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Abstract. Effective support for multimedia analytics applications
requires exploration and search to be integrated seamlessly into a single
interaction model. Media metadata can be seen as defining a multidimen-
sional media space, casting multimedia analytics tasks as exploration,
manipulation and augmentation of that space. We present an initial case
study of integrating exploration and search within this multidimensional
media space. We extend the M3 model, initially proposed as a pure explo-
ration tool, and show that it can be elegantly extended to allow searching
within an exploration context and exploring within a search context. We
then evaluate the suitability of relational database management systems,
as representatives of today’s data management technologies, for imple-
menting the extended M3 model. Based on our results, we finally propose
some research directions for scalability of multimedia analytics.
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1 Introduction

Multimedia analytics is a research field that grew from a desire to harness the
information and insight that are embedded in today’s media collections, which
are growing both in scale and diversity. In multimedia analytics, supporting user
interaction with media collections is particularly important, both in its own right
and as a precursor to applying data mining methods. This user interaction can
involve a number of distinct tasks, and Zahálka and Worring [14] defined an
exploration-search axis with a range of tasks that multimedia analytics tools
need to support in a single interface. Here, we focus on the two extremes of that
axis: exploration and search.

Typically, exploration and search are implemented as two different operations
that are grounded in disjoint informational contexts. On the Web, for example,
exploration consists of clicking on links to jump from one document to the other,
whereas searching consists of obtaining ranked lists of relevant documents. Once
the user starts clicking on search results, the search context is lost and the only
way to revisit that context is to go back to the original search and adjust the
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query. Then the search starts again from scratch and the only way to observe the
previous exploration context is via the color of hyperlinks. Similarly, in current
file and media browsers search is implemented as a distinct operation that loses
all context of the previous exploration session. To support the exploration-search
axis, however, the two user interaction modes must be performed in the same
context: we should be able to focus the exploration within search results, or
search within the current exploration state.

Multidimensional Media Space. Today, media items are typically associ-
ated with a plethora of descriptive and administrative metadata. First, media
is commonly generated with technical data about its creation, such as date and
time, location, user, and technical specifications. Second, a multitude of methods
have been developed to describe the media contents, for example based on deep
learning. Third, as users see more and more benefits of annotating media, they
likely become more willing to do so.

All this metadata can be seen as defining a multidimensional media space.
Many multimedia analytics tasks then boil down to exploring, manipulating and
augmenting that media space. Exploration can be seen as applying and updating
a set of filters and predicates that outline the current set of multimedia items
that a user is interested in. Search can be seen as a reorganization of the space
from the reference point of the query.

Contributions. We define browsing state as the set of filters and reference
points that the user is exploring. The browsing state is an abstract representa-
tion of the informational context of the currently displayed media items. Explo-
ration and search tasks gradually update that browsing state, allowing users
to alternate tasks while preserving the informational context. We believe that
multimedia analytics suites can succeed in seamlessly integrating exploration
and search tasks (as well as other tasks along the exploration-search continuum
of [14]) if they implement something equivalent to a browsing state.

In this paper, we demonstrate such integration within the context of the Mul-
tidimensional Multimedia Model (M3, pronounced emm-cube) [9]. M3 was pro-
posed as a way to interactively explore the multidimensional media space, merg-
ing concepts from business intelligence (online analytical processing (OLAP) and
multidimensional analysis (MDA)) and faceted browsing. The M3 model, how-
ever, was defined as a pure exploration interface, with no support for search.
This paper is an initial exploration into the integration of search into the M3

exploration model, showing that the M3 model can be elegantly extended to
support both extremes of the exploration-search axis.

This paper also highlights the difficulties that the underlying data-retrieval
infrastructure runs into when trying to provide an efficient implementation of the
browsing state and its maintenance. In short, the current state of the technology
is unable to dynamically support the unpredictable user-defined sub-collections
of media items involved in exploration and search tasks.
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The remainder of this paper is organized as follows. We review background
work in Sect. 2, and then summarize the M3 model in Sect. 3. We then make the
following contributions, before concluding the paper in Sect. 7:

– We extend the M3 model to include search results as dynamic dimensions of
the multidimensional media space (Sect. 4).

– Using a proof-of-concept implementation, we then show that relational sys-
tems are not suitable for the extended M3 model (Sect. 5).

– Based on our experience, we present some research directions towards efficient
exploitation of the multidimensional media space (Sect. 6).

2 Background

Zahálka and Worring [14] surveyed a collection of more than 800 research papers
related to user interaction with multimedia collections and compiled into a model
of user interaction for multimedia analytics. A key contribution of that work
was the exploration-search axis, which consisted of a continuum of tasks that
multimedia analytics users must be able to accomplish. In this paper we consider
the two extremes of that axis. Here, we review key results related to multimedia
search and exploration; this coverage is brief for space reasons.

Multimedia retrieval, in particular high-dimensional feature indexing, has
received significant attention in the literature, including several highly scalable
methods (e.g., [2,5,6,8]). None of these methods, however, offer any support for
integration of search into a dynamic browsing state.

Multimedia exploration tools have typically considered various modes of
interacting with static media collections (e.g., [10,11]). None of these tools con-
sider the integration of dynamic search with exploration. Faceted media browsers
create hierarchies (or DAGs) of tags and allow interactively traversing those
structures, narrowing down the set of displayed items to match the user needs.
Typically, faceted browsers present results in a linear list, thus losing the internal
structure of the browsing set [3,4,12]. OLAP applications, on the other hand,
have long been used to efficiently browse multidimensional numerical data, with
support for slicing, drilling in, rolling out, and pivoting. Early applications of
the OLAP model to multimedia include [1,7,15]. Neither the original OLAP sys-
tems, nor the referenced multimedia variants, consider search. Their efficiency is
due to pre-computed indexes; including search in their interaction model would
invalidate all their pre-computations, as it is impossible to consider all potential
query reference points.

Zahálka and Worring also proposed interactive multimodal learning (IML)
as an umbrella interaction model for multimedia analytics [14]. More recently,
they and others proposed a very efficient system for IML over large-scale collec-
tions [13]. IML can be seen as a reorganization of the media space, just as search,
and we plan to integrate IML with exploration and search in future work.
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3 The M3 Model

The M3 model was proposed in 2015 by Jónsson et al. [9], as an interaction model
for exploration of personal photo collections. The foundation of M3 is to consider
media metadata as defining a multidimensional space that organizes the media
items, and to use concepts from faceted browsing and OLAP to explore that
space; much of the terminology for user interactions is indeed borrowed from
OLAP. The basic data in the M3 model consists of objects and tags, which refer
to the media items and their descriptive and administrative metadata, respec-
tively. Originally, tags were defined as simple data items, such as alphanumerical
strings, dates and timestamps, but tags might also be more complex, such as
high-dimensional feature vectors.

The multidimensional aspects of the M3 model then arise from the ways
the tags are organized among themselves. A concept in M3 groups related tags
together into sets of tags, which may have an implicit ordering (e.g., for dates
and numerical tags). A hierarchy then adds an explicit tree structure to (a subset
of) the tags in single concept; hierarchies only contain tags from that concept.
Together, the concepts and their hierarchies form the dimensions of a hypercube;
the objects are conceptually present in the cells of this hypercube (or a subcube
of it) if they are associated with each tag corresponding to the cell.

During exploration, the user uses filters over some of the dimensions to define
a subcube of the complete hypercube; this subcube is the browsing state of M3.
The filters may focus on a specific tag (tag filter), on a range of tags from a
concept (range filter), or a subtree of a hierarchy (hierarchy filter). Applying a
tag filter or range filter to a concept is called slicing, as each filter represents
a slice of the entire hypercube; if a filter already exists on that concept it is
replaced by the new filter. Traversing up or down a hierarchy is also tantamount
to updating a corresponding hierarchy filter; called rolling up or drilling down,
respectively. Note that each of these operations updates the browsing state.

Jónsson et al. [9] also proposed a user interface for the M3 model. The user
interface consists of three axes (called front-axis, up-axis and in-axis for intu-
itiveness), and the user may assign any dimension from the browsing state with
1, 2 or 3 of these axes, resulting in projection of the browsing state onto a 1D, 2D
or 3D representation, respectively. Replacing one visible dimension with another
dimension is called pivoting ; note that if the new visible dimension was already
part of the browsing state, then pivoting does not change the browsing state.
The following example demonstrates the common operations in the M3 model.

Example 1. A mother is sitting down with her children in front of her com-
puter to recall a hiking trip. She first selects the People dimension (a hierarchy
over a sub-set of the people concept) as a starting point on the front-axis, which
has two tags at the top level: “Adults” and “Kids”. Then she selects the Location
dimension, which has such nodes as “Cabin” and “River”, as the up-axis. Being
a photo nerd, she becomes interested in the light conditions and assigns the Aper-
ture value to the in-axis. The current browsing state then has three dimensions,
where each cell has (at least) one particular person in one particular location
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type with one particular aperture value. Note that photos containing kids and
adults will show up in two cells (and, if a cabin were situated next to a river, it
could show up in four cells) as the photos belong logically in all these cells.

4 Integrating Exploration and Search

We have identified the following requirements for integrating search within the
M3 model:

Metadata-Based Search: In the M3 model, the browsing state is based on
media metadata, as represented by filters over concepts and hierarchies. The
media items themselves are never considered directly in the browsing state,
but are represented only through their metadata. Consequently, search oper-
ations should also focus on metadata. In order to consider content-based
search, the content description must therefore first be extracted into a (new
or existing) metadata concept.

Dynamic Result-Dimensions: User interaction in the M3 model consists of
maintaining and projecting the browsing state, which in turn is composed of
dimensions. To integrate search into the browsing state, the results of each
search operation must therefore define a new dimension in the browsing state.
If the query is modified, then the previous result dimension must be replaced
by the new result dimension, and the browsing state updated correspondingly.

Single-Concept Search: As described above, a browsing state is composed
of dimensions, which are either concepts or hierarchies; hierarchies, in turn,
are simply a (relatively) static representation of a concept. There is thus a
direct correspondence between browsing state dimensions and concepts. To
maintain that correspondence, each search operation should only apply to
one tag concept.

Generality: Depending on the metadata type, different search operations may
apply, e.g., text search for alphanumeric tags and similarity search for feature
vectors. And depending on the search type, different indexes may be required
in the media server. In all cases, however, search results should be ordered
based on score (e.g., relevance, similarity, or distance). Set-based search can
be implemented by assigning the same score to each result. Some search
methods only assign scores to a subset of the objects, while others assign a
score to each object; range filters can be used to reduce the number of objects
returned.

To better illustrate how following these requirements leads to integration of
exploration and search, consider the following example.

Example 2. Recall the final browsing state of Example 1, which had three
dimensions: People on the front-axis; Location on the up-axis; and Aperture on
the in-axis. The mother now decides she wants to focus on images with colors
similar to a particular image. She opens up a search form, where she selects
the image, chooses a distance filter to focus on similar images, and assigns this
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Fig. 1. 3D representation of the browsing state from the scenario in Example 2. See
the text for a detailed description of the browsing state axes.

search concept to the in-axis. Note that the tags of this new temporary concept are
the color distance values from the search. Also note that by assigning the search
dimension to the in-axis she replaces the Aperture concept, but nevertheless only
images with an aperture tag are included.

The mother now recalls a name from the trip and wants to focus on images
tagged with that name. She opens up a second search form for the People dimen-
sion, types in the name “Mick Junior” and assigns the new search concept to the
up-axis. The tags of this search concept are the similarity scores from the search.
By assigning the search dimension to the up-axis she now replaces the Location
hierarchy, but as before only images with a location tag are included.

Figure 1 shows the browsing state resulting from Example 2, which has one
hierarchical dimension and two search dimensions. A few notes are in order.

– The scores on the up-axis indicate the relevance of image tags to the query,
as computed by PostgreSQL (the relevance values are +0.03 and +0.06, pre-
sumably using some form of TFIDF scoring). Three participants in the family
hike were named Mick (two kids, one adult), but only one was called Mick
Junior. Images with Mick Junior receive higher relevance scores than images
with one of the other Micks.

– The hierarchy on the front-axis divides the browsing state based on whether
the Micks shown in images are adults or kids. In this case the images in
the lower right corner contain Mick Junior, images in the upper left corner
contain Mick Senior, and images in the upper right corner contain the third
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(young) Mick. The collection does contain some images with two and three
Micks, but these were filtered by the color similarity query.

– The distances on the in-axis reflect the color similarity, computed using
squared Euclidean distance. Note that in this case a filter of 75 was applied,
and hence images with distance higher than 75 are not reflected in the brows-
ing state.

– The example image from the first (text) search has Euclidean distance of 0
from itself. That image did not have a Mick in it, however, and hence is not
included in the set of images retrieved by the browsing state. Therefore there
is no image with distance 0 in the browsing state. The most similar image has
nearly identical average color, however, with a squared Euclidean distance of
only 5.

In the preceding example, the interactions of the user were represented by a
sequence of browsing states, each dependent on the previous browsing state. We
believe that any efficient implementation of the extended M3 model must take
into account this incremental nature of the browsing state and interactions with
users, but we are not aware of any existing algorithms or indexing strategies that
do so. In Sect. 5 we describe and evaluate a proof-of-concept implementation of
the extended M3 model, using relational database technology as a representative
of the current state of the art, and show why performance suffers when the
previous browsing state is ignored. In Sect. 6 we then propose some research
directions towards scalable implementation of the extended M3 model.

5 Prototype Evaluation

The M3 model was initially implemented by Jónsson et al. [9] as a server to
deliver the objects in a browsing state (O3) and a photo browsing client (P3). We
extended this prototype by integrating search functionality, as described below.
As the O3 server was implemented on top of a relational database management
system (RDBMS), we decided to evaluate whether an RDBMS is a suitable
technology for implementing this integration.

5.1 Proof-of-Concept Implementation

Following the requirements of Sect. 4, integrating search results into the browsing
state of the M3 model can conceptually be done in the following steps:

1. Create a temporary concept for the search results and add to browsing state:
– Retrieve the relevant objects and their relevance score, applying a range

filter if required.
– Create new metadata tags for the relevance score and assign the appro-

priate objects to each score tag.
– Update the browsing state description to include the search concept.

2. Retrieve the browsing state.
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Since relational systems provide no efficient support for integrating knowledge of
the previous browsing state into the first step, the query to retrieve the relevant
objects is completely independent of the existing browsing state and only affected
by the criteria applied to that particular search dimension, which leads to sub-
optimal performance.

We decided to focus on two types of search that are well supported by many
relational systems:

– Keyword search over alphanumeric tags, supported by an inverted index.
– Similarity search over low-dimensional features, supported by an R-tree.

For the latter, we use a very simple similarity-based search on color, using the
average RGB color in each image (computed by averaging the R, G, and B values
across all pixels). As feature vectors did not exist in O3 as a tag type, we added a
table to store these features, and used an R-tree to index the three-dimensional
feature vectors.

5.2 Evaluation

In this section we evaluate the performance of our prototype for three extremely
simple browsing states. Each of these three browsing states correspond to a user
selecting search as the first (and only) operation to apply to the collection. The
goal of these experiments is to gauge the potential performance of relational
systems, to establish baseline performance numbers and to identify performance
bottlenecks, with an aim towards inspiring and supporting subsequent research
into indexing and query processing.

Experimental Collections. In the following we describe three experiments:
keyword search with long text annotations; keyword search with short (name)
tags; and color similarity search. For each experiment, a new collection with
a single tag concept was created, allowing detailed control of the tag concept
properties. We now describe the tag collections and concepts created for each
experiment.

Text Search: In this experiment, we created collections with 1K, 10, 100K, and
400K objects, and used the Amazon review data set1 to create a concept with
one review tag associated with each object. Reviews exceeding 512 characters
were truncated; as some reviews are shorter, the average tag length varied
from 434 character for the smallest collection to 458 characters for the largest
collection.

Tag Search: In this experiment, we created collections with 1K, 10K, 100K,
and 1M objects. We then created a collection of 200 randomly chosen sur-
names and associated each object with three surname tags. The surname tags
were chosen by (a) assigning selected tags to 1, 10, 100 and 1,000 random
objects, to facilitate the controlled experiment, and (b) randomly assigning
the remaining tags to give three tags per object.

1 Available at https://www.kaggle.com/bittlingmayer/amazonreviews.

https://www.kaggle.com/bittlingmayer/amazonreviews
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Color Search: In this experiment, we again created collections with 1K, 10K,
100K, and 1M objects. We then created a random RGB tag for each image
and inserted into the RGB concept.

Experimental Method. In each experiment, we consider retrieval of browsing
states with 1, 10, 100 and 1,000 objects, and study how the performance of
browsing state retrieval varies depending on both browsing state size and object
collection size. In all cases, the experiments focus on the retrieval of the browsing
state information and exclude the retrieval of the objects (images) themselves.

The experiments were run on a DELL Latitude E7440 laptop, with an Intel
dual core i7-4600U 2.10 GHz processor, 4 MB CPU cache, 16 GB of RAM and
a 256 GB solid state drive. The laptop runs Windows 8.1, but the experiment
was run on a Linux Ubuntu 16.10 64-bit virtual machine with allocated base
memory of 4 GB and 1 processor, running on Oracle VM VirtualBox Manager.
In each experiment, we started with the smallest object collection and continued
to the largest object collection. We repeated this process five times and report
the average times from these five runs. Before each such run, the virtual machine
was shut down and the laptop restarted.

Text Search. Figure 2(left) shows the performance of browsing state retrieval
for long text tags, as the browsing state size varies from 1 object to 1,000 objects,
and as the collection size grows from 1K to 400K. The figure shows that the time
increases both with collection size and result size, but in all cases remains under
0.6 seconds, which is sufficient for interactive workloads.
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Fig. 2. Text search: performance of browsing state retrieval (left); Time breakdown for
retrieval of 1,000 objects (right).

Figure 2(right) shows a more detailed analysis when the browsing state con-
tains 1,000 objects, breaking the response time into (a) the creation of a tem-
porary concept with the search results, and (b) the retrieval of the resulting
browsing state. As the figure shows, the majority of the time is spent on the
former. The increased time, as the collection grows, is due to the increased size
of the inverted index; for even larger collections, the response time is likely to
increase linearly.
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Tag Search. Figure 3(left) shows the performance of browsing state retrieval for
short name tags, as the browsing state size varies from 1 object to 1,000 objects,
and as the collection size grows from 1K to 1M. As with the longer text tags,
time increases both with collection size and result size, but remains interactive
with less then 1 second to retrieve 1,000 objects from the 1M collection.
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Fig. 3. Tag search: performance of browsing state retrieval (left); Time breakdown for
retrieval of 1,000 objects (right).

Somewhat unexpectedly, however, retrieval from the 1M collection is sig-
nificantly more expensive than before. Figure 3(right) shows the more detailed
analysis when the browsing state contains 1,000 objects. As the figure shows,
the creation of the new temporary concept is less expensive than with the larger
text tags, due to the smaller inverted index. On the other hand, the creation
of the resulting browsing state is significantly more expensive, for two reasons.
First, the collection is larger (1M compared to 400K). Second, since each object
is associated with more tags (3 name tags compared to 1 text tag), the number of
tag-object associations is actually 7.5x larger for the short name tags, resulting
in a more expensive query to assemble the browsing state.

Color Search. Figure 4(left) shows the performance of browsing state retrieval
for RGB color tags, as the browsing state size varies from 1 object to 1,000
objects, and as the collection size grows from 1K to 1M. For the most part, time
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Fig. 4. Color search: performance of browsing state retrieval (left); Time breakdown
for retrieval of 1,000 objects (right).



166 S. Gı́slason et al.

increases both with collection size and result size. The retrieval time is no longer
interactive, however, when returning 1,000 objects from the 1M collection.

Figure 4(right) shows the detailed analysis when the browsing state contains
1,000 objects. As the figure shows, the creation of the new temporary concept is
responsible for the majority of the response time, due to the inefficiencies of the
R-tree index. Interestingly, the time to retrieve the browsing state shrinks as the
collection grows. The reason for this is that as the collection grows, more and
more objects share each distance value and hence the browsing state has fewer
and fewer distinct distance tags, resulting in reduced computation time.

5.3 Summary

In summary, the performance of the relational server suffers as the size of both
the collection and browsing state grow. The key reason is that the RDBMS offers
no support for using the previous browsing state to facilitate the search, in some
cases leading to high cost of computing the search, and in other cases to high
cost of retrieving the browsing state.

6 Discussion

In this section we highlight the major lessons we have learned from this case
study about integrating exploration and search for multimedia analytics.

– At the conceptual level, we have presented an elegant way to integrate explo-
ration and search for multimedia analytics. As Example 2 shows, our model
allows searching within an exploration context and exploring within a search
context. This integration warrants further exploration, however, for example
with respect to the meaning of k-NN search and approximate search within
exploration contexts, as well as other modes of interaction, such as interactive
multimodal learning. We believe that this field is ripe for investigation.

– The performance results show that relational database systems are not a
suitable tool for multimedia exploration, as they do not support the multi-
dimensional nature of the application well and fail to provide interactive per-
formance, even with a relatively small collection of 1M objects. Note that
some systems integrate efficient support for traditional OLAP applications,
which might appear more appropriate for multimedia analytics. This support
is predicated on the static nature of such applications, however, and does not
address dynamic searches within an exploration context.

– In the prototype, the creation of a search dimension is done without any con-
sideration of the browsing state; the browsing state is then updated using the
new search dimension. For better integration, however, the index structures
and algorithms supporting search must be aware of the multidimensional
nature of the data. Currently, no such index structure or algorithms exist
and developing those algorithms is another field that is ripe for investigation.
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This paper highlights the difficulties that the underlying data-retrieval infras-
tructure runs into when trying to provide an efficient implementation of the
browsing state and its maintenance. In short, the current state of the technology
is unable to dynamically support the unpredictable user-defined subcollections
of media items involved in exploration and search tasks. We believe that discov-
ering the algorithms and index structures required to provide that support is a
major research direction within the field of multimedia analytics.

7 Conclusion

Effective support for multimedia analytics applications requires exploration and
search to be integrated seamlessly into a single interaction model. In this paper,
have presented an initial case study of using the multidimensional media space
of media metadata to integrate exploration and search. We have extended the
M3 model, initially proposed as a pure exploration tool for the multidimensional
media space, and shown that it can be elegantly extended to allow searching
within an exploration context and exploring within a search context. We have
then presented and evaluated a proof-of-concept prototype and derived some
major research directions for multimedia analytics.
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