
Static Analysis of Android Apps
Interaction with Automotive CAN

Federica Panarotto1, Agostino Cortesi2, Pietro Ferrara3(B),
Amit Kr Mandal2,4, and Fausto Spoto1

1 Università di Verona, Verona, Italy
federica.panarotto@gmail.com,fausto.spoto@univr.it

2 Università Ca’ Foscari, Venezia, Italy
{cortesi,amitkr.mandal}@unive.it

3 JuliaSoft Srl, Verona, Italy
pietro.ferrara@juliasoft.com

4 BML Munjal Univesity, Gurgaon, Haryana, India
amitmandal.nitdgp@gmail.com

Abstract. Modern car infotainment systems allow users to connect an
Android device to the vehicle. The device then interacts with the hard-
ware of the car, hence providing new interaction mechanisms to the
driver. However, this can be misused and become a major security breach
into the car, with subsequent security concerns: the Android device can
both read sensitive data (speed, model, airbag status) and send danger-
ous commands (brake, lock, airbag explosion). Moreover, this scenario is
unsettling since Android devices connect to the cloud, opening the door
to remote attacks by malicious users or the cyberspace. The OpenXC
platform is an open-source API that allows Android apps to interact
with the car’s hardware. This article studies this library and shows how
it can be used to create injection attacks. Moreover, it introduces a novel
static analysis that identifies such attacks before they actually occur. It
has been implemented in the Julia static analyzer and finds injection
vulnerabilities in actual apps from the Google Play marketplace.

1 Introduction

Car industry is quickly introducing Android devices in cars, to provide new info-
tainment options to the driver. Various existing Android apps already connect
to the car and provide info about the status of its hardware, the history of its
movements or the driving style. Moreover, they connect to the Internet, hence
gather information about the nearby area or the presence of parking slots. Such
possibilities enhance the driving experience, but are also security concerns since
apps can leak arbitrary data, including sensitive information on car, movements
and drivers [7]. Moreover, they can send dangerous commands: lock or unlock the
car, activate its brakes, turn the engine on or off, accelerate, turn on the wind-
shield wipers, and so on. Hence, such apps need very high security standards,
or the might otherwise expose driver and passengers to serious physical threats.
c© Springer Nature Switzerland AG 2018
M. Qiu (Ed.): SmartCom 2018, LNCS 11344, pp. 114–123, 2018.
https://doi.org/10.1007/978-3-030-05755-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05755-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-05755-8_12


Static Analysis of Android Apps Interaction with Automotive CAN 115

In particular, injection of data and commands by a malicious user or by the
outside world should be forbidden, as well as the unconstrainted communication
of sensitive data about the car and its sensors.

This article targets OpenXC1, an open-source library for the programmatic
connection of Android apps embedded in cars to the hardware of the car. The
Google Play Store already contains various apps that use this library. The Auto-
motive Grade Linux Foundation Workgroup uses OpenXC for low level access
to internal car information2. The traffic tamer app challenge3 (dealing with the
traffic in London) uses OpenXC. Apps connect to OpenXC services to read sen-
sitive data or send commands, by using its API methods. In terms of information
flow and taint analysis [10], such methods are sources and sinks of tainted data,
respectively. Injection attacks occur when the user or the external world injects
data or commands that reach a sink; privacy issues occur when sources are used
to read sensitive data that flows towards the outside world. Static taint analysis
of Java has already been widely applied to identify injection attacks, for instance
in the Julia analyzer [5]. This article leverages and instantiates this approach
to automatically verify apps that use OpenXC; it reports several examples of
Android apps where our technique finds vulnerabilities, automatically, and com-
pares the results with those of other static analyzers. The theory and implemen-
tation of the injection analysis of Julia is already fully described in [5] and is
only briefly introduced in Sect. 3, since it is not the topic of this article.

Modern vehicles connect their embedded hardware, such as sensors and actu-
ators, through an electronic bus. External devices can be plugged in the bus
through an OBD II port and send AT commands. The most adopted connec-
tion device is the ELM327, whose AT commands are publicly available online4.
The CAN bus protocol is the most widely adopted standard bus in both USA
and Europe. It was meant to be fast and robust, hence uses unauthenticated
and unencrypted communication. However, the CAN is nowadays connected to
the driver and external world, even to the Internet, by using smartphones and
tablets plugged in via Bluetooth or USB. This paves the way to security attacks
to the car and to privacy leaks of the transferred data [1,3,6]. An attacker might
even be granted complete control over the vehicle’s systems [3]. More recently,
authentication has been added [12]; this increases latency time but does not
completely solve injection issues, nor applies to legacy systems.

There are a few software layers for connecting to the CAN, trying to
become the industry standard. This article focuses on one such layer, namely,
on OpenXC, since it is free, open-source and already distributed on Google
Play. OpenXC is an automotive middleware and hardware platform supported
by Ford Motors as an evolution of its AppLink technology. Alternatives layers

1 http://openxcplatform.com
2 http://docs.automotivelinux.org/docs/apis services/en/dev/reference/signaling/

architecture.html#reusing-existinglegacy-code
3 https://traffic.devpost.com/
4 https://www.sparkfun.com/datasheets/Widgets/ELM327 AT Commands.pdf

http://openxcplatform.com
http://docs.automotivelinux.org/docs/apis_services/en/dev/reference/signaling/architecture.html#reusing-existinglegacy-code
http://docs.automotivelinux.org/docs/apis_services/en/dev/reference/signaling/architecture.html#reusing-existinglegacy-code
https://traffic.devpost.com/
https://www.sparkfun.com/datasheets/Widgets/ELM327_AT_Commands.pdf


116 F. Panarotto et al.

Fig. 1. A schematic description of the connection between car and OpenXC.

public interface VehicleManager {
public @UntrustedDevice Measurement get(@DeviceTrusted Class<? extends Measurement> msrmttp);
public @UntrustedDevice VehicleMessage get(@DeviceTrusted MessageKey key);
public @UntrustedDevice VehicleMessage request(@DeviceTrusted KeyedMessage msg);
public boolean send(@DeviceTrusted Measurement msg);
public boolean send(@DeviceTrusted VehicleMessage msg);
public String requestCommandMessage(@DeviceTrusted CommandType type);
public void request(@DeviceTrusted KeyedMessage msg, Listener lstnr);
public void addListener(@DeviceTrusted Class<? extends Measurement> msrmttp, Listener lstnr);
public @UntrustedDevice String getVehicleInterfaceDeviceId();
public @UntrustedDevice String getVehicleInterfaceVersion();
public @UntrustedDevice String getVehicleInterfacePlatform();

}
public interface Measurement {
public interface Listener {
public void receive(@UntrustedDevice Measurement msrmt);

}
}
public interface VehicleMessage {
public interface Listener {
public void receive(@UntrustedDevice VehicleMessage msg);

}
}
public interface UserSink {
public void receive(@UntrustedDevice VehicleMessage msrmt);

}
public interface ApplicationSource {
void handleMessage(@UntrustedDevice VehicleMessage msg);

}
public interface UsbVehicleInterface {
boolean write(@DeviceTrusted byte[] bytes);

}
public interface NetworkVehicleInterface {
boolean write(@DeviceTrusted byte[] bytes);

}
public interface BluetoothVehicleInterface {
boolean write(@DeviceTrusted byte[] bytes);

}

Fig. 2. Java classes from OpenXC and their source/sink specifications for Julia.

are MirrorLink5, largely used but shown insecure [8], and the new Automotive
Grade Linux6. The results of this article can be extended to such alternatives
once injection sources and sinks are identified, by using the same approach as in
Sect. 4.

Figure 1 shows data flows between car, smartphone and the Internet, through
OpenXC. The hardware side is an OBD II device with an installed firmware,
5 https://mirrorlink.com
6 https://www.automotivelinux.org

https://mirrorlink.com
https://www.automotivelinux.org


Static Analysis of Android Apps Interaction with Automotive CAN 117

called Vehicle Interface (VI). It is configured by default in read-only mode, to
access the vehicle’s data by translating CAN messages into the OpenXC mes-
sage format. Messages can then be pushed to a host device. To send commands
and data to the VI (and hence to the car), the bus configuration must be set to
raw_writable. The software side is OpenXC, a library whose Java API allows
Android apps, coded in Java, to read and write commands to the CAN. To pass
these commands as messages, OpenXC exports them as Parcelables consumed
by Services, as typical in Android: there, services are abstractions of a remote
data processor, where communication takes place, transparently, through remote
procedure calls between the components of a distributed system. OpenXC ser-
vices are bound, meaning that the app receives a stub object whose methods
handle, transparently, the interprocess method calls. By invoking such meth-
ods, this allows direct and fast communication between software components.
The OpenXC Android manifest exports a com.openxc.remote.VehicleService
towards the hardware of the car and another com.openxc.VehicleManager ser-
vice towards the Java client app. An app can bind the latter service and use
Java code for creating objects of a class VehicleMessage to interact with the
CAN. The OpenXC API consists of Java classes, including interfaces and stubs
for the above services. The main class for interacting to the CAN is the above
mentioned VehicleManager. It exports methods that allow an app to read and
write measurements, send commands to the CAN, register listeners for receiving
data updates and access sensitive information about the hardware VI. The full
description of this API is available online7. Figure 2 reports just methods and
listeners of VehicleManager that are relevant to this article. In terms of taint
analysis, we anticipate that such methods are either sources of sensitive data or
sinks of dangerous commands, or even both at a time.

2 Examples of Injections in Android Apps Using
OpenXC

We analyzed open-source, third-party apps using OpenXC, mostly from https://
github.com/openxc; two come from the Google’s Play Store, in Dalvik bytecode,
and have been translated into Java bytecode through dex2jar and apktool. We
classify these apps on the basis of our findings.

A Privacy Breaking App. Rain Monitor8 uses OpenXC to access sensitive
data: car location, windshield status and speed. It sends it to a remote web
service, that uses it to inform drivers about showers in their area. The status of
the HTTP request and of the windshield are also logged. These are injections:
flow of sensitive data into dangerous operations. In this case, the operations
divulge sensitive data, violating privacy. Rain Monitor also reads the car position
from the CAN and logs it. Hence, anybody with access to the logs can reconstruct
the movements of the vehicle, a clear privacy issue. This code builds a URL by

7 http://android.openxcplatform.com/reference/com/openxc/VehicleManager.html
8 https://github.com/openxc/rain

https://github.com/openxc
https://github.com/openxc
http://android.openxcplatform.com/reference/com/openxc/VehicleManager.html
https://github.com/openxc/rain


118 F. Panarotto et al.

using latitude and longitude. This is a URL injection (sensitive data flowing into
an Internet address), possibly inherent to the task performed by this app.

Fig. 3. OpenXC enabler apps.

An App that Injects Data into the
CAN. OpenXC Enabler9 is a tutorial app
meant to test and document most func-
tionalities of OpenXC. It shows the pos-
sibility of typing and sending arbitrary
messages to the CAN (see Fig. 3). The
user formats the messages as requested
by the protocol, i.e., CAN bus number,
ID of a target sensor or actuator and a
value containing multiple CAN signals, in
JSON format, such as {"bus": 1, "id": 43,
"value": "0x0102003040506ABCD"}. That mes-
sage gets sent to the sensor or actuator. This app features a flow of information
from user input into the CAN, that is, an injection of data into the CAN.

Apps that Keep CAN Data Inside their Logic. Shift Knob10 tracks vehicle
information from the CAN and provides to the driver haptic and visual sugges-
tions about good driving style, by vibrating the shift knob. Clearly, it accesses
CAN data, but keeps it inside the app. Data is reported in the app’s UI, but
never divulged externally, for instance through the Internet. Hence, this app
does not feature any injection. Night Vision11 “adds night vision to a car with
off-the-shelf parts. The webcam faces forward [. . . ] and uses edge detection to
detect objects on the road”. It uses OpenXC only for listening to the headlamps
status. When the headlamps are turned on, a listener starts the main activity
of the app. Sensitive data (the state of the headlamps) is only used inside the
logic of the app and does not escape from it. Hence, this app does not feature
any injection. Dynamic Skip Fire12 is “used [. . . ] to showcase Tula Technology’s
for cars”13. It shows the fuel efficiency rate of 7–15% through optimized com-
bustion and reduced engine pumping losses. We downloaded this app from the
Play Store but could not find its source code. Hence, we analyzed its behavior
in the Android emulator and looked at its bytecode. Also this app uses sensitive
data inside its internal logic only.

An App Where CAN Data Flows into a Database, Sanitized. MPG14

stores trips information, fuel consumption and efficiency into a local SQLite
database. Hence this app builds an information flow from sensitive data from
the CAN into a database. This could allow a dangerous SQL-injection, but data
undergoes sanitization before the database update and no SQL-injection occurs.

9 https://play.google.com/store/apps/details?id=com.openxcplatform.enabler
10 http://openxcplatform.com/projects/shift-knob.html
11 http://openxcplatform.com/projects/nightvision.html
12 https://apkpure.com/dsf/com.ntt.customgaugeview
13 https://www.tulatech.com/dsf-overview/
14 https://github.com/openxc/mpg

https://play.google.com/store/apps/details?id=com.openxcplatform.enabler
http://openxcplatform.com/projects/shift-knob.html
http://openxcplatform.com/projects/nightvision.html
https://apkpure.com/dsf/com.ntt.customgaugeview
https://www.tulatech.com/dsf-overview/
https://github.com/openxc/mpg


Static Analysis of Android Apps Interaction with Automotive CAN 119

3 Taint Analysis for Java and Android

Our work builds on the Julia static analyzer [11] for Java and Android bytecode,
based on abstract interpretation [4]. Julia starts the analysis from a set of entry
points and builds a semantic model of the execution of a program. Namely, all
methods reachable, recursively, from the entry points get analyzed. The selection
of the entry points can be done in three ways: (i) they are main methods; (ii)
they are public methods (this is the default); (iii) they are public and protected
methods. A larger set of entry points induces a larger set of reachable methods,
weaker method call patterns and, in general, more warnings. The selection of
the entry points is different in Android, whose execution model heavily relies on
event handlers. Hence, Julia scans the Android manifest, looking for XML ele-
ments declaring services, activities, receivers and content providers. Then Julia
creates a synthetic method that simulates the lifecycle of such components (e.g.,
an activity starts with a call to onCreate(), followed by calls to onStart(),
onStop() and onResume()). This method is then an entry point [9].

Among its checkers, Julia includes the Injection checker for a sound informa-
tion flow analysis [5]. It propagates tainted data along all possible information
flows. Boolean variables stand for program variables. Boolean formulas model
explicit information flows. Namely, their models are a sound overapproxima-
tion of all taintedness behaviors for the variables in scope at a given program
point. For instance, the abstraction of the load k bytecode instruction, that
pushes on the operand stack the value of local variable k, is the Boolean formula
(ľk ↔ ŝtop) ∧ U , stating that the taintedness of the topmost stack element after
this instruction is equal to that of local variable k before the instruction; all other
local variables and stack elements do not change (expressed by a formula U);
taintedness before and after an instruction is distinguished by using distinct hats
for variables. There are such formulas for each bytecode instruction. Instructions
that might have side-effects (field updates, array writes and method calls) need
some approximation of the heap, to model the possible effects of the updates. The
analysis of sequential instructions is merged through a sequential composition
of formulas. Loops and recursion are saturated by fixpoint. The resulting anal-
ysis is a denotational, bottom-up taint analysis, that Julia implements through
efficient binary decision diagrams [2].

The taint analysis of Julia uses a dictionary of sources and sinks for Android.
Sources include methods accessing sensitive information about the user or device,
or reading data from UI widgets; sinks include methods for logging or for
database or network manipulation. The analysis of a source forces the corre-
sponding Boolean variable to true. At each sink, the analyzer checks if the cor-
responding Boolean local variable is definitely false. In that case, no flow of
tainted data into that sink is possible; otherwise, Julia issues a warning, report-
ing a potential flow of tainted data into the sink. This approach uses a single
Boolean mark for all sources. Hence, it is inherently impossible to distinguish
different origins of tainted data. However, this limitation justifies its scalability.



120 F. Panarotto et al.

4 Instantiation to OpenXC

Figure 2 reports the methods of OpenXC that either produce (sources) sensi-
tive, tainted data, that should not flow into sensitive locations, or receive (sinks)
data that must be untainted, since it might flow into the CAN. This informa-
tion was in the mind of the library developers, and is not explicit in code. To
use the taint analysis of Julia, it must be first made explicit, in a format that
Julia understands. Currently, Julia allows one to instantiate its taint analysis
with the addition of sources and sinks, given either as an XML file or as anno-
tated interfaces. This article exploits the latter possibility. Namely, the annotated
interfaces in Fig. 2 are given to Julia before the analysis, with annotations for
sources (@UntrustedDevice) or sinks (@DeviceTrusted). For instance, meth-
ods get receive a parameter that specifies the kind of information that must
be read from the CAN. Hence, that parameter must not be freely in control of
the user of the application, or otherwise she might be able to build an injec-
tion into the CAN device. That is, it is a sink. Moreover, the value returned by
such get methods discloses sensitive information about the car. Consequently, it
must be used in a proper way or otherwise privacy might be jeopardized. Hence,
it is a source. Also the parameter of the receive method of the listeners is a
source, since it carries data reporting updates about the car status. Hence, it is
annotated as @UntrustedDevice. Note that these annotations must be manually
provided for OpenXC, once and for all. They cannot be automatically inferred,
either statically or dynamically, since they follow from the intended semantics of
OpenXC, which is only described in its plain English documentation. Any other
taint analyzer would need that same information.

Once Julia receives such annotated interfaces, it can perform a taint analysis,
aware of those extra sources and sinks. Sources are marked as tainted during the
analysis and propagated. Sinks are checked for taintedness at the end of the
analysis: if they are tainted, Julia issues a warning about a potential injection.

5 Experiments

We have analyzed the apps from Sect. 2 with the taint analysis of Julia, instanti-
ated with the annotation in Fig. 2. The analyses require up to 3 min per app on
a standard desktop Intel Core i7 with 16GB of RAM. We have monitored and
captured the network traffic of the apps, in the Android emulator of Android
Studio and with the VI simulator15 by WireShark16.

The analysis of Rain Monitor issues the following injection warnings:
CheckWipersTask.java:111:XSS-injection into method "execute"
CheckWipersTask.java:114:Log forging into method "w"
CheckWipersTask.java:117:Log forging into method "d"
FetchAlertsTak.java:68:Log forging into method "d"
FetchAlertsTak.java:76:URL injection into method "<init>"

15 https://github.com/openxc/openxc-vehicle-simulator
16 https://www.wireshark.org/

https://github.com/openxc/openxc-vehicle-simulator
https://www.wireshark.org/


Static Analysis of Android Apps Interaction with Automotive CAN 121

These correspond to the injections informally discussed in Sect. 2. By ana-
lyzing the network traffic with Wireshark, we have found a package sent to the
IP address 2.17.206.167, that corresponds to a company that supplies Internet
services such as a cloud database. This is definitely a dangerous injection, but
not exactly a cross-site scripting (XSS) injection, as Julia suggests, since it can-
not distinguish the source of tainted data. Moreover, the status of the HTTP
request and the status of the windshield get logged into a file (second and third
warning). The former is an example of data coming from the external world (the
HTTP server might be compromised and send any possible status); the latter is
an example of sensitive car data. Sensitive data (latitude and longitude) is read
from the CAN, logged (fourth warning) and later used to build a URL (fifth
warning). The latter points to a remote web service that tracks the position of
the car and the weather. This is a potential privacy breach. Hence, the analysis
only issues true alarms here, although inherent to the task of the app.

The analysis of OpenXC Enabler issues seven injection warnings, including:
SendCanMessageFragment.java:110:Device injection into method "send"
NetworkPreferenceManager.java:53:Log forging into method "w"

The first corresponds to the injection discussed in Sect. 2. Namely, data com-
ing from user-controlled widgets flows into the send method and hence to the
CAN. The second corresponds to the other discussed in the same section, about
the flow of user-controlled preferences into the logs. Another warning is sim-
ilar to the first (line 127 of DiagnosticRequestFragment.java). Four more
warnings are similar to the second, that is, they warn about data from the pref-
erences of the app (hence under user control) that can flow into logs (line 480
of SettingsActivity.java, line 69 of PreferenceManagerService.java and
line 72 of TraceSourcePreferenceManager.java) or into the specification of a
file name (path-traversal : line 72 of viewTraces.java). These warnings are true
alarms. The analysis of the network traffic shows many ack packages sent to the
VI simulator and some non-empty packages, unfortunately coded in hexadeci-
mal, corresponding to commands sent from the user to the CAN bus simulator.

For Shift Knob, Night Vision and Dynamic Skip Fire, Julia issues no warning.
This is in line with the fact that sensitive data from the CAN flows in a controlled
way inside those apps and never reaches critical operations nor leaves the device.
The analysis of the network traffic reports packages from the VI simulator, that
is, the CAN information, and from no other interesting IP address. We have no
analysis for the other two apps since, during emulation, they crashed repeatedly.

For MPG, Julia issues only one warning, at line 343 of MpgActivity.java.
There, an option from Android preferences (hence controlled by the user) is used
in a call to Thread.sleep. This allows a denial-of-service injection by setting a
large integer value in the preferences. More interestingly, Julia does not issue any
warning where a method insertOrThrow is used to update an SQL database.
Julia does consider the query to that method as potentially tainted, but that
method is not in the list of sinks provided to Julia, since it is known to sanitize
data used to perform the query. Hence, no warning is issued there. We have no
network traffic analysis since the app crashed repeatedly during emulation.



122 F. Panarotto et al.

The last results are relevant, since they show the power of the tool: not only
did it identify several real issues, but it did not issue false alarms here. In these
experiments, we have used the Injection checker of Julia, that performs a taint
analysis. Julia includes other checkers, that issue other warnings on these apps.
They are not injections, nor security issues, but mainly related to potential bugs
and inefficiencies. As such, they are not considered here.

We have analyzed the same apps with other static analyzers: FindBugs17,
SpotBugs18, SonarQube19, Qark20 and FlowDroid21. They do not identify any
of the above injections. Some of them do issue warnings tagged as security issues,
by using some syntactical check of the code. Namely, SonarQube complains about
the fact that some public fields should have been declared as final, since they
are never modified; or that some visibility modifier is too weak; it also com-
plains about calls to File.delete() with no check on the returned value, which
in Java is meant to inform about the outcome of the operation. Julia would
issue the same warnings, had the corresponding checkers been turned on; how-
ever, it does not tag them as security issues but rather as bugs or inefficiencies.
Dynamic Skip Fire has not been analyzed with these tools, since they do not
work on bytecode. Qark issues warnings about a too small minSdkVersion in
the AndroidManifest.xml, which is known to allow some security problems; it
also warns about the run-time registration of Android broadcast receivers, that
might allow some form of data hijacking. FlowDroid issues Android security
warnings about writing information in a log file, since it warns at all logging
calls. The same happens for method putString, that FlowDroid assumes to
always inject tainted data into an intent. These are simple syntactical checks
of the code, since the analyzers do not make any effort in proving that the risk
is real or only potential, which results in false alarms. These analyses are only
pattern-matching. Julia avoids such false alarms through a taintedness analysis
of data. Moreover, FlowDroid issues no warning about information flow from/to
the CAN. FindBugs and SpotBugs issue no security warnings on these apps.

6 Conclusion

This article instantiated the taint analysis of Julia [5] with a specification of
sources and sinks for OpenXC. The resulting taint analysis finds security vul-
nerabilities in actual third-party apps interacting with the car CAN bus. They
are injections, that is, either a safeness issue (the user of the app or the external
world can control safety critical aspects of the car) or a privacy issue (sensitive
data about the car escape into the external world). Comparison with five other
tools for static analysis shows that only Julia is able to spot such issues.

17 http://findbugs.sourceforge.net
18 https://spotbugs.github.io
19 https://www.sonarqube.org
20 https://github.com/linkedin/qark
21 https://github.com/secure-software-engineering/FlowDroid

http://findbugs.sourceforge.net
https://spotbugs.github.io
https://www.sonarqube.org
https://github.com/linkedin/qark
https://github.com/secure-software-engineering/FlowDroid


Static Analysis of Android Apps Interaction with Automotive CAN 123

The actual relevance of the injection issues depends from the level of privacy
and security required by a car manufacturer. In any case, the importance of these
results can also be read the other way around: since the Injection checker of Julia
is sound (that is, it considers all execution paths), then there is no injection into
the CAN if Julia does not issue any warning. This allows one to understand
where are the only injection risks.

References

1. Avatefipour, O., Hafeez, A., Tayyab, M., Malik, H.: Linking received packet to the
transmitter through physical-fingerprinting of controller area network. In: IEEE
Workshop on Information Forensics and Security (WIFS 2017), Rennes, France,
pp. 1–6, December 2017

2. Bryant, R.: Symbolic Boolean manipulation with ordered binary-decision diagrams.
ACM Comput. Surv. 24(3), 293–318 (1992)

3. Checkoway, S., et al.: Comprehensive experimental analyses of automotive attack
surfaces. In: 20th USENIX Security Symposium, SanFrancisco, CA, USA. USENIX
Association, August 2011

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

5. Ernst, M.D., Lovato, A., Macedonio, D., Spiridon, C., Spoto, F.: Boolean formulas
for the static identification of injection attacks in Java. In: Davis, M., Fehnker,
A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 130–145.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7 10

6. Koscher, K., et al.: Experimental security analysis of a modern automobile. In:
31st IEEE Symposium on Security and Privacy (S&P 2010), Berleley/Oakland,
California, USA, pp. 447–462. IEEE Computer Society, May 2010

7. Mandal, A.K., Cortesi, A., Ferrara, P., Panarotto, F., Spoto, F.: Vulnerability
analysis of android auto infotainment apps. In: Proceedings of the 15th ACM
International Conference on Computing Frontiers, pp. 183–190. ACM (2018)

8. Mazloom, S., Rezaeirad, M., Hunter, A., McCoy, D.: A security analysis of an in-
vehicle infotainment and app platform. In: 10th USENIX Workshop on Offensive
Technologies (WOOT 2016). USENIX Association, Austin, August 2016

9. Payet, É., Spoto, F.: Static analysis of android programs. Inf. Softw. Technol.
54(11), 1192–1201 (2012)

10. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

11. Spoto, F.: The Julia static analyzer for Java. In: Rival, X. (ed.) SAS 2016. LNCS,
vol. 9837, pp. 39–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53413-7 3

12. Wang, Q., Sawhney, S.: VeCure: a practical security framework to protect the CAN
bus of vehicles. In: 4th International Conference on the Internet of Things (IOT
2014), Cambridge, MA, USA, pp. 13–18. IEEE, October 2014

https://doi.org/10.1007/978-3-662-48899-7_10
https://doi.org/10.1007/978-3-662-53413-7_3
https://doi.org/10.1007/978-3-662-53413-7_3

	Static Analysis of Android Apps Interaction with Automotive CAN
	1 Introduction
	2 Examples of Injections in Android Apps Using OpenXC
	3 Taint Analysis for Java and Android
	4 Instantiation to OpenXC
	5 Experiments
	6 Conclusion
	References




