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Abstract. In this paper, we propose a pedestrian detection method with
semantic attention based on the single-stage detector architecture (i.e., Retina-
Net) for occluded pedestrian detection, denoted as PDSA. PDSA contains a
semantic segmentation component and a detector component. Specifically, the
first component uses visible bounding boxes for semantic segmentation, aiming
to obtain an attention map for pedestrians and the inter-class (non-pedestrian)
occlusion. The second component utilizes the single-stage detector to locate the
pedestrian from the features obtained previously. The single-stage detector
adopts over-sampling of possible object locations, which is faster than two-stage
detectors that train classifier to identify candidate object locations. In particular,
we introduce the repulsion loss to deal with the intra-class occlusion. Extensive
experiments conducted on the public CityPersons dataset demonstrate the
effectiveness of PDSA for occluded pedestrian detection, which outperforms the
state-of-the-art approaches.
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1 Introduction

Pedestrian detection is a significant research topic in object detection, which benefits
many applications, e.g., driverless cars, intelligent robotics and intelligent transporta-
tion. It is quite common to utilize the methods proposed in object detection [1-3] to
detect pedestrians directly. However, these methods can hardly obtain the optimal
performance. The main reason is that pedestrians always gather together and are easily
obscured by other objects in reality. Therefore, it is challenging and meaningful to deal
with occlusion problems in pedestrian detection.

Quite a few researchers focus on the inter-class occlusion, i.e., pedestrians are
occluded by non-pedestrian objects, e.g., buildings, trees and cars. It is difficult to
locate the pedestrians based on parts of the bodies since there are rich categories of
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obstruction, e.g., right-left and bottom-up occlusions. Intuitively, it is easy for detectors
to learn features from the exposed parts compared with the heavily occluded pedes-
trians. In previous work, constructing pedestrian templates is the mainstream for
pedestrian detection, which divides a pedestrian into different parts as templates, and
then utilizes these templates to train different classifiers for various occlusions. How-
ever, it suffers from high computational cost. Recently, Zhang et al. [4] apply attention
mechanism to handle different occlusion patterns, which achieves the state-of-the-art
performance on heavy occlusion. However, their method only works on the two-stage
models, i.e., Faster-RCNN [3], which consists of proposing regions and computing the
confidences of object classes.

Recently, the advanced models are based on the single-stage models, e.g., YOLOv2
[5], DSSD [6] and RetinaNet [2], which directly calculate both bounding boxes and
confidences of object classes. In this paper, we aim to use the single-stage detection
model to handle different occlusion patterns on pedestrian detection, by designing a
novel network named as pedestrian detection with semantic attention (PDSA). More
specially, PDSA contains two components, i.e., a semantic segmentation component
and a detector component. The semantic segmentation component is used to reduce the
influence of the heavily occluded parts with the visible bounding boxes of pedestrians.
It takes low-level features as input and try to learn a feature map supervised by the
visible bounding boxes. Furthermore, the feature map will guide as attention to the
input features. The detector component uses a single-stage detection model, i.e.,
RetinaNet [2], which combines feature pyramids [1] to predict the bounding boxes and
the confidences of object classes. The input of the detector component is obtained from
the semantic segmentation component, which helps the detection model to detect the
heavily occluded pedestrians. In particular, we also consider the intra-class occlusion,
which occurs when a pedestrian is occluded by other pedestrians, and introduce the
repulsion loss [7] to improve the performance of our model.

The main contributions of our work in this paper are summarized as follows:

— We propose the PDSA model that exploits semantic segmentation to address the
inter-class occlusion, and introduce the repulsion loss to deal with intra-class
occlusion.

— PDSA utilizes semantic segmentation information to reduce the influence of the
heavily occluded parts. To the best of our knowledge, it is the first attempt to utilize
visible bounding boxes with semantic segmentation component to obtain the
semantic attention for pedestrian detection.

— We conduct extensive experiments on the CityPersons dataset containing heavily
occluded pedestrians, and outperforming the state-of-the-art approaches.

The rest of the paper is organized as follows. In Sect. 2, related work is reviewed.
In Sect. 3, the motivation is introduced. In Sect. 4, the proposed PDSA model is
presented. In Sect. 5, extensive experiments are conducted and analyzed. Finally,
Sect. 6 offers some concluding remarks.
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2 Related Work

In this section, we review some existing research works on the pedestrian detection and
occlusion handling, respectively.

2.1 Pedestrian Detection

Recently, the convolutional neural network (CNN) has achieved great progress on
pedestrian detection. In the early time, quite a few works [8—10] tried to apply CNN
directly for pedestrian detection. Li et al. [11] proposed SA-Fast RCNN to detect
pedestrians in different scales, and Cai et al. [12] used MS-CNN to obtain competitive
performance on pedestrian detection. Meantime, Zhang et al. [13] refined the Faster R-
CNN network by combining region proposal networks with Boosted Forest, which
improves the performance on small objects and hard negative samples. However, these
methods are based on the two-stage detectors (i.e., Faster R-CNN [3]), which suffer
from high computational cost.

2.2 Occlusion Handling

In term of occlusion handling, part-based methods are one of the mainstream
approaches. Ouyang et al. [14] designed a framework that models the part visibility as
latent variables to predict the scores of part detectors. Mathias et al. [15] proposed the
Franken-classifiers method, which utilized multiple classifiers to learn a specific type of
occlusion for different occluded pedestrians. Tian et al. [16] proposed a DeepParts
model to obtain competitive performance on occlusion handling. The authors con-
structed an extensive part pool and integrated these parts scores to the final score of the
predicted results. However, the part-based methods usually require the part classifiers
to learn corresponding occlusion pattern independently, which results in a lot of
computations. Zhang et al. [4] applied channel-wise attention mechanism to handle the
occlusion. However, their methods are only suitable for the two-stage detectors, while
the single-stage detectors are faster with high performance.

3 Motivation

In the context of occluded pedestrian detection, detectors usually fail to detect the
pedestrians due to that detectors learn features from the whole bounding boxes in the
training stage. However, the bounding boxes not only contain pedestrians but also may
include parts of other pedestrians (i.e., intra-class occlusion) or non-pedestrian objects
(i.e., inter-class occlusion).

(a) For the intra-class occlusion, it happens commonly in the crowd, which results
in high overlap rate between bounding boxes. The detectors are easy to predict only
a single pedestrian. Inspired by Wang et al. [7], we introduce the repulsion loss to
narrow down the gap between a proposal and its designated target, and keep it away
from other ground-truth objects.
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(b) For the inter-class occlusion, non-pedestrian objects occupy part of the bounding
boxes. The features obtained by detectors may result in false detection when similar
non-pedestrian objects appear, and fail to detect the pedestrians that the occlusion is
heavy. Intuitively, if we reduce the weight of the non-pedestrian objects and
emphasize the parts of pedestrians, the detectors will learn positive knowledge.
Therefore, we introduce the semantic segmentation component to obtain the
semantic attention map, which uses the information of the visible bounding boxes.
Through the semantic attention map, the detectors tend to focus more on the parts of
pedestrians. The details are presented in the next section.

4 Methodology

4.1 Overview

As shown in Fig. 1, our PDSA consists of two parts: a detector component and a
sematic segmentation component. The first part adopts a single-stage detector (i.e.,
RetinaNet [2]) to predict the bounding boxes and the probability of pedestrians. The
sematic segmentation component utilizes the visible bounding boxes as the input to
train a sematic attention map for reducing the influence of the heavily occluded parts.
We will introduce these components in more details subsequently.
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Fig. 1. Overview of our PDSA. FPN denotes the feature pyramid network.

4.2 Detector Component

Our detector component is a single-stage detector (i.e., RetinaNet). We replace the
basic model ResNet [17] with VGG16 [18]. Therefore, our detector contains five
blocks of convolution layers (i.e., C1, C2, C3, C4 and CS5). In addition, RetinaNet
utilizes the feature pyramid networks (FPN) [1] to adapt multi-scale pedestrians, which
contains additional three convolution layers (i.e., P5, P4 and P3) that combine with the
previous convolution layers (i.e., C5, C4 and C3). More specifically, P5, P4 and P3
utilize 1 x 1 convolutional layer with ReLU function [19], and the input of P5 comes
from C5 directly. The input of P4 is the combination of P5 with upsampling method [1]
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and C4, and the input of P3 is same combination of P4 and C3. In addition, we utilize
the focal loss [2] to train the classification loss, which is defined as follows:

[ =(1=p)log(p) if y=1
LClasxlﬁcatwn - { _p«/ IOg(l _ p) otherwise (1)

where y € {0, 1} is a ground truth class, p € [0, 1] is the probability for the class with
label y = 1.

In addition, in order to handle the intra-class occlusion, we introduce the repulsion
loss [7] to optimize the detector. In particular, we only add the repulsion term loss,
which repels the proposal from its neighboring ground truth objects. Here, we assume
that P is the positive proposals set (loU > 0.5), and B is the predicted bounding box
regressed from proposal P, and G is the ground truth bounding box. The repulsion loss
can be defined as:

ZpEP SI’I’l()Othl (IOG (Bp, Gﬁ‘ep) )
b ; @

Ggep - ’/naxG\muxGIoU(GA’P)IO(](G7 P) (3)

where IoG(B, G) = %B(g)c) denotes the overlap between B and G, Smoothy, repre-

sents the smooth L, distance [3], and IoU denotes the Intersection over Union [20].

4.3 Sematic Segmentation Component

The inter-class occlusion for pedestrian detection is handled by the sematic segmen-
tation component. As shown in Fig. 2, it takes the low-level detection layer (i.e., the
output of C2 block, denoted as X) and the visible bounding boxes as input. In par-
ticular, the ground truth is generated by the visible bounding boxes. Furthermore, the
semantic segmentation component generates a sematic attention map with the same
dimension as the input layer. Finally, we utilize this map to activate the input layer by
element-wise multiplication to obtain the output feature X’.
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T = T | 1
= , ‘, 1 - 1 : |~ \ -
— |

B3 B4 B5 B6

’ )

[
lﬂ ® Ground Truth

B7

Focal Loss

Fig. 2. The structure of sematic segmentation component.
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For the segmentation network, we use the same structure with VGG16 but remove
the pooling layers, and replace the subsequent two convolution blocks with the dilated
convolution blocks (i.e., B4 and B5) [21]. Furthermore, we utilize two 1 x 1 convo-
Iutional layers with sigmoid function (i.e., B6 and B7) to generate the segmentation
prediction and the sematic attention map, respectively. However, the ground truth is the
visible bounding boxes, which are only four coordinate points and cannot be input
directly. Here, we scale the visible bounding boxes into 1/4, which is the same size as
the result of segmentation prediction. Furthermore, we set the whole pixels in the
visible bounding boxes as 1 and the others as 0, which obtains the segmentation ground
truth.

In addition, the visible part occupies a small area which leads to the imbalance
between the positive and negative samples. To make the sematic segmentation task
converged, we introduce the focal loss for optimization as follows:

. _ - =p)log(p) if y=1 (4)
Segmentation —p’ log(l —p) otherwise

where y € {0, 1} is ground truth class for each pixel, p € [0, 1] is the probability for the
class with label y = 1.

By adding the aforementioned loss function, the final objective function of PDSA is
given follows:

L= LRegression + LClassiﬁcution + OCLRep + ﬁLSegmentatian (5>

where Lgegression 18 the original bounding box regression loss. The parameters o and f3
balance different tasks. The convergence of the segmentation loss is shown in Sect. 5.6.

5 Experiments

In this section, we introduce the dataset used for pedestrian detection, and evaluate the
performance of the proposed approaches and baselines.

5.1 Dataset

The CityPersons dataset [22] consists of cityscape images containing persons, with
backgrounds including Germany and some other surrounding countries. The ground
truth of the images contains bounding box annotation, visible bounding box annotation,
and five class labels (i.e., ignore regions, pedestrians, riders, sitting persons, other
persons with unusual postures, and group of people). As show in Table 1, the dataset
contains 3,475 images in total with rich annotations including 23k pedestrians and 9k
ignored regions. The training set contains nearly 3,000 images, with an average of
seven pedestrians per image. Only 30% of the pedestrians are visible completely, which
shows that the CityPersons dataset have rich types of occlusion.



420 F. Wen et al.

Table 1. Statistics of the CityPersons dataset

Train | Val | Total
#Images | 2,975 |500 |3.,475
#Persons | 19,654 | 3,938 | 23,592

5.2 Evaluation Metrics

We use a commonly used metric on the CityPersons dataset [22] for evaluations, i.e.,
the average value of miss rate for the false positive per image (MR), ranging from 1072
to 10° (the smaller the better). In this paper, we care more about the occlusion and only
consider pedestrians with height € [50, inf]. We show the results across three different
occlusion levels. In addition, we visualize the distribution of pedestrian at different
occlusion level on CityPersons, as shown in Fig. 3.

(1) Reasonable (R): visibility € [0.65, infT;
(2) Heavy occlusion (HO): visibility € [0.2, 0.65];
(3) Reasonable + Heavy occlusion (R + HO): visibility € [0.2, inf].
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Fig. 3. Occlusion distribution on CityPersons dataset.

5.3 Implementation Details

In our experiment, we adopt VGG16 [18] as the fundamental network structure, and the
other convolution layers in detector component are same as [2]. For the sematic seg-
mentation component, the previous three convolution layers (i.e., B3, B4 and B5) are
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the same with VGG16 [18], but we remove the pooling layers and utilize the dilated
convolution in the last two layers (i.e., B4 and BS). In particular, the dilation rates of
dilated convolution are set as 2 and 4, respectively. B6 is a 1 x 1 convolution with
sigmoid function and the channel number is 1, while B7 is also a 1 x 1 convolution
with sigmoid function and the channel number is same as the channel number of the
input X.

For the optimizations, we use the parameters of the pre-trained VGG16 to initialize
our model, and initialize the dilated convolution parameters in the segmentation
component by Xavier initialization [23]. We adopt the Adam solver [24] with the
learning rate of 10~ for 14,000 iterations, and take the image in original size as the
input. In addition, the balance parameter for repulsion loss o set as 0.5 following [7],
and the balance parameter for the semantic segmentation loss f§ set as 0.5 since our
main task is not semantic segmentation.

5.4 Comparing with the State-of-the-Art Methods

The baselines include a number of state-of-the-art methods on pedestrian detection,
such as FasterRCNN [13], FasterRCNN + ATT-part [4], FasterRCNN + RepLoss [7],
Somatic Topology Line Localization (TLL) [25] and RetinaNet [2]. The performances
of the approaches are shown in Table 2. From the table, we can observe that the
proposed PDSA achieves competitive performance for HO and R + HO, which out-
performs the previous state-of-the-art detectors. The proposed PDSA benefits from the
semantic attention map and the repulsion loss, which can detect heavily occluded
pedestrians effectively. Note that our PDSA cannot outperform the best baselines for R.
The reason is that we use the single-stage detector (i.e., RetinaNet), which is not fully
optimized for the small-scale pedestrian detection, while the baselines use the two-stage
detector (i.e., Faster RCNN).

Table 2. MR performance of the approaches on the CityPersons dataset.

Method R HO R + HO
FasterRCNN 15.52% | 64.83% | 41.45%
FasterRCNN + ATT-part | 15.96% | 56.66% | 38.23%
FasterRCNN + RepLoss |13.20% | 56.90% | -

TLL 14.40% | 52.00% |-
RetinaNet 17.92% |56.22% | 36.61%
PDSA 16.51% | 48.24% | 31.88%

5.5 Evaluation on Different Strategies

PDSA utilizes the single-stage detector (i.e., RetinaNet). We adopt the repulsion loss to
deal with the intra-class occlusion. Besides, we introduce a semantic segmentation
component to deal with the inter-class occlusion. To evaluate the two components, we
denote PDSA with repulsion loss as PDSA-r and PDSA with semantic segmentation
component as PDSA-s, respectively. The results are shown in Table 3. We notice that
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PDSA-r performs well for R since it is robust to the influence of intra-class occlusion.
In addition, PDSA-s outperforms the RetinaNet on different occlusions, which
demonstrates that the semantic segmentation component is effective for addressing
occlusion. Furthermore, we combine repulsion loss with the semantic segmentation
component and finally obtain the best performance, taking into account both intra-class
and inter-class occlusions.

Table 3. Comparison of different strategies on the CityPersons dataset (lower is better).

Method | +Repulsion Loss | +Segmentation | R HO R + HO
RetinaNet | - - 17.92% |56.22% | 36.61%
PDSA-r |V - 16.73% |56.51% |35.80%
PDSA-s |- v 16.86% |48.77% |32.46%
PDSA v v 16.51% | 48.24% | 31.88%

5.6 Convergence of PDSA

PDSA consists of four loss terms, i.e., regression loss, classification loss, semantic
segmentation loss, and repulsion loss. As shown in Fig. 4, we can see that all the losses
are converged after 10,000 iterations. The experimental results demonstrate the
effectiveness of our training procedures.
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Fig. 4. Convergence of PDSA

5.7 Visualizations

As shown in Fig. 5, we visualize the semantic attention map trained by the semantic
segmentation component. We can see that the full bodies and the visible parts of
occluded persons result in obvious response on the heatmap. For instance, two
pedestrians are occluded heavily by cars while their upper bodies still show obvious
response. The heatmap demonstrates that our sematic segmentation component can
extract features from heavily occluded pedestrians.

Furthermore, we visualize the bounding boxes predicted by RetinaNet and the
proposed PDSA model in Fig. 6. The RetinaNet fails to detect pedestrians that are
occluded by other non-pedestrian objects, while our pedestrian detector obviously



Single-Stage Detector with Semantic Attention 423

(b)PDSA

Fig. 6. Detected results of RetinaNet and PDSA. The red bounding boxes represent the detected
results, and the green ones represent the ground truth. (Color figure online)

reduces the samples of false positives and missed detections. In addition, we find that
our PDSA can locate the different pedestrians in the crowd, which demonstrates that
our method is effective for both inter-class and intra-class occlusions.

6 Conclusion

In this paper, we propose a novel method PDSA for occluded pedestrian detection. In
order to handle the inter-class pedestrian occlusion, we introduce a semantic seg-
mentation component, which utilizes the visible bounding boxes to obtain the semantic
attention map. This component helps the subsequent detector component to focus on
the pedestrians when the occlusion happened. In particular, we introduce the repulsion
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loss to deal with the intra-class occlusion, which helps to improve the performance of
our PDSA. The experiment results have demonstrated the effectiveness of our proposed
approach, which achieves the state-of-the-art performance on heavy occlusion.

Acknowledgments. This work is supported by the National Natural Science Foundation of China
(No. 61703109, No. 91748107), China Postdoctoral Science Foundation (No. 2018M643026), and
the Guangdong Innovative Research Team Program (No. 2014ZT05G157).

References

1. Lin, T., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid
networks for object detection. In: Computer Vision and Pattern Recognition (CVPR),
pp. 2117-2125 (2017)

2. Lin, T., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In:
International Conference on Computer Vision (ICCV), pp. 2999-3007 (2017)

3. Girshick, R.: Fast R-CNN. In: Computer Vision and Pattern Recognition (CVPR), pp. 1440—
1448 (2015)

4. Zhang, S., Yang, J., Schiele, B.: Occluded pedestrian detection through guided attention in
CNN:s. In: Computer Vision and Pattern Recognition (CVPR), pp. 6995-7003 (2018)

5. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Computer Vision and
Pattern Recognition (CVPR) (2017)

6. Fu, C., Liu, W., Ranga, A., Tyagi, A., Berg, A.: DSSD: deconvolutional single shot detector.
arXiv preprint arXiv:1701.06659 (2017)

7. Wang, X., Xiao, T., Jiang, Y., Shao, S., Sun, J., Shen, C.: Repulsion loss: detecting
pedestrians in a crowd. In: International Conference on Computer Vision (CVPR) (2018)

8. Luo, P., Tian, Y., Wang, X., Tang, X.: Switchable deep network for pedestrian detection. In:
Computer Vision and Pattern Recognition (CVPR) (2014)

9. Hosang, J., Omran, M., Benenson, R., Schiele, B.: Taking a deeper look at pedestrians. In:
Computer Vision and Pattern Recognition (CVPR), pp. 4073—4082 (2015)

10. Zhang, S., Benenson, R., Schiele, B.: Filtered channel features for pedestrian detection. In:
Computer Vision and Pattern Recognition (CVPR) (2015)

11. Li, J., Liang, X., Shen, S., Xu, T., Yan, S.: Scale-aware fast R-CNN for pedestrian detection.
IEEE Trans. Multimedia 20(4), 985-996 (2017)

12. Cai, Z., Fan, Q., Feris, Rogerio S., Vasconcelos, N.: A unified multi-scale deep
convolutional neural network for fast object detection. In: Leibe, B., Matas, J., Sebe, N.,
Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 354-370. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46493-0_22

13. Zhang, L., Lin, L., Liang, X., He, K.: Is faster R-CNN doing well for pedestrian detection?
In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906,
pp. 443-457. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_28

14. Ouyang, W., Wang, X.: A discriminative deep model for pedestrian detection with occlusion
handling. In: Computer Vision and Pattern Recognition (CVPR) (2012)

15. Mathias, M., Benenson, R., Timofte, R., Van, L.: Handling occlusions with Franken-
classifiers. In: International Conference on Computer Vision (ICCV) (2013)

16. Tian, Y., Luo, P., Wang, X., Tang, X.: Deep learning strong parts for pedestrian detection. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1904—
1912 (2015)


http://arxiv.org/abs/1701.06659
http://dx.doi.org/10.1007/978-3-319-46493-0_22
http://dx.doi.org/10.1007/978-3-319-46475-6_28

17.

18.

19.

20.

21.

22.

23.

24,

25.

Single-Stage Detector with Semantic Attention 425

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770—
778 (2016)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. In: International Conference on Learning Representations (ICLR) (2014)
Krizhevsky, A., Sutskever, 1., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: International Conference on Neural Information Processing Systems,
vol. 60, pp. 1097-1105 (2012)

Jiang, Y., Jiang, Y., Cao, Z., Cao, Z., Huang, T.: UnitBox: an advanced object detection
network. In: ACM on Multimedia Conference, pp. 516-520 (2016)

Chen, L.C., Papandreou, G., Kokkinos, 1., Murphy, K., Yuille, A.: DeepLab: semantic image
segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs.
IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834-848 (2018)

Zhang, S., Benenson, R., Schiele, B.: CityPersons: a diverse dataset for pedestrian detection.
In: Computer Vision and Pattern Recognition (CVPR) (2017)

Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural
networks. In: Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics (ICAI), pp. 249-256 (2010)

Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:
1412.6980 (2014)

Song, T., Sun, L., Xie, D., Sun, H., Pu, S.: Small-scale pedestrian detection based on somatic
topology localization and temporal feature aggregation. arXiv preprint arXiv:1807.01438
(2018)


http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1807.01438

	Single-Stage Detector with Semantic Attention for Occluded Pedestrian Detection
	Abstract
	1 Introduction
	2 Related Work
	2.1 Pedestrian Detection
	2.2 Occlusion Handling

	3 Motivation
	4 Methodology
	4.1 Overview
	4.2 Detector Component
	4.3 Sematic Segmentation Component

	5 Experiments
	5.1 Dataset
	5.2 Evaluation Metrics
	5.3 Implementation Details
	5.4 Comparing with the State-of-the-Art Methods
	5.5 Evaluation on Different Strategies
	5.6 Convergence of PDSA
	5.7 Visualizations

	6 Conclusion
	Acknowledgments
	References




