic monument notable for its abundance of artistic carvings. Among
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Fig. 2 Megalithic art: the entrance passage to Newgrange and the carved kerb entrance stone

them a Neolithic dolmen stone, a decorated slab with an anthropomorphic “shield”
motif on top is famous.

At the time of its construction, around 3500 BC, the island was still connected
with the mainland. The rich internal decorations make Gavrinis one of the major
treasuries of European megalithic art.

3.2 Malta Temples

The most famous and ancient of all these spirals are undeniably the ones found in
Malta. The megalithic temples of Tarxien in Malta (built 3600–2500 BC) present
another example of the arts in Neolithic times, now far away from Ireland (Fig. 3).
This temple site is a complex of four megalithic structures built by the mysterious
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Fig. 3 Spiral pattern in a Tarxien Temple, Malta

creed known as the “Temple Builders”. The four temples are rich in megalithic art,
constructed as they are from stone blocks adorned with relief-work in spiral patterns,
as well as the carving of goats, bulls, pigs, and a ram. The significance of the spirals
remains ‘occult’ in the strictest sense, though archaeologists believe that the animals
depicted may have been sacrificial offerings. The Ġgantija-Temples on the island
Gozo in the archipelago of Malta belong to the oldest man-made structures in the
world (comparable with architectural marvels like Stonehenge or the pyramids). The
spirals which were etched at Ġgantija may well be the oldest ever recorded. They are
at present too faint to be clearly recognizable with one’s naked eye, however tracings
taken in 1829, when the temple was first excavated, are still pertinent [8].

Legend says that a giantess erected this structure within a single night, while
holding her baby on her arms.

3.3 Scythian Gold

Duringmany centuries the east of the ancient continent Europe has been attacked and
invaded by horseback warriors and nomadic hordes: the Huns, Avars, Magyars, and
Mongoles. Very long before (between the 9th until the 1st century BC) the Scyths
inhabited the areas north of the Black Sea and dominated the western and central
Eurasian steppes. Not much has been written about them, the best-known account is
in the Histories of Herodot. And this people is mentioned also in the Bible.

The Scyths, probably related to Iranian people, were among the earliest nomads
to master mounted warfare. They fought with bows and arrows on horseback. They
developed a rich culture characterized by opulent tombs, fine metalwork and brilliant
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Fig. 4 Golden Scythian pectoral or neckpiece, from a royal kurgan (burial mound) in TostaMohyla,
Pokrov, Ukraine, dated to the second half of the 4th century BC. The pectoral is made of solid
24 carat gold and weighs about 1150 g

art style. At their peak, they came to dominate the entire steppe zone, stretching from
the Carpathian Mountains to China and South Siberia [9].

The golden pectoral in Fig. 4 gives ample proof for the high level of goldsmithing
of this people. The style is quite certainly Greek, although the imagery reflects
Scythian interests. It consists of three sections: top section reflecting Scythian daily
life; middle section representing Scythian connection to nature with numerous orna-
mental spirals of opposite chirality; and lowest section thought to represent Scythian
belief in the cosmos and their myth.

As they had appeared from practically nowhere, they suddenly disappeared, but
not without leaving permanent traces. At places now covered by thin grass, one has
to dig deep.With some luck one will discover precious treasures, many of themmade
of gold and also mummies who tell about life at distant times.

3.4 Doguu, Japan

There are two kinds of old clay figures in Japan, doguu and haniwa. Both are figures
of human beings or animals. Doguus were made during the prehistoric Jomon period
(14000–400 BC), while haniwas were produced much later (3rd–6th centuries).
Different from haniwa, which were found together with a dead body in mounded
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Fig. 5 Doguu with various
spiral patterns found in
Muroran, Hokkaido, Japan
(Tokyo National Museum)

tombs, it is not clear for which purpose doguus were created. About 15000 doguus
have been found across Japan. Interestingly, there are no whole figures among them.
They might have been intentionally broken. Figure5 shows one of the doguus found
inHokkaido, Japan. The estimated time of creation is 1000–400 BC [10]. The clothes
of this doguu exhibit spirals of different shapes, some of them composed in an intri-
cate way.

4 From 2000 to 1 BC

4.1 Celtic Art

The Celts were an ancient people occupying the regions north of the Alps from
800 BC on. Later (450–60 BC) they settled from the Atlantic to the Black Sea and
even as mercenaries in the region around today’s Ankara in Turkey. There are no
written records about them and their history and rituals have been transmitted by
say [11].
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Spirals are very common inCeltic symbolism. TheCelts developed different spiral
shapes which are presented in the following table, including short characterizations
of their possible symbolism and meaning.

Celtic spirals

a Basic structure of a left-winding spiral, foundonmanydolmen andburying
places in Ireland and France. Its realmeaning has still not been deciphered.
One assumes that it signifies travels from the inside life to the outer soul,
carrying along the notion of growth and cosmic energy

b Starting clock-wise from the center this spiral is strongly connected with
water, power, independent motions and migration of tribes

c Two connected spirals are a variation of the basic spiral. Their chirality
is opposite. It serves as a symbol for Becoming and Passing. The path of
the spiral starts from a point, then approaches the end of the way, a point
again

d This is a variant of the double spiral
e A further variant of the double spiral: more difficult to draw
f This spiral system denotes the duality of nature and equilibrium. There is
a correspondence to the Yin Yang symbol. It symbolizes the number 2,
which is also the symbol for the Moon

g This threefold spiral, also called triskele, is an ancient symbol of the
druides. It symbolizes the becoming and the ending of life in our world.
Aspects flowing outward come back to the point where everything began

h This example without beginning and without end symbolizes the threefold
goddess. It is connected with the number 3 and is a symbol for the Sun

After Caesar’s occupation of Gallia (a Celtic territory), the Celtic culture is
severely damaged and mixed with Roman culture In the height of their existence
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Fig. 6 The Celtic knot in “The Book of Kells”. Reprint permitted by the Trinity College Library
Dublin

the Celts suddenly disappear east of the Rhine river. But on the long run there remain
areas where they can continue their life and their artistic achievements. On the British
islands, after the breakdown ofRoman rule (around 400AD), Celtic traditions remain
alive but under difficult conditions against the newly invading Angels and Saxons.
This people has been slowly pushed towards the western boundaries of the conti-
nent, thereby preserving their ancient languages such as Irish, ScottishGaelic,Welsh,
Cornish, and Manx.

Celtic art, as popular as it is in our days, has an old history starting with Neolithic
origins. Many symbols and ornaments are popular now, and they have been commu-
nicated to us through the centuries by a number of documents, for instance the richly
illustrated “Book of Kells” [12] (8th or 9th century AD).

Also important is the abstract art that characterizes Celtic manuscripts. The main
motif is the Celtic knot or Eternal knot. (See Celtic knot [13].) However, the Book
of Kells features representational art, especially fantasized animals (Fig. 6).

4.2 Egyptian Spirals

Ancient Egyptian culture flourished between about 5500 BC with the rise of tech-
nology (as evidenced, for instance, in the glass-work of faience) and 30 BC with
the death of Cleopatra VII, the last Ptolemaic ruler. This culture is famous today for
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the magnificent monuments which celebrated the triumphs of the rulers and honored
the gods of the land. The ancient Egyptian dynasties have been the source of amazing
works of architecture and art.

When searching for the early use of spiral symbols, however, one is surprised how
little they have been used during the centuries. But there are exceptions, although
some of themmay be found far away from theEgyptian heartland.We refer here to the
ruins of Naqa, located in Nubia (today mostly in Sudan), the southern close neighbor
of Egypt, which had a sometimes rather turbulent and often hostile relationship with
the North. (The Kingdom of “Kush” even conquered Egypt around 700 BC and black
pharaohs reigned the country for a while.)

Naqa Amun Temple

Naqa was only a camel or donkey’s journey from the Nile, and could serve as a
trading station on the way to the east; thus it had strategic importance, since rulers
had to travel through the steppes when using a bridge between the Mediterranean
world and Africa.

The site has two notable temples, one of them dedicated to the Egyptian deity
Amun-Ra. The first European travelers reached Naqa in 1822 and since 1995 Naqa
has been excavated. Archaeologists have cited Naqa as one of the most important
centers of this first civilization coming from the deep south of Black Africa [14].

Amun was a deity in Egyptian mythology who in the form of Amun-Ra became
the focus of the most complex system of theology in Ancient Egypt. Amun was
often worshiped as a ram, God of their flocks and their fertility. Amun represented
the essential and hidden, whilst in Ra he revealed divinity. The sculptures in Naqa
temple, built around 50 AD, show the diversity of styles - there are clear influences
from the hellenistic-roman and also from the Egyptian culture, thereby emphasizing
in the figures the African ideal of beauty. The colossal twelve ram statues in front of
the Amun temple show a classic-Egyptian posture of rams, where the stylistic spirals
on one of them is without equal in Egypt (Fig. 7).

Fig. 7 Left: Rams as guards in front of the Amun temple of Naqa; right: close-up of spirals on the
skin of a ram may represent fluffy curls of wool. Reprint permitted by D. Wildung/Naga Project
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The inhabitants of Naqa left their city suddenly about 1800 years ago. Nobody
knows why. The buildings were preserved by the sand similar to Pompeji under the
lava streams. Thus it offers genuine information to archeology.

4.3 Thai Pottery

Ban Chiang denotes an archeological site located in Nong Han district, north-east
Thailand. Discovered in 1957, the Ban Chiang Archaeological site attracted enor-
mous publicity due to its distinctive red painted pottery.

Villagers in the Nong Han District in North East Thailand had uncovered some
potterywithout insight into its age or historical importance. In 1966 scientists familiar

Fig. 8 Bowl with base. Lopburi Thailand, Bang Chiang culture. 210–200 BC. Reprint permission
by Museum für asiatische Kunst, Berlin
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with possible ancient origins of civilization in Southeast Asia stumbled by chance
into a place with exposed tops of pottery jars of small and medium sizes made by
very rudimentary techniques.

According to the radiocarbon method the earliest grave dates from about 2100
BC, the latest about 200 AD. Bronze objects include bracelets, rings, anklets, wires
and rods, spearheads, axes and adzes, hooks, blades, and little bells. Finally however,
further analysis suggests that the initial settlement of Ban Chiang took place by about
1500 BC, with the transition to the Bronze Age about 1000 BC. Still the ceramics
belong to the oldest on earth.

Many bowls are painted with red ornaments including imaginative patterns, bands
or compact spirals. These are not so different frompaintings onEgyptian pre-dynastic
pottery of about 5000 years ago. Figure8 shows a beautiful example of an elegant,
filigran spiral that could be the product of a modern artist.

The importance of the Ban Chiang site to discovering the roots of the people of
Thailand is a firm statement. UNESCO’s designation of the Ban Chiang Archaeo-
logical Site as a World Heritage Site in 1992 highlights this importance [15].

4.4 Phaistos Disc

The ancient city of Phaistos on the south coast of Crete was part of the growing
Minoan empire.While the city dates perhaps as far back as 6000 BC, the firstMinoan
palace was erected around 2000 BC.

It was destroyed by a strong earthquake in 1700 BC caused by a volcano erupting
on the nearby island of Thera (now Santorini) and rebuilt on top of the old one.
The palace was again destroyed a few centuries later, and again rebuilt. Around
1400 BC, Crete was invaded by the Achaeans of Greece and both cities of Phaistos
and Knossos were destroyed.

The Phaistos Disc made of fired clay was discovered in 1908 in the Phaistos
palace-site (see Fig. 9). It possibly dates back to the second millennium BC. The
disk is about 15 cm in diameter and covered on both sides with stamped symbols.
The inscription was apparently made by pressing hieroglyphic “seals” into the soft
clay creating a body of text with reusable characters: an early document of movable
type printing. It features 45 distinct signs in a clockwise sequence spiraling toward
the center of the disk. Its purpose and meaning, and even its original geographical
place of manufacture, remain disputed, making it one of the most famous mysteries
of archeology.

Many attempts have been made to decipher the code behind the disk’s signs.
They have been compared with different writing systems: e.g., hieroglyphs, Linear A
(undeciphered systems used inMinoanCrete), LinearB (MycenianGreek, developed
later than Linear A) and others. These attempts are generally thought to be unlikely
to succeed unless reasonable comparison to other inscriptions can be made [16, 17].
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Fig. 9 The Phaistos Disc, Creta, ≈ 2000 BC. Archaeological Museum of Heraklion

4.5 Maya Temple

Chichen Itza on Yucatan peninsula in Mexico was once a center of the Maya culture.
It was a regional capital from the 10th century (the end of the late classic period)
to the 13th century (the beginning of the terminal classic period). El Castillo is a
step pyramid at Chichen Itza and it served the god Kukulkan, a feathered serpent.
Therefore, it is also called the Temple of Kukulkan. The sculpture of the Kukulkan
head at the foot of this pyramid has spirals on its right and left cheeks (see Fig. 10).
Spirals are not common in Maya glyphs, but there are quite a few stelas, pottery
bowls and columns with spiral patterns [18].
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Fig. 10 A feathered serpent sculpture, Kukulkan, at the base of one of the stairways of El Castillo

4.6 Nazca Lines and Cantalloc Aqueducts

The Nazca lines are huge geoglyphs in the desert close to Nazca and Palpa in Peru.
The area of the Nazca plain is about 500 km2. There are lines, geometric shapes
(triangles, trapezoids, circles, spirals, or combination of them) as well as figures of
human beings, animals (“The Monkey” with a spiral tail, as shown in Fig. 11, left),
and plants. These remarkable figures were created between 500 BC and 500 AD. The
area of the largest figure is about 370 m2.Why did theymake such huge figures?How
did they make them? There are various theories and speculations: religious reasons,
astronomical aspects, or some useful applications [19, 20]. But till now there is no
clear explanation yet.

Beyond their mysterious drawings in the sand Nazca people developed a practical
sense for using spiral structures. They built ingenious aqueducts (more than 40)
in the shape of spirals leading into depth, which were used all year round (see in
Fig. 11, right). The aqueducts ensured the supply of water to the city of Nazca and
the surrounding fields, allowing the cultivation of cotton, beans, potatoes, and other
crops in an arid region [21].
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Fig. 11 Left: “The Monkey” of the Nazca lines; right: Cantalloc aqueducts

4.7 Stupa at Sanchi, Bhopal, India

Sanchi is a town in central India and is famous for its Buddhist structures. The
Great Stupa is one of the most famous Buddhist building complexes (Fig. 12, left),
constructed 175–125BC[22]. It has four gateways (south, north,west, and east). Each
of them consists of three intricatedly carved architraves (crossbeams) supported by
figures of elephants or other creatures. As shown in Fig. 12, (upper right, the northern
gateway), both ends of each architrave are spirals, one being the mirror image of the
other, which may be footprints of Buddha, or a Bodhi tree under which, as is widely
alleged, Gautama became the Buddha, or a part of a snake (lower right of Fig. 12).

Fig. 12 Left: the Great Stupa at Sanchi viewed through the southern gateway; upper right: right and
left ends of the crossbeams of the northern gate showing spirals; lower right: a Naga coil (serpent)
with a small figure attached to it



18 K. Tsuji and S. C. Müller

5 From 1 to 1600 AD

5.1 Trajan’s Column and Bernward’s Column

Towering monumental columns have been frequently built to honor the glorious life
of influential people. There are many of them in different cultures. Here we show in
Fig. 13 (left) as an early and famous example the Columna Traiana erected for the
Roman Emperor Trajan (53–117 AD) on the Forum Romanum. It was constructed
from marble blocks and weighs 1100 tons. Placed there in the name of the Roman
senate it has been a prototype for later honor or victory columns [23].

The stonemasons chose a ribbon climbing upward for about 27 m and winding
23 times as a helical band around the cylindrical column surface, thus creating a
continuous band (length, 200 m) for the sculptors to present scenes from the life of
the honored person (Fig. 13, middle). Scenes about successful wars are depicted and
about 2500 persons appear.

This piece of architecture with a remarkable stability has remained at the same
place until today. It is hollow and a spiral staircase with a whole turn every 14 steps
leads upwards. Its steps have remained even and well-proportioned through all these
centuries. The column shows an elegant way to tell an interesting story in space and
time.

In the Romanesque cathedral of Hildesheim in Germany’s north one can admire
Bernward’s Column, also called the Christ column (see Fig. 13, right). It is a

Fig. 13 Trajan’s Column, Rome (left) and Bernward’s Column, Hildesheim (right)
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masterpiece of Ottonian art from the time of Bishop Bernward (993–1022), which
had enormous significance together with some other artistic highlights of the time:
e.g., the bronze Bernward Doors and the painted wooden ceiling of the Romanesque
St. Michael’s Church showing the genealogical tree of Jesus Christ and also located
in Hildesheim (as a UNESCO World Heritage Site).

This is an honor column in conscious imitation of Trajan’s marble column in
Rome. It uses the same principle as Trajan’s Column in that it depicts a sequence of
events along a spiraling ribbon winding around the cylindrical surface of the column.
The column had been cast in bronze (height 3.8 m, diameter 58 cm). Just as stone
columns in Rome present the military deeds of the Emperor in an upward spiraling
frieze, so Bernward’s Column depicts the peaceful deeds of Christ, beginning with
his baptism at the Jordan and ending with his triumphal entry into Jerusalem. The
column was originally crowned with a triumphal cross [24].

Apart from the remarkable technical achievement, the scenes on this column
express a liveliness and dynamic motion which was very unusual for the time.
It reflects Bernward’s efforts to create a Nordic Rome for the renewed Christian
Imperium Romanum.

5.2 Nordic Symbols

A picture stone, or figure stone, is an ornate slab of stone, usually limestone, which
was raised in Germanic Iron Age and Viking Age in Scandinavia. More than four
hundred picture stones are known today [25]. The greatest number of well conserved
stones is found on the island of Gotland (see Fig. 14, left) [26]. Cultural achievements
in the northern parts of Europe may have been lost, because wood as a working
material has decayed during the centuries. Stones have survived though, and thus we
can admire ornamental patterns like many-fold spirals on picture stones often found
on a pagan graveyard close to some church (provenance 5–14th century). Spirals
may symbolize the Sun and may be related to the life cycle - birth and death. These
spirals are reminiscent of Celtic symbols like the triskele (see Sect. 4.1), but usually
have more than three spirals.

A characteristic symbol of Nordic art alluding to a rotating spiral is the vortex
wheel (a modification of the swastika), dated to the 5th and 6th centuries AD (Ger-
manic Iron Age) and mostly found in Sweden. This ornament is also engraved into
slabs of stone. For understanding its suggestive appeal one should see the colors
which have not been conserved up to our days. Probably red was combined with
black and white. Many other motives have been used for decorating this type of
stones such as fighting warriors, dragons, serpents, and others.

The half-moon shaped segments of the vortex wheel appear 6-, 12-, 16-, or
24-fold. Sometimes small triangles between these segments emphasize the impres-
sion of a rotating structure. The decorative edge is likely to represent the radiation
of the Sun.
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Fig. 14 Left: Vortex wheel on a picture stone found in Havor, Gotland, Sweden [26]; right: the
stones or steles with spiral patterns discovered in the ruined city Citânia de Briteiros, Northern
Portugal

A comparable tradition is found on the Isle of Man where high funeral crosses of
stone were richly ornamented with the same teeming world of warriors and Norse
deities as the image stones of Gotland.

Quite amazingly, wheels like the ones in Scandinavia were also known from
the Iberian Peninsula. The stones or steles discovered in the ruined city Citânia
de Briteiros, Northern Portugal, in Oppidum Santa Terga, Galicia, or in Cantabria,
Northern Spain, are all about 1000 years older than the Nordic discoveries (Fig. 14,
right) [27].

5.3 Buddha, Nara

The Rushanabutsu (Fig. 15, left) of the Todaiji Temple in Nara, the old capital of
Japan, is familiar under its conventional name “Daibutsu” (the big Buddha). The
construction began in 745 AD and took 7 years till the ceremony for “opening eyes”.
It was burned down twice in 1180 and 1567, and each time reconstructed. The
height of the statue is 14.7 m. His head consists of hair forming a univalve shell.
Buddha statues of Gandhara (an ancient Indian kingdom, now in Pakistan) has wavy
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Fig. 15 Rushanabutus (big Buddha) in Todaiji, Nara, Japan 750 AD and the helix-shaped hairs

hairs, affected by Greek culture, while in Mathura (an Indian city, believed to be the
birthplace of Krishna) the hairs form a helix shape, as shown in Fig. 15 (right). This
shape was kept on its way through China and Korea to Japan. The diameter of the
hair helix is 22 cm, the length 21 cm and its weight 1.2 kg [28].

5.4 Book of Gospels (Evangeliar), Quedlinburg

This luxurious Carolingian manuscript was written about 840 AD and richly deco-
ratedwith numerousmagnificent pictures. It was passed to themonastery of Quedlin-
burg, Germany (founded around 936 AD). As part of the treasure of the monastery’s
church it was robbed in 1945, but could be retrieved in 1989 under dramatic circum-
stances. Today it is exhibited in the Pierpont Morgan Library, New York [29].

Our picture shows the beginning of the Gospel according to John (in German,
Johannes-Evangelium) with blue background and a text written in golden capital
letters:
IN CHRISTI NOMINE INICIUM SANCTI EVANGELII SECUNDUM IOHAN-
NEM [30] (Fig. 16).

An ornament is woven into the blue background: a vortexwith a golden/blue abyss
at its center, resembling the eye of a hurricane (see Fig. 2 in chapter Appearance in
Nature). There is no explicit comment about its meaning, but it may relate to the
first verses of the Genesis.



22 K. Tsuji and S. C. Müller

Fig. 16 Gospel BookGermany,Westphalia, mid 10th century.MSM.755 fol. 157r.Morgan Library
and Museum

In the first book Moses, Chapter 1,1-2 the just created earth was without form
and void, and darkness was about the deep and the Spirit of God moved upon the
waters. Following some exegists the notion of a chaotic state without any shape
was introduced (the Tohuwabohu), which is invaded by a primal flood, the abyss,
symbolizing the abysmof the cosmos. And over all this the Spirit of Godwasmoving.

What a scenario! Is it caught by the picture we have presented here?

5.5 Samarra

The minaret with a twisted spiral form in Samarra (the Great Mosque) was built in
the middle of the 9th century by Abbasid Caliph Al-Mutawakkil (see Fig. 17, right).
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Fig. 17 Left: Samarra during the early 20th century, the mosque and its enclosure at the foreground
and the city at the background; right: the great mosque of Samarra

Samarra is located in central Iraq and was the capital of the Abbasid Caliphate from
836 to 892: the capital before and after was Bagdad. Since the occupation was only
short, the ruins of Samarra are well preserved as shown in the left photograph of
Fig. 17 taken during the early 20th century. The tower stood at an outer enclosure of
444×376 m2. Minarets with a spiral form were constructed during the 9th century
in Egypt, too. Later the form of a minaret was changed to a column, dome or pencil
form. But there often is a spiral staircase or slope inside [31].

5.6 Spiral Motives in the Medieval and the Renaissance Arts

Middle Ages

In the period between the Classical Age and the Renaissance, spirals continued to
appear in Western Art, but in Romanesque (1000 ≈ 1200 AD) and Gothic style
(≈1150–1500 AD) one does not encounter so many any more. Many surviving
examples are rudimentary and simple, although some are more complex. The spiral
pattern seems to have flourished mainly as an element of decoration, and - instead -
labyrinths, plated bands or plant motives became dominating ornaments [32, 33].

Let us show a few examples in Fig. 18.
About 17 km west of Jerewan, Armenia, one finds the ruins of Swartnoz and the

remains of the Armenian “Celestial Angels Cathedral” erected here in the middle
of the 7th century and dedicated to the Holy Gregor. At the time of its construction
this area had been overrun by Muslim Arabs and intensifying wars between the
Byzantine and Arab armies influenced this building endeavor. The exterior church
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Fig. 18 Top-left: “Armenian Ionic” capital on top of a column in the ruins of Swartnoz; bottom-
left: capital in the Église Saint-Étienne de Franchesse; top-right: front of the inner portal bow of the
church of the village San Pedro de Gaíllos (Province Segovia, Spain) displaying - also small spirals
(1200 AD); middle-right: in the tympanon of the church of Bembrive (in the province Pontevedra,
Northwest Spain) one detects 3 spirals (12th century); bottom-right: Prats-de-Mollo-la-Preste, the
wooden church entrance door shows original iron-mounts with spiral motives (13th century)

design, featuring basket capitals with Ionic volute mounts, reveals the influence of
Syrian and northern Mesopotamian architecture (see Fig. 18, top-left).

Another capital with spiral design is found in the church of the village Franchesse,
located in central France between the cities Moulins and Nevers (Fig. 18, bottom-
left). Frequently arches or tympani are chosen for the display of sculptures and
symbols including spirals, as shown in the upper two pictures on the right side of
Fig. 18. Finally spirals have been used for decorating wooden doors, as in the village
Prats-de-Mollo-la-Preste (“Meadows of Mollo”) located in the canton Le Canigou
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in the Pyrénées near the Spanish border (Fig. 18, bottom-right). Similar decorations
are found in Navata, province Girona, Spain, for the Prieuré de Marcevol in the
Roussillon and for other Romanesque doors in the Pyrénées.

But we do not recall any important treatise from medieval times that focuses
on the meaning and significance of the spiral in a religious, spiritual, scientific or
artistic sense. There are exceptions, of course: the name of Hildegard von Bingen
(1098–1179) has to be mentioned as the outstanding woman of the time. She was,
as a Benedictine, an abbess, poet, composer and a well-known universal scholar
concerned with mysticism, medicine, ethics, and cosmology. She was worshiped for
her personality as a holy person. Although she did not explicitly include spirals into
her teaching, she is frequently quoted with the sentence:
Angles fly in spirals, the devil only straight ahead (what experts think she never said).

The Gothic workmen of the 13th century welcomed the spiral as a decorative
motive almost more warmly than their Greek predecessors had admired it before
them. But factually, in the decorations of the facades or the spacious interior of
Gothic cathedrals one does not find so many spirals. Instead, one used ornaments
like flamboyant patterns, plants as templates, especially oak leaves or the gable
(Wimperg in German). The window painting was preferred to frescos.

Renaissance

The advent of the Renaissance epoch (15/16th century) signifies the European cul-
tural changes in the times of a rebuilding phase leading the Middle Ages to Modern
Times. Effortsweremade to revive the cultural achievements of theGreek andRoman
antique. Starting from Italy, artists and scientists influenced other countries, in par-
ticular those north of the Alps, by their innovative painting, architecture, sculpture,
literature, and philosophy [34].

A significant influx of Islamic civilization, culture and science contributed to
these new and modern ways, such that revival in the Renaissance of central Europe
implemented Arabic elements from Spain or from Asiatic countries: for example,
from Samarkand in Uzbekistan which was an important station on the silk road. This
local capital preserves until today magnificent buildings of Islamic Renaissance art.

The overwhelmingly rich artistic and architectural resources used in the Renais-
sance period do not assign a particular importance to spirals or vortices. Nevertheless,
these symbols found acceptance in decoration and architecture when spirals were
introduced, for instance, in arabesques or in the form of volutes.

The arabeske (from Italian arabesc) developed from ornaments exhibiting Hel-
lenistic examples. It mainly consists of entwined lines of stylized plant tendrils. Orig-
inally there is a connection to Arabic graphic characters (see Fig. 19). It made its way
to Europe through Moorish art in Spain. Some of the most impressive arabesques
can be admired in the halls of the Alhambra in Grenada, Spain.

In Renaissance art we often find volutes (French expression for “rolled up”), also
derived from Hellenistic art. In the design of capitals of Greek columns one had
developed different types. Besides the Doric and the Corinthian column the Ionic
one with a pair of volutes was very popular (Fig. 20, left). Volute may be found at
consoles, gables or capitals.
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Fig. 19 Part of a 15th century ceramic panel from East Islamic Samarkand with white calligraphy
on a blue arabesque background

In the construction of basilica-type churches there are angles to be considered
which form between the broad lower façade and the upper narrower parts (Fig. 20,
right). An S-shaped form together with small volutes at the lower end is then incorpo-
rated to conceal the abrupt transition between lower and upper portion of the façade.
Later on, these spirals in form of volutes will be highlights in the Baroque era and the
Art Nouveau ( e.g., in the work of Gustav Klimt, see chapter The Arts and Beyond).

In Renaissance sculpture the Figura Serpentinata (serpent-like) denotes a tortu-
ously designed figure. From the ornamental point of view this belongs to the spiral
motives. It is a characteristic feature of the mannerism, a style developed in the late
stages of Renaissance art. As an antiquemasterpiece of this style we show the famous
Laocoön group, created probably around 200 BC by Greek sculptors from Rhodos.
A copy of the lost original was excavated in Rome in 1506 and then displayed in the
Vatican (Fig. 21). Early representations of such “screwed” figures were created by
da Vinci, Raffael and Michelangelo.
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Fig. 20 Left: Ionic Capital from the Temple of Minerva Polias at Priene in West Turkey, north of
Milet (≈ 700 BC); right: Basilica Cattedrale di Santa Maria Assunta in Carpi, Italy

Fig. 21 The Laocoön group in the Vatican museum

With this compact overview ofMedieval and Renaissance art we close the chapter
on Cultural History. For all the aspects that have flown into the developments of mod-
ern history, some relevant information can be found in a subsequent chapter TheArts
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and Beyond. There is a number of personalities and artists to be introduced. Cultural
achievements of interest in modern times will be highlighted and acknowledged.
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Appearance in Nature

Stefan C. Müller and Kinko Tsuji

Abstract Many spirals and vortices appear in nature both in the inanimate and the
living world. As examples of the non-living nature some spirals and vortices of
various sizes are selected: spiral galaxies, hurricanes and tornadoes, aerodynamic
turbulence, crystal growth on surfaces and carbon nanotubes. In the realm of living
structures, we consider rigid spiral forms (for example, seashells and snails), as
well as flexible ones like the tail of a chameleon or a sea horse. Beyond fauna we
find in flora many flowers and leaves that are arranged in spiral form. A general
spiral tendency in vegetation is discussed, following ideas proposed by J.W. Goethe.
The Fibonacci numbers, which are closely related to the positioning of leaves, are
introduced. Other interesting topics are Leonardo’s flying spiral, insect eyes and fish
vortices.

1 Introduction

A homework for school children: “Find spiral forms in nature”.

The next day some children brought snails or some kind of fiddlehead ferns, some
children showed their fingerprint and hair whirl, and others had made a photograph
of water flow at the suction opening in the bathtub or showed a photograph of a
tornado which had appeared in a newspaper.
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Fig. 1 Nodal points of crossing lines and curved forms

There are in fact many spirals and vortices in our environment: in fauna and flora,
as well as in the non-living world. But why are spirals formed?Would it be a problem
for snails to have a circular cone? Why does water not flow straight away from the
bathtub? Why or how are tornadoes created? Why have some proteins helical form?
Here we encounter many, many questions. And to each question there is for many
cases an appropriate answer.

Before we try to answer such questions, we will identify some of the structural
elements,which play an important role in the processes of pattern formation in nature.
Many of these elements are found by a reduction to basic aspects of the mathematical
field of topology (see Fig. 1).

Let us start from a simple point which in mathematics has zero dimension, i.e.,
it can, in principle, not be seen, but it exists at the designed location. Points will
play a role for pointed patterns like the arrangement of leaves in a sunflower. As a
next step we introduce a line having dimension 1 and extending indefinitely. Many
such lines in parallel produce well known patterns, as they appear in cloud streets,
stripes on animal skins, in desert sand, and elsewhere. These occupy the plane, i.e.,
a two-dimensional domain.

As illustrated in Fig. 1 a line may be divided by a nodal point from which lines or
line segments extend into two opposite (or different) directions. More interestingly,
three arms may emanate from the point into three different directions. This is the
elementary pattern as a basic step to form, for instance, a hexagonal structure, as we
know it from honey combs, hydrodynamic convection, insect eyes and many more
cases. Again these expand into two dimensions. Considering a nodal point of the
order of 4 (starting point for 4 directions), we find the element of quadratic patterns
covering the plane.

Successively arranged nodal points can form patterns which closely resemble
biological ones, such as branches or flowers as shown in the upper right of Fig. 1.
Certainly higher orders also exist.

The lower part of Fig. 1 shows further developed forms. Around a point a circle or
concentric circles can form. A line can form a spiral. In the framework of mathemat-
ical descriptions a simple circle requires three parameters to be defined: the location



Appearance in Nature 33

of its center in the plane (two coordinates) and the radius determining the trace of
the angular motion along the circular curve. A simple and regular spiral (like an
Archimedean one) requires at least four parameters: the two center coordinates, the
initial angle of motion and the growing distance from the center, yielding the spiral
pitch (see chapter Spirals, Their Types and Peculiarities). Not to speak about the
location of beginning and ending points. Thus, a spiral is a more intricate symbol
than the circle.

A spiral can be left-wound, right-wound, both curled up or curled down or, in
a pair, one curled up and the other curled down. When a line is divided into two
directions, two spirals would develop from it. For a nodal point of the order 3, a
triskele can emanate and further on, for higher order, multi-armed spirals can form,
for instance, in the leaf arrangement.

In this chapter we proceed for the inanimate world from very large spirals of the
order of 1020 m (galaxies) to very small helices of the order of 10−8 m (carbon nan-
otubes). We include the aurora, spiral forms on Mars, various air flows/turbulences
and the surface of minerals. There are various mechanisms for their origin, most of
them certainly relating to nonlinear phenomena. For plants such nonlinearities appear
often in the leaf arrangement (phyllotaxis), for example patterns seen in a pine cone.
The Fibonacci numbers and the golden angle, which are strongly related to the leaf
arrangement, are explained in detail in the Appendix and Sect. 3.4. Interestingly, J.W.
Goethe has already thought about spiral formation in the metamorphosis of plants
and animals. Other spiral examples are: lichen, some corals and algae, or insect eyes.
We also show a “collective spiral”: different from spirals of individual objects, some
creatures (for example, amoebae and fish) behave as a collective and actively form
spirals or vortices.

Wewill explore variousmechanisms of spiral creation. Some of these have already
been established on solid scientific arguments. In other cases, if based on speculative
evidence, we restrict ourselves to qualitative reasoning.

2 From Big to Small in the Inanimate World

2.1 Spiral Galaxy [1]

In our long journey through space we follow a complex path. We may not be astro-
nauts in a small capsule, but just living on the surface of our planet Earth is sufficient
to experience a compound pathway: we rotate around the axis of our planet once a
day (with a maximum speed of 0.465 km/s). Since the Earth circles around the Sun
once every year, we have to include a speed of 29.8 km/s. In addition to these circu-
lar motions the location and dynamics of the solar system in our galaxy (the “Milky
Way”) has to be considered. In this huge assembly of stars or our Sun is located about
28,380 light years (721 × 1012 km) away from its center and moves with a speed of
250 km/s. One revolution around the galaxis center would last 220 × 106 years.
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Fig. 2 Barred spiral galaxy NGC 1300, viewed nearly face-on. Hubble space telescope image,
ESA, NASA

Thus, our Milky Way rotates, and this rotation is connected with its spiral shape.
Beyond our own Milky Way, other rotating galaxies which we cannot see with
the naked eye (except for our neighbor, the Andromeda galaxy, and the Maghellan
clouds) are abundant in our universe.

Shape and Dynamics

A galaxy is a gravitationally bound system of stars, interstellar gas, dust, and dark
matter. Galaxies range in size from dwarfs with just a few hundred million stars to
giants (1014 stars), each orbiting the center of mass of the galaxy.

Galaxies have elliptical, spiral or irregular shapes. Among the spiral galaxies one
has a subdivision for barred spiral galaxies including our own Milky Way, which is
a large disk-shaped barred spiral galaxy about 30 kpc1 in diameter and a kiloparsec
thick. It contains about 200 billion stars and has a total mass of about 600 billion
times the mass of the Sun.

Figure2 shows the barred spiral galaxy NGC 1300. There are linear, bar-shaped
bands of stars that extend outward to either side of the core, then merge into the spiral
arm structure.

Galactic spiral arms have the shape of an approximate logarithmic spiral, a pattern
that can be theoretically shown to result from a disturbance in a uniformly rotating
mass of stars. In earlier years astronomers had discussed the “winding problem”
thinking that the spiral arms were material. But then the arms would become more
and more tightly wound, since the matter nearer to the galaxy center rotates faster

11 pc ≈ 3.26 light years ≈ 30.9 × 1015 m.
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than the matter at its edge. The arms would become indistinguishable after only a
few spiral orbits.

Lin and Shu proposed in 1964 [2] that the arms were made up of areas of varying
density, similar to a traffic jam on a highway. The cars move through the traffic
jam: the density of cars increases in the middle of it. The traffic jam itself, however,
does not move much. In the galaxy, stars, gas, and dust move through the density
waves, are compressed, and then move out of them. More specifically, this density
wave theory argues that the gravitational attraction between stars at different radii
prevents the so-called winding problem, and actually maintains the spiral pattern
[3]. In fact, like the stars, spiral arms rotate around the center and they do so with
constant angular velocity.

As an implication, when clouds of gas and dust enter into a density wave and are
compressed, the rate of star formation increases as some clouds collapse to form new
stars. Since star formation does not happen immediately, the stars are slightly behind
the density waves. The compression wave triggers star formation preferentially on
the leading edge of the arm, where young massive (blue) stars exist, whereas one has
an abundance of old, red stars in the remainder of the galactic disk.

Bars are thought to be temporary structures that can occur as a result of a density
wave radiating outward from the core, or else due to a tidal interaction with another
galaxy. Many barred spiral galaxies are active, possibly as a result of gas being
channeled into the core along the arms.

Recent estimates of the number of galaxies in the observable universe range from
200 to 2000 billion or more, containing more stars than all the grains of sand on
the planet Earth. The space between galaxies is filled with a tenuous gas having an
average density of less than one atom per cubic meter.

2.2 Aurora [4]

Those of us who had the chance to watch polar lights will often say that this was
the most impressive and breathtaking experience of a natural phenomenon they ever
had. The phenomenon can be observed in northern latitudes as Aurora Borealis or
equally well and almost symmetrically in the south as Aurora Australis.

In greenish dim light the Aurora appears above the horizon and displaysmagically
moving patterns, often like fluttering “curtains” or, in rare cases, as a large radiating
spiral as shown in Fig. 3.

Imagine an isolated proton or electron traveling into deep space. It just has been
ejected from the upper atmosphere of the Sun, the corona, and travels with the solar
wind and the embedded interplanetary magnetic field. Maybe it will approach the
surface of the Earth. Its radiation would do severe damage to any life that might exist,
but the magnetic field of the Earth serves as a shield, redirecting the charged material
around the planet so that it streams beyond it. Due to a process called “reconnection”,
charged particles flow back to the magnetic poles of the planet, guided through the
geomagnetic field by curling around the field lines. This causes the display of the
aurora.
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Auroras can be amazingly rich in color. It depends on intensity of the solar wind
and altitude where the aurora occurs. Red auroras appear at the highest altitudes
emitted from excited atomic oxygen, but are visible only under very intense solar
activity. At lower altitudes a green emission dominates. In fact, green auroras are
the most common ones. The excited molecular nitrogen plays a role here, as it can
transfer energy by collision to an oxygen atom. The radiated wavelengths correspond
to forbidden transitions of atomic oxygen. Blue and purple auroras are seen at yet
lower altitudes, where atomic oxygen is uncommon. There, molecular nitrogen and
ionized molecular nitrogen are responsible for these colors. Purple emissions show
up at the highest levels of solar activity.

The connection between the aurora and sunspot activity has been suspected since
about 1880. We know now that during sunspot periods a much increased amount of
electrons and protons from the Sun are blown towards the Earth in the ‘solar wind’
and are deflected by the magnetosphere of the Earth.

Polar lights frequently appear as a diffuse glow in form of a quiet arc or, at higher
intensity, as active “curtains” which evolve and change rapidly, with an impressive
motion recalling the wind blowing through the curtains’ lower edge. Rippling of the
curtains consist ofmanyparallel rays, each linedupwith the localmagneticfield of the
magnetosphere. The light emission generally extends from 80 km, where the density
of atmospheric oxygen strongly decreases, to as high as 640 km above the surface
of the Earth. Behind this amazing phenomena there are in part the complex laws
of magnetohydrodynamics - the study of electrically conducting fluids - interacting
with the impinging charged particles. If the fluid is moving, magnetic fields induce
currents, which in turn polarize the fluid and change the magnetic field itself.

Fig. 3 Aurora vortex above Sandvika in Norway. Licenced from PA picture alliance
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In polar areas all around the globe the aurora has given rise to myths and stories.
The Saami in Norther Scandinavia associate polar light with dancing women or with
their deceased ancestors who want to communicate with them. Indians of North
America believe that medicine men meet to get into contact with them.

2.3 Spiral Formations on Mars

Before returning to our ownplanet Earth,we notice a spiral formation on our neighbor
Mars. Observations have been made of spiral troughs of the polar ice caps with deep
canyons spiraling out from the north and south poles, covering a distance of hundreds
of miles (Fig. 4). These may be the product of changing seasons on Mars, scientists
say. They show that summer sunlight has melted small cracks to build troughs in the
ice, each half of the size of the Great Canyon at 8 km wide and 800 m deep.

In a model calculation based on equations for excitable media (see chapterKine-
matics of Spiral Waves in Excitable Media) propagating waves are reproduced
over thousands of years very similar to those in the north polar ice cap. The canyons
deepened and aligned over time into the curious spirals seen only on Mars. Forming
such spirals requires a large ice cap, a thin atmosphere and temperatures around the
freezing point during the summer [5].

Fig. 4 Martian north polar cup. NASA/JPL/Malin space science system
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2.4 Hurricanes and Tornadoes

Hurricanes belong to the strongest storms on the Earth. They are tropical cyclones
that mainly appear in the equatorial region of the Atlantic and in the northeastern
Pacific Ocean. Similar vortex-like motion of atmosphere and water appear in the
northwestern Pacific Ocean under the name typhoon. These can move towards the
coastlines of countries in East and South-East Asia [6].

Wind speeds may reach 300 km/h causing immense damage when they hit a coast
with mostly unprotected settlements. This is much higher than the wind speed of
violent storms of 118 km/h. For hurricanes and typhoons special categories from 1
to 5 have been introduced. Each higher category involves a higher wind speed.

Hurricanes (an example shown in Fig. 5) form in the zone of trade winds at a
water temperature above 26.5 ◦C. Water evaporates in large quantities and rises due
to convection. Condensation leads to the formation of large clouds. This condensa-
tion of large water volumes releases enormous energies which contribute to heating
the clouds. A high air pressure above the clouds then causes a counter-directed vor-
tex. Subsequently, spiral-shaped rainy bands form. The air masses directed towards
the bottom are subjected to the Coriolis force and start to rotate with their winds

Fig. 5 Category 4-hurricane Floyd (1999) seen from a weather satellite. Highest wind speed:
250 km/h. Affected areas: Florida, Bahamas, North Carolina, Maryland. Photographed by NOAA
(National oceanic and atmospheric administration), NASA



Appearance in Nature 39

blowing counterclockwise in the northern hemisphere and blowing clockwise in the
southern hemisphere. Tropical cyclones are typically between 100 and 2,000 km in
diameter. The upper circulation of strong hurricanes extends into the tropopause of
the atmosphere, which is at 15,000–18,000 m altitude.

Although their effects on human populations are often devastating, tropical
cyclones can relieve drought conditions. They also carry heat energy away from
the tropics and transport it toward temperate latitudes. This may play an important
role in modulating regional and global climate.

Hurricane Eye and Center

At the center of amature tropical cyclone, air sinks rather than rises. For a sufficiently
strong storm, air may sink over a layer deep enough to suppress cloud formation,
thereby creating a clear “eye”.Weather in the eye is calm and free of clouds, although
the sea may be extremely violent. The eye has normally a circular shape, and is about
30–65 km in diameter, though eyes as small as 3 km and as large as 370 km have
been observed (see Fig. 5).

The cloudy outer edge of the eye is called the “eyewall”. The eyewall typically
expands outwardwith height, resembling an arena football stadium; this phenomenon
is sometimes referred to as the stadium effect. The eyewall is located where the
greatest wind speeds are found: air rises most rapidly, clouds reach to their highest
altitude, and precipitation is the heaviest.

Similar but not the Same: Tornadoes [7]

One could call the tornado the small brother of the hurricane, because it is an air vortex
in the atmosphere of the Earth on a much smaller spatial scale than a hurricane. But
its destructive potential is comparatively large, as we know from so many incidents.

A tornado is a vortex with almost vertical rotation axis extending from the bottom
to the lower boundary of the clouds (Fig. 6, left). The fierce storms can happen at
any time of year but are very common in May and June in North America, when
atmospheric conditions tend to be just right for their formation. Themost notoriously
affected region in theUnited States, called “TornadoAlley,” includes theGreat Plains
states of Kansas, Nebraska, and the Dakotas, as well as parts of Texas with about
1200 strikes per year. In Europe the yearly number is 330. Tornadoes remain deadly
and relatively unpredictable, despite recent advancements in weather science.

Most tornadoes last for less than ten minutes, but large tornadoes usually last
longer - around 30 min. Powerful tornadoes have wind speeds of up to 470 km/h.
Actually, the highest ever recorded wind speed is 496 km/h (Oklahoma, 1999). They
can bemore than 3 kmwide and spin across the ground for dozens ofmiles. However,
the more common tornadoes have wind speeds of less than 180 km/h, are about
80 m across, and travel only a few miles before they dissipate.

The generation of tornadoes is a very complex phenomenon and until today inves-
tigated by many scientists. The most intense tornadoes (called “twisters”) emerge
from what are called supercell thunderstorms. These require certain ingredients
including warm moisture near the surface and relatively cold, dry air above. The
warm air will be buoyant, and like a hot-air balloon it will rise. A supercell requires



40 S. C. Müller and K. Tsuji

Fig. 6 Left: Tornado in the Canadian provinceManitoba, 2007. ©Justin1569 at EnglishWikipedia;
right: spiral-shaped waves of excitation that also rotate around a quasi-quiescent center. ©Hess,
Markus, Müller, Plesser, 1987, Dortmund

alsowinds that increase in strength and change directionwith height. Then the updraft
tends to rotate, and that makes a supercell. It churns high in the air and frequently
leads to the formation of a tornado below it. This happens when air descending
from the supercell causes rotation near the ground. Interestingly, one does not yet
understand how tornadoes die.

Cyclones and tornadoes live from a driving energy available by local meteoro-
logical conditions. Both form vortices of rotating water and air that move around a
relatively calm center. The center itself is usually subjected to a significant motion
itself. Remarkably, in chemistry a quite analogous behavior is observed in reactive
media in which an excitable state is formed [8]. This type of systems (see chapter
Chemical Oscillations and Spiral Waves) is apt to form spiral-shaped waves of
excitation that also rotate around a quasi-quiescent center (the core) and display a
reaction distribution that resembles the typical shape of a tornado (the “chemical”
tornado, see Fig. 6, right).

2.5 Air Flow and Turbulence Caused by Obstacles

Kármán Vortex Street

In our age of satellite observation, phenomena on the surface of the Earth become
visible that we have never seen before. In meteorology one focuses this technology
to detect cloud formations for predicting the weather. In this context, sometimes
unusual cloud patterns are observed as shown in Fig. 7 (top): a street of successive
vortices hundreds of kilometers long and developing behind an island, which can
be barely identified in the upper left corner. Fact is that the flow of atmospheric
air over obstacles such as islands or isolated mountains sometimes gives birth to
Kármán vortex streets. When a cloud layer is present at the relevant altitude, the
streets become visible.
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Fig. 7 Top: Kármán vortex street generated by the mountain tops of the island Alejandro Selkirk
in Chile. Photograph taken by NASA GSFC; bottom: downstream wake development behind a
flat plate, Re = 8150, visualized by aluminium dust, illuminated by a sheet of light [9]. Reprint
permission from JPS Japan

An analogous phenomenon had been foundmuch earlier in the laboratory and the-
oretically analyzed by von Kármán in 1911 [10]. This vortex street is a phenomenon
of fluid dynamics, where behind an obstacle in a flow repeating pattern of swirling
vortices form, caused by a process known as vortex shedding, which is responsible
for the unsteady separation of flow of a fluid around blunt bodies. (Henri Bénard
had done corresponding experiments already in 1908.) Taneda observed the flow
at a great distance downstream from the body and visualized such a Kármán vortex
street successfully by using aluminium dust suspended uniformly in water [9] (Fig. 7,
bottom). This pattern is very similar to that of Fig. 7 (top).
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A vortex street will only form in a certain range of flow velocities, specified by
a range of Reynolds numbers (Re),2 typically above a critical value (Rec) of about
90. If Re is smaller than Rec, the flow is laminar. If Re is larger than Rec, the flow
becomes turbulent.

Kármán vortices may appear in the wake of obstacles in a flowing medium. Peri-
odic crosswind forces set up by vortices along the sides of objects can be highly
undesirable, and hence it is important for engineers to account for the possible
effects of vortex shedding when designing a wide range of structures, from sub-
marine periscopes to industrial chimneys and skyscrapers.

Even more serious instability can be created, for example, in concrete cooling
towers, especially when built together in clusters. Furthermore, Kármán vortices are
responsible for such phenomena as the “singing” of suspended telephone or power
lines and the vibration of a car antenna at certain speeds.

Wake Turbulence of Large Aircraft

We may notice air flow by the wind that touches our face. But rarely do we really
know where this flow comes from. We know, of course, that a lot of air is moved
when an airplane starts or lands. But how does it move?

Figure8 shows the large aerodynamic turbulent motion caused by landing air-
plane, visualized by using colored smoke rising from the ground. Such turbulence
is dangerous for destructive action in the neighborhood, especially in the flow field

Fig. 8 Wake turbulence of
large aircraft. The air flow
from the wing of the plane
was made visible by using
colored smoke rising from
the ground. Photographed
by NASA langley research
center (NASA-LaRC)

2The (global) Reynolds number for a flow is a measure of the ratio of inertial to viscous forces in
the flow of a fluid around a body or in a channel, and may be defined as a nondimensional parameter
of the global speed of the whole fluid flow:

Re = ρ · v · d
η

where ρ denotes density, v, velocity, d, characteristic length and η, dynamic viscosity.
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Fig. 9 Development of a compressible vortex after a shock (coming from the right) interacting
with a half-diamond cylinder. Observation with a Mach–Zehnder interferometer, Mach number =
1.19. The weak concentric circles marked by an arrow are caused by a tiny particle sticking on the
surface of the inner glass window

behind the plane. Interestingly, experienced pilots worry less about wake vortices in
rough weather, because the vortex is dissipated by wind more rapidly.

Many such air vortices may form (and remain invisible), when rotating appliances
are used, in production processes or even in the household.

Vortex Formation by Interaction of a Shock Wave with an Obstacle

Shock waves in transparent media are invisible. To visualize them we use the fact
that a shock wave substantially changes the density of the medium that it traverses.
Such density changes in the medium can be observed by Schlieren optics, shadow
graph methods or an interferometer [11].

Figure9 illustrates the interaction of a shock wave with a half-diamond cylinder
observed by a Mach–Zehnder interferometer. After the front of the shock wave (the
top right straight line at t = 0) reaches the diamond tip, the front is curved and a
vortex is formed (t = 20 and 40 µs). One can see that the vortex is growing and that
its center is sliding down the opposite slope of the triangular profile (t from 60 to
140 µs). Quite interestingly, vortices of a chemical reaction are also created, when
excitation fronts are guided along a wall with a sharp, rectangular edge [12].

2.6 Crystal Growth on Surfaces

Many of us have made crystals in school or at home, and wonder about their regular
structures. Just dissolve common salt in water as much as you can at an elevated
temperature (reaching saturation), and wait till the solution cools down to room
temperature (becoming supersaturated). After a while many small, cubic-shaped
crystals will appear with a certain distribution of sizes. To obtain larger crystals one
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may put some of the smaller ones (nuclei) into another hot saturated solution, wait
for a few days, and see what happens.

Not surprisingly, different dissolved substances will give rise to differently shaped
crystals. We can see various crystals in different forms. However, it is not simple
to observe how crystals grow. Development of atomic-force microscopy (AFM)
and scanning tunneling microscopy (STM) provide the opportunity to study at the
nanometer level the surface topology during crystal growth and how it is affected by
impurities, defects, and solution conditions.

With AFM we can see during crystal growth molecules bonding and dissolving,
attaching to some surface - and occasionally forming a spiral structure. Spiraling
steps tend to develop on “screw” dislocations, often located at actual breaks in the
structure of the crystal. Such dislocations create spiraling or multilayered mounds
called vicinal hillocks (Fig. 10, left) [13].

About 10 years before this image was published,Wada investigated in 1985 spiral
growth of nacre (the mother of pearl) in vivo, produced in some molluscs as an inner
shell layer (see Fig. 10, right) [14]. He assumed that the spiral growth originated
from screw dislocation on the host crystal face under the particular environment of
a nacre mineralization front.

Not only nacre but a wide variety of organisms from bacteria to humans produce
such biominerals, synthesizing inorganic complexes like bones, shells, teeth, and
even magnetic material.3 This is intricately related to processes of self-organization
and the generation of patterns, which may lead to synthesis of new functional mate-
rials (frequently on the nanometer scale) [15].

Fig. 10 Left: many crystals grow at low supersaturation on dislocations that produce spiraling
mounds. A crystal of potassium dihydrogen phosphate is shown. Permitted for reuse from [13];
right: electron micrograph of a growing spiral of nacre. Reprint permission from Japan association
of crystal growth [14]

3For example, magnetotactic bacteria orienting themselves along the field lines of the magnet field
of the Earth.
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AFMand STMwill help to answermany questions on biomineralization of nanos-
tructures, for example, questions about the mechanisms or the kinetic factors to
control growing crystals. Supersaturation levels, impurities and defects may affect
growth (compare chapter Liesegang Rings, Spirals and Helices).

2.7 Nanostructures

Spirals or helices as fundamental structures can be found on virtually all length scales
that we have seen in our explorations of outer space or the nano-world. We started
this chapter with a short presentation about galaxies, many of them with a pitch of
spiral arms being of the order of 1020 m. Structuration processes on the planets, like
the canyon on Mars or a hurricane may occupy an area of diameter of 105 m, the
air flow from the wing of an airplane 102 m, crystal hillocks 5 × 10−6 m. Further,
we will demonstrate here that in the world of nanostructures there are nanotubes
developing with a helical pitch of only 10−8 m [16]. A clear indication that patterns
due to evolutionary processes and self-organization of matter act at the basis of the
physical laws that determine our world.

As an example for spiraling effects in a cylindrical nanotube we show three pos-
sible molecular structures: armchair, zigzag and chiral. The left sketch of Fig. 11
is the armchair configuration building on a regular binding structure between adja-
cent carbon atoms, forming vertical lines of hexagons. The zigzag structure sees a
phase shift of the hexagons in vertical direction (Fig. 11, middle). The right sketch

Fig. 11 Three types of
cylindrical carbon
nanotubes. Left: the armchair
configuration; middle: the
zigzag structure; right: a
chiral pattern. Reprint
permitted by M. de Crescenzi
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of Fig. 11 shows the interconnected hexagonal units following a torque along the
vertical direction, which forms a chiral pattern, leading to a helix with a certain
pitch.

3 Living Nature

So far we have considered pattern-forming systems in the inanimate world, be it in
distant, large star assemblies or in much smaller objects as crystals or nanotubes.
Now we proceed to look at the living nature and search for spirals and vortices
there. We will find ample proof for how “popular” their structures have become
during biological evolution. Scales, sizes, ages may be quite different, but many
fundamental mechanistic aspects are comparable or even analogous. We start with
an historical treatise by J.W. Goethe on metamorphosis of plants and animals.

Science Meets the Arts

Johann Wolfgang von Goethe (1749–1832)
Spirals in the Metamorphosis of Plants and Animals

He believed in a general spiral tendency in vegetation, through which, in con-
junctionwith vertical striving, all plant formationwould be achieved following
the laws ofmetamorphosis. There is no necessity to introduce JohannWolfgang
von Goethe, the prominent German writer and statesman with his enormous
creative work known worldwide. Somewhat less known are his many trea-
tises and essays on issues of natural science, assembled in his compendium
“Naturwissenschaftliche Schriften” [17]. Beyond his famous contributions to
geology, mineralogy, meteorology, optics and his well known theory of col-
ors one finds a large number of articles on biological themes, in particular on
nature, morphology and the metamorphosis of plants and animals.

Around 1790 his poems “DieMetamorphose der Pflanze (Themetamorpho-
sis of the plant)” and “Metamorphose der Tiere (Metamorphosis of animals)”
[18] appeared together with a treatise “Attempt to explain the metamorphosis
of plants”. At that time Goethe was concerned about a contradiction in his
arguments which were connected with Newton’s law of gravitation [19]. Two
basic driving forces would be implemented in the plant, one for expansion
and development (vis centrifuga) and the other for conservation of form (vis
centripetal). Following a suggestion from the young botanist Ernst H.F. Meyer
(1791–1858) a symbolic plant science was introduced by an ellipse: the first
force would be assigned to one of the foci (F1), the other to the second focus
(F2). This is a static picture. To consider also dynamic processes one should
replace the elliptic foci by spirals and thus create a symbolism, where the
foci remain unchanged, but their radii are steadily augmented (see illustration
below).
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Left: Ellipse, the full and the pointed straight lines connecting F1 and F2 have the same

length; right: a spiral pair consisting of two counter-rotating spirals

Without alluding to details of the arguments, Goethe finally comes up with
a principle still based on Newton’s laws, hereby partially following Ritter von
Martius (1794–1868) [20].We have a literally visual result of the conversations
between Goethe and Martius. They exchanged two schematic sketches on the
front and back of a sheet of paper; these show the arrangement of the leaves of
a plant around its stem: as seen, they are arranged in a spiral pattern as shown
below.

The arrangement of leaves of a plant around its stem according to a sketch in [20, 21]. This

is an early design quite relevant for the field of phyllotaxis (see Sect. 3.4 Leaf arrangement)

Goethe now assigns the vis centrifuga to a vertically rising growth, the
vis centripetal corresponds to a spiral system. In fact, the spiral system, the
evolving, multiplying, winds around the vertical stem, the conserved essence,
enduring, as seen in many concrete examples from our flora, and described by
him in some detail. None of these systems can be considered separately, they
always act together in a perfect equilibrium.

These ideas were put down in the article “Über die Spiraltendenz der Veg-
etation (On the spiral tendency of vegetation)” written in 1831, rather late in
Goethe’s life. Remarkably he calls the tendency to form spirals the “basic law
of life” and further on formulates corresponding laws for the cultural devel-
opment of mankind [21, 22].
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Fibonacci Dream

Today the analysis and the modeling of leaf arrangements has become a field
of natural science. The left picture below shows a result based on the assump-
tion that the angular distance between subsequently growing petals should be
determined by a specific angle (in particular the golden angle, derived from
the Fibonacci numbers, see Appendix for details). At each intersection of the
crossing spiral arms a new petal will grow.

This scenario is also shown as an artistic variation in the image to the right.
At first glance it appears like a symmetrical picture, but the right and left
winding spirals break the mirror symmetry. The pattern is also based on the
golden angle, as followed by nature in leaf and flower constellations, when
maximal irrationality is useful [23].

Left: leaf arrangement in a simulation according to [23]; right: “13–21” by Marita Kraus,
Acryl auf Leinwand, Aalen

3.1 Seashells and Snails

A seashell is the hard exoskeleton of marine molluscs (the biological class of animals
without a backbone) that protects and supports their bodies. It is composed largely of
calcium carbonate or chitin secreted by the mantle, a skin-like tissue in the mollusc’s
body wall. Thereby the calcium salts are extracted from the sea water. Seashells
are usually made up of several layers of distinct microstructures. One of the most
distinctive microstructures is nacre, or the mother of pearl, which occurs as an inner
layer in some special shells of some gastropods. Incremental growth takes place only
at the shell margin, described in Sect. 2.6.

In tropical waters many seashells tend to grow to medium or large sizes. In the
Caribbean a frequently found shell is the queen conch. The queen conch starts build-
ing its shell as soon as it hatches from the egg and even before.When the small conch
is 2 or 3 months old, its shell is white; when it is 5 or 6 month old, it starts to show
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Fig. 12 Left: Queen conch seashell, Puerto Rico; right: cut through the spiral axis

brown stripes. On its foot, a horny claw called operculum enables it to leap, so it can
escape or fight against predators and lock itself up within its shell.

The grown example shown in Fig. 12 (left) may be 3–4 years old. Followed a
spiral structure, its growth has most likely of logarithmic shape, as can be detected
when cutting the shell into slices perpendicular to its central axis (Fig. 12, right). In
a complicated morphogenetic process the shell starts growing at the inner end of the
spiral. Then, along the growth edge, it follows a spiraling direction.

Interestingly, these seashells have been used as musical instruments (wind instru-
ments) for many hundreds if not thousands of years. Most often the shells of large
sea snails are used, as trumpets, by cutting a hole into the spire of the shell or cutting
off the tip of the spire altogether. The characteristic sound is largely determined by
the pitch of the internal spiral.

Note that the names “shell” and “snail” are often confounded. Snail is a common
name loosely applied to shelled gastropods. However, the common name snail is also
used for most of the members of the molluscan class Gastropoda that have a coiled
shell large enough for the animal to retract completely into. When the word “snail”
is used, it generally includes not only just land snails but also numerous species
of sea snails, the shell of which consists of only one piece (univalve shells). The
seashells which have two elastically connected valves (bivalve mollusc) are often
called “mussels”.

Frequently one observes on the surface of shells simple or intricate colored pat-
terns of great beauty (seeFig. 13). These evolvewhen somepigment is incorporated in
an appropriate way at the growing edge. During further growth, the pigment becomes
visible as a pattern on the shell surface, like in a time-space plot of themoving growth
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Fig. 13 Right: A specimen of Terebridae, commonly referred to as auger shells or auger snails, a
family of small to large predatory marine gastropods. They have extremely high spired shells with
numerous whorls; middle: sundial shell with circular color variation. Its colored windings and the
dashed circumference may evoke the surface of a sundial; left: Oxymeris maculata, a species of
marine gastropod mollusc of the family Terebridae

edge. Pattern formation and spiral growth are intimately connected with each other.
H. Meinhard has demonstrated in his book “The algorithmic beauty of seashells”
[24] that many of these patterns can be explained on the basis of a reaction-diffusion
model of the Turing type, involving activator, inhibitor and substrate as dynamic
variables (see chapter Reaction-Diffusion Patterns and Waves).

3.2 Ammonites

Ammonites are marine animals which lived during the Devonian from about 420
million years ago till the Cretaceous–Palegogene extinction events (66 million years
ago).4 Although ammonites have shells, they do not belong to the order of seashells
or snails, but are closely related to soft-bodied creatures (molluscs) like octopuses
and squids [25]. There are compartments inside of their shell as seen in Fig. 14 (right),
where the shells of seashells and snails have no compartments (Fig. 12, right). The
ammonite occupied only the entrance compartment, and others were separated by
septa, but connected with a thin tube, extending from the ammonite’s body. Liq-
uids and gases were exchanged because of the hyperosmotic transport and these air
compartments helped ammonites to float (or swim).

4Sudden mass extinction of some three-quarters of the plant and animal species on the Earth,
approximately 66 million years ago.
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Fig. 14 Left: outside of two ammonites; right: an ammonite shell viewed in section, revealing the
internal chambers and septa. Large polished examples are prized for their aesthetic appeal, as well
as scientific value. Photograph taken by John Alan Elson

The exterior appearance of ammonites is also different from that of univalve shells
or snails, although both spirals are logarithmic. The direction of the spiral elongation
is quasi two-dimensional for ammonites, while the spiral of universal shells or snails
is really a helix (three-dimensional).

3.3 Spiral Form in Our Fauna

There are various kinds of spirals seen in our fauna in the form of horns, tails,
tongues, tentackles, flagella, and others. We can classify them into two groups: rigid
and flexible. A typical example of the rigid spirals is shown in Fig. 15 (top left),
the horns of a blackbuck (Indian antelope). Such horns are found mainly among the
ruminant artiodactyla (hoofed animals), in the families antilocapridae and bovidae
(cattle, goats, antelopes etc.). The spiral form may be developed not only for battles
but also for attracting females. Many of them are now not so practical for fighting
any more.

The second group of spirals are more functional. For example, a proboscis of a
large white (also called a cabbage butterfly, pieris brassicae) with its photograph in
Fig. 15 (bottom left), is usually wound up, but it is uncoiled very quickly to reach the
food. The tail of a chameleon (Fig. 15, top right) is wound in rest, while it is rapidly
stretched, when it moves in a rush. A seahorse (Fig. 15, bottom right) fixes its body
with the spiral tail.
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Fig. 15 Spirals in the animal world. Top left: black buck at Mahavir Harini Vanasthali National
Park, Hyderabad; bottom left: a proboscis of a large white (pieris brassicae). Licenced fromHecker;
top right: Parsons chameleon (Calumma parsonii) with a spiral tail. Photographed by J. A. Elson;
bottom right: seahorse. Photographed by M. Al Momany, NOAA

3.4 Leaf Arrangement (Phyllotaxis)

In this section on the growth of leaveswe aremore explicit about amodeling approach
than in most other chapters, because the systems offer quite successful arguments
for the occurrence of the parastichies. We will see that the model may well describe
the role of an activator and an inhibitor. But neither the biochemical nature of these
two agents is identified, nor their diffusion coefficients are really known. For this a
model of the reaction-diffusion type is needed [26].
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3.4.1 Parastichies in Nature

If you make a walk through the forest close to your living place you may want to
pick a pine cone and notice that its leaves are arranged in a quite regular fashion.
In fact, looking at the cone from below the eye generates spiral-shaped patterns by
following the lines of contact between neighboring leaves. There are right- and left-
handed spirals (parastichies) with different pitch, and one can count their number
for each full turn (see Fig. 16). We find for the pine cone: 8 right-handed and 13
left-handed parastichies: Q = 8/13.

Just look at the branch of a fir and you will find them.
Comparable leaf arrangements are found in other plants, e.g.,

cactus : Q = 5/8 to 13/21

sunflower : Q = 21/34 to 89/144

thistles : Q = 21/89 to 34/55

Note that the numbers appearing in the above quotients belong to the series of
Fibonacci numbers [27] (details see Appendix).

Such regular patterns in phyllotaxis are found all over the world [28], for instance
in the desert of Baja California, where the endemic plant called Cirio grows and
covers the whole landscape (Fig. 17, left). It leaves dried-out chunks from its tree-
like growth structure (see Fig. 17, right). While so far, we have considered leaves
growing in a discoidal geometry along spiral-shaped lines, we find here a helicoidal
arrangement of leaves growing on the cylindrical stem of a cactus (up to 20 m high).
Here we can also detect left- and right-handed parastichies tracing lines along the
cylindrical surface.

Fig. 16 Left: Pine cone seen from the bottom; middle: 8 right-handed spirals are indicated in
orange; right: 13 left-handed spirals are indicated in green
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Fig. 17 Left: Cirio in Baja California, Mexico; right: dry cactus stem from Baja California

3.4.2 Analysis of Leaf Arrangement

We analyze the geometrical order of leaves by a phenomenological model based on
qualitative assumptions for the interaction between activating and inhibitory pro-
cesses.

Looking at the leaf arrangement in the pine cone, one should ask the question,
how the leaves grow in time and occupy their specific and stable location. One finds
that the so-called “divergence angle”, i.e., the angle between two leaves successively
growing on the tree, is close to the golden angle G, which subdivides the circle as
the golden cut g subdivides the line. Using g′ = 1 − g = 0.618…(instead of g =
1.618…) the golden angle is

G = (1 − g′) · 360◦ = 137.5◦

Note that we follow here the genetic spiral, which connects the leaves in the sequence
of their formation (not in the full-grown form of all leaves together). The assertion
is: The golden angle of the genetic spiral implies the Fibonacci character of all
other spirals (parastichies). If this is correct, then one should be able to explain the
universal occurrence ofG with a morphogenetic model. In the first case, we consider
a discoidal geometry where the genetic spiral develops in radial direction. Plotting
points (x, y) according to the rule

(xk, yk) = (r0 + kΔr)(cos kG, sin kG),

whereΔr is the growth rate and k = 0, 1, 2, …, yields the graphics shown in the third
figure of the inset Science meets the Arts. One finds: Fast growth ↔ low Fi ; slow
growth ↔ large Fi with denser packing. Nearest neighbors are always connected by
Fibonacci lines (parastichies).

In helical geometry the genetic spiral develops only along the central axis of a
stem or a branch. In Fig. 16 (right) the Fibonacci patterns are unwrapped from the
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cylinder and spread out on the plane. As in Case 1, we have small compactness for
high and large compactness for low growth velocity.

Deviations fromG = 137.5◦ (even slight ones of a few%) result in a rupture of the
described order and terminate the Fibonacci sequence at a certain stage. Therefore,
the occurrence of fairly high numbers (55, 89 or even 144) requires a delicate control
of G.

3.4.3 The Golden Angle and Lateral Inhibition

The most commonly accepted view concerning pattern formation is that inhibitory
influences emanate from activated centers and thereby play a regulatory role on
further activation. Here we treat mainly the role of the golden angle, but of course,
there exist in nature other leaf positions, e.g., alternating or oppositely arranged.

For an explanation of the role ofG one assumes that there is an interaction between
activating and inhibitory substances, which enter in contact by diffusion:

activation A autocatalytic process with short spatial range
inhibition I relatively long range process stabilizing the developing structure.

Different ranges are due to mobility, i.e. the diffusion coefficients of the respective
substances. The decay of these substances follows a simple kinetics (rates propor-
tional to concentration).

How does the inhibitory effect of already existing leaves influence the position
of new ones? We will explain it by using the projection of a cylindrical sprout on a
plane perpendicular to its axis, as illustrated in Fig. 18.

Fig. 18 Projections of a cylindrical sprout on a plane perpendicular to its axis for the explanation
of the leaf arrangement, see text below
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The sequence of events on the left circle in Fig. 18 is the following: the first leaf
grows at arbitrary position 1.Due to inhibition I the second leaf forms at position 2 on
the opposite side (at 180◦). For the third leaf, one has to note that the sources of I, on
the newly formed leaves, have a somewhat longer lifetime, so that when positioning
the leaf 3 is about to be determined, leaf 1 is still actively repelling it, although not
as strongly as leaf 2 does. Leaf 3 usually makes now a random (symmetry-breaking)
choice as to which way the genetic spiral will be wound, and it will be closer to leaf
1 than to leaf 2. Then, leaf 4 has to find the locus of minimal I. Repulsion from 3 will
be most effective, but leaves 2 and 1 still have an influence. If we assume exponential
decay of the morphogens and constant time intervals between the expression of new
leaves, then the inhibitory strengths im of the various leaves behave as

i3 : i2 = i2 : i1
Since 4 is still not so distant from 1, at least three preceding leaves contribute to the
positioning of a new one. On the other hand, since 5 will be located far away from
1, we may neglect precursors earlier than the third.

After a transient period, a stationary situation will be reached where the angles
between successive leaves are all equal (the right circle of Fig. 18). Plausibility and
a short calculation [23] let us conclude that the angle between successively growing
leaves is the golden one, G.

This simplified argument still contains much arbitrariness and more rigor would
be desirable. A lot of details are not known (in particular the nature of the inhibitor)
which one would need for an approach with a reaction - diffusion system.

However, the model described makes the role of the Fibonacci numbers in this
morphogenetic process plausible. Since the number g is considered as the “most
irrational” number, its role in the angle G leads to a minimal overlap of leaves, such
that photosynthesis is less hindered. The plants try to keep their leaves at a maximal
distance. Thus (as already guessed by Leonardo da Vinci), the plant can use sunlight
in an optimal fashion.

The irrational number g plays an outstanding role in many respects. It often
appears in an aesthetic context, so in the arts, architecture and design, symmetries in
nature, and human perception of beauty.

3.5 Lichen

When walking through barren mountains or exploring the flora of cold regions under
subarctic conditions one may enjoy the fascination of multicolored lichen with a
broad spectrum of colors from white through radiating yellow, several shades of
brown, orange, rose, olive, blue-green and deep black. There are 25,000 species of
lichen worldwide. Lichen has only small need for metabolism and can survive on
minerals from dust or nutrients contained in rain water or dissolved in the ground.
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Fig. 19 A double spiral of lichen found in the Siberian tundra

Therefore, one can find it under extreme conditions: on bare rock, at altitudes
exceeding5000m, in the desert or in regions of permafrost. It can exist at temperatures
between −47 and +80◦C.

In such difficult environments it grows very slowly, about a few millimeters per
year or less. It belongs to the organisms with record life times, at least a few hundred
years [29]. Lichen assumes regular or irregular shapes depending on the surrounding
climate. Under rare conditions it may grow to form a spiral-shaped geometry, as
photographed in Fig. 19.

3.6 Deep Sea Corals and Spirogyra

In 1883 Verrill reported on a beautiful, spirally coiled octocoral (genus Iridogorgia),
which were found during an expedition of the US coast [30]. Iridogorgiids grow
on underwater mountains (known as seamounts), island ridges and rocky continental
slopes in both the Atlantic and Pacific Oceans. During three expeditions to New Eng-
land and Corner Rise Seamounts (2003–2005) some new species of chrysogorgiid
octocorals with the spiral Iridogorgiid growth form were found. As shown in Fig. 20,
Iridogorgia has a spiral axis, which is further branched [31]. A close-up photograph
of genus Iridogorgia reveals further branching, suggesting a characteristic feature of
fractals (see Sect. 6 of Spirals, Their Types and Peculiarities).
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Fig. 20 Left: Iridogorgia, a spiral-shaped coral. From photogallery of Ocean Exploration and
Research, taken byWHOI; right: lovely spiraling Iridigorgia coral, with brightly colored commensal
shrimp. Image courtesy of the Mountains in the Sea Research Team; the IFE Crew; and NOAA

Fig. 21 Left: Spirogyra algae in natural environment [32]; right: single cylindrical algae cell with
helicoidal chloroplasts

Spirogyra (mermaid’s tresses, pond scum, water-silk) is one of 400 species of
free-floating green algae found in freshwater environments all over the world: ponds,
lakes, rivers, puddles etc. Named for their beautiful spiral chloroplasts, spirogyras
are filamentous algae that can form masses floating near the surface of streams and
ponds.

The algae (diameter 10–50 µm) stick together like a chain forming unbranched
threads (length up to several cm) that consist of cylindrical cells (seeweak boundaries
between adjacent cells in Fig. 21, right). The chloroplasts are organelles responsible
for photosynthesis and thus the pigment chlorophyll is incorporated in specialized
membranes. Their spatial arrangement is indicated by their green color and follows
as a band along the path of a cylindrical helix (see Fig. 13 of chapter Spirals, Their
Types and Peculiarities).

Remarkably, here a quite simple unicellular organism chooses a mathematically
well defined route for its purposes. They move with the flow of the water, because
the cells have no flagella, and, therefore, cannot move by themselves.
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3.7 Snail Clover and Leonardo’s Flying Spiral

The snail clover (Medicago orbicularis) is a plant belonging to the family of legume
(Fabaceae like beans and peas). The genus Medicago comprises about 110 species
worldwide and is mostly home in the Mediterranean area. The best known species,
the Luzerne (Medicago sativa), serves as animal food and is one of the oldest cultured
plants in the world, once introduced by King Darius from Persia (549–486 BC) to
Greece.

The species Medicago orbicularis is a clover-like plant having helicoid or spirally
coiled pods. Looking at Fig. 22 (left), this specific structure becomes evident. The
leaves grow according to a helix with large diameter and small pitch (see chapter
Spirals, Their Types and Peculiarities). Almost all species of Medicago grow in
Greece. They are usually small and inconspicuous with small yellow blossoms.

In the Paris Manuscripts of Leonardo da Vinci (a collection of 12 booklets with
notes and drawings) one finds, among many other topics, a drawing of his invention
“Helix Pteron”,5 as shown in Fig. 22 (right) [33]. He communicated this drawing
around 1487–1490. He applied the principles later used for constructing the heli-
copter.

His invention could not be realized, because he lacked sufficiently light material
and a “motor” to elevate heavymass into the air. Only after 450 years was the first real
helicopter developed. But some aspects of the principle of uplift had been discovered.
Most remarkably we notice a structural similarity between Leonardo’s flying spiral
and the leaf constellation of the snail clover.

Fig. 22 Left: Snail clover, growing leaves with helicoidal shape. Reprint permitted by S. Wahler,
Hollergarten; right: Leonardo’s drawing of a flying spiral, “Helix Pteron” [33]

5“Helix” and “pteron” are Greek words, meaning “coil” and “wing”, respectively.
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3.8 Optical Sensors in the Eye of the Firefly

Many insects have compound eyes, each of which consists of up to several thousands
ommatidia (individual eyes: tiny independent photoreception units of about 10 µm
in diameter). The structure of an ommatidium is illustrated in Fig. 23 (right). Among
such insects the firefly has unique ommatidia: the corneal lens (A in Fig. 23, right)
extends into the region occupied normally, for other insects, by a crystalline cone (B
in Fig. 23, right). The elongated corneal cones are laminated in a series of concen-
tric paraboloids [34]. Quite specially, the electron microscopy investigation of the
compound eye of the firefly Photuris pennsylvanica reveals spiral structures in cross
section (see Fig. 23, left) [35].

Interestingly the pattern of the individual hexagonally arranged sensors shown in
Fig. 23 (left) are strongly reminiscent of spirals in theBelousov–Zhabotinsky reaction
(see chapterChemicalOscillations andSpiralWaves), suggesting a self-organizing
reaction to occur here [36]. The spiral pattern of the firefly eyes can be explained
by chiral orientation of rod-like molecules which are the main composition of the
lens of firefly eyes: they orient slightly differently at different levels, thus creating
spiraling ribbons. Note that with a polarizing microscope a study has been performed
of microlens arrays made of nematic liquid crystals containing chiral dopants, which
leads to the observation of concentric ring structures due to interference [37].

Fig. 23 Left: optical sensors in the eye of a firefly (Photuris pennsylvanica) taken by an electron
microscope [35]; right: structure of an ommatidium, A - cornea, B - crystalline cone, C and D -
pigment cells, E - rhabdom (light transmitting axial rod), F - photoreceptor cells, G - membrana
fenestrata, H - optic nerve
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Fireflies communicate among each otherwith optical signals of bioluminescence.6

The light is emitted as a glowing or flashing signal from the lower part of their
abdomen. The receptors have high light sensitivity, because they should detect bio-
luminescence during twilight to attract mates or prey.

3.9 Fish Vortex

We finally turn to the example of a school of fish that forms a vortex. It illustrates the
phenomenon of swarm intelligence, which is the collective behavior of decentralized,
self-organized systems, in nature or under artificial conditions.

In Fig. 24we notice typical features of a vortex as found inwind and cloud patterns
(see hurricane, Fig. 5). There is the characteristic central core where one finds only
little movement (the “eye” of the hurricane), whereas a swirling motion evolves
around this core. Only that here we are not dealing with water or air molecules under
certain thermodynamic conditions, but with a large number of living individuals
caught in a superposed coordinated motion [38].

Such swarms consist of a population of simple agents interacting locally with
one another and with their environment. The inspiration of swarm dynamics often
comes from nature, especially biological systems. The agents follow simple rules.
Although there is no centralized control structure dictating how individual agents
should behave, interactions between them lead to the emergence of “intelligent”
global behavior unknown to the individual agents. Examples in natural intelligent
swarms include ant or termite colonies, bird flocking, animal herding, bacterial
growth, amoebae, fish schools, microbial intelligence, and humans (see chapter Pat-
terns and Humans).

Obviously, a fish swarm is a good candidate for swimming in vortices, because
it can move in three dimension. This way it establishes protection against preda-
tors. Animal herds may form spiral-like defensive groups on the ground, whereas
bird flocks will find quite individual structures in the air. But look at the micro-
systems such as the social amoebae, aggregating in regular spirals (see chapter Spi-
ral Waves of the Chemo-attractant cAMPOrganise Multicellular Development
in the Social Amoebae).

Concepts elaborated for the description and explanation of the complex motion
of swarms are employed in works on artificial life. In programs on artificial life
simulating the flocking behavior of birds. Some rules for emergent behavior has been
developed, where the complexity arises from the interaction of individual agents.
The main rules applied are: separation: steer to avoid crowding local flockmates;
alignment: steer towards the average heading of local flockmates; and cohesion:
steer to move toward the average position (center of mass) of local flockmates [39].

6In the presence of magnesium ions, ATP and oxygen the enzyme luciferase acts on the luciferin
and produces light. The color is yellow, green or pale red.
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Fig. 24 A large school of
sardines forming a vortex

In this and othermodels for swarm behavior themembers of the swarm are usually
treated as objects without individual features. Some of them may be successful for
reproducing swarm geometry and dynamics like for the fish vortices, but a consider-
ation of the biological features of the participating entities is missing. The relevant
behavioral parameters may not yet have been captured.

We have shown, how creative nature is in inventing beautiful and intelligent forms
and patterns. Spirals and vortices belong to structures that are readily selected. Nature
does not always need to emphasize certain goals that may be claimed to assign a
specific function or distinctive meaning to these forms, as humans tend to do, when
they leave spiral carvings in stone ormeditate about spiral-shaped courses in the sand.
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In this sense nature is most sincere and has its own ways to use shapes for growth
and survival. Contemplating the artful natural forms makes it easy to let one’s mind
float to man-made art or related work, as we will do in the following chapter.

Appendix: Fibonacci Numbers

The famous mathematician Leonardo da Pisa, also called Fibonacci (1170–1240)
introduced around the year 1200 AD the Indian-Arabic number system 0, 1, 2, 3,…to
Italy. He also made a few significant calculations, one of which led to the series of
“Fibonacci numbers” [27]. These play an important role until today, in such diverse
disciplines like the arts, architecture or biology.

The Fibonacci numbers are
Fn = 0, 1, 1, 2, 3, 5, 8, 13, 21, 24, 55, 85, 144, 233, . . . (n = 0, 1, 2, …)

There is a simple rule, how a follow-up number is formed by 2 precursors:

Fn+1 = Fn + Fn−1.

You can check this easily:
1 + 0 = 1, 1 + 1 = 2, 2 + 1 = 3, 3 + 2 = 5, 5 + 3 = 8, . . .

These numbers have amazing properties. They describe the arrangement of petals of
a pine cone, or in a sunflower. They are closely related to the “golden cut (or golden
ratio) g”, because the following quotient converges towards g:

Fn+1/Fn = 1, 0, 2, 0, 1.5, 1.666 . . . , 1.6, . . . , 1.61803 . . . → g ( f or n → ∞).

The golden cut g is originally defined as a certain division of a straight line of
length l. The line would then be

For defining g: The line should be divided into two parts a and b, such that the
quotient b/a is equal to the quotient l/b, i.e.

l/b = b/a = g.

Small calculation: with l = a + b

(a + b)/b = b/a

g = b/a → (a + b)/b = g → 1/g + 1 = g

1 + g = g2 → g2 − g − 1 = 0
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g+,− = 1

2
±

√
1

4
+ 1 = 1

2
± 1

2

√
5

Only positive numbers make sense as a solution:

→ g = 1

2
(1 +√

5) = 1.61803 . . .

How did Fibonacci find his famous number sequence?

He considered a problem of population dynamics: How does the number of rabbits in
a population grow from generation to generation (generation length, say, 1 month)?
The generations are numbered consecutively 0, 1, 2, 3,…, n, ….

At the beginning (time 0): one couple of rabbits is born.

Then, for each month, another couple is born to this first one. Simultaneously, each
newly born couple matures in the corresponding month for an additional birth. (This
way the population is immortal!)

After n months we count

Jn young couples, and
An adult couples.

Now let’s count:
For
n = 0 : J0 = 1, A0 = 0 one couple is born
n = 1 : J1 = 0, A1 = 1 the young couple is now adult
n = 2 : J2 = 1, A2 = 1 the adult couple gives birth to a young couple
n = 3 : J3 = 1, A3 = 2 this young couple gets adult, adult couple gives birth to

another couple
n = 4 : J4 = 2, A4 = 3 and further on

Generally written we have:
Jn+1 = An

An+1 = An + Jn
with Jn = An−1 → An+1 = An + An−1, where A0 = 0 and A1 = 1.

Now we replace “A” by “F” (symbol for the Fibonacci numbers) and find for the
number of rabbit pairs in subsequent generations n:
An = Fn = 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . .

This is the number sequence we already know.
Furthermore one finds for the golden cut the continued fraction:

g = 1 + 1

1 + 1
1+ 1

1+ 1
...

Interestingly, there is a very simple relationship for the inverse golden cut:
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g−1 = 1

1 + 1
1+ 1

1+ 1
...

= g − 1

Picture credits

Fig. 2 Hubble Heritage Team, ESA, NASA, Fig. 3 Licenced from PA Picture Alliance, Fig. 4
NASA/JPL/Malin Space Science Systems, Fig. 5 NOAA (National Oceanic and Atmospheric
Administration),NASA,Fig. 6Left: Justin1569 atEnglishWikipedia, right:©Hess,Markus,Müller,
Plesser, 1987. Dortmund, Fig. 7 Top: NASA GSFC, bottom: permitted by JPS Japan, Fig. 8 NASA
Langley Research Center (NASA-LaRC), Fig. 10 right: permitted by Japan Association of Crystal
Growth, Fig. 11 Permitted fromMaurizio De Crescenzi, Dipartimento di Fisica Università di Roma
“Tor Vergata”, Fig. 14 Left: photograph taken by Stefan Müller, right: photograph taken by John
Alan Elson, CC BY-SA 4.0, Fig. 15 Top right: CC BY 2.0, top right: photograph taken by John
Alan Elson CC BY 2.0, bottom left: Licenced from Hecker, bottom right: Photographed by Mr.
Mohammed AlMomany, NOAA, Fig. 20 Left: NOAA (National Oceanic and Atmospheric Admin-
istration), NASA, right: Landcare Research CCBY 4.0 Iridogorgia, a spiral shaped coral, as seen on
Alvin dive 3901. PhotoWHOI. Lovely spiraling Iridigorgia coral, with brightly colored commensal
shrimp. Image courtesy of the Mountains in the Sea Research Team; the IFE Crew; and NOAA. A
close-up of Iridogorgia showing the coral polyps. Photo WHOI, Fig. 21 Left: reprint permission
from J. Great Lakes Res., right: public domain, Fig. 22 Left: permitted by Stefanie Wahler, http://
www.Hollergarten.de, right: public domain, life plus 100, Fig. 23 Reprint permission by Springer,
Fig. 24 Free to use.
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The Arts and Beyond

Kinko Tsuji and Stefan C. Müller

Abstract Spirals play a very favorite role asmotives formodernEuropean paintings.
Here we assemble some examples for quiescent spirals (Klimt), spirals starting to
move (Itten and Klee) and storming spirals (da Vinci, van Gogh, and Turner). There
are also circles or curved lines which look like spirals, but are not. In parallel to
the European culture, a lot of spiral patterns appear in Japan, as well: for example
the famous Ukiyo-e of the Naruto whirlpools, patterns for Kimonos and toys. In
our daily life spiral forms are used for practical and/or ornamental reasons: musical
instruments, staircases, data storage devices like CD and DVD, and others.

1 Introduction

In the literature one finds many stories about hurricanes and tornadoes and their
destructive force. For example, in 1834 there appeared an article byArchibaldDuncan
in TheMariner’s Chronicle under the title “AReport on theMaelstromofDrontheim”
describing in detail the dangerous whirlpool of the Maelstrom (Moskenstraumen)
close to theLofoten Islands in northernNorway [1]. This became in 1841 the template
for Edgar Allan Poe’s story “A Descent into the Maelström” with statements like “it
raged with such noise and impetuosity that the very stones of the houses on the coast
fell to the ground...” [2]. The Irish stained-glass artist and book illustrator Harry
Clarke made a drawing of the lethal vortex for this story in 1919. This picture will
be shown later together with a Japanese whirlpool (Fig. 11).
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In poetry we can admire the ballad of Friedrich von Schiller “Der Taucher
(The Diver)” (1797) [3].
German original:

.....

.....
Wohl manches Fahrzeug, vom Strudel gefasst,
Schoss jäh in die Tiefe hinab,
Doch zerschmettert nur rangen sich Kiel und Mast,
Hervor aus dem alles verschlingenden Grab.
Und heller und heller, wie Sturmes Sausen,
Hört man’s näher und immer näher brausen.

Und es wallet und siedet und brauset und zischt,
Wie wenn Wasser mit Feuer sich mengt,
Bis zum Himmel spritzet der dampfende Gischt,
Und Well auf Well sich ohn Ende drängt,
Und wie mit des fernen Donners Getose
Entstürzt es brüllend dem finstern Schosse.
......
......

In English [4]:

.....

.....
Full many a ship, by the whirlpool held fast,
Shoots straightway beneath the mad wave,
And, dashed to pieces, the hull and the mast
Emerge from the all-devouring grave.
And the roaring approaches still nearer and nearer,
Like the howl of the tempest, still clearer and clearer.

And it boils and it roars, and it hisses and seethes,
As when water and fire first blend;
To the sky spurts the foam in steam-laden wreaths,
And wave passes hard upon wave without end.
And, with the distant thunder’s dull sound,
From the ocean-womb they all-bellowing bound.
...
...

After reading this ballad, one can virtually see a turbulent flow under the cliff.
Inmusic there are also somekinds of spirals.One can imagine spiralsmovingwhen

listening to some music pieces. Such “acoustic spirals” are introduced in chapter
Acoustic Spirals: Analysis of Bach’s Prelude inCMajor. In this chapter, however,
we show spirals and vortices more by visual perception.

Our eyes in connection with neurophysiological processing of optical signals in
the visual cortex of our brain are extremely well prepared and sensible to recognize
spatial patterns and their dynamical changes. The patterns that we observe, be it in
nature or in our usual cultural environment where we work and live, may be simple
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or complex, but they shape to a large extent the impressions and feelings that we
develop in our daily life, be it in “normal” or exceptional situations.

Should anyone try to analyze some of the more complex patterns noticed during
the day, he or she may come to the conclusion that despite all the complexity there
are a few structural elements which, in one way or another, are dominating the ways
to create spatial arrangements of an impressive variability, beauty, and usefulness.

Wassily Kandinsky, in his book “Point and Line to Plane”, has provided an artistic
viewof this successionof elementary steps in artworks [5]. In hiswritings,Kandinsky
analyzed the geometrical elements which make up every painting - the point and the
line. He called the physical support and the material surface on which the artist draws
or paints the basic plane. He did not analyze them stringently, but from the point of
view of their inner effect on the observer.

The painter to consider the curved line of a spiral in an artistic context was Paul
Klee [6]. In fact, circular and spiral shapes extend the realm of elementary patterns.
Circles will be described by their radius and can be arranged in a concentric way.
Spirals, on the other hand, need more parameters to be characterized. They may
be left or right-handed. They may have one or more arms. Their center may be a
stable point or no stable center exists, i.e. the spiral may turn inward indefinitely (see
graphics in the inset “Spiral dynamics in the work of Paul Klee”).

Thus, spirals have some properties that other line structures lack. They are a most
interesting multi-facetted pattern and thus constitute the central topic of this chapter,
with their dynamics to form vortices included. We start with paintings of quiescent
spirals, continue with moving spirals and storming spirals. There are false spirals:
they look like spirals, but they are either circles or lines. In Japanese culture motives
of spirals or vortices are often used. One more aspect of spirals and vortices, which
we should not forget, is its usefulness in the form of practical spirals. We will show
some examples.

2 Painting

2.1 Quiescent Spirals

2.1.1 Gustav Klimt (1862–1918)

Among themost popular and appreciated painters of his time thework of theAustrian
artist Gustav Klimt reached a worldwide distribution, through the cultural channels
but also in the mass media, exceeding that of artists like Dali, Picasso or Warhol. He
was said to have shown theworld in a female form (“Gestalt”). Among his richŒuvre
we refer here to his Stoclet-Frieze, a mosaic frieze in the Palais Stoclet, Brussels, of
the years 1905–1909 [7].

On this frieze the branches of the “Tree of Life” extend from the tree trunk in the
center (see Fig. 1) far to the left and to the right. The surfaces are covered with orna-
ments, most of them with regular and similar spirals which apparently symbolize the
leaves of the tree. This frieze does not communicate any action, no time-determined
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Fig. 1 Gustav Klimt, Tree
of Life, Stoclet Frieze
(1909). Photo:
c©MAK/Georg Mayer
Ownership credit: MAK -
Austrian Museum of Applied
Arts/Contemporary Art

goal. Any aspect of communication lies in the priority of the decorative and orna-
mental elements of a mosaic created with luxurious materials.

Without noticeable events, rather static, and clues from contemporary art missing,
there is no way for a clear interpretation. Klimt himself has not provided many
comments on that. Some human figures are part of the frieze, a dancer, for instance
(not shown in Fig. 1). They are purely two-dimensional and almost disappear in
the ornaments. A figure becomes itself an abstract mosaic, which could be an early
symptom of a crisis in the portrayal of figures in modern art.
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2.2 Starting to Move

2.2.1 Johannes Itten (1888–1967)

The Swiss expressionist painter, designer and theorist Johannes Itten was closely
associated with the School of Art, Design and Architecture “Bauhaus”, founded
by the German architect Walter Gropius in 1919 in Weimar. The conception of the
Bauhaus presented something completely new in that it brought together art and
craftsmanship [8]. Among Itten’s colleagues we find eminent names like Lyonel
Feininger, Josef Albers, Paul Klee, and Wassily Kandinsky. They contributed to the
movement of Concrete Art with a strong emphasis on geometrical abstraction which
had worldwide influence.

The abstract painting “The Meeting” (Fig. 2) was created three years before the
foundation of the Bauhaus. It anticipated some characteristic features of the Bauhaus
art with its abstract elements: the design of geometrical forms like circle, square and
spiral, as well as bright/dark contrasts and varying colors. Following themany graded
color sequences within the spiral, one can imagine that it starts moving.

Itten’s work on colors is said to be an inspiration for analyzing color types which
correlate the skin tone, eye and hair color with clothing and make-up, and is also
useful for interior design. The goal is an optimal harmony between an individual with

Fig. 2 Johannes Itten, The
Meeting (1916). c©VG
Bild-Kunst, Bonn 2018
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his living environment (color consultation). His studies of color palettes and color
interaction directly influenced the Optical Art movement and other color abstraction
movements. Cosmetologists today continue to use his color analysis, a tribute to the
early work by Itten [9].

2.2.2 Paul Klee (1879–1940)

Paul Klee is considered as one of the most imaginative masters of modern art, pro-
ducing work that spanned an amazing stylistic range. Klee’s delicate works are filled
with wit and references to dreams, music (he masterfully played the violin) and
poetry. It blended primitive art, surrealism, cubism and children’s art. Initially cre-
ating surreal, satirical pen-and-ink drawings, Klee’s life and art were forever altered
when he visited Tunisia and was overwhelmed by its intense light and color. Klee
also used a complex array of signs and symbols drawn from the unconscious, that
were meant to fuse abstraction with reality. Klee’s work impacted all 20th century
surrealist and nonobjective artists, and the abstract expressionist movement.

He developed a special “sympathy” for the spiral shape, which is well documented
in his writings and paintings. The “Spiral blossoms” (Fig. 3, created in 1926 are an
aesthetically appealing display of flowers with spiral-shaped blossoms displayed on
a kind of theater stage. In his painting “Crucifers and spiral flowers” (Fig. 4) spirals
may be less frequent, but the crucifer reminds us of the vortex wheel in Nordic art
(chapter Cultural History).

His lectures and “Writings on Form and Design Theory” (Schriften zur Form und
Gestaltungslehre [6]), published in English as the PaulKleeNotebooks, are held to be
as important for modern art as Leonardo da Vinci’s “A Treatise on Painting” [10] for
the Renaissance. Klee and Kandinsky both taught in the 1920s at the Bauhaus school
of art, design and architecture. His works reflect his dry humor and his sometimes
childlike perspective, his personal moods and beliefs, and his musicality. During
his 10 Bauhaus years several pioneering scripts were published, among them, the
Creative Credo (Schöpferische Konfession (1920) [11]), where the famous statement
“Art does not reproduce the visible; rather, it makes visible” appeared, and many
others [12].
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Fig. 3 Paul Klee, Spiral
blossoms (1926). Private
property in Japan

Fig. 4 Paul Klee, Crucifers
and spiral flowers (1925).
Private property
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Spiral dynamics in the work of Paul Klee

The spiral was considered by Paul Klee as the purest form of motion. Klee writes
in his Pedagogical Sketch Book [14]:

...We have to know the direction of motion, because the question depending on
increase or retraction of the radius has psychological relevance. The question is: Do
I get released from the center in more and more liberated motion? Or do my motions
get increasingly bound by a center, until it finally devours me completely? - This
question means nothing less than life or death. And the decision about this is made
by the small arrow (see the drawing below).

The spiral (drawing after Klee in [14]): in this figure, Paul Klee has extended the ratio
between the rotations and their size, so that one sees the spiral actually opening and closing
in a dynamic motion toward expansion or toward contraction. Directions shown by arrows
either follow a clockwise motion toward expansion, symbolically life - or an anti-clockwise
motion toward contraction, symbolically death.

In his analysis of curves and also the spiral Klee declares views that have not
been uncommon inmuch earlier interpretations of the course that spiralsmay take.
Think of the megalithic graves (chapter Cultural History) where one assumes
that primordial artists have already well distinguished between outward or inward
motion along a spiral. ...

In this context Paul Klee formulates: Gut ist Formung. Schlecht ist Form. Form
ist Ende, ist Tod. Formung ist Bewegung, ist Tat. Formung ist Leben. (Good is
formation. Bad is form. Form is the end, death. Formation is motion, is action.
Formation is life.)

There is a clear correspondence to the dynamical aspects of the spiral, as pointed
out at the beginning of this paragraph. (His lecture on the spiral was held onMarch
20, 1922.) Here one finds a remarkable foresightedness for central issues of mod-
ern physics and mathematics: in the field of nonlinear dynamics (see Generation
of Spirals in Excitable Media) the importance of stability of states is being dis-
cussed. A system evolving towards a stable end point lacks the possibility of further
dynamic evolution (e.g., the center of the spiral), whereas unstable behavior may
evoke further evolution in the future (outgoing spiral arm). The interplay between
stability/instability usually determines the future sort of a system and may well
decide on life or death, as presented in biological living organisms.
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In some of his paintings (see Fig. 5) PaulKlee designed “spiralswith corners”. The
painting (Fig. 5, left) depicts three abstract red roses on a green and blue background.
The surrounding shapes could be analyzed for hours and many scholars have found
their own meanings and subjects in them; the more you look at the picture, the more
possibilities you find.

Although the colors are muted compared to other famous works of the expres-
sionism period they are bright for Paul Klee who had always struggled with color
composition and was not so familiar in this area. His mystical-abstract paintings of
the late 1910s where much less vibrant than these works [13].

Fig. 5 Left: Paul Klee, Heroic roses (1938). Kunstsammlung Nordrhein-Westfalen, Düsseldorf,
Germany; right: Paul Klee, Timid brute (1938), this person has been perhaps designed in a humorous
moment, but it has some personality, hasn’t it? Private property in New York

2.3 Stormy Spirals

2.3.1 Leonardo da Vinci (1452–1519)

Leonardo da Vinci was a true genius who graced this world with his presence from
April 15, 1452 to May 2, 1519. He is among the most influential artists in history,
having left a significant legacy not only in the realm of art but in science as well,
each discipline demonstrating his mastery of the other. Da Vinci lived in a golden age
of creativity and contributed his unique genius to virtually everything he touched.
Today, no name better seems to symbolize the Renaissance age than Leonardo da
Vinci.

Figure 6 shows detailed drawings of irregular flows forming eddies of varying
sizes. It is a realistic and dynamic picture of turbulent behavior, a major topic of
modern hydro- and aerodynamics, as already described in chapter Appearance in
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Fig. 6 Leonardo daVinci, Deluges and apocalypses: A deluge (1517/18); drawing of a flood. Royal
Collection Trust/ c©Her Majesty Queen Elizabeth II 2018

Nature (refer to Figs. 5, 7, and 8). Our example of a flood shows his mastership of
precise observation and representation of a very complex phenomenon.

In his late years Leonardo, disillusioned with the failure of Renaissance in Italy
to support either his art or his science, and fascinated by the power of water as a
natural force to be exploited and feared, concentrated all his pessimistic forebodings
in a series of drawings of “deluges” [15]. In them, armies, cities, horses, trees and
even mountains are helpless before the unleashed fury of storm and flood. A major
achievement of Leonardo here is his great capability to extract a time instant from a
continuous dynamic evolution of a system.

2.3.2 Vincent van Gogh (1853–1890)

Who would not be enthusiastic and deeply impressed by the paintings and drawings
of Vincent van Gogh, who sold just one or a few more of his works during his life,
whereas nowadays a masterpiece from his legacy may be worth 80 million dollars.
In the short period of 10 years he created 864 paintings and about 1000 drawings.
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Fig. 7 Vincent vanGogh, The StarryNight (1889). c©2018.Digital image, TheMuseumofModern
Art, New York/Scala, Florence

One of the outstanding and widely recognized marvels in this collection is the
painting “The Starry Night” [16]. It was painted, after van Gogh voluntarily admitted
himself to the Saint-Paul-de-Mausole lunatic asylum in Saint-Rémy-de-Provence on
8 May 1889.

The painting depicts the view from the east-facing window of his asylum room
at Saint-Rémy-de-Provence, just before sunrise, with the addition of an idealized
village. While the cypresses and the colorfulness of the nocturnal sky reflect the
landscape of southern France, the village recalls van Gogh’s Dutch homeland.

In a clear night we can watch the fixed stars of our galaxis, blinking in many
colors due to the fluctuations of our atmosphere and slowly making their way in
the sky along trajectories determined by the rotation of the Earth. Van Gogh created
instead a fantastic form of a large, winding spiral nebula, eleven giant stars and an
unreal, orange moon that radiates even between its horns. Following the pronounced
brushstrokes, each object and each image area has its own direction and its own
rhythm contributing to the impressive dynamics of the whole. The flaming cypresses
are the earthly dark counterpart of the dragon in the sky. So are the rectangular lights
emanating from the windows of the village (Fig. 7).
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It could well be that Vincent wished to express his yearning for infinity in nature.
The ingenious painting would then contain a trace of an apocalyptic fantasy in his
stormy brain.

This wonderful and most expressive work of art radiates emotions in topic, wild
brush stroke and color. It has inspired poets and composers to contribute their own
variations of the theme. We mention the hommage by the American singer Don
McLean with his song “Vincent (Starry, Starry Night)” [17]. In some passage of his
words we hear:

...for they could not love you, but still your love was true
and when no hope was left in sight on that starry starry night
you took your life as lovers often do
but I could have told you Vincent
this world was never meant for one as beautiful as you....

2.3.3 Joseph M. W. Turner (1775–1851)

During the Romantic period in England, Joseph M. W. Turner was one of the most
highly esteemed painters, also renowned for his aquarelles and drawings [18]. His
favorite themes were imaginative landscapes and turbulent, often violent marine
scenes, all of them in expressive colorization of light and atmosphere. His way
of representation leads to a dematerialization of concrete objects, and the color
of sunlight, fire and water become the basic elements of his creations. He was an
artist who could most stirringly and truthfully measure the moods of nature. This
way he strongly influenced the work of the impressionists.

Many of his paintings radiate the spectral colors of sunlight. The strong increase
of coloration may have been an effect due to factual changes of the color of the sky
because of the globally distributed dust particles after the 1815 eruption of the pacific
volcano Tambora.

There are other paintings kept in dark shades with pronounced black and white
contrasts. In Fig. 8,we detect the turbulent effects of the snowstormand a tornado-like
structure hitting a steamboat. An inscription on this painting relates that The Author
was in this Storm on the Night the “Ariel” left Harwich. Turner later recounted a
story:

“I did not paint it to be understood, but I wished to show what such a scene was
like; I got the sailors to lash me to the mast to observe it; I was lashed for four hours,
and I did not expect to escape, but I felt bound to record it if I did.”

Hewas 67years old at the time.Acriticwrote: “This inscription allows us to better understand
the scene represented and the confusion of elements.”

Other critical responses to the painting were largely negative, with one critic
calling it “soapsuds and whitewash”. John Ruskin, the leading English art critic of
the Victorian era, though, wrote that the painting was “one of the very grandest
statements of sea-motion, mist and light, that has ever been put on canvas.”; “It is
thus, too often, that ignorance sits in judgment on the works of the genius” [19].
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Fig. 8 Joseph M. W. Turner, Snow storm: Steam boat off a Harbour’s Mouth (1842). Tate Gallery,
Britain

2.4 False Spirals

At the first glance on Fig. 9 (left) most of the people “see” a spiral. But if you follow
the “spiral” with your finger, your finger circles around, and it shifts neither toward
the outside nor toward the inside. The “spiral” is not a spiral but consists of concentric
circles. This is an optical illusion, which Fraser described in 1908 [20]. If you look at
these circles carefully, you notice that the circular lines look like a rope stranded with
black and white threads. Let us try to draw a rope stranded with black threads only,
as shown in Fig. 9 (right). Then, it becomes evident that they are circles. Here, the
black and white stranded curves on a spiral-formed background induce the optical
illusion: circles are “alchemized” to a spiral!

One more example of false spirals is found in ring books. The form of the metal
or plastic wiring which binds the book looks like a helix (three-dimensional spiral).
However, the wire does not pass through the holes one after the next. The insert of
Fig. 10 shows the real shape of the wire. The structure of the wire is a sequence of
arcs. Each arc passes through only one hole. In this way book-making becomes easy
and fast.
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Fig. 9 Left: Fraser’s false spiral; right: a modified false spiral

Fig. 10 A ring book and its wiring, insert: wire removed from the ring book. A long wire is folded
as shown in the right drawing

3 Spirals in Japanese Culture

A lot of spirals are seen in Japanese culture. Similar to other cultures, the origin of
spirals can be water, wind and plants. When water rushes through a narrow straight,
water vortices are observed. Naruto whirlpools (lower left in Fig. 11) are formed
between Naruto and Awaji island, and the diameter reaches a maximum of 30 m.
Hiroshige Ando produced a famous ukiyo-e1 of the Naruto whirlpool in 1855 (right
in Fig. 11) [21]. Interestingly the illustration for the Maelström by Harry Clarke in
the short story of Edgar Allan Poe “A descent into theMaelström” [2] shows a similar
motif (upper left in Fig. 11). Such motives of whirlpools are also found in Japanese
sand/rock gardens, where rocks and sand can be islands and sea [22].

1Ukiyo-e is one of the Japanese arts - woodblock prints produced form the 17th to the 19th century.
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Fig. 11 Top left:Maelström illustrated by Clarke [23]; middle left: sliced fish banger, Naruto-maki;
bottom left: Naruto whirlpools; right: Hiroshige’s Ukiyo-e of the Naruto whirlpools

Hiroshige’s work influences Western painting as a part of the trend in Japonism.
Western artists (for example, van Gogh) studied his compositions and painted copies.

There is also food originating from the Naruto whirlpool: fish banger “Naruto-
maki”. When it is sliced, a spiral pattern appears on the surface (see Fig. 11, mid-
dle left). The sliced Naruto-maki is one of the most important toppings for Udon
(Japanese noodle soup).

Vortices caused by wind are a kind of symbol of the gods for wind, storm and
thunder. Often they carry a ringwith spiral elements on their shoulder. Figure12 (left)
is a sculpture of a thunder god in the Sanjūsangen-dō Temple2 in Kyoto. A toy, pellet
drum, the sound of which imitates the roar of thunder has often three comma-shaped
figures arranged in a circle (Fig. 12, right).

2Sanjūsangen-dō (thirty-three ken (unit of length) hall) is a Buddhist temple inHigashiyamaDistrict
ofKyoto, Japan. Itwas built in 1164byTaira noKiyomori under the order ofEmperorGo-Shirakawa.
The temple complex was burned out in 1249 and only the main hall was rebuilt in 1266.
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Another aspect of Japanese culture are Japanese traditional clothes “Kimono”.
There are plenty of kimono materials patterned with small vortices in water streams,
clouds, winds, and plants, as shown on the left of Fig. 13. One special pattern for

Fig. 12 Left: a thunder god in the Sanjūsangen-dō Temple, Kyoto. Photograph taken by Ogawa
[24]; right: a pellet drum with three comma-shaped figures in a circle

Fig. 13 Left: kimono materials with spiral patterns; right: wrapping cloth with “karakusa” pattern
and its client, a thief???
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textile, different from such elegant patterns as for the Kimono, is the “karakusa
pattern” (ornamental arabesque design, upper right of Fig. 13). This pattern is used
especially for large, strong and cheap wrapping cloth. Many merchants in the Edo
period (17th century to the middle of 19th century) carried their goods in wrapping
cloth with the Karakusa pattern. If you have to collect many things quickly for
carrying away, this kind of wrapping cloth is very practical. Even today most of
Japanese families keep such wrapping cloth at home for emergency cases. It is also
convenient for thieves: before stealing things they carry only a folded wrapping cloth
in their pocket, and afterwards they can carry away many things altogether with this
cloth.

4 Functional Spirals

4.1 Musical Instruments

String instruments belonging to the violin family (violin, viola, cello, and double
bass) are valuable pieces of art when made by a skillful luthier. While the main goal
is to make their music sound beautiful over the whole range of accessible notes,
there is also a pronounced effort to build wonderful pieces of art by observing long
established rules and individual features.

Amajority of string instruments have a scroll as the decoratively carved beginning
of the neck as shown in Fig. 14. The scroll has typically the shape of a rolled-up
spiral, although some violins are adorned with carved heads, human and animal,
preferentially found with older instruments as a Baroque ornament.

The quality of a scroll is one of the things used to judge the luthier’s skills.
Scrolls usually approximate a logarithmic spiral (see chapter Spirals, Their Types
and Peculiarities). They have almost no influence on the sound, but have become a
fixed characteristic part in the instrument’s design. Below the scroll is a hollowed-
out compartment (the pegbox) through which the tuning pegs pass. The instrument’s
strings are wound around these pegs. The scroll and pegbox are almost always carved
out of one piece of wood.

Fig. 14 Scroll of a violin
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Fig. 15 Brass instruments. Left: saxophone; upper right: trumpet; lower right: an old post horn
exhibited in the Spandau citadel, Spandau, Germany

Many brass instruments have a tube of spiral form between the mouthpiece and
the bell. Saxophones have only one simple turn (Fig. 15, left), trumpets have one and
a half turns (Fig. 15, upper right), post horns (Fig. 15, lower right) have two turns, and
others have more complicated shapes. Different from the spiral of violin families,
the shape and size of tubes are essential for the tone.

4.2 Staircases, Springs and Screws

Spiral staircases are one of the most favorite objects for photographers. Many of such
pictures have an aesthetic touch. However, different from the scroll of the violin, the
primary function of spiral staircases is not decoration, but the shape itself. A smooth
spiral form helps smooth movement, when one goes up or down the staircase. The
staircase shown in Fig. 16 does not have a uniform shape of spiral - partially round and
partially square. And therefore, the movement of the person who goes up (or down)
this staircase is not constant - going up, changing the angle, walking at the same level.
But it is as beautiful as staircases with a smooth helix shape. Architects should find
the optimum design for its available space, human movement and aesthetic aspect.
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Fig. 16 A spiral staircase consisting of a round part and a square part

In our normal life we use many things which have a spiral form. Springs and
screws are inevitable for constructing machines, furnitures or buildings. Due to the
spiral form screws convert rotational motion to linear motion. And springs can store
mechanical energy.

4.3 Spirals in Data Storage

Applications of the Archimedean spiral can be found today on any data carrier.
On a compact disc (CD) data in digital form (with values 1 and 0) start on the
innermost track and are written in outward direction in spiral form. Precisely, this
is the involute of the circle which defines the innermost radius of data writing and
around which the track is wound up. This trace is very close to an Archimedean
spiral (see chapterSpirals, Their Types and Peculiarities).

Standard parameters of commercial CDs are: diameter D = 12 cm, average revo-
lution speed V = 300 min−1, duration T = 80 min. The recorded tracks are located
in a band between 22.5 and 59 mm (with 36.5 mm width) from the disk center, i.e.
their average radius is R ≈ 41 mm. One calculates for the total length L of the track
for a recorded piece:

L = (2π R)V T ≈ 6.2 km.

The width of the track is about 1.2 µm. Then, within the recording interval on the
CD away from the center one would expect 3×104 tracks passing a certain direction
[25].

The DVD functions in a way similar to the CD, but with much higher storage
capacity. Also for the older vinyl records a similar storage principle holds, but here
data are read from the outside to the inside [26].
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For the previously produced audio cassettes information is stored on magnetic
tape, which is released from a supply reel and wound up on another tape spool. Here
again an involute of a circle is formed. But the magnetic tape assumes practically the
shape of an Archimedean spiral. A standard cassette with 60 min playing time has a
length of 88 m.

The illustrations in the first part of this chapter present just a small selection of
eminent paintings around the theme of this book, and the comments on these can
barely touch the meaning and impression they had for the artists and for the people
admiring them. We like to contemplate these masterpieces in the frame of culture
and nature, the themes of the previous two chapters. We see in such a comparison
a potentially strong link between culture, nature and art to be further analyzed by
scientific methods. Furthermore one finds many practical application where spirals
play a basic role, and this has an great importance in itself.

The subsequent course of this volume’s path will emphasize a cross-
interdisciplinary approach, in that topics from numerous relevant fields shall be dis-
cussed in some detail. Either you want to pick certain topics that meet your specific
interest. Or you prefer to read through the book at full length. Have a nice time!

Picture credits

Fig. 1 Photo: c©MAK/Georg Mayer Ownership credit: MAK - Austrian Museum of Applied
Arts/Contemporary Art, Fig. 2 c©VG Bild-Kunst, Bonn 2018, Fig. 3 Watercolor on primed gauze
on wooden panel; original frame 3.1×28.3/28.1cm, privatbesitz Japan, Fig. 4Watercolor on primed
paper on cardboard 23.2×30.7cm Privatbesitz, Fig. 5 Left: Oil on burlap 68×52cm, Kunstsamm-
lung Nordrhein-Westfalen, Düsseldorf, right: oil and colored paste on paper on burlap; original
frame 74×56 cm Privatbesitz New York City. Fig. 6 Royal Collection Trust/ c©Her Majesty Queen
Elizabeth II 2018, Fig. 7 c©2018. Digital image, TheMuseum ofModern Art, NewYork/Scala, Flo-
rence, Fig. 8 Current location: Tate Britain, Fig. 11 Top left: Harry Clarke-Printed in Edgar Allan
Poe’s Tales of Mystery and Imagination, 1919, bottom left: public domain, photograph taken by
Hellbuny on 4-21-2008, right: public domain, Fig. 12 Left: Public domain, photograph taken by K.
Ogawa, published by Shimbi Shoin, right: public domain, Fig. 15 Left: CC BY-SA 4.0, Yamaha
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Part II
Spirals and Vortices in Mathematics

Posers make whirls,
But no flow

— Icelandic proverb



Spirals, Their Types and Peculiarities

Andrey Polezhaev

Abstract In this chapter, we provide mathematical data concerning the description
of spirals. Before starting with mathematical equations, Albrecht Dürer’s pioneering
works are briefly introduced. Subsequently, we discuss some properties of different
spirals in a planewhichmake them important in nature and for technical applications.
Smooth spirals are usually described by equations which are formulated either in
terms of the polar coordinates radius and angle, such spirals being called algebraic,
or in terms of curvature and arc length; then they are referred to as pseudo-spirals.We
consider in detail a number of spirals of both classes emphasizing their most essential
features. Besides 2D spirals we also discuss examples of 3D spirals, usually referred
to as helices. To conclude the chapter we mention non-smooth spirals and fractal
spirals.

1 Introduction

According to the Encyclopedia ofMathematics [1] 2D spirals are plane curves which
usually go around one point (or around several points),moving either towards or away
from it (them). This interpretation of the term is not a strict definition. One of the
variants of the strict definition, assuming themonotonicity of the polar equation of the
curve, is not universal: choosing another pole, we can break the existing monotony,
and only because of this the curve “ceases to be a spiral,” even though it itself has
not changed.

One distinguishes two types of spirals: algebraic and pseudo-spirals [2] Algebraic
spirals are spirals whose equations in polar coordinates are algebraic with respect
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to radius ρ and polar angle ϕ. These include the hyperbolic spiral, the Archimedean
spiral, the Galilean spiral, the Fermat spiral, the parabolic spiral and the lituus.

Pseudo-spirals are spirals whose natural equations can be written in the form
r = asm , where r is the radius of curvature and s is the arc length. When m = 1 it is
the logarithmic spiral, when m = −1 - the Cornu spiral, and when m = 1/2 it is the
involute of a circle [3].

A spiral in three-dimensional space (a helix) is a curve that turns around an axis
at a constant or continuously varying distance while moving parallel to the axis.

After a short essay on the eminent mathematician and artist Albrecht Düer we
will discuss in detailed properties of all the above mentioned spirals.

Albrecht Dürer (1471–1528)

TheGermanRenaissance artist AlbrechtDürer is acknowledgedworldwide for
his paintings, drawings, and copper engravings. He established his reputation
across Europe at an early age due to his high-quality woodcut prints. His
watercolors also mark him as one of the first European landscape artists.

Less known are his achievements as an eminent mathematician. In a well
founded and systematic knowledge of geometry he saw the prerequisite for
successful artistic creativity. Early enough he studied the Latin translation of
the “Elements of Euklid”, which had appeared in 1505. He also participated in
drawing a map of the northern hemisphere of the Earth together with Johannes
Stabius [4].

Historically most important is the first German book on Geometry under
the title Four Books on Measurement (Underweysung der messung mit dem
zirckel und richtscheyt in Linien ebnen unnd gantzen corporen, or Instruc-
tions for Measuring with Compass and Ruler), which appeared in 1525. In
this work Dürer defines many special curves like the Pascal snail or the shell
line, introduces a new construction of an ellipse, and recognizes that ellipse,
parabola and hyperbola are specific conic sections. He even develops approx-
imate solutions for the three problems of classical antiquity: divide an angle
into 3 parts, transform a circle to a square, and double the volume of a cube.
His methods are always deductive and systematic under the recognition of
the basic difference between exact and approximate solutions of a problem
(not yet always so clear for contemporary colleagues).

The first book of this Œuvre focuses on linear geometry. Dürer’s geo-
metric constructions include helices, conchoids (resembling conch shells; see
chapterAppearance in Nature) and epicycloids. He presents guidelines for
the construction for different “Schneckenlinien”, i.e. spirals. A few types of
spirals are analyzed and suggestions for applications in the arts are discussed.

The second book moves onto two-dimensional geometry, i.e. the construc-
tion of regular polygons. Here Dürer favours the methods of Ptolemy over
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Euclid. The third book applies these principles of geometry to architecture,
engineering and typography. The fourth book completes the progression of
the first and second by moving to three-dimensional forms and the construc-
tion of polyhedra. Here Dürer discusses the five Platonic solids, as well as
seven Archimedean semi-regular solids.

We present now two examples from the first book. The “first construction”
in this book deals with the Archimedean spiral (cf. Sect. 2.1). An approximate
procedure is based on half-circles with different radii and centers, starting from
the black dot in the upper figure as the initial center. Dürer indicates how he
performs this construction with compass and ruler.

Dürer’s “Archimedean” spiral reproduced according to his original drawing in [5]

Left: drawing of a 3D spiral, a simplified version from the original construction in [5]; right:
the reconstructed object from Dürer’s drawing in a perspective view

In another construction he studies a conical helix (cf. Sect. 4.3) on the basis
of an Archimedean spiral. He starts with a circle having 12 radial marks,
inside which an Archimedean spiral is drawn with points labeled 13–23.
Subsequently, the radius starting at point a in the lower figure is subdivided
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into 24 equal sections. Then this structure is pulled up into a third dimension,
where points are moving along the arc and the spiral line and the length of
their cosine is projected along an axis of motion.

In this drawing (left) we have illustrated a simplified picture of this con-
struction. The outer circle has only 2 radial marks (d, e) instead of 12, and
the inner spiral 3 (a, b, c) instead of 12. The spiral is equally well pulled up
in direction of the z-axis on which the cosine is projected. The reconstructed
object is shown on the right side.

Since 1508 Dürer had worked on a Teaching Book on Painting, which was
finished only in the year of his death. Furthermore, he published four books
on human proportions, where he describes the shape of heads and different
motion studies under various perspectives, including differences in male and
female bodies. As ever, he proved to be a master of descriptive geometry.

2 Algebraic Spirals

2.1 Archimedean Spiral

The Archimedean spiral (also known as the arithmetic spiral) is a spiral named
after the 3rd century BC Greek mathematician Archimedes. It is a flat curve, the
trajectory of point M (see Fig. 1), which moves uniformly along the ray OV with
the origin at O, while the OV ray itself rotates uniformly around O. In other words,
the distance ρ = OM is proportional to the angle rotation ϕ of the beam OV. The
rotation of the OV beam into the same angle corresponds to the same increment ρ.
The equation of the Archimedean spiral in the polar coordinate system is written as
follows:

ρ = kϕ, (1)

where k is the displacement of the point M along the ray r , with a rotation by an
angle equal to one radian.

The rotation of the straight line by 2π corresponds to the displacement
a = |BM | = |MA| = 2kπ. The number a is called the spiral pitch. The equation
of the Archimedean spiral can be rewritten as follows:

ρ = aϕ/2π.

When the ray is rotated counterclockwise, the right-handed spiral is obtained, while
rotating clockwise - the left-handed spiral. Both branches of the spiral (right and left)
are described by the same Eq. 1 (here and further wewill treat negative value of ρ as a
centrally symmetric reflection with respect to the origin, i.e. (−ρ,ϕ) ≡ (ρ,ϕ + π)).
Positive values of ϕ correspond to the right-handed spiral, negative - to the left-
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Fig. 1 Archimedean spiral

handed spiral. In Fig. 1 only the right-handed spiral is shown. Taking the mirror
image of this curve across the y-axis will yield the left-handed spiral.

When the spiral is untwisted, the distance from the point O to the point M tends
to infinity, while the spiral pitch remains constant (that is, the farther from the center,
the closer the coils of the spiral in shape approach the circle).

Sometimes the Archimedean spiral is described as a spiral with a “constant sepa-
ration distance” between successive turns. This is somewhat misleading [6]. The
constant distances in the Archimedean spiral are measured along rays from the
origin, which do not cross the curve at right angles, whereas a distance between
parallel curves is measured orthogonally to both curves. There is a curve slightly
different from the Archimedean spiral, the involute of a circle (which is discussed
in more detail further), whose turns have constant separation distance in the latter
sense of parallel curves.

The arc length L of the Archimedean spiral is equal to the integral of dl in the
range from 0 to ϕ:

L =
∫ ϕ

0
k
√
1 + ϕ2dϕ,

L = k

2

[
ϕ
√
1 + ϕ2 + ln(ϕ +

√
1 + ϕ2)

]
.

Other examples of algebraic spirals are described by equations of the same form:

ρ = a + kϕ(1/c) (2)

and thus are sometimes referred to as general Archimedean spirals while the normal
Archimedean spiral occurs when c = 1.
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2.2 Hyperbolic Spiral

The hyperbolic spiral is a plane transcendental curve, whose equation in polar coor-
dinates has the form:

ρ = a/ϕ. (3)

In Cartesian coordinates (x = ρ · cosϕ; y = ρ · sinϕ) the representation for the
hyperbolic spiral has the form:

x = a(cosϕ)/ϕ, y = a(sinϕ)/ϕ.

The spiral has a horizontal asymptote at y = a: for ϕ approaching zero the ordinate
approaches a, while the abscissa grows to infinity:

lim
ϕ→0

x = a lim
ϕ→0

cosϕ

ϕ
= ∞, lim

ϕ→0
y = a lim

ϕ→0

sinϕ

ϕ
= a.

The arc length of a hyperbolic spiral between the points M1(ρ1,ϕ1) and M2(ρ1,ϕ1)

(see Fig. 2) is calculated as follows:

L = a
∫ ϕ1

ϕ2

1

ϕ

√
1 + 1

ϕ2
dϕ = a

[
− 1

ϕ

√
1 + ϕ2 + ln

(
ϕ +

√
1 + ϕ2

)]ϕ1

ϕ2
.

In addition, we can calculate the area of the sector bounded by this arc and two radius
vectors ρ1 and ρ2 corresponding to the angles ϕ1 and ϕ2:

S = a2

2

∫ ϕ1

ϕ2

1

ϕ2
dϕ = a2

2

(
1

ϕ2
− 1

ϕ1

)
= a(ρ2 − ρ1)

2
.

Fig. 2 Hyperbolic spiral
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2.3 Parabolic Spiral

The parabolic spiral is a plane transcendental curve whose equation in polar coor-
dinates has the form:

ρ = a
√

ϕ + l, l > 0. (4)

To each value of ϕ there correspond two values of
√

ϕ - positive and negative. The
curve has infinitely many double (intersection) points and one inflection point (see
Fig. 3).

Fig. 3 Parabolic spiral

2.4 Fermat’s Spiral

When in Eq. 5 we take l = 0 we arrive at Fermat’s spiral, which may be treated as a
special case of the parabolic spiral. The curve has also two branches corresponding
to both signs of

√
ϕ but contrary to the case of the true parabolic spiral it has no

double points (see Fig. 4).

2.5 Galilean Spiral

Another example of algebraic spirals is the Galilean spiral, which is a plane curve
with equation in polar coordinates

ρ = aϕ2 − l, l ≥ 0. (5)

The curve is symmetric with respect to the axis x (see Fig. 5) and has a double point
at the pole with tangents forming angles equal to±√

l/a with this axis. On the x-axis
there are infinitely many double points at distances ρ = ak2π2 − l (where k = 1, 2,
3, …) from the center.
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Fig. 4 Fermat’s spiral

Fig. 5 Galilean spiral

The Galilean spiral can be viewed as a trajectory of a point that is uniformly
accelerated along a straight line, and this straight line rotates uniformly around one
of its points. It is named after G. Galilei (1683) in connection with his studies on the
free fall of solids. Indeed, if we take into account the rotation of the Earth, then the
trajectory of the stone falling from a tower is a portion of the Galilean spiral.

2.6 The Lituus

We conclude the review of algebraic spirals by the lituus, which is determined in
polar coordinates by the equation

ρ = a/
√

ϕ. (6)
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Fig. 6 Lituus (one branch)

This spiral has two branches depending on the sign of
√

ϕ. One of them tends
from infinity (where it asymptotically approaches the horizontal axis) to the point
the origin at (0, 0), twisting around it in a counterclockwise spiral (see Fig. 6). The
other branch is centrally symmetric to the first one with respect to the origin. The
size of the spiral is determined by the coefficient a. Each of the branches has one
inflection point, correspondingly (ϕ, ρ) = ( 12 ,

√
2a) and (− 1

2 ,
√
2a). The lituus spi-

ral was studied by Roger Cotes in 1722. It is named after an ancient Roman trumpet
called lituus.

3 Pseudo-Spirals

While equations for algebraic spirals in polar coordinates are algebraic with respect
to angle and radius, the corresponding equations in the case of pseudo-spirals are
algebraic with respect to curvature and length along the curve. They have the form
r = asm , where r is the radius of curvature and s is the arc length. Such equations
are called natural.

3.1 Logarithmic Spiral

The most well-known and important example of pseudo-spirals is the logarithmic
spiral. It is a plane transcendental curve with equation in polar coordinates in the
form

ρ = aebϕ, a > 0. (7)



100 A. Polezhaev

Fig. 7 Logarithmic spiral

Ifb > 0, asϕ → +∞ the logarithmic spiral evolves anti-clockwise, and asϕ → −∞
the spiral twists clockwise, tending to its asymptotic point 0 (see Fig. 7). If b < 0, the
twisting behavior is opposite. Equation7 of the logarithmic spiral can be presented
in the following equivalent form:

ρ = adϕ = akϕ/2π, (8)

where d = eb and k = e2πb. The parameter k is called growth coefficient. This growth
coefficient shows how many times the polar radius of the helix has changed as it
rotates through the full angle of 2π (or 360◦).

The arc length of a logarithmic spiral between the points M1(ρ1,ϕ1) and
M2(ρ2,ϕ2), where ϕ1 < ϕ2, is calculated as follows:

L =
∫ ϕ2

ϕ1

aebϕ
√
1 + b2dϕ = a

√
1 + b2

b
(ebϕ2 − ebϕ1) =

√
1 + b2

b
(ρ2 − ρ1).

Thus, we can see that when ϕ1 tends to −∞ the length of the arc remains finite
although the spiral circles the origin an unbounded number of times without reaching
it. If the arc length is measured from the origin then the natural equation of the
logarithmic spiral has the form: r = bs.

We can calculate the angle θ between the tangent to the curve and radial line at
any point of the spiral: tanθ = ρ

ρ′
ϕ

= 1/b. We see that this angle is constant and does

not depend on the point. In view of this property, the logarithmic spiral is also called
equiangular. In fact, the parameter b controls how “tightly” and in which direction
the curve spirals. In the extreme case that b = 0 (θ = π/2) the spiral becomes a circle
of radius a. Conversely, in the limit that b is infinity (θ → 0) the spiral tends toward
a straight half-line.
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The logarithmic spiral was first described byDescartes and later extensively inves-
tigated by Jacob Bernoulli, who called it Spira mirabilis, “the marvelous spiral”. In
fact, the logarithmic spiral has a lot of remarkable properties. Besides the already
mentioned property that the logarithmic spiral crosses any radius at a fixed angle, it
has another unique property self-similarity. It means that while the size of the spiral
increases, its shape is unalteredwith each successive curve. Self-similarity of the log-
arithmic spiral manifests itself in different ways. One of its consequences is the fact
that the distances between the turnings of a logarithmic spiral increase in geometric
progression. Therefore, the third name of this curve is geometric spiral. Scaling of
the spiral by a factor e2πb gives the same spiral, without rotation. The logarithmic
spiral is the only curve, for which involute (a curve traced out by a point in a straight
line segment which rolls over the original curve), evolute (the original curve of an
involute) and caustic (a curve to which the ray of light, reflected or refracted by the
original curve, are tangents) are also, in turn, logarithmic spirals.

The logarithmic spiral is undoubtedly a spiral, which is most often found in
nature. The animal kingdom provides us with examples of spirals of shells of snails
and shellfish. All these forms indicate a natural phenomenon: the process of winding
is associated with the process of growth. In fact, the shell of a snail is no more, no
less than a cone wound on itself. The horns of ruminant animals, too, but they are
also twisted. Moreover, although the physical laws of growth in different species
are different, the mathematical laws that govern them are the same: they all have a
geometric spiral, a self-similar curve. If we carefully look at the growth of shells and
horns, we will notice another curious property: growth occurs only at one end. And
this property keeps the form completely unique among the curves in mathematics,
the shape of a logarithmic, or conformal spiral (examples, see chapterAppearance
in Nature).

Galaxies, storms and hurricanes give impressive examples of logarithmic spirals.
And finally, in any place where there is a natural phenomenon, in which expansion or
contraction with rotation is combined, a logarithmic spiral appears inevitably. In the
plant world, examples are even more striking, because the plant can have an infinite
number of spirals, and not just one spiral in each. The location of sunflower seeds
in any sunflower, scales in any pineapple, and other various kinds of plants, simple
chamomiles give us a real parade of interwoven spirals. If we look from above on
any pine cone, we will see that its seeds are arranged in the form of a large number
of spirals. And it is not accidental. It is not a coincidence. The seeds are optimally
located, i.e., maximizing the use of space, and this optimization of space is achieved
by spiraling [7–9] (examples, see chapterAppearance in Nature).

3.2 Golden Spiral

A specific case of the logarithmic spiral is the golden spiralwith a growth coefficient
k = Φ4, where Φ is the golden ratio, equal to (

√
5 + 1)/2, which is also known as

the number of Phidias [10]. This spiral received its name because of the connection
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Fig. 8 Golden spiral

with the sequence of nested rectangles with the ratio of sides equal to Φ, which are
usually called golden. A golden spiral can be inscribed into the set of such rectangles
and circumscribed around it (Fig. 8).

Its proximity to the Dürer spiral made it very famous. Dürer was the first to
inscribe into such a sequence of rectangles a spiral formed by circular arcs, an
impressively simple method for spiral construction [4, 5].

There are several similar spirals that are close, but do not coincide exactly with
the golden spiral, with which they are often confused.

As already written above, when a golden spiral is inscribed into a sequence of
golden rectangles (with the golden ratio of the side lengths) embedded in each other,
it is approximated by a spiral constructed according to the Dürer method. Albrecht
Dürer worked on the geometrical construction of Archimedean and logarithmic spi-
rals (see Inset). He suggested the following procedure: a golden rectangle is divided
into a square and a rectangle similar to it, which, in turn, is split in the same way.
After continuing this process for an arbitrary number of steps, the result will be an
almost complete partitioning of the rectangle into squares. If we connect the corners
of these squares by quarter-circles we obtain a curve, which, though not being a true
logarithmic spiral, approximates a golden spiral quite well (In fact, Fig. 8 equally
describes both golden and Dürer spirals).

3.3 Fibonacci Spiral

Another approximation is the Fibonacci spiral, which is constructed like the above-
described Durer spiral, except that we start with a rectangle of two squares and
then add a square of the same length to the larger side of the rectangle (Fig. 9). The
Fibonacci spiral, unlike the golden spiral, has a starting point. Taking its origin in a
point, such a figure can unfold indefinitely. The Fibonacci sequence is characterized
by the fact that every number after the first two is the sum of the two preceding
ones: 1, 1, 2, 3, 5, 8, 13, 21,. . . It has an interesting property: the ratio between the
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Fig. 9 Fibonacci spiral

neighboring Fibonacci numbers tends to a golden ratio [11]. Thus the more squares
are added the more the spiral approaches the golden spiral (more detail, see chapter
Appearance in Nature, Appendix).

3.4 Cornu Spiral

The Cornu spiral is a curve with its curvature changing linearly with the curve
length (the curvature of a circular curve is equal to the reciprocal of the radius). Thus
its natural equation is:

r = b/s. (9)

Its curvature beginswith zero at the straight section in the origin and increases linearly
with the curve length (see Fig. 10). The curve has infinite length and two asymptotic
points.

TheCornu spiral is also commonly referred to as clothoid,Euler spiral or Fresnel
spiral. It was studied by Jacques Bernoulli in 1705, Euler in 1743, Fresnel in 1818,
Cornu in 1874, Cesaro in 1886 (who gave it the name clothoid).

The clothoid was proposed by Cornu to facilitate the calculation of diffraction
in problems of applied optics. It makes a perfect transition spiral as its curvature
increases linearlywith the distance along the spiral. This spiral is used as a transitional
arc in road construction [12]. When the road section in the plan has the shape of a
part of the clothoid, the steering wheel of the car turns without jerking. This bend of
the road allows you to go through a turn without significantly reducing the speed. For
the same reason the spiral is used in ship design, specifying the curvature distribution
of an arc of a plane curve while drawing a ship.
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Fig. 10 Cornu spiral
(clothoid)

3.5 Involute of a Circle

Another example of a pseudo-spiral is the involute (evolvent) of a circle. It is the
curve forwhich all the normals are tangent to a fixed circle of the radius a (see Fig. 11).
More practically, it is the curve traced by a hand unwinding a wire reel held in the
other hand. Its natural equation (r is the radius of curvature and s is the arc length):

Fig. 11 Involute of a circle
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Fig. 12 Involute of a circle
(red) and Archimedean spiral
(blue)

r2 = 2as. (10)

The involute of a circle is a special case of an involute of a curve, which may be
viewed as the curve traced by the end of a wire tightened along the generating curve
and winding itself along the latter. Like any family of involutes of the same curve,
the involutes of a circle are parallel to one another. More precisely, the image by a
rotation by an angle α of the involute gives a parallel curve at distance αa. In the
special case α = 2π, we get the same curve; the involute of a circle is therefore an
auto-parallel curve; its coils are at distance 2πa fromone another. Thus the successive
turns of the involute of a circle are parallel curves with constant separation distance, a
property which is often (inaccurately) ascribed to the Archimedean spiral. However,
for large values of turns, the Archimedean spiral with the equation ρ = a(ϕ + π/2)
is the asymptotic curve to the involute of a circle (Fig. 12).

The involute of a circle is the curve for which, when it is travelled along with
linearly growing speed (with acceleration a), the rotation speed of the tangent to
the trajectory is constant. Hence, it has another name - anti-clothoid, because the
clothoid is the curve for which, when it is travelled along with a uniform movement,
the rotation speed of the tangent is linearly changing.

The involute has some properties that makes it extremely important for the gear
industry: If two intermeshed gears have teeth with the profile-shape of involutes
(rather than, for example, a traditional triangular shape), they form an involute gear
system [13]. It allows to transmit motion with a constant ratio. For this, it is necessary
that the teeth of the gears be drawn along a curve in which the common normal drawn
through the point of contact of the tooth profiles always passes through the same
point on the line connecting the centers of the gears, called the gearing pole. Their
relative rates of rotation are constant while the teeth are engaged, and also, the gears
always make contact along a single steady line of force. With teeth of other shapes,
the relative speeds and forces rise and fall as successive teeth engage, resulting in
vibration, noise, and excessive wear. For this reason, nearly all modern gear teeth
bear the involute shape.

The involute of a circle is also an important shape in gas compressing, as a scroll
compressor can be built based on this shape. Scroll compressors make less sound
than conventional compressors, and have proven to be quite efficient.
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4 Three-Dimensional Spirals

As mentioned above, a spiral in three-dimensional space is a curve that turns around
an axis at a constant or continuously varying distance while moving parallel to the
axis. As in the case of two-dimensional spirals the third variable, h (height), as well
as the radius ρ, is a continuous monotonic function of the angle ϕ.

An important type of 3D spirals is a helix, which is determined by the property
that the tangent line at any point of this curve makes a constant angle with a fixed
line called the axis. Helices can be either right-handed or left-handed. With the line
of sight along the helix’s axis, if a clockwise screwing motion moves the helix away
from the observer, then it is called a right-handed helix; if towards the observer, then
it is a left-handed helix. Handedness (or chirality) is a property of the helix, not of
the perspective: a right-handed helix cannot be turned to look like a left-handed one
unless it is viewed in a mirror, and vice versa.

4.1 Circular Helix

There are several types of helices. A circular (cylindrical) helix is a curve on
the cylinder surface, which is described in Cartesian coordinates by the following
equations:

Fig. 13 Left: right-handed cylindrical helix with a = b = 1, right: helicoid
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x = a · cosϕ,

y = a · sinϕ,

z = bϕ, (11)

where a and b are nonzero constants. The projection of a cylindrical helix on the
x, y-plane is a circle (see Fig. 13 left).

The length of one coil of the circular helix (ϕ ∈ [0, 2π]): L = 2π
√
a2 + b2. The

pitch of a helix, equal to 2πb, is the height of one complete helix turn, measured
parallel to the axis of the helix. Its curvature is | a | /(a2 + b2) and its torsion is
b/(a2 + b2). Thus, a circular helix has constant band curvature and constant torsion.

4.2 Helicoid

The helicoid is shaped like an Archimedean screw, but extends infinitely in all direc-
tions.Correspondingly, it can be also described by aparametric equations inCartesian
coordinates:

x = ρcosϕ,

y = ρsinϕ,

z = ϕ, (12)

where ρ and ϕ range from negative infinity to positive infinity (Fig. 13 right).
The helicoid plays a role as a surface in differential geometry. Besides the plane

it is the only simply connected minimal surface in 3D Euklidian space.

4.3 Conical Helix

Another example of 3D spirals is a conical helix, which may be viewed as a spiral
line on a conical surface. If in Eq. 11 we take the parameter a not as a constant but
proportional to the angle ϕ, then we obtain a conical helix which in projection on
the x, y-plane gives an Archimedean spiral (see Fig. 14).

If both the height h and the radius ρ of the 3D spiral depend exponentially on the
angle ϕ: h, ρ ∝ ekϕ, we have the case of a conical helix which, while projected on
the x, y-plane, produces a logarithmic spiral.



108 A. Polezhaev

Fig. 14 Conical helix

4.4 Loxodrome

Speaking about three-dimensional spirals, we cannot but mention spirals on the
surface of a sphere. The first example is the loxodrome (also known as a rhumb
line or spherical spiral), which is a curve on the sphere, crossing all meridians
at fixed angle (not the right angle). A loxodrome spirals from one pole to the other
(see Fig. 15). This curve has an infinite number of turns but reaches the pole in a finite
distance. The pole-to-pole length of a loxodrome is (assuming a perfect sphere) the
length of the meridian divided by the cosine of the bearing away from true north.
Asymptotically near the poles, it behaves like the logarithmic spiral on a plane.

The name is derived fromold French or Spanish, respectively: “rumb” or “rumbo”,
a line on the chart, which intersects all meridians at the same angle. On a plane
surface this would be the shortest distance between two points. Over the Earth’s
surface at low latitudes or over short distances, it can be used for plotting the course
of a vehicle, aircraft or ship [14]. Over longer distances and/or at higher latitudes
the great circle route is significantly shorter than the rhumb line between the same
two points. However, the inconvenience of having to continuously change bearings

Fig. 15 Loxodrome (rhumb
line)
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while travelling a great circle route makes rhumb line navigation appealing in certain
instances.

4.5 Archimedean Spiral on a Sphere

Another example of a spiral on a sphere is an Archimedean spiral, which maintains
uniform line-spacing as the curve progresses across the surface of the sphere. There-
fore, this line has also finite length, though this is not the same thing as the rhumb
line described earlier.

It should bementioned thatMaurits Cornelis Escher (1898–1972) aDutch graphic
artistwhomademathematically inspiredwoodcuts, lithographs, andmezzotints, used
spirals patterns, especially the loxodrome, for some of his graphics [15].

5 Non-smooth Spirals

Until now, we discussed spirals both in 2D and in 3D, which were smooth curves.
However, there are examples of non-smooth spirals, which usually consist of line
segments. One of the most popular among them is the spiral of Theodorus (also
called square root spiral, Einstein spiral or Pythagorean spiral), which is composed of
contiguous right-angled triangles (see Fig. 16). It was first constructed by Theodorus
of Cyrene. The spiral is formed by a chain of right-angled triangles, which have a
common side. The hypotenuse of one triangle becomes the catheter of the next. The
free legs form the spiral. The spiral is started with an isosceles right triangle, with
each leg having unit length. Another right triangle is formed, with one leg being the
hypotenuse of the prior triangle (with length

√
2 ) and the other leg having length

of 1; the length of the hypotenuse of this second triangle is
√
3. The process then

Fig. 16 Spiral of Theodorus
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repeats; the ith triangle in the sequence is a right triangle with side lengths
√
i and

1, and with hypotenuse
√
i + 1.

Theodorus stopped his spiral at the triangle with a hypotenuse of
√
17. If the spiral

is continued to infinity many triangles and other interesting characteristics are found.
If ϕn is the angle of the nth triangle (or spiral segment), then: ϕn = arctan( 1√

n
).

The growth of the radius of the spiral at this triangle is Δρn = √
n + 1 − √

n. For
large n, ϕn

∼= 1/
√
n and Δρn ∼= 0.5/

√
n. Thus Δρn/ϕn

∼= 0.5 and the spiral of
Theodorus approximates the Archimedean spiral with a pitch equal to π.

If we construct a spiral according to the same procedure as in the case of the
Theodorus spiral but using similar right-angled triangles (they have the same ratio
of the corresponding legs), then we obtain a non-smooth analog of the logarithmic
spiral. Furthermore, we can generalize this procedure and apply it to arbitrary similar
polygons each having at least a pair of non-equal non-parallel sides that will result
in the formation of a logarithmic polygon spiral.

6 Fractal Spirals

The analysis of fractality in mathematical and natural objects has been a major field
of research in recent years. “Fractals” assume a large variety of shapes and forms,
and they require for their characterization a fractal dimension, which generally is not
an integer.

For the understanding of fractality the properties of the “Mandelbrot set M” prove
to be a most useful source of knowledge. M is the set of all complex numbers c, for
which the recursive complex series zi with
z0 = 0
zn+1 = zn2 + c, (n = 1, 2, 3,…)

is restricted (i.e., limited) to finite values [16].

One also writes:
zn+1 = zn2 + c, c ∈ M ↔ lim

n→∞ sup zn+1 ≤ 2.

This prescription looks, at first sight, quite simple, but when studying numerically the
outcome for different choices of c, an amazing richness of patterns unfolds [17]. The
Mandelbrot set M is then drawn in the plane of complex numbers. In a simplistic
description, it consists of a main body with a head. It is called “Apfelmännchen”
(apple man), because of its shape. Note that the border of the Apfelmännchen is
not a simple line. At the border a lot of smaller Apfelmännchen appear, from there
still smaller Apfelmännchen grow, and further on. However, the region of M in the
complex plane is limited to −2.4 < x < 0.8 and −1.2 < y < 1.2, where x and y are
the coordinates of the real and imaginary part of c, respectively.

If one focuses on a narrow region between the main body and the head of the
primary Apfelmännchen, one can find spirals evolving at the outer boundary of M,
as depicted in Fig. 17. These spirals are fractal structures in that small spiral copies
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Fig. 17 “In the seahorse valley” - small section at the outer boundary of M

grow in a rather intricate way from the main arm of the “mother” spiral. These are
small self-similar replicas of the large spiral.

Fractal structures are seen not only inmathematics but also in nature, for example,
the fjord coast in Norway, water sheds, cauliflowers, trees, corals (see Fig. 18) and
others.

Fig. 18 Left: spiral shape of coral Iridogorgia; right: close-up photograph. Refer to
chapterAppearance in Nature
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Acoustic Spirals: Analysis of Bach’s
Prelude in C Major

Kinko Tsuji

Abstract Bach’s prelude in C major of “The Well-Tempered Clavier, Book I” is
analyzed with a dynamical approach, by using phase portraits and their two and
three-dimensional expressions. Different from the traditional analysis based on the
theory of harmony, our method can elucidate how the music develops in the course
of time. The numerical calculation leads us to an image of this musical piece, as if
one walks down a staircase with several half turns, while spinning around one’s own
axis.

1 Introduction

I am walking down a spiral staircase, with myself spinning. This is the feeling which
I always get when playing the prelude in C major of Bach’s “The Well-Tempered
Clavier, Book I”. For me this piece of music is an acoustic spiral.

Johann Sebastian Bach composed the well-tempered clavier (Bach’s original title:
“DasWohltemperierte Clavier”) in 1772, a collection of 24 preludes and fugues. The
first piece, the prelude in C major, is the most famous one, and many people who
can play piano play this piece at least several times in their lives. Some notes at the
beginning of this prelude are shown in Fig. 1.

Generally, it is not so easy to express which kind of feeling you have during
playing or during listening to music. This was also true for me.When I said that “this
is an acoustic spiral!”, the only reaction was “What?”. “Yes, I am walking down
a spiral staircase, with myself spinning.” However, this very intuitive explanation
alone does not prove that my thought is right: whether ever acoustic spirals do exist?

The original version of this chapter was revised: Error in equation 2 has been corrected. The
correction to this chapter is available at https://doi.org/10.1007/978-3-030-05798-5_17

K. Tsuji (B)
Shimadzu Europa GmbH, Albert-Hahn-Straße 6-10, 47269 Duisburg, Germany
e-mail: kts@shimadzu.eu

© Springer Nature Switzerland AG 2019, corrected publication 2022
K. Tsuji and S. C. Müller (eds.), Spirals and Vortices,
The Frontiers Collection, https://doi.org/10.1007/978-3-030-05798-5_5

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05798-5_5&domain=pdf
mailto:kts@shimadzu.eu
https://doi.org/10.1007/978-3-030-05798-5_5


114 K. Tsuji

Fig. 1 The beginning part of the prelude in C major of “The Well-Tempered Clavier: Book I”,
copied from [1]

This prelude has been analyzed by several people: examples are given in
[2, 3]. Their analysis is mainly based on the theory of harmony, probably because
the prelude consists of sequences of harmonies played as broken cords as seen in
Fig. 1. This kind of analysis is static and misses musical flow. In fact, there are three
essential elements in music: melody, harmony and rhythm. Here we need a dynamic
analysis including melody and rhythm: the dynamic development in the course of
time. For this purpose, to make a phase portrait can be an appropriate method, since
it presents a geometrical trajectory of dynamical evolution. In other words, in a
phase plot dynamic developments are represented in a compact way. It could reveal
information about whether this musical system is a limit cycle or another attractor
or some other spiral [4].

We will present our strategy for analysis, in which musical notes and physical
parameters are combined (Sect. 2) and results of numerical calculations (Sect. 3).
Finally, we will discuss how the feeling (of an acoustic spiral) can be expressed by
a rather qualitative mathematical analysis.

2 Strategy for Analysis

2.1 Phase Plot for Musical Notes

A phase plot (see chapter Generation of Spirals in Excitable Media) may repre-
sent the dynamics of location (x) and momentum (proportional to y = dx/dt) of
harmonic oscillations. Instead of showing directly the time evolution of x and y (by
sine and cosine functions) it presents the motion on a xy-plane by a closed curve
(circle or ellipse), thus providing a compact image of the system’s dynamics. If real-
istically a damping of the motion is allowed (by friction → dissipation), the closed
curve turns into an inward curling spiral, which asymptotically ends in the origin
acting here as a point attractor.

This dynamical approach is now used for our analysis. For the music we can
attribute x to the frequency and y to the change of the frequency per unit time. The
frequency corresponds to the pitch of each note. Different from an oscillator like a
physical pendulum, however, x and y are not continuous, but assume discrete values.
Therefore, we define:
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xn = ( fn + fn+1)/2,

yn = ( fn+1 − fn)/mn = Δ fn/Δτn (1)

where fn is the corresponding frequency of the nth note, Δ fn = ( fn+1 − fn), and
mn(= Δτn) is the time interval between the nth and (n + 1)th note (arbitrary unit).
Here we set m as shown in Fig. 2.

Fig. 2 mn = 8 for a half note, mn = 4 for a quarter note, mn = 2 for an eighth (quiver) note,
mn = 1 for a sixteenth (semi quiver) note, and further on

Since we have only discrete points, we have to connect them. After some trial we
decided to use a polynomial approximation. There is no physical or mathematical
reason for our decision, though. Just sharp edges are avoided, because they do not
fit to this music. In fact, Bach’s notes create a continuous curve of musical sound,
where subsequent notes are intimately connected. Phase plots on this basis will be
shown Sect. 3.

2.2 Characteristics of This Musical Piece and Corresponding
Treatments

The C major prelude consists of 35 bars. Except for the last three bars the rhythmic
structure of the notes is identical throughout: there are two repetitive groups in each
bar; in each group there is one half note (m = 8) which has the lowest pitch, one
double dotted quarter note (m = 7) for the second lowest pitch, and six semi quiver
notes (m = 1) for the upper three pitches (see Fig. 1). We will use, therefore, these
32 bars (from the first bar to the 32th bar) for analysis.

Themain difficulty here is how to integrate three different kinds of notes (half note,
double dotted quarter note and semi quiver note) into this analysis. (The traditional
analysis based on harmony does not take these differences into consideration.)

Fig. 3 Examples of categories a, b and c. Red arrows indicate three roles of the lowest tone and
blue arrows two roles of the second lowest tone
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In order to distinguish these three kinds in our analysis explicitly, we separate
each group of notes into three categories (see Fig. 3):

(a) 8 sixteenth notes (the first two longer notes are considered as sixteenth notes, as
well),

(b) 1 half note (the lowest pitch),
(c) 1 double dotted quarter note (the second lowest pitch) in combination with the

lowest note.

The lowest note has three roles for each half bar: (1) the lowest tone as a half
note (red arrow in Fig. 3b), (2) a part of the lowest 2 tones (red arrow in Fig. 3c), and
(3) the starting tone of the broken cord of 8 semi quiver notes (red arrow in Fig. 3a).
In a similar way the second lowest note has two roles: (1) the rather long double
dotted quarter note (blue arrow in Fig. 3c) combined with the lowest tone and (2) the
second tone of the sequence of 8 semi quiver notes (blue arrow in Fig.3a).

At first, we will analyze these three categories independently by using the phase
plot (see Sect. 3.1), and later on we will try to combine these results.

2.3 Three-Dimensional Expression

Since the phase plot gives no explicit information for the time evolution, we will
introduce an additional axis (z-axis) vertical to the xy-plane, and pull the trajectory
along the z-axis (i.e. by introducing a growing scaling factor). This way we can see
how the trajectory develops over the course of time.

Example: If you look at a helix-shaped spring from its head (or tail) along its axis,
you see only a circle. You have neither information of the length nor the pitch of the
spring. This corresponds to a phase portrait in the plane. If you change the angle of
view, let us say by 30◦ with respect to the axis, then you can get an idea for the real
shape of this spring (a three-dimensional image).

In order “to change the angle of view” mathematically, we rotate the yz-plane
around the x-axis and the xz-plane around the y-axis, and plot the projection on a
new xy-plane. We use the following equations to plot the projection (xp, yp), when
at first the object is rotated α radian around the x-axis and then β radian around the
y-axis:

xp = x · cosβ − (−y · sin α + z · cosα) · sin β,

yp = y · cosα + z · sin α (2)

3 Numerical Calculations

For the analysis of category (a) notes, all notes are numbered from 1 (the first note of
the first bar) to 512 (the last note of the 32th bar). The beginning part of the number
sequence is shown in Fig. 4.
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Fig. 4 Numbering of each note

The running index for the notes is i (i = 1, 2, 3,…, 512). According to Eq.1 xi
is defined as the mean value of the frequency of the i th note and (i + 1)th note. It
means that the index i of xi is actually (i + (i + 1))/2. In order to avoid unnecessarily
complicated notation, we write i for the tone between i and (i + 1) notes.

For the analysis of category (b) as well as (c) notes, it is more practical to num-
ber the bars; all bars are numbered from 1 to 35 (N = 1, 2,…, 35). The half inte-
ger (N/2) means the second part of the corresponding bar. Here also N means
(N + (N + 1))/2.

3.1 Analysis of Category (a) Notes: Sequence of 8 Semi
Quiver Notes

Figure5 shows examples of the phase plot of the 1st, 5th, 23th and 30th bar. Since
the first half sequence is repeated in the second half of each bar, only the plot of the
first half of the sequence (consisting of 8 notes) is shown.

Each loop includes a smaller loop. The form of each curve is characteristic for
melody and harmony of the bar, since the rhythm is constant all the time. Some
consecutive bars possess loops of similar shape: for example, bars 2–4 have loops
similar to that shown in Fig. 5a. Grouping of bars according to the shape of the
loop agrees with the grouping according to the harmony [2], suggesting that for the
analysis of harmony this kind of phase portrait can be used.

The phase plot for all bars can then be expected to express the primary aspect of
the Cmajor prelude. However, such a plot cannot give any clear information, because
there are too many points (8 points for each bar × 32 bars) to recognize details. We
can omit the sub-loop (the smaller loop inside the large loop) for simplification,
because the shape of the main loop is independent of the sub-loop. It means that we
reduce the number of points in each bar to be 5: the 6th, 7th and 8th notes are omitted
so that the next neighboring note of the 5th note is the first note of the next bar. The
remaining 5 points in each bar are considered as basic tonal sequence and present
the characteristic loop.

The result of such a simplified phase plot through bars 1–32 is shown in Fig. 6.
The black loop is the one for the 1st bar. The two red loops indicate the 5th and
the 30th bar: the 5th bar is the first bar after the introductory 4 bars and shows the
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Fig. 5 Examples of the phase plots: a 1st bar, b 5th bar, c 23rd bar, d 30th bar. The unit of
the ordinate Δ f/Δτ is arbitrary. The numbers indicated in this figure are the mean value of the
corresponding number and the next number (see the text above)

Fig. 6 Simplified phase plot of the category (a) notes for the C major prelude of “das wohltem-
perierte Klavier: Part I”. The black loop indicates the loop of the 1st bar. The right and left red
curves correspond to the 5th and 30th bar, respectively. The unit of the ordinate Δ f/Δτ is arbitrary

largest loop. The 30th bar belongs to the last part before the coda. All other loops
are indicated with blue color.

As can be seen in Fig. 6, from the 5th bar on, the loops of each bar shift from
higher to lower frequencies over the course of time, which agrees with my feeling
of “walking down the staircase”.
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Fig. 7 Phase plot after mean-frequency normalization. The black loop is the first loop, the large
and small red loops are for the 5th and 30th bar, respectively

Now we calculate the average frequency of the 5 points in each cycle, and each
cycle is laterally shifted, so that the centers of all loops nearly coincide (see Fig. 7).
Interestingly, this form reminds us of a kind of “attractor”. In fact, if we extend the
prelude from the original bars 1–35 to bars (1–31) + (1′–35′) (where bars 1′–35′
mean that the melody is the same as the bars 1–35 but one octave lower), the loops
continue with decreasing size in a self-similar manner. Theoretically, we can repeat
this procedure: (1–31) + (1′–31′) + (1′′–31′′) (two octaves lower) + (1′′′–31′′′) (three
octaves lower)…Then the loops get smaller and smaller to approach their central
region. Whether this is a point attractor (see Sect. 2.1) or not, we will not discuss
here. Of course, Bach did not compose such an extension, certainly for musical
reasons, but also because pianos at that time were smaller. (The lowest tone of the
Christofori’s pianoforte which has the 54 keys is C2 (low C) and exactly the lowest
tone of this prelude is C2 [5].) For the naming of musical notes, refer to [6].

3.2 Analysis of Category (b) Notes: Half Notes

The category (b) notes are the lowest and longest tone in each bar, suggesting that
they build a basic structure of this musical piece. The phase plot from the 1st to 32th
bar is shown in Fig. 8. Since the repetitive part (the second half) in each bar is included
in this plot, the total number of the points is 63. However, the points shown in Fig. 8
are much less than 63, because the category (b) notes often remain at the same pitch
and therefore, quite many points have a value of Δ f/Δτ = 0. Subsequently at a
few values on the x-axis some points gather. At the coordinates indicated by orange
circles three successive points are overlapping. At the green circle three successive
points plus five successive points are overlapping and at the red circle 15 points.
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Fig. 8 Phase plot of the category (b) notes from 1st to 32nd bar. At the coordinates indicated by
a green circle for three and (once more) five successive points, orange circles for three successive
points and red circle for 15 points are overlapping. The numbers indicate the mean value of the
corresponding half bar and the next half bar. The unit of the ordinate Δ f/Δτ is arbitrary

Fig. 9 Phase plot, laterally shifted group-wise. Red: first group (bars 1–9), black: second group
(bars 9–17), yellow: third group (bars 17–21), green: fourth group (bars 21–32)

Interestingly, some kind of vague repeated similarity is seen in the curve. In order
to verify whether such a similarity exists, the curve is separated into 4 parts (bar 1–9,
bar 9–17, bar 17–21 and bar 21–32) and each part is shifted along the frequency axis
so that they have a common center. The result is shown in Fig.9.
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In this figure the curves of all four groups are turning around the center in a similar
manner, suggesting that there are four discrete turning elements. Their common
center is located at the frequency of the note “G2”, where both neighbors before and
after are also G2, suggesting that the tone “G2” is the conceptional tone. This can
be interpreted as a structure of the staircase: the staircase itself is piece-wise turning
and it converges towards “G2”.

3.3 Analysis of Category (c) Notes: Combination of the Two
Lowest Notes

For the category (c) notes, the phase plot looks more complicated (see Fig. 10). The
curve displays irregular oscillations between large positive values and small negative
values of Δ f/Δτ . Moreover, the shift of the frequency changes its direction several
times. The frequency decreases at first (from the 1st bar to the 3rd bar), and then it
increases (bar 3–5), decreasing again (bar 5–10) and further on.

Figure11 summarizes the grouping for categories (b) and (c). There is no clear
coincidence between the groups of these categories. We will come back to this point
further below after the three-dimensional analysis.

Fig. 10 Phase plot of the category (c) notes. The orange color indicates the direction of decreasing
frequency and the blue color of increasing frequency. The numbers indicate the mean value of the
corresponding half bar and the next half bar. The unit of the ordinate Δ f/Δτ is arbitrary

3.4 Three-Dimensional Expression

As mentioned in Sect. 2 the z-axis is introduced as a third coordinate. Then the
trajectory shown in Fig. 6 does not stay on the same plane: every point has a different
z component (time course). In order to change the angle of view the yz-plane is
rotated around the x-axis by 10◦ (π /18 rad) and the xz-plane around the y-axis
by 330◦ (33π /18 rad). According to Eq.2 the projection of each point is calculated.
Figure12 shows the results: a three-dimensional expression of the category (a) notes.
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Fig. 11 Comparison of the groups for category (b) and category (c). The numbers indicate the bars:
the integers and half-integers are the first half and the second half of the corresponding bars

Here all notes (the first and the second half of each bar, as well as the sub-loop) are
included. With this expression we can follow the dynamics of the category (a) notes:
over the course of time each tone walks along a helix, the shape of which is illustrated
in Fig. 12.

Fig. 12 Three-dimensional presentation of the category (a) notes for bar 1–32. xp and yp are the
projection axis shown in Eq.1. x: frequency, y: Δx/Δτ , z: (arbitrary) time
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Fig. 13 Three-dimensional expression of the category (b) notes (red curve) and (c) notes (green
curve). Red arrow: half turn, blue arrow: bend. xp and yp are the projection axis shown in Eq.1. x :
frequency, y: Δx/Δτ , z: (arbitrary) time

Figure13 shows the three-dimensional expression of the category (b) and the
category (c) notes, in red and green, respectively. The category (b) notes correspond to
the “basso continuo” or “Generalbaß”. They play the role of a fundament. The three-
dimensional expression of this category (see the red curve of Fig. 13) is, therefore,
the fundament of this musical piece. It could correspond to the staircase where during
playing this piece I amwalking down. This staircase goes down straight, in principle,
with two significant “half-turns” (marked with red arrows) and some small bends
(marked by blue arrows). The green curve (category (c)) oscillates steadily along
the (b) notes. Such up and down movements can support and stabilize the rather
“unstable” straight line of the (b)-note. The deviation of grouping of category (b)
notes from (c) notes (shown in Fig. 11) can also explain that the groups of (c) notes
play a role to fix the connection between the individual groups of (b), so that they
strengthen the structure of the group of (b) notes.

4 Concluding Remark

The results of the numerical analysis show that there exists spinning within each
bar throughout the prelude. The structure of the staircase is not a regularly-formed
spiral staircase, but an almost straight one with some half turns and bends. Figure14
illustrates such a staircase and a dancing person on it. The implications of half-turning
and bending depend on how you play this piece. If the lowest tones (category (b))
are emphasized, you feel large turns and bends, subsequently the model is close to
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Fig. 14 The final model
which expresses an “acoustic
spiral”, where I am walking
down a staircase with myself
spinning

a spiral staircase. If the lowest tones are played only as semi quiver tones, then the
staircase is almost straight.

In this chapter we have tried to show an example of an acoustic spiral by using
phase plots and their three-dimensional expression. Since the C major prelude of
Bach’s Well-Tempered Clavier has an exceptionally regular form, it is an ideal case
for studying. With these methods we can analyze musical pieces dynamically, and
visualize their “acoustic impression”. Interestingly, Mussorgski composed his “Pic-
tures at an exhibition” under the influence of his reception of Viktor Hartmann’s
paintings. Thus, visual and acoustic images often correspond to each other. Our
mathematical portrait could contribute to an understanding of musical composition.

For our ideas and methods, there could be certainly a lot of criticism both from
music theoreticians and from nonlinear physicists.We admit that there is some preju-
dice and biased view for developing the strategy of analysis (Sect. 2) and speculations
for grouping of bars and explanations by three-dimensional expressions. Neverthe-
less, we believe that it is worth applying these methods also to other musical pieces.
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Part III
Spirals and Vortices in Chemistry

From the depths of chaos, the path of all striving
Leads upwards to God in thousand spiral rings.

— Christian Morgenstern



Liesegang Rings, Spirals and Helices

Sabine Dietrich

Abstract The periodic precipitation process known as Liesegang ring formation
has been investigated during the past 120 years and is one of the most recognized
spatial and temporal heterogeneous structures in physical chemistry. If a soluble
electrolyte is placed in contact with a second electrolyte in a gelatinous mass and,
on interdiffusion, both react to form a poorly soluble salt, rhythmically arranged,
separate precipitation develops parallel to the diffusion front. The beauty of this pre-
cipitation aside, research into Liesegang rings was mainly stimulated by the obvious
parallels to processes in technology, geological structures and patterns in plant and
animal life. Structural researchers increasingly consider the Liesegang experiments
and their multifaceted manifestations as a basic phenomenon and a model case for
a number of structuring processes in inorganic, organic and living nature. A contin-
uous, end-to-end theory that takes the large number of interacting individual factors
into account, thus enabling a full description of the complex reaction-diffusionmech-
anism, is still lacking. This is why attempts to extend the described phenomena of
precipitate reactions in gelatinous masses to other structure formation processes are
still tentative. This article provides an introduction.

1 Introduction and History of Liesegang Structures

Few areas of experimental physical chemistry, especially colloid chemistry, can
match themultifariousmanifestations of the Liesegang rings in terms of their intrigu-
ing beauty. The periodic precipitations called Liesegang rings are formed by the com-
plex interaction of the diverse processes of the diffusion transport and the chemical
reaction of at least two substances in a gelatinous mass, whereby one of the two sub-
stances is homogeneously distributed in the gel and the other diffuses into it. Once
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the substance-specific saturation concentration has been exceeded, a poorly soluble
precipitate forms that develops into rhythmically arranged, separate precipitations
parallel to the diffusion front.

When the Liesegang experiment is performed in a planar arrangement, for exam-
ple, in a Petri dish or on a glass plate, shell-shaped concentric rings are formed
around the initial point of diffusion. When performed in a cylindrical arrangement,
for example, in a test tube or a larger tube, parallel layers develop horizontally from
the initial zone of diffusion. In rare cases, spirals or helices form.

In 1855, Runge [1] wrote about chemical reactions performed not by adding
substances to a fluid but by dropping them onto blotting paper, thus creating char-
acteristic “Musterbilder/patterned paintings”. In 1879, Ord [2] reported on periodic
precipitations of calcium oxalate. In 1896, Liesegang discovered periodic precipita-
tions, which he initially refers to as ‘A-lines’, in the diffusion of silver nitrate in a gel
containing chromate [3]. He assumes that the two substances ‘can either bemixed for
a short period without double decomposition. Or this decomposition occurs immedi-
ately, but the insoluble salt remains dissolved: its molecules have not yet combined
into molecular complexes.’

To understand the occurrence of Liesegang structures, a number of individual
factors in the complex reaction-diffusion process must be considered, such as (1) the
chemical reaction and the electrolytic dissociation; (2) the possible complex forma-
tion; (3) the influence of the electrolyte on the reaction velocity; (4) the concentration
dependence of the diffusion coefficients; (5) the kinetics of nucleation and crystal
growth as a function of supersaturation and particle radius; (6) the coagulation of
colloidal particles or the accumulation of ions; and (7) the influence of the nature of
the gel on the colloidal phase.

The first mention of the Liesegang phenomenon in the 19th century incited the
creation of numerous theoretical models at the beginning of the 20th century. Each of
the existing models focuses on particular aspects, such as the supersaturation theory
according to Wilhelm Ostwald [4], the diffusion wave theory according to Wolfgang
Ostwald [5] and the coagulation theory according to Dhar and Chatterji [6]. The
supersaturation theory was initially the generally accepted model approach. Wagner
[7] was the first to describe the Liesegang experiment as reaction-diffusion system.
Other authors such as Keller and Rubinow [8] refined the supersaturation approach.
The Prenucleation Model according to Dee [9] and the Competitive Particle Growth
Model according to Ortoleva [10] are basedmainly on the coagulationmodel of Dhar
and Chatterji and Wilhelm Ostwald’s supersaturation theory, and Ostwald ripening.
As had become clear in the first Liesegang experiments, the groups around Ortoleva
andRoss [10–12], amongothers, show that the supersaturation approach alone cannot
adequately describe the formation of the Liesegang structures and that especially the
nucleation and growth of colloidal particles are important for their formation. The
simplified model of Chernavskii, Polezhaev and Müller [13] is used to perform a
first qualitative synthesis. A first qualitative and quantitative synthesis between the
prenucleation and the postnucleation models is successfully performed by Krug and
Brandtstädter [14].

A continuous, end-to-end theory that takes the interaction of the numerous indi-
vidual factors into account and thus fully describes the qualitative and quantitative
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complexity of the diffusion-reaction process would be very useful, but is still lacking
today.

The announcement of Liesegang’s experiments in the late 19th century immedi-
ately caught the attention of the international scientific community. The beauty of the
periodic deposits aside, researchers were mainly stimulated by the obvious parallels
to processes in technology, geological structures and patterns in plant and animal
life.

The periodic precipitations do not depend on the specific choice of the diffusion
medium but also occur in granular or porous media such as silica sand, sulphur pow-
der, diatomaceous earth and gypsum as well as in gases and even pure water, cf.
references in [14, 15], in addition to gelatine and other gelatinous masses. Struc-
tural researchers in physical chemistry, therefore, increasingly regard the rhythmic
precipitations in gels and their multifaceted manifestations as a basic phenomenon
and as a model experiment for numerous structure forming processes in inorganic,
organic, and living nature.

2 Spirals and Helices

The fact that spirals or helices sometimes form in Liesegang experiments has been
noted from the start. Following the first documentation by Rothmund [16], the dis-
coverer himself, Raphael Eduard Liesegang, reports on spirals in 1914 [17]. Helices
are presented soon thereafter, cf. Figs. 1 and 2.

After the initial clustering, experimental investigations and theoretical model con-
siderations on Liesegang rings are again reported from the mid-20th century, includ-
ing spirals and helices in some cases, cf. Fig. 3.

Fig. 1 Spirals on a plate dish. (Left) Single spiral of silver chromate in gelatine [18]. For other
examples see [19, 20], (Right) Multi-armed spiral of silver chromate in gelatine [16]
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Fig. 2 Helix in a test tube prepared by K. Popp: cobalt hydroxide in gelatin, inner diameter 40 mm
[5]. Other examples of helices: calcium hydrogen phosphate in gelatine [21], lead chromate in agar
gel [22]

(a) (b) (c)

Fig. 3 Formation of helices in various chemical systems. a: Spiral band of Mg(OH)2 in gelatine
(8%) after 4 days, initial electrolytes NH4OH and MgSO4; middle: spiral band of Ag2Cr2O7 in
gelatine (5%) after 1 day. Initial electrolytes AgNO3 and K2Cr2O7 [11]. c: Extended helix of lead
iodide in agar gel in a test tube, with electrolytes KI and Pb(NO3)2 [23]
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3 Characteristics of Experimental Liesegang Systems

Liesegang and his contemporaries were fully aware of the broad significance of the
rhythmic Liesegang structures and started establishing the basics for reproducible
experimental arrangements [17, 21], as Liesegang structures do not always form in
otherwise identical experimental setups, for example, when different gels, mean-
ing different collagenic starting materials, are used. This quickly revealed that the
gelatinous mass not only keeps the developing precipitates in their place of origin
but also has other properties. In test series with several thousand (!) specimens, they
discovered that the gelatinous medium must contain a small amount of acid, i.e.
H+ ions, in order to obtain a good banding.

However, an overly high concentration of both acid and diffusing cations (clas-
sically chromate) proved to be detrimental to good banding as it led to disperse
homogeneous precipitation above a certain limit instead. Regarding the concentra-
tion ratios of the individual reagents to each other, Liesegang noticed that the com-
pacting effect of the chromate is reversed when the acidity is changed at the same
time. Such homogeneous rather than banded precipitations also occur when just the
acidity is altered and thus the solubility of the silver chromate is increased by the
H+ ions. In summary, Liesegang states: ‘By controlling the content of chromate, gel
and especially acid, one can control the very different degrees of dispersity at which
silver chromate develops in the gelatinous mass.’ Cf. Figs. 4, 5, 6.

Fig. 4 Diverse shapes of Liesegang rings and bands. Classic Liesegang experiments in Petri dishes
and test tubes: (Left) distinct rings in gelatine; (Center-left) disperse ruby-red bands in gelatine;
(Center-right) disperse rings of lead iodide in gelatine; (Right) crystalloid alleys in silica gel
[24, 25]
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Fig. 5 Liesegang rings with different concentrations of the same reagents. Higher acid resp. chro-
mate content, but still the same spiral or rings: (Left) 10 times higher K2Cr2O7 content, (Right) 4
times higher H2SO4 content in the gelatin compared with classic Liesegang experiment [17]

Fig. 6 Precipitation patterns in agarose, silica and mixed silica-agarose gels. a Helices in agarose
gel (1%; left) and in silica gel (pH=7; right). b Patterns in mixed silica-agar gels (pH=7), num-
bers below the test tubes indicate the amount of agar in silica gels. Concentration of the outer
([CuCl2]=0.5M) and inner ([K2CrO4]=0.01M) electrolytes [26]

More recently, these controllable properties of the Liesegang systems have gained
attention from an application point of view because the processes enable, as an alter-
native to epitaxial processes, the deliberate growthof functionalmeso andmicrostruc-
tures and the potential production, for example, of electrocatalytic microreactors
[27].
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The occurrence of spirals or helices in Liesegang systems is a curiosity that is still
not predictably controllable. A comprehensive analysis of the observed structures in
Liesegang systems was attempted by Müller and Ross; in most cases, they did not
detect any spiral structures [12]. Thomas et al. [28] illustrated that the probability
of the formation of spirals and helices was dependent on the size of the experiment
containers, cf. Fig. 7. Spirals or helices formed from a certain minimum container
size. Their incidence increased with the increasing size of the container and then
decreased again when the container reached a certain size.

Fig. 7 Left: regular Liesegang (left tube) and helicoidal (all other tubes) patterns in agarose gel with
the numbers corresponding to the tube radius R measured in mm. R is varied at fixed experimental
conditions (T=22 ◦C, [Cu2+]0 =0.5M, and [CrO4

2−]0 =0.01M); right: the probability of helicoid
formation PH. No helicoid appears for R ≤ Rc [28]

Even though spirals and helices are a special feature in Liesegang systems, they
basically show the same properties as rings and bands. The distance and the shape of
the individual lines in Liesegang rings and spirals are comparable. It is worth noting
that bifurcations do not form any spiralling ends. The spirals and the bands develop
in turbidity areas along the diffusion front into continuous lines or rows of crystals,
cf. Figs. 3 and 4. Krug and Brandtstädter support these experimental observations
with the results of numerical simulations of prenucleation and extended postnucle-
ation models. They show that bifurcations develop from the unevenness of the initial
point of diffusion or from differences in the concentration of the electrolyte that is
diffused at the initial point of diffusion.
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4 Endeavour to Model Liesegang Systems

This said, the models of Chernavskii et al. [13], Chopard et al. [29] and Krug and
Bandtstädter [14] are equally capable of displaying spiral or helical Liesegang struc-
tures.

All models share the same boundary condition for the development of spirals
or helices, namely that irregularities must be present at the initial point of the dif-
fusing substance that are either a geometric nature of the boundary or are different
concentrations of the interdiffusing substance along the entrance boundary.

For reasons of simplicity, the Liesegang process is displayed in the threemodels as
an irreversible non-ionic chemical reaction of twodissolved substances that reactwith
each other during the formation of a poorly soluble reaction product and in which the
poorly soluble reaction product deposits as precipitation. The three models examine
the processes of deposition closer, as the separate Liesegang rings are preceded by
an experimentally proven turbidity phase. The easily soluble reaction product is not
considered further. Here, an example for a system with silver monochromate is used:

Reaction

2AgNO3 + K2CrO4 → Ag2CrO4 + 2KNO3

written with corresponding concentrations

a + b
k−→ c↓

Reaction-diffusion equations

∂a

∂t
= DaΔa − kab (1)

∂b

∂t
= DbΔb − kab (2)

∂c

∂t
= DcΔc + kab − u(c, t) (3)

∂m

∂t
= u(c, t) (4)

whereby a and b represent the concentrations of the two interdiffusing initial sub-
stances; c the concentration of the dissolved portion of the poorly soluble reaction
product; D the respective diffusion coefficients and k the reaction rate; and m the
mass density of the stationary precipitate of the reaction product. The difference in
the three models is in the nucleation and aggregation term ‘u’ for the precipitated
reaction product.

Only the extendedCompetitive ParticleGrowth (CPG)Model ofKrug andBrandt-
städter [14] explicitly considers the turbidity zone outside the outer precipitation ring
preceding the Liesegang rings for the nucleation process, i.e. the colloidal pre-phase,
cf., e.g. Fig. 3. The other two models work with dimensionless quantities and assume
a random or a given distribution of particles of different sizes for whose nucleation
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rate a strong nonlinearity is given (as completely zero below a threshold or simply
as a step function). In their cellular automata model, Chopard et al. [29] consider the
colloidal precursor in a shortened form by postulating that, in the random presence
of an already growing particle, freshly formed reaction product attaches to it. In their
simplified model, Polezhaev and Müller [30] consider the colloidal precursor more
explicitly by subdividing the stationary precipitate into small, dissolvable nuclei and
large growing particles, each with a mean particle number density per volume unit.

To explicitly show the experimentally observed colloidal precursor, Krug and
Brandtstädter used the actual material parameters of silver monochromate, size
parameters measured by X-ray microscopy and, instead of the Gibbs–Thompson
relation, introduced a polynomial equilibrium function for the supersaturation seq,
cf. Fig. 8.

Fig. 8 Equilibrium curves of supersaturation seq (r) of the CPG system. Solid curve: polynomial
function seq (r) = 1 + w3 ∗ r3/(r6 + r6c ) with rc = 0.36w. Dotted curve: Gibbs–Thompson rela-
tion seq (r) = exp(w/r) [14], where r represents the particle radius of the poorly soluble reaction
product; w the capillary length and rc the critical value separating the colloid phase (r < rc) of the
poorly soluble reaction product from the phase of its solid particles (r > rc)

This enabled them to consider that particles below a critical radius have no surface
in the sense of the Gibbs–Thomson relation, i.e. are not subject to the Ostwald
ripening processes. Then, the supersaturation function reaches its maximum as soon
as a particle has grown to the critical radius rc, from which it no longer reacts as
a colloid process, i.e. dominated by its surface, but as a solid particle according to
the Gibbs–Thompson relation, i.e. subject to its radius-dependent processes. For the
Liesegang systems, this enabled them to successfully separate the contributions of
the colloidal particles from those of the solid particles and depict the ring-forming
development of generations of colloidal particles from which, in a subsequent step,
coarse-grained bands or even crystals grow from competing nucleation.

Comparing the results shows that the fluffy bands modelled according to Dee’s
prenucleation model appropriately illustrate the Liesegang experiments in gels with
protective colloid effect, meaning in gels that prevent the agglomeration of small
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nuclei. The properties of the Liesegang experiments in gels without protective colloid
effect illustrate the extended competitive particle growth model more fully because
it takes both elements of the colloidal phase and elements of the growth phase into
account. It must be noted that additional steps to improve the theoretical understand-
ing of the Liesegang experiments under certain conditions also include quantum
aspects, cf. Mares et al. [31].

From the theoretical viewpoint, conditions for the formation of helices were dis-
cussed in Refs. [13, 28, 30, 32]. Some experiments indicate that the helix starts to
grow mainly on or near the inner surface of the test tube. Most likely the conditions
for nucleation of the solid phase are more preferable there, i.e. the critical concen-
tration for nucleation is lower at the container wall than in the bulk of the solution.
This fact suggests to treat this case as taking place at the cylinder surface, e.g. in first
approximation as a two-dimensional one. In fact, a numerical simulation within the
framework of the model of Polezhaev andMüller [30] or Thomas et al. [32] in which
the cylinder surface is unrolled on a plane and the evolution of a helical pattern is
shown along one space coordinate has been performed, cf. Fig. 9.

Fig. 9 (Left) A helical pattern on the evolvement of a cylinder. Full lines denote precipitation and
shaded band denotes the reaction wave [13], (Right) Liesegang-type experiments with the precip-
itation patterns forming in the gel placed in-between two tubes of nearly equal radius (Liesegang
rings in the leftmost tube and a helix in the next one). On the right, a schematic drawing is dis-
played showing the transformation of the thin layer of gel in the tube-in-tube experiment into a
two-dimensional strip [28]

However, a model to simulate the full three-dimensional problem of helix growth
is still lacking. In one respect, the qualitative treatment of the helix problem is in good
agreement with experimental findings: the radius of the cylindrical container should
be large enough to detect continuous helical patterns. Otherwise, even if successfully
initiated, they will extend only over a few whorls. If the radius is too thin, this may
not allow for initiation at all [22, 27]. As seen, for example, in Fig. 3a, b, the number
of whorls is also correlated with the distance between subsequent whorls, which
frequently increases with increasing distance from the initial electrolyte junction (a
consequence of the spacing law often found in the Liesegang phenomenon [14, 32]).
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Geometrical factors such as the relationship between helix pitch and tube diameter
undoubtedly play an important role.

Because the occurrence of spirals or helices in Liesegang experiments is a curios-
ity that still cannot be controlled predictably, a further theoretical penetration and
perfection of the models can help to create spirals and helices in Liesegang systems
in reproducible experiments.

5 Concluding Remarks

Liesegang already recognized that ‘diffusions and reactions in gelatinous masses are
not exclusively a matter for the scientific laboratory, but also play an essential role in
some areas of technology’, as in tanning, photochemistry, geology and soil science,
microsystem techniques and especially in living organisms [15, 16].

However, a continuous mathematical theory for the Liesegang structures has still
not been developed. Attempts to extend the described structuring processes of pre-
cipitate reactions in gelatinous masses to other formation processes are still tentative.
Recent systematic studies in connectionwith powerful computers andnewmathemat-
ical foundations support interdisciplinary work and point to a more comprehensive
application in the future. Were we to succeed in understanding the Liesegang sys-
tems well enough to grow self-organized structures, including spirals and helices,
predictably and reproducibly, perspective opportunities for new and sophisticated
applications would be opened.
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Generation of Spirals in Excitable Media

Stefan C. Müller

Abstract The generation of dynamic spirals under conditions of excitability is pre-
sented. After a short description of some basic principles of nonlinear dynamics
illustrated in the phase plane, we explain what excitable systems are, how excitation
waves propagate, and why external forces influence rotating or moving spirals. Some
images of such dynamic spirals are exhibited.

1 Introduction

There are two major categories of spirals we have learned about in chapter
Appearance in Nature: those that have an immobile and static structure (horns
of blackbucks or sheep, snails and seashells, pine cones or corals). Others rotate in
time and space (galaxies, cyclones, air turbulence, the tail of a chameleon, a proboscis
of butterfly, fish swarms or colonies of amoebae).

Artists will naturally create spiral pictures of a quiescent nature, as Gustav Klimt
did in his frieze “Tree of life”. His colleague Johannes Itten, on the other hand,
painted a spiral which starts to move by the dynamic choice of colors within the
structure. Motion becomes a central theme for Paul Klee who considers spirals that
open and close towards the environment. Stormy spirals are captured in the works of
Leonardo da Vinci (with his drawings of water turbulence), Vincent van Gogh (in the
“excited” sky of his masterpiece “Starry Night”) and Joseph Turner (living through
a chaotic tempest in his painting “Snow storm”). See chapter Arts and Beyond.

In a preceding chapter Spirals, Their Types and Peculiarities mathematical
presentations have provided some insight into the shape of various spirals that follow
a spatially fixed path. In this chapterwewill focus on rotating spirals.Dynamic spirals
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moving in space and forming vortices are frequently found in “excitable media” [1].
In fact, one finds that excitable media are dominating the scene: they occur in a large
variety of systems of natural science, including chemistry, biology, neurobiophysics,
biomedicine, and others.

Before dealing with excitable media coupled to physical transport processes, we
will explain some of the general and basic principles about the phase plane and
processes occuring in this plane. The brief introduction to the theory of dynamical
systems may support readers to understand the following presentations, as well as
articles in Part V.

In many experiments in excitable media rotating spirals can be generated by
external forces. We will show schematically how an air blow breaks the excitable
front, leading to curling of the open ends [2]. This way rotating spirals are created.
The motion of their tips depend on chemical components and aging of the system.
Further examples will illustrate how spiral motions are affected by electric fields [3]
or laser light [4].

2 The Phase Plane

Let us write down a pair of ordinary differential equations (ODEs) of 1st degree for
variables x and y, which are linearly coupled (by “+” or “−”) in the form

dx

dt
= ax + by

dy

dt
= cx + dy

with a, b, c, d real and constant coefficients.
These ODEs are soluble.

Example: Harmonic oscillator

Equation of motion

M
d2x

dt2
+ kx = 0

(ODE of 2nd degree).
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With M = 1, k = 1 (dimensionless quantities):

d2x

dt2
+ x = 0.

By writing
dx

dt
= y,

d2x

dt2
= −x → dy

dt
= −x

we obtain the 2-variable first order system

dx

dt
= y

dy

dt
= −x .

Special solution:
x = sin t

y = cos t

(t : dimensionless time),

with initial conditions (for t = 0):
x0 = 0

y0 = 1

Isoclines:

These are curves with the same gradient (slope) of the phase plane trajectory:
e.g., for the equation
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dy

dx
= f (x, y)

Set f (x, y) equal to a constant m:

f (x, y) = m.

Especially useful are nullclines with m = 0.
Simple case: Harmonic oscillator

Nullclines:

f (x, y) = y = 0 y = 0

→
g(x, y) = −x = 0 x = 0

Nonlinear Case

A pair of nonlinear ODEs, (explicit and autonomous, i.e., no explicit dependence on
t) can be written as

du

dt
= f (u, v, α, β, . . .)

dv

dt
= g(u, v, α, β, . . .)

with f , g some nonlinear functions of the variables u, v and α, β,…parameters.
(Certain mathematical conditions must be fulfilled to ensure existence and unique-
ness.)
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The symbols u, v are used here for concentrations of chemical variables, e.g.,

u = activator
v = inhibi tor

In general, these ODEs cannot be solved, but there are approximative techniques
used according to the specific problem at hand.

3 Excitable Systems

Excitable systems are an important special case. In Fig. 1 the main properties are
illustrated in the u, v-plane. u is supposed to vary quickly (the activator), v slowly in
time (the inhibitor). According to appropriate kineticmodels the nullcline of function

Fig. 1 Nullclines, see text
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f [ f (u, v) = 0], as a general supposition, has one minimum and one maximum. The
parts with negative slope are stable, the rising part is unstable. The nullcline of
function g [g(u, v) = 0] is monotonically increasing and stable. If these nullclines
intersect, we obtain a fixed point, stable or unstable, without temporal evolution.
There are the following scenarios (see Fig. 1):

(a) Both stable nullclines intersect → stable node, i.e., perturbations die out.
(b) Again there is at a stable intersection. The system is resting and excitable. But

only perturbations smaller than the threshold value us decay (see A). If u > us
there follows a large but short excursion of u → excitable state (see B). After
returning to u ≤ us , the system recovers (relatively slowly) and moves to the
original excitable state → refractory period . After reaching it waits for
another superthreshold perturbation. Thus, in this case the system has mainly
three states: excitable, excited (active), and refractory (resting).

(c) A stable nullcline intersects with the unstable (rising) part of f (u, v) = 0. The
system will move away from the crossing point towards a stable trajectory,
which in this case develops towards a limit cycle, i.e., to autonomous oscillations
(without any rest state).

Excitation Pulse

Following the trajectory (dashed line) in Fig. 1b we derive for an excitable system the
characteristic temporal profiles of variables u and v (Fig. 2). Activator u is produced

Fig. 2 Excitation pulse as a
function of time
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as a pulse at short time scale, inhibitor v responds on slower time scale with long
refractory tail: separation of variables possible.

4 Excitation Waves

Propagation of waves is frequently observed in spatially extended oscillatory or
excitable systems. They are described by solutions of reaction-diffusion equations.

For one spatial coordinate x these write:

∂u

∂t
= Du

∂2u

∂x2
+ f (u, v)

∂v

∂t
= Dv

∂2v

∂x2
+ g(u, v)

with partial derivatives written as ∂
∂t ,

∂
∂x , … and Du , Dv diffusion coefficients of

species u and v, respectively. For three-dimensional space with coordinates x , y, and
z, one uses the Laplace operator

� = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

The spatial profiles in a one-dimensional excitable system at a given time t = t0 can
be drawn as in Fig. 3.

Fig. 3 Spatial profiles of an
excitation wave
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Introducing diffusion as a transport process opens the possibility of spatial contact
between species leading to local coupling. The excitation pulse of activator u moving
in x-direction will transfer the excited state to the molecules in front. This causes the
propagation of excitation in that direction and leaves behind an unexcited refractory
tail which will recover (slowly) to a newly excitable state. This way a backward
propagation becomes impossible. (Often the spreading of a forest fire front is taken
as an analogon: a small enough distance between trees will support the motion of
the front, whereas the fire is extinguished behind the front due to lack of “fuel”. The
forest then recovers during a new growth phase.)

Such reaction-diffusion waves propagate with constant velocity, which depends
on local concentrations and front curvature. They are frequently initiated in a thin
excitable solution layer by a localized disturbance (immersion of a thin wire, gas
bubble, dust particle, or laser spot). From there a circular wave would travel in out-
ward direction.A periodically applied external disturbancewould result in concentric
rings - a so-called “target pattern”. Then, the wave velocity will be a function of the
distance between the waves governed by a dispersion relation.

5 Spiral Formation

Remarkable is the shape of spirals evolving and rotating in thin solution layers.
Spirals can be created by disrupting a small section of a propagating wave front, for
instance, with a gentle blast of air ejected from a pipette [2] or with a laser spot.
Either well spontaneous breaks may occur due to a bubble or a dust particle.

The two open wave ends develop in time as shown in Fig. 4.

Fig. 4 Left: Evolution of open wave ends after disruption of the front. Black curve is excitable
front, and grey part is refractory tail. The open ends curl around the refractory regions; right: image
of the curling process
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Fig. 5 aEnlargement of a spiral tip fromFig. 7 (see below). The black circle shows the rigid rotation
of the tip around a central axis (white open circle).bWhenconcentrations of the propagationmedium
are changed, the trajectory of the spiral tip may assume a compound (meandering) path [4]. Reprint
permission from Nature. ∗This trace of a spiral tip is often erroneously called “hypocycloidal”. c
and d Simple drawings show these dynamic differences

After an initiation stage and under “standard” conditions the tip of the spiral
rotates uniformly on a circle around a spatially fixed center (Fig. 5a). The spiral arm
has an almost Archimedean shape.

Due to the rotation a new curled wave emanates from the central region after
each turn. With this property the spiral is a true self-organized structure in that it
keeps rotating and producing new curling waves without any external influence.
This is different from the case of target patterns, where every additional circular
wave needs an extra excitation pulse at the center for initiation. The spiral manages
its independent dynamics through the action of diffusion. In fact, since its tip traces
a small circle around the spiral center, it enters, after each turn, an area where the
excitability has been again restored. Thus a “reentrant” activity flares up and the next
spiral turn commences.

When conditions in the excitable medium are changed, the trajectory of a spiral
may assume quite different paths. A first step is normally a transition to a “compound
motion”, when a second rotation period is superposed to the basic one (Fig. 5b).

A number of other, more complex traces of open wave ends have been observed:
epicycles, loopy lines, irregular motion, straight or shrinking lines. We choose a
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Fig. 6 Different trajectories of the spiral tip depending on acid concentration cA and aging time of
solution

graphic representation of trajectories measured during the aging of a chemical auto-
catalytic reaction (the Belousov-Zabotinsky (BZ) reaction, see below), when the
system passes though many of these trajectories during the course of time (Fig. 6).

6 Gallery of Dynamic Spirals

We proceed with a gallery of spiral images obtained from a special chemical system,
the BZ-reaction which is, up to today, the most suitable medium to create spirals
of various shapes and dynamics. This reaction will be introduced in the following
chapter Chemical Oscillations and Spiral Waves.

Images were taken with sensitive monochrome cameras and partially converted
to color images by means of appropriate software and pseudo-color techniques [5]
For an example, see Fig. 7.

Among the techniques to influence the dynamics of an excitation wave by external
means the application of an electrical current proves to be amost efficient tool. For the
BZ reaction an electric field was applied via two parallel electrodes to the short edges
of a rectangular dish containing a thin layer of solution. Numerous chemical species
in this reaction are of an ionic nature, especially important the small negatively
charged bromide ion (the inhibitor in the reaction). The microscopic driving force is
electromigration of ionic species. Ions are pulled towards one of the electrode along
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Fig. 7 Counter-rotating spirals in the BZ reaction, visualized in pseudo-color. Each of these spirals
have an almost Archimedean shape and their tips rotate uniformly around a spatially fixed center.
Note that wave fronts mutually annihilate each other upon collision. (Circular inclusions are CO2
bubbles.) Reprint from [6], permission obtained from Springer Basel AG

Fig. 8 A pair of rigidly
rotating spiral waves is
perturbed by a constant
electric field. Field lines are
parallel and oriented
vertically with the anode
located at the bottom side of
the figure. The electric field
induces a spiral drift toward
the anode and a strong
deformation of the
Archimedian spiral
geometry. Loopy lines are
directed along oblique angles
determined by the chirality
of spiral rotation

the electric field lines which can result in a local change of the concentration. In this
case the major contribution is likely to stem from the small bromide ion migrating
from the cathode towards the anode [7].
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Fig. 9 By switching the
electrical field polarity with
respect to Fig. 8 the drift of
the spiral pair is reversed and
the loopy lines of the tips
approach each other in time.
Due to their symmetry and
opposite chirality they finally
collide, leading to mutual
annihilation. This is a
convenient method to get rid
of unwanted vortices.
Original picture from [3],
Nature

The direction of this field-induced drift depends on the chirality of the spirals, as
shown in Fig. 8. The left spiral, rotating clockwise, possesses an additional drift to
the left side. The other spiral, rotating couterclockwise, drifts towards the right side.
Switching off the current immediately stops the core drift. Changing the polarity of
the field causes a core drift towards the initial position [3] (Fig. 9).

Another powerful way for forcing the dynamics of a rotating spiral is offered by
laser light. When the excitability of the medium is modulated by a sinusoidal signal
over the entire solution layer, by an expanded laser beam, the effect of the external
frequency is reflected in the response of the trace of the spiral tip, which has been
investigated already in Fig. 6 during the aging of the system. Even more complex
behavior is now induced as a function of period and amplitude of the impinging light
[8]. A quite simple example is plotted in Fig. 10. The compound motion of a spiral
turns into a circular arrangement of multiple loops, due to phase-locking with the
external rhythm. The figure shows the case of twofold periodicity.

A different method to exploit the photosensitivity of the excitable solution lies
in the use of laser spots. If a laser spot of small diameter is directed into the
self-sustained core region of a rotating spiral, it may pin the spiral tip to this spot, if
the light has an inhibitory effect on the reaction (which can be produced by the choice
of a photosensitive catalyst). The increased size of the “quiescent” core region then
leads to a larger rotation period and consequently to a larger spiral pitch [9] (Fig. 11).
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Fig. 10 Loopy line with
twofold periodicity under the
influence of an external
periodic light field.
Reprinted from [4], Nature

Fig. 11 In a photosensitive system, a laser spot can increase the the size of the autonomous spiral
core (left) artificially (right) and thus cause the spiral to assume a much larger pitch. Reprint
permission obtained from Elsevier

With help of such a spot open wave ends may be pinned and led along preselected
paths. This waymultiple spiral waves have been assembled [10]. In Fig. 12 (left) four
open wave ends were created which, in the following, continue their dynamic paths
and thus collide with each other. As a result a four-armed spiral is formed with an
intricate mutual interaction.

A snapshot of this intricate interaction is shown in pseudo-color (Fig. 13).
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Fig. 12 Multiple spiral arms created by using a laser spot as a guiding obstacle. Left: four open
wave ends assembled close to each other; right: their mutual collision

Fig. 13 Pseudo-color image
of Fig. 12, right [11].
Reprint permission obtained
from Springer Nature
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Chemical Oscillations and Spiral Waves

Patricia Pfeiffer

Abstract Pattern formation is one of nature’s most fascinating phenomena. Starting
with the evolution of life: cells and compartments start to differentiate such that
they are able to undertake different tasks leading to life of complex organisms.
Additionally, cells are able to release messenger substances, which may lead to an
aggregation of cells as in the slime mold Dictyostelium discoideum. In this chapter,
the formation of wave patterns, especially of spirals in non-equilibrium systems, is
described. Startingwith the revision of important aspects contributing to the historical
development of synergetics, oscillating chemical reactions, such as the Belousov–
Zhabotinsky reaction are described. Some theoretical aspects of reaction-diffusion
systems and wave propagation in excitable media are outlined. The development
and propagation of waves and thus, of spirals is described in such systems. At the
end, the Belousov–Zhabotinsky reaction embedded in a compartmentalized system,
namely an emulsion, is studied. Under the chosen conditions target patterns or spirals
with segmented wave fronts evolve. These segmented waves (dashes) develop from
a smooth one due to an instability. However, instead of forming a spiral turbulence,
these dashes remain in an ordered configuration and form beautiful patterns.

1 Historical Remarks

Moving reaction waves occur in our everyday life even if we do not see them by eye.
A remarkable example is our heart, in which waves trigger it to pump blood through
our body (see chapter Spiral Waves in the Heart). The first person, who mentioned
the existence of moving waves in a homogeneous mediumwas R. Luther in 1906 [1].
He already came to the conclusion that an autocatalytic reproduction of a chemical
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species must be involved. Furthermore, Luther was able to give an equation for the
calculation of the wave velocity v:

v = a
√
kDC, (1)

where D represents the diffusion coefficient, k a rate constant of the chemical reac-
tion, C a concentration and a a numerical constant. However, Luther gave no deriva-
tion for his equation.

Based on the work by Luther, B.P. Belousov started in 1951 to work on chemical
oscillations in the catalyzed oscillatory bromate oxidation of citric acid. Since nobody
believed in oscillating chemical reactions, Belousov was not able to publish his work
before 1984 [2]. A.M. Zhabotinsky modified the reaction described by Belousov in
1961 in a fashion, which is still used today: the bromation of malonic acid, catalyzed
by ferroin, which shows a color change from red to blue [3]. In 1974, Field andNoyes
studied a semi-quantitative model of wave propagation in the reaction described by
Belousov and Zhabotinsky. In their work, they were able to derive the equation given
by Luther in 1906 [4]. Another remarkable aspect in the work of Luther was his
comparison between chemical waves in a homogeneous medium and nerve impulses
spreading over cell membranes, although he had no evidence for his suggestion [1].
In fact, there are structural analogies between both systems. The propagation velocity
of a nerve pulse can be estimated using the Hodgkin–Huxley equation [5], which
describes the propagation of stimuli throughout a nerve cell. They modeled the cell
membrane as an electrical circuit, where the flow of ions can only be realized through
ion selective channels and derived an equation which facilitate the calculation of the
propagation of a nerve pulse over a membrane.

Oscillations in chemical systems were known much earlier than the propagating
waves mentioned above. A brief summary of these historical experiments is given
in the following: Already in 1829 F.F. Runge studied the contraction of a droplet
of sulfuric acid on an area covered with mercury. He placed the acid on top of the
mercury, where the droplet runs flat. Touching both with an iron wire, the acid con-
tracts and forms a drop around the wire. Additionally, he observed that the mercury
twitches slightly after touching. This system is nowadays known as the oscillating
mercury heart [6]. At the end of the 19th century, R.E. Liesegang observed periodic
precipitation patterns in gels (cf. Liesegang Rings, Spirals and Helices). In 1899
W. Ostwald observed the oscillating hydrogen production during the dissolution of
chrome in acids. A theory of a hypothetical chemical reaction showing oscillations
was given by A. Lotka in 1910. A more detailed description of his model is given
in the next section. K.F. Bonhoeffer discovered in 1941 activity waves on passive
iron wires. These wires were made passive by immersing them into sulfuric acid.
Touching them with a piece of zinc, whereby it is locally cathodically polarized, an
activity wave of local dissolution of the iron propagated along the wire [6].



Chemical Oscillations and Spiral Waves 159

2 Oscillations in Chemical Systems

Themost prominent oscillating chemical reaction is the Belousov–Zhabotinsky (BZ)
reaction. This reaction was first introduced by B.P. Belousov as a catalytic model for
cancer cycles in which cerium ions are used instead of protein bounded metal ions,
which are normally used by enzymes in living cells [6]. He described a periodic
color change between colorless and yellow. In the default configuration, which is
nowadays used, the color change in the BZ reaction is realized by the catalyst ferroin
(Fe(1,10-phenanthrolin)2+3 ), which changes its color from red to blue upon oxidation.
In its reduced state, it has a positive charge of two and in its oxidized state it has a
positive charge of three. In the reaction, an organic substrate (usually malonic acid)
is oxidized by bromate in an acidified milieu via the metal ion catalyst (ferroin) [7].
The ion Br− is playing the role of the inhibitor and HBrO2 acts as the activator of the
system since it is autocatalytically produced. The overall BZ reaction is governed by
the oxidation of malonic acid due to bromination:

3H+ + 3BrO−
3 + 5CH2(COOH)2 → 3BrCH(COOH)2 + 2HCOOH + 5H2O + 4CO2.

The entire reaction consists of a set of different chemical reactions that can
be subdivided into three processes: First, the inhibitor Br− is consumed until its
concentration falls below a certain concentration, which triggers the second process.
This process contains the autocatalytic production of the activator HBrO2. Further-
more, the metal catalyst ferroin is oxidized in this process, which is responsible for
the color change to blue. When the reduced version (red color) of the catalyst is
depleted, the third process sets in. Here, malonic acid is brominated and the metal
catalyst is reduced and gets back its red color. Additionally, Br− is produced in the
last process. Due to the increase of its concentration, the first process will be activated
again [7]. If the above described system is stirred, it shows color oscillations in bulk.
However, if it is performed in a Petri dish, it shows—depending on the initial con-
centrations of the reactants—spontaneously evolving patterns such as target patterns
or spirals (see Sect. 4).

Another example of an oscillating reaction is theBriggs–Rauscher reaction,which
is an oscillating iodine clock, cyclically changing its color from colorless to gold to
blue. The reaction consist of the following ingredients: potassium iodate, hydrogen
peroxide, perchloric acid, malonic acid, manganese(II)-sulfate and starch. This reac-
tionworks at room temperature, whichmakes it suitable for demonstrations (contrary
to the Bray reaction, which is an early precursor of the Briggs–Rauscher reaction).
The reaction shows visible concentration changes in iodine and the concentration of
the iodine ion fluctuates. When the iodide concentration reaches a certain value, a
starch complex is formed, which appears in blue color [8].

A theoretical analysis of a periodic reaction was given in 1910 by A. Lotka [6].
Nowadays it is referred to as Lotka–Volterra model. It represents a hypothetical
chemical homogeneous system, which shows oscillations and is described by the
following three reactions:



160 P. Pfeiffer

A + X1
k1−→ 2X1,

X1 + X2
k2−→ 2X2, (2)

X2
k3−→ F.

From the chemical point of view, the autocatalytic step (production of X2) in the
second equation does not make much sense, since the molecule X1 must transform
in presence of X2 into X2 as well. Thus, nowadays it is used to describe the relation
between a predator and its prey. In this case, X1 is referred to as rabbit, X2 represents
the predator (e.g., a lynx), A is the food of the rabbit and F quantity of the lynx
having died of natural causes (with the death rate k3).

The reactions from Eq. (2) result in a pair of nonlinear differential equations
indicating the rates of change of the concentrations of the chemical species X1 and
X2. The amount of food and the death rate (i.e., A and k3) are assumed to be constant:

d[X1]/dt = k1[X1][A] − k2[X1][X2],
d[X2]/dt = k2[X2][X1] − k3[X2], (3)

where ki are constant reaction rates, and the values in brackets the concentrations
of the corresponding species. Spoken in the predator-prey context, the oscillations
occur in the amount of rabbits and lynx. If enough rabbits are present to feed on,
the population of lynx will increase. However, this larger population will consume
more rabbits, such that their population decreases and with this also the population
of lynx.

3 Waves in Chemical Systems

3.1 Reaction-Diffusion Systems

Many patterns in nature arise in so-called reaction-diffusion!systems (cf. chapter
Reaction-Diffusion Patterns and Waves). In these systems, a chemical reaction
occurs locally and is transported in space by diffusion. A prominent reaction showing
such patterns is the unstirred BZ reaction (Fig. 1). For a classical reaction-diffusion
system, only one chemical component (here: u) is required:

∂u

∂t
= Du

∂2u

∂x2
+ f (u). (4)

Du denotes the diffusion of the component u, x the spatial dimension, t the time
and f the reaction term. This is a partial differential equations with diffusion. If a
second component is involved in this process, one typically speaks of an activator-
inhibitor system. In this case, one of the species is produced autocatalytically,whereas
the other one inhibits this production. Thus, Eq. (4) extends to:
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∂u

∂t
= Du

∂2u

∂x2
+ f (u,w),

∂w

∂t
= Dw

∂2w

∂x2
+ g(u,w).

(5)

Du and Dw represent the diffusion of the corresponding species u andw, respectively.

Fig. 1 Target patterns and
spiral waves in the BZ
reaction. The dark spots are
small bubbles, since gas is
produced during the reaction
(Image courtesy: S.C.
Müller, personal
communication)

In 1952 Alan Turing was the first, who described such systems mathematically.
He showed that a chemical system will form stationary patterns, if some conditions
for the diffusion constants are fulfilled, namely the diffusion of the activator must
be much slower than that of the inhibitor [9]. The experimental observation of the
patterns predicted by Turing took several decades, since the demanding conditions
on the diffusion coefficients of activator and inhibitor in chemical solutions made it
experimentally challenging. A “trick” was necessary to reduce the diffusion coeffi-
cient of the activator. In 1990 the first experimental observation of Turing patterns
was realized by V. Castets et al. in the chlorine-dioxide-iodine-malonic acid reaction,
as he trapped the activator in a gel matrix [10]. In nature, Turing patterns occur during
morphogenesis, e.g., on animal skins.

In 1968 Prigogine and Lefever [11] formulated reaction-diffusion equations while
they extended Turing’s equations, such that their equations could explain the differ-
entiation of biological cells with the aid of reactions and substance exchange of two
different types of molecules. They declared the role of diffusion in a system hav-
ing two tasks: First, diffusion increases the stability of a system, but second, it also
increases the variety of perturbations, which are compatible with the macroscopic
equations of change.

3.2 Excitable Media

Excitability is an important concept in biology and chemistry. Common examples in
nature are the brain and the heart (cf. chapter Spiral Waves in the Heart). Through
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these media electric pulses propagate forcing to change their state for a short time
[12]. An important example from the chemical field represents the BZ reaction [13].
In such systems a perturbation is overdamped, if it is smaller than a certain threshold.
A large perturbation, however, causes a response of the former. Due to the complete
recovery of the system after the passage of an excitation wave, many of those can
travel trough it. A single wave pulse is sketched in Fig. 2. The wave propagates
towards the left. In its front, the medium is excitable. A perturbation induces a wave
traveling through the system, where the wave front itself is in the excited regime.
Behind the pulse, the medium must recover and is in the refractory state. When the
system has fully recovered, a new perturbation can induce a new wave pulse. Within
a spatially distributed excitable medium the excitation propagates from one point to
the neighboring one by local coupling realized by diffusive transport [12]. Due to
the interplay of diffusion and chemical reactions, waves of excitation can propagate
through the medium, forming patterns like spiral waves in space or oscillations in
time [13] (see Sect. 4).

Fig. 2 Sketch of a
propagating concentration
wave [u] over time. Before
the system is perturbed, it is
in the excitable regime (low
concentration of u). After it
has passed the excited
regime, it must recover, since
the concentration of u is
lower than in the excitable
state, which makes it
immune to a new
perturbation

4 Creation and Propagation of Spiral Waves

Thepropagation ofwaves in excitablemedia dependsmainly ondiffusion. Its velocity
v can be calculatedwith the help ofEq. (1)with D, k andC being diffusion coefficient,
rate coefficient and concentration of the activator u, respectively.When several waves
emerge, such as concentric circles (see Fig. 1; also called target pattern)—induced
by a pacemaker in the system (e.g., an impurity)—wave propagation is governed by
the so-called dispersion relation of the system. It is defined as the velocity of a wave
v divided by the distance between single waves, i.e., the wavelength λ. In general,
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this relation is positive in the BZ reaction, which means that the velocity of a wave
decreases with decreasing distance between the waves [14]:

dv

dλ
> 0. (6)

Additionally, the velocity of a wave depends on its curvature K (which is equal the
inverse radius r of a wave). Plain waves are faster than curved ones. This fact is
described by the following equation, which is called eikonal equation:

v = v0 − DK = v0 − D
1

r
. (7)

Here v describes the velocity of a curved wave in the normal direction, v0 the velocity
of a plain wave, and D is the diffusion coefficient. The eikonal equation describes,
how the velocity of waves decrease with increasing curvature and it also places
a stability condition on the wave front, since a uniform curvature of a wave is a
stable solution of Eq. (7) [14]. This means that perturbations of the wave front, e.g.,
due to an obstacle balance out. Additionally, it is obvious that a critical curvature
exists, where wave propagation fails:

Kcrit = v0
D

. (8)

This plays a crucial role in the formation of spiral waves. At the tip of a spiral, the
highest curvature that is possible in the system is adopted, and with this, the velocity
is lowest there.

In Fig. 3 the process of the formation of a pair of counter-rotating spiral waves
is depicted. The propagating wave front (1) reaches an obstacle (e.g., a region of
lower excitability), which causes the break up of the wave front (2). After leaving
the obstacle, the wave front remains broken and at the open wave ends an additional
velocity component is present, which is perpendicular to its initial one (3). The wave
starts to curl yielding a slower propagation velocity at the tips (cf. Eq. (7)). Each
open end forms a spiral, having an opposite sense of rotation (i.e., opposite chirality)
(4). In the end, spirals of Archimedean shape have formed, rotating around a fixed
center, called the spiral core, which is the organizing center of the spiral. In the direct
vicinity of the core, however, the shape differs slightly from the Archimedean [15]
(see involute in chapter Spirals, Their Types and Peculiarities).

The spiral tip is a singularity in the medium at which the spiral has the greatest
curvature. This means that the normal velocity of a curved wave becomes zero
(v = 0, cf. Eq. (7)) and the tipmoves tangentially along a circular trajectory, since the
high curvature prohibits movement into the normal direction (Fig. 4) [16]. The area
enclosed by the trajectory is called the spiral core and is not excitable. Spirals have
the ability to organize an excitable medium, as they can take up the highest possible
frequency in the medium. The value of this frequency is determined by the medium
itself, as it depends, among other things, on its excitability. Higher frequencies do
not exist, since otherwise, the excitation front would run into the refractory regime
of its predecessor.
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Fig. 3 Sketch of the
formation of a pair of
counter-rotating spiral
waves. A plain wave (1)
reaches an obstacle, which
causes a breakup (2). At the
open wave tips, the excitation
can now propagate into the
direction perpendicular to
the direction of the plain
excitation wave (3). Due to
the slower propagation
velocity of a curved wave,
the wave tips can curl up to
form a spiral (4)

Fig. 4 Superposition of images of the spiral tip during one rotation around the core in pseudo-
colors. The area never touched by the wave is colored in orange (copyright by Hess, Markus,
Müller, Plesser, Dortmund 1987)

In the two-dimensional (2D) BZ reaction, spiral waves, target patterns or simple
oscillations can occur and run through the entire system. Target patterns can be
induced by touching the medium in a single spot with a silver wire for a few seconds.
On the surface of the wire bromide ions (which act as the inhibitor) are bound,
which locally reduces the concentration of these ions in the reaction. This induces
the autocatalytic formation of the activator HBrO2 (cf. Sect. 2). Spiral waves emerge,
when an enclosed wave front is disturbed, such that it ruptures (Fig. 3). This can be
forced, if a wave front is treated with an air jet. Even an obstacle can force the wave
front to break, if it is large enough (otherwise the wave fronts will merge behind the
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obstacle and no open wave end is created). With these methods, one gets always a
pair of counter-rotating spirals as shown in the lower half of in Fig. 1. The initiation of
a single spiral needs a little more experimental skills. Here a thin (quasi 2D) reaction
container can be used, where a gel, in which the BZ reaction runs, is filled up to half.
Then, a wave is initiated with a silver wire near one boundary. When one end of the
wave reaches the boundary, the reaction container is filled up with the BZ gel and the
wave can now propagate into the regime of the new gel. This method is described in
detail in Ref. [17].

The wave propagation velocity v in the BZ reaction depends on the chemical
composition of the reaction mixture, which determines the speed of the reaction and
the transport processes. Especially, v is governed by the proton concentration [H+]
and bromate concentration [BrO−

3 ] (cf. Eq. (1)) [18]:

v ∼
√
kuDu[H+][BrO−

3 ], (9)

where ku is the reaction rate of the activator and Du its diffusion coefficient. If the
initial concentrations of malonic acid, sulfuric acid and sodium bromate are high
compared to the concentration of ferroin, homogeneous oscillations occur in the
system. A comparable ratio between ferroin and the other three reactants yields
reduction waves in the BZ medium.

The BZ reaction can be inhibited by oxygen, which diffuses up to 2mm depth
into the liquid layer. The inhibition occurs due to oxidation of malonic acid by
ferroin. When atmospheric oxygen diffuses into the reaction, malonic acid is no
longer available for the reaction, since its radicals are caught by oxygen [19]. Thus,
it is advisable to perform experiments in a closed container.

5 Patterns in Microemulsions

The BZ reaction can be embedded on the one hand into a gel, which does not affect
any properties of the reaction, such as diffusion of chemical species. On the other
hand, the reaction can be loaded into an emulsion, which is a mixture of oil and
water. In the system discussed here, only water-in-oil emulsions are considered (i.e.,
a little amount of water in much oil). The small water droplets are stabilized with a
surfactant and have a size of a few nanometers, leading to the name microemulsion.
They have certain physical properties, which are discussed in the following.

5.1 Physical Properties of Microemulsions

Almost everything in an emulsion is governed by the volume ratio between water
and oil (cf. Fig. 5). Additionally the amount of surfactant is also important, since it
is responsible for the stability of the system. Unless enough surfactant is available,
the interface between water and oil cannot be fully covered with the surfactant and
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no defined structure is formed. In Fig. 5 (right) possible configurations of the water
phase in a microemulsion are depicted, together with a phase diagram which shows
how the ratio between water, oil and surfactant affects the emerging configurations.
Here, mainly the L2 phase is considered, i.e., spherical water droplets, surrounded by
amonolayer of the surfactant diffusing through the oil phase. The droplets collide and
merge, forming droplet clusters, which can split again. As the solvent, a saturated
hydrocarbon is used, like octane or hexane. The used surfactant is sodium-bis(2-
ethylhexyl) sulfosuccinate (AOT, Fig. 5 (left)), which shows the L2 phase over a
wide range of concentrations. AOT is an anionic surfactant consisting of a polar
head group (SO−

3 ) and two hydrophobic tails [20].

Fig. 5 Left: Sketch of the surfactant AOT with its polar head group SO−
3 . Right: Phase diagram

of the water-AOT-oil system. The L2 phase is a reverse microemulsion (water-in-oil microemul-
sion), in which most of the experiments in this work are performed. LH – hexagonal phase;
LC – lamellar phase (liquid crystal). Reprinted by permission from Springer: Patterns of Nan-
odroplets: The Belousov-Zhabotinsky-Aerosol OT-Microemulsion System, V. K. Vanag and I. R.
Epstein [21], copyright 2008

The properties of an emulsion can be described with the help of two parameters:
The molar ratio ω between water and AOT concentration [22]

ω = [H2O]
[AOT ] , (10)
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and the volume droplet fraction of the dispersed phase ϕd , which is the ratio of the
sum of the individual volumes of water (VW ) and AOT (VAOT ) and the entire volume
of the emulsion:

ϕd = VW + VAOT

VW + VAOT + Voil
. (11)

With the help ofω, the droplet radius Rω of thewater core (without theAOT-molecule

[23]) can be estimated with the empirical equation

Rw[nm] = 0.17ω. (12)

To calculate the radius of the droplet including the surfactant, the length of the AOT-
molecule must be added (≈1.1nm) [24]. ϕd acts as an order parameter of the system,
since it determines the configuration of water, oil and AOT (cf. Fig. 5).

5.2 Percolation

When changing the amount of water, the droplets of the L2 phase merge and form
water channels pervading the entire medium. This process is called percolation. In
general it means that components of a system form connected clusters. If a cluster
reaches all ends of a system, the latter is percolated. Some practical examples are
water in a coffee filter or forest fires and their models.

In a mircoemulsion, the first infinite droplet cluster is formed around a droplet
fraction of 0.5, which is referred to as critical droplet fraction ϕcr [24]. Due to
this network of water channels, viscosity and electric conductivity increase as well.
For ϕd � ϕcr , the droplets move nearly freely in the oil phase. The emulsion has a
high viscosity due to the large amount of oil and its electric conductivity is close to
that of pure oil. Above ϕcr the number of such clusters increases rapidly [25] andwith
them the electric conductivity. In fact, the latter can be used to measure the critical
droplet fraction, above which the system is percolated. Thus, percolation causes a
threshold-like behavior of physical quantities.

5.3 BZ Reaction in Microemulsions

Embedding the BZ reaction in a microemulsion (referred to as BZ-AOT system),
which shows the L2 phase, changes the emerging patterns significantly compared to
the aqueous BZ reaction. The reaction only runs within the water droplets, such that
the diffusion coefficient of the activator is reduced. It diffuses with the same velocity
as the droplet itself. Some products of the BZ reaction, such as molecular bromine
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Br2 and the radical BrO•
2, which are inhibitors of the system, are soluble in the oil

phase and can diffuse out of the droplets. Thus, their diffusion coefficient rises by
10–100 of the initial value. Hence, the conditions for Turing patterns are fulfilled (cf.
Sect. 3) and the corresponding stationary patterns can occur in the BZ reaction [24].
Note that Turing patterns can only occur below the percolation threshold, due to the
conditions on the diffusion coefficients of activator and inhibitor.

Fig. 6 Overview of patterns occurring in the BZ reaction embedded in a micro-
emulsion. The patterns in the right column (above a chemical concentration relation of 0.1M)
are generated with another catalyst (bathoferroin). Reprinted by permission from Springer: Patterns
of Nanodroplets: The Belousov-Zhabotinsky-Aerosol OT-Microemulsion System, V. K. Vanag and
I. R. Epstein [21], copyright 2008

Figure6 shows an overview of patterns, which can occur in a microemulsion,
depending on the ratio between the chemicals (sulfuric acid, sodium bromate and
malonic acid), and the droplet fraction. Above the percolation transition, a bimodal
distribution of the droplet radius is found (below the transition, only one radius
is found) [21], favoring the formation of discontinuously propagating waves (like
jumping, rotating and bubble waves) and dash waves (see Fig. 6, above a chemical
concentration relation [H2SO4][NaBrO3]/[MA] of 0.1M). The latter develop from
a smooth wave front, which splits up such that coherently moving wave segments
separated by lateral gaps occur [21, 24]. These waves will be discussed briefly in the
following section.
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5.4 Segmented Waves

Segmented (or dash) waves occur mainly, when two pools of droplets exist, with radii
of around2 and20nm[21]. This is typicalwhenusing the catalyst bathoferroin,which
is a derivate of the default catalyst ferroin. However, spirals cannot be induced in a
controlled way as described in Sect. 4, but they have to form spontaneously (e.g., due
to an impurity or small concentration differences). In the reaction with bathoferroin,
dash waves or spirals, as well as discontinuously propagating waves, such as rotating
and jumping waves evolve (Fig. 6).

Figure7a shows dash waves in the upper left corner, with a negative (concave)
curvature and (b) spiral waves with a positive (convex) curvature. Segmented waves
evolve from ordinary (smooth) waves, which become unstable with time. They show
so-called ripples, which means that some regions of the wave are propagating slower
than their neighboring regions, and the curvature of these slow regimes becomes
negative (box in Fig. 7b). In the course of time, the wave breaks in these regions, such
that small segments of the original wave remain, which travel through the medium
as if the wave front still exists. The instability occurs only, if the inhibitor diffuses
fast (compared to the activator) and causes a wave break-up [26]. The former acts
transverse to the wave front and it may occur through lateral inhibition or a kinetic
interaction of the wave with a reactant in front of it [27, 28]. The segmentation of
wave fronts always starts near the center of a spiral, since the curvature is highest
there.

Dashes of one wave front propagate into the gaps of its precursor, which means
that the dashes are displaced by the length of a dash relative to their precursor. In
the dashes, the inhibitor is primarily generated, diffusing faster than the activator,
and suppressing the autocatalytic reaction in the neighboring gaps. Additionally, this
increases the time until the the medium has recovered when the subsequent wave
front reaches it [21, 24]. The displacement of the dashes is visualized with the help
of superposition of frames over time (Fig. 7c and d). The length of the dashes vary
between 90 and 163± 2µm and the length of the gaps from 40 to 104± 2µm.
Convex wave fronts show a splitting of dashes, when reaching 1.7 to 1.9±0.1 times
their initial length. This is depicted in Fig. 7d (red box), since the dashes propagate
away from each other. For a concave curvature (as in Fig. 7c, black box) a merging of
dashes can be found. The gaps get smaller, such that the dashes move closer together
until they merge. Splitting or merging of the dashes was not found for a curvature
K between −0.10 and 0.21±0.1mm−1, i.e., for almost plain wave fronts—here, the
dashes propagate straightforward without changing their length.
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(a)

(c)

(b)

(d)

Fig. 7 Snapshots of patterns in the bathoferroin-catalyzed BZ-AOT system with ω = 12
(ϕd = 0.455) at t = 224.8min a in octane (size of images: 3×3mm2) and b in hexane (size of
images: 5.9×6.1mm2). Superposition of binarized images c in octane between 180.0 and 189.2min
and d in hexane between 220.0 and 227.9min with time interval of 40 s. Note that black lines in the
superposition images represent the bright wave front. Reprinted with permission from P. Dähm-
low, V. K. Vanag, and S. C. Müller, Phys. Rev. E 89, 010902 (2014) [29]. Copyright 2014 by the
American Physical Society

The frequency distribution of the curvature, where splitting of dashes occurs, is
shown in Fig. 8. For a mean curvature, the number of splitting dashes is much higher
than that for small or large curvatures, since large curvatures occur only near the
spiral core, where the number of dashes is much smaller than at the outer wave
fronts.

The merging of wave fronts due to a decreasing distance between single seg-
ments is closely related to those studied in Ref. [30]. If the distance between the
segments is smaller than the width of the wave front (i.e., the autocatalytic band),
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Fig. 8 Histogram of the
curvature K of a wave front
for different experiments, in
which a splitting of a dash
occurs. The recipes are equal
for all experiments:
[MA] = 0.242 M,
[NaBrO3] = 0.174 M,
[H2SO4] = 0.194 M,
ω = 12 and ϕd = 0.455.
1 - dashed spiral in Fig. 7b,
2 - dashed spiral wave,
3 - dashed target pattern

segments merge. An equal distance between both yields a constant length of single
dashes. In our case, the distance between the dashes is also governed by the curvature
of the initial wave. The segments are additionally forced to reduce their distance to
each other at concave curvature of the initial wave front. A plain wave, where the
distance between single dashes and the width of the wave front is equal shows a
straight forward propagation of the segments, without any variations in length, as
already described in Ref. [30].

6 Summary and Conclusion

Pattern formation in reaction-diffusion systems represents an important phenomenon
in biological morphogenesis. In the early stages of the development of synergetics,
people were fascinated by oscillatory chemical reactions, such as the mercury heart
[6] or a periodic color change in the BZ reaction [2]. However, the scientific com-
munity doubted its existence, since self-organization of systems contradicted the
increase in entropy and thus the second main theorem of thermodynamics. However,
patterns can only form in systems, which are far away from thermodynamic equi-
librium and have an energy- and/or mass transfer with their environment. This fact
resolves the conflict.

In this chapter, the chronological sequence of important historical experiments
contributing to the development of synergetics was given, especially in the context
of pattern formation in reaction-diffusion systems. The most prominent example
presents the BZ reaction, which shows both: periodic oscillations in a stirred solution
and spatially expandingwaves in an undisturbed system. Thewave propagation in the
spatially extended BZ reaction was studied in detail, and the influencing factors on
the wave velocity (i.e., concentrations of reactants, reaction rate, diffusion, curvature
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of the wave front and dispersion relation) and the mechanism of the formation of
spiral waves were described.

Additionally, it is possible to load the BZ reaction into a water-in-oil emulsion,
which afflicts the relation of the diffusion coefficients of activator and inhibitor
significantly. This enables the system to form a wide range of possible patterns such
as Turing patterns, discontinuously propagating waves (such as bubble and jumping
waves) and segmented waves (cf. Fig. 6). Segmented waves evolve from an ordinary
wave (target pattern or spiral wave), due to an instability. These dashes split ormerge,
depending on the curvature of the initial wave front, such that their length remains
within a certain interval. However, the length of the gaps play an important role.
Single segments are either able to curl and form new spirals or propagate ahead (as
shown in Fig. 7). Larger gaps between the dashes would mean that not the entire area
between the segments will be inhibited, wave propagation will become possible and
the segments can start to curl and a spiral turbulence will develop.

We find that spiral waves represent an interesting and fascinating pattern, which
can be found in many biological and chemical systems, as described throughout this
book. They organize the medium in which they occur and oust many other pattern
with time.
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Shedding Light on Chaos - Controlling
Surface Reactions

Harm H. Rotermund

Abstract Although heterogeneous surface reactions have been studied for more
than 200 years, only the introduction of several unique imaging techniques in the
1990s made it possible to visualize simple catalytic reactions occurring on the sur-
face of platinum single crystals at a mesoscopic level. Specifically the CO-oxidation
shows a phenomenal variety of patterns including spirals, target patterns, standing
waves, spiral turbulence and chaos depending on several parameters. Control of these
factors allows better understanding of the limits between chaos and order, whichmay
have important implications ranging from cardiac fibrillation to corrosion phenom-
ena. Two ways of controlling these surface reactions will be discussed, the first one
being a time-dependent global feedback approach, where one of the reactant’s partial
pressure is controlled, the other one focusing on a local method where via a small
laser spot the surface temperature is temporarily increased.

1 Introduction

About 200 years ago Johann Wolfgang Döbereiner’s experiments focusing on the
ignition of hydrogen in contact with powdered platinum led to the very first lighter,
the so called Döbereiner’s lamp, which was a great success [1]. These studies encour-
aged the Swedish chemist J. J. Berzelius to develop the concept of catalysis, although
it was Wilhelm Ostwald in 1901 who gave the definition of a catalyst as a substance
that will not appear within the final product of a chemical reaction, but has accel-
erated the reaction itself [2]. Heterogeneous catalysis narrows the field to catalysts
that are in a different state of matter than the reactants themselves; for example,
in Döbereiner’s experiments hydrogen as well as oxygen are both in their gaseous
state, while the catalyst platinum is in its solid state. Probably the most important
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and man-made reaction is only possible due to heterogeneous catalysis; it is the
Haber-Bosch process, which utilizes iron as catalyst with some promoters added to
synthesize ammonia in a reaction of hydrogen with nitrogen. It is the “detonator”
for the explosion of the world population [3]. Today roughly 450 million tons of
ammonia are yearly produced and mainly used as fertilizer to grow crops.

Another important reaction is the oxidation of carbon monoxide (CO) over plat-
inum (Pt), occurring in about a billion catalytic inverters in cars, trucks and power
plants around the world. In addition of being tremendously environmentally impor-
tant, this reaction exhibits, under certain reaction parameters such as temperature and
partial pressures, an oscillatory behavior of the reaction rate, resulting in temporary
changes of the product, namely carbon dioxide (CO2). We will use this reaction to
illustrate the amazing variety of patterns that occur in very simple oxidation reac-
tions. Many reactions in heterogeneous catalysis can exhibit oscillatory behavior.
The table on the next page, which was compiled by M. Slinko, shows a fraction of
the reactions, which do so (Table1).

2 Introduction to the CO-oxidation on Platinum

As is evident when looking at the table, CO-oxidation is one of the simplest reactions
of all listed. It follows along the Langmuir-Hinshelwood mechanism, whereby both
reactants have to be accommodated at the catalytic surface first before the reaction can
happen. In the case of the CO-oxidation the oxygen has to dissociate into its atoms,
which are only weakly bound to the catalytic Pt surface. If a COmolecule comes into
contact with an oxygen atom they spontaneously react with each other to form CO2.
This productmolecule leaves the surface and the “clean” Pt is recovered, an important
aspect of a catalyst. The very first oscillations for this reaction were discovered in
the early 1970 in E. Wicke’s group at the university in Münster, Germany [4]. They
investigated the oxidation of CO using a mixture of air and CO at atmospheric
pressure over a heated Pt catalyst bed and very much to their astonishment found an
oscillating behavior.

About a decade later G. Ertl and coworkers at the university in Munich verified
these oscillations under well defined circumstances using single crystal Pt surfaces of
various orientations and ultra high vacuum (UHV) conditions [5–7]. These investiga-
tions initiated the revival of nonlinear phenomena in heterogeneous catalysis, which
had been forgotten for half a century. Already in 1926 a publication by E. S. Hedges
and J. E. Myers with the title of “The Problem of Physico-Chemical Periodicity” had
appeared, listing many observations in the field [8]. Even before the discoveries of
Ertl’s group B. P. Belousov, in 1951, had observed oscillating behavior in homoge-
neous catalysis. Two of his publication attempts failed; only when ten years later A.
M. Zhabotinsky verified the earlier results during his graduate studies the reaction
became more widely known. The now called Belousov-Zhabotinsky (BZ) reaction
is the most studied reaction for nonlinear chemical systems by far [9, 10]. A detailed
discussion can be found in this book in chapter Chemical Oscillations and Spiral
Waves written by P. Pfeiffer.
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Table 1 List of oscillating reactions in heterogeneous catalysis, courtesy of M. Slinko, Russian
Academy of Sciences, Moscow, Russia

Reaction Catalyst Reaction Catalyst

CO + O2 Pt, Pd, Ir, Rh, Ru C6H12 + O2 NaY, NaX, KY

H2 + O2 Ni, Pt, Pd, Rh C6H14 + O2 Pd

CO + NO Pt, Pd, Rh C7H16 (n-heptane) +
O2

Pt/Al2O3

NO + H2 Pt, Rh, Ir C8H18 + O2 Co2O3-Cr2O3

NO + NH3 Pt, Rh (CH3)C6H4
(m-xylene) + O2

Pd

NH3 + O2 PtRh, Pt (CH3)C6H4 (o-xylene)
+ O2

Pt/HFAU zeolite

CH4 + O2 La2-BaO-MgO, Pd,
Ni, Co, Rh/H-ZSM-5,
Ru

CH3OH + O2 Pd, Cu

C2H6 + O2 Ni, Co, Pd C2H5OH + O2 Pd, V2O3

C2H4 + O2 Pt, Ag, Rh HCOOH + O2 Pd

C2H4 + O2 + NO Pt-ZSM-5 C2H4O + O2 Ag

C3H8 + O2 Ni, Pt/YSZ, Co, Pd C3H6O + O2 Ag

C3H8 + NO HZSM-5 CO + H2 Fe-ZSM-5,
Co-ZSM-5, Fe, Pd

C3H6 + O2 Pt, Ag, CuO C2H4 + H2 Pt, Ni

C3H6 + N2O Pt N2O decomposition Cu-ZSM-5,
Rh/ZrO3-Nd2O3,
Fe/MFI, Co-ZSM-5

C4H10 + O2 Pd N2O + H2 Ir

C6H6 + O2 Pd N2O + CO Pt

C6H5CH3 + O2 NaX NO2 + H2 Pt

C6H1(2hexene-1) +
O2

Pd CH3NH2
decomposition

Pt, Rh, Ir

PbNO2 + H2 Cu, Ni

One important advantage in the research of nonlinear reactions occurring in het-
erogeneous catalysis is that for idealized surfaces, such as single crystals, the reac-
tions are always strictly 2-dimensional. Furthermore the time scale is normally orders
of magnitude faster, typically in the sub-second to minutes range, compared with
minutes to hours for reactions in homogeneous catalysis, where the time scale is
governed by the diffusion speed of molecules in liquids. As an example of a rela-
tively slow oscillation, Fig. 1 presents the oscillation of the product rate during the
CO-oxidation on Pt(110). The single crystal is kept at a constant temperature of
470 K, the partial pressure for CO is kept constant at 2.3× 10−5 mbar, while the par-
tial pressure for oxygen is increased from 1× 10−4 to 1.5× 10−4 mbar at t = 100 s
in a single step. During the following couple of 100 s a steady increase of the
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Fig. 1 CO2 oscillations modified from the dissertation of Eiswirth [11]

reaction product CO2 is observed, only to slowly start to oscillate around 400 s.
These oscillations become quite dominant and regular, continuing for more than
1/2 h. At increased temperatures these oscillations become much faster, reaching up
to several Hertz (Hz) at 550 K.

The underlying mechanism for the oscillations has been clarified in a publica-
tion of 1992, in which the authors, K. Krischer, M. Eiswirth and G. Ertl proposed a
reconstruction model [5, 12], which is depicted in Fig. 2. Pt(110) reconstructs its sur-
face, as many single crystal surfaces do, in a way to reduce its surface energy. Some
adsorbents will lift this reconstruction, since for a system surface plus adsorbent a
lower total energy may be achieved by lifting the reconstruction. The uncovered
Pt(110) surface arranges itself into a missing row structure; adsorption of CO
molecules will lift this reconstruction, happening already at microscopic scales
when a coverage of 1/3 of a monolayer (ML) is locally reached, as was shown by
Cox et al. [5].

The important difference between these two surface phases is the sticking
probability for oxygen, sO2

. It increases from 0.4 on the reconstructed surface to
0.6 on the unreconstructed surface. Obviously by choosing the right ratio between
the partial pressures for oxygen versus CO a condition can be stabilized where CO
will slowly build up in its coverage on the reconstructed surface while the adsorption
of oxygen remains low. When a certain CO coverage is reached, typically between
0.3 and 0.5 ML of CO, the surface phase transits into the unreconstructed surface. It
exhibits a 50% higher sticking probability for oxygen, thereby reacting away the CO
molecules till the critical CO coverage is undercut; the reconstruction sets in again,
one oscillation cycle has been completed. The moving around of metal atoms on a
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Fig. 2 Reconstruction
model for Pt (110),
sometimes also called the
KEE-model

surface certainly needs activation energy; therefore strong temperature dependence
can be expected. This can be corroborated by looking at the oscillation times in Fig. 1,
being about 40 s (0.025 Hz) for a reaction temperature of T = 470 K, while when
the temperature is 80 K higher the oscillation frequency is in the several Hz range.

Obviously the reconstruction model could be used quasi homogeneously for the
whole surface without taking into account local modifications in time. The first
attempt to find a hint of space-time patterns during the CO-oxidation on a Pt(100)
was done byCox et al. [5],whoused lowenergy electron diffraction (LEED) scanning
across the single crystal surface under reaction conditions. They found evidence of a
wave like pattern on a time scale of 200 s and a lateral resolution in the mm range. To
improve the spatial resolution a scanning photoemission microscope was designed
and built, immediately showing the important aspect of the local conditions of a
surface [13].

3 Experimental Set-up: the Photoemission Electron
Microscope (PEEM)

Due to the mechanical nature of the scanning approach, the sample was moved
back and forth, it became clear that an imaging photoemission electron microscope
(PEEM) had to be constructed to improve the lateral and time resolution both by
several orders of magnitude. This was accomplished with the help of Engel [14]. The
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Fig. 3 PEEM sketch illustrating how different adsorbate layers on the surface result in contrast
due to higher photoelectron emission

PEEM consisted of several purely electrostatic electron lenses at potentials between
0 and 20 kV with respect to the sample at ground potential.

The sample in front of the objective lens is illuminated homogeneously with UV-
photons of up to 6.8 eV, the locally photon-emitted electrons are accelerated by the
20 kV electrode of the objective lens and imaged onto a channel plate and phospho-
rous screen at the end of the column. As illustrated by the sketch on the left side of
Fig. 3, areas with CO coverage, envisioned by the blue/red circles, emit a large num-
ber of electrons while the oxygen atoms, red circles only, emit a smaller signal due
to their higher work function. The work function is the energy barrier the electrons
have to overcome to leave the surface. A clean platinum surface has a work function
of 5.5 eV, areas covered with CO increase the work function a little (typically by
+ 0.1 eV), whereas oxygen atoms increase it by about 1 eV. This is the basic contrast
mechanism, since it is quite substantial for the CO-oxidation and real time imaging
can easily be done. To store the data a standard video recording system is utilized.
Even the very first experiments with an unfinished PEEM (just the objective lens was
installed) showed stunning patterns on the surface [14].

4 Observation of Pattern Formation

Soon after this first observation a large variety of pattern formations during the CO-
oxidation specifically on the Pt(110) surface were discovered [15–17]. As an exam-
ple, Fig. 4 presents snapshots of target patterns, evolving at T = 427 K reproduced
at a time interval of 1 s.
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Fig. 4 Snapshots of Target patterns on Pt(110), pO2 = 3.2× 10−4 mbar, pCO = 3× 10−5 mbar
and T = 427 K, time interval 1 s, frame size 300× 227 µm

Two different phenomena can be seen in this figure: a fast oscillating background
from a dark (oxygen covered) to a grey (CO covered) one within 5 s, while the target
patterns themselves evolve at a much longer time scale. The background oscillations
are ruled by a phenomenon known as “gas phase or global coupling”,while the targets
are diffusion coupled, governed by the diffusion speed of CO on the surface on the
order of µm/s [18]. The former coupling mechanism is based on the changes of the
CO partial pressure directly in front of the investigated surface and governed by the
speed of molecules in the vacuum, which are many orders of magnitude higher.

Another example featuring evolving spirals, which are a highly dominant feature
and easily reproduced under certain reaction conditions, is presented in Fig. 5. The
figure is reproduced from Nettesheim et al. [19] and shows clockwise and anticlock-
wise rotating spirals which are all pinned to macroscopic defects, some of them
becoming quite visible in the last frame of the figure.

For a different system, the NO+H2 reaction on Rh(110), R. Imbihl and his group
found spirals and target patterns with a nearly rectangular shape, which the authors
explained via a state dependent anisotropy of the diffusion [20]. Asmentioned earlier,
one of the features of pattern formation on single crystal surfaces during heteroge-
neously catalyzed reactions is the 2-dimensionality, but for illustrative purposes it
can be changed into an 3-dimensional image as reproduced in [21] In Fig. 6 the ren-
dered spirals of the CO-oxidation from Fig. 5 are compared to a picture of spirals
carved in stone found in a wall of a temple in Greece dating back to 1200 BC. Even
over 3000 years ago spirals have been fascinating for the human kind; they appear
on all length scales, from µm to meters to hundred thousands of light years in spiral
galaxies, as illustrated in Fig. 7 (compare chapter Appearance in Nature).

In Fig. 7 a spectacular image of the large spiral galaxy NGC 1232 and its small
neighbor NGC 1232a near the lower left side is reproduced. The distance to NGC
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Fig. 5 Spiral waves on Pt(110). pO2 = 4× 10−4 mbar, pCO= 4.3× 10−5 mbar, T = 448 K, time
between frames 30 s, frame size 440× 440 µm

Fig. 6 Three-dimensional illustration of spirals on a two-dimensional platinum surface compared
to a wall ornament from a temple in Greece dating back to 1200 BC



Shedding Light on Chaos - Controlling Surface Reactions 183

Fig. 7 Image of the large
spiral galaxy NGC 1232,
obtained by the European
Southern Observatory at its
Paranal site in Chile with the
Very Large Telescope array
(VLT). It is composed by
three exposures in
ultra-violet, blue and red
light, respectively. (See also
Fig. 2 of chapter
Appearance in Nature)

1232 is about 100 million light-years and its diameter is close to 200,000 light-years,
about twice the size of our MilkyWay galaxy. More images of galaxies can be found
in chapter Appearance in Nature. Although spiral galaxies are the most abundant
star pattern formation observed in the universe, probably with more than a billion
in number, each containing billions of stars themselves, the spiral formation cannot
be distinguishable with the naked eye. So it is safe to assume that early civilizations
portrayed objects found on earth in their art, like spiral patterns on seashells.

Focusing again on the CO-oxidation on Pt(110), a zoo of pattern formation has
been observed. When the reaction temperature is increased naturally, the reaction
itself proceeds much faster and new patterns emerge. A well-studied phenomenon
is the standing wave pattern. As is obvious when comparing the first four frames in
Fig. 8, consecutive snapshots taken at a time interval of 150 ms, the reaction driven
patterns change quite rapidly.

The drastic change from the highly regular form of standingwaves into a turbulent
or chaotic structure happens when one of the control parameters, in this case the
partial pressure of CO, is slightly changed. In principle a cascade of period doublings
should occur, similar to the Feigenbaum scenario in certain mathematical equations.
In reality, the CO-oxidation noise cannot be avoided, so the step size for adjusting
the partial pressure varies by the additional noise inherent in most natural systems.
This results in nearly all cases with a sudden onset of turbulent behavior, as visible
in the last two frames of Fig. 8. In nonlinear dynamics the control of turbulence is
one of the holy grails.

5 Control of Surface Reactions

For simple systems occurring in 2D with an easy to describe reaction this can be
achieved by a time dependent global feedback mechanism as illustrated in Fig. 9:
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Fig. 8 Standing wave patterns; the original oscillation period is about 1.2 s, the first 4 snapshots
are separated by just 250 ms, frame 5 was taken 30 s later, the last frame 8 s after #5, from [21]

Fig. 9 Schematic of a
time-dependent global
feedback loop, where the
PEEM image is integrated,
the background subtracted,
and then after a time delay
the signal is used to control
one of the parameters such as
the partial pressure of CO

A variety of chaotic patterns have been investigated and via time dependent global
feedback changed dramatically in their behavior. The main result is shown in Fig. 10,
taken from Kim et al. [22]. In this experiment, chemical turbulence was first estab-
lished as displayed in frame #1 of panel (a). These patterns are sometimes labeled
spiral turbulence. As can be seen in the space-time plot below, no regular oscillations
are present. The partial pressure of CO remains nearly constant in the beginning and
only about 40 s into the experiments the feedback begins to show, soon leading to
pressure oscillations with amplitudes of about 10% of the original set value for CO.
The time delay of 0.6 s between the control signal I and its result on the partial pres-
sure of CO is kept constant during these experiments. At about 65 s the space-time
plot shows strong regular oscillations. Depending on the initial conditions the results
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Fig. 10 Each subpanel shows in the upper row original PEEM images (diameter 500 µm) taken at
the indicated times, followed below by space-time plots along the identified white lines drawn
into the upper left panels: a suppression of spiral wave turbulence, b intermittent turbulence,
c phase clusters, and d standing waves. The bottom graphs below each space-time diagram display
the temporal variation of the CO partial pressure (black line) and the variation of the integral PEEM
intensity (red line)

of the time delayed global feedback differs substantially. The subpanels (b) to (d)
illustrate the three types of patterns that emerge when feedback is established.

The most striking result is presented in panel (c), where highly stable phase
clusters have been observed. This type of pattern had not been seen in any previous
experiments involving pattern formation in heterogeneous surface reactions.

Obviously the signal used in the feedback loop does not have to be the global
response of the imaged area, but can be a frequency dependent smaller area of the
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sample, which is analyzed via a fast Fourier transformation (FFT) and then utilized
as the feedback signal [23].

A trivial approach to influence self-sustained pattern formation is direct forcing,
in which the main oscillating frequency is analyzed and a higher harmonic is utilized
to investigate the changes of patterns due to entrainment with 2×, 3×, 4× frequency
forcing [24].

Up to this point the results presented here were obtained with a PEEM, which
is restricted to low-pressure investigations, since electrons are used to image the
changes of the work function of the involved system. In heterogeneous catalysis
the reaction of interest happens at atmospheric pressures (1bar) or at many bars of
pressure, to achieve a reasonable product rate.

6 Imaging and Controlling Surface Reactions Using Light

A surface reaction imaging technique that can operate under any pressure was devel-
oped some time ago and utilizes the unique properties of linear polarized light. In
principle at least two approaches have been successfully implemented and improved

Fig. 11 Schematic of ellipso-microscopy for surface imaging (EMSI) and reflection anisotropy
microscope (RAM)
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over the years [25, 26]. The experimental setup is displayed in Fig. 11. The ellipso-
microscopy for surface imaging (EMSI) uses monochromatic linear polarized light,
which is reflected off the surface close to the Brewster angle and therefore becomes
elliptically polarized light. It allows imaging of an adsorbent on a surface, as long
as the covered areas are larger than 15–20 µm in size. The reflection anisotropy
microscope (RAM) also utilizes linearly polarized light, however it can be white
light and mainly takes its contrast from the rearranging surface atoms, for instance,
the changes of the reconstruction due to CO adsorption in the case of Pt(110).

Fig. 12 A focused laser spot describing a circle on a Pt(110) surface during the CO-oxidation. Two
snapshots are placed together to create the impression of “CO” written onto the surface; title page
from [29]

In addition to being completely pressure independent - EMSI has been utilized
even for corrosion studies of polished stainless steels in liquids [27] - the optical
methods also allow a much easier access of the imaged surface: for instance, a
focused laser spot could be directed onto the surface allowing local heating, thus
influencing the emerging pattern formation. A playful illustration of the possibilities
is presented in Fig. 12. Two snapshots of a circle heated by a focused laser are placed
together to create the impression of “CO” written onto the surface. The temperature
of the area underneath the laser spot is for some tenth of a second about 2–3 K
higher, thus allowingmoreCOmolecules to desorb and thereby having amicroscopic
effect change into an “artificial” macroscopic result. As it is obvious, having direct
command of the local surface temperature allows for addressing the spatiotemporal
pattern formation in real time. Some of these results, including references, have been
compiled in [28].

7 Conclusion

The examples presented here show how well reaction-diffusion systems of hetero-
geneously catalyzed reactions have been understood. The specific model system, the
CO-oxidation on Pt(110), allows for the exploration of various control mechanisms
in pattern forming reactions, opening new avenues for nonlinear systems. This is



188 H. H. Rotermund

one of the reasons why the CO-oxidation on Pt(110) has become the paradigm for
nonlinear surface reactions.
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Part IV
Spirals and Vortices in Biology, Physiology,

and Medical Science

FOOL: Canst tell how an oyster makes his shell?
LEAR: No.

FOOL: Nor I neither; but I can tell why a snail has a house.

—William Shakespeare, King Lear



Spiral Waves of the Chemo-Attractant
cAMP Organise Multicellular
Development in the Social Amoebae
Dictyostelium discoideum

Cornelis J. Weijer

Abstract Development of multicellular organisms requires precise spatial and tem-
poral integration of key cellular behaviours such as cell division, cell differentiation
and cell movement to form the complex tissues that make up the organism. These
cell behaviours are controlled by highly dynamic cell-cell signalling while these
cell behaviours in turn feedback on the cell-cell signalling to result in emergent
behaviours at the tissue and organism level. Dictyostelium discoideum is a rela-
tively simple eukaryotic organism that is a widely used to study these interactions
between cell-cell signalling and cell behaviours both experimentally and theoreti-
cally. This chapter describes our current understanding of how excitable cell-cell
signalling results in the formation and propagation of large scale spiral waves of
a chemo-attractant. How these chemo-attractant waves control the aggregation of
hundreds of thousands of cells into multicellular aggregates and how interactions
between excitable cell-cell signalling and cell movement control the transformation
of aggregates into mounds and migrating slugs, that then go on to form fruiting
bodies.

1 Introduction

Many simple organisms including bacteria and eukaryotic cells live as single cells.
They divide to multiply and most are able to move in order to find food. Many of
these single celled organisms, such as primitive amoebae can undergo a transition
to a dormant state and form cysts or spores to survive challenging environmental
conditions. The evolution of multicellular organism has taken several independent
routes, in some groups of organisms multicellularity arises via aggregation of large
numbers of individual cells during part of their life cycle. The transition of hundreds
of thousands of single cells into a multicellular organism via aggregation is well
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documented by the development of the social amoebae or cellular slime moulds,
the Dictyostelids. These are simple eukaryotic organisms that span a wide range
of different shapes and forms. The ancestors of the simplest Dictyostelium species
are single amoebae. These amoebae generally live in the soil and feed on bacteria
and yeasts and divide. They have the ability to actively locate their food sources by
detecting small molecules secreted by these bacteria and use this to locate sources of
food and move towards these sources in a chemotactic process. When food becomes
scarce they can either move to new locations where there is more food or encyst or
sporulate to form dormant stages in which they can persist for long periods of time
before germinating and releasing amoebae again [1].

Fig. 1 Dictyostelium discoideum life cycle. Central image shows a Dictyostelium colony growing
on a bacterial feeding plate. Feeding cells are located at the outer edge. When cells deplete the
bacteria they start to aggregate, forming aggregation streams and mounds. These then make tipped
mounds that transform into migratory slugs. Under conditions of low humidity and overhead light
slugs will culminate and form fruiting bodies consisting of a stalk of dead vacuolated stalk cells that
support a head of spores. The spores can disperse, germinate and start new colonies again closing
the life cycle, which take around 24 h at 22 ◦C
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Interestingly theDictyostelids form a group of more complex species that are able
to formmulticellular aggregates via the aggregation of individual cells. These species
use short range chemical cell-cell signalling of species specific chemo-attractants
to aggregate. After aggregation they are able to form very small fruiting bodies
consisting of a stalk of an extracellular matrix material and often dead vacuolated
so called stalk cells that support a head of spores. The spores are raised from the
substrate and therefore can most likely disperse more effectively than single spores.

However there exist more complex species within the Dictyostelids where up to
hundreds of thousands of cells can aggregate to form larger fruiting bodies. By far the
best investigated species isDictyostelium discoideum (Dd). Its life cycle is illustrated
in Fig. 1. Since Dictyostelium development takes place in the absence of food under
starvation conditions only limited cell divisions occur during multicellular develop-
ment. Morphogenesis therefore primarily results from the movement of individual
differentiating cells into relatively simple multicellular structures, the mound and
slug that will transform into fruiting bodies, consisting of roughly 75% spores and
25% stalk cells irrespective of its size, which can vary between hundreds andmillions
of cells. Key questions are, which signals guide the movement behaviour of thou-
sands of cells during development. Which signals control the differentiation of the
spore and stalk cells and how are cell-cell signalling, movement and differentiation
integrated to form a fruiting body.

2 The Mechanism and Role of Chemotaxis

The aggregation of Dictyostelium cells has been extensively studied and shown to
involve chemotaxis to 3’–5’cyclic AMP (cAMP), produced by the aggregating cells
themselves. Chemotaxis is the process by which cells move either up or down gra-
dients of diffusible signalling molecules. The mechanism of chemotaxis arose very
early in evolution and was used by primitive single celled organisms including bac-
teria to translocate to sources of food. In multicellular organism chemotaxis is a key
mechanism to generate complex cell migration patterns necessary to build complex
structures during the embryonic development of most animals. In eukaryotic cells
movement involves cycles of pseudopod or lamellipod extension at the front end of a
migrating cell driven by localised actin filament formation, coupledwith retraction of
the actin-myosin network in the rear end of the cell (Fig. 3a). During chemotaxis cells
measure gradients of the chemo-attractant along the length of the cell via attractant
specific cell surface receptors that signal to the actin-myosin cytoskeleton to result
in directional movement. High concentrations of the attractant promote and stabilise
new protrusions in the direction of the increasing gradient and coordinate retraction
of the cell at the low end of the gradient, resulting in net translocation up the gradient
giving rise to directed cell movement [2].

It is currently thought that there exists a gradient sensingmechanism, the chemical
compass, which is followed by an internal amplification mechanism that controls the
polarisation of the cytoskeleton,whichmaywell involve the cytoskeleton itself.Much
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work is directed towards the investigation of the molecular mechanisms resulting in
signal detection cell polarisation and its translation in directed movement. This has
been extensively reviewed elsewhere recently and will not be covered here in detail
[3]. Cells that are not exposed to directional signals tend to extend pseudopods in
random locations around the cell, resulting in a very low persistence of directional
migration resulting in what is known as a random walk [4].

3 Starving Cells Are Produced and Respond to Pulses
of the Chemo-Attractant cAMP

Starvation triggers changes in gene expression that results in cells becoming able to
detect cAMP via specific transmembrane cAMP receptors and they also acquire the
ability tomake and secrete cAMPusing a specific starvation induced adenylyl cyclase
(ACA) [5]. cAMP is degraded by a secreted cAMP specific phosphodiesterase [6].
Cells in an aggregation centre start to periodically produce and secrete cAMP. This
cAMP diffuses to neighbouring cells, which detect and amplify the signal and pass
it on to their neighbours, resulting in a periodic cAMP wave propagation process
[7]. The cAMP waves propagate from the aggregation centre outwards and guide the
chemotactic movement of the cells towards the aggregation centre resulting in the
aggregation of up to hundreds of thousands of cells.

Although the underlying biochemistry of this excitable signalling system is rather
complicated, we will briefly describe the main process and components here [8].
Binding of cAMP to the seven transmembrane cAMP receptors results in stimula-
tion of a signal transduction cascade that leads to the activation of anACA, thatwithin
tens of seconds produces cAMP part of which is secreted to the outside (Fig. 2a).
The secreted cAMP binds to the cAMP receptor and thus is part of an autocatalytic
feedback loop resulting in a rapid increase of cAMP production. However stimula-
tion of the receptor also activates an adaptation process that, with a small time delay,
results in inhibition of adenylyl cyclase activity and thus in a cessation of cAMP
production. Since cAMP diffuses away into the extracellular medium and is also
degraded by internal and secreted cAMP phosphodiesterases, this results in a drop in
internal and external cAMP levels. This drop in extracellular cAMP in turn results in
de-adaptation of the cells (Fig. 2b). This scheme has been the basis for many math-
ematical models for the cAMP oscillator that can describe key experimental results
and the transition of excitable to oscillatory cAMP synthesis during development [9].
The details of the underlying biochemistry of the cAMP oscillator is rather complex
and contains many components. Especially the biochemical basis for adaptation is
not yet completely understood in molecular detail [10].
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Fig. 2 Excitable cAMP signalling. a: Schematic of the extracellular space, above the double red
line (plasma membrane) and the inside of a containing the main components to produce cAMP
oscillations and cell movement. b: schematic of temporal changes in cAMP synthesis and adaptation
in response to a constant stimulus of cAMP (stippled blue line)

4 Excitable Cell-Cell Signalling and Chemotaxis Result in
Aggregation

During early development the cells undergo a transition from being unresponsive to
cAMP to a statewhere they become excitable, i.e. they can produce cAMPwhen stim-
ulated with an above threshold amount of cAMP, to a situation whether they become
able to support sustained oscillations of cAMP. In the early phases of development
most of the cAMP secreted is degraded by the secreted cAMP phosphodiesterase.
However since gene expression is an essentially heterogeneous process, some cells
will produce and secrete a little more cAMP than others. Due to this heterogeneity in
gene expression and stochastic distribution of cells at the start of development, just
by chance there will be an area where some cells can just produce enough cAMP
to start the amplification of the signal through positive feedback [11]. This locally
produced cAMP signal diffuses to neighbouring cells, which now detect an above
threshold signal to which they respond by chemotaxis and also will start to amplify
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Fig. 3 a: Two successive images of a cell moving towards a local source of cAMP by the actin
driven extendingpseudopod (red) in the directionof the cAMPgradient andmyosin (green)mediated
retraction of pseudopods pointing away from the gradient. This results in a slow turning towards the
source of cAMP (blue). b: schematic of a cAMP wave traveling outward through a population of
cells. The red cells produces cAMP (yellow) dots). This diffuses away. Cells behind the wave front
(blue circles) are refractory and cannot signal. Cells in front of the wave (white dots) are excitable
and can signal. Simultaneously the relaying cells move up the cAMP gradient (the white arrows). c:
cAMP waves traveling from right to left direct motion of cells during the rising phase of the wave.
This results in cell shape changes that can be detected as light-scattering changes

the signal and pass it on to their neighbours. This process results in the formation of
travelling waves of cAMP (Fig. 3b).

Desensitisation of the cAMPproducing cells to cAMP results in the unidirectional
propagation of waves of cAMP away from the aggregation centre. These waves guide
the cells towards the aggregation centre. Effective aggregation requires that the cells
move during the rising phase of the cAMP gradient in the direction of the signal, i.e.
up the gradient, but do not turn around when the wave passes. If they did they would
move backwards and forwards and not aggregate efficiently. This is known as the
back of the wave problem. It has recently been shown that cells stay polarised and
keep moving for wave periods of up to 10 min and that this involves adaptation in
combination with a simple memory [12].

Due to the adaptation process colliding cAMP waves emitted from competing
centres annihilate each other upon collision. This will result in the formation of
aggregation territory boundaries. Since the cells move in the direction of the sig-
nal source this results in the cells moving away from the boundaries towards the
aggregation centres resulting in contraction of the aggregation territories.
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5 Visualising cAMPWave Propagation

During the synchronised chemotactic movement phase the cells elongate slightly,
while during the falling phase of the waves the cells stop moving and take on a less
polarised shape (Fig. 3c). These locally synchronised cell behaviours can be visu-
alised as changes in light scattering that reflect the propagating cAMP waves (Fig. 4)
[13]. cAMP waves have also been measured directly using isotope dilution fluorog-
raphy and these measurements showed that the optical density waves reflected the
cAMP waves and that the concentrations varied between 10−9 and 10−6 M which is
well within the Kd of the cAMP receptors [14]. Nowadays cAMP dependent cell-cell
signalling can bemeasured directly by dynamicmeasurements of intracellular cAMP
genetically engineered cAMP binding proteins using the principle of Fluorescence
Resonance Energy Transfer (FRET) [11]. Furthermore it is possible to dynamically
measure various components of the cAMP signal transduction machinery to cAMP
relay and the actin-myosin cytoskeleton in single cells but also at the population
level. These measurements can therefore not only be used to study the spatiotem-
poral dynamics of signal transduction but also to indirectly visualise the dynamics
of cAMP wave propagation. Most recently it has been shown that a transcription
factor gatC shuttles between the cytoplasm and the nucleus in response to cAMP
stimulation and that this is a key part of the mechanism of pulsatile induced gene
expression [15].

6 Competition Between Aggregation Centres

Observation of wave forms during aggregation reveals that there are essentially two
types ofwaves that can be observed during aggregation. These are patterns of concen-
tric waves that are periodically initiated by the aggregation centre and spiral waves
(Fig. 4). In both cases the cAMP waves propagate over a large distance of up to
several centimetres and pass over hundreds of thousands of cells. The period of the
waves is initially quite long, in the order of 8 min but gradually goes to down to
∼3 min, while the wave propagation speed is initially high (∼1 mm/min) but then
drops down as the cells come into closer contact. Centres arise at different times and
oscillate with different frequencies [13].

Due to the fact that colliding waves annihilate each other faster oscillating centres
can encroach on slower oscillating centres and can finally wipe them out. It has been
described that spiral centres normally wipe out concentric centres [16]. Concentric
centres can only exist when the cells in the centre are in an oscillatorymode, however
spiral waves can exist both in excitable and oscillatory systems. In spiral waves the
waves rotate around a central core, periodically re-stimulate themselves and are
likely to run at the maximum frequency that the excitable or oscillatory medium can
sustain and therefore are likely to dominate [7, 17]. Different strains show typically
different types of waves during the aggregation stage. This is likely dependent on
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Fig. 4 Wave patterns observed during aggregation inwildtype andmutant strains. StrainAx3 shows
spiral waves, strain DH1 makes many concentric waves, the cAR3 strain is a mutant that expresses
a lower affinity cAMP receptor and produces large spiral waves. The N272 strain expresses even
lower affinity cAMP receptors, makes chaotic waves. They are not able to set up stable centres since
the wave period is so slow that the cells disperse between waves, see [23] for further details

the exact composition of the molecular components making up the cAMP oscillatory
machinery, which is not known in detail for all of the components in all of the strains.

7 Experimental Perturbation of cAMP Wave Propagation

Experiments have been performed with chemicals that interfere with components of
the cAMP oscillatory system. These experiments have either used small molecule
chemical inhibitors of critical components of the oscillatory molecular machinery
or used mutants in essential components of the signalling process to perturb the
oscillatory dynamics and study its effects on wave propagation dynamics and geom-
etry. A widely used small molecule inhibitor is caffeine which has been shown to
inhibit a critical step in the activation of the aggregation stage adenylyl cyclase, the
enzyme responsible for the periodic generation of cAMP [18]. It has been shown that
increasing concentrations of caffeine result in lower levels of activation of cyclase
and lower levels of cAMP and that this in turn results in a slower period of the cAMP
oscillations and in a larger wavelength of the waves [19]. Mutants lacking the aggre-
gate stage adenylyl cyclase are deficient in aggregation, as are mutants in the cAMP
receptor cAR1and the extracellular cAMPphosphodiesterase.More subtlemutations
have shown that the dynamics of the system can indeed be tuned. cAMP receptor



Spiral Waves of the Chemo-Attractant cAMP Organise … 201

mutants with lower affinity for cAMP show altered patterns of wave propagation but
also in extreme cases result in mutants that can still propagate waves. These wave
fragments, however, do not set up aggregation centres. This is caused by the fact that
the time it takes between two oscillations is too long and the cells will disperse again
by random movement resulting in the generation of waves at other random locations
(Fig. 4). A temperature sensitivemutant of adenylyl cyclasewas shown to be effective
in changing the wavelength in a temperature dependent manner [20]. More recently
a high throughput analysis of several cAMP signalling mutants was performed [21].
Also other ways of interfering with the oscillatory system have become available:
these are perturbations such as microinjection of cAMP in aggregation fields, the
photo-activation of caged cAMP and the use of photo-genetics such as the use of
light activated cyclase [22]. Experimental perturbation in combination with detailed
mathematical modelling will provide a rich ground for further analysis of excitable
biological systems.

8 Streaming Instability: Formation of Aggregation Streams

During development the cells initially move towards the aggregation centre as single
cells, however, after 10–20 waves have passed the cells start to form bifurcating
aggregation streams originating in the aggregation centre. Individual wave fronts
initiated in the aggregation propagate along the aggregation streams outward and
organise the periodic inward movement of the cells towards the aggregation centre
(Fig. 5a, b, e). Experimentally stream formation has been shown to be dependent on
the localisation of ACA in the rear of the aggregating cells, resulting in polarised
cAMP secretion from the back of the cells [24]. During early development, when the
cells are still single the waves propagate at speeds of more than 500 µm/min, but in
the aggregation streams thewave propagation speed drops to around 50 µm/min [25].
This decrease in wave propagation speed leads to a large reduction of the chemical
wavelength of the cAMP waves. In streams the cells make head to tail contacts via
a calcium independent adhesion molecule, contact site A and side to side contacts
via a calcium dependent contact molecule [26]. This coupling results in an increase
in the persistence and overall speed of cell movement. The speed of cell moment in
the streams increases to ∼20–30 µm/min which results in a considerable Doppler
shift in the perception of the frequency of the cAMP signal, by the moving cells
[25]. The biological implication of this is not yet completely clear but could put an
upper limit on the speed of cell movement relative to the speed of signal propagation.
Modelling has shown that stream formation does not require localised signalling, but
is due to a streaming instability [27]. Recently it has been proposed that aggregation
can be viewed as a self-induced criticality, resembling a phase transition in physical
terms [28].

Mounds are characterised by rotating waves of cAMP that direct the counter-
rotational periodic movement of the cells. These waves often take on the appearance
of multi-armed spirals or pinwheels that organise the counter-rotational movement
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Fig. 5 During aggregation the initially randomly distributed cells start to form bifurcating aggrega-
tion streams (a). In these streams optical density waves are visible (b). The cAMP waves propagate
from the aggregate outward into the streams, while the cells move inwards towards the aggregation
centre. In the mound the waves take on a pinwheel like geometry. The cells move up the signal
gradients in a direction opposite to that of wave rotation. Inmutants with reduced cAMP excitability,
the aggregation centres form rings that are still organised by large numbers of rotating waves (c,
d). e: diagram of a streaming aggregate, blue arrows indicate direction of wave propagation, red
arrows indicate direction of cell movement
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of the cells (Fig. 5c, d). Depending on the strain, mounds can be short or longer lived
and in many cases form intermediate ring-shaped structures. In these rings there can
exist several wave fronts chasing each other and when they close again, they give
rise to the pinwheel like structures in mounds (Fig. 5c, d) [29].

The differentiation of the prespore and prestalk cells starts during aggregation.
There is even evidence that the initial differentiation is based on physiological biases
like nutritional state and cell cycle position at the time of starvation already present in
the population before aggregation [30]. As a result of this early differentiation there
is little correlation between the time of arrival in the mound and differentiation fate.
Initially the prestalk and prespore cell types display a salt and pepper distribution
in the mound. During mound formation a subpopulation of prestalk cells sort out to
form the tip, a nipple shaped structure on top of the mound. During tip formation the
prestalk cells start to produce an extracellular matrix, the slime sheath, that surrounds
the slug and encases the cells within the slug. The slug falls over and migrates away.

The tip has been shown to act as an organiser. It guides the movement of all the
other cells in the aggregation during the transformation of the mound into a standing
slug and during culmination to form a fruiting body [31].

Major questions are: what is the mechanism by which the tip controls the move-
ment of all the other cells in the tipped mound, slug and culminate and what is the
mechanism of cell sorting? Localised external cAMP has been shown to be able to
direct cell sorting of prestalk cells at the mound stage [32]. Use of a temperature
sensitive ACA mutant has shown that ACA activity is required in vivo for cells to be
able to sort to the tip [33]. The action of the tip as an organiser can bemimicked by the
periodic injection of cAMP pulses of the right frequency and duration [32, 34], sug-
gesting that the tip might be a source of periodic cAMPwaves, in agreement with the
fact that prestalk cells express ACA and the extracellular cAMP phosphodiesterase
pdeA [35].

The prestalk cells in the tip of a migrating slug typically rotate perpendicular to
the direction of slug movement, especially when the tip is lifted from the substrate.
In the back of the slug the cells move periodically forward and all cells move on the
average with slug speed [29]. This has led to the suggestion that cell movement in the
slug is organised by rotating scroll waves of cAMP in the tip and propagating planar
waves in the back of the slug. The slug would therefore be essentially a composite
of an aggregation centre organised by a rotation wave while the body of the slug
mostly consisting mostly of prespore cells would resemble a 3D aggregation stream
[38, 39]. Consistent with this notion, optical density waves can be seen to propagate
from the middle of the prestalk zone to the back reflecting the periodic movement
of the cells in forward direction (Fig. 6). These optical waves are strictly dependent
on the presence of the tip, i.e. when the tip is removed no new waves are initiated
and slug migration stops, while waves continue in the isolated tip that continues
to migrate [34]. It has been reported that strains lacking ACA but overexpressing
the catalytic subunit of protein kinase A, can still form migrating slugs [40]. This
suggests that there either exists an ACA independent mechanism to produce periodic
cAMP signals, that could involve cAMP generation by one of the two other adenylyl
cyclases ACB or ACG that are expressed at the slug stage [5]. Alternatively it could
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Fig. 6 a–d: optical density waves observed during early aggregation (a), streaming aggregate (b),
in the mound stage (c) and in a migrating slug traveling from left to right (d). The right hand panels
show results from a continuum three dimensional hydrodynamic simulation of aggregation, mound
formation and slug migration showing spiral wave cAMP signal (red, purple) and cellular tissue.
Aggregation stage cells are shown in yellow, in the mound the cells differentiate in prestalk cells
(yellow) and prespore cells (blue) that are initially distributed in a salt and pepper patterns, but then
the prestalk cells sort out for the tip and the prespore cells form the back of the slug. The cAMP
waves form twisted scroll waves [36, 37]

be that there exist altogether different mechanisms that can control cell movement,
such as cell contact induced cell-cell following [41]. This remains to be further
characterised experimentally.

The interactions between cell-signalling and cell movement can be described by
continuous mathematical models where the cell masses are described as a viscous
fluid, incorporating excitable chemical kinetics in a robust way. It would appear that
these processes are sufficient to explain Dictyostelium morphogenesis (Fig. 6) [37].
The life cycle has also been successfully modelled using assumptions of excitable
cell-cell cAMP signalling, chemotaxis and differential adhesion with a variant of
the cellular Potts model that enabled a description of the complete life cycle from
aggregation viamound, slug formation andmigration to and culmination and fruiting
body formation [42]. This has been pioneering theoretical work and the experiments
are still trying to catch up to confirm or disprove the details put forward by these
models.
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9 Outlook and Open Questions

As outlined above the oscillatory cAMP based cell-cell communication system
controllingDictyosteliumdiscoideum aggregation is extensively studied and the basic
mechanism of the excitable cAMP signalling during aggregation is understood, but
many molecular details remain to be resolved. One of the key questions that needs to
be answered experimentally is whether oscillatory cAMP signalling controls chemo-
tactic movement of cells in the slug and during culmination or whether there exist
other mechanisms that can take over. It has recently been argued on theoretical
grounds that oscillations may disappear at the slug stages and could be replaced by
continuous cAMP signalling [43]. Another interesting question is how the excitable
cell-cell signalling evolved during evolution of the variousDictyostelium strains. The
work on Dictyostelium aggregation has been a great inspiration for the generation
of mathematical models describing the cAMP basic oscillator and to explore how
excitable cell-cell signalling results in efficient long range cell-cell communication
and importantly how it interacts with chemotactic cell movement. This is where the
system differs considerably from chemical excitable systems such as the intensely
studied Belousov-Zhabotinsky reaction discussed extensively in chapter Chemical
Oscillations and Spiral Waves.
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Spiral Waves in the Heart

Alexander V. Panfilov

Abstract One of the most important applications of spiral waves is found in car-
diology. Electrical waves in the heart which initiate cardiac contraction are similar
to nonlinear waves in other excitable systems. In pathological situations they can
form rotating spiral waves. Onset of spiral waves in the heart causes cardiac arrhyth-
mias characterized by extremely fast and irregular heartbeat and can lead to cardiac
arrest and sudden cardiac death. Although a general idea about the existence of spiral
waves in the heart was proposed a long time ago, only recently it became possible to
record them in experiment. In this chapter we provide the most known experimental
examples of spiral wave activity in cardiac tissue. It includes experiments in slices
of cardiac tissue, whole heart preparations and cultures of cardiac cells. We briefly
describe properties of spiral waves in the heart and discuss how they differ from
spiral waves in other excitable systems.

1 Introduction

The main physiological function of the heart is mechanical, the heart pumps the
blood through the body. However, this process is controlled by electrical waves of
excitation. The electrical wave propagates through the heart and initiates cardiac
contraction. Under normal conditions the wave originates from a natural pacemaker
of the heart called sinus node. Then it propagates through the upper chambers of the
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heart atria, and initiates contraction of the atria. As a result blood from the atria is
pumped into the lower chamber of the heart ventricles. Then, after a delay a wave
propagates through the ventricles, initiates their contraction which provides the main
pumping of blood into the circulatory system. The properties of this electrical wave
in the heart are similar to the properties of other waves in excitable systems, and
thus such waves can also form spiral waves. However, it is extremely difficult to
observe nicely shaped spiral waves in the heart. This is due to several reasons. First
of all, the cardiac tissue is anisotropic: the velocity of wave propagation in different
directions can differ by 2–5 times [1].The structure of anisotropy by itself is quite
complex [1]. Atria of the heart have thin walls so that they can be regarded as quasi
2D objects. Ventricles have thicker walls of 1.5–2 cm and here the 3D structure of the
spiral wave becomes important [2]. Another complication is the presence of many
non-local connections in the heart. In several regions of the atria there are so-called
pectenatemuscles which provide additional paths for excitation. There is also an own
conduction system of the heart, the so-called Purkinje network, which either well
provide a path for the excitation wave additional to the normal local propagation
along cardiac tissue [2]. The presence of only these factors make observations of
classical spirals in the heart extremely difficult. However, the spiral wave activity
can still be observed in the whole heart and also in some simpler preparations made
from cardiac cells. In this chapter we will briefly review experimental observations
of spiral waves in various systems related to cardiac tissue.

2 First Observations of Spiral Waves in Cardiac Tissue

Rotational activity in cardiac tissue without obstacles was first recorded in the 1970s
by Allessie et al. in small segments of rabbit atria [3]. They found that excitation
waves can rotate in cardiac tissue without presence of any obstacles. Allessie et al.
saw rotation of the excitation wave, however the wave front did not have a spiral
shape (see e.g. Fig. 1 of [3]). This is because the size of the tissue is smaller than the
characteristic wavelength of the spiral. Based on that observation Allessie et al. [3]
formulated mechanism explaining the dynamics of this source as the leading circle
hypothesis. In accordance with this hypothesis the excitation is driven by circulation
along the smallest possible pathway in which the impulse can continue to circulate,
which is called the “leading circle”. It was also explicitly mentioned that the head
of the circulating wave front is “continuously biting in its own tail of refractoriness”
and thus the length of this pathway equals the “wavelength”, which was defined as a
product of the conduction velocity and the refractory period. Allessie et al. [3] also
proposed that the tissue inside and outside of the leading circle is excited by waves
coming from this rotational loop.

The modern concept of spiral waves in cardiac tissue was introduced in seminal
papers of the Jalife group. In the paper by Davidenko et al. [4] a rotational activity
in an isolated sheep ventricular muscle slice was studied. The authors used a novel
methodology of voltage-sensitive dyes and theywere able to record electrical activity
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Fig. 1 Rotating spiral wave in a slice of canine heart. The white color denotes the excited region.
We see a spiral wave rotating clockwise. Reproduced from [4] with permission

in large slices of the tissuewith a high spatial accuracy. Figure 1 shows results of their
experimental studies [4]. We see that the excitation wave here has a shape of a spiral
wave rotating clockwise. Observation of this spiral shape became possible, because
the preparations studied in Ref. [4] had much larger effective size (in terms of the
wavelength) and recordings had also high spatial resolution.Davidenko et al. [4]were
also able to study the dynamics of rotation of the spiral wave in their preparation.
They found that in most of the cases spiral waves were non-stationary and drifted
with a drift velocity about 10% of the velocity of the propagating waves. However,
rotation of spiral waves can also stabilize around small anatomical obstacles and then
they observed a stationary rotation. This phenomenon, whichwas called ’anchoring’,
turned out to be extremely important for spiral waves in the heart and for clinical
applications.

3 Spiral Waves in the Whole Heart

Recording of a spiral wave in the whole heart is a very challenging problem. Because
the upper chambers of the heart, the atria, are electrically isolated from the lower
chambers ventricles [2], spiral waves can be observed either in atria or in ventricles.
The excitation wave generated by spirals in the atria is very complex, due to the
complex geometrical structure of the atria, the presence on non-local connections
under the atrial surface and the presence of many veins and arteries intersecting the
atrial surface. We can see it from simulations of spiral waves in an anatomical model
of human atria. Studies of spiral waves in atria are extremely important. Clinical
studies by Narayan et al. [5] identified stable spiral waves of rotational activity
(rotors) during human atrial fibrillation. From the clinical perspective this was a very
important finding. This is because atrial fibrillation (AF) is often referred to as the
most common arrhythmia in clinical practice, it affects approximately 2% of the total
population, but in age groups above 80 years old its occurrence is up to 17% and
the total number of patients is expected to raise. Currently, the treatment of certain
types of AF remains not effective and this is because we still do not understand
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Fig. 2 Development of ventricular fibrillation in the rabbit heart. Excitation is represented using
the phase mapping method. Time in seconds shown below of each frame. The centers of the rotating
sources are marked by the black circles. Modified from [6] with permission

the organization of wave patterns during AF [5]. Clinical studies by Narayan et al.
showed also that during AF there are stationary rotating spiral waves, and removal of
these sources stops the overall fibrillating activity. Interestingly, these studies showed
that in many cases just removing (ablation) of the center of a spiral is sufficient to
stop the arrhythmia.

Ventricles of the heart have a simpler shape than the atria, and spiral waves there
can be observed more easily. However, there is another problem here. If a spiral wave
occurs in the ventricles of the heart it tends to deteriorate into a spatially chaotic
pattern leading to ventricular fibrillation. Figure 2 illustrates typical dynamics in
that case. At t = 0.8 we see two spiral waves rotating in opposite directions. At
t = 0.842 a new clockwise rotating spiral wave appears. Then at t = 0.983 we
observe further complication of the excitation pattern which now contains 5 rotating
excitation sources.

Most of the recordings of spiral wave activity in the whole ventricles were per-
formed in the heart of small animals, rabbits, mice etc. In hearts of large animals
usually much more complex excitation patterns of spatiotemporal chaos correspond-
ing to ventricular fibrillation are observed [7]. In Fig. 4 of [8] we can find a rear
example of spiral waves in the heart of a large size observed during the initial phase
of formation of ventricular fibrillation, by panoramic optical mapping of electrical
excitation of the isolated pig hearts. It shows two counter-rotating spiral waves.

4 Spiral Waves in Cell Cultures

Oneof themost convenient systemswhere spiralwaves can be studied experimentally
are cardiac cell culture experiments. In this experimental approach a patch of cardiac
tissue containing cardiac myocytes is created using methods of tissue engineering.
Such cardiac tissue can conduct waves of excitation. Also, the velocity of thesewaves
can be much slower than that in the normal heart, thus even small patches of such
tissue (1–2 cm) can be sufficient to sustain rotating spiral waves [9]. Also, most types
of cardiac cell cultures are isotropic, thus wave propagation there is close to what one
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Fig. 3 Spiral waves in a culture of neonatal rat ventricular myocytes under different conditions. The
cardiac cells have different expression of genes responsible for the duration of the action potential
with shortest duration corresponding to Ad-hERG, medium to Ad-GFP and longest to Ad-G628S,
achieved using adenoviral constructs. Reproduced from [10] with permission

observes in other types of excitable media, for example the Belousov-Zhabotinsky
(BZ) reaction. Cardiac cell cultures are currently widely used in cardiac research.
This is because when using them it is possible to manipulate properties of cardiac
cells in a wide range, using drugs or methods of molecular biology. Figure3 shows
typical spiral waves in cell culture. We recognize a clear spiral shape. In study [10]
the main focus was on so-called rapid rectifier potassium current which is extremely
important for understanding the mechanisms of cardiac drugs and of cardio toxicity.
This current was manipulated using methods of molecular biology and we see that
it results in a substantial change in the wavelength of the spiral wave.

One interesting recent application in cell culture experiments is the ability to
combine it with optogenetics. In such a methodology properties of cardiac cells
can be controlled by light, similar to the photosensitive BZ reaction (see chapter
Generation of Spirals in ExcitableMedia). Normally, in optogenetic cultures, light
depolarizes cardiac cells, thus it tends to produce excitation. However, if the light is
continuously applied after initial excitation, the tissue remains depolarized and can
serve as a barrier for excitationwaves. Such a propertywas used byFeolla et al. [11] to
study the interaction of rotating spiral waves with unexcitable barriers. This mimics a
procedure of ablation of cardiac arrhythmiaswidely used in clinics, inwhich a certain
part of cardiac tissue is destroyed by local application of large electrical current or
local feezing. However, in optogentic experiments such barriers are reversible and
their shape and location can be easily manipulated. The rational of this work [11] was
to study in experiment if creation of an unexcitable region at the core of a rotating
spiral wave in the heart can stop spiral wave rotation, as was observed by Narayan et
al. [5], mentioned above. Simple geometric theory predicts that in order to remove
a spiral wave one needs to make a non-excitable region connecting the core of the
spiral wave with the boundary of the tissue. From the results shown in Fig. 4 we
see that when only the core of the spiral wave was targeted, it did not remove the
spiral wave. However, if an unexcitable region connects the core of the spiral wave
and unexcitable boundary, spiral wave activity was terminated. This way we see
that as predicted by theory only ablation up to the boundary of the region should
be successful. Thus the observations reported in [5] indeed require special analysis
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Fig. 4 Upper row: Effects of core region targeting with circular conduction blocks. Lower row:
Effects of core region targeting with a linear conduction block reaching the boundary. Reproduced
from Feola et al. [11] with permission

Fig. 5 The initial spiral wave (left) and the four spirals after each of the chirality reversals. Repro-
duced from Burton et al. [13] with permission

regarding the mechanisms of this effect. Several hypotheses were put forward to
understand this fact [12]. Rappel et al. [12] proposed several mechanisms which can
explain the disappearance of arrhythmia by modification of spiral wave dynamics
after ablation of the center leading to their removal.

Another interesting observation of themanipulation of spiralwave dynamics using
optogenetic effects is described by Burton et al. [13]. The authors were able to affect
spiral wave dynamics via an optical-optogenetic setup. Figure5 shows the following
process. First a spiral wave was created (the left figure). Then an optical image was
imposed showing a computer-generated counter-rotating spiral wave with a slightly
higher frequency than that of the original spiral. It was found that the imposed
optical pattern changes the direction of rotation of the original spiral. Figure5 shows
how such a change is performed four times. Although we see a small shift of the
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spiral core, the procedure works robustly and requires application of the computer-
generated image just during one or two rotations to change the spiral wave chirality.

Currently cardiac cell cultures provide one of the most advanced experimental
technologies for studies of properties of spiral waves in cardiac tissue and for trans-
lation of research on spiral wave dynamics performed in other excitable systems to
cardiology.

In this chapter we mention just a few examples of spiral wave dynamics in cardiac
tissue. Additional information can be found in the review articles on this subject
published in [7, 14, 15].
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Patterns and Humans

Niklas Manz and Flavio H. Fenton

Abstract The appearance of spiral structures on the human tongue (geographic
tongue) and skin (pathological rashes) are described. Affected and often migrating
areas on the tongue can be bistable, patch-like fronts or waves. Pathological rashes
with an expanding region of redness is often a result of an autoimmune disease in
which the human immune system becomes hyperactive and attacks healthy tissues.
In addition, we show a rotating spiral created by humans, which has been described
as a reaction-diffusion waves in an excitable medium.

1 Introduction

Nonlinear dynamical systems far from thermodynamic equilibrium reveal a
fascinating wealth of spatial, temporal, and spatiotemporal structures on a macro-
scopic scale in various physical, chemical, and biological pattern-forming systems.
And even within one field, for example biological systems, a wide variety of patterns
can be observed. Here, we mention a few large scale organizations as, for exam-
ple, population patterns (e.g., grey squirrels in Britain [1]), vegetation distributions
(e.g., fairy circles [2]), the dynamics of living cells (e.g., cellular slime molds (see
chapter Spiral Waves of the Chemo-attractant cAMP Organise Multicellular
Development in the Social Amoebae) or bacterial colonies [3]), and epidemics
(e.g., rabies in foxes [4], black death epidemic (1347–1351) in Europe [5], or the
bubonic plague in China [6]).
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On a smaller scale and within the human body, we can observe electrical depolar-
ization waves on the heart (see chapter Spiral Waves in the Heart), the brain (see
Yet More Spirals), or excitation waves during labour in the uterus [7], and on the
tongue [8].

In this chapter, we will focus on spatiotemporal spiral-like structures (see chapter
Chemical Oscillations and SpiralWaves) on and with humans. The tongue and the
skin can exhibit patterns of propagating fronts, a steady state change in a bistable
system (two stable and one unstable fixed point between the two basins of attraction)
or wave like structures as in an excitable system (one stable fixed point in the phase
space: see Generation of Spirals in Excitable Media). The last section describes a
spiral performed by humans.

2 Patterns on the Tongue

The tongue is primarily amuscle necessary for speaking andmoving food for chewing
and swallowing with a thin, upper layer, the epithelium which consists of a mucous
membrane with small nodules of tissue. There are four types of these, lingual papil-
lae called tiny, pinkish-white bumbs containing hair-like structures (d ≈ 35 µm,
l ≈ 250 µm). One of these, the filiform papillae do not contain taste buds and are
located in the front two-thirds of the tongue.

The mucous membrane of the human tongue, as of many animals, is susceptible
to a wide variety of diseases, which is of interest for the field of nonlinear dynamics
[9]. One example is the inflammatory psoriasiform mucositis of filiform papillae
with smooth, red areas and often slightly raised, grayish white borders. Because of
the sometimes map-like appearance of affected areas it is called Geographic Tongue
(GT). Other medical terms for these patterns are, for example, lingua geographica,
benign migratory glossitis, and erythema migrans lingualis. GT is painless but some
patients report numbness and tingling of the affected areas. It can be found in (1–4)%
of the population [10].

The first reports of GT were published by Rayer in 1831 [11], but the underlying
mechanisms for the inflammatory reaction are still unknown. It appears at higher
percentages in, for example, females than males [12] or children than adults [10].
Race/ethnicity affects its appearance, but numbers vary in publications. Genetic pre-
disposition seems also to be responsible. Liang et al. report a significant correlation
of GT with mutations in the Interleukin-36 receptor antagonist (IL36RN) gene [13],
which has previously been shown to cause inflammatory skin diseases.

SeveralGT-associated health conditions have been reported, as, for example, aller-
gies, diabetes, generalized pustular psoriasis (a chronic skin condition caused by an
overactive immune system), fissured tongue (cracks, grooves, or clefts appear on the
top and sides of the tongue), asthma, hormonal disturbances, juvenile diabetes, stress,
and Down syndrome. External factors such as stress, vitamin deficiency, spicy and/or
acidic food, and toothpaste with additives, whitening agents, or heavy flavoring have
also been reported to increase the probability to have GT, whereas smoking has been
reported to have an inverse association [14].
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Fig. 1 Tongue with three
different structures: Bistable,
patchy front (upper left),
elongated ‘target pattern’
(front), and elongated spiral
with the tip at the left lateral
of the tongue (copyright:
Martin Spiller, http://
doctorspiller.com/
geographic-tongue)

Fig. 2 Multiple logarithmic
spiral structures appearing at
the front of a tongue
(Wikimedia common,
created by Martanopue; CC
BY-SA 3.0)

Because GT is not an infection, it cannot be transmitted (entirely benign),
and there is no curative treatment. To minimize flare-ups, patients can use anti-
inflammatory medication, mouth rinse with anesthetics, zinc supplements, topically
applied steroids, and generally avoiding tobacco, nuts, and spicy/acidic food.

The affected, often migrating areas can be simply bistable, patch-like fronts (see
upper left structure in Fig. 1) but can also appear as waves. Due to the anisotropic
structure of the tongue, circular target pattern or real Archimedean spirals are
unlikely. Therefore, elongated, elliptical ‘target pattern’ (small elliptical structure
closer to the tip) or spirals (large structure on the side) can be found. More logarith-
mic appearing spirals have also been observed (see Fig. 2).

Patients with GT seem to display a tremendous variation in appearance and evo-
lution of their tongue patterns. This includes (i) severity, the total number of lesions
and their extent on the surface of the tongue; (ii) frequency of lesional formation, as
some patients are never without lesions, while other have lesions very sporadically;
and (iii) rapidity of the lesional evolution as some patients state that they can watch
their tongues change and patterns enlarge from hour to hour, while other patients
have lesions that do not change at all.

To date, only one publication has linked GT to a reaction-diffusion (RD) system
[8]. Seiden and Curland simulated GT as an excitable medium using an anisotropic
cellular automaton model (see chapter A Lattice-Gas Cellular Automaton Model
for Discrete Excitable Media) and were able to reproduce the ‘elongated’ patches
and predict the appearance of spirals. However, their generic model had no link to
any physiological parameter and could not be used to gain any insights into GT.

http://doctorspiller.com/geographic-tongue
http://doctorspiller.com/geographic-tongue
http://doctorspiller.com/geographic-tongue
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Fig. 3 Evolution of curved GT structures, revealing a RD wave behavior. Time between images:
�t ≈ 12 h (copyright: Wooster Dental)

The only published propagation speed of GT has been given with 1 mm/day
by Grosshans and Greber in 1983 [15]. Recent experimental research indicates
possible higher propagation speeds (as reported by patients) and the observation
of the ‘kink eliminating effect’ of two waves approaching each other in an angle.
The angle between connected RD waves decreases until one straight front evolves.
This effect is due to the higher speed of negatively curved front sections as shown in
Fig. 3. Mathematically, this effect is given by the Eikonal equation v = v0 − DK ,
with v, as the velocity of the curved front section, v0 as the velocity of a straight
front, D as a diffusion parameter, and K as the curvature of the front section [16].

3 Patterns on the Skin

The skin of the human body is susceptible to a wide variety of diseases and a resulting
pathological redness (erythema) can have very different causes (injury, infection, or
inflammation). Many abnormal skin conditions can manifest themselves in patterns
similar to reaction-diffusion or precipitation waves.

There are numerous pathological and patho-physiological studies of various ery-
thema in medical journals but none considers the intersection of reaction-diffusion
waves/excitable system and dermatology. The only publication so far, is the report
of propagating waves on the skin of a genetically modified mouse by Suzuki et al. in
2003 [17]. Another area of propagating pattern on the skin is in the field of avatars.
In general, the skin tone/texture is defined and will not change but there are options
to animate the textures of avatars.

The most common structure is an area of redness (erythema) in ring form (annu-
lare), called a “bull’s eye” rash. These patterns can be stationary or non-stationary
(erythemamigrans) spreading from the center (erythema annulare centrifugum), first
described by Darier in 1916 [18].
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Fig. 4 Lupus rash in the
form of an early
counter-rotating double
spiral

Causes of these often expanding, target-like structures (erythema chronicum
migrans) can be lyme disease (also called Lyme borreliosis), an infectious disease
transferred primarily by a tick bite. The infection is caused by the spirochete Borrelia
burgdorferi as identified in the 1980s as the etiological agent. It is the most often
reported arthropod transmitted disease in humans in the United States, first reported
by Afzelius in 1909 [19] and Lipschütz in 1913 [20]. Afzelius speculated in his 1921
publication that the rash came from the bite of an Ixodes tick [21].

The fungal infection called ‘ringworm’ (Tinea corporis) is a skin disease also
appearing as front-like structures. The ringworm is characterized by a red ring of
small blisters or scaly skin that grows outward as the infection spreads. This ring
sometimes looks like a worm moving around the edges of the border. The center of
the ring may clear up, while a new ring of infection develops at the edge of the old
ring. Another, non-contagious skin condition is granuloma annulare, that usually
causes a rash, manifesting in different ways.

Even spiral-like structures can be observed on the human skin. A structure similar
to an early stage of a counter-rotating double spiral, as created by disturbing a planar
RD wave front, can be seen in Fig. 4. The pattern is a result of lupus erythematosus,
a name given to a collection of autoimmune diseases in which the human immune
system becomes hyperactive and attacks healthy tissues.

A skin condition creating more often spiral-like structures, is Erythema annulare
centrifugum, which refers to a number of chronic skin conditions which propagate up
to 2−4 mm/day (Dutch website www.huidziekten.nl). Examples with spirals, very
similar to chemical precipitation pattern as published by Haudin et al. in 2014 [22],
are shown in Fig. 5.

Contrary to the Geographic Tongue structures in the previous section, patients
with rashes are often treated by their dermatologists. Even if, for example, Erythema
Annulare Centrifugum disappears on its own over an average of 11 month, patients
are often treated with cortical creams. Possible underlying infections are treated with
antibiotics and antimycotics as well as antibiotics with anti-inflammatory properties.
Lupus and lyme disease are always treated due to their severe effect on the body.

www.huidziekten.nl
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Fig. 5 Multiple spirals of Erythema Annulare Centrifugum on the inner thigh and upper body
(copyright left: Efstathios Rallis)

4 Spiral with Humans

Besides patterns on humans as described in the previous two parts, there are a few
other pattern forming systems with humans, which can be described as a reaction-
diffusion wave in an excitable medium. In general, pedestrians and car traffic (caused
by humans) show organized activities [23]. Other examples are the collective motion
at moshpitts at heavy metal concerts [24], crowd disasters [25], but also the more
organized wave observed in sports events, the well-known stadium, “La Ola”, or
Mexican wave [26]. For such a wave, rows of spectators stand up, raise their arms,
and sit down again. The neighboring rows, which have not risen yet, will follow the
same behavior and thus a wave moves through the spectator rows.

Fig. 6 Human spiral
performed by about 550
people. The spiral is created
by elevating yellow pages
(enhanced for visualization).
Image from video at https://
youtu.be/172yzGdEa6o

https://youtu.be/172yzGdEa6o
https://youtu.be/172yzGdEa6o
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In contrast to a moving front, the largest spiral with humans so far has been
performed by approximately 550 students, staff, and faculty at Georgia Institute of
Technology in Atlanta, GA, USA (video on https://youtu.be/172yzGdEa6o) [27].

The spiral wave is formed with exactly the same rules as in the stadium wave,
however for its initiation only a break is required in the symmetry of the propagating
wave. Just as in the case of spiral waves in RD systems, a wave needs to be allowed
to propagate in only one direction at the start to curl in [27] as shown in Fig. 6.

When a spiral wave is formed by the crowd, it will not stop and continue to rotate
until the crowd gets tired. In some cases when some participants do not follow the
rules in time, that is they are a bit too slow or a bit too fast, the spiral wave can break
into multiple ones and lead to a chaotic dynamics with multiple waves in the system.
This is equivalent to what happens in the heart when electrical waves break and there
is a transition to fibrillation (see chapter Spiral Waves in the Heart).
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Yet More Spirals

Thomas Mair, Markus A. Dahlem and Stefan C. Müller

Abstract Having presented several systems in which biologically and medically
relevant processes induce rotating spiral waves, we add several more examples of
comparable nature: glycolytic waves in yeast, calcium waves in egg cells, wave-like
patterns during spreading depression, and spiral waves in the epileptic neocortex.

1 Glycolytic Oscillations

Rhythmicity is a common phenomenon of life, aswe know fromour daily experience.
It occurs on all levels of biological organization and in a wide range of temporal and
spatial scales. It is well known that cells and organs respond frequently to perturba-
tions in their environment by rhythmic changes of cellular activity. Such a response
requires the exchange of information between the cell and the environment and sub-
sequent information processing within the cell. Obviously, oscillatory reactions can
have important impact on biological information processing, the oscillations being
a measure of time and/or signal strength.

Temporal oscillations in glycolysis were one of the first metabolic rhythms to
be intensively studied since the early sixties [1]. The degradation of sugar (mostly
glucose) to pyruvate via glycolysis represents the primary process for the genera-
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Fig. 1 Oscillating
absorption signals in a
cell-free extract from yeast
cells under glucose input.
The molecule NADH serves
as an indicator absorption for
340 nm [2]

tion of energy in all living cells, except for a few bacteria. Glycolysis is intimately
connected with many different pathways, thus representing a complex metabolic
network. An important interconnected pathway is that of nicotinamide adenine din-
ucleotide (NAD), which in its reduced form NADH offers to measure the course of
the reaction via absorption or fluorescence recordings. One observes, within concen-
tration limits of appropriate effector molecules, autonomous glycolytic oscillations
(Fig. 1). Thus, we have a classical example for self-organization in a biochemical
system with intricate regulatory mechanisms.

Glycolysis as the enzymatic reaction chain for degragation of sugar to formalcohol
(e.g. in yeast) or lactate (e.g. in muscle), gains during this process a high amount
of energy in form of 2ATP = 64.6 kJ/mol (ATP: adenosine triphosphate). The main
“actors” in the chain are: PFK = phosphofructokinase and PK = pyruvate kinase.
Both enzymes are allosteric, i.e., their activity follows a sigmoidal characteristics
and is cooperative. The activity of such enzymes depends in a nonlinear way on the
substrate and product concentrations. They are apt to be influenced by the action of
certain effector molecules and thus develop specific dynamical behavior.

An important stepwas taken, when propagating activity waves were demonstrated
to occur in an extract from yeast embedded in an agarose gel (1.5%) containing a
sufficient amount of trehalose as the substrate. (Trehalose is a disaccharide degraded
at a much slower speed than glucose or other disaccharides like normal sugar.) The
reaction does not take place uniformly in an extended layer, but the random initiation
of waves under these conditions can be controlled by contacting the reaction gel with
a small gel piece containing a high concentration of ADP (adenosine diphosphate).
The subsequent propagation of a front can be seen in Fig. 2.

In a further step the occurrence of a rotating spiral wave could be shown.We notice
in Fig. 3 the characteristic dynamics of two counter-rotating waves of excitation:
they annihilate upon collision (image b), form a small segment of excited solution
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(a) (b) (c)

(d) (e) (f)

Fig. 2 Propagation of a chemical wave in a glycolytic gel. Time interval of pictures is 4 min. The
wave started at the point stimulated with ADP, shown by an arrow in (a), lower right [3]. Reprint
permission from Elsevier

Fig. 3 Absorption image of the NADH distribution in a glycolytic spiral pair embedded in a thin
layer of agarose gel. Reproduced from [4] with permission from the Royal Society of Chemistry
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(image c) out of which a new spiral pair emanates (image d) [4]. In this experiment
the initial breakup for the formation of a wave was undertaken by adding a small
amount of activator fructose-2,6-bisphosphate for the enzyme PFK. This leads to the
formation of a circular wave. The initial conditions for the spiral pair in Fig. 3 were
due to a spontaneous breakup of a circular wave.

A possible function of glycolytic waves: they are not confined by cell
boundaries, which is different from many other biological waves. Glycolytic waves
provide energy instead of consuming it, and therefore, are possibly involved in the
genesis of biological structures. Such properties might also have been of primary
importance for the generation of a first primitive cell from an organic solution during
the early days of evolution. Of course, the ancestor of the glycolytic pathway was
surely constructed in a simpler way than the one we know from today’s organisms.
However, this does not exclude the fact that similar behavior and properties were
active in a simple ancestor of glycolysis [5].

2 Calcium Waves

Oscillatory glycolysis has been taken as a suitable biochemical model to approach
mechanisms for other periodic phenomena in biology, i.e. the peroxidase-oxidase
reaction in horseradish, or in neuronal, cardiac and hormonal rhythms, as well as
calcium oscillations [6]. Intracellular calcium is a ubiquitous second messenger. Its
significance formaintaining control of cell functions and its role in signal transduction
have been studied in detail [7]. In some cells the calcium activity is oscillatory, but
also spatially distributed. A well known and intensively studied system are Xenopus
laevis oocytes, egg cells of a frog, with a typical diameter of up to 1 mm, in which
the intracellular milieu behaves as a regenerative excitable medium. Consequently,

Fig. 4 Spiral Ca2+-wave
pattern observed in Xenopus
laevis oocytes (wavelength
60 µm, period 3 s).
Ca2+-release is mediated by
IP3 (inositol-trisphosphate)
and detected by confocal
laser scanning microscopy
[8]. Reprint permission from
Elsevier
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spiral waves of release of free Ca2+ were observed [8]. In Fig. 4 we present a confocal
microscopic image of a calcium spiral as a proof for intracellular spatiotemporal
dynamics of important biochemical variables.

3 Travelling Waves of Spreading Depression

We turn to the description of a spatiotemporal phenomenon with possible implica-
tions for dynamical diseases: spreading depression (SD) [9, 10]. This phenomenon
occurs in all gray matter regions of the central nervous system (CNS) and has even
been observed in the spinal cord. SD is named after early observations of a propa-
gating transient depression of electric activity. Today, it is better characterized by a
dramatic failure of ion homeostasis associated with the depression. In the cortex it
has been often linked to the aura of classic migraine [11]. Moreover, it has common
features with other patho-physiological disorders of brain tissue, as for example
ischemia or anoxia. In addition, an interplay between SD and epilepsy has been
reported [12]. From a biomedical point of view the intensive research of SD over the
last half century is justified due to its pathological implications.

There is little doubt that SD belongs to the class of phenomena that are known
as reaction-diffusion processes in excitable media. We know of standard wave prop-
agation in these media, namely the propagation of circular or spiral-shaped waves.
Since the discovery of retinal SD, many investigations have been performed with
the isolated chicken retina. It is comparable to the cortex, at least with respect to its
layer structure. This system combines several experimental advantages. Foremost, an
intrinsic optical signal (IOS) with high amplitude is associated in the retina with SD.
Changes in the optical properties of the retina during a SD attack can be seen with
the naked eye as a milky wave front on a dark background [13]. The transition from
transparent to milky tissue is likely to be caused by cell swelling. The chicken retina

Fig. 5 Spreading depression waves in the chicken retina. a: Outward expanding circular wave; b:
rotating spiral-shaped wave, induced by break-up of a circular wave front. Scale bar = 1 mm [10].
Reprint permission from Springer Nature
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lacks a vascular system. Consequently, SD waves propagate through an essentially
homogeneous system.

Spreading depression can be elicited by mechanical, electrical and chemical stim-
uli in all graymatter regions of the CNS. In the chicken retina, the susceptibility to SD
is comparably high. Gently touching the retina with a sharp glass needle (diameter
50 µm) initiates an outward traveling SD wave. Tetanic electrical stimulation can
also provoke SD, but it may trigger epileptiform seizures, too. The retina can be con-
sidered in good approximation as a naturally two-dimensional slice of nervous tissue.
The possible topologies of wave patterns are restricted to rotating spirals and target
patterns (concentric circles) known from well-investigated chemical model systems
(see chapter Chemical Oscillations and Spiral Waves). Video image microscopy
of excitation waves in the retina yields images as shown in Fig. 5, a circular (Fig. 5a)
and a spiral-shaped (Fig. 5b) wave front of SD.

The refractory zone in the back of an excitation wave, where no new activation
can occur, is characterized by the regeneration of the tissue. In the retina, the absolute
refractory period is about 2.5 min corresponding to a wave distance of 10 mm, the
wave velocity being 4mm/min. The propagation dynamics of excitationwaves, as for
example the trajectory of spiral tips, is strongly affected by the size of the refractory
zone.

For spiral waves it is important to analyze the properties of the spiral tip and its
dynamical evolution. Common examples that one finds in excitable media are rigid
rotation (circular trajectory) and meandering (compound trajectory). See Genera-
tion of Spirals in Excitable Media. A rotating spiral of retinal spreading depres-
sion has a more complex trajectory. Figure 6 shows an example obtained from a
10 min recording. We note from this trajectory that the motion of the spiral tip in this
particular neuronal medium consists of a sequence of Z-type rotations, where four
spiral rotations share almost the same pivot. The Z-shape points to some character-
istic properties of the investigated system, which have to be elucidated by further
investigations.

Fig. 6 Pattern of a spiral tip
trajectory of the SD wave in
chicken retina derived for
four spiral rotations. Arrows
indicate the direction of
movement [10]. Reprint
permission from Springer
Nature
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Fig. 7 Parameter space of
an active medium, separated
by bifurcation lines that
mark sudden changes in the
spatiotemporal patterns [14]
(for details see text). Reprint
permission from Elsevier

A generic reaction-diffusion model of the activator-inhibitor type, the Hodgkin-
Grafsteinmodel of SD [14], has been proposed, which can explain the emergence and
transition between different spatiotemporal wave patterns in two spatial dimensions.
In fact, one finds, depending on certain parameters of the model not to be specified
here, that in the excitability plane of Fig. 7 certain bifurcations mark the emergence
of specific spatiotemporal patterns. We note the existence of bifurcation lines ∂C ,
∂M , ∂R∞ and ∂P . They separate the different patterns in SDwave propagation from
complex, meandering, and rigidly rotating spiral patterns, forming on the left of the
corresponding bifurcation lines. When the propagation boundary ∂P is crossed, the
medium becomes non-excitable, i.e., waves collapse. To the left of ∂P the system is
non-excitable. The inset (a) shows the predicted location of a retinal spiral-shaped
SD wave with the typical Z-shaped tip trajectory.

One finds in experiments that some of the emerging patterns can be seen in SD by
observing the spiral tip dynamics and thus probing the tissue excitability and locate
the occurrence of the patterns in the excitability plane of Fig. 7.

Implications for the Aura of Classical Migraine

Individuals suffering from classical migraine report an astonishing diversity of
migraine aura [11]. A frequently reported symptom is a visual hallucination known
as fortification illusion or zig-zag pattern (see Fig. 8a). Many migraine patients have
illustrated such patterns appearing in the visual aura, some of them with an artis-
tic touch [15]. The characteristic form and development of the fortification illusion
suggests that the underlying phenomenon is a wave propagating through the pri-
mary visual cortex, possibly the cortical spreading depression (CSD). In fact, the
first attempt to connect migraine with a cerebral propagation phenomenon was made
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Fig. 8 a: Sketch of the
fortification illusion drawn
by Karl Lashley [16]. The
kidney shaped visual
disturbance exhibits a typical
zig-zag pattern at its convex
side, while the inner part
corresponds to a scotoma
(blind area). b: Simulation of
the fortification illusion.
Multiple bars with white
margins were plotted in the
order of their dominance.
The pattern resembles a
snapshot of a fraction of the
moving zig-zag front [19].
Reprint permission from
Springer Nature

by Lashley [16] 3 years before SD was discovered. While suffering from attacks of
classical migraine, Lashley calculated, from knowledge of the retino-cortical projec-
tion, the speed of the traveling scotoma to be about 3 mm/min in the visual cortex.
This result fits perfectly with the measured velocity of a SDwave, as noted byMilner
[17]. The demonstration of unique changes of cerebral blood flow during attacks of
migraine with aura have been replicated in animal experiments during CSD and thus
constitute another important line of support for the SD theory. We have proposed
that the perceived migraine hallucinations are generated by a planar excitation wave
(CSD-like event) propagating across the primary visual cortex (V1), and that the
peculiar zig-zag front of the fortification illusion reflects the cortical organization
of orientation preference. Blind area would then be a consequence of refractoriness
behind the front.

V1 is retinotopically organized such that stimulating neighboring points in the
visual field leads to activation of neighboring neurons in the cortex. Another major
functional property of visual cortical neurons is their orientation selectivity, i.e., the
fact that the cells fire maximally, when a contour of a particular orientation appears
within their receptive field. The layout of orientation preference in the visual cortex
is characterized by iso-orientation domains that are arranged around centers in a
pinwheel-like fashion [18].

Löwel and her colleagues have constructed an orientation preference map for
neurons in the primary visual cortex from cats, using optical imaging of intrinsic
signals. Based on this map, we have calculated the average orientation vector v
for several fragments of this map [19]. These vectors were represented by a bar
that was rotated such that its orientation was parallel to the direction of the vector.
The magnitude of the vector is a measure of dominance among the fragments. The
orientations were plotted as bars, each at its spatial location. Since the bars now
possibly intersect, they were plotted in the order of their dominance on top of each
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other as white-black-white steps, representing the basic structure of the receptive
field of simple cells in V1. The resulting pattern is illustrated in Fig. 8b. It displays
features of the fortification illusion: distinct domains of roughly parallel lines are
present, each domain having a specific angle with respect to the adjacent domain.
Our simulations led us to predict, that the zig-zag pattern perceived by individuals
suffering from classical migraine reflect the organization of their visual cortical
orientation map.

The simulation of the fortification illusion during amigraine attack is solely based
on the idea of a reaction-diffusion wave traveling across the primary visual cortex,
i.e., a nonlinear phenomenon, and the functional behavior of the underlying tissue.
From a biomedical point of view it is of primary interest to control the propagation
dynamics of the waves and/or to suppress their generation in order to prevent the
migraine attacks. Such an external control should be possible by means of the well
established methods from nonlinear dynamics, in particular, feed back control [20].
However, more knowledge about the basic mechanisms of spreading depression is
required in order to apply such methods. The nature of the activating and of the
inhibiting processes as well as the feed-back loops for the oscillatory reaction must
be known. Deeper insights into the biochemical mechanisms of SD are necessary
that determine the function and regulation of this complex phenomenon on a cellular
level.

4 Spiral Waves in the Epileptic Neocortex

Epilepsy is a neurological condition characterized by sudden, recurrent episodes
of synchronized neuronal activity. This pathological dynamic state in the neurocor-
tex causes behavioral disturbances and abnormal movements. Typically, epileptic
seizures show abnormal waveforms of electric potential in extended regions of the
brain. Using electroencephalography (EEG), such seizures have been recorded for
decades and their observations constitute a significant part of clinical diagnosis and
treatment. Over the last years additional powerful methods have been applied to
investigate such dynamics, including connectivity measures (correlation, causality,
synchrony), spatiotemporal pattern recording and analyses, and modelling based on
model neurons [21, 22].

In the context of this chapter we briefly demonstrate that spiral activity has been
detected during epileptic seizures. This has been done in slices of neocortex within
a certain area by applying voltage-sensitive dye imaging (see Fig. 9). In many cases
experiments were performed in vivo, for instance, with epileptic Mongolian gerbils,
but in other cases preparationswere used inwhich a simplified state is evokedbyusing
pharmacological agents for blocking certain receptors, a quite common method in
“mesoscopic neurophysiology [23]”. The inhibitor bicuculline and the cholinergic
agonist carbachol create clear oscillatory or epileptiform states and are thus well
suited to the analysis of spatial connectivity and propagation.

The weakly coupled oscillatory state induced by the mentioned inhibitors shows
that spiral dynamics can serve as a stable organizing principle formesoscopic activity
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Fig. 9 Spiral rotation in the neocortex visualized by voltage-sensitive dye imaging. a: An example
of stable spiral dynamics in a slice preparation treated with carbachol and bicuculline; b: in an
epileptiform intact cortex from an epileptic Mongolian gerbil, recorded through a craniotomy [24].
Reprint permission from Elsevier

within the cortex (Fig. 9) [24]. On the other hand, the spiral patterns observed with
the Mongolian gerbils suffering from epilepsy are much less stable in vivo than in
drug-treated slice preparations. That may explain why in vivo the phenomenon had
only little chance to be discovered at all.

Over the last decades, dynamical systems theory and computational modelling
has largely progressed to characterize the nature of seizure-like activity [25].
Computational models have been employed to describe epileptic rhythms, espe-
cially in terms of nonlinear dynamics. For instance, starting from simplified models
of population dynamics macroscale features of epileptic seizures can be described.
Such simple models usually do not have a direct correlate in brain anatomy or phys-
iology, but rather capture more abstract features of the brain. Then, the effects of
individual parameters are easier to be interpreted [26, 27].

Nevertheless, the underlyingpathophysiologicalmechanismand their relationship
to the observed seizure phenomena are still not well understood.
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Part V
Concepts for Understanding the Creation

of Spirals and Vortices

We are not going in circles, we are going upwards.
The path is a spiral; we have already climbed many steps.

— Hermann Hesse, Siddhartha



Reaction-Diffusion Patterns and Waves:
From Chemical Reactions to Cardiac
Arrhythmias

Markus Bär

Abstract Reaction-diffusion processes are behind many instances of pattern for-
mation in chemical reactions and biological systems. Continuum reaction-diffusion
equations have proved useful models for a wide variety of pattern dynamics starting
with seminalwork byTuring on the chemical basis ofmorphogenesis and byHodgkin
and Huxley on the propagation of electrical impulses along neurons in 1952. This
article reviews basic concepts for and applications of reaction-diffusion models with
an emphasis on spiral and vortex dynamics, related instabilities like spiral and scroll
wave breakup and their potential role in cardiac arrhythmias.

1 Patterns in Reaction-Diffusion Systems

Spontaneous pattern formation under natural and laboratory conditions is a trade-
mark of systems far from thermodynamic equilibrium. These systems are typically
subject to a constant through flow of matter and energy and can be classified as open
and dissipative systems. In closed systems patterns that may emerge initially typi-
cally decay in the long run and the systems often approach a featureless, spatially
homogeneous state - thermodynamic equilibrium. This is in line with the demands
of the second law of thermodynamics: the entropy in a closed system increases until
equilibrium is reached. Open systems, however, are not subject to the constraint of
the second law - they can export entropy to their surroundings.

Theoretical research has initially focused on the question under which nonequi-
librium conditions a system switches from a homogeneous state to a pattern. These
transitions are known as instabilities or bifurcations and can be classified [1]. For
example, one can distinguish between continuous (supercritical) and discontinuous
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Fig. 1 Examples for simple reaction-diffusion patterns in one, two and three dimensions

(subcritical) instabilities. The emerging pattern may be stationary (Turing instabil-
ity) or dynamic (Hopf instability) as well as of either periodic or localized nature.
In one spatial dimension, periodic stationary patterns are typically stripes, while
the range of dynamic patterns comprises traveling and standing periodic waves. In
higher dimensions, periodic patterns display various symmetries, e.g. in two dimen-
sions parallel stripes, hexagons and square patterns are known. Localized patterns
include traveling and stationary fronts and pulses in one dimension. Some examples
are given in Fig. 1.

A rotating spiral represents an interesting combination between a localized and a
periodic pattern since it has a well defined pointlike center of rotation (core), from
which periodic waves are emitted in all radial directions. In three dimensions, spiral
cores in the plane are transformed into lines that are called filaments. If the filament
forms a straight line, one speaks of a scroll wave.

2 A Short History of Reaction-Diffusion Systems

The most remarkable property of reaction-diffusion systems is doubtless the spon-
taneous formation of a great variety of patterns. These structures do not offer only
aesthetical pleasure, but can also provide efficient means of communication and
signal transmission. For the latter purpose, a reaction-diffusion medium has to be
sensitive to small stimuli from the environment and must be able to propagate them
in a reliable and fast fashion. Excitable media are particularly well suited for that
purpose. They have a stable rest state and a threshold. Perturbations larger than the
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threshold may cause a large response, while small perturbations and noise decay
immediately. Superthreshold perturbations lead via diffusion to propagation of fast
reaction-diffusion waves that transmit information in a reliable fashion. A second
important application of reaction-diffusion systems is their ability to form station-
ary periodic patterns (Turing structures). Such structures a play an important role in
morphogenesis and the development of structures in living organism.

The field of reaction-diffusion systems can to a large extent be traced back to two
quite different landmark papers published in 1952. British mathematician Turing
considered the “Chemical Basis of Morphogenesis” [2] and showed that the inter-
play of nonlinear reaction and diffusion transport may lead to sustained stationary
concentration patterns, henceforth often called “Turing structures”. The first exam-
ple of an excitable medium derived from underlying physico-chemical processes has
been provided in 1952 by British physiologists Hodgkin and Huxley. They derived
a set of ordinary differential equations neglecting spatial variations from extensive
measurements of ionic currents at the membrane of the squid giant axon [3]. Their
nobelprizewinning effort is still considered the most successful model in physiology
and the basis for many more detailed models of electrical excitation propagation in
neurons or in cardiac tissue [4].

The resulting Hodkin–Huxley model accounts for the dynamics of action poten-
tials in neurons. The equations describe the dynamics of the fast membrane potential
dynamics and its dependency on the dynamics of slow gating variables for sodium
channel activation and deactivation and for potassium channel activation, respec-
tively. The concept of an excitable medium described by continuous variables has
found many applications in pattern forming chemical and biological systems [5].
Since the Hodgkin–Huxley equations are coupled nonlinear ordinary differential
equations, they have largely resisted analytical treatment and have been mostly stud-
ied numerically. A simplified version has been derived by FitzHugh and Nagumo
in the early 60s. It is known as the FitzHugh–Nagumo model [6]. One version of it
reads

du

dt
= u3 + u − v = f (u, v),

dv

dt
= ε(u − rv + β) = εg(u, v). (1)

Originally, the activator u is derived from the membrane voltage of the Hodgkin–
Huxley equations,while the inhibitor v represents a slowgating variable. If one allows
for a spatial variation of the variables one can simply add transport by diffusion and
obtains a coupled set of nonlinear partial differential equations

∂t u = f (u, v) + DuΔu,

∂t v = εg(u, v) + DvΔv. (2)

If one intends to use the FitzHugh–Nagumo model as a description for propagating
action potentials, inhibitor diffusion has to be neglected, i. e. Dv = 0. The spatiotem-
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poral dynamics of these equations is governed by control parameters including ε and
the diffusion constants Du and Dv. The variables are often specified as fast activa-
tor (u) and slow inhibitor (v) after Gierer and Meinhardt [7]. A nice feature of the
FitzHugh–Nagumomodel is that it contains both the Turing patterns and the excitable
mediumas special cases depending on the choice of the parameters. Requirements for
excitation waves are fast activator dynamics (ε � 1) and diffusion (Du/Dv > 1) and
a suitable form of the functions f and g, whereas Turing pattern require long-range
inhibitor diffusion (Du/Dv � 1).

A computationally more efficient version of the FitzHugh–Nagumomodel for the
study of excitable media (Dv = 0) has been provided by Barkley [8] and modified
by Bär and Eiswirth to study spatiotemporal chaos [9]. Its general form reads:

∂t u = 1
ε
u(1 − u)

(
u − b+v

a

)
,

∂t v = h(u) − v. (3)

Barkley’s original version uses a linear inhibitor production h(u) = u. For excitable
conditions, the medium then has a single homogeneous fixed point (u, v) = (0, 0)
like the original FitzHugh–Nagumo model (cf. Generation of Spirals in Excitable
Media). The modification of Bär and Eiswirth introduces a nonlinear function h(u)

for the inhibitor production, that leads to additional unstable homogeneous fixed
points. The simple change leads to interesting new nonlinear wave physics including
appearance of spatiotemporal chaos via pulse backfiring in one and spiral breakup
in two dimension.

Excitable media usually appear near oscillatory regimes. Bistable systems should
exhibit fronts between the two stable states that typically travel with constant speed
and shape. For excitable conditions, Eq.3 typically possess one stable fixed point
(the rest state) and, depending on the shape of the function h(u) in Eq. 3, zero or
two more additional unstable fixed points. For oscillatory conditions, the system of
Eq.3 typically contains only one unstable spatially homogeneous fixed point. Note,
that spirals and vortices can occur for excitable as well as for oscillatory and bistable
conditions. In the course of the 1960s, the interest for “dissipative structures” in
chemical systems started to grow. As a simplification of Turing’s model, Lefever,
Nicolis and Prigogine suggested the following reaction scheme

A → U ; B +U → V + D;
2U + V → 3U ; U → E .

where the concentrations of A and B are used as control parameters and have constant
values a and b, respectively. The chemical species U and V play similar roles as
activator and inhibitor, respectively, in the FitzHugh–Nagumo and Barkley models.
The corresponding reaction-diffusion model is widely known as the “Brusselator”
and reads
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∂t u = a − (b + 1)u + u2v + DuΔu,

∂t v = bu − u2v + DvΔv, (4)

where u(x, t) and v(x, t) denote the concentrations of U and V . All rate constants
have been set to unity. The Brusselator allows for oscillations, if a > aC = b2 + 1
and Du > Dv, and for a Turing instability, if Du � Dv. It has been often used as
a prototype model for pattern formation and may serve here as a simple example
for a strategy widely used in the modeling of chemical and biological reaction-
diffusion systems. First, identify the kinetic scheme for a particular system, second
write down the corresponding set of differential equations, third add the relevant
transport processes (diffusion) and last but not least look out for bistability as well
as dynamic, oscillatory respectively. pattern forming instabilities. Since the arrival
of the Brusselator, this strategy has been applied to many systems in homogeneously
and heterogeneously catalyzed chemical reaction [10] as well as in biochemical and
biological systems [11].

In parallel to the first studies of the Brusselator model, first experimental observa-
tions of reaction-diffusion waves in the form of target patterns [12] and spiral waves
[13] have been reported in the Belousov–Zhabotinsky (BZ) reaction. The BZ reac-
tion is the oxidation of malonic acid and involves more than 100 chemical species.
Nevertheless, Field, Köros andNoyes extracted a coremechanism of the reaction that
has become known as the Oregonator model [14]; it explicitly includes only three
species and is often even reduced further to a typical two-variable activator-inhibitor
form. Until the early 1990s, more and more details of spiral dynamics in the BZ reac-
tion have been investigated [15]. However, many results until then have been limited
due to the use of “closed” reaction vessels (see chapter Chemical Oscillations and
Spiral Waves).

A major breakthrough has been the design and use of open reactors both in homo-
geneously and heterogeneously catalyzed reactions (seeFig. 2). They allow for steady
supply of educts and removal of products, thus maintaining constant concentrations
of key species and keeping the system far away from chemical equilibrium. Turing
structures have been discovered in 1D and 2D set-ups of the Chlorid-Iodid-Malonic-
Acid (CIMA) reaction [16, 17]. The second half of the 1990s has then seen the dis-
covery of further structures under bistable conditions, namely labyrinthine patterns
[18] and replicating spots [19]. A second exciting line of research in pattern-forming
chemical systems originated from the study of reaction on catalytic surfaces [20–22]
after 1990 (see chapter Shedding Light on Chaos - Controlling Surface Reac-
tions). Catalytic reactions can be operated under a wide range of external conditions
regarding pressure and temperature and they are truly two-dimensional (Fig. 2, right).

The use of open reactors also enabled a systematic study of transitions between
stable spirals and spatiotemporal chaos in experiments [23–25], in the next section
we will adress the theoretical understanding of these phenomena.

Another important field where reaction-diffusion processes play a prominent role
are nonlinear waves and pattern formation in biological systems. Pioneering experi-
ments in aggregating slime mold colonies revealed spiral waves of chemoattractant
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Fig. 2 Sketch of open reactor types used in homogeneous catalysis. Left: continuously fed unstirred
reactor (CFUR) with two continuously stirred tank reactors (CSTR), right: in heterogeneous catal-
ysis

in the early aggregation stage [26]. By now the whole cycle of aggregation and the
spatial patterns associated with its stages have been thoroughly studied [27, 28]
(see chapter Spiral Waves of the Chemo-Attractant cAMP Organise Multicellu-
lar Development in the Social Amoebae). Another frequently studied example of
reaction-diffusion behavior in biology are intracellular calcium waves [29, 30] (see
Yet More Spirals). Somewhat surprisingly, the simple activator-inhibitor picture
as well as the concept of an excitable medium could be applied to many of these
examples.

Since 2000, a dominating theme in biological reaction-diffusion systems have
been the discovery and investigation of intracellular protein patterns, most promi-
nently standing and traveling waves of the so-called Min proteins found in in-vivo
experiments of Escherichia Coli bacteria [31] and in-vitro experiments of a reactive
solutions of Min proteins at lipid monolayers [32]. Since the Min patterns are crucial
in the regulation of cell division, many theorists have worked to obtain quantitative
models for this system; for reviews see e.g. [33, 34]. In general, it seems that protein
patterns can often be explained by models that assume a total conservation of one or
more protein species [34] which clearly distinguishes these system from chemical
reactions in open reactors subject to a constant throughflow of reactants and prod-
ucts. In chemical pattern formation a prominent direction after the year 2000 was
control of patterns e.g. by tuning of diffusion coeffients in microemulsions [35] or
by feedback strategies [36, 37]. Finally, the decade after 2000 also lead to detailed
studies of scroll waves [38, 39] and Turing patterns in 3D [40] in BZ systems.

3 Instabilities of Spiral and Scroll Waves: From Chemical
Reactions to Arrhythmias in the Heart

An important motivation for the study of excitable media has been the quest for
the cause of irregular high-frequency electrical activity in cardiac muscle typically
observed during ventricular and atrial fibrillation [41]. The reason for the onset
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of ventricular fibrillation as well as possible treatments remain subjects of intense
experimental and theoretical research. Rotors (or spirals) of electrical excitation
are still in the focus of researchers addressing cardiac arrhythmias and dynamical
diseases such as atrial and ventricular fibrillation, see [42] and the chapter Spiral
Waves in the Heart in this book. Over the years many different aspects of cardiac
dynamics have been linked with theory of reaction-diffusion systems and nonlinear
dynamics; for recent reviews see e.g. [43–45].

Early experiments in thin sheets of heart tissue displayed only stable spirals in
contrast with the irregular activity seen in experiments with whole hearts. In addition,
hearts with small mass and, in particular, small wall thicknesses were found not to
support irregular spiral turbulence-like electrical dynamics. Consequently, Winfree
suggested that irregular activity in the heart might be a genuinely 3D phenomenon
[46]. In parallel, the phenomenon of spiral breakup has emerged as a candidate
mechanism for ventricular and atrial fibrillation and shall be briefly reviewed in this
section. For a comprehensive discussion of spiral breakup in simple models and
chemical reactions, compare [47].

3.1 Breakup of 2D Spirals

In excitable reaction-diffusion media, the mechanism of spiral breakup has been
linked to radial instabilities that are observed frequently in cardiac models [43–
45, 48], typically unstable modes in the radial direction cause spiral instability and
possibly breakup. In what follows, we shall concentrate mostly on destabilization
against modes in the radial direction, since these are the most relevant ones for
cardiac dynamics exhibiting spiral breakup. Simple equations like Eq. 4 have been
found to contain transitions directly from stable rotation to spatiotemporal chaos via
spiral breakup. These examples have been also at the focus of a number of papers
employing numerical stability analysis (see [9, 49]). As a result it is now firmly
established that spiral breakup results from a linear instability of the stable rotating
spiral.

It is crucial to note that in all examples of radial spiral breakup in reaction-diffusion
models and related experiments two different scenarios are observed: spirals may
break first close to their core or alternatively far away from the core, see Fig. 3. The
core breakup in Fig. 3a is accompanied by a meander instability, which introduces a
Doppler effect into the waves emitted from the spiral core. Breakup near the core is
found in simulations in excitable media [9, 47] and in experiments with a chemical
reaction [24], whereas breakup far away from the core as in Fig. 3b is typically seen
under oscillatory conditions both in chemical experiments [23, 25] and in simulations
of the complex Ginzburg-Landau equation (CGLE) [50] and of oscillatory reaction-
diffusion systems [47].
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Fig. 3 Two different scenarios of spiral breakup shown at different stages in time. Both scenarios
lead to irregular dynamics. a The breakup appears first close to the center and spreads then outward.
b The breakup appears first far away from the center. At the end, a stable spiral fragment with finite
radius is left, surrounded by a “turbulent” bath. The figures show simulations of the model, Eq. 4.
(Taken from [47])

3.2 Breakup of 3D Scroll Waves

The natural extension of spiral waves in two dimensions are scroll waves in three
dimensions. Straight scroll waves rotate with constant frequency. However, under
certain conditions the filament of the scroll is not straight but takes a helical shape
under meandering or when an external twist is imposed. Complex unstable dynamics
may occur if the tension of the filament is negative. Three-dimensional waves rotate
around the center filament.
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Fig. 4 Numerical simulations of a scroll wave with negative filament tension: a initial deformed
filament, b bending of the filament, c breakup of the filament at the boundaries, d stationary chaotic
dynamics. Simulations done with the Luo-Rudy model for excitation propagation in cardiac tissue
(taken from [45])

Even if the scroll filaments are just convenient mathematical entities, their dynam-
ics permits to assign them physical magnitudes like tension. An illustration how neg-
ative line tension of filament leads to scroll wave breakup and subsequent turbulent
dynamics is given in Fig. 4. An initial almost straight filament develops a wiggly
structure whose amplitude grows in time. Once, the filament hits the boundaries of
the container the scroll waves break and irregular dynamics ensues (cf. Fig. 4); for
a more extensive discussion see e.g. [45].

3.3 Breakup in Heterogeneous Excitable Media

Small-scale heterogeneities are inevitable and omnipresent in cardiac tissues.
This is due to the variability of individual cells, the presence of different cell types
as well as the potential inclusion of non-functional fibrotic cells inside otherwise
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healthy tissue. Another factor is the discrete nature of the tissue that is composed of
myocytes separated by extracellular space filled with interstitial fluids. If the fraction
of non-conducting cells reaches fractions close to the percolation threshold where
the conducting parts of the tissue become disconnected. An example how reentry
appears in a discrete heterogeneous model for cardiac tissue near the percolation
threshold is shown in Fig. 5 [51].

The wave has already quite an irregular shape with a rough interface and many
holes. For the realization of a randommedium shown inFig. 5, a large non-conducting
cluster appears (see Fig. 5a). In its vicinity the excitation wave is broken and reentry
appears, which leads to an overall persistent irregular dynamics.

Fig. 5 Heterogeneities induce breakup of an initially planar wave in a two-dimensional simula-
tion of a variant Fenton-Karma-model for cardiac tissue (taken from [51]). Panel a shows non-
conducting areas (black) embedded into the conducting area (green). White square marks a large
cluster responsible for the reentry and the wave breakup in the heterogeneous medium seen in
simulations in panels b–d. Straight arrow in b marks the place of reentry and circular arrow in c
follows the reentry direction
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In this section, we have discussed three different mechanisms for transition from
regular spiral or scrolls to irregular, chaotic dynamics. While in chemical systems
these mechanism could be explored separately, the challenge in biological systems
like the heart is that all three aspects may contribute simultaneously or even cooper-
atively.

4 Conclusion

Reaction-diffusion systems enter the stage in 1952 with the publication of the two
seminal papers by Turing, that suggested a potential role for reaction-diffusion pro-
cesses in morphogenesis, and by Hodgkin and Huxley, who based on experimental
data developed a firstmodel for impulse propagation in neurons that became a corner-
stone ofmathematical physiology.During the 1960s and1970sPrigogine,Nicolis and
co-workers extended the early concept of Turing by introducing the notion of “dis-
sipative” structures. In parallel, experimental studies of the Belousov–Zhabotinsky
reaction revealed rotating spiral waves as a particular beautiful example of such
structures. In the 1990s, the field of chemical pattern formation reached maturity
by introducing open reactors and experimental systems that showed a large variety
of patterns both in homogeneous and heterogeneous catalysis including the real-
ization of chemical Turing patterns. A concise summary of the history of chemical
complexity was recently provided by Ertl and Mikhailov [52]. Improved imaging
techniques in cell biology have subsequently led to the discovery of protein patterns
in the late 1990s. A number of important unsolved questions concern the role that
vortices namely rotating spiral and scroll waves play in the emergence of cardiac
arrhythmias and potential strategies to control and suppress such dangerous physio-
logical states. Here, recent progress in imaging of electrical and mechanical waves
in cardiac muscle fuels hope for future discoveries [53].
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A Lattice-Gas Cellular Automaton Model
for Discrete Excitable Media

Simon Syga, Josué M. Nava-Sedeño, Lutz Brusch and Andreas Deutsch

Abstract Howdoordered structures like spirals copewith stochastic events?Several
phenomena in chemistry and biology provide examples of excitable media and spiral
pattern formation and are intrinsically stochastic. Here, we present a novel lattice-
gas cellular automaton model for discrete excitable media. In this stochastic model,
two discrete interacting biological species determine each other’s birth and death
probabilities. We show that this birth-death process, coupled to a random walk, is
equivalent to a classical partial differential equation (PDE) model of excitable media
in the macroscopic limit, and able to form spiral density waves. Importantly, our
cellular automaton model includes a parameter which defines the maximum local
number of individuals and influences the onset of spiral waves. We find that small
values of this parameter allow spiral pattern formation even in situations where
the corresponding deterministic PDE model predicts that no spirals are formed,
reminiscent of stochastic resonance effects.

1 Introduction

An excitable medium is a spatially extended system in which a wave (or “excited”
state) can propagate without attenuation once it is initiated, but is unable to propa-
gate in regions where a wave has recently passed (“refractory” state) [1]. Biological
systems comprising cells or organisms are inherently discrete and several of them
behave as excitable media with the ability of spiral pattern formation in appropriate
parameter ranges [2]. Examples include Dictyostelium discoideum aggregation [3]
(see chapter Spiral Waves of the Chemo-Attractant cAMP Organise Multicellu-
lar Development in the Social Amoebae) and epidemiological spreading [4].
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To study continuous excitablemedia, severalmodels have been constructed. These
models are typically formulated as continuous and deterministic partial differential
equations (PDEs) [5–9]. Their continuous nature allows fitting to continuous media
properties such as chemical concentrations. However, PDE models are not appropri-
ate to study discrete excitable media.

To explicitly account for discrete entities, one can use cellular automaton (CA)
models [10]. The term “cellular automaton” originates from work by John von Neu-
mann and Stanislaw Ulam, who were interested in the question of self-reproduction
of discrete entities, which required non-continuum concepts [11]. A CA is a dis-
crete dynamical system, where space, time and state space are discrete. In particular,
a CA is characterized by a regular lattice, where every lattice node (or “cell”) is
assigned a discrete state. The dynamics is defined by a transition rule that depends
on the state and the states in the local interaction neighborhood. Various CA models
for discrete excitable media have been introduced [12–20]. Typically, these models
are motivated by a top-down perspective and attempt to capture aspects of con-
tinuous excitable media in a discrete model. In contrast, here we apply a bottom-up
approach by assuming discrete individuals and birth/death rules mimicking excitable
dynamics.

We adopt a lattice-gas cellular automaton (LGCA) model. This CA model can
describe discrete individuals interacting stochastically and moving in space. LGCA
modelswere introduced to simulate aspects of fluid dynamics [21], but have also been
used successfully to investigate collective cell migration, biological pattern forma-
tion and the growth and invasion of tumors [22–35]. LGCA models are cell-based,
computationally efficient, and allow to integrate statistical and biophysical models
for different levels of biological knowledge [36–40].Here,we define anLGCAmodel
for two interacting biological or chemical species with simple birth-death dynam-
ics. Our LGCA model does not only incorporate stochastic effects not included in
classic PDE models, but also allows to bridge the gap between microscopic, single-
individual dynamics, and macroscopic PDE models. In particular, we are able to
derive a classic Barkley PDE approximation in the macroscopic diffusive limit [5].
By comparing spiral wave patterns in the stochastic LGCA and spiral solutions of the
corresponding deterministic PDE model, we show that stochastic fluctuations allow
spiral pattern formation in a larger parameter regime compared to the deterministic
PDEmodel. Our stochastic model can be especially useful for studying macroscopic
pattern formation in systems with a small number of interacting individuals, such
as biological systems, which are more sensitive to fluctuations. The LGCA model
framework can likewise be applied to oscillatory media to study stochastic effects of
spiral wave formation therein.
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2 Model Definition

2.1 Lattice-Gas Cellular Automata

We briefly introduce the general LGCA model formalism, and present our specific
LGCA model of excitable media. From the LGCA microdynamical equations, we
derive a systemof PDEs describing the ensemble-averaged spatiotemporal dynamics.
We employ a hexagonal lattice, which attenuates spatial anisotropies compared to
a square lattice [21]. Compared to classic CA, LGCA have a node substructure.
Every node has K = a + b channels, �ci , 1 < i ≤ K , where b channels are called
velocity channels, which point into the direction of next neighbor nodes. Therefore,
the number b of velocity channels is determined by the lattice geometry. In the case
of a hexagonal lattice, b = 6. The remaining a := K − b channels are called rest
channels, and have �ci = (0, 0), b < i ≤ K . The precise number a of rest channels
can be considered a parameter of the model. Each of these channels may be occupied
by at most one particle at any time step, the channel state space is E = {0, 1}. The
node state at a position �r ∈ L at a time step k ∈ N is called the node configuration,
�η (�r , k) ∈ EK, whose i th component represents the presence or absence of a particle
in the i th velocity channel. The number of particles at node �r at time k is given by

n (�η (�r , k)) =
K∑

i=1

ηi (�r , k) . (1)

It is evident that a node can hold a maximum number of K particles at any given
time.

The configuration of the lattice evolves by the simultaneous application of a
local rule to all nodes at every time step. The rule consists of two separate steps:
a stochastic interaction step followed by a deterministic transport step, see Fig. 1.
During the interaction step, every node configuration �η (�r , k) is replaced by a post-
interaction configuration �η I (�r , k). The post-interaction configurationn is selected
according to a probability distribution which may depend on the node configuration
�η (�r , k), as well as the configurations of neighboring nodes. During the transport step,
particles in velocity channels are deterministically translocated to corresponding
nearest neighbors, while particles in rest channels remain in their original node.
More formally,

ηi (�r , k + 1) = ηI
i (�r − �ci , k) . (2)

The separation of the local, stochastic interaction from the deterministic transport
endows the LGCAmodel class with two benefits: efficient numerical simulation and,
more importantly, analytic tractability, enabling us to derive a PDE approximation
in the macroscopic limit.
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Fig. 1 Interaction dynamics of the LGCA excitable mediummodel. Within a node (b) in the lattice
(a), the number of particles in rest channels (species Y , number in center) is increased and/or
decreased by 1 (maximum a, minimum 0), according to the operator RY (c). The operator RX
is applied N consecutive times to particles in velocity channels so that several particles can be
created or destroyed in a single time step (species X , occupied= black, empty=white, circles with
velocity vectors). After particles have been created/destroyed, particles of species X are randomly
redistributed among the velocity channels according to the mixing operator M. See text for the
parametrization of the update probabilities

2.2 The LGCA Excitable Media Model

We consider the spatial distributions of two species X and Y . One species, termed X ,
is motile and can reproduce and/or die swiftly, representing the excited state. The sec-
ond species, termed Y , is immobile and reproduces and/or dies slowly, representing
the refractory state. Species X is modeled as particles residing in velocity channels,
while species Y is modeled as particles residing in rest channels. Following Eq. (1),
the numbers of particles of species X and Y are given by

nX (�η (�r , k)) =
b∑

i=1

ηi (�r , k) , and (3a)

nY (�η (�r , k)) =
K∑

i=b+1

ηi (�r , k) . (3b)

Likewise, the normalized fraction of particles of each species residing in a given
node is defined as
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ρX (�r , k) = 1

b
nX (�η (�r , k)) , and (4a)

ρY (�r , k) = 1

a
nY (�η (�r , k)) . (4b)

The general idea of the model is to amplify and modulate excitations, depending
on the local state of the medium. We translate this idea into a LGCA rule and
define the following operators. The stochastic birth operator of species Z ∈ {X,Y },
BZ : EK �→ EK adds one particle of species Z to the configuration with prob-
ability P+

Z := P+
Z (�η (�r , k)), which depends on the fraction of particles of both

species in the node, as long as there is a free channel at the node that can be
occupied by species Z . Analogously, the stochastic death operator of species Z ,
DZ : EK �→ EK removes one particle of species Z from the configuration with a
probability P−

Z := P−
Z (�η (�r , k)), which depends on the fraction of particles of both

species in the node, as long as there is at least one particle of species Z to remove.We
define the reaction operator of species Z , RZ : EK �→ EK as the subsequent appli-
cation of birth and death operators. Defining the mean change of particles of species
Z after reaction as�nZ := 〈

nZ
(RZ

[�η (�r , k)]) − nZ (�η (�r , k))〉, it can be shown that

�nZ = P+
Z − P−

Z . (5)

Due to the direct dependencies of the probabilities P+
Z and P−

Z on theparticle fractions
ρX (�r , k) and ρY (�r , k),�nZ also depends on these fractions. For ease of notation, we
define the particle change functions f (ρX , ρY ) := �nX , and g (ρX , ρY ) := �nY . For
a particular choice of probabilities and functions, see Eqs. (9) and (10). Importantly,
the particular choice of the particle change functions f (ρX , ρY ), g (ρX , ρY ) leads to a
typical phase space of an excitablemedium,with a single stable steady state, a quickly
changing variable ρX and a slowly changing variable ρY , so that sufficiently large
deviations from the steady state cause a large excitation followed by a refractory
period leading back to the steady state, see Fig. 2c,d and chapter Generation of
Spirals in Excitable Media.

Finally, we define the stochastic mixing operator M : EK �→ EK . This operator
acts on a configuration �η (�r , k) and randomly reshuffles particles within velocity
channels, while leaving particles in rest channels unchanged.

Using these operators, the interaction step is defined as follows. At the beginning
of the interaction step, RY is applied once to the configuration of every node. To
simulate the swift change in species X compared to the slow change of species Y ,RX

is applied N times, where the value of N is a free parameter. Note that the maximum
absolute change of the density of the slowly changing species Y in each time step is
given by the inverse number of rest channels

∣∣�ρY,max

∣∣ = 1
a . Therefore, the number of

rest channels is inversely proportional to the amplitude of the stochastic fluctuations
of species Y and controls the sensitivity of the model towards stochastic fluctuations.
On the other hand, N successive applications of RX may increase the excitation
dramatically, or conversely, inhibit it greatly, depending on the value of the particle
change function f (ρX , ρY ). Strong amplification and inhibition of excitations above
certain thresholds are the defining characteristics of an excitable medium [41], and
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constitute the essence of this LGCA model. Finally, the mixing operator is applied
to the resulting configuration. The post-interaction configuration is given by

�η I (�r , k) = RY ◦ RN
X ◦ M [�η (�r , k)] , (6)

where the symbol ◦ denotes the ordered application of the operators. See Fig. 1 for
a visualization. After the interaction step, the deterministic transport step follows
according to Eq. (2). Simulations of spirals in this LGCA model (Fig. 2a) will be
presented in detail after the following theoretical analysis.
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Fig. 2 Comparison of spiral wave dynamics in the stochastic LGCA excitable medium model and
the mean-field PDE model. Panels a and b show snapshots of computer simulations. To encode
two local variable values in one color, the red color intensity is proportional to ρX and green
is proportional to ρY and high values of both appear yellow. A hexagonal lattice and absorbing

boundary conditions were used. c Nullclines of the reaction rate f = ρX (1 − ρX )
(
ρX − ρY +B

A

)

are shown in blue, the nullcline of g = ρX − ρY in red. Arrows represent the evolution of ρX .
d Shows the phase space trajectory of the mean-field PDE model (8) (solid line), where the color of
the trajectory changes with time from blue (t = 0) to red (t = tmax); and a histogram of the LGCA
node states across many realizations (grayscale boxes). The intensity of the underlying heat map
is proportional to the probability of finding a node in the LGCA model with a certain value of ρX
and ρY . The density map was obtained with information of 8 × 105 nodes, after a transient period
of 2000 time steps. The values of ρX and ρY at a fixed position and different points in time are
plotted for the PDE model. Parameters are A = 0.75, B = 0.02, N = 50, and K = 23. PDE data
was obtained using an open source program by Barkley and Dowle [42]
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3 Mean-Field Theory

We next derive a PDE system which describes the evolution of the expected value
of the density patterns of both species in the continuous limit. The following
theory is based on the mean-field approximation, which means that we approximate
all stochastic variables by their mean values. Under this approximation, and using
Eqs. (2), (5) and (6), the finite difference equations (FDEs) for the mean densities on
the node �r at time step k + 1 are

〈ρX (�r , k + 1)〉 = 1

b

b∑

i=1

[
〈ρX (�r − �ci , k)〉 +

N∑

m=1

f (〈ρX (�r − �ci , k + mκ)〉 , 〈ρY (�r − �ci , k + mκ)〉)
]
, (7a)

〈ρY (�r , k + 1)〉 = 〈ρY (�r , k)〉 + g (〈ρX (�r , k)〉 , 〈ρY (�r , k)〉) , (7b)

where κ = 1
N connects the fast time scale of the reaction dynamics of X with the

slower time scale of the diffusion and reaction dynamics of Y . To transform the
discrete FDEs into continuous PDEs, we identify the mean fractions 〈ρX (�r , k)〉,
〈ρY (�r , k)〉with their continuous counterparts 〈ρX (�x, t)〉, 〈ρY (�x, t)〉, where �x = �rε ∈
R

2 and t = kτ ∈ R
+ with small ε, τ ∈ R

+, and the discrete particle changes f , g
with the continuous particle changes τ f , τg. The precise values of ε and τ are chosen
such that the rescaled LGCA model matches the PDE’s spatial and temporal scales.
Furthermore, we take the diffusive limit τ , ε → 0 with limτ ,ε→0

ε2

4τ =: D, expand
the expected densities in Taylor series up to terms of order τ and ε2, and approximate
the reaction rates by the zeroth-order term O of their Taylor expansion

f
(〈

ρX

(
�x − ε�ci , t + nτ

N

)〉
,
〈
ρY

(
�x − ε�ci , t + nτ

N

)〉)

≈ f (〈ρX (�x, t)〉 , 〈ρY (�x, t)〉) + O (ε, τ ) ,

to obtain the PDE system

∂

∂t
〈ρX 〉 = D∇2 〈ρX 〉 + N f (〈ρX 〉 , 〈ρY 〉) , (8a)

∂

∂t
〈ρY 〉 = g (〈ρX 〉 , 〈ρY 〉) . (8b)

Defining simple linear birth and death probabilities for species Y , and nonlinear
birth and death probabilities for species X , corresponding to an excitable medium
(see above), as
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P+
X = ρ2X

(
1 + ρY + B

A

)
, (9a)

P−
X = ρX

ρY + B

A
+ ρ3X , (9b)

P+
Y = ρX , (9c)

P−
Y = ρY , (9d)

where A and B are free parameters, translate into the reaction rates

f (ρX , ρY ) = ρX (1 − ρX )

(
ρX − ρY + B

A

)
, (10a)

g (ρX , ρY ) = ρX − ρY . (10b)

The PDE system (8) with the reaction rates (10) is the well-known Barkley model
[5], a prototype for excitable media with spiral wave solutions as numerically shown
in Fig. 2b. The phase space of the Barkley model is depicted in Fig. 2c. The nullclines
of the reaction rates coincide with the fixed points of the reaction operators of the
LGCA. Due to the rapid dynamics of species X compared to species Y , species X
tends to either saturate or die off (see arrows in Fig. 2c). A third steady state of species
X (diagonal line) is unstable. There is a linearly stable single fixed point of the system
(ρX = ρY = 0); however if the parameters A and B are such that the unstable steady
state of species X is close to this fixed point, sufficiently large perturbations can shift
the system above this excitability threshold and, due to neighbor coupling, into a
stable, periodic orbit.

4 Simulation of Spiral Waves

To qualitatively compare the LGCA model with the mean-field PDE model, com-
puter simulations of both models were performed, see Fig. 2a, b. The values of the
parameters A, B, and N were identical in both models, see Table1. The number
of channels K was varied between 12 and 100. Simulations with K < 12 under-
went spiral breakup almost immediately, whereas K > 100 leads to very large wave
lengths of the spiral pattern. In the LGCA model, 12 ≤ K ≤ 30 always resulted in
spirals independently of the initial conditions (not shown). In the PDE model, spiral
formation requires non-symmetric initial conditions. Therefore, to produce a single
spiral wave, both models were initialized in the following way. At t = 0 (k = 0)
the space was partitioned into four quadrants, one with ρX = ρY = 0, another with
ρX = 1, ρY = 0, a third with ρX = 0, ρY = 1, and the last with ρX = ρY = 1. As can
be seen in Fig. 2a, b, at short times both models show qualitatively similar behavior.
At long times, however, stochastic fluctuations in the LGCA model start to appear,
which ultimately break the starting spiral into several smaller spirals. Spiral breakup
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Table 1 Parameters in the
LGCA and corresponding
PDE models in Fig. 2

Parameter LGCA PDE

A 0.75 0.75

B 0.02 0.02

N 50 50

K 23 —

has been observed widely in various stochastic models of excitable media [41]. As
a histogram of the states of the nodes in the LGCA model reveals, both the initial
big spirals and the late smaller spirals describe approximately the same phase space
orbits as spirals in the PDE model (Fig. 2d).

Next, we investigated the effect of stochasticity on the spiral phase diagram. The
parameter space of the Barkley model has been studied extensively [43]. Below
certain values of parameters A and B, excitation pulses die out without formation of
any spirals.Above these values, stable spirals are formed for certain initial conditions,
with complicated behavior like spiral center meandering in certain regions above the
spiral threshold, see Fig. 3c. To check if spirals are formed in the stochastic LGCA
model,weused themean return time as an observable. Themean return timemeasures
themean number of time steps needed for any given node to contain the same amount
of particles of species X and Y it contained at some predefined past time step. If no
spirals are formed, the whole lattice will be near the stable state ρX = ρY = 0, at
every time step after the disappearance of the initial pulse, so the mean return time
will be close to 1. If spirals form, then each node performs an orbit (see Fig. 2d)
before returning to its original state, which would increase the mean return time.

We performed simulations varying the value of A and fixing the values of the
remaining parameters at B = 0.05, N = 50, and K = 12 for maximum stochastic-
ity. We allow transients to relax for 500 time steps. Afterwards, a node was picked
at random and its state recorded. The number of time steps for the same node to
reach the same state was averaged over 100 realizations, to estimate the value of the
mean return time. The mean return time as a function of the parameter A is shown in
Fig. 3a. We find a typical spiral rotation period of 53.3 time steps. When comparing
this plot with the parameter space of Barkley’s PDE model (Fig. 3c), we find good
correspondence between both models. In the LGCA model, however, short period
spirals appear already at lower values of the parameter A. After a short transition
region, spiralswith longer periods appear. The region of the parameter space allowing
spirals is therefore larger and the transition smoother in the LGCA model than in its
PDE counterpart, compare Fig. 3b, c. This observation reinforces that stochasticity
may act as a facilitator of spiral formation, as known from stochastic resonance
[41, 44, 45], and from the analysis of an LGCA model for Turing pattern
formation [32].
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Fig. 3 Comparison of spiral formation in the LGCA and the mean-field PDE model. a Mean time
for a node in the LGCAmodel to return to a previously visited state when parameter A is varied and
B, N , K are fixed. For the node capacity we choose K = a + b = 12 so that stochastic fluctuations
are relatively big and deviations from the mean-field PDE appear (see text for explanations). The
mean return time estimates the rotation period in case a spiral wave solution is found. The parameter-
averaged mean return time in the spiral-forming region is 53.3 time steps. The return time was
averaged over 100 realizations. Symbols denote the average and its standard deviation. b,c Axis of
parameter A is color-coded according to the spirals that are observed in simulations of the LGCA
model (for B = 0.05, N = 50, K = 12) and in the corresponding mean-field PDE model. The
black color corresponds to no spiral formation, red to stable spiral formation, blue to “meandering”
spirals with moving centers. In the LGCA model the transition from the non-spiral forming to the
spiral-forming regime is smooth due to transient spirals, in contrast to the PDE system. Moreover,
the quantification of spiral meandering for the LGCA requires better statistics and is omitted here.
Solution types in the PDE model were obtained with information from [43]

5 Conclusions

Following the methodology of the Lattice-Gas Cellular Automaton, we constructed
an excitable birth-death model with tunable stochasticity. We chose the time scale of
the birth and death process of the motile “excited” species to be much faster com-
pared to that of the immobile “refractory” species. Stochasticity is tunable through
parameter a, which represents the level of spatial coarsening. We showed that the
mean collective behavior of the LGCA model can be described by Barkley’s PDE
model. Using computer simulations, we showed how our LGCA model at finite
particle number differs from Barkley’s model, revealing stochastic behavior such as
spiral breakup and a wider parameter range for the appearance of spiral patterns.
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Several interesting theoretical research questions remain, including a nonlinear
stability analysis. This analysis would allow to predict a critical parameter set for
spiral formation, the spiral wavelength, and dispersion relations. Furthermore, the
study of secondary instabilities of the spiral wave pattern would allow to characterize
the meandering of the spiral center.
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Kinematics of Spiral Waves in Excitable
Media

Vladimir S. Zykov

Abstract Spiral waves rigidly rotating in excitable media sometimes play a con-
structive role in self-organization, while in many cases they cause an undesirable
and dangerous activity. An understanding of spiral wave kinematics can help to
control or to prevent this self-sustained activity. A description of the spiral wave
kinematics performed by use of a free-boundary approach, reveals the selection prin-
ciple which determines the shape and the rotation frequency of spiral waves in an
unbounded medium with a given excitability. It is shown that a rigidly rotating spiral
in a medium with strongly reduced refractoriness is supported within an excitability
range restricted by two universal limits. At the low excitability limit, the spiral core
radius diverges, while it vanishes at the high excitability limit and the spiral wave
resembles the Yin-Yang pattern.

1 Introduction

An excitable medium can be considered as a population of active elements coupled
locally through diffusion-like transport processes. Each individual active element
is stable with respect to small external perturbations. However, it can be excited
by the application of a super-threshold stimulus. Therefore, an excitation induced
locally is able to propagate through the population of diffusively coupled elements
as a self-sustained wave. After a recovery process, the medium returns to the resting
state.

Rotating self-sustained spiral waves are among the most prominent examples of
self-organized patterns in excitable media. They have been observed in systems of
quite different nature like the social amoebae colonies [1] (see also chapter Spiral
Waves of the Chemo-Attractant cAMP Organise Multicellular Development
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in the Social Amoebae), the chemical Belousov–Zhabotinsky (BZ) reaction [2]
(chapter Chemical Oscillation and SpiralWaves), heart muscle [3] (chapter Spiral
Waves in the Heart), the retina of the eye [4] (chapter Yet More Spirals), the
oxidation of CO to CO2 on platinum single crystal surfaces [5] (chapter Shedding
Light on Chaos), yeast extracts during glycolysis [6] (chapter Yet More Spirals),
and so on.

In the simplest case, the spiral rotates rigidly and its tip describes a circular orbit
around the core [7, 8]. Varying the parameters of the midium one can effectively
control the motion of spiral waves which can be used to destroy undesirable wave
activity [9–12]. From this point of view the selection principles that determine the
shape and the rotating frequency of spiral waves have to be understood.

From a mathematical point of view the main dynamical features of a broad class
of excitable media can be simulated by a two-component reaction-diffusion system.

∂u

∂t
= DΔu + F(u, v), (1)

∂v

∂t
= DvΔv + εG(u, v). (2)

Here the local kinetics of an activator u and an inhibitor v is specified by the
nonlinear functions F(u, v) and G(u, v). The diffusion coefficients D, Dv and the
small multiplier ε are important control parameters. They are universal and appli-
cable to a broad variety of models (see chapter Reaction-Diffusion Patterns and
Waves.

From the experimental point of view, there is also some universality because there
are many common kinematical features of spiral waves observed in quite different
chemical and biological excitable media.

In this chapter we concentrate on an approximation of the reaction-diffusion
model, as indicated in Eqs. 1 and 2, that allows us to reach a deeper understand-
ing of the kinematical features of spiral waves. In the framework of this approach we
are interested mostly in the motion of the boundary restricting an excited region. We
will show that this so-called free-boundary approach essentially simplifies and gen-
eralizes the theoretical consideration of the spiral wave dynamics. Simultaneously,
this approach helps us to reveal such important medium parameters, which can be
measured experimentally.

2 Two First Steps Towards Spiral Wave Kinematics

In their seminal theoretical work, Wiener and Rosenblueth [13] showed in 1946 that
the self-sustained activity in the cardiac muscle can be associated with an excitation
wave rotating around an obstacle. In particular, they considered a motion of a wave
rotating around a round obstacle as shown in Fig. 1a. In this very simplified kinemat-
ical model, they assumed that an excited part of the propagating wave is restricted by
a very thin boundary consisting of a wave front (thick solid) and a wave back (thin
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solid). It was also assumed that all points of the boundary are moving in the normal
direction at the same velocity cn = const . If the radius of the circular obstacle is
given as R, the rotational frequency of the spiral wave should be ω = 2πR/cn . The
shape of thewave front is alsowell determined in this case and represents the involute
of the obstacle boundary. It means that the length of the interval AB of a tangent is
equal to the arc length AC (see chapter Spirals, Their Types and Peculiarities).
The wave back following the wave front has the same shape if turned around the
rotational center by the angle ωdu , where du is the duration of the excited state.

(a)

C

A

B

φ

(b)

Fig. 1 Two examples of spiral wave kinematics. a Spiral wave rotating around a round unexcitable
obstacle (dark region). b Top view on a screw dislocation growing on a crystal surface

A second important example shown in Fig. 1b represents the shape of a screw
dislocation growing on a crystal surface [14]. In contrast to the first example, the
authors assumed that the normal velocity of the wave front is not a constant, but
strongly depends on the front curvature, namely

cn = cp − Dk, (3)

where cp is the velocity of a planar front and k is its curvature. In themodern literature
this relationship has obtained the name eikonal equation (see chapter Chemical
Oscillations and Spiral Waves). Note, that in this case the wave front is rotating
around a central point. In the vicinity of this point the front velocity cn vanishes, and
the front curvature reaches the value cp/D in accordance with Eq.3. The shape of
the wave front is suitably expressed in the polar coordinates (r, φ) with the origin at
the rotational center

x = r cos[φ(r) − ωr ], y = r sin[φ(r) − ωr ], (4)

where ω is the rotational frequency of the wave front.
A detailed numerical analysis has shown that an acceptable solution φ(r) of Eqs. 3

and 4 does exist only for a single value of the rotational frequency

ω = 0.331c2p/D. (5)

It is important that both shapes of the spiral wave fronts shown in Fig. 1 are approach-
ing the Archimedean spiral far away from the rotational center.
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3 Free Boundary Approach

The next relevant step in the understanding of the spiral wave kinematics has been
done by Pelcé and Sun [15]. They recognized that in both cases mentioned in Sect. 2
the wave front kinematics is completely independent of the wave back motion. In
contrast to this the wave front and the wave back are usually interacting with each
other. It can be clearly seen in Fig. 2, where a snapshot of a counterclockwise rotating
spiral is shown. This picture resembles a typical pattern of spiral wave rotatingwithin
a homogeneous chemical or biological medium around a core of finite size (see
chapter Reaction-Diffusion Patterns and Waves).

At one part of the excited state boundary the activator u is growing (du/dt > 0)
that corresponds to the wave front. At another part of the boundary du/dt < 0 that
corresponds to the wave back. These two parts meet each other at a so-called phase
change point [16]. This point q describes a circular pathway around the circulation
center, which represents the spiral wave core.

Another interesting point Q is located at the place, where the radial direction is a
tangent to the excited state boundary. Here the normal front velocity is orthogonal to
the radial direction and, hence, the point Q also describes a circular pathway around
the circulation center.

The kinematics of the wave front and the wave back are closely connected and
should be considered in parallel. To this aim it is very useful to describe the boundary
of the excited state by the so-called natural equation which determines the boundary
curvature k as a function of the arc length s counted from the phase change point q
[17, 18].

Then the Cartesian coordinates x(s), y(s) of the boundary and the angle Θ(s)
which determines the normal direction obey the obvious equations:

Θ(s) = Θ(0) −
∫ s

0
k(s ′)ds ′, (6)

x(s) = x(0) +
∫ s

0
cos(Θ(s ′))ds ′, (7)

y(s) = y(0) +
∫ s

0
sin(Θ(s ′))ds ′. (8)

During the boundary rotation, each of its point is moving at the velocity ωr
around the rotational center. This velocity can be represented as a sum of a normal
velocity cn(s) (orthogonal to the boundary) and the tangential velocity cτ (s) (along
the boundary), as drawn in Fig. 3. It was shown that for a rigidly rotating spiral these
two velocities and k(s) obey the following system of differential equations [17]

dcn
ds

= ω + kcτ , (9)

dcτ

ds
= −kcn . (10)
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Fig. 2 Spiral wave rotating
around a circular core. The
shaded region corresponds to
an excited state. The dotted
line depicts the trajectory of
the phase change point q
rotating around the
circulation center (+). Solid
lines indicate isolines of the
temporal derivative du/dt of
the activator. Taken from
[18]

Fig. 3 Normal velocity cn
and tangential velocity cτ of
a rotating boundary

After rescaling (S = scp/D, R = rcp/D,C = c/cp, K = Dk/cp,Ω = ωD/c2p),
Eqs. 9 and 10 transform into the dimensionless form

dCn

dS
= Ω + KCτ , (11)

dCτ

dS
= −KCn. (12)

Equations11 and 12 are the result of a pure kinematical consideration. To describe
the boundary shape of a spiral wave rotating in an excitable medium, this system
should be supplemented by the eikonal equation describing the velocity-curvature
relationship written in dimensionless form in accordance with Eq.3 as

C+
n = 1 − K+. (13)

The phase portrait of Eqs. 11–13 computed for Ω = 0.1333 is shown in Fig. 4.
A trajectory describing the wave front starts at the line, where C+

n (0) = 0 and
0 ≤ Cτ (0) ≤ 1. In Fig. 4 three trajectories of the system computed for different
Ct ≡ Cτ (0) are shown. At the beginning of all trajectories C+

n increases and



270 V. S. Zykov

C+
τ decreases. However, the normal velocity C+

n reaches a maximum and starts
to decrease along the trajectory computed for Ct = 0.3. Moreover, this trajectory
includes a part, where C+

n < 0, which contradicts the definition of a wave front. The
trajectory crosses the line Cn = 0 again at Cτ ≈ 0.61. This point can be considered
as the starting point of a separate, fourth trajectory, which firstly crosses the line
Cn = 1 and then approaches the nullcline Cn = 1 + Ω/Cτ for Cτ → ∞.

The trajectory computed for Ct = 0.5 crosses the line Cτ = 0 twice and also
approaches the nullcline Cn = 1 + Ω/Cτ for Cτ → ∞.

Fig. 4 The phase portrait of
the free-boundary equations
(Eqs. 11–13) corresponding
to Ω = 0.1333. Dashed lines
show nullclines of the
system (dCn/dS = 0 and
dCτ /dS = 0). Black dots
mark starting points of the
trajectories computed for
different values of
Ct ≡ Cτ (0). Dash-dotted
line corresponds to Ct = 0.3,
thick solid is obtained for
Ct = 0.42055. The first part
of the trajectory computed
for Ct = 0.5 is depicted by a
thin solid line and the
following part is shown by
dotted line. Taken from [18]

The front shapes corresponding to these two trajectories (Ct = 0.3 and Ct = 0.5)
are shown in Fig. 5a. They are obtained by substitution of the computed function K (s)
into Eqs. 6–8 with Θ(0) = π/2, X (0) = 0, and Y (0) = Ct/Ω . It can be seen that
the trajectory starting at Ct = 0.3 (dash-dotted line) has no physical sense. Another
trajectory, corresponding to Ct = 0.5, contains a part depicted by thin solid, which
can be considered as a front of a wave rotating within a disk of radius RD with
a no-flux boundary. The first intersection of this trajectory with the line Cτ = 0
corresponds to the point Q. The second intersection occurs at the disk boundary,
where C+

n = ΩRD . The part of the trajectory outside the disk of radius RD does not
match any rotating waves in excitable media. It resembles antispirals [19] or twisted
spirals [20] observed in oscillatory media.

By starting at Ct = 0.5 and continuously decreasing Ct one can compute trajec-
tories corresponding to an increasing disk radius RD . The limiting case RD → ∞ is
obtained for Ct = 0.42055 and is shown in Fig. 5b by the thick solid line. The corre-
sponding trajectory is presented in Fig. 4 by the thick solid. Obviously, this solution
of Eqs. 11–13 represents a spiral wave front in an unbounded medium rotating at the
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given angular velocity Ω . Asymptotics of this solution for S → ∞ can be specified
as in [17]

C+
n (∞) = 1, C+

τ (S) = √
2ΩS, K (S) =

√
Ω

2S
. (14)

Fig. 5 Wave front shapes
corresponding to the
trajectories shown in Fig. 4.
a Front shapes computed for
Ct = 0.3 (dash-dotted line)
and Ct = 0.5 (thin solid and
dotted lines). b Front shape
obtained for Ct = 0.42055.
Taken from [18] R

(a) (b)

D

R
Q

q

Q

A repetition of similar computations for different values of Ω reveals a unique
relationship Ω = Ω(Ct ) depicted in Fig. 6. Here Ct varies within the whole physi-
cally available range 0 ≤ Ct ≤ 1. The angular velocity Ω vanishes at Cτ = 1. This
limiting case corresponds to the low excitability limit studied in [21], where an ana-
lytical expression Ω = 0.198(1 − Ct )

3/2 has been derived. This expression shown
by the dotted line in Fig. 6 approximates very well the relation found numerically for
Ct ≈ 1. However, it strongly deviates from numerical data obtained for small Ct .

Fig. 6 Angular velocity Ω

of a wave front as a function
of the tangential velocity Ct
of the spiral tip. The dashed
line depicts the
approximation given by
Eq.15. The dotted line
corresponds to the
asymptotic found in [21]
specified by the first term in
Eq.15. Taken from [18]

In another limiting case, the valueΩ = 0.331 computed forCt = 0 coincideswith
the result obtained firstly by Burton, Cabrera and Frank [14] for screw dislocations
growing on crystal surface (see chapter Appearance in Nature) and reproduced
later many times [17, 21, 22].

The suitable approximation of the relationship Ω(Ct ) obtained numerically for
the whole range 0 ≤ Ct ≤ 1 reads

Ω = 0.198(1 − Ct )
3/2 + 0.133(1 − Ct )

2. (15)
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It supplies a nice accuracy within the whole range 0 ≤ Ct ≤ 1, as can be seen in
Fig. 6.

Thus, the front shape of a rigidly rotating spiral wave and its angular velocity Ω

are uniquely determined by the tangential velocity Ct of the spiral tip.
The results obtained for the wave front have to be used to integrate Eqs. 11 and

12 for the spiral wave back taking into account that during the excited state, the
inhibitor value is increasing from v = v+ at the wave front till v = v− at the wave
back. The value v− of the inhibitor at the wave back can be found from Eq.2 under
the assumption that the value G(ue(v), v) remains practically constant and equal to
G∗ during the excited state. Note that for many systems under consideration, e.g.
cardiac tissue, the inhibitor diffusion Dv = 0, which simplifies the analysis.

Since the pattern is rotating at a constant angular velocity ω, the value of the
inhibitor near the wave back is expressed in accordance with Eq.2 as

v−(R) = v+ + G∗ε
ω

[γ +(R) − γ −(R)], (16)

where γ + and γ − specify the location of the front and the back, respectively, as
shown in Fig. 7. The thick solid line in Fig. 7 represents the front of the rotating
wave computed for a given value ofΩ = 0.1333. The front curvature K (s) obtained
during these computations has to be substituted into Eqs. 6–8 in order to determine
the front shape in the Cartesian and polar coordinates.

The inhibitor v− strongly affects the normal propagation velocity. In order to
reflect this fact, the eikonal equation (Eq.3) should be modified to

c−
n = cp(v

−) − Dk. (17)

Substituting the value v− expressed by Eq.16 into Eq.17 we get after rescaling

C−
n = 1 − K− − B

Ω
[γ +(R) − γ −(R)]. (18)

The multiplier B appearing in this dimensionless expression is a very important
control parameter and reads as

B = 2D

c20du
. (19)

In order to obtain the shape of the wave back Eqs. 11–12 and 18 have to be
integrated in the reverse arclength direction starting at S = 0 with initial conditions
C−
n (0) = 0 and C−

τ (0) = Ct . The obtained values of K−(S) have to be substituted
into Eqs. 6–8 with Θ(0) = π/2, X (0) = 0, and Y (0) = Ct/Ω in order to determine
the dependence γ −(R).

It is important to emphasize that the shape of the wave back is strongly depended
on the parameter B as shown in Fig. 7. It is expected for a physically correct solution
that the derivatives dγ −/dS and dR−/dS are positive. If B is relatively small, the
derivative dγ −/dS vanishes at some S and becomes negative (see dotted line). If B
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Fig. 7 Spiral wave shape
obtained for Ω = 0.1333.
The front shape corresponds
to Fig. 5b. The back shape is
computed from Eqs. 11, 12,
and 18 for different values of
the dimensionless parameter
B. Dotted and dashed lines
correspond to B = 0.2971
and B = 0.3008,
respectively. Thin solid line
corresponds to B = 0.2979
found by a trial and error
method. Taken from [18]

is relatively large, the derivative dR−/dS vanishes (see dashed line). Using a trial
and error method, one must vary the value of B trying to obtain the solution with the
asymptotic C−

n (−∞) = −1.

Fig. 8 The dimensionless
angular velocity of a rigidly
rotating spiral Ω = ΩFB(B)

selected as a solution of the
free-boundary problem
based on Eqs. 11–13, and 18
versus the dimensionless
parameter B characterizing
the excitability of the
medium. Taken from [18]

Thus, the obtained solution of the free-boundary problem for a spiral wave in
an unbounded medium is uniquely determined by the value of the dimensionless
parameter B for a given value of the angular velocity Ω . Repetition of these com-
putations for different values of Ω from the interval 0 < Ω < 1 yields the universal
relationship Ω = Ω(B) shown in Fig. 8.

4 Two Limiting Cases

There are two limiting cases which characterize the relationship shown in Fig. 8.
Firstly, our computations show that the highest angular velocityΩ = 0.331 is reached
at B = Bmin ≈ 0.211. Secondly, it is known that an undamped excitation wave in
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a two-dimensional medium is supported only if B < Bc ≈ 0.535 [23–25]. Hence,
in a medium with a strongly reduced refractoriness a rigidly rotating spiral can be
obtained only within the interval Bmin < B < Bc.

Fig. 9 The solution of the free-boundary problem Eqs. 11–13 and 18 corresponding to the limiting
cases a B = Bmin and b B = Bc

The solution of the free-boundary problem obtained for B = Bmin is illustrated in
Fig. 9a. Comparing Figs. 9a and 7 one can conclude that in this limiting case the point
Q coincides with the spiral tip q, and they both are located at the rotation center.
The radius of the spiral tip trajectory, Rq = Ct/Ω , vanishes in the limit B = Bmin .
The curvature KQ reaches the maximum KQ = 1. The shape of the wave front is
identical to that obtained by Burton, Cabrera and Frank [14]. The shape of the wave
back reproduces the front shape, except for the immediate vicinity of the spiral tip.
The wave back is turned by angle π with respect to the front, and the Cartesian
coordinates of the wave boundary and their first derivatives are smooth functions of
the arc length. In fact, in this limit the spiral wave form approaches the Yin-Yang
pattern.

In the second limiting case, B = Bc, the angular velocity vanishes and the radius
of the spiral wave core diverges. The shape of the spiral wave approaches the critical
finger first studied in [23] and illustrated in Fig. 9b. The boundary of the excited
region shown here undergoes a translational motion along the X axis at a constant
velocity. Obviously, this velocity should be equal to the velocity cp of a planar wave.

Thus, in a mediumwith a strongly reduced refractoriness the dimensionless angu-
lar velocity Ω is a unique monotonously decreasing function of the dimensionless
parameter B. This function Ω = Ω(B) changes between 0.331 and zero within the
interval Bmin < B < Bc. The radius of the spiral tip trajectory vanishes at B = Bmin

and diverges at B = Bc.
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5 Concluding Remarks

In this chapter we have demonstrated that the free-boundary approach allows us to
clarify the basic principles of spiral wave selection in excitable media. It is shown
that the rotational frequency and the spiral core radius in a medium with a short
refractoriness are completely determined by a single dimensionless parameter B
determined by Eq.19. The value of this parameter can be estimated numerically
or even analytically for quite different mathematical models. Moreover, it can be
obtained as a result of direct experimental measurements.

However, the kinematical description of the rigidly rotating spiral waves rep-
resented in this work is, in fact, only an important limiting case of a much more
complicated problem. As an example, three very important tasks, which should be
solved in the near future are listed below.

First of all, note that the propagation velocity of a stationary propagating wave
front is a nonlinear function of the front curvature [17]. A linear eikonal equation
(Eq.3) can be obtained only for ε = 0. For any ε > 0 there is a critical value of the
front curvature Kcr , which restricts the region, where undamped wave propagation is
supported. Point Q (see Fig. 7) is in stationary movement along a circular trajectory.
The wave front at this point is curved and its curvature cannot exceed Kcr . This also
restricts the angular velocity of a spiral wave [17]. This circumstance should be taken
into account, when a medium with B ≈ Bmin is considered [18].

Another very important issue is, of course, the role of the refractoriness of the
medium. This problem is currently not solved. An important step in this direction
is a recently developed kinematical description of a periodic sequence of the wave
segments [26].

Finally, the described kinematical theory is applicable to so-called trigger-trigger
waves [22]. However, under corresponding parameter variations, these waves can be
transformed to so-called trigger-phase waves [27–29]. Moreover, there is a contin-
uous transition between these two types of spiral kinematics [30], which should be
studied in detail.

Thus, the kinematical theory of spiral waves represents a very interesting and
intensively growing field for future investigations aimed, e.g., to find out efficient
ways to prevent or to suppress an undesirable and dangerous self-sustained wave
activity in excitable media.
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Chapter “Acoustic Spirals: Analysis of Bach’s Prelude in C
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The original version of the book was inadvertently published with an incorrect equa-
tion (2) on page 116 in chapter 5. The chapter and book have been updated with the
following change:

from
yp = y sin α + z cos α

to
yp = y cos α + z sin α
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Epilogue

We are the days and the nights
And the stars,

That illuminate the darkness.
We are holy beings,
Recalling this truth,

We feel the Sun and the Moon
In our body

Like Dancing Spirals

The secrets of existence unfold within us.

—American Indian Wisdom
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Glossary

Activator a substance which accelerates or stimulates a reaction.

ADP, AMP see ATP.

Allosteric The term allostery comes from the Greek allos “other”, and stereos “solid
(object)”. This is in reference to the fact that the regulatory site of a protein (called
allosteric site) is different from its active site.

Anoxia an absence or deficiency of oxygen reaching the tissues.

ATP (adenosine triphosphate) a complex organic chemical which is used for intra-
cellular energy transfer. When consumed in metabolic processes, it converts to either
ADP (adenosine diphospate) or AMP (adenosine monophosphate).

Attractor points, loops (limit cycles), surfaces (tori), and other geometrical subsets
(chaotic and fractal), where a dynamical system reaches (or approximates) stable
configuration or its “death”. For example, the center bottom position of a damped
pendulum is a point attractor: the pendulum is losing energy (energy dissipation) due
to friction time by time and finally it stops at the bottom.

Autocatalysis a catalysis of a reaction by one of its own products.

Avatar a word in Hinduism, means incarnation.

Belousov–Zhabotinsky (BZ) Reaction one of chemical reactions occurring along
the laws of non-equilibrium thermodynamics, showing chemical oscillations. The
oscillatory behavior is observed temporally and/or spatially. The essential ele-
ments in this oscillator are the autocatalytic species HBrO2 as activator, bromide as
inhibitor, and a catalyst/color indicator. Under excitable conditions it forms propa-
gating concentration waves.

Brewster Angle an incident angle at which a particular polarized light is transmitted
without reflection.

Carolingian script combining characteristics of cursive and half uncial, developed
in France in the 8th century (when the Carolingian dynasty governed).
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Cellular Automaton a discrete model studied typically in complexity science and
theoretical biology. It consists of a regular grid of cells, each in one of a finite number
of states, such as “on” and “off‘’. For each cell, a set of cells called its neighborhood
is defined relative to the specified cell in discrete time steps.

Chemotaxis movement of cells or organisms due to gradient of chemical agents (see
also phototaxis).

Conservative System incompressible flux in phase space, phase space volume is con-
served. For example, trajectories of harmonic oscillator or planet movement around
the Sun. (↔ dissipative system).

Convection thermally or chemically produced upward or downward movement of
fluids (liquids or gases).

CNS (central nervous system) the part of the nervous system consisting of the brain
and spinal cord.

Craniotomy the surgical removal of part of the bone from the skull to expose the
brain.

Deterministic a deterministic system is a system inwhich no randomness is involved
in the development of future states of the system. A deterministic model will always
produce the same output from a given initial state.

Dissipative System phase space volume contracts in time. For example, damped
oscillator. (↔ conservative system).

Dolmen a prehistoric monument consisting of two or more stones supporting a
horizontal stone slab.

Exoskeleton an external skeleton or supportive covering an animal (↔ endoskele-
ton).

Feigenbaum Scenario a mathematical scenario to cause deterministic chaos from
order by period doubling.

Fractal infinitely repeating similar pattern (self-similar pattern) at increasing smaller
scales, usually due to its non-integer dimension.

Gabel (Wimperg in German) the vertical triangular portion of a wall between the
edges of intersecting roof pitches, often used in the architecture of churches.

Geoglyph a large mark or motif produced on the ground, formed by stones, stone
fragments, live trees, gravel, or earth.

Heaviside Function a step function, whose value is zero for negative argument and
one for positive argument.

Inhibitor a substance that interferes with a chemical process or reaction, e.g., by
suppressing growth.

Ischemia an inadequate blood supply to an organ or part of the body, especially the
heart muscles.
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Laminar Flow streamline flow in which a fluid flows in parallel layers, with no
disruption between the layers (↔ turbulence).

Luciferase an oxidative enzyme which acts on luciforin. Resulting excited state
intermediate emits light upon decaying to its ground state which produces biolumi-
nescence.

Mean Field Theory Mean field theory studies the behavior of large and complex
stochasticmodels by studying a simplermodel. Suchmodels consider a large number
of small individual components which interact with each other. The effect of all the
other individuals on any given individual is approximated by a single averaged effect,
thus reducing a many-body problem to a one-body problem.

Metamorphosis change into a different physical or biological form.

Morphogenesis the biological process that causes an organism to develop its shape,
for example, control of cell growth and cellular differentiation.

Nacre iridescent inner layer of some shellfish, known as “mother of pearl”.

NAD (nicotinamide adenine dinucleotide) a coenzyme existing in all living cells
in two forms: an oxidized and reduced form NAD+ and NADH, respectively, func-
tioning for electron transfer in cells.

NGC (New General Catalogue) a catalogue of 7840 deep-sky objects, including
galaxies, star clusters, emission nebulae and absorption nebulae.

Non-equilibrium In thermodynamic equilibrium there are no net macroscopic flows
of matter or of energy, either within a system or between systems. In non-equilibrium
systems, by contrast, there are net flows of matter or energy. The role of entropy has
to be considered.

Nonlinear Dynamics a field of physics that studies systems governed by equations
more complex than the linear aX + b form. Nonlinear systems, such as the weather
or neurons, often appear unpredictable, but still they are not random.

Normal Velocity In mathematics, given a velocity vector at a point on a curve, that
vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve,
called the tangential component of the vector, and another one perpendicular to the
curve, called the normal component of the vector.

Phototaxis movements of cells or organisms due to light gradient (see also chemo-
taxis).

Proboscis a sucking organ of insects or some other invertebrates, or a flexible con-
spicuously long snout of some mammals.

Refractory unresponsive to stimuli, a resting state.

Self-Organization a process where some form of overall order arises from local
interactions between parts of an initially disordered system. The process is often
spontaneous structuration out of a homogeneous initial state, triggered by random
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fluctuations and amplified by positive feedback. Examples are: crystallization, ther-
mal convection of fluids, chemical oscillation, animal swarming, neural networks,
and others.

Self-Similarity for objects being exactly or approximately similar to a part of itself.

Stochastic a system that is randomly determined; variables proceed by probabilities,
or guesswork.

Swarm Intelligence the collective behavior of decentralized, self-organized systems
such as insect, bird or fish colonies.

Tetanic Stimulation awayof stimulationof a neuronwith a high frequency repetition
(like tetanus suffering).

Thermodynamic Equilibrium a state of a physical system in which it is in mechan-
ical, chemical and thermal equilibrium and in which there is no tendency for spon-
taneous change.

Trade Wind a wind blowing almost continuously from the northeast in the Northern
Hemisphere and from the southeast in theSouthernHemisphere, acting as the steering
flow for tropical storms. They have been used for sailing ships to cross the world’s
oceans for centuries.

Trajectory indicates in phase space the progression or line of development of the
evolving system.

Tropopause the boundary region between the troposphere (the lowest layer of the
atmosphere) and stratosphere (the layer above the troposphere).

Turbulence any pattern of fluid motion characterized by chaotic changes in pressure
and flow velocity (↔ laminar flow). Turbulence is commonly observed in everyday
phenomena such as surf, fast flowing rivers, billowing storm clouds, or smoke from a
chimney.Most fluid flows occurring in nature and created in engineering applications
are turbulent.

Turing Patterns patterns appearing in nature (biological organisms as well as other
natural systems, like sand patterns formed by wind). Stripes and spots arising natu-
rally out of a homogeneous, uniform state, introduced by Alan Turing in 1952, due
to reaction-diffusion coupling of a fast activator and slow inhibitor.

Visual Cortex a part of the cerebral cortex that processes visual information.

:= a mathematical symbol meaning “is defined to be equal to”
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