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Preface

This book describes a recent effort combining interdisciplinary expertise within the
Collaborative Research Centre

“Energy Transfers in Atmosphere and Ocean” (TRR 181),

which was funded by the German Research Foundation (DFG).
Energy transfers between the three dynamical regimes—small-scale turbulence,

internal gravity waves and geostrophically balanced motion—are fundamental to
the energy cycle of both the atmosphere and the ocean. Nonetheless, they remain
poorly understood and quantified and have yet to be adequately represented in
today’s climate models. Since interactions between the dynamical regimes ulti-
mately link the smallest scales to the largest ones through a range of complex
processes, understanding these interactions is essential to constructing atmosphere
and ocean models and to predicting the future climate.

The current lack of understanding is reflected by energetically inconsistent
models with relatively large biases, but also by inconsistencies of a numerical and
mathematical nature. In TRR 181, recent efforts to overcome these deficiencies are
combined, and new endeavours to understand dynamical interactions and to
improve the consistency of ocean and atmosphere models are fostered.

The point of departure for TRR 181 is the recognition that the energy cycle is
inconsistently represented in current climate models, i.e. that the models are
energetically inconsistent. A primary example of this inconsistency is the effect
of the dissipation of the unresolved internal gravity wave field in the ocean, which
is parameterised in standard models by mixing of density with a prescribed diffu-
sivity. Although this diffusivity is sometimes linked to resolved parameters or to the
energy input into the internal wave field, a consistent description of the energetics
of the internal wave field is usually lacking. The same is true for gravity wave drag
parameterisation in atmosphere models and, more generally, for nearly all param-
eterisations which are used today: it applies to the parameterisation of dissipation
of the (available) potential energy of the turbulent balanced flow in ocean models
by (isopycnal) layer thickness diffusion, the dissipation of resolved kinetic energy
by hyper-viscosity in atmosphere and ocean models, and the dissipation of energy
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in bottom boundary layers in both types of model. For all of these processes, the
energy that is dissipated is simply lost instead of being transferred to the relevant
connecting dynamical regime, or to a different form of energy; this represents a
previously overlooked flaw for which solutions are only now beginning to emerge,
as described in this book.

That being said, in other contexts and for other parameterisations, this “missing”
energy must be artificially recreated. A prominent example is the unaccounted-for
(wave-driven) supply of energy needed to mix density in the ocean by prescribing
some interior diffusivity. Another example is the heating of the upper atmosphere
by molecular dissipation—also related to gravity wave breaking—but the same
holds true for virtually any other parameterisations and dynamical regime. In other
words, our current atmosphere and ocean models fail to completely account for the
mechanical energy cycle. The goal of TRR 181 is to remedy this shortcoming by
connecting all parameterisations in state-of-the-art atmosphere and ocean models in
an energetically and mathematically consistent way. To this end, 16 sub-projects
with 29 principal investigators from applied mathematics, meteorology, and
physical oceanography have been established. The following chapters provide an
overview of representative specific topics covered by the sub-projects.

The processes, parameterisations, and interactions addressed range from isolated
idealised model setups to fully coupled global climate models. Chapter 1 starts out
by reviewing a coherent hierarchy of models for the dynamical core in which many
of the multi-scale interactions (which also repeatedly feature in the later chapters of
this volume) are explored. Due care is taken to fully specifying the respective
scaling and simplifying assumptions and to exposing the underlying Hamiltonian
structure of the inviscid equations. The chapter subsequently discusses modifica-
tions to the classical scaling regimes in the equatorial region, and the impact of
different forms of viscous dissipation or eddy damping on the solution and bifur-
cation structure of geophysical flows. Lastly, the chapter covers the systematic
derivation of stochastic parameterisations for small-scale motions, a major theo-
retical development of the last decade which is yet to be fully understood and to be
investigated operationally.

A major point of conceptual and practical uncertainty in the modelling of the
atmosphere and the ocean is the dissipation of large-scale mean or eddying bal-
anced flow, for which several processes have been put forward. They involve
interior loss of balance by either ageostrophic or symmetric instability, Lighthill
radiation of gravity waves, lee wave generation at topographic obstacles, interaction
with western boundaries, the interaction between gravity waves and frontogenesis,
or simply bottom friction. The relative importance of these processes for both the
atmosphere and the ocean, however, has yet to be quantified, despite the fact that
the dissipation of balanced flow is a key element in the energy cycle. Accordingly,
Chapter 2 is devoted to this topic.

Momentum exchange between the different dynamical regimes, for instance the
wave drag forcing of large-scale circulation in the upper atmosphere by upward
propagating and breaking gravity waves, is also important to understanding the
mechanism of circulation and the energy cycle. However, wave breaking, the
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interaction of waves with the mean flow and stratification, and especially wave–
wave interactions (and the resulting spectral energy transfers within the wave field
to smaller wavelengths and thus towards wave breaking and density mixing) are
only poorly understood, but essential to grasping the effects of gravity waves on the
large-scale circulation. Chapters 3 and 4 focus on the topic of gravity waves, in the
ocean and atmosphere, and in models and observations.

While the turbulent energy cascade in the classical isotropic turbulence regime at
high Reynolds numbers appears to offer a valid description, the assumption of an
energy transport between neighbouring wave numbers in an inertial sub-range over
several decades without any dissipation effects appears invalid for turbulent flow on
larger scales, in particular for geostrophic turbulence. As such, basing parameter-
isations on this assumption is problematic. Spectral energy transport from small to
large scales is present, but usually ignored in standard sub-grid closures such as
harmonic, hyper- or non-linear viscosity. In particular, the use of harmonic lateral
friction in ocean models for purely numerical reasons is in striking contradiction to
an inverse energy cascade and underscores the need to reconsider present
sub-grid-scale closures in ocean and atmosphere models. New approaches to
solving these problems are described in Chapter 5.

Beyond energy, there are also other properties of the system that require con-
sistent treatment. Amongst them is momentum conservation, which puts constraints
on, e.g. eddy parameterisation in ocean models, since eddies are known to redis-
tribute, but not to create momentum. Eddy parameterisations for the ocean and the
challenges in the diagnosis of eddy effects from models and observations are dis-
cussed in Chapter 6. A further issue of fundamental physical importance is
addressed in Chapter 7, which focuses on the second law of thermodynamics and
how it can be consistently related to the averaged equations of motion and in
particular their sub-grid closures and on how parameterisations such as
hyper-viscosity can be made consistent using what we know about the directions of
energy cascades from large to small scales.

The physical inconsistencies in current state-of-the-art modelling are paralleled
by numerical inconsistencies and challenges. While advection conserves all prop-
erties of a fluid particle, numerical advection schemes are by definition notoriously
non-conservative, since they introduce spurious mixing and dissipation, a
well-known but serious shortcoming of current atmosphere and ocean models. This
issue is at the heart of Chapter 8. On the one hand, this spurious mixing and
dissipation needs to be reduced as much as possible using advanced numerical
techniques, such as mesh adaptivity or mesh-free Lagrangian methods. On the
other, the remaining inescapably spurious energy sources also need to be quantified
and should be taken into account when designing new parameterisations and
sub-grid closures. In turn, air–sea interaction is another fundamental but numeri-
cally challenging aspect of the climate system. Surface ocean waves play a key role
in transferring momentum, energy, heat, and other properties across the air–sea
boundary; yet, their interaction with large- and small-scale flows in the ocean and
atmosphere is not well understood. Chapter 9 details a promising new approach to
directly simulating these processes numerically.
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In TRR 181, the process-oriented topics presented here are complemented by an
operationally oriented synthesis focusing on two climate models currently being
developed in Germany. In this way, the goal of TRR 181 is to help reduce the
biases in and increase the accuracy of atmosphere and ocean models and ultimately
to improve climate models and climate predictions.

Hamburg, Germany Carsten Eden
October 2018 Armin Iske
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Chapter 1
Multi-scale Methods for Geophysical
Flows

Christian L. E. Franzke, Marcel Oliver, Jens D. M. Rademacher
and Gualtiero Badin

Abstract Geophysical flows comprise a broad range of spatial and temporal scales,
from planetary- to meso-scale and microscopic turbulence regimes. The relation
of scales and flow phenomena is essential in order to validate and improve cur-
rent numerical weather and climate prediction models. While regime separation is
often possible on a formal level via multi-scale analysis, the systematic exploration,
structure preservation, and mathematical details remain challenging. This chapter
provides an entry to the literature and reviews fundamental notions as background
for the later chapters in this collection and as a departure point for original research
in the field.

1.1 Introduction

The climate systemvaries on amultitude of temporal and spatial scaleswhich interact
nonlinearly with each other. It is common that phenomena with small spatial scales
also vary fast while phenomena with large spatial scales vary more slowly. For
instance, small-scale turbulent eddies have spatial scales from millimeters up to a
meter and exist between a few seconds and a few minutes. In the atmosphere, meso-
scale phenomena like convection and gravity waves have length-scales between a
few 100 meters and about 20 km and time-scales between hours and days. Synoptic
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2 C. L. E. Franzke et al.

weather systems have lifetimes of a few days and spatial scales of up to 2000 km
while planetary-scale teleconnection patterns can extend throughout the hemisphere
and have time-scales from a week to decades.

At the most fundamental level, scale separation in geophysical flows is described
by the concept of balance. When the Rossby number (the ratio between inertial
forces and Coriolis forces) or the Froude number (the ratio of inertial flow velocity
to gravity wave speed) is small, there exists a slow or balanced component which
evolves nonlinearly and interacts only weakly with the high-frequency components.
The fast motions can often, though not always, be approximately characterized as the
high-frequency linear waves in the linearized equations of motion. We remark that
the term “waves” is sometimes used in a loose sense for describing spatiotemporal
oscillations diagnosed by Fourier wave modes, in particular in experimental studies.

A precise characterization of balance is a perennial theme in geophysical fluid
dynamics; a recent review can be found inMcIntyre (2015). Balance can be described
in two ways: kinematically via balance relations which define almost-invariant
objects through a phase space constraint, and dynamically as balance models which
are closed sets of equations representing the slow dynamics on a balanced manifold,
thus approximating the flow of the full system under balanced initial conditions.
However, the notion of balance is intrinsically approximate: Emergence of imbal-
ance from balanced initial conditions is generic, though often exponentially small;
cf. Vanneste (2013). Temam and Wirosoetisno (2010) argue that even in the viscous
case, there is no exact invariant balance manifold. A recent discussion can be found
in Whitehead and Wingate (2014).

Balance in the equatorial band of latitudes is a more subtle concept, as the Cori-
olis parameter changes sign at the equator causing a singularity in straightforward
small Rossby number expansions. There are suitable equatorial scalings and bal-
ance assumptions to formally circumvent the problem, usually at the price of losing
some (linear) waves (McIntyre 2015; Verkley and van der Velde 2010; Theiss and
Mohebalhojeh 2009). Recent work byChan and Shepherd (2013) shows that it is pos-
sible to capture equatorial Rossby and Kelvin waves in a full hierarchy of equatorial
balance models.

While the different scale regimes can have different physical mechanisms driv-
ing them, they are all described by the same general set of equations of motion.
Multi-scale asymptotics can be used as a systematic means of deriving new sets of
equations which only describe the flows at certain temporal and spatial scales, and
their interactions with other regimes; see, for example, Majda and Klein (2003) or
Klein (2010). These new sets of equations then describe the underlying dynamics
of the respective flow regimes and, thus, provide a better understanding of the flow
dynamics and the dominant balance conditions.

Recent studies elucidated the interactions between the planetary- and synoptic
scale regimes (Dolaptchiev and Klein 2013) and between the planetary- and meso-
scale regimes (Shaw and Shepherd 2009). The latter study also discusses how these
multi-scale models can be used to systematically derive energy-consistent subgrid-
scale parameterizations.
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An unavoidable ingredient in comprehensive models of climate and global atmo-
sphere and ocean dynamics is the parameterizations of unresolved degrees of free-
dom. The numerical aspects in the context of geostrophic turbulence are discussed
in Danilov et al. (2019). Of particular interest to us is the use of stochastic model-
ing techniques for developing such parameterizations, in particular the connection
of stochastic subgrid parameterizations with traditional deterministic multi-scale
asymptotics. Theoretical work on the elimination of fast scales is often based on
averaging techniques, which naturally apply to stochastic modeling as well. Mathe-
matical introductions to this direction of model reduction are given by Givon et al.
(2004) and Pavliotis and Stuart (2008) while Franzke et al. (2015) and Gottwald
et al. (2017) provide introductions to stochastic climate modeling. The parametriza-
tion problem is also an issue of data collection and assimilation, which we do not
discuss here.

Part of the motivation for pursuing stochastic modeling approaches derives from
the observation that most numerical weather predictions have too little ensemble
spread. This problem is amplified by the fact that the observed weather lies too
often outside of the forecast ensemble. To increase the ensemble spread, stochastic
parameterizations have been introduced. The European Centre for Medium-Range
Weather Forecasts (ECMWF) is leading the introduction of stochastic parameteriza-
tions into numerical weather and seasonal climate prediction models. They currently
use two different schemes operationally, the Stochastically Perturbed Parameteri-
zation Tendencies Scheme (SPPT) and the Stochastic Kinetic Energy Backscatter
Scheme (SKEBS), described in Palmer et al. (2009).

SPPT is based on the notion that, especially with increasing numerical resolu-
tion, the equilibrium assumption no longer holds and the subgrid-scale state should
be sampled rather than represented by the equilibrium mean. Consequently, SPPT
multiplies the accumulated physical tendencies at each grid point and time step with
a random pattern that has spatial and temporal correlations. SKEBS aims at repre-
senting model uncertainty arising from unresolved and unrepresented subgrid-scale
processes by introducing random perturbations to the stream function. SKEBS is
based on the rationale that numerical dissipation needs to be compensated by an
injection of energy into the resolved scales. Current deterministic climate models,
however, neglect this energy pathway. The use of stochastic parameterizations in
climate models is less well established due to the required re-tuning of all determin-
istic parameterizations. The current use of stochastic parameterizations is rather ad
hoc (Franzke et al. 2015) and does not consider energy and momentum consistency.
For instance, SPPT has no rigorous mathematical justification; it is based on trial-
and-error and empirical evidence that it increases the spread of ensemble forecasts.
However, this does not necessarily make the forecasts more precise. SKEBS has
some mathematical justification. Theory suggests that most of the “subgrid-scale”
energy should be re-injected close to the truncation scale, i.e., at scales where numer-
ical dissipation acts. However, in practice, the re-injected energy gets damped very
quickly with no improvement in forecast skill. The usual remedy is to re-inject the
energy into all scales at a rate empirically determined by trying to match a known
energy spectrum. While there is growing evidence showing the benefits of stochastic
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parameterizations, there is also a need for more rigorous mathematical approaches,
particularly in light of the observation that errors introduced by inconsistent treatment
of the interactions between resolved and unresolved scales can be very significant
(Shaw and Shepherd 2009; Burkhardt and Becker 2006; Becker 2003).

This chapter, first, intends to give an overview on current progress and open issues
in multi-scale modeling of geophysical flows. We aim at some broadness, but our
focus is clearly biased by our own research interests in geometric and structure-
preserving methods, dynamical systems techniques, and stochastic modeling.

Second, and no less important, a large part of the chapter is devoted to laying down
foundational concepts, startingwith the equations ofmotion, non-dimensionalization,
the introduction of the classical limits in geophysical fluid dynamics, variational and
Hamiltonian methods, dissipation, and stochastic model reduction. While much of
this is standard textbook material, covered in great detail, for example, in the clas-
sical books by Gill (1982), Kamenkovich et al. (1986), and Pedlosky (1987), or in
the more recent books by Salmon (1998), Vallis (2006), and Olbers et al. (2012), our
intent is to introduce the foundations most relevant to the questions raised here in
a concise and unified notation. In our presentation, we take the rotating Boussinesq
equations as the single parent model from which all other models arise, aim at a
clear statement of simplifying assumptions, and give some consideration to the full
Coriolis term and to equatorial scalings.

The remainder of this chapter is structured as follows. Section 1.2 introduces
the rotating Boussinesq equations as the governing equations of geophysical flow,
discusses imbalance variables, non-dimensionalization, and several simplified mod-
els derived in different scaling limits: the hydrostatic approximation in form of the
primitive equations, the quasi-geostrophic equations in several forms, and the shallow
water equations. Section 1.3 discusses the variational principle which gives rise to
the equations of motion as well as Poisson and Nambu formulations of the dynamics.
Section 1.4 provides a high-level overview of the role of dissipation and its relation
to turbulence and to dynamical systems methods for studying linear and nonlinear
waves. Section 1.5 introduces systematic approaches for the stochastic modeling of
fast motions. The chapter closes with a brief outline of questions we are addressing
in our current research.

1.2 The Governing Equations

1.2.1 Rotating Boussinesq Equations

As the starting point for this exposition, we consider the rotating Boussinesq equa-
tions in locally Cartesian coordinates. These equations simplify the full equations
for global atmospheric or oceanic dynamics in two fundamental ways.

First, the Boussinesq approximation is based on the observation that density fluc-
tuations are so small that their impact on inertia is negligible, while their impact on
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buoyancy remains significant. This assumption is typically very well satisfied in the
ocean, so that most ocean general circulation models assume the Boussinesq approx-
imation. For atmospheric flows, the Boussinesq approximation is more tenuous, but
under the so-called anelastic approximation, the assumption of constant background
pressure, and the use of vertical pressure coordinates, the equations governing large-
scale atmospheric flows can also be written in the same form. Onemain consequence
of the Boussinesq approximation is the absence of acoustic waves.

Second, the local metric on the earth is nearly Cartesian and, for the purpose of
studying scale interactions, will be replaced by an exactly Cartesian metric. We still
allow variations in the Coriolis parameter with latitude so that equatorial scalings can
be explored. Special cases are the f -plane or tangent plane approximation where the
Coriolis vector is assumed constant and the β-plane approximation where a linear
approximation to the variation of the Coriolis parameter with latitude y is used.

We shall also restrict ourselves to the simplest possible equation of state where
changes in density depend linearly on changes in temperature, neglect source terms,
impose incompressibility, and assume that density (or, equivalently, potential tem-
perature) is advected and subject to harmonic diffusion. With these provisions, our
governing equations read

Dtu + 2Ω × u = − 1

ρ0
∇ p − gρ

ρ0
k + νΔu , (1.1a)

∇ · u = 0 , (1.1b)

Dtρ = κΔρ , (1.1c)

where Dt = ∂t + u · ∇ denotes the material derivative, u is the three-dimensional
fluid velocity field,

Ω = |Ω|
⎛
⎝

0
cosϑ

sin ϑ

⎞
⎠ (1.2)

the angular velocity vector describing the rotation of the earth at latitude ϑ , ρ0 a
constant reference density, p the departure from hydrostatic pressure, g the constant
of gravity, ρ the departure from the constant reference density, k the unit vector
in z (vertical)-direction, ν the coefficient of viscosity, and κ is proportional to the
coefficient of thermal diffusion.

A derivation and a discussion of the underlying assumptions can be found in any
classical textbook on geophysical fluid dynamics, e.g., Gill (1982), Pedlosky (1987),
or Vallis (2006).

The dissipative terms on the right-hand side describe, at this point, molecular
viscosity and diffusion processes. In typical large-scale circulation problems, they act
at scales far beyondwhat can be resolved in any practical numerical simulation. Thus,
they will be replaced, explicitly or implicitly via a stable numerical scheme by eddy
diffusion and/or dissipative properties of the numerical scheme. Such terms may not
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be harmonic or isotropic, an issue towhichwewill return inSection1.4.1 below. In the
remainder of this section, we shall only consider the inviscid Boussinesq equations
independent of the issues relating to viscosity and viscous parameterizations.

We shall consider (1.1) on a domainΩ with a free upper boundary at z = h(xh, t)
and rigid bottom at z = −b(xh); here and below, we use the subscript “h” to denote
the two horizontal components of a vector in three dimensions. We shall not discuss
lateral boundary conditions here. For highly idealized studies, for example, on the
phenomenology of geostrophic turbulence, periodic lateral boundary conditions are
frequently used. At the bottom boundary, we impose the impermeability condition
n · u = 0, where n denotes the outward unit normal vector, which may be written

uh · ∇hb + w = 0 , (1.3a)

plus viscous boundary conditions or bottom drag parameterizations if applicable.
The free surface is described by the condition σ(x, t) ≡ h(xh, t) − z = 0 and is
subject to the kinematic boundary condition Dtσ = 0, i.e.,

∂t h + uh · ∇hh = w . (1.3b)

As a second condition at the free surface, we have the dynamic boundary condition

p = ps , (1.3c)

i.e., pressure equals a specified external pressure ps at the surface. In the viscous
case, the free surface boundary conditions are augmented by (wind) stress conditions.
Integrating the incompressibility constraint (1.1b) in z and using the two kinematic
boundary conditions (1.3a) and (1.3b), we obtain the free surface equation

∂t h + ∇h ·
∫ h

−b
uh dz = 0 . (1.4)

Propagation in time then uses the horizontal momentum equations, the free surface
equation, and the advection of buoyancy (1.1c) as prognostic quantities while the
vertical velocity w is reconstructed from the incompressibility constraint; see, e.g.,
Klingbeil and Burchard (2013).

The free surface equation can be approximated in various ways. Replacing the
upper limit of integration in (1.4) by z = 0 while still keeping the time derivative
∂t h gives a linearization of the free surface equation which can be formulated in the
spirit of Chorin’s projection method where the free surface update is obtained by
solving an elliptic equation. This removes time-step restrictions due to fast surface
waves (surface waves are damped when the time step becomes too large) at the
expense of losing volume and tracer conservation—see, e.g., Griffies et al. (2001)
for a discussion.
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A more drastic approximation is a rigid lid upper boundary, where all equations
are posed on a fixed domain bounded above at z = 0. Consequently, the dynamic
boundary condition (1.3c) must be dropped. The time evolution of all fields can be
computed by an incompressible solver. An approximation of the elevation of the free
surface may then be diagnostically obtained by solving the equivalent hydrostatic
pressure relation

ps = gρ0h (1.5)

for h. The rigid lid approximation removes all surface gravity waves, which is often
a reasonable approximation in the ocean.

We finally remark that the inviscid Boussinesq equations conserve the total energy
or Hamiltonian

H =
∫

Ω

1

2
|u|2 + g

ρ0
ρz dx (1.6)

and materially conserve potential vorticity

q = (2Ω + ω) · ∇ρ , (1.7)

whereω = ∇ × u denotes the relative vorticity, i.e.,q satisfies the advection equation

Dt q = 0 . (1.8)

Both conservation laws can be verified by direct computation. However, in Section
1.3.1 we will show that they emerge elegantly from symmetries in the underlying
variational principle.

1.2.2 Imbalance Variables

Large-scale geophysical flow, at least in the sub-equatorial regime, is to a substan-
tial part determined by potential vorticity alone (McIntyre and Norton 2000). It is
therefore natural to use potential vorticity as one of the prognostic variables and to
augment the set of prognostic variables by so-called imbalance variables suitably
chosen such that they remain small so long as the flow is nearly balanced. In the
context of the f -plane shallow water equations, these additional variables are diver-
gence and ageostrophic vorticity; see the discussion in Section 1.2.6 for details. This
equivalent reformulation of the equation of motion is central to the discussion of
spontaneous emission of gravity waves by Ford et al. (2000); also see the discussion
in von Storch et al. (2019). Mohebalhojeh and Dritschel (2001) report numerical
advantages when simulating shallow water using this set of variables, and Dritschel
et al. (2017) find that the differences between several variational balance models can
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only be understood when looking at balance relations formulated in terms of such
imbalance variables. Imbalance variables for the primitive equations are introduced,
for example, by McIntyre and Norton (2000).

For the f -plane Boussinesq system in the so-called traditional approximation,
2Ω = (0, 0, f ), with f a constant referred to as the Coriolis parameter, there are
different possible choices. Dritschel and Viúdez (2003) use the horizontal compo-
nents of

A = ∇ × u − g

ρ0 f
∇ρ , (1.9)

which leads to a nonlinear inversion problem for recovering the vector potential
of A. Alternatively, it is also possible to use ageostrophic vorticity and divergence
(Vanneste 2013). However, as noted in Section 1.2.4 below, the traditional and the
hydrostatic approximations are not independent. Thus, we shall derive (for purposes
of expositionworking at the linear level only) a version of the non-traditional f -plane
Boussinesq system in imbalance variables. In this setting,Ω is assumed constant but
need not be parallel to the vertical direction k.

To begin, we note that linear inertia-gravity waves require rotation and strong
stratification, which can be expressed by assuming that density variations are small
relative to a static vertical stratification profile. We write

ρ(x, t) = ρ̄(z) + ρ ′(x, t) . (1.10)

The Brunt–Väisälä or buoyancy frequency is given by

N 2 = − g

ρ0

∂ρ̄

∂z
, (1.11)

which we assume to be independent of z in this section. Then the “thermodynamic
equation” (1.1c) reads

Dtρ − N 2ρ0

g
w = 0 (1.12)

and therefore, by incompressibility,

∂z Dtρ + N 2ρ0

g
∇h · uh = 0 . (1.13)

Further, taking the full divergence of the inviscid Boussinesq momentum equation
(1.1a), invoking incompressibility, differentiating in time, and using (1.13), we find

∇ · (2Ω × ∂tu) + 1

ρ0
∂tΔp − N 2 ∇h · uh = NL , (1.14)
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where NL is used to denote any number of nonlinear terms, possibly different from
one line to the next. Next, taking the horizontal divergence of (1.1a) yields

∂t∇h · uh + ∇h · (2Ω × u)h + 1

ρ0
Δh p = NL . (1.15)

This motivates taking the horizontal divergence

δ = ∇h · uh (1.16)

and the acceleration divergence or ageostrophic vorticity

γ = −∇h · (2Ω × u)h − 1

ρ0
Δh p (1.17)

as imbalance variables, so that ∂tδ = γ + NL. Then, using (1.14) to eliminate ∂tΔp,
we compute

∂tΔγ = −Δ∇h · (2Ω × ∂tu)h + Δh∇ · (2Ω × ∂tu) − N 2 Δhδ + NL

= −∂zz∇h · (2Ω × ∂tu)h + Δh(2Ω
⊥
h · ∂t zuh) − N 2 Δhδ + NL . (1.18)

Writing (2Ω × u)h = f u⊥
h − w 2Ω⊥

h with u⊥
h = (−v, u) in the first term on the

right, substituting the horizontal momentum equation for all instances of ∂tuh, invok-
ing incompressibility to replace all instances of ∂zw by −δ, eliminating Δh p via the
definition of γ = ∂tδ + NL, and collecting terms, we find

∂tΔγ =− f 2 ∂zzδ − f ∂z(2Ωh · ∇hδ) + (2Ω⊥
h · ∇h)

2δ

+ f ∂z(2Ωh · ∇⊥
h ∇⊥

h · uh − 2Ωh · Δhuh) − (N 2 + |2Ωh|2)Δhδ + NL .

(1.19)

Finally, applying the vector identity ∇h∇h + ∇⊥
h ∇⊥

h = I Δh twice and collecting
terms, we can write the system in the form of a nonlinearly perturbed wave equation,
where

∂tδ − γ =NL , (1.20a)

∂tΔγ + (2Ω · ∇)2δ+N 2 Δhδ = NL . (1.20b)

Without the nonlinear terms, this system is equivalent to the equation considered by
Gerkema and Shrira (2005a) to study linear waves on the non-traditional f -plane;
for related work on the non-traditional β-plane, see Gerkema and Shrira (2005b),
Kasahara and Gary (2010), and Stewart and Dellar (2012). The shallow water equa-
tions with full Coriolis parameter on the sphere are considered by Tort et al. (2014),
and linear stability of nonlinear jet-type solutions is investigated by Tort et al. (2016).
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We finally note that when the traditional approximation is made, (1.20) directly
reduces to the system studied, e.g., by Vanneste (2013).

When the nonlinear terms in (1.20) are retained, these equations together with the
advection equation for potential vorticity (1.7) form a closed system for the evolu-
tion of the f -plane Boussinesq equations because (u, p, ρ) can be recovered from
(q, δ, γ ) by inverting nonlinear elliptic equations. These involve boundary condi-
tions, and for vertically bounded domains with w = 0 at z = 0,−H require solving
Dtρ = 0 at the top and bottom boundaries. The two-dimensional fields b(xh, 0, t)
and b(xh,−H, t) are therefore additional degrees of freedom. Further complications
arise for horizontally bounded domains.

1.2.3 Mid-latitude Scalings

Let us now consider possible scaling regimes for (1.1) on a tangent plane at mid-
latitude ϑ0. In this regime, the flow is expected to be horizontally isotropic, but
vertical scales will generally differ. We thus split (1.1a) into the horizontal and verti-
cal component equations and non-dimensionalize by introducing typical horizontal
velocityU , typical vertical velocity W , typical Coriolis parameter f0 = 2|Ω| sin ϑ0,
typical horizontal length-scale L , typical vertical length-scale H (not to be confused
with the Hamiltonian H ), typical time-scale T , typical pressure scale P , and typical
density perturbation scale Γ , inserting u = U û, w = W ŵ, 2Ω = f0Ω̂ , etc., into the
Boussinesq equations (1.1), and finally dropping the hats, we obtain

U

T
∂tuh + U 2

L
uh · ∇huh + U W

H
w ∂zuh + f0UΩz u⊥

h − f0WΩ⊥
h w = − P

Lρ0
∇h p ,

(1.21a)

W

T
∂t w + U W

L
uh · ∇hw + W 2

H
w ∂zw + f0UΩ⊥

h · uh = − P

Hρ0
∂z p − gΓ

ρ0
ρ ,

(1.21b)

U

L
∇h · uh + W

H
∂zw = 0 , (1.21c)

Γ

T
∂tρ + UΓ

L
uh · ∇hρ + W N 2

0ρ0

g
w ∂zρ = 0 . (1.21d)

Here and below, N0 denotes the typical Brunt–Väisälä frequency

N 2
0 = − g

ρ0

[
∂ρ

∂z

]
, (1.22)

where we write [∂ρ/∂z] to denote the typical vertical density gradient. Note that it
is not necessary to split off a static vertical profile as we did in Section 1.2.2.
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We look at the problem on a horizontally advective time-scale, i.e., on a time-scale
in which fluid parcels travel a horizontal distance of order one. This fixes

1

T
∼ U

L
. (1.23)

Our goal is now to estimate the vertical velocity scale W . Introducing the aspect
ratio

α = H

L
, (1.24)

we may obtain a first simple estimate, W � αU , directly from the incompressibility
condition. However, the vertical velocity gradient does not necessarily participate
in the dominant balance in the incompressibility relation. Indeed, we shall see that
rotation as well as stratification may provide sharper scaling bounds on W .

Turning to the thermodynamic equation (1.21d), we obtain the scaling bound

W � gΓ

ρ0

U

N 2
0 L

= gΓ

ρ0

L

U
α2 Fr2 (1.25)

with Froude number

Fr = U

N0H
. (1.26)

Without loss of generality, we may take the scaling bound (1.25) to be sharp; if it is
not, we can make it sharp by changing the definition of the Froude number.

We nowmake the assumption that the dominant balance in the horizontal momen-
tum equation (1.21a) is between horizontal Coriolis force and horizontal pressure
gradient and that the dominant balance in the vertical momentum equation (1.21b)
is between buoyancy and vertical pressure gradient. This implies

f0LUρ0 ∼ P ∼ gΓ H . (1.27)

Introducing the Rossby number

Ro = U

f0L
(1.28)

and writing f ≡ Ωz for the non-dimensionalized rotation rate, we can rewrite the
momentum equations as

Ro (∂tuh + uh · ∇huh) + Fr2 w ∂zuh + f u⊥
h − α

Fr2

Ro
Ω⊥

h w = −∇h p , (1.29a)

α2 Fr2 (∂t w + uh · ∇hw) + α2 Fr
4

Ro
w ∂zw + α Ω⊥

h · uh = −∂z p − ρ . (1.29b)

We finally assume that we are on a 3D advective time-scale, i.e., that
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Ro = Fr2 . (1.30)

Then

Ro (∂tuh + u · ∇uh) + f u⊥
h − α Ω⊥

h w = −∇h p , (1.31a)

α2 Ro (∂t w + u · ∇w) + α Ω⊥
h · uh = −∂z p − ρ . (1.31b)

1.2.4 Hydrostatic Approximation

So far, we have not assumed smallness of any parameter beyond fixing the domi-
nant balance in the momentum equations. The first substantial simplification of the
equations of motion comes via the hydrostatic balance assumption

α � 1 (1.32)

while the Rossby number is at most O(1). Thus, in 3D advective scaling, hydrostatic
balance is purely a small aspect ratio assumption. If it is made, the contributions from
the horizontal Coriolis force are small as well. We altogether obtain the hydrostatic
primitive equations

Ro (∂tuh+u · ∇uh) + f u⊥
h = −∇h p , (1.33a)

∂z p = −ρ , (1.33b)

∇ · u = 0 , (1.33c)

Dtρ = 0 . (1.33d)

In this context, we remark that it has long been known that the hydrostatic approx-
imation requires the “traditional approximation” where the contributions from the
horizontal Coriolis force are neglected to ensure that the Coriolis force remains
energy-neutral; for example, see the discussion in White (2002) and Klein (2010).

While there have been early studies of the global circulation using balance models
as discussed further below, contemporary OGCMs are based on the primitive equa-
tions. For the study of small-scale phenomena, the use of non-hydrostatic models
is advancing (Fringer 2009). In the atmosphere, where non-hydrostatic effects are
more pronounced, non-hydrostatic models are routinely used (Saito et al. 2007).

1.2.5 The Quasi-geostrophic Approximation on the β-plane

We now turn to the quasi-geostrophic approximation on a mid-latitude β-plane. It is
a more severe approximation than hydrostaticity. We modify the assumptions made
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in Section 1.2.3 in three respects. First, we look at the scaling

Fr ∼ Ro , (1.34)

thereby breaking the 3D advective scaling. Advection in the vertical is thus coming
in at higher order than advection in the horizontal direction. Second, we assume that
pressure variations are small relative to a static vertical stratification profile. As in
Section 1.2.2, we split the density into a static stratification profile and a perturbation
field, writing

ρ(x, t) = ρ̄(z) + ρ ′(x, t) . (1.35)

Correspondingly, we introduce the perturbation pressure ψ satisfying

∂zψ = ∂z p + ρ̄ . (1.36)

Third, wemake theβ-plane approximationwith the assumption that the change of the
Coriolis parameter in y is O(Ro). In non-dimensionalized variables, this assumption
reads

f = 1 + Roβy , (1.37)

where Roβ is the meridional gradient of the Coriolis parameter. Inserting (1.35)
into the inviscid thermodynamic equation (1.1c) and dropping the prime, we non-
dimensionalize as follows:

UΓ

L
(∂tρ + uh · ∇hρ) + WΓ

H
w ∂zρ + W N 2

0ρ0

g
w ∂z ρ̄ = 0 . (1.38)

Keeping the last term in the dominant balance leads, once again, to a scaling relation
of the form (1.25) with identity in the first relation, so that, in non-dimensional
variables,

∂tρ + uh · ∇hρ + Row ∂zρ + w ∂z ρ̄ = 0 . (1.39)

Similarly, the momentum equations in non-dimensional variables, under the same
dominant balance assumptions as in Section 1.2.3 above, read

Ro (∂tuh + uh · ∇huh + Row ∂zuh) + f u⊥
h − α RoΩ⊥

h w = −∇hψ , (1.40a)

α2 Ro2 (∂t w + uh · ∇hw + Row ∂zw) + α Ω⊥
h · uh = −∂zψ − ρ , (1.40b)

∇h · uh + Ro ∂zw = 0 . (1.40c)

The quasi-geostrophic equations are obtained by the leading order of this system in
the formal limit Ro → 0 and α → 0. The leading-order vertical momentum equation
is, once again, the hydrostatic balance relation

∂zψ = −ρ . (1.41)
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Todetermine the leading-order balance in the horizontalmomentumequation (1.40a),
we need to separate the divergence from the curl component. For the divergence, the
dominant contribution is geostrophic balance, i.e.,

uh = ∇⊥
h ψ . (1.42)

(Note that there is no f in this relation as the deviation from constant Coriolis
parameter comes in at O(Ro) only.) The leading order of the curl of (1.40a) could
be obtained by direct computation, but it is easier to work from the expression for
the Boussinesq potential vorticity which, in dimensional variables, is given by (1.7).
In non-dimensional variables, the potential vorticity reads

q =
(

f0 Ωh + U

H
∂zu⊥

h − W

L
∇⊥

h w

)
· Γ

L
∇hρ

+
(

f0 f + U

L
∇⊥

h · uh

)(
Γ

H
∂zρ + N 2

0ρ0

g
∂z ρ̄

)

= UΓ

H L

((
α

Ro
Ωh + ∂zu⊥

h − α2 Ro∇⊥
h w

)
· ∇hρ

+
(

1

Ro
+ βy + ∇⊥

h · uh

)(
∂zρ + 1

Ro
∂z ρ̄

))
(1.43)

and satisfies the advection equation

(∂t + uh · ∇h + Row ∂z)q = 0 . (1.44)

Since ρ̄ does not depend on time or on the horizontal position, the leading-order
terms appear at O(Ro−1) and read

Dh
t (∂zρ + ∇⊥

h · uh ∂z ρ̄ + βy ∂z ρ̄) + w ∂zz ρ̄ = 0 , (1.45)

where Dh
t = ∂t + uh · ∇h denotes the horizontal material derivative. Eliminating w

with the leading-order terms of (1.39), dividing through by ∂z ρ̄ and simplifying, we
obtain the quasi-geostrophic potential vorticity equation,

Dh
t

(
∂z

ρ

∂z ρ̄
+ ∇⊥

h · uh + βy

)
= 0 . (1.46)

Using hydrostatic balance, the leading order of (1.40b) and the curl of geostrophic
balance (1.42), the quasi-geostrophic equations can be written in the well-known
closed form
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Dh
t

(
Δhψ − ∂z

∂zψ

∂z ρ̄
+ βy

)
= 0 , (1.47a)

uh = ∇⊥
h ψ . (1.47b)

The advected quantity in (1.47a) is the quasi-geostrophic potential vorticity. To
recover the stream function ψ from the potential vorticity, we need to solve a
second-order equation. It is elliptic provided that ∂z ρ̄ < 0, i.e., the fluid is stably
stratified. Moreover, we need boundary conditions. At the lateral boundaries, the
no-flux condition n · u = 0 constrains only the tangential derivative of ψ . A con-
sistent lateral boundary condition is ψ = 0 on a simply-connected domain; for the
multiply-connected case, seeMcWilliams (1977). Inmore idealized situations, chan-
nel geometries or, on the f -plane, periodic boundary conditions are frequently used.

At the top and bottom boundaries, we use Neumann boundary conditions. Due to
hydrostatic balance, ∂zψ = −ρ, where ρ satisfies the leading order of (1.39),

Dh
t ρ + w ∂z ρ̄ = 0 . (1.48)

At the top boundary, it is common to assume rigid lid conditions, i.e., w = 0. For a
correction to a rigid lid condition, see, e.g., Olbers et al. (2012). At the bottom bound-
ary, the impermeability condition reads uh · ∇hb + w = 0, with b(xh) denoting the
equilibrium depth.

To re-dimensionalize the quasi-geostrophic equations, we recall the definition of
the z-dependent Brunt–Väisälä frequency (1.11). Further, it is convenient to express
ψ in units of a horizontal stream function, not in pressure units. Then equation (1.47)
takes the form

∂t q + ∇⊥
h ψ · ∇q = 0 , (1.49a)

q = f + Δhψ + f 20 ∂z
∂zψ

N 2(z)
, (1.49b)

where q is the quasi-geostrophic potential vorticity. Linearized about the trivial
solution, these equations allow propagation of internal waves in the horizontal plane.
Their phase velocities cn are related to the eigenvalues λn = c−2

n of the vertical
structure operator, the last term in (1.49b). Of particular importance is the speed c1
of the fastest wave. The associated horizontal length-scale is called the (first) internal
or baroclinic Rossby radius of deformation,

Ld = c1
f0

= N0H

π f0
; (1.50)

the second equality holds as stated only in the case of uniform stratification where
N (z) = N0. It is the scale at which buoyancy forces and Coriolis forces are equally
important; it is also approximately the scale of strongest conversion of potential into
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kinetic energy via baroclinic instability; see, e.g., Vallis (2006) for details. In the
ocean, Ld varies from less than 10 km at high latitudes up to 200 km in the tropics.

As the quasi-geostrophic equations are typically used for proof-of-concept studies,
two simplifications are particularly useful. First, if the equations are posed in a flat
horizontal layer and density and velocity are independent of z, we obtain the two-
dimensional or barotropic quasi-geostrophic equation

∂t q + ∇⊥ψ · ∇q = 0 , (1.51a)

q = f + Δψ , (1.51b)

where we drop the subscript “h” on the operators as all fields are fully two-
dimensional. This form of the barotropic quasi-geostrophic equation implicitly car-
ries a rigid lid assumption. It is possible to derive the equation without this assump-
tion, in which case the expression for potential vorticity acquires an extra term; see
(1.69) and the surrounding discussion.

Second, we can derive a simple model for a baroclinic rotating flow by assum-
ing that the fluid moves in two uniform layers with constant depths H1 and H2,
respectively, with layer 1 assumed on top of layer 2. We suppose that the potential
vorticities qi and stream functionsψi , where i ∈ {1, 2}, are taken at the layer centers.
The density, on the other hand, is taken at the layer boundaries. Using finite differ-
ences, ∂zψ ≈ 2(ψ1 − ψ2)/(H1 + H2) at the layer interface. At the top and bottom
interfaces, boundary condition (1.48) with w = 0 applies and the hydrostatic rela-
tion implies that ∂zψ is advected. Altogether, using finite differences across each
layer for the outer z-derivative in (1.49b), we obtain the quasi-geostrophic two-layer
equations

(∂t + ∇⊥ψ1 · ∇)

(
f + Δψ1 + 2 f 20

N 2
0 H1 (H1 + H2)

(ψ2 − ψ1)

)
, (1.52a)

(∂t + ∇⊥ψ2 · ∇)

(
f + Δψ2 + 2 f 20

N 2
0 H2 (H1 + H2)

(ψ1 − ψ2)

)
. (1.52b)

When the two layers have equal depth H1 = H2 = H/2, we can write the two-layer
quasi-geostrophic system in the symmetric form

∂t qi + ∇⊥ψi · ∇qi = 0 , (1.53a)

qi = f + Δψi + (−1)i k2
d (ψ1 − ψ2)/2 , (1.53b)

with kd = L−1
d , where the (single) internal Rossby radius is now given by

Ld = N0H√
8 f0

. (1.54)
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A detailed exposition of more general multi-level and multi-layer models can be
found in Pedlosky (1987) or Kamenkovich et al. (1986). For a variational perspective
on quasi-geostrophic theory, see Holm and Zeitlin (1998) and Bokhove et al. (1998).

1.2.6 Rotating Shallow Water Equations

We shall finally introduce the rotating shallow water equations which describe the
horizontal motion in a thin layer of an incompressible fluid with a free surface and
constant density. The shallow water equations are often used as a simple test bed in
situations where baroclinic effects are negligible or to be excluded.

Assuming that ν = 0 and, for simplicity, that density is constant, the Boussinesq
equations (1.1) reduce to the three-dimensional Euler equations for a homogeneous
ideal fluid with rotation and gravitational forces acting in the vertical. Following the
notation used above, they read

Dtu + 2Ω × u = − 1

ρ0
∇ p − gk , (1.55a)

∇ · u = 0 . (1.55b)

We now make the following scaling assumptions. First, as before, we impose an
advective time-scale (1.23). Second, we assume that the aspect ratio α, defined in
(1.24), is small.Without stratification, we only have the divergence condition (1.55b)
to constrain the vertical velocity, so that W � αU . Third, we suppose that

Ro � Bu = gH

f 20 L2
, (1.56)

where the dimensionless parameter Bu is known as the Burger number, which can
also be interpreted as the square ratio of the Rossby radius of deformation to the
horizontal length-scale L . We remark that condition (1.56) is consistent with both
the semi-geostrophic and the quasi-geostrophic scaling regimes of shallow water
theory; see the discussion in Section 1.2.7 below.

Under these assumptions, the formal limit α → 0 imposes, again simultaneously,
the hydrostatic and the traditional approximation, so that, using a rescaled pressure
but otherwise dimensional variables,

Dtuh + f u⊥
h = −∇h p , (1.57a)

0 = ∂z p − g , (1.57b)

∇ · u = 0 , (1.57c)

The hydrostatic equation (1.57b) implies that the pressure is fully determined by the
hydrostatic pressure. To be definite, let us suppose that z = 0 describes the equilib-
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rium free surface, h(xh, t) the departure of the free surface from equilibrium, and
b(xh) the equilibrium depth of the layer. If the pressure at the free surface is zero,
integration of (1.57b) yields

p(xh, t) = g (h(xh, t) − z) . (1.58)

In particular, the horizontal pressure gradient is entirely independent of z. Thus,
assuming that the velocity field is initially independent of z, it will remain so for all
times, and thematerial advection operator Dt in (1.57a) reduces to horizontalmaterial
advection Dh

t . Finally, we can eliminate w from the divergence condition (1.57c) by
vertical integrationunder zero normalflowboundary conditions, yielding a continuity
equation for the total layer depth. Dropping the h-subscript, as all quantities are now
fully two-dimensional, the resulting equations, known as the rotating shallow water
equations, read

∂tu + u · ∇u + f u⊥ + g ∇h = 0 , (1.59a)

∂t h + ∇ · ((h + b)u) = 0 . (1.59b)

These equations can also be derived from a variational principle; see, e.g., Salmon
(1998). The generalization to stratified rotating shallow water equations is based on
assuming that the fluid consists of layers with constant density that are separated
by interfaces. As for the above single-layer rotating shallow water equations, one
assumes that the amplitude of the deformation of each interface to be much less than
the layer depths. For a variational derivation of the multi-layer rotating shallowwater
equations, see, e.g., Salmon (1982) and Stewart and Dellar (2010).

The rotating shallow water equations conserve the energy

H = 1

2

∫
Ω

(h + b) |u|2 + g h2 dx , (1.60)

and materially conserve the potential vorticity

q = f + ζ

h + b
= ζa

h + b
(1.61)

where
ζ = ∇⊥ · u (1.62)

is the relative vorticity and ζa = f + ζ the absolute vorticity. Both conservation laws
can be shown to arise as Noetherian conservation laws as outlined in Section 1.3.1.

To study emission and propagation of gravity waves, it is useful to reformulate the
rotating shallow water equations in terms of imbalance variables as we have done
for the rotating Boussinesq equations in Section 1.2.2. Following Salmon (2007),
we use vorticity ζ , divergence δ = ∇ · u, and height field h. The reason is that
geostrophicmotion is divergence free, so that divergence δ and ageostrophic vorticity
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γ = f ζ − gΔh can be used as dynamic indicators for imbalance. Introducing a
momentum stream function χ and a momentum potential θ so that

(h + b) u = ∇⊥χ + ∇θ (1.63)

and a generalized Bernoulli function

Φ = 1
2 |u|2 + gh , (1.64)

we can write the rotating shallow water equations in the form

∂tζ = ∇⊥q · ∇χ − ∇ · (q∇θ) , (1.65a)

∂tδ = ∇⊥q · ∇θ + ∇ · (q∇χ) − ΔΦ , (1.65b)

∂t h = −Δθ . (1.65c)

We remark thatMohebalhojeh and Dritschel (2001) prefer a very similar formulation
using δ and γ as imbalance variables. In particular, they derive high-order balance
conditions, termed δ–γ balance, by requiring any number of time derivatives of δ

and γ to vanish. Note that when periodic boundary conditions are used in idealized
prototype studies, system (1.65) needs to be augmentedwith two ordinary differential
equations for themeanvelocityfield; see, e.g., the discussion inDritschel et al. (2017).

1.2.7 Geostrophic Scalings

The Boussinesq equations with a free surface upper boundary also support surface
gravity waves. Surface waves are retained in the shallow water approximation, and
textbook linear wave theory shows that their maximal phase velocity is bounded by
ce = √

gH . This speed defines, as does (1.50) for the internal modes, the external
or barotropic Rossby radius of deformation

Le = ce
f0

=
√

gH

f0
(1.66)

as the horizontal scale at which free surface effects and rotation are of equal impor-
tance. In the deep ocean, for example, Le ≈ 2000 km, thus it is often appropriate to
consider a rigid lid which imposes Le = ∞ and focus on the first internal Rossby
radius Ld. In the atmosphere, the two radii are much closer with Le ≈ 2000 km and
Ld ≈ 800 km.

Geostrophic scalings are introduced to capture the regime when rotational forces
are dominant. This regime is universally characterized by a small Rossby number
(1.28), but the limit can be approached in different ways distinguished by the scaling
of the Burger number
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Bu = L2
Ro

L2
= Ro2

Fr2
, (1.67)

where, depending on the context, LRo denotes the internal or external Rossby radius
of deformation. In the internal wave picture, the Froude number is given by (1.26).
For surface gravity waves in the shallow water framework, (1.67) can be seen as
implicitly defining the shallow water Froude number which, however, is not needed
as an independent scaling parameter.

Qualitatively, there are three different regimes. When the Burger number is small,
the flow is rotation dominated. The semi-geostrophic limit, discussed further below,
is representative of this regime. At Bu = O(1), buoyancy and rotation are both
important. The quasi-geostrophic limit is representative of this regime. For large
Burger numbers, the effects of stratification are dominant; we will not consider this
situation further. See, e.g., Babin et al. (2002) for a detailed exposition of the different
geostrophic scaling regimes.

We already took a detailed look at quasi-geostrophy in Section 1.2.5. There,
we took the rotating Boussinesq equations as the starting point and scaled with
Bu = O(1) where the Burger number was linked to the internal Rossby radius. We
specialized single-layer and double-layer models in a second step. However, it is also
possible to derive a single-layer quasi-geostrophic equation from the rotating shallow
water equations. In this case, buoyancy comes from the free surface elevation, so the
Burger number must be based on the external Rossby radius. In order to maintain
geostrophic balance at leading order, we must assume that variations in the surface
elevation are small, more precisely, are O(Ro). It is then possible to derive a quasi-
geostrophic potential vorticity by linearizing the shallow water potential vorticity
(1.61) as follows. Taking a constant layer depth b = H with h � H and ζ � f , we
can write

q = f + ζ

H

1

1 + h/H
≈ f + ζ

H

(
1 − h

H

)
≈ 1

H

(
f − f

h

H
+ ζ

)
. (1.68)

Dropping the constant prefactor, recalling that ζ = Δψ , and using leading-order
geostrophic balance in the form f ψ ≈ gh, we obtain a new quasi-geostrophic poten-
tial vorticity

q = f − L−2
e ψ + Δψ . (1.69)

This expression contains an extra stretching term L−2
e ψ not present in (1.51b) which

is a remnant of free surface effects. It is required on scales larger than the external
Rossby radius, even though the use of the quasi-geostrophic approximation on such
scales becomes questionable as changes in theCoriolis parameter are no longer small.

Let us now turn our attention to the situation when the Burger number is small.
In this case, the most important distinguished limit has Bu = Ro. It is referred to
as the semi-geostrophic limit or the frontal geostrophic regime in the context of
frontal geostrophic adjustment (Zeitlin et al. 2003). The study of this limit goes
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back to the geostrophic momentum approximation (Eliassen 1948). The resulting
semi-geostrophic equations were rewritten by Hoskins and solved via an ingenious
change of coordinates (Hoskins 1975; Cullen and Purser 1984). They continue to
attract interest due to their connection to optimal transport theory and the result-
ing possibility to make mathematical sense of generalized frontal-type solutions
(Benamou and Brenier 1998; Cullen 2008) and for the turbulence emerging from
them (Ragone and Badin 2016). The geostrophic momentum approximation and
Hoskins’ transformation inspired Salmon (1983, 1985) to make corresponding
approximations directly to Hamilton’s principle so as to preserve geometrical struc-
ture and automatically preserve conservation laws. Salmon’s approach is generalized
in Oliver (2006); corresponding results for stratified flow where the primitive equa-
tions serve as the parent model are due to Salmon (1996) and Oliver and Vasylkevych
(2016). Numerical studies suggest that Salmon’s so-called L1 model is particularly
robust and accurate (Allen et al. 2002; Dritschel et al. 2017). A direct numerical
comparison of Hoskins’ semi-geostrophic equations with its generalized solution
structure and the L1 family of models which possess global classical solutions has
not yet been done.

Both semi-geostrophic and quasi-geostrophic models cannot support inertia-
gravity waves. Rossby waves are the only possible linear wave solutions; see, e.g.,
Vallis (2006) for quasi-geostrophic Rossby wave theory. Thus, even though quasi-
geostrophic models formally allow larger Burger numbers, their derivation imposes
a smallness assumption on buoyancy perturbations, so that it is a priori not clear
whether they are more accurate than any of the semi-geostrophic models for nearly
balanced flow even in the Bu = O(1) regime. Despite some preliminary attempts
aimed at exploring frontal scale turbulence (Badin 2014), to our knowledge a sys-
tematic numerical study has not yet been done.

Mathematically rigorous justifications of the quasi-geostrophic splitting into fast
and slow modes have started with the work of Embid and Majda (1996) and Babin
et al. (1996, 1997). These ideas are extended and reviewed, for example, by Babin
et al. (2002), Majda (2003), Saint-Raymond (2010), and Cheng andMahalov (2013).
The book by Majda (2003), in particular, contains an elementary exposition of aver-
aging over fast waves which can be seen as a deterministic precursor of the stochastic
averaging in Section 1.5.3 below, and Dutrifoy et al. (2009) consider a model for
equatorial balance.

A full mathematical justification for any of the semi-geostrophic limits remains,
to the best of our knowledge, open.

1.2.8 Equatorial Scalings

Near the equator, themid-latitude scalings discussed above break down as the rotation
vectorΩ aligns with the horizontal. In the equatorial β-plane approximation, f0 = 0
and the vertical component of the Coriolis force takes the form f = βy. Correspond-
ingly, the mid-latitude notion of geostrophic balance breaks down. Thus, near the
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Fig. 1.1 Dispersion curves
of linear equatorial waves of
the rotating shallow water
equations. Here k is the
wavenumber and ω the
frequency with β the
meridional gradient of the
Coriolis parameter and
ce = √

gH the gravity wave
speed for mean fluid
thickness H
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equator the fluid ceases to be approximately constrained to quasi-two-dimensional
motion.Moreover, at least in the atmosphere, different physics—moist processes and
deep convection—become dominant features of the observed dynamics. Whether
some notion of balance in the absence of moist processes persists up to and across
the equator is currently not well understood.

One instance where these difficulties manifest themselves is the weakening of
scale separation between different types of linear waves as compared to the mid-
latitudes. For example, linearizing the equatorial rotating shallow water equations
about a steady state with constant height field yields the dispersion curves for eigen-
modes plotted in Figure 1.1. In addition to the slow Rossby and Kelvin waves also
Yanai waves, which are mixed Rossby–gravity waves, are present. Here, only the
Rossby waves reflect the non-trivial Coriolis effect of the β-plane approximation
and are geostrophically balanced. However, Kelvin waves are important factors in
low-frequency variations in the tropics.

As in themid-latitudes, it is natural to seek a scalingwhich is able to filter the faster
waves in some asymptotic limit. The mid-latitude definition of the Rossby number,
whereRo = U/( f L), becomes singular at the equator and cannot be used as a scaling
parameter. Noting that the characteristic length-scales may be strongly anisotropic
near the equator, we may proceed as follows. Let c denote the characteristic wave
speed. For example, in the shallow water approximation, c = ce = √

gH while for
stratified quasi-geostrophic or Boussinesq flow, c = c1 = N0H/π as introduced in
the previous sections. Themeridional length-scale L y atwhich rotation is comparable
to wave propagation satisfies f L y = c. Moreover, at this distance from the equator,
the vertical Coriolis parameter satisfies f = βL y . Solving for the meridional length-
scale, we obtain
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L y =
√

c

β
, (1.70)

which can be regarded as an equatorial Rossby radius of deformation. In combination
with a typical zonal scale Lx , we may define an equatorial Rossby number as

Roeq = U

f Lx
= U√

cβ Lx
. (1.71)

Its ratio with the Froude number Fr = U/c leads to the equatorial Burger number
as the horizontal aspect ratio

Bu = L2
y

L2
x

= Ro2eq
Fr2

. (1.72)

It is typically small; ε = √
Bu has been used as the main expansion parameter, for

example, by Majda (2003) and Chan and Shepherd (2013).
Assuming, in addition, a low vertical aspect ratio in the sense that H 2 � Lx L y ,

one obtains hydrostatic balance as for the mid-latitude scaling in Section 1.2.4 (Chan
and Shepherd 2013). In order to obtain a hierarchy of balanced models from an ε-
expansion, they assume Fr = 1 and apply the slaving method of Warn et al. (1995).
Balanced models in the tropics which do not assume the traditional approximation
were derived by Julien et al. (2006).

1.3 Variational Principles and Hamiltonian Mechanics

The inviscid Boussinesq equations and all of the simplified models discussed in
Section 1.2 are infinite-dimensional Hamiltonian systems. In this section, we will
review several formally equivalent points of view: Hamilton’s variational principle
in which the equations of motion arise as stationary points of an action functional,
the Poisson formulation of Hamiltonian fluid mechanics, and, closely related, the
Nambu formulation.

The derivation of each of the models from Section 1.2 can be made system-
atic through the use of Hamilton’s variational principle. This approach has multiple
advantages: First of all, it allows to formulate a geometrical setting of the dynamics;
from the study of the Lagrangian density, one can study the continuous symmetries
of the system and, by Noether’s theorem, derive associated conservation laws; fur-
ther, one can apply different dynamical approximations directly to the Lagrangian
density. When the approximations respect the continuous symmetries, the approx-
imated systems will possess analogous conserved quantities. Fluid Lagrangians, in
particular, have a special symmetry, the particle relabeling symmetry, which states
that the exchange of fluid labels does not affect the distribution of mass. The associ-
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ated conserved quantity to this symmetry is the potential vorticity of the fluid. This
result shows that potential vorticity does not just appear from a skillful manipulation
of the equations of motion, but is instead a signature of a more fundamental property
of the system.

While Hamilton’s principle has been used to derive numerical methods for partial
differential equations (Stern et al. 2015), structure-preserving numerical approxima-
tions forfluid equationsmore readily arise bydiscretizingPoissonorNambubrackets.
While we will not go into the numerical aspects here, we explain the Poisson and
Nambu formulations using the rotating shallow water equations as an example.

More detailed expositions in the context of geophysical fluid dynamics can be
found in the textbooks by Salmon (1998) and Badin and Crisciani (2018); for the
mathematical foundations, see, for example, Marsden and Ratiu (2013) and Arnold
and Khesin (1999).

1.3.1 Variational Principles

The inviscid form of the Boussinesq equations (1.1) can be derived from a variational
principle as follows. For simplicity,we consider the case of a rigid lid upper boundary.
Let g denote the Lie algebra of vector fields on Ω satisfying the incompressibility
condition (1.1b) on the domainΩ with impermeability conditions on all boundaries.
Let η denote the flow of a time-dependent vector field u ∈ g, i.e.,

η̇(a, t) = u(η(a, t), t) with η(a, 0) = a . (1.73)

Here and in the following, the letter a is used for Lagrangian label coordinates, while
x = η(a, t) denotes the corresponding Eulerian position at time t . As u is divergence
free, η is volume preserving. In the following, we shall write η̇ = u ◦ η for short.
Correspondingly, the advection of density equation, (1.1c) with κ = 0, is equivalent
to

ρ ◦ η = ρin , (1.74)

where ρin is the given initial distribution of the density.
Throughout the chapter, we use the letters L and � (with appropriate subscripts as

necessary) to distinguish Lagrangians expressed in Lagrangian and Eulerian quanti-
ties, respectively. With this notation in place, the Boussinesq Lagrangian reads

L(η, η̇; ρin) =
∫

Ω

R ◦ η · η̇ + 1

2
|η̇|2 − g

ρ0
ρin η3 da , (1.75)

where ∇ × R = 2Ω . We note that L can be expressed in terms of purely Eulerian
quantities as
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L(η, η̇; ρin) =
∫

Ω

R · u + 1

2
|u|2 − g

ρ0
ρz dx ≡ �(u, ρ) . (1.76)

The first term in the Lagrangian is the Coriolis term. It only contributes to the sym-
plectic form, but does not feature in the energy. The second and third terms are the
difference of kinetic and potential energies, as for simple mechanical systems.

We observe that L is invariant under compositions of the flow map with arbitrary
volume- and domain-preserving maps. This is known as the particle relabeling sym-
metry. For such Lagrangians, the Euler–Poincaré theorem for continua (Holm et al.
1998 or Holm et al. 2009, Theorem 17.8) asserts that the following are equivalent.

(i) η satisfies the variational principle

δ

∫ t2

t1

L(η, η̇; ρin) dt = 0 (1.77)

with respect to variations of the flow map δη = w ◦ η where w is a curve in g
vanishing at the temporal end points.

(ii) u and ρ satisfy the reduced variational principle

δ

∫ t2

t1

�(u, ρ) dt = 0 , (1.78)

where the variations δu and δρ are subject to the Lin constraints

δu = ẇ + ∇w u − ∇uw = ẇ + [u,w] , (1.79a)

δρ + w · ∇ρ = 0 , (1.79b)

with w as in (i).
(iii) m and ρ satisfy the Euler–Poincaré equation

∫
Ω

(∂t + Lu)m · w + δ�

δρ
Lwρ dx = 0 (1.80)

for every w ∈ g, where L denotes the Lie derivative and m is the momentum
one-form

m = δ�

δu
. (1.81)

In the language of vector fields in a region of R3, the Euler–Poincaré equation
(1.80) reads

∫
Ω

(
∂tm + (∇ × m) × u + ∇(m · u) + δ�

δρ
∇ρ

)
· w dx = 0 (1.82)
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for every w ∈ g. Due to the Hodge decomposition, the term in parentheses must be
a gradient, i.e.,

∂tm + (∇ × m) × u + δ�

δρ
∇ρ = ∇φ . (1.83)

Noting that
δ�

δu
= R + u and

δ�

δρ
= −gz

ρ0
, (1.84)

redefining the potential

φ = − p

ρ0
− g

ρ0
zρ − 1

2
|u|2 , (1.85)

and using the vector identity (∇ × u) × u = u · ∇u − 1
2 ∇|u|2, we can write the

Euler–Poincaré equation for L as

∂tu + u · ∇u + 2Ω × u = − 1

ρ0
∇ p − gρ

ρ0
k . (1.86)

Thus, we recovered the inviscid form of the momentum equation (1.1a).
We remark that the traditional approach to variational derivation of the primitive

equations treats the geopotential as a Lagrange multiplier responsible for enforcing
the incompressibility constraint. Here, we build the constraint into the definition of
the configuration space. The gradient of the geopotential then appears naturally due
to the fact that the L2 pairing with divergence-free vector fields determines a vector
field only up to a gradient. Both approaches, of course, lead to identical equations of
motion.

As theBoussinesq Lagrangian (1.75) is invariant under time translation, themodel
possesses a conserved energy of the form

H =
∫

Ω

δ�

δu
· u dx − �(u, ρ) =

∫
Ω

1

2
|u|2 + g

ρ0
ρz dx . (1.87)

The symmetry of the balance model Lagrangian under particle relabeling leads
to a material conservation law for the potential vorticity of the balance model. It
can be derived geometrically as follows. First note that the abstract Euler–Poincaré
equation (1.80) can be written

(∂t + Lu)m + δ�

δρ
dρ = dφ , (1.88)

where d denotes the exterior derivative. Taking the exterior (wedge) product between
the exterior derivative of (1.88) and dρ, we find that
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0 = d
(
(∂t + Lu)m + δ�

δρ
dρ − dφ

) ∧ dρ

= (∂t + Lu)(dm ∧ dρ) − dm ∧ d(∂t + Lu)ρ

= (∂t + Lu)(dm ∧ dρ) , (1.89)

where we used the commutativity of Lie and exterior derivatives in the second equal-
ity and the advection of ρ in the third equality. In three dimensions, we can identify
this conservation law with material advection of the scalar quantity

q = ∗(dm ∧ dρ) , (1.90)

where ∗ denotes the Hodge dual operator. Indeed, writing μ = dx1 ∧ dx2 ∧ dz to
denote the canonical volume form, we have dm ∧ dρ = qμ, so that

0 = (∂t + Lu)(qμ) = μ (∂t + Lu)q + q Luμ . (1.91)

Since the flow is volume preserving and μ is non-degenerate, this proves that ∂t q +
Luq = 0, i.e., q is conserved on fluid particles.

Going back to the language of vector calculus, using expression (1.84) for the
momentum and writing ω = ∇ × u for the relative vorticity, we recover the familiar
expression for the Ertel potential vorticity,

q = (∇ × m) · ∇ρ = (2Ω + ω) · ∇ρ . (1.92)

We remark that the derivation above corresponds to taking the inner product of the curl
of the Euler–Poincaré equations (1.83) with ∇ρ and manipulating correspondingly;
the advantage of the abstract approach is that commuting exterior and Lie derivative
in traditional notation is not linked to any intrinsic operation, thus requires tedious
verification.

1.3.2 Variational Model Reduction

The variational principle which underlies the equations of motion can be used to
derive simplified models. All approximations are done at the level of the Lagrangian;
the simplified equations of motion then arise from the approximated Lagrangian in
a second step. When the approximations respect the symmetries of the Lagrangian,
the associated conservation laws, in our setting the conservation of energy and of
potential vorticity, will be preserved as well.

The use of the Hamilton principle to derive balance models was pioneered by
Salmon (1985, 1996). Salmon’s method was generalized by Oliver (2006) where
the approximate balance manifold is interpreted as a Dirac constraint induced by
a truncated change of coordinates. Structure preservation, however, does not imply
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well-posedness of the initial value problem, as is evident in the numerical study of
Dritschel et al. (2017) which indicates a strong preference for Salmon’s so-called
L1-model. Çalık et al. (2013) prove global well-posedness for a large class of vari-
ational balance models, including the L1-model. Gottwald and Oliver (2014) give
a justification of the general method to arbitrary order of approximation in a finite-
dimensional model context, and Oliver and Vasylkevych (2013, 2016) show that the
variational approach is flexible enough to cover spatially varying Coriolis functions
and stratified flow, respectively.

The use of language from geometry and of the associated variational principles is
particularly advantageous when working in general curvilinear coordinates (Tort and
Dubos 2014) which is crucial when working with global models but not as pertinent
to the more theoretical questions we raise here and will not be discussed further.

In a different line of research, Koide and Kodama (2012) and references cited
therein demonstrate that a stochastic version of the Hamilton principle can give
rise to various dissipative partial differential equations, including the Navier–Stokes
equations and higher-order corrections to harmonic diffusion. A different approach is
taken by Holm (2015) who derives fully stochastic fluid equations from a variational
principle and discusses their conservation law structure.

1.3.3 Poisson Formulation

All of the models above can also be cast in a Poisson or a Nambu formulation. We
illustrate this using the rotating shallow water equations as an example.

The rotating shallow water equations (here, for simplicity, with b = const and h
denoting the total layer depth) can be cast in a non-canonical Poisson formulation
(see, e.g., Shepherd 1990). Suppose F is an arbitrary functional of u and h. Then

Ḟ = {F, H} (1.93)

with shallow water Hamiltonian H given by (1.60) and Poisson bracket

{F, H} =
∫

Ω

q F⊥
u · Hu − Fu · ∇Hh + Hu · ∇Fh dx (1.94)

where we use subscripts to express functional derivatives. A Poisson bracket is skew-
symmetric, satisfies the Leibniz rule

{ f, gh} = { f, g} h + { f, h} g (1.95)

and the Jacobi identity

{{ f, g}, h} + {{g, h}, f } + {{h, f }, g} = 0 . (1.96)
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The shallow water equations (1.59) are recovered by substituting point evaluations
of h and hu for the functional F . The Poisson formulation can also be written in the
form

Ḟ =
∫

Ω

F T
ξ J Hξ dx , (1.97)

where ξ = (u, h) and J is the non-canonical Poisson operator

J = −
(

q J ∇
∇T 0

)
. (1.98)

Here J denotes the canonical 2 × 2 symplectic matrix Jw ≡ w⊥ for any w ∈ R
2 and

we think of ∇ as a column operator.
From (1.98), it is possible to find the Casimir invariants of the system, i.e., func-

tionals C satisfying
{F, C} = 0 (1.99)

for every functional F . Expressing the bracket in terms of the Poisson operator
defined via (1.97) and (1.98), we see that the Casimirs are precisely the functionals
which belong to the kernel of J, i.e.,

JCξ = 0 . (1.100)

When J is invertible, the Casimirs are just the constant functionals with respect to ξ .
For the non-canonical Poisson brackets of fluid dynamics, however, J typically has
a non-trivial kernel, i.e., non-trivial Casimirs. Here, for the rotating shallow water
equations, it can be shown that there is a class of Casimirs of the form

C =
∫

Ω

h γ (q) dx , (1.101)

where γ is an arbitrary function of potential vorticity, not to be confused with the
ageostrophic vorticity. Indeed, by the chain rule,

Cu = h γ ′(q) qu = −∇⊥γ ′(q) , (1.102a)

Ch = γ (q) − q γ ′(q) , (1.102b)

so that, using (1.98),

JCξ =
(−q ∇ γ ′(q) − ∇ γ (q) + ∇(q γ ′(q))

∇ · ∇⊥γ ′(q)

)
=

(
0
0

)
. (1.103)

Hence, the Casimir condition (1.101) is satisfied. The conservation law for mass
corresponds to γ = 1, while γ (q) = q yields
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d

dt

∫
Ω

h q dx = d

dt

∫
Ω

ζa dx = 0 , (1.104)

where the first equality is due to (1.61). By Stokes’ theorem, (1.104) corresponds to
the usual conservation of circulation, which implies conservation of potential vor-
ticity (1.61). More generally, the choice γ (q) = qn corresponds to the conservation
of the nth-order enstrophy.

We remark that the Poisson formulation above can be cast into a mixed Eulerian–
Lagrangian form that can be seen as a precursor to numerical particle or particle-mesh
schemes (Bokhove and Oliver 2006). Further, the rotating shallow water equations
in ζ -δ-q variables, see (1.65), can also be written in non-canonical Hamiltonian form
as follows:

∂

∂t

⎛
⎝

ζ

δ

h

⎞
⎠ = J

⎛
⎝

Hζ

Hδ

Hh

⎞
⎠ , (1.105)

where

J =
⎛
⎝

−Jq Lq 0
−Lq −Jq −Δ

0 Δ 0

⎞
⎠ (1.106)

is a non-canonical Poisson operator whose component operators are defined by
Jq f ≡ J (q, f ) and Lq f ≡ ∇ · (q∇ f ) for a generic function f ; for details, see
Blender and Badin (2017).

1.3.4 Nambu Formulation

Even if the Hamiltonian formulation of the equations of motion for fluid flows is use-
ful to address questions regarding the geometry of the system, including the study
of continuous symmetries and associated conservation laws through Noether’s the-
orem, a systematic method for the derivation of the non-canonical Poisson brackets
is still generally lacking and the derivation often relies on guesswork. An alternative
formulation of dynamics was proposed by Nambu (1973), who suggested an exten-
sion of Hamiltonian dynamics which is based on Liouville’s theorem and, differently
from classical Hamiltonian mechanics, makes use of several conserved quantities,
i.e., the Casimirs of the system, which can be considered as additional Hamiltonians
and define manifolds whose intersection determines the trajectory in state space.
In analogy to Poisson brackets in Hamiltonian mechanics, the resulting dynamics
is determined by the Nambu bracket. A Nambu bracket is an n-linear map acting
on smooth functions on a manifold that is completely antisymmetric, satisfies the
Leibniz rule

{ f1, . . . , fn−1, gh} = { f1, . . . , fn−1, g} h + { f1, . . . , fn−1, h} g (1.107)
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and the Jacobi identity

{{ f1, . . . , fn−1, g1}, g2, . . . , gn} + {g1, { f1, . . . , fn−1, g2}, g3, . . . , gn} + . . .

+ {g1, . . . , gn−1, { f1, . . . , fn−1, gn}} = { f1, . . . , fn−1, {g1, . . . , gn}} .

(1.108)

A general theory of Nambu–Poisson structures was outlined by Takhtajan (1994).
For the rotating shallow water equations, it is convenient to pass from (u, h) to

(ζ, δ, h). Using the chain rule for functional derivatives,

Fu = −∇⊥Fζ − ∇Fδ (1.109)

while Fh remains unchanged. With (1.109), the Poisson bracket for the rotating
shallow water equations (1.94) takes the form of the sum of two Poisson brackets
and a Nambu bracket (Salmon 2005, 2007), i.e.,

Ḟ = {F, H}δδ + {F, H}ζ ζ + {F, H}ζ δh (1.110)

with

{F, H}δδ =
∫

Ω

q ∇⊥Fδ · ∇Hδ dx , (1.111a)

{F, H}ζ ζ =
∫

Ω

q ∇⊥Fζ · ∇Hζ dx , (1.111b)

and

{F, H}ζ δh =
∫

Ω

q
(∇Fδ · ∇Hζ − ∇Hδ · ∇Fζ

) + ∇Fδ · ∇Hh − ∇Hδ · ∇Fh dx .

(1.111c)

The subscripts indicate the variables entering the functional derivatives in the brack-
ets. Each of these brackets is antisymmetric and has Casimir functionals given by
the kernel of its associated Poisson operator, i.e., satisfy (1.101). Once again, of
particular interest are the n moments

Zn = 1

2 + n

∫
Ω

h qn+2 dx = 1

2 + n

∫
Ω

ζ n+2
a

hn+1
dx , (1.112)

wheren = 0yields the usual enstrophy.Using (1.112), thePoissonbrackets in (1.110)
can be rewritten as
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{F, H}δδ = {F, H, Zn}δδζ
= 1

3 + 2n

∫
Ω

1

qn

[
J (Fδ, Hδ) (Zn)ζ + cyc(F, H, Zn)

]
dx , (1.113a)

{F, H}ζ ζ = {F, H, Zn}ζ ζ ζ

= 1

3 + 2n

∫
Ω

1

qn

[
J (Fζ , Hζ ) (Zn)ζ + cyc(F, H, Zn)

]
dx , (1.113b)

and

{F, H}ζ δh = {F, H, Zn}ζ δh

= − 1

1 + n

∫
Ω

1

qn

(
∂x Fδ ∂x Hζ − ∂x Hδ ∂x Fζ

∂x q
∂x (Zn)h + cyc(F, H, Zn)

+ ∂y Fδ ∂y Hζ − ∂y Hδ ∂y Fζ

∂yq
∂y(Zn)h + cyc(F, H, Zn)

)
dx , (1.113c)

where “cyc” denotes expressions derived from the previous term by all cyclic per-
mutations of the indicated symbols.

The sum of the three brackets comprises the complete Nambu bracket for the
shallow water equations. This formulation has the advantage that it is easily dis-
cretized. The resulting numerical schemes have excellent conservation properties
(Salmon 2005). Note that in general, each Poisson bracket corresponds to an infinite
number of distinct Nambu brackets, depending on the set of Casimirs which are
used (Chatterjee 1996). This non-uniqueness of the Nambu formulation implies the
existence of different conservative numerical schemes for the same set of equations,
allowing substantial flexibility for the problem under consideration, for example, for
the elimination of the singularities emerging from the terms (∂x q)−1 and (∂yq)−1 in
the third bracket through a rewriting of the brackets before discretization.

For theNambubrackets for other geophysical fluid equations, includingRayleigh–
Bénard convection, see Blender and Badin (2015).

1.4 Dissipation, Turbulence, and Nonlinear Waves

1.4.1 Viscosity and Dissipation

So far, we have looked at a variety of models for geophysical flow without dissipa-
tion. However, consistent modeling of viscous dissipation and boundary friction is
essential for ensuring proper distribution of energy across scales. Including frictional
forces is a non-trivial problem, in particular when looking at effective models for
large-scale motion and for numerical simulation where physical dissipation ranges
are typically far smaller than what can be numerically resolved.
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At the microscopic level, the molecular kinematic viscosity for geophysical fluid
flow is modeled as a Newtonian viscosity. Likewise, buoyancy is diffusive with a
harmonic diffusion operator, as indicated in our initial formulation of the Boussinesq
equations (1.1). While the viscosity coefficients are extremely small, their presence
is important on a mathematical level due to the regularizing or smoothing effect.
Moreover, small bulk viscosities and frictional layers (Ekman layers), though thin,
influence the large-scale flow even in the limit of vanishing viscosity, which gives
good reasons to take viscous effects into account even for laminar flow. Examples are
the fast rotation and weak vertical diffusion limit system with drag term discussed in
Grenier andMasmoudi (1997) and Chemin et al. (2006), and the uniformly enhanced
Lagrangian drift from an oscillatory layer (Julien and Knobloch 2007). An early
overview on the linear stability of stratified flow with viscosity can be found in
Emanuel (1979, 1984). Notably, various stratified flows exhibit intermittency, that
is, coexistence of laminar and turbulent regions, also in the geophysical context; see,
e.g., Brethouwer et al. (2012) and Ansorge and Mellado (2016).

Crucially, enstrophy or energy cascades in geostrophic or fully developed three-
dimensional turbulence require an energy sink at the small scales. This is true even
though, in geostrophic turbulence, the dominant transfer of energy is toward larger
scales; for a detailed discussion, see, e.g., Danilov et al. (2019). Thus, energetically
consistent models require dissipation at small scales, usually referred to as “turbulent
viscosity” or “eddy viscosity.” In addition, dissipation is also implicitly or explicitly
required to ensure the stability of numerical schemes.

The simplest ad hoc approach adds dissipation to the horizontal and vertical
velocities with different viscosity coefficients (Pedlosky 1987). This results in the
following form of the viscous rotating Boussinesq equations

Dtuh + (2Ω × u)h = − 1

ρ0
∇h p + νh Δhuh + νv ∂zzuh , (1.114a)

Dt w + Ω⊥
h · uh = − 1

ρ0
∂z p − gρ

ρ0
+ νh Δhw + νv ∂zzw (1.114b)

∇ · u = 0 , (1.114c)

Dtρ = κ Δρ , (1.114d)

where νh and νv are coefficients of horizontal and vertical eddy viscosity, respectively.
In single-layer simplified models such as the barotropic quasi-geostrophic equa-

tion (1.51), dissipation comes in the form of bottom drag as the main energy sink and
viscosity (or hyperviscosity) as the main enstrophy sink. Under the β-plane approx-
imation f = f0 + βy, the dynamics can be written in terms of the relative vorticity
ζ = Δψ , so that

∂tζ + ∇⊥ψ · ∇ζ + β ∂xψ = F − λ ζ + ν Δζ , (1.115)

where the terms on the right-hand side are forcing F , linear (Rayleigh) damping
to model bottom friction with parameter λ describing an inverse time-scale for the
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vorticity decay due to bottom drag, and Newtonian viscosity with parameter ν. In
a numerical simulation of a forced system, viscosity is typically replaced by hyper-
viscosity to remove enstrophy without depleting energy across most resolved scales.
To model geostrophic turbulence, both types of dissipation are necessary. A more
detailed discussion of this topic is provided in Danilov et al. (2019).

The relevance of the form of viscosity for the mathematical theory is highlighted
by the fact that only very recently the well-posedness of the primitive equations with
only horizontal viscosity has been established by Cao et al. (2016); also see Charve
and Ngo (2011). For full viscosity in all directions much more is known, in particular
stability of (nearly) geostrophically balanced dynamics was shown by Temam and
Wirosoetisno (2010) and Charve (2006, 2018). Inclusion of at least some kind of
dissipation is crucial for these results, but is not necessarily physically consistent nor
suitable as a model for energy dissipation on these scales, which is the motivation
for the study in Olbers and Eden (2013).

As mentioned, there are no universally accepted criteria for the correct form of
dissipation, in particular in connection with numerical schemes. However, a note-
worthy prominent approach motivated also by the problem of unfeasible small-scale
resolution in practice is “Large Eddy Simulation” (LES) as discussed, e.g., in Sagaut
(2006).

In the (next) simplest form, the subgrid closure and parametrization problem of
viscosity yield an effective “filtered” Navier–Stokes model for the velocity vector u
in which the turbulent viscosity term reads

−∇ · (νe(u) S(u)) , (1.116)

where S(u) = 1
2 (∇u + (∇u)T ) is the rate-of-strain tensor and νe(u) the eddy vis-

cosity. For instance, Smagorinsky (1963) considers νe(u) = C |S(u)| with constant
C . Variants that are more faithful in preserving the turbulent kinetic energy spectrum
can be found in Schaefer-Rolffs and Becker (2013), Schaefer-Rolffs et al. (2015),
and Trias et al. (2015).

On a different level, we note that including viscous terms necessitates additional
boundary conditions. This in turn yields viscous so-called Ekman boundary layers,
which feed back onto the large-scale motion. We also point out that balancing eddy
buoyancy fluxes and viscous effects may necessitate additional scaling anisotropy
(Grooms et al. 2011).

Concluding this discussion,we emphasize that the presence of dissipation requires
to include driving mechanism in order to maintain non-trivial flow. The precise
form of the source term is yet another non-trivial modeling issue. Simple idealized
configurations are discussed in Danilov et al. (2019); for a discussion in a more
realistic context, see, for example, Olbers and Eden (2013).
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1.4.2 Nonlinear Waves and Dynamical Systems Methods

Wave phenomena at different scales organize the structure of geophysical flows
and play a vital role for the transport of energy. From a bifurcation theory view-
point, linear waves raise expectations for nonlinear wave phenomena. The only non-
linear terms in the standard models as introduced above stem from the material
derivative. Geostrophic balance partly turns these into a Poisson bracket nonlinear-
ity, which vanishes for monochromatic plane waves. For this reason, the barotropic
quasi-geostrophic equation (1.51) possesses linear Rossbywaves with unconstrained
amplitude as exact nonlinear solutions and, more generally, special plane waves can
sometimes be exact solutions of nonlinear fluid equations (Majda 2003; Julien and
Knobloch 2007). However, the barotropic quasi-geostrophic equations are special
in this regard. For its parent models, waves are not of plane form but nonlinearly
selected, even in the unstratified setting of the rotating shallow water equations.

In a different manner, baroclinic instability relates to bifurcations from Rossby
waves via amplitude equations. A discussion of this for a two-layer model can be
found in Pedlosky (1987). On the level of the equatorial shallow water wave equa-
tions, the amplitude equation approach to nonlinear phenomena has been exploited
by Boyd in the 1980s to identify various modulated Rossby and Kelvin waves; cf.
Boyd (1980) and the more recent Boyd (2002).

However, it appears that nonlinear waves in geophysical flows received much less
attention after the period of seminal progress in the 1980s—with the exception of
numerical studies, see below. In the past decade, the subject has regained momentum
in particular from a more mathematical viewpoint (Zeitlin et al. 2003; Bouchut et al.
2005; Constantin 2013; Hsu 2014); see Khouider et al. (2013) for a recent review.
A major motivation for the study of nonlinear waves is their role in balanced flow,
energy transport, andwave breaking in the formof shocks for inviscidmodels (Zeitlin
et al. 2003).

The vast majority of research considers idealized planar or cylindrical geome-
try and either no viscosity or simple molecular dissipation. The effect of viscosity
and Ekman layer formation has been mathematically studied in Dalibard and Saint-
Raymond (2010) concerning existence and stability of steady states in a certain scal-
ing limit of fast rotation and small layer thickness. Goh and Wayne (2018) recently
studied the role of two-dimensional Oseen vortices in a closely related limit. Rossby–
Haurwitz waves are explicit nonlinear spherical waves which received increasing
attention recently (Thuburn and Li 2000; Callaghan and Forbes 2006; Ibragimov
2011; Schubert et al. 2009; Smith and Dritschel 2006; Boyd and Zhou 2008). An
“intermediate” model accounting for geometric terms from the Mercator projection
has been proposed in Bates and Grimshaw (2014) and provides a possible connection
between planar and spherical nonlinear wave phenomena.

Another aspect of nonlinearwaves is the emergence of shocks in frontogenesis and
the adjustment problem. With attention to energy transfer in the geostrophic adjust-
ment problem, this has been studied in Blumen and Wu (1995) and more recently
by Reznik (2015), where additional references can be found. In a simplified one-
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dimensional setting of the shallow water equations, an essentially explicit approach
to fronts has been given in Plougonven and Zeitlin (2005); also see von Storch et al.
(2019).

While dynamical systems methods have been originally developed for finite-
dimensional problems, dissipative or more generally parabolic partial differential
equations often have a finite-dimensional character, which allows for application
of tools from generic dynamical systems theory. For instance, compactness and
viscosity allow to infer the existence of an invariant and attracting inertial manifold
as proven for the spherical Navier–Stokes equations in Temam and Wang (1993).

For domains with one large or unbounded direction, the spatial dynamical systems
perspective pushed nonlinear wave theory, in particular regarding stability, for pro-
totypical parabolic equations in the past decades; see, e.g., Kapitula and Promislow
(2013), Sandstede (2002), Meyries et al. (2014), and references therein. In the much
more prominent inviscid and dispersive case, the presence of conserved quantities
gives the mathematical theory a different character, especially concerning stability.
We refer to the recent study of Balmforth et al. (2013).

In general, the nonlinear response of a nonlinear parabolic system to linear insta-
bilities can be cast in terms of reduced equations which filter different aspects.
On extended domains, the aforementioned modulation equations describe the slow
dynamics over large scales near onset; rigorous error estimates have been derived in
several contexts (e.g., Schneider 1994; Doelman et al. 2009). For parabolic systems,
the classical center manifold reduction provides a conjugacy of the full dynami-
cal system to a decoupled product of trivial linear flow and a lower-dimensional
nonlinear part (unique up to exponential error) that is more amenable to analysis,
in particular via normal forms (Haragus and Iooss 2011). More selective filtering of
bifurcating solutions can be cast in terms of Lyapunov–Schmidt reduction, a standard
tool to prove existence of non-trivial bifurcating solutions in amplitude equations or
truncated normal forms on a center manifold (Vanderbauwhede 2012). Indeed, the
full flow of a reduced equation may be an invalid approximation (over infinite time
horizons), but selected solutions may still have exact counterparts in the full system.
Notably, bifurcations in the stratified Boussinesq equations have been analyzed by
Hsia et al. (2007). Viscous regularization can also act as a filter to reduce the com-
plexity of bifurcations at onset, such as resonance phenomena and allow to determine
nonlinear stability for objects other than single shocks (Beck et al. 2010).

The bifurcation theory viewpoint can be exploited numerically by using contin-
uation algorithms to compute branches of nonlinear solutions, their stability and
bifurcations and thus, for these solutions, offers an alternative to direct numerical
simulation. Dedicated software packages include AUTO,1 LOCA,2 and pde2path.3

In the context of geophysical flows, bifurcations occur naturally in compartment
models or coupled ocean–atmosphere systems, e.g., explored numerically in Dijkstra
et al. (2014). A review of bifurcation analyses can be found in Simonnet et al. (2009)

1http://indy.cs.concordia.ca/auto/.
2http://www.cs.sandia.gov/loca/.
3http://www.staff.uni-oldenburg.de/hannes.uecker/pde2path/.

http://indy.cs.concordia.ca/auto/
http://www.cs.sandia.gov/loca/
http://www.staff.uni-oldenburg.de/hannes.uecker/pde2path/
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and more broadly for nonlinear waves in fluid turbulence in Kawahara et al. (2012).
Co-existing branches of equatorial nonlinear waves have been found numerically
by Boyd (2002), Boyd and Zhou (2008). An approach toward nonlinear waves in
layered models is to simplify the nonlinear interactions by only retaining resonant
triads. A recent study of this type can be found in Bates and Grimshaw (2014). The
concepts of bifurcations and nonlinear waves are also insightful for understanding
intermittency in wall-bounded flows; see, e.g., Brethouwer et al. (2012) for a setting
related to geophysics.

1.5 Stochastic Model Reduction

Recent advances in systematic stochastic climate modeling (Majda et al. 2008;
Franzke et al. 2005, 2015; Franzke andMajda 2006;Monahan and Culina 2011) pro-
vided new insights into the structural form of the terms accounting for the interaction
between resolved and unresolved processes. The approach is based on the adiabatic
elimination of fast variables (Kurtz 1973; Papanicolaou 1976; Gardiner 2009) and
demonstrates the necessity of nonlinear damping and state-dependent noise; previ-
ously, only linear damping and additive noise have been considered. State-dependent
noise is known to be responsible for noise-induced drifts (Gardiner 2009), which has
the potential to ameliorate some of the known biases. Roberts (2008) and Wang and
Roberts (2013) propose a normal form transform to systematically separate slow and
fast variables in multi-scale systems. In many situation, it is not a priori clear what
the slow and fast variables are, so the applicability of this approach for geophysical
fluid dynamics needs to be evaluated.

The Mori–Zwanzig formalism (e.g., Zwanzig 2001; Chorin et al. 2000; Wouters
and Lucarini 2013; Gottwald et al. 2017) predicts the emergence of memory terms in
reduced-order models. Memory terms are rarely considered in current parametriza-
tion schemes. Thus, there is an urgent need to develop a systematic framework for
the interaction between resolved and unresolved processes and their representation
in numerical climate models.

In the context of climate science, stochastic models were first proposed by
Hasselmann (1976). A major advance came with the development of the stochastic
mode reduction strategy, which is described in detail inMajda et al. (2001, 2008) and
is applied, for example, in Majda et al. (2001, 2002, 2003), Franzke et al. (2005),
Franzke and Majda (2006), and Franzke et al. (2015). Stochastic mode reduction
starts from the equations used in a climate model, with an external forcing, a lin-
ear operator and a quadratic nonlinear operator. Splitting the state vector into slow
and fast components, assuming scale separation, and replacing the quadratic self-
interaction of the fast modes by a stochastic process lead to a stochastic differential
equation for the slow variables alone by using the stochastic mode reduction pro-
cedure (see next subsection). By doing so, structurally new terms arise such as a
deterministic cubic term which acts predominantly as nonlinear damping and both
additive and multiplicative noise terms. The multiplicative noise and the cubic term
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stem from the nonlinear interaction between the resolved and unresolved modes.
Rigorous justification is possible only in the limit of time-scale separation, though
in practice the reduced-order models perform well even in the case of moderate or
no time-scale separation (Majda et al. 2008; Dolaptchiev et al. 2013; Stinis 2006;
Franzke et al. 2005; Franzke andMajda 2006). How to do this in a systematic fashion
is the topic of the next subsection.

1.5.1 Basic Setup

To illustrate the basic idea of the stochastic mode reduction strategy, we consider the
abstract dynamical system

dz
dt

= F + L z + B(z, z) , (1.117)

where z is the state vector, F denotes the forcing, L a linear and B a quadratic
nonlinear operator. For convenience, we assume that F is constant in time; for time-
dependent forcing, see Franzke (2013). The linear operator L contains, in particular,
advection, the effect of topography, and linear damping. The operator B conserves
energy and satisfies the Liouville property, i.e., the dynamical system with only B on
its right-hand side ismeasure preserving (for details, see Franzke et al. 2005).Wenote
that important simplifiedmodels for geophysical flow such as the barotropic vorticity
equation or the quasi-geostrophic equations can be studied in this framework; see
Franzke et al. (2005) for the former and Franzke and Majda (2006) for the latter.

The state vector z = (x, y) is now split into slow modes x and fast modes y.
This decomposition is typically done using Empirical Orthogonal Function (EOF)
analysis (Franzke et al. 2005; Franzke and Majda 2006) or Principal Interaction
Patterns (PIP) (Kwasniok 2004; Crommelin and Majda 2004). These patterns now
constitute a complete orthonormal basis and can be used as basis functions in the
same way as Fourier modes are used for spectral models (Holton and Hakim 2012).
Furthermore, because the leading EOFs typically also decay the slowest (Franzke
et al. 2005; Franzke and Majda 2006), it is sensible to use the leading EOFs as the
resolved modes. Now we can rewrite (1.117) in terms of slow and fast modes:

dx
dt

= Fx + Lxx x + Lxy y + Bxxx (x, x) + Bxxy(x, y) + Bxyy( y, y) , (1.118a)

d y
dt

= F y + L yx x + L yy y + B yxx (x, x) + B yxy(x, y) + B yyy( y, y) . (1.118b)

We use here the following notation: The first superscript denotes the variable
(left-hand side time derivative) the corresponding right-hand side term acts on (e.g.,
F x acts on x), the second and third superscripts denote the variables whose actions
and interactions induce a tendency.
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In order to carry out the stochastic mode reduction strategy, we introduce a small
parameter ε which quantifies the time-scale separation between the slow modes
x and fast modes y. The parameter ε can also be interpreted as the ratio of the
autocorrelation time-scale between the slow and the fast modes. We posit

dx
dt

= Fx + Lxx x + Bxxx (x, x) + 1

ε

(
Lxy y + Bxxy(x, y) + Bxyy( y, y)

)
,

(1.119a)

d y
dt

= 1

ε

(
F y + L yx x + L yy y + B yxx (x, x) + B yxy(x, y)

) + 1

ε2
B yyy( y, y) .

(1.119b)

While the introduction of the time-scale parameter ε in front of some of the tendency
terms is somewhat arbitrary and currently mainly based on physical intuition, our
current research aims at putting it on a more systematic footing by using multi-
scale asymptotics for geophysical flows (Klein 2010; Shaw and Shepherd 2009;
Dolaptchiev and Klein 2013).

So far, the equations are fully deterministic.Wenowmake the following stochastic
modeling assumption: We assume that deterministic nonlinear terms involving x are
mixing with sufficiently fast decay of correlation so that the nonlinear term involving
only the fast modes B yyy( y, y) can be represented by a stochastic term (Majda et al.
1999, 2001), i.e., we approximate

1

ε2
B yyy( y, y) dt ≈ Stochastic Process . (1.120)

The intuition is that this term is effectively delta-correlated on the slow time-scale.
It is illustrative to assume that the stochastic process has the form of an Ornstein–
Uhlenbeck (OU) process

1

ε2
B yyy( y, y) dt ≈ −Γ

ε2
y dt + σ

ε
dW , (1.121)

where Γ and σ are positive-definite matrices and W is a vector-valued Wiener
process. However, the stochastic process does not need to be explicitly specified
as shown by Franzke et al. (2005). Inserting (1.121) into the deterministic model
(1.119), we obtain a system of stochastic differential equations

dx =
(
Fx + Lxx x + Bxxx (x, x) + 1

ε

(
Lxy y + Bxxy(x, y) + Bxyy( y, y)

))
dt ,

(1.122a)

d y =
(
1

ε

(
F y + L yx x + L yy y + B yxx (x, x) + B yxy(x, y)

) − Γ

ε2
y
)
dt + σ

ε
dW .

(1.122b)
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We interpret the SDE in (1.122b) in the sense of Itô. In general, there are two main
ways of evaluating the stochastic integrals featuring in the integral form of an SDE,
Itô and Stratonovich. From the mathematical perspective, both interpretations are
different but interchangeable as an Itô integral can always be rewritten in terms
of a Stratonovich integral and vice versa. In modeling, however, the SDE usually
arises from a more complicated process or dynamical system in a certain asymptotic
limit. In this case, an Itô differential equation represents the situation where the
limit dynamics has vanishing autocorrelation while a Stratonovich interpretation
represents the situation when the limit dynamics retains finite autocorrelation; see,
e.g., the discussion in Moon and Wettlaufer (2014). In our situation, the modeling
assumption already entails the idea that terms which cause finite autocorrelations
are kept in the deterministic part of (1.122b) so that the noise term only represents
the asymptotically uncorrelated parts. Thus, the noise term in (1.122b) should be
interpreted in the sense of Itô. We remark that from the technical perspective, an Itô
process has theMartingale property which greatly simplifies working with stochastic
time integrals. However, functions of Itô processes cannot be differentiated using the
normal chain rule as an extra term arises. The stochastic chain rule is called Itô’s
Lemma and gives rise to the parabolic term in the Fokker–Planck and Kolmogorov
backward equations which we will encounter in the next section; for a background
on these concepts, see, e.g., Gardiner (2009).

1.5.2 Slow Dynamics via the Kolmogorov Backward Equation

In the following,we seek an effective equation for the slowmodes of the system (1.22)
in the limit ε → 0. The method uses adiabatic elimination of fast variables (Kurtz
1973; Papanicolaou 1976; Pavliotis and Stuart 2008) and has been pioneered in the
present setting by Majda et al. (1999, 2001). The strategy is the following. Every
Itô stochastic differential equation, in particular our system (1.22), has an associated
Kolmogorov backward equation (KBE). (For deterministic systems, ODE or PDE,
this equation also exists and is usually referred to as the Liouville equation.) It is
a parabolic PDE that describes the backward-in-time evolution of the probability
distribution function of the system for a given hit probability. While it is rarely
possible to solve KBEs numerically in more than a small number of dimensions,
the KBE can be useful as an intermediate step in the derivation of a model that is
again practically computable. Here, we will subject the KBE to classical multiple
scales asymptotics with respect to the small parameter ε. The derivation is successful
if the leading non-trivial contribution to the asymptotic series takes the form of a
Kolmogorov backward equation in the slow variable x only, which can be rewritten
and simulated as an effective Itô stochastic differential equation.

We start by recalling that for an Itô SDE in the abstract form

dx(t) = a(x, t) dt + B(x, t) dW(t) , (1.123)
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the corresponding Kolmogorov backward equation reads

∂p(x, t)

∂t
= −

N∑
i=1

ai (x, t)
∂p(x, t)

∂xi
− 1

2

N∑
i=1

N∑
j=1

Di j (x, t)
∂2 p(x, t)

∂xi∂x j
(1.124)

with

Di j (x, t) =
M∑

k=1

bik(x, t) b jk(x, t) . (1.125)

A derivation and general introduction can be found, for example, in the book by
Risken (1996). Applying this notion to our system in the specific form (1.22), we
obtain

−∂ρε

∂t
= 1

ε2
L1ρ

ε + 1

ε
L2ρ

ε + L3ρ
ε , (1.126)

where the operators Li are given by

L1 =
∑

j

(
−γ j y j

∂

∂y j
+ 1

2
σ 2

j

∂2

∂y2j

)
, (1.127a)

L2 =
∑

j,k

(
Lxy

jk yk + 1

2

∑
l

(
2 Bxxy

jkl xk yl + Bxyy
jkl yk yl

)) ∂

∂x j

+
∑

j,k

(
L yx

jk xk + L yy
jk yk + 1

2

∑
l

(
Bxyy

jkl xk xl + 2 B yyx
jkl yk xl

)) ∂

∂y j
,

(1.127b)

L3 =
∑

j

(
Fj

∑
k

Lxx
jk xk + 1

2

∑
kl

Bxxx
jkl xk xl

)
∂

∂xk
. (1.127c)

The adiabatic elimination of fast variables now proceeds by performing an asymp-
totic expansion of the KBE (1.126) in powers of ε. We shall sketch only the main
steps and refer the reader to the original work by Majda et al. (2001) for full details.
To begin with, we expand ρε as a formal power series, writing

ρε = ρ0 + ε ρ1 + ε2 ρ2 + . . . (1.128)

Inserting this expansion into (1.126) and selecting terms of equal order in ε, we
obtain a sequence of equations, the first three of which read

L1ρ0 = 0 , (1.129a)

L1ρ1 = −L2ρ0 , (1.129b)
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L1ρ2 = −∂ρ0

∂t
− L3ρ0 − L2ρ1 . (1.129c)

The structure of these equations tells us that we need to find suitable solvability
conditions. Equation (1.129a) implies that ρ0 belongs to the null space of L1, i.e.,
Pρ0 = ρ0, where P is the expectation with respect to the invariant measure of the
OU process and L1 is the generator of the OU process. Hence, (1.129a) shows that
ρ0 is independent of the fast variables y, thus represents an invariant measure for the
fast dynamics in the full SDE. It is easy to see that (1.129a) and (1.129b) satisfy the
solvability conditions. Now we want to sketch the derivation of dynamic equation
for ρ0 which can be derived from the solvability condition for equation (1.129c).

Taking the expectation of (1.129b), we obtain the following solvability condition

PL2ρ0 = PL2Pρ0 = 0 . (1.130)

If this equation were not be satisfied, the fast modes would induce fast effects on the
slow modes. This leads to the solution of (1.129b):

ρ1 = −L −1
1 L2Pρ0 . (1.131)

By inserting this expression into (1.129c) and taking the expectation, we get the
solvability condition for ρ2:

− ∂ρ0

∂t
= PL3Pρ0 − PL2L

−1
1 L2Pρ0 . (1.132)

In the limit that ε → 0, ρε converges to ρ0, the solution of equation (1.132), see
Theorem 4.4 in Majda et al. (2001) and also Kurtz (1973).

The Kolmogorov backward equation (1.132) can now be transformed back into
an effective stochastic differential equation which is computable. The resulting Itô
SDE has the form

dx = (
F + Lx + B(x, x) + M(x, x, x)

)
dt + σA dW A + σM(x) dWM , (1.133)

where full expressions for the different terms can be found in Majda et al. (2001).
Equation (1.133) depends only on the slow variables x and approximates the statis-
tics of the slow variables of the full SDE (1.22). We note that its right-hand side
contains structurally new terms such as a cubic nonlinearity which generally acts
as a damping term but still allows some unstable nonlinear directions (Majda et al.
2009), as well as additive and multiplicative noise terms denoted by subscripts A and
M , respectively. The multiplicative noise term arises from the nonlinear interaction
between resolved and unresolved modes while the additive noise is the results of
nonlinear interactions between unresolved modes and the linear interaction between
resolved and unresolved modes, respectively.
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1.5.3 Direct Averaging

It is instructive to illustrate the stochastic mode reduction procedure by working
directly on the equations without the use of the KBE for a special case which allows
the direct analytic derivation of the effective equations. For this purpose, we use
the following nonlinear triad stochastic interaction equations (Majda et al. 1999)
by using the method of averaging (Kurtz 1973; Papanicolaou 1976; Monahan and
Culina 2011):

dx1(t) = b1
ε

x2(t) y(t) dt (1.134a)

dx2(t) = b2
ε

x1(t) y(t) dt (1.134b)

dy(t) = b3
ε

x1(t) x2(t) dt − γ

ε2
y(t) dt + σ

ε
dW (t) (1.134c)

Now we formally solve the equation for y:

y(t) = e− γ t
ε2 y + b3

ε

∫ t

0
e− γ (t−s)

ε2 x1(s) x2(s) ds + h(t) (1.135)

where

h(t) = σ

ε

∫ t

0
e− γ (t−s)

ε2 dW (s) (1.136)

We note that (1.135) contains a time integral which can be interpreted as a memory
kernel (Gottwald et al. 2017). The existence of a memory kernel is already predicted
in the Mori–Zwanzig formalism (Mori 1965; Zwanzig 1973, 2001; Wouters and
Lucarini 2013; Chorin et al. 2000).

However, in the case of time-scale separation so that ε → 0, the above term
becomes Markovian (Majda et al. 2001) by performing integration by parts:

y(t) → ε
b3
γ

x1(t) x2(t) + h(t) (1.137)

and
h(t) → ε

σ

γ
dW (t) (1.138)

If we now insert equations (1.137) and (1.138) into (1.134a) and (1.134b), we obtain

dx1(t) = b1b3
γ

x1(t) x2
2 (t) dt + b1σ

γ
x2(t) ◦ dW (t) , (1.139a)

dx2(t) = b2b3
γ

x2
1 (t) x2(t) dt + b2σ

γ
x1(t) ◦ dW (t) , (1.139b)
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which must to be interpreted in the Stratonovich sense as indicated by the ◦ in front
of the Wiener process. The Stratonovich interpretation arises because the integration
performed in (1.136) introduces non-negligible autocorrelation. However, we can
transform the Stratonovich SDE into Itô form, picking up an additional noise-induced
drift term:

dx1(t) = b1b2 σ 2

2γ 2
x1(t) dt + b1 b3

γ
x1(t) x2

2 (t) dt + b1 σ

γ
x2(t) dW (t) , (1.140)

dx2(t) = b1b2 σ 2

2γ 2
x2(t) dt + b2 b3

γ
x2
1 (t) x2(t) dt + b2 σ

γ
x1(t) dW (t) . (1.141)

This reduced model has cubic nonlinearity and multiplicative noise. Future research
will explore the effects of the memory kernel since in the climate system we do not
have any obvious time-scale separations.

1.6 Outlook

In this chapter, we aimed at providing a concise overview of some of the basicmodels
and concepts of geophysical fluid dynamics, introducing consistent notation, scal-
ing and non-dimensionalization, and the hierarchical relations between the different
models. We also briefly introduced current research themes such as variational bal-
ance models in Section 1.3.1 and stochastic mode reduction in Section 1.5. In our
future research, we plan to follow these four broad research directions: (i) Specify the
limits of validity of asymptotic regimes and the interaction of different scale regimes,
(ii) examine how dynamic properties such as stability, bifurcating nonlinear waves,
and nonlinear interactions out of linear waves persist across model hierarchies, (iii)
include effective dissipation in scaling analysis and the role of eddy dissipation, (iv)
study model hierarchies to develop parameterizations for processes not represented
at a coarse level. Here we will use the separation of balanced motion from the meso-
scales, where our aim is the develop new energy andmomentum consistent stochastic
parameterizations of the unresolved processes.
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Chapter 2
The Interior Energy Pathway:
Inertia-Gravity Wave Emission by
Oceanic Flows

Jin-Song von Storch, Gualtiero Badin and Marcel Oliver

Abstract We review the possible role of spontaneous emission and subsequent
capture of internal gravity waves (IGWs) for dissipation in oceanic flows under
conditions characteristic for the ocean circulation. Dissipation is necessary for the
transfer of energy from the essentially balanced large-scale ocean circulation and
mesoscale eddy fields down to smaller scales where instabilities and subsequent
small-scale turbulence complete the route to dissipation. Spontaneous wave emission
by flows is a viable route to dissipation. For quasi-balanced flows, characterized by
a small Rossby number, the amplitudes of emitted waves are expected to be small.
However, once being emitted into a three-dimensional eddying flow field, waves can
undergo refraction and may be “captured.” During wave capture, the wavenumber
grows exponentially, ultimately leading to breakup and dissipation. For flowswith not
too small Rossby number, e.g., for flows in the vicinity of strong fronts, dissipation
occurs in a more complex manner. It can occur via spontaneous wave emission and
subsequent wave capture, with the amplitudes of waves emitted in frontal systems
being expected to be larger than amplitudes ofwaves emitted byquasi-balancedflows.
It can also occur through turbulence and filamentation emerging from frontogenesis.
So far, quantitative importance of this energy pathway—crucial for determining
correct eddy viscosities in general circulation models—is not known. Toward an
answer to this question, we discuss IGWs diagnostics, review spontaneous emission
of both quasi-balanced and less-balanced frontal flows, and discuss recent numerical
results based on a high-resolution ocean general circulation model.
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2.1 Introduction

The general circulation of the ocean is forced at large scales by winds and buoyancy
fluxes at the sea surface. The directly forced large-scale flows are thought to transfer
their energymainly via baroclinic instabilities tomesoscale eddies that are essentially
balanced and account for almost three-fourths of kinetic energy of all oceanicmotions
when leaving out surface waves (von Storch et al. 2012).1 While the generation of
these eddies via baroclinic and barotropic instabilities of the directly forced large-
scale flows is well understood, little is known about the dissipation of these eddies.
Within the paradigm of geostrophic turbulence (Charney 1971), mesoscale eddies
tend to transfer energy upscale (inverse energy cascade). To ensure an equilibrium
state, additional processes must transfer energy from mesoscales to smaller scales
so that small-scale turbulence can complete the down-scale cascade of energy to
dissipation.

The problem of identifying these energy transfer processes as the ocean’s routes
to dissipation was brought into focus by Müller et al. (2005). Their paper suggests
three possible routes: the inertia-gravity wave route, the instability route, and the
boundary route. They argue that none of these routes has received strong theoretical
or observational confirmation. However, without a solid understanding of the ocean’s
route to dissipation, ocean general circulation models have to rely on, to a significant
degree, arbitrarily chosen eddy viscosity coefficients. So far, most of the energetic
considerations have concentrated on waves generated by external factors, such as
the winds and the bottom topography. For example, the high-resolution numerical
simulations by Nikurashin et al. (2013) emphasize the importance of gravity waves
generated by balancedflowover rough bottom topography, inducing a forward energy
cascade en route to dissipation.

Recent numerical studies showed strong evidence that eddying flows are able to
spontaneously emit internal gravity waves (see the special issue on ‘Spontaneous
Imbalance’ of the Journal of the Atmospheric Sciences from May 2009). Waves,
once emitted by an eddying flow, can be refracted by the flow and become cap-
tured in certain flow configurations. Wave capture is characterized by an exponential
increase in wavenumber and an exponential decrease in the intrinsic group velocity.
Furthermore, the wave amplitude grows also exponentially, thereby draining energy
from the background flow. These changes make captured waves prone to dissipation
and provide a mechanism for an interior route to dissipation directly from quasi-
balanced eddying flows themselves, without involving ocean’s boundaries and other
unbalanced flows. However, it is still open whether this mechanism is significant for
dissipation in the real ocean.

1Note that a global estimate of the ocean kinetic energy, which requires three-dimensional informa-
tion about flow velocity, is not available from observation and has to be derived using eddy-resolving
numerical simulations.
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The process of spontaneous imbalance has been researched extensively following
the pioneering work of Lighthill (1952) and has received interest in the past decade.
For details, we refer the reader to the excellent reviews by Vanneste (2013) for the
theory and by Plougonven and Zhang (2014) for observations in the atmosphere. A
broad overview can also be gained from the special issue on ‘Spontaneous Imbalance’
of the Journal of the Atmospheric Sciences from May 2009.

In this review, we will therefore focus on the role of spontaneous imbalance for
the energy pathway to dissipation and on the diagnostics for wave detection.

The Chapter is organized as follows. In Section 2.2, we review the process of
spontaneous imbalance. As discussed, the emittedwaves have only small amplitudes,
but we speculate they might still play a non-negligible role for energy dissipation
through their steepening following their capture by the mean flow. In Section 2.3,
we thus review the mechanism of wave capture which is crucial if wave emission
by quasi-balanced flows with small Rossby number is to play a noticeable role for
the total dissipation of energy. In Section 2.4, we review the interaction between the
spontaneously emitted IGWs and fronts, not necessarily in the small Rossby number
regime, focusing especially on the role of waves in frontal geostrophic adjustment.
In Section 2.5, we switch to the diagnostics for the detection of the waves, with
particular emphasis especially given to the method of “optimal potential vorticity
balance.” In Section 2.6, we discuss the role of high-resolution general circulation
model for investigating spontaneous wave emission. We conclude with a summary
and discussion in Section 2.7.

2.2 Rotating Shallow Water Equations and Spontaneous
Emission

The study of wave emission by vortical flows, also known as spontaneous imbalance
or spontaneous wave emission, reaches back to the celebrated paper on aerodynamic
sound generation by Lighthill (1952). Ford (1994) and Ford et al. (2000) showed that
the same mechanism applies to the generation of IGWs in nearly balanced rotating
flow. In particular, Ford (1994) pointed out that the rotating shallow water (RSW)
equations play a particular role for studying spontaneous imbalance: in the absence
of rotation, these equations are equivalent to the equations for a two-dimensional
adiabatic gas. Furthermore, the RSW equations are the simplest equations in which
both vortical motions and inertia-gravity waves can exist. In the following, we review
the basic properties of the shallow water equations as a simple model for barotropic
flow, then proceed to explain the mechanism of spontaneous wave generation.
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2.2.1 Shallow Water on the f -Plane

The shallow water equations on the f -plane can be written as

∂t (hu) + ∇ · (hu ⊗ u) + f (hu)⊥ = − 1
2 g∇h2 , (2.1a)

∂t h + ∇ · (hu) = 0 , (2.1b)

where h = h(x, t) denotes the layer depth, u = u(x, t) the two-dimensional velocity
field, x the vector of horizontal Cartesian coordinates, ∇ = (∂x , ∂y), f the Coriolis
parameter, u⊥ = (−u2, u1), and g is the constant of gravitational acceleration. The
system conserves the total energy

H = 1

2

∫
(h |u|2 + g h2) dx , (2.2)

in time and the potential vorticity

q = ζ + f

h
, (2.3)

where ζ = ∇⊥ · u denotes the relative vorticity along particle trajectories. Themate-
rial conservation of potential vorticity implies conservation of the potential enstrophy

Z = 1

2

∫
h q2 dx . (2.4)

We remark that the shallowwater equations can be written in a non-canonical Hamil-
tonian form, see Franzke et al. (2019).

2.2.2 Spontaneous Emission

Taking divergence and curl of the shallow water momentum equation (2.1a), we
obtain, respectively,

∂t∇ · (hu) + ∇∇ : (hu ⊗ u) − f ∇⊥ · (hu) = − 1
2 gΔh2 , (2.5a)

∂t∇⊥ · (hu) + ∇⊥∇ : (hu ⊗ u) + f ∇ · (hu) = 0 , (2.5b)

where we useΔ to denote the Laplacian and∇∇ to denote the Hessian operator. Fur-
ther, “⊗” denotes the tensor product of two vectors and the colon denotes contraction
over both indices of two 2-tensors. Taking the time derivative of (2.5a), eliminating
the Coriolis term using (2.5b), and replacing ∇ · (hu) by −∂t h using the continuity
equation (2.1b), we find
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−∂3
t h + ∂t∇2 : (hu ⊗ u) + f ∇⊥∇ : (hu ⊗ u) − f 2 ∂t h = − 1

2 g ∂tΔh2 . (2.6)

Consider a vortical flow described by (2.6) confined to a bounded region of the
spatial domain. We denote the constant layer depth far from the center of the vortical
motions by h0 and assume that h0 is constant. Then the right-hand side of (2.6) can
be rewritten as

− 1
2 g ∂tΔh2 = − 1

2 g ∂tΔ(h − h0)
2 − g h0 ∂tΔh . (2.7)

Writing c0 = (gh0)1/2 to denote the gravity wave phase speed far from the center of
vortical motions and rearranging terms, we obtain

(
∂2

∂t2
+ f 2 − c20 Δ

)
∂t h = ∇∇ : T (2.8)

with

T = ∂t (hu ⊗ u) − f h
u⊥ ⊗ u + u ⊗ u⊥

2
+ I

g

2
∂t (h − h0)

2 , (2.9)

where I denotes the 2 × 2-identity matrix.
Equation (2.8) can be seen as the shallow-water equivalent of the Lighthill equa-

tion (Ford 1994; Ford et al. 2000). The left-hand side of (2.8) is a linear inertia-gravity
wave operator. When the Froude number Fr = U/c0, with U denoting the typical
velocity in the regionof the vortical flow, is small, the right-hand side of (2.8) depends,
to good approximation, on the vortical flow alone and can hence be considered as a
given source of inertia-gravity waves. In other words, the source term is known as
soon as the vortical flow is known. Ford et al. (2000) study the case when potential
vorticity anomalies are confined to a finite-size region surrounded by a region in
which only linear waves propagate. Using matched asymptotic expansions with the
Froude number as small parameter, they link an unsteady vortex pattern in the inner
region to emitted propagating waves in the outer region, thereby giving an explicit
description of the mechanism of spontaneous emission.

2.2.3 Beyond Shallow Water

Going beyond prototype studies, there is now an extensive body of work using high-
resolution numerical simulations onmore general flows including surface-intensified
fronts (Gall et al. 1988; Danioux et al. 2012), wave emission by baroclinically unsta-
ble flows (O’Sullivan and Dunkerton 1995; Zhang 2004; Plougonven and Snyder
2005, 2007; Viúdez 2006; Viúdez and Dritschel 2006; Nadiga 2014), potential vor-
ticity anomalies (Lott et al. 2010, 2012), and dipolar flows (Viúdez 2007; Snyder
et al. 2007, 2009;Wang et al. 2009;Wang and Zhang 2010). Of particular interest for
the present discussion is the study of O’Sullivan and Dunkerton (1995), illustrated
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Fig. 2.1 Horizontal velocity divergence (top) and geopotential (bottom) at 130mb on day 11
of the T126 model simulation reported by O’Sullivan and Dunkerton (1995). Vectors show the
horizontal wind. The presence of IGWs is apparent in the velocity divergence field. The quasi-
balanced background flow emitting the waves is described by the geopotential contours and wind
vectors in the bottom figure. From O’Sullivan and Dunkerton (1995)

in Figure 2.1. The atmospheric flow considered there is comparable to the situa-
tion in the Southern Ocean, even though the oceanic baroclinic eddies have much
smaller spatial scales than those in the atmosphere. Both the distorted jet considered
by O’Sullivan and Dunkerton and the eddying circumpolar currents in the Southern
Ocean represent essentially balanced flows.

Most of the studies cited above focus on spontaneous imbalance as a wave gener-
ation mechanism and do not directly consider the fate of waves after being emitted.
According to Lighthill (1952) and Ford (1994), thewaves resulting from spontaneous
emission have wavelengths much larger than the spatial scales of the wave source.
The waves identified in the references mentioned (e.g., in O’Sullivan and Dunkerton
1995) have, on the contrary, extremely short wavelengths (i.e., wavelengths close
to the grid size of the model). Thus, the working hypothesis is that these waves do
not represent waves just emitted by the flows, but waves, after having been emitted,
are refracted by the flows in which they are embedded, a possibility pointed out by
Plougonven and Snyder (2005). This is further discussed in Section 2.3 below.
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Theoretical arguments show that spontaneous emission of IGWs is a generic phe-
nomenon (Vanneste and Yavneh 2004, 2007; Vanneste 2008, 2013). However, the
strength of IGW emission depends on the magnitude of Rossby number character-
izing the flow. IGW emission is strong for flows with large Rossby number. This
happens at least (i) in the equatorial ocean where the Coriolis parameter is small and
(ii) in the vicinity of strong fronts with large and spatially confined flow velocities
that lead to large Rossby numbers.

In this review,we focus on issues pertaining to the generic situation of extratropical
flows and refer the reader for the specifics of equatorial dynamics to Le Sommer
et al. (2004) and Medvedev and Zeitlin (2005). Regarding spontaneous generation
of near-internal gravity waves in theKuroshio front, Nagai et al. (2015) found that the
energy emitted by the waves is larger than the energy produced by lee waves created
by the interaction of balanced flows with the bottom topography (Nikurashin and
Ferrari 2011). Most of the energy radiated from the frontal region, however, is being
reabsorbed, suggesting that wave capture plays an important role in frontogenesis.
The situation in frontal regions will be addressed in Section 2.4 further below.

IGW emission is weak when the Rossby number is small. In this case, there
is a clear separation between the timescales of the flow and the timescales of the
emitted IGWs. The slow, quasi-balanced components can be accurately described up
to terms that are exponentially small in the Rossby number. Following the theoretical
arguments, waves spontaneously emitted by the flows must be exponentially weak.
Even though most atmospheric and oceanic flows are in this regime, wave emission
is not necessarily negligible due to subsequent refraction and wave capture affecting
all IGWs, however weak.

There is renewed interest in understanding refraction and capture by the back-
ground flow in connection with spontaneous wave emission in vortical flows.
Plougonven and Snyder (2005) demonstrate the importance of wave capture by
showing that some characteristics of the IGWs emitted by tropospheric jets are deter-
mined by the process of wave capture rather than by the generation mechanism itself.
Wave-trapping in the ocean has been studied by Kunze (1985), Klein and Treguier
(1995), Xing and Davies (2004) and, in data analysis, by van Haren (2003) with spe-
cial emphasis on near-inertial waves. Trapping of sub-inertial waves in anticyclonic
regions of the flow has also been studied theoretically for axisymmetric vortices
(Kunze and Boss 1998; Llewellyn Smith 1999).

2.3 Ray Equations and Wave Capture

Theoretical studies of the interaction between emitted waves and a background flow
are often done using ray equations formulated for a wave packet located at x = x(t)
traveling with intrinsic group velocity cg,i in a background flow u = u(x, t),
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dgx
dt

≡ cg = cg,i + u , (2.10a)

dgk
dt

= −(∇u) · k , (2.10b)

where cg is the effective group velocity, dg/dt denotes the time derivative in a frame
traveling with the wave packet, ∇u is the gradient tensor of the flow u.

To obtain equation (2.10b), the intrinsic dispersion relation is assumed to be inde-
pendent of x and t and the WKB approximation is used. Under these assumptions,
the path of the wave train is completely determined by equation (2.10a) and the tem-
poral evolution of the wavenumber vector k = (k, l,m) along the path is described
by (2.10b); the refraction process is, in particular, independent of stratification. The
derivation of (2.10) in the spirit of a WKB approximation, and including the next
order terms is sketched in Vanneste (2013), who proceeds to explain the mechanism
of spontaneous emission. Broutman et al. (2004) review ray tracing in geophysical
fluid dynamics. Olbers et al. (2012) give an extensive treatment of wave propagation
in a variable environment.2

When the intrinsic group velocity is inversely related to the modulus of the
wavenumber vector, as is the case for internal IGWs, a wave packet propagating
in a flow field is refracted under suitable circumstances such that the ray equation
describing the evolution of the wavenumber takes the same form as the equation
describing the evolution of the gradient of a passive tracer which is known to grow
exponentially in time. Correspondingly, the relative group velocity vanishes and the
wave amplitude increases; the wave packet becomes “captured” or “frozen” into the
background flow. We note that in wave capture it is the horizontal (and vertical)
wavelength which goes to zero. This is different from the formation of a critical
layer where vertical shear causes only the vertical wavelength to go to zero while
leaving the horizontal wavenumber unchanged.

To obtain analytical solutions, Jones (1969) considered a three-dimensional flow
with constant gradient tensor ∇u. More recently, Bühler and McIntyre (2005) and
Plougonven and Snyder (2005) studied a horizontally divergent flow u = (u, v, 0)
with a gradient tensor of the form

∇u =
⎛
⎝ux vx 0
uy vy 0
uz vz 0

⎞
⎠ . (2.11)

For captured waves, the intrinsic group velocity is essentially zero, so that the group
velocity cg is essentially determined by u. The direction of cg generally differs
from the direction of the asymptotic wave vector k. This is most easily seen in the
special case considered by Plougonven and Snyder (2005) where u = (u, v,w) has
the gradient tensor

2By writing the dispersion relation in the form ω(k, t) = ωi(x, t) + u(x, t) · k = Ω(k; x, t) and
assuming that the intrinsic dispersion relation and hence the intrinsic frequency ωi is independent
of x, their equation (6.46) reduces to our equation (2.10b).
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∇u =
⎛
⎝−α 0 0

0 α 0
β γ 0

⎞
⎠ (2.12)

so that the flow is hyperbolic in the horizontal plane and the solution to (2.10b) reads

kh(t) = (k0 e
αt , l0 e

−αt ) . (2.13)

Thus, thewave vector asymptotically alignswith one of the axes (i.e., the heteroclinic
orbits) at the hyperbolic points while the captured waves move along the hyperbolic
flow. The angle between the ray and the horizontal wavenumber vector changes as
the captured wave packet is advected by the hyperbolic flow. Such changes make it
more difficult to identify the relation between the captured waves and the flow which
refracts the waves.

Realistic flow fields are often locally axial, with the horizontal component uh

of u being approximately aligned with the isobars. Choosing a frame in which x is
tangential and y is perpendicular to the direction of the flow, a horizontal purely axial
flow is described by uh = (u(x, y), 0). This flow can have a shear uy transverse to the
flow axis and a stretching rate ux along the flow axis. An incompressible Boussinesq
flow must then have a vertical velocity w with ux + wz = 0.

Generally, ux and uy have complicated spatial structures. In the core of axial
flows, however, all flows reveal the common feature that the shear uy vanishes. With
uy = 0, ux = a �= 0 a constant, and wz = −ux = −a, the gradient tensor takes the
simple form

∇u =
⎛
⎝ux 0 0

0 0 0
0 0 wz

⎞
⎠ =

⎛
⎝a 0 0
0 0 0
0 0 −a

⎞
⎠ , (2.14)

so that the solution to (2.10b) takes the simple form

k(t) = (k0 e
−at , l0,m0 e

at ) . (2.15)

When the flow is horizontally compressing, i.e., when a = ux < 0, the asymptotic
wave vector aligns with the direction of the flow, and also with the direction of
propagation of the wave packet, provided that the intrinsic group velocity is either
aligned with u or small compared to u. As |k| grows exponentially, the vertical
wavenumber decreases exponentially and the vertical component of the intrinsic
group velocity grows exponentially. For an ocean limited by its lower and upper
boundary, a wave train with a high vertical group velocity reaches the boundary in a
short time. Its reflection at the boundary can easily lead to the emergence of vertically
standing structures.

The refraction through axial flows can be significant for two reasons. First, axial
flows represent an essential ingredient of a realistic atmospheric and oceanic flow
field. Second, the properties of waves predicted by (2.15) with a negative a so that
the magnitude of the component of k along the flow is large (or the corresponding
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wavelength is small) and k is aligned with the flow (in other words, aligned with the
wave crests are perpendicular to the flow) are qualitatively consistent with what is
seen in the atmosphere (Figure 2.1) and in the ocean (Figure 2.9).

2.4 Interactions Between IGWs and Density Fronts

2.4.1 Wave Capture in Frontal Strain

The emission of IGWs is particularly strong during frontogenesis. In this classical
problem, the Rossby number Ro = U/ f L and the bulk Richardson number

Ri = N 2
0

(ΔU/Δz)2
= N 2

0 f 2

S40
, (2.16)

where N 2
0 and S20 are, respectively, the vertical and horizontal buoyancy gradients,

are both O(1), implying a dominant role of ageostrophic shear. They also change
with time and can thus affect wave emission and subsequent recapture. Surface
density fronts, or frontal regions created in the interior by mesoscale dynamics, are
characterized by large values of strain, so the mechanism of wave capture, described
in the previous section, is expected to be particularly active. To study wave capture
in this context, the configurations discussed in there are insufficient as they are
used under the assumption that both the time dependence of the background flow
and the role of ageostrophic shear have a negligible influence on the dynamics of
IGWs. The wave capture theory by Bühler and McIntyre (2005) also assumes that
the intrinsic frequency and the polarization relation of the waves are independent
of the geostrophic flow, while in reality they are both functions of the Richardson
number. Notice, however, that slow changes of N , u, and ∇u could be incorporated
using WKB theory.

Thomas (2012) suggests a more elaborate flow configuration featuring a time-
varying background flow and ageostrophic shear which is set up as follows. Starting
from the inviscid adiabatic rotating Boussinesq equations

Dtu + f ez×u = − 1

ρ0
∇p + b ez , (2.17a)

∇ · u = 0 , (2.17b)

Dtb = 0 , (2.17c)

where b denotes the buoyancy and ez the unit vector in the vertical direction, we split
u = ū + u′, b = b̄ + b′, and p = p̄ + p′ into mean flow and perturbation compo-
nents. Now assume that the mean flow has constant horizontal strain α and linear
vertical shear with time-varying coefficients û(t) = (û(t), v̂(t), 0), so that
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ū(x, t) =
⎛
⎝ α x + û(t) z

−α y + v̂(t) z
0

⎞
⎠ , (2.18a)

b̄(x, t) = N 2(t) z − S2(t) y , (2.18b)

and

p̄(x, t) = −ρ0

(
1
2 α2 (x2 + y2) + f α xy − 1

2 N
2(t) z2 + S2(t) yz

)
. (2.18c)

This mean flow yields the tensor

∇ū =
⎛
⎝ α 0 0

0 −α 0
û(t) v̂(t) 0

⎞
⎠ . (2.19)

Inserting themean flow ansatz (2.18)with vanishing perturbation quantities back into
(2.17), we obtain a system of ordinary differential equations for the time-dependent
coefficients, namely

d

dt

⎛
⎜⎜⎝

û
v̂
S2

N 2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

f v̂ − α û
− f û + αv̂ + S2

αS2

v̂ S2

⎞
⎟⎟⎠ (2.20)

with initial conditions u(0) = S20/ f , v̂(0) = 2α S20/ f
2, N 2(0) = N 2

0 , and S2(0) =
S20 , which correspond to an initial vertical and horizontal buoyancy gradient and to
corresponding geostrophic velocities in the presence of strain α. System (2.20) is
easily solved for the vertical and horizontal buoyancy gradients,

S2(t) = S20 e
αt , (2.21a)

N 2(t) = N 2
0 + S40

f 2
(e2αt − 1) , (2.21b)

and the mean flow

ū(x, t) =
⎛
⎝ α x + f −1 S2(t) z

−α y + 2α f −2 S2(t) z
0

⎞
⎠ . (2.21c)

The amplification in time of the buoyancy gradients is a characteristic feature of
frontogenesis.

Assuming that the perturbation is invariant in the x-direction, the equations for
the perturbation fields read
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D̄tu′ + u′ · ∇ū + u′ · ∇u′ + f ez × u′ = − 1

ρ0
∇p′ + b′ ez , (2.22a)

∇ · u′ = 0 , (2.22b)

D̄tb
′ + u′·∇b̄ + u′ · ∇b′ = 0 , (2.22c)

where D̄t = ∂t + v̄ ∂y . Inserting the plane wave ansatz u′(x, t) = eik·x with k =
(0, l,m) into (2.22), we find that the wavenumber vector changes in time according
to

k(t) = (
0, l0 e

αt ,m0 − S20 f −2 (e2αt − 1)
)
. (2.23)

The polarization angle (the angle the streamlines make with the horizontal direction)

θ = − tan−1

(
l

m

)
(2.24)

changes with time in the presence of frontogenetic strain. According to (2.23), it
asymptotes to

θρ = tan−1

(
S2

N 2

)
(2.25)

for all initial angles except zero. Further, the perturbation kinetic energy density

e = 1
2 |u′|2 (2.26)

satisfies the evolution equation

D̄t e = −u′∗ w′ ∂z ū − 1

ρ0
∇ · (u′∗ p′) + w′∗ b′ + α (|v′|2 − |u′|2) − v′∗ w′ ∂z v̄ ,

(2.27)
where the asterisks indicate complex conjugates. The different terms on the right-
hand side can be interpreted as follows:

• The first term represents geostrophic shear production;
• the second term represents convergence or divergence of the energy flux;
• the third term is the release of potential energy via the buoyancy flux;
• the fourth term is the shear production by the lateral gradients of the mean flow;
• the last term represents the ageostrophic shear production.

This suggests a route to dissipation of the mesoscale flow different from the
scenario associated with wave capture. In wave capture, the wave amplitude grows
exponentially in time, leading to wave breaking and dissipation. If frontogenesis
is present, multi-scale analysis shows that the wave action is no longer conserved,
but decreases in time (Thomas 2012). In this case, the energetics of the waves are
modified by the Reynolds stress introduced by the additional shear production term
related to the strain-driven ageostrophic flow. Numerical simulations carried out by
Thomas (2012) using the explicit expression for the deformation shear (2.19) show
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that the evolution of the kinetic energy density of the IGWs is largely controlled by
the last two terms in (2.27). In particular, in the presence of frontogenetic strain, i.e.,
when α > 0, a perturbation satisfying |v′| > |u′| acts to mix the momentum of the
deformationfield and extracts its kinetic energy—acting thus as an effective viscosity.
In contrast, the ageostrophic shear production term is negative for all θ , resulting in a
damping of the IGWs, exceptwhen the initial angle is 90◦ < θ0 < 180◦, forwhich the
streamlines are tilted against the ageostrophic shear and the IGWs exhibit a transient
growth that is long enough to affect the energetics.

As a note of caution, it should be noted that the results here reported are derived for
a basic state that is perturbed with disturbances that are invariant in the x-direction.
Studying the nonlinear stability with respect to symmetric perturbations using the
Lyapunov method, Cho et al. (1993) found that the growth of the instabilities is
amplified by a factor

Ri1/2 + 1

Ri1/2 − 1
, (2.28)

where Ri is the Richardson number. This result shows that significant amplification
is present only when Ri ≈ 1. Further analysis is thus required for more general,
non-symmetric, perturbations.

2.4.2 Role of IGWs in Frontal Geostrophic Adjustment

Spontaneous imbalance is linked to, but is not the same as, the process of geostrophic
adjustment (also known as Rossby adjustment; see Rossby 1938). Geostrophic
adjustment describes the evolution of a perturbed state into a final, smooth state
with the same potential vorticity through emission of waves. This mechanism is
particularly active during frontogenesis. Thus, to fully understand the energetics
of frontogenesis, a careful study of the relation between capture and adjustment is
necessary.

The linear theory of geostrophic adjustment was initiated by Obukhov (1949)
and has matured since; see Blumen (1972) for a review on the early results. The
nonlinear theory, however, is much less known. Nonlinear effects during geostrophic
adjustment include secondary effects such as trapping of IGWs (the production of
waves that are unable to leave the frontal region) and wave breaking which modify
the characteristics of the flow, in particular the PV, and thus feedback into the process
of geostrophic adjustment. Zeitlin (2010) posed a series of largely open questions
regarding the process of adjustment: Does a final, adjusted state, exist? Is it stable?
What is the effect of the IGWs on the energy pathway of the system? Do emitted and
trapped waves co-exist? And do trapped waves interact with the front?

The classic theory of frontogenesis relies on the semi-geostrophic approxima-
tion (Hoskins and Bretherton 1972), which in turn relies on balanced dynamics,
thereby removing IGWs altogether. The turbulence emerging in the process of semi-
geostrophic frontogenesis was studied numerically by Ragone and Badin (2016)
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who found that ageostrophic advection is responsible for the growth of filamentary
structures with skewed vorticity. Filamentation itself can induce a forward cascade
of potential temperature/buoyancy variance and can thus be a possible route to dis-
sipation, even if this might still be inhibited by the fact that semi-geostrophic flows
are balanced. In this sense, the energy pathway in frontal regions can be much more
complex than the pathway through wave capture alone.

The situation for flow far from balance is very different. Some progress has been
made by analyzing the cross-frontal rotating shallow-water (RSW) equations (Zeitlin
et al. 2003) and confirmed numerically by Bouchut et al. (2004). Consider the RSW
equations on the f -plane with no dependence on the along-front direction y, written
here in components:

∂t u + u ∂xu − f v = −g ∂xh , (2.29a)

∂t v + u ∂xv + f u = 0 , (2.29b)

∂t h + ∂x (uh) = 0 . (2.29c)

This system can also be interpreted as the one-dimensional RSW equations with the
addition of a transverse flow.

In addition to the potential vorticity q = (∂xv + f )/h, the system possesses a
second Lagrangian invariant, the geostrophic momentum M = v + f x . Introducing
a Lagrangian x-coordinate via Ẋ = u(X, t), we write the two momentum equations
in system (2.29) as

Ẍ − f v = −g ∂xh , (2.30a)

v̇ + f Ẋ = 0 . (2.30b)

The second equation can be integrated immediately, giving

v(a, t) + f X (a, t) = M(a) , (2.31)

where we write a to denote a Lagrangian label coordinate. The geostrophic momen-
tum M(a) is determined by the initial conditions: given the initial velocity v0, one
has M(a) = v0(a) + f a. Note that the adjusted state are no longer slowly evolving,
but exactly stationary in Lagrangian coordinates. Further, in Lagrangian coordinates
the problem reduces to a semi-geostrophic problem in which geostrophy is retained
in (2.30a), but where (2.30b) is purely ageostrophic. The continuity equation (2.29c)
in Lagrangian coordinates takes the form

h(X (a, t), t) = h0(a)

X ′(a, t)
, (2.32)

where X ′ denotes the derivative with respect to the label a. By the chain rule,
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Fig. 2.2 Solution of (2.34) with initial conditions h0(x) = 1 + exp (−x2), v0(x) = −2(x +
0.2 sin(x)) exp (−x2), u0(x) = 0.1 exp (−x2). The horizontal axes show the horizontal distance
x and time. Surfaces show the time evolution of the particle displacement φ = X − x . The solution
shows emission of fast gravity waves and slowly dispersing near-inertial oscillations. A shock is
visible on the left side of the front (negative values of x). From Zeitlin et al. (2003)

∂xh = h′
0

(X ′)2
− h0

X ′′

(X ′)3
. (2.33)

Writingφ(a, t) = X (a, t) − a to denote the displacement of a particle from its initial
position and inserting (2.31) and (2.33) into (2.30a), we obtain a closed equation for
φ,

φ̈ + f 2 φ + g h′
0

(1 + φ′)2
+ g h0

2

[
1

(1 + φ′)2

]′
= f v0 , (2.34)

which can be solved with appropriate initial conditions. Assuming positive potential
vorticity as a condition for solvability and taking appropriate frontal initial con-
ditions, Zeitlin et al. (2003) solved (2.34), thereby showing that to leading order
in the cross-frontal Rossby number, the fast and slow dynamics split so that there
are no fast oscillations trapped in the frontal region. An example of a solution to
(2.34) is shown in Figure 2.2. The front is located at x = 0, situated in between
a double jet configuration set by the initial conditions h0(x) = 1 + exp (−x2),
v0(x) = −2(x + 0.2 sin(x)) exp (−x2), and u0(x) = 0.1 exp (−x2). The horizontal
axes show the horizontal distance x and time. Surfaces show the time evolution of the
particle displacement φ. An initially small departure from balance evolves emitting
fast IGWs as well as slowly dispersing near-inertial oscillations. Evolving toward
an adjusted state which is a minimizer of the energy, the system sheds energy also
via the emergence of shocks. One of these shocks is visible on the left of the figure,
where the relative vorticity takes negative values.
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This scenario was extended to two-layer stratification by Le Sommer et al. (2014)
and to stratified rectilinear fronts by Plougonven and Zeitlin (2005). The presence
of stratification allows not only for the process of baroclinic instabilities, but also
for symmetric inertial instabilities. Plougonven and Zeitlin (2005) demonstrate that
nonexistence of a smooth adjusted state in vertically bounded domains is generic,
with the system evolving toward a singularity in finite time, even in the absence of a
background confluent flow. In this setting, there are trapped modes with horizontal
scales comparable to the width of the jet. The existence of shocks and the breaking
trapped modes can represent a possible pathway toward dissipation.

The analysis reported here becomes more complicated when passing from the 1D
RSW to the 2D RSW equations (Reznik et al. 2001) where near-inertial oscillations
stay coupled to the slow vertical component for a long time and act to retard the
process of adjustment with respect to the standard scenario of fast dispersion of
inertia-gravity waves.

Further complication might be introduced by the presence of a background con-
fluent flow, which might be responsible for time dependent Rossby and Richardson
numbers, as discussed in Section 2.4.1. In turn, this might affect the transition toward
a possibly adjusted state. A study of an initially smooth time evolving confluent flow
would be also interesting for the comparison with the behavior of balance models in
the same configuration, such as the surface quasi-geostrophic model, for which proof
of the formation of a singularity in a finite time is linked to the formation of singu-
larities in the 3D Euler equation and for which the problem is still open (Constantin
et al. 1994).

2.5 Diagnostics

Crucial to any investigation of IGW activity is the need to consistently and efficiently
split the velocity and mass fields into a balanced flow component and the residual,
usually interpreted as the inertia-gravity wave field.

Flows characterized by a small Rossby number evolve on timescales much longer
than the timescales of IGWs emitted by the flows. In this situation, the emitted waves
can reasonably well be diagnosed using a linear time filter based on a Fourier decom-
position. Linear filters are straightforward and easy to apply. Figure 2.3 shows the
geographical distribution of the super-inertial kinetic energy, obtained by applying
such a filter. However, it is not clear how small the Rossby number should be for
ensuring adequate wave detection and whether this procedure leads to a consistent
separation over the global domain. A review on time filters can be found in von
Storch and Zwiers (1999).

An alternative characterization is provided by balance relations which can be
derived by systematic asymptotic expansion in various ways; see, e.g., the review
by McIntyre (2015). One possibility is the elimination of the vertical velocity asso-
ciated with balanced motion through the Omega equation to identify the residual
signal of the waves (Danioux et al. 2012). There is a variety of more sophisticated
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Fig. 2.3 Square root of super-inertial kinetic energy,
√
ksup, at 291m in a 0.1◦ simulation performed

with the MPIOMOGCM. The super-inertial kinetic energy is obtained by Fourier decomposing the
hourly zonal and meridional velocity in the frequency domain and calculating the mean variance of
the zonal and meridional velocity fluctuations at frequencies larger than the local inertial frequency.
The color scale is in units of m/s. Numbers given refer to log10

√
ksup

balance relations such as the second-order correction to quasi-geostrophic theory
(Muraki et al. 1999), the semi-geostrophic (Hoskins and Bretherton 1972; Hoskins
1975), surface semi-geostrophic (Badin 2013; Ragone and Badin 2016), δ-γ balance
(Mohebalhojeh andDritschel 2001), the L1-model and variants (Salmon 1985, 1996;
McIntyre and Roulstone 2002; Oliver and Vasylkevych 2016), and many others; see,
e.g., Barth et al. (1990) for a long list of intermediate models and a comparison of
their performance in geostrophic turbulence and Allen et al. (2002) for a numerical
comparison in a nonturbulent regime. The general advantage of balance relations is
that they offer an a priori way of separating motion slaved to PV from other types of
motion, at least to some order of approximation in the limit of small Rossby number.
The drawback is that they require a careful scale analysis and that they are, by con-
struction, restricted to a specific limited regime of validity. Nonetheless, they offer
ways to “diagnose the diagnostics” as the only first-principles analysis available.

A third alternative is the equation-free “optimal potential vorticity balance”
scheme pioneered by Viúdez and Dritschel (2004). Their work is based on the notion
that geophysical flows are determined to a large extend by potential vorticity, so that
the balanced component of the fields are those which are slaved to potential vorticity.
Their procedure can be implemented on top of a purely numerical model by slowly
increasing the influence of nonlinear interactions from a trivial initial state where the
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splitting into balanced and imbalanced modes is explicit to the fully nonlinear final
state. So long as the energy in the imbalanced degrees of freedom remains adiabat-
ically invariant, the final state will be approximately balanced whenever the initial
state is. Optimal balance has some highly desirable features, in particular, carrying
no explicit assumptions on scales, only weak dependence on numerical parameters
such as the time horizon of integration, and the possibility to define balance having
nothing but an actual numerical code. Moreover, in simple settings, it can be proved
that the procedure yields near-optimal results in the asymptotic limit of large scale
separation between balanced and imbalanced motion (Cotter 2013; Gottwald et al.
2017). However, implementation and pre-asymptotic behavior in realistic configu-
rations remains largely unexplored.

No matter whether a linear or a dynamical filter is used, we recommend to first
assess the flow field by using, e.g., the Rossby number (Section 2.5.1). Some pit-
falls encountered when using linear filters is briefly discussed in Section 2.5.2. The
equation-free “optimal potential vorticity balance” scheme, which we hope to be
applicable for a large range of dynamical regimes, is discussed in Sections 2.5.3
and 2.5.4.

2.5.1 Characterization of Flow Regimes via the Rossby
Number

Any splitting of motions into balanced and imbalanced components, whether by
linear filtering or more sophisticated techniques, relies on at least some degree of
scale separation. For geophysical flow, themost important scale separation parameter
is the Rossby number, informally described as the ratio of the inertial force to the
Coriolis force. Small Rossby number flows are dominated by planetary rotation
and can be thought of as well balanced. When the Rossby number is well below
one, the timescales of the mean flow are clearly separated from IGWs. In this case,
IGWs can be identified using simple Fourier filters. For larger Rossby numbers,
balance relations or dynamical filters are required to separate IGWs from the full
flow field. We emphasize, however, that for Rossby numbers close to or larger than
unity, the concept of balance breaks down altogether and no method will lead to
an unambiguous and physically meaningful splitting; see, e.g., the discussion in
McIntyre (2009).

The textbook definition of the Rossby number Ro = U/( f L), where U denotes
the typical magnitude of the velocity field, L the typical horizontal length scale, and
f the Coriolis parameter, does not work well for studying spontaneous emission.
This is because flows capable of emitting waves are generally highly anisotropic
and vary with time so that it is difficult to determine U and L unambiguously. This
problem can be overcome by considering the Rossby number

RoLagr = π

τ f
(2.35)
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where τ denotes a typical Lagrangian timescale: the time it takes a particle to travel
trough a half-wavelength of the dominant pattern (e.g., McIntyre 2009). The particle
travel time, however, is often not easily available in a simulation, so that a more
practical proxy is the local Rossby number R defined by the ratio of relative vorticity
to the local Coriolis frequency f ,

R = |∇⊥
h · uh|
| f | . (2.36)

Averaging can be used to eliminate possible influence of short-term fluctuations on
R. Alternatively, R can be defined using the geostrophic velocity in (2.36).

A realistic simulation of theworld ocean performedwith theMax-Planck-Institute
Ocean Model (MPIOM) at a horizontal resolution of 0.1◦ shows that the maximum
values of the local Rossby number R derived from the monthly mean of the velocity
field are about 0.15–0.25 in the Southern Ocean, about 0.3–0.4 in the Gulf Stream,
and about 0.1–0.25 in the Kuroshio Extension. Extremes of about 0.5 are found in
isolated spots in theGulf Stream. R decreases quicklywith increasing depth: the same
numerical simulations show that at about 300m depth, maximum values of R are
reduced to about 0.1–0.15 in the Southern Ocean, about 0.2–0.3 in the Gulf Stream,
and about 0.1–0.13 in the Kuroshio region. The flows outside the tropical oceans
are, apart from very few exceptions, characterized by a Rossby number smaller than
0.2–0.4. The smallness of R in the extratropical regions suggests that the flows there
are not far from balance and that their timescales are noticeably longer than those of
IGWs.

2.5.2 Linear Filters

When the timescales of the mean flow and the IGWs are well separated, IGWs
can be identified by high-pass filtering the data. There is a variety of different filters
which can be used for this purpose. In the following, we shall explain the options and
potential pitfalls for accurate detection of IGWsgenerated by spontaneous imbalance.

The flow field in which spontaneous emission occurs contains at least two compo-
nents: the mean flow which emits the waves and varies predominantly at sub-inertial
frequencies, and the emitted inertia-gravity waves themselves which oscillate at
super-inertial frequencies. Generally, the sub-inertial variations are much stronger
than the super-inertial waves. Not all filters ensure that the strong sub-inertial vari-
ations are not leaked to the super-inertial frequency range and misinterpreted as
inertia-gravity waves. This can happen, for example, when using a running average
filter (Figure2.4).

The running average filter is the simplest digital filter. Denoting the original veloc-
ity time series by xt , the 2K + 1-point running average x̄t is given by
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Fig. 2.4 Square root of super-inertial kinetic energy,
√
ksup, at 291m in the same 0.1◦ simulation

considered in Figure 2.3. The super-inertial kinetic energy is obtained by filtering out the sub-inertial
variance using a running average filter with the filter window identical to the local inertial period.
The color scale is in units of m/s. Numbers given refer to log10

√
ksup

x̄t =
k=K∑
k=−K

ak xt+k (2.37)

with equal weights

ak =
{

1
2K+1 for |k| ≤ K ,

0 for |k| > K .
(2.38)

The spectral density function of the filtered time series S̄ is related to the spectral
density function of the original time series S by

S̄(ω) = |c(ω)|2 S(ω) (2.39)

with frequency response function

c(ω) = sin((2K + 1) πω)

(2K + 1) sin(πω)
. (2.40)

Figure 2.5 shows c(ω) for a running average filter with K = 2, 3, and 7. The mag-
nitude of c(ω) is close to one at low frequencies and becomes small and oscillatory
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Fig. 2.5 Response functions
c(ω) of three running
average low-pass filters with
different filter windows. The
frequency axis is labeled in
units of the sample
frequency ωsample and shows
frequencies up to the Nyquist
frequency ωsample/2

at high frequencies, i.e., the filter acts as a low-pass filter. Further, c(0) = 1 and
c(ω) = 0 at frequencies ω = j/(2K + 1) for j = 1, . . . , K , i.e., the filter leaves the
zero-frequency component unchanged and completely filters out frequencies that are
multiples of 1/(2K + 1). Thus, one would typically take the local inertial period as
the window length, so that variations at frequencies equal to an integer multiple of
the local inertial frequency are filtered out. In the residual time series

x ′
t = xt − x̄t , (2.41)

variations at these high frequencies are fully retained and variations at the zero
frequency are completely removed. At all other frequencies, c(ω) is neither exactly
one nor exactly zero, making the running average filter inaccurate. In particular, at
frequencies close to zero, |c(ω)| < 1, so that parts of the sub-inertial variations are
retained in x ′

t . When the sub-inertial variations are strong, this contamination can be
significant.

Better results can be obtained by filtering directly in the frequency domain, where
the discrete Fourier transform is used to convert the time series from time to frequency
domain and back. This approach is generally accurate provided the time series xt is
periodic, which is generally not the case for a finite time series of a system with a
strong slowly varying component which imposes a trend onto the finite-timewindow.
In this case, the Fourier decomposition is inaccurate in the sense that the spectral
density at a frequency ω of the finite time series does not represent the spectral
density at the same frequency obtained from an infinite time series. This type of bias
can be corrected by de-trending and tapering (giving the beginning and the end of a
time series less weight) before taking the discrete Fourier transform (see, e.g., von
Storch and Zwiers 1999).

The difference between the two filters can be seen by comparing Figure 2.3 with
Figure 2.4. In each case, the filter is tuned to the local inertial period τi. Figure 2.3
uses a spectral filter with response function
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c(ω) =
{
0 for ω < 1/τi ,

1 for ω ≥ 1/τi .
(2.42)

In addition, the time series was de-trended and taped using the split-cosine-bell taper
(von Storch and Zwiers 1999) where the non-unit weights make up about 12% of
an hourly time series over a period of one month. Figure 2.4 is based on the same
data, but with a running average filter of filter length τi and subsequent computation
of the residual (2.41). The two different filters lead to different results. In particular,
the super-inertial kinetic energy in the Southern Ocean is much weaker in Figure 2.3
than in Figure 2.4. The stronger super-inertial kinetic energy seen with the running
average filter is a result of the contamination of the residual by the imperfect filtering
of strong low-frequency components. Thus, one should not use a running average
filter for the purpose of separating IGWs from eddying flows.

2.5.3 Optimal Potential Vorticity Balance

In this section, we review the concept of optimal potential vorticity balance as intro-
duced byViúdez andDritschel (2004). In the following Section 2.5.4, we then present
a mathematical framework in which optimal balance can be understood systemati-
cally. It is our belief that the framework applies in much more general circumstances
and can be used for high-accuracy diagnostics and balanced initialization.

The dynamics of large-scale geophysical flow is, to a surprising degree, deter-
mined by the evolution of a single scalar field, the potential vorticity q, alone
(McIntyre and Norton 2000). Indeed, in many cases the full equations can be written,
equivalently, as a material transport equation for q augmented by additional equa-
tions for the evolution of the “ageostrophic components” P . For example, for the
rotating Boussinesq model, the components of P are the horizontal divergence δ and
the ageostrophic vorticity γ , see Section 2.2 in Franzke et al. (2019). For the rotating
shallow-water equations, Section 2.2.1 shows how to split off a second order in time
equation using ∂t h as the imbalance variable.

In all of these cases, leading order balance is obtained by simply setting P =
0, but an optimally balanced flow will have small, but nonzero values for these
“ageostrophic” variables. Balance is then viewed as a mapping q �→ P = Φ(q).
The function Φ can be seen as defining a manifold in phase space parameterized by
potential vorticity. It is generally understood that a unique invariant slow manifold
does not exist except in trivial cases, but that it is possible to construct balance
manifolds which are almost invariant over very long intervals of time (Vanneste
2013). The numerical task can now be described as follows. Given any potential
vorticity field q∗, numerically compute one image P∗ of the balance map in an
optimal way, where possible optimality considerations are discussed in Section 2.5.4
below.

We further require that for a state where P = 0 there exists a stationary “rest
state potential vorticity” qr . On the sphere or on the beta-plane, qr will only depend
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Fig. 2.6 Sketch of the ramping procedure in extended phase space

on latitude. With η denoting the flow map, let us write x = η(a, t) to denote the
Eulerian position of the fluid particle initially at Lagrangian label coordinate a.
Material conservation of potential vorticity is then expressed as

q(η(a, t), t) = q0(a) . (2.43)

The central idea of optimal PV balance is to make the initial potential vorticity q0
slowly dependent on time by writing

q0(a, t) = qr(a) + ρ(t/T ) qa(a) (2.44)

where qa is a Lagrangian description of the potential vorticity anomaly, ρ is a smooth,
monotonically increasing ramp function with ρ(0) = 0 and ρ(1) = 1, and T is the
ramp time which we think of as comparable to the timescale of the slow, balanced
motion. The introduction of an explicit dependence of q0 on t changes the equations
of motion, but a system in balance may remain approximately balanced so long as
the ramp is sufficiently slow, i.e., the ramp time T is sufficiently long. In fact, the
scale separation between the fast timescale and the ramp time is a small parameter
playing the same role as the scale separation between fast and slow timescales in the
asymptotic analysis of the problem (Gottwald et al. 2017).

This leaves uswith the following task: solve themodified equations ofmotionwith
the temporal boundary conditions P(0) = 0 and q(T ) = q∗, then define p∗ = P(T ).
Figure 2.6 shows a sketch of the situation. For every fixed t , the balance manifold
is illustrated as a one-dimensional curve; the manifold itself is time-dependent. At
the start of the ramp when t = 0, the balance manifold is exact and trivial; we know
how to explicitly balance the system. At the final time t = T , the balance manifold
is only approximate and nontrivial. A trajectory from t = 0 to t = T which reaches
the imposed potential vorticity q∗ at the end of the ramp, shown in red in Figure 2.6,
remains approximately balanced so long as the change of the balancemanifold in time
is adiabatic. The quality of balance for the final state will be affected by the choice
of ramp function, the choice of the ramp time T , and the scale separation between
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balanced and unbalanced motion. We will comment on the conjectured interplay of
these parameters in the context of a simple model for balance in Section 2.5.4 below.

To use optimal potential vorticity balance in practice, two further problems need
to be overcome. First, what is ramped in (2.44) is the initial, i.e., Lagrangian, poten-
tial vorticity q0. The dependence of the Eulerian potential vorticity on q0, however,
is only straightforward in a semi-Lagrangian setting such as the CASL method by
Dritschel and co-workers (Dritschel et al. 1999) or one of its variants. Second, the
formulation of the problem as stated here is a boundary value problem in time.
As such, a direct implementation requires specialized code. Viúdez and Dritschel
(2004), however, have proposed an iterative scheme that can be performed with only
an evolutionary code: Start at t = T with q(T ) = q∗ and P(T ) = 0 and integrate
backward to t = 0. At t = 0, the solution will be generally imbalanced, so force
the solution back to balance by resetting P(0) = 0, keeping q(0) unchanged. Now
integrate forward to t = T . At t = T , the solution will still be approximately bal-
anced, but in general q(T ) �= q∗. Now reset q(T ) = q∗, keeping P(T ) unchanged.
Repeat until the iteration converges. In that case, the fixed point of the iteration is, by
construction, a solution to the temporal boundary value problem as outlined earlier.
Viúdez and Dritschel (2004) report fast convergence in their numerical experiments.

2.5.4 A Simple Model for Optimal Balance

A simple finite dimensional model for balance is the Hamilton system

q̇ = p , (2.45a)

ε ṗ = J p − ∇V (q) , (2.45b)

where q(t) and p(t) are vectors of even dimension, V (q) is a convex potential, and

J =
(
0 −I
I 0

)
(2.46)

is the canonical symplectic matrix. The corresponding ramped system, in this case,
reads

q̇ = p , (2.47a)

ε ṗ = J p − ρ(t/T )∇V (q) . (2.47b)

We solve (2.47) as a boundary value problem where we impose that at t = 0, the
system is on the trivial slow manifold and at t = T the position variables take some
prescribed value q∗. Thus, (2.47) is augmented with boundary conditions

p(0) = 0 and q(T ) = q∗ . (2.48)
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This system can be completely and rigorously analyzed by Hamiltonian normal form
theory (Cotter and Reich 2006; Cotter 2013). In particular, it can be shown that the
drift of the ramped trajectory away from the family of approximate balancemanifolds
M (t) is smaller than any algebraic order in ε for fixed ramp time T . When the ramp
function ρ is analytic with a uniform lower bound on the radius of analyticity along
the entire ramp, the drift is even exponentially small. Similarly, it can be shown that
for fixed ε, the drift off the manifold decreases as T becomes large.

However, there is a second source of error besides the drift. The asymptotic
series defining the family of manifoldsM (t) for the ramped system differs from the
asymptotic series for the trivial balance manifold at t = 0 and, similarly, it differs
from the asymptotic series for the balance relation of the original system (2.45) by
terms containing derivatives ofρ.More precisely, O(εn+1)-accuracy of the procedure
requires the first n derivatives of ρ to vanish at the temporal end points. This excludes
uniformly analytic ramp functions. Yet, it is still possible to get exponential bounds,
albeit with a smaller power of ε in the exponent; see Gottwald et al. (2017).

The behavior of the optimal balance procedure can be demonstrated most easily
in the linear case. In this case, for a frozen value of the ramping parameter, the slow
manifold is an exact invariant and can be computed by diagonalization of the full
system matrix. Figure 2.7 shows the quality of balance achieved by the method for
the simple potential V (q) = 1

2 |q|2 and different ramp functions of the type

ρ(θ) = f (θ)

f (θ) + f (1 − θ)
(2.49)

for f (θ) = θ2 (“quadratic”), f (θ) = θ4 (“quartic”), and f (θ) = exp(−1/θ) (“expo-
nential”). The balance error is defined as the distance of p(T ) as computed via solving
the boundary value problem of the ramped system to the slow eigenspace of the full
system (2.45) computed by exact diagonalization.

The behavior for large ramp times (corresponding to good adiabatic invariance)
is dominated by the error committed at the start and end point of the ramp. It shows

Fig. 2.7 Numerical test for a
linear model problem.
Shown is the balancing error
as a function of the ramp
time for ramp functions with
different orders of vanishing
at the end points of the ramp
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Fig. 2.8 The same data as
shown in Figure 2.7 on a
semi-log scale. The
exponential regime of the
error behavior can be seen as
a straight line
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the expected power law scaling in T , given by the order of vanishing of the ramp
function at the end points. The behavior for small ramp times is dominated by the
deviation from adiabatic invariance and shows exponential behavior. This can be
clearly seen from Figure 2.8 where the same data is plotted semi-logarithmically.
The cutover point moves to larger values of T as the order of vanishing of the ramp
at the end points is increased.

The results sketched above indicate that optimal balance canprovide balancedflow
fields which are almost as accurate as an optimally truncated asymptotic balance
relation. While obtaining the latter is completely unfeasible in practice, optimal
balance as a numerical technique is an easy and computationally feasible procedure.
While it is more expensive than a simple evaluation of a low-order balance relation,
it is not excessively expensive. Thus, in practical terms optimal balance may be the
only accessible notion of balance that is accurate enough so that it can serve as the
reference definition of a balanced state against which other, cheaper, diagnostics can
be judged.

2.6 High-resolution Ocean General Circulation Models as a
Novel Tool for Studying Spontaneous Emission

So far, modeling studies on spontaneous imbalance have been concentrated on flows
with idealized or simplified configurations. Even though great progress has been
made in understanding spontaneous imbalance as a phenomenon of geophysical
fluids (see discussion and references Section 2.2) and attempts have been made
to make the considered configurations to resemble the real atmospheric or oceanic
conditions, modeling studies using idealized configurations are always challenged by
the question of whether and to what extent spontaneous imbalance in the considered
flow configurationmatters in reality. These questions can be answered by considering
observationswith high spatial and temporal resolution.High resolution is essential for



2 The Interior Energy Pathway: Inertia-Gravity Wave Emission by Oceanic Flows 79

Fig. 2.9 Snapshots of
high-pass filtered vertical
velocities (color shadings)
and dynamically relevant
pressure (contours) identified
from a 10◦ simulation
performed with MPIOM.
Units are 10−4 m/s for
vertical velocity and
10−1 bar for pressure

detecting spontaneous imbalance in the real ocean. As high-resolution observations
are often not available, it is natural to use global general circulation models (GCMs)
capable of realistically simulating the global ocean.

For a long time, ocean GCMs have not been suitable for studying spontaneous
imbalance. State-of-the-art OGCMs, such as those contributing to the last IPCC
report, are too coarse to resolvemesoscale eddies.Withoutmesoscale eddies, a coarse
OGCM is unable to simulate realistic vortical flows capable of emitting waves. Due
to the increase in computing power, global (or near-global) eddy-resolving or eddy-
permitting simulations have become possible (e.g., Masumoto et al. 2004; Maltrud
and McClean 2005; Lee et al. 2007; Maltrud et al. 2010; Griffies et al. 2015). At the
Max-Planck-Institute, high-resolution ocean modeling was initiated by the German
consortium project STORM. The 0.1◦ tripolar version of the MPIOM developed
within the project simulates a considerable bulk of mesoscale eddies, with eddy
characteristics comparable to those derived from observations (von Storch et al.
2012; Li and von Storch 2013; Li et al. 2015). This is an important prerequisite for
studying the spontaneous wave emission by eddying flows in a realistic setting.

An essential feature of the eddying ocean simulated by the 0.1◦ MPIOM is hor-
izontally axial flows. These flows follow a bundle of isobars in a horizontal plane,
such as those indicated by the black lines in Figure 2.9. The isobars are curved,
though not closed, and run parallel to each other. Flow following isobars is consis-
tent with the idea that the eddying flows are near geostrophic balance. The shadings
in Figure 2.9 show a snapshot of vertical velocity containing only super-inertial fluc-
tuations, indicating gravity wave trains. The wave trains are concentrated along axial
flows with the wave crests being perpendicular to the flow. Their vertical structures
are comparable to those of low modes internal waves. They propagate along the flow
as if they were captured.

These wave trains can result from the refraction of waves by the axial flow. Fol-
lowing equation 2.10, the effect of the refraction depends on the flow gradient tensor
∇u along the path of the wave train. For a non-axial flow, ∇u can be quite compli-
cated so that kh is generally not in the direction of uh. For gravity waves, kh is in
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the direction of the horizontal component of the intrinsic group velocity. For these
waves, the wave trains tend to move away from the given flow, making refraction
by a particular gradient tensor ∇u difficult. An axial flow has the property that the
shear of the flow vanishes along the core. This makes∇u to take an extremely simple
form for non-divergent and horizontally axial flows. With such a ∇u, waves whose
wavenumber vector does not have a transverse-flow component initially will stay in
the core and eventually becomes refracted by the negative stretching rate such that
their along-flow wavenumber increases exponentially.

Figure 2.9 provides a first indication that waves can be emitted and refracted by
eddying flows in a realistic setting.Many questions are still unanswered. For instance,
the 0.1◦ MPIOM-simulation discussed produces super-inertial kinetic energy not
only inmid-latitude oceans but also,withmuchgreater strength, in the subtropical and
tropical ocean (see Figure 2.3). It is not clear whether these super-inertial fluctuations
represent waves with properties similar to those found in the mid-latitude oceans
shown in Figure 2.9, what is the relation of these waves to the background flows
that are characterized by increasingly larger Rossby number toward the equator, and
what is the role of these super-inertial fluctuations for large-scale subtropical and
tropical flows.

Using high-resolution OGCMs as a tool for studying spontaneous imbalance
requires further improvement of the models. In particular, a transition from primitive
equation models (which resolve only long inertia-gravity waves) to non-hydrostatic
models needs to be carried out to allow more complete studies on the role of spon-
taneous imbalance for flows in a realistic ocean.

To achieve a better understanding, it is worthwhile to combine a complex high-
resolution OGCMwith simpler conceptual models. For instance, one can use a high-
resolution OGCM simulation as a guide for identifying the typical flow configura-
tions likely to occur in the real ocean and study the spontaneous imbalance of these
particular flow configurations in greater details using limited-area high-resolution
setups. These typical flow configurations can also guide theoretical studies using, for
example, matched asymptotic expansions.

2.7 Discussion

In this chapter, we have reviewed selected topics on the emission and capture of
IGWs by nearly geostrophic flow. We further raised the question regarding their role
as one of the routes to dissipation in the global ocean. To answer this question in
general, we still need a more complete understanding of the underlying mechanisms
and a careful assessment of different factors, including (i) a rigorous mathematical
analysis of IGWs diagnostics, as well as improved diagnostics; (ii) scaling laws or
appropriate alternative characterizations for the emission of IGWs, especially from
frontal regions; and (iii) a quantitative assessment of IGWs emission and capture in
realistic ocean GCMs.
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Regarding point (i), one set of open questions concerns the use of balance rela-
tions, which may be interpreted as spatial filters, in addition or as an alternative time
filtering for quantifying spontaneous imbalance. In particular, we have to understand
whether some types of balance relations, e.g., semi-geostrophic vs. quasi-geostrophic
balance or variational vs. nonvariational constructions are advantageous in a diag-
nostic setting. Moreover, do higher-order relations justify the added complexity? Do
the diagnostics work consistently across all relevant oceanic (and eventually also
atmospheric) regimes? How do the diagnostics transition from mid-latitude to equa-
torial balance, from weak to strong stratification, or behave near boundaries? Some
of these questions are discussed in more detail in Franzke et al. (2019).

The second set of questions concerns the use of optimal balance for diagnostic
purposes. While the analysis of optimal balance is well understood in the context of
the finite dimensional model presented in Section 2.5.4, no rigorous results are yet
available to cover even the RSW equations or any of the more complex models. To
increase the applicability of optimal balance to awide range ofmodels, it is important
to implement the ramp on top of a standard Eulerian formulation of the equations,
e.g., by multiplying all nonlinear terms with the ramp function. To our knowledge,
this has not been tested, but seems promising and within the framework outlined
for the finite dimensional model problem in Section 2.5.4. Once this is achieved,
we believe that the method has considerable potential for applications to the real
ocean as a detailed understanding of the precise scalings is not necessary to apply
the method so long as it is possible to adiabatically ramp the system into a simpler
model for which balance can be unambiguously defined.

Regarding point (ii), a major issue is the necessity of some scale separation to
be able to define any splitting into mean flow and IGW activity. This problem was
raised by Saujani and Shepherd (2002) (see also Ford et al. 2002), but it clearly needs
further studies in order to understand what happens when scale separation exists in
large parts of the system, but is not uniform in space and time.

Regarding point (iii), studying IGW emission and capture using realistic OGCMs
is novel but can be very difficult. This is because a high-resolution realistic OGCM
generally resolves a much larger range of motions than a model configured for a
specific flow configuration does. To be able to interpret a GCM output, the need for
good diagnostics is particularly acute because of the different flow regimes present
and the fact that we are starting to resolve IGWs.

Apart from diagnostics, theoretical considerations, such as those based on ray
equations, are indispensable. They are needed to interpret the filtered output and
to ensure that the output has proper physical meaning and does not result from
numerical artifacts. In general, a number of questions are still open and two of these
questions are particularly important and should be tackled first. One concerns the
spontaneous imbalance in the subtropical and tropical ocean, which seems to pro-
duce much stronger super-inertial kinetic energy than that in mid-latitude oceans
according to Figure 2.3. The other question concerns the difference in waves sponta-
neously emitted in different flow regimes, for instance, those in quasi-balanced axial
flows, compared with those in a frontal system. Even though one difference, namely
the difference in wave intensity, has been identified by theoretical considerations
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(Vanneste 2008, 2013), the long-time behavior of waves emitted in different flow
regimes and the resulting implications for the flows in different regimes have not
been studied systematically. Both questions are crucial for understanding the role of
spontaneous imbalance for the real ocean.

Progress on these questions will provide a deeper understanding of spontaneous
emission and subsequent capture of IGWs, and lead to an assessment of the impor-
tance of the route to energy dissipation via wave emission. Eventually, this may lead
to better parameterizations of IGWs in coarse-resolution models.
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Chapter 3
The IDEMIX Model: Parameterization
of Internal Gravity Waves for Circulation
Models of Ocean and Atmosphere

Dirk Olbers, Carsten Eden, Erich Becker, Friederike Pollmann
and Johann Jungclaus

Abstract The IDEMIXconcept is an energetically consistent framework to describe
wave effects in circulation models of ocean and atmosphere. It is based on the radia-
tive transfer equation for an internal gravity wave field in physical and wavenumber
space and was shown to be successful for ocean applications. An improved IDEMIX
model for the ocean will be constructed and extended by a new high-frequency,
high vertical wavenumber compartment, forcing by mesoscale eddy dissipation,
anisotropic tidal forcing, and wave–mean flow interaction. It will be validated using
observational and model estimates. A novel concept for gravity wave parameteri-
zation in atmospheric circulation models is developed. As for the ocean, the wave
field is represented by the wave energy density in physical and wavenumber space,
and its prognostic computation is performed by the radiative transfer equation. This
new concept goes far beyond conventional gravity wave schemes which are based
on the single-column approximation and, in particular, on the strong assumptions
of a stationary mean flow and a stationary wave energy equation. The radiative
transfer equation has—to our knowledge—never been considered in the atmospheric
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community as a framework for subgrid-scale parameterization. The proposed param-
eterization will, for the first time, (1) include all relevant sources continuously in
space and time and (2) accommodate all gravity wave sources (orography, fronts,
and convection) in a single parameterization framework. Moreover, the new scheme
is formulated in a precisely energy-preserving fashion. The project will contribute to
a transfer of knowledge from the oceanic community to the atmospheric community
and vice versa. We give a brief description of the oceanic and atmospheric internal
wave fields, the most important processes of generation and interactions, and the
ingredients of the model IDEMIX.

3.1 Internal Waves in Ocean and Atmosphere

Internal gravity waves arise in a stably stratified fluid through the restoring force of
gravity on fluid particles displaced from their equilibrium levels. Interfacial waves
occurring between two superposed layers of different density are a familiar phe-
nomenon, in particular at the upper free surface of the ocean in form of surface
waves. In the continuously stratified interior of the ocean, the restoring force of
gravity is much weaker (by a factor δρ/ρ = 10−3, where δρ is a typical density per-
turbation of the mean density ρ), and the periods and wavelengths of internal waves
are much larger than those of surface gravity waves. In the spectrum of oceanic
motions, internal gravity waves are embedded between (and partly overlap with)
small-scale three-dimensional turbulence and the geostrophic balanced motion of
the oceanic eddy field, as depicted in Figure 3.1. The timescales of baroclinic gravity
waves are sharply defined as being in between the stability frequency N ∼ δρ/ρ,
called Brunt-Väisälä frequency and related to the buoyancy force, and the Coriolis
frequency f , related to the Earth rotation and Coriolis force. Spatial scales can range
from global scales in case of long barotropic gravity waves down to a couple of 10
m for the baroclinic gravity wave branch. On even smaller time and space scales,
the internal wave regime approaches isotropic turbulence which then connects to the
regime of ultimate dissipation of energy by molecular processes. Atmospheric grav-
ity waves obey the same constraints in frequency as oceanic ones; however, dominant
wavelengths are generally larger: spectra of vertical wavelength peak at 2 to 5 km
in the lower stratosphere and increase to 10 to 30 km in the mesopause. Contrary to
the ocean where we always see a continuum in frequency–wavenumber space, there
is ample evidence that atmospheric spectra are often composed of only a few waves
(see, e.g., Fritts and Alexander 2003).

Waves are an essentially linear disturbance of the wave-carrying medium: once
they are generated, they propagate almost freely along their rays, as depicted in
Figure 3.2, slowly changing by non-linear effects and coupling to their supporting
background, thereby slowly losing attributes acquired during their particular genera-
tion process. Strongly non-linear effects such as breaking occur only as very localized
events in space and time. A linear wave is characterized by an amplitude a(K), and
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Fig. 3.1 Space-timescales of important oceanic processes (pink areas) and scales explicitly resolved
by ocean models (grey rectangular areas). The lower left rectangle represents modern global ocean
climate models and the upper right rectangle eddy-resolving basin-scale models. Also shown are
dispersion curves (solid lines) for linear gravity waves (upper set) and planetary waves (lower
set). Vertical dotted lines indicate the external (Ro) and the first internal (Ri ) Rossby radii and the
Ozmidov length scale Lo

Fig. 3.2 Sketch of wave
packet propagation along a
ray. A perpendicular
orientation of K and the
intrinsic group velocity
cg = ∂KΩ , as depicted here,
is realized by internal gravity
waves. Wave crests and
troughs are orthogonal to K,
and these phase lines show
propagation along K

a wave vector K and an intrinsic1 frequency ω, which are related by a dispersion
relation ω = Ω(K). For internal waves

ω = Ω(K) =
(
N 2k2 + f 2m2

k2 + m2

)1/2

(3.1)

where the three-dimensional wave vectorK = (k,m) is split into the horizontal and
vertical components, and k = |k|. Correspondingly, we will use X = (x, z) for the
position vector. Large-scale inhomogeneities (compared to period andwavelength) of

1Wedenote byω the intrinsic frequency, i.e. the frequency observed relative to ameanflow.Then, the
Doppler shifted frequency of encounter, ωenc = ω + K · U, is the one observed at a fixed position
in space.
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the wave-carrying background can be treated byWKBmethods (see, e.g., Berry and
Mount 1972; Bender and Orszag 1978). Such inhomogeneities arise via a space and
time-dependent Brunt-Väisälä frequency, and mean current, and a spatially varying
Coriolis frequency. Waves then appear in the form of slowly varying wavetrains
which may be represented locally by wave groups (or packets) characterized by a
local dispersion relation ω = Ω(K,X, t) where X is the spatial coordinate and t is
time. Amean currentU(X, t) is included as a Doppler shift so thatωenc = ω + K · U
represents the frequency of encounter. A wave group propagates with the group
velocity

Ẋ = ∂KΩ + U = V + U (3.2)

where V = ∂KΩ is the intrinsic group velocity. The wave vector changes along the
trajectory (ray) according to

K̇ = −∂XΩ − K · (∇U) (3.3)

The process is called refraction. Here, K contracts with U. The influence of the
mean flow in these expressions takes place via simple advection (in (3.2)) and the
gradient matrix of the mean current (in (3.3)). The vertical mean current is usually
negligible so that U = (U, V, 0). The intrinsic group velocity V for internal waves
has a peculiar property: ∂KΩ is perpendicular to the wave vector K (the group
propagation is orthogonal to the phase propagation), and because the horizontal
component ∂kΩ is aligned with the horizontal wave vector k, the vertical component
is opposed to the vertical wavenumber, ∂mΩ ∼ −sign m. This property is important
for the IDEMIX equations (see Section 3.2). The intrinsic refraction, −∂XΩ , mainly
arises from a depth-dependent Brunt-Väisälä frequency, N = N (z). The gradient
term ∇U in (3.3) leads to the occurrence of critical layers and is also responsible for
wave capture effects (see Section 3.3.2).

Writing the dispersion relation for the frequency of encounter as

ωenc = Ωenc(K,X, t) = Ω(K, z) + K · U(X, t) (3.4)

we have, according to WKB theory, for the rate of change of frequencies along the
ray

ω̇enc = ∂tΩenc = ∂tΩ + K · ∂tU

ω̇ = ∂tΩ + U · ∂XΩ − V · (K · ∂XU) (3.5)

Note that K contracts with U and V contracts with ∂X in this expression. These
frequency relations are consistent with ω = ωenc − K · U as integral of the motion
along the ray.

If the background medium is time dependent (slow in the WKB sense), resulting
in a time-dependent Ω(K,X, t), the frequency of encounter changes as given by
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(3.5). The wave energy E ∼ |a|2 is then not conserved, but wave action A(X, t) =
E(X, t)/ω (energy over intrinsic frequency) is an adiabatic invariant (Landau and
Lifshitz 1982; Bretherton and Garrett 1968; Whitham 1970),

∂t A + ∇X · (Ẋ A) = 0 (3.6)

This property is fundamental for the radiation balance discussed further below.
In a realistic geophysical situation, the wave field is more likely described by a

superposition of a great number of wave packets, each localized in physical space
and having a dominant wave vector, frequency, and amplitude, which slowly change
as a consequence of propagation, refraction, and reflection according to the above
ray equations. When two wave packets occupy the same volume, they might interact
resonantly for a short finite time and build up a third wave component. This is the pro-
cess of wave–wave interactions. Wave packets may interact with background fields,
e.g. the mean flow, in which they propagate, and new packets may be introduced in
the wave ensemble by forcing mechanisms to be discussed in later sections. Instead
of using the energy or action of single waves, we describe such a wave field by its
energy (power) spectrum2 E (K,X, t) = ωA (K,X, t), defined such that the integral
over wavenumbers yields the local energy density E(X, t). Because the action spec-
trum is now written as function of K in addition to previous independent variables
X and t , and the wave vector is also slowly changing, the action conservation reads
for the random wave field (Hasselmann 1968)

∂tA + ∇X · (ẊA ) + ∇K · (K̇A ) = S (3.7)

Here,S is a source, not yet considered in (3.6), representing all processes that may
lead to a change of the action spectrum, except for the propagation and refraction
processeswhich are explicitly accounted for on the left-hand side. The vertical energy
flux F = żE must be specified at the top and bottom boundaries, assuming for
simplicity that these are horizontal surfaces. At the surface

F(k,m) + F(k,−m) = Φsur f (k,m) (3.8)

must hold, and similarly for the bottom with a net flux Φbot (k,m). The condition
accounts for reflection, in which a wave with vertical wavenumber m is reflected
into one with −m, and an energy source Φsur f (k,m) by a wave-maker situated at
the surface as, e.g. wind stress fluctuations, or tidal conversion at the bottom in case
of Φbot (k,m).

Application of the radiative transfer will be done in wavenumber coordinates
different from the Cartesian ones (k,m). This is because dominant forcing functions
are more easily embedded in frequency space, e.g. tidal forcing and near-inertial
wave radiation. Also, directional spreading of horizontal wavenumbers ismore easily

2E (K,X, t)d3K is the wave energy (density in physical space) in a small wavenumber volume d3K
at K at the position X at time t .



92 D. Olbers et al.

formulated in angular coordinates.We therefore transform the radiation balance (3.7)
into more convenient coordinates. For the balance of Ẽ = Ẽ (m, ω, φ), we find

∂t Ẽ + ∇ · ẋẼ + ∂z żẼ + ∂ωω̇Ẽ + ∂mṁẼ + ∂φφ̇Ẽ = ωS̃ + ω̇
Ẽ

ω
(3.9)

Here, ω̇ is the change of intrinsic frequency along the ray, given by (3.5). The term
ω̇Ẽ /ω contains the energy exchange between the waves and the mean flow. We
abandon the tilde in the further discussions.

The knowledge about the structure and importance of the oceanic internal wave
field is strongly based on experimental evidence of the wave motion. Amplitudes
of internal gravity waves are remarkably large, of the order of 10 m (occasionally,
they may be an order of magnitude larger), and current speeds are typically 5 cm/s.
The wave motion is therefore not difficult to observe; in fact, it is the dominant
signal in many oceanic measurements. The first attempt to provide a unified picture
of the internal wave field was made by Garrett and Munk (1972) who synthesized a
model of the complete wavenumber–frequency spectrum (GMmodel) of the motion
in the deep ocean on the basis of linear theory and the available observations by
horizontally or vertically separated moored instruments or dropped sondes. Except
for inertial internal waves and baroclinic internal tides, this model is believed to
reflect the spectral features of the internal wave climate in the deep ocean and to
possess a certain global validity. Most data were in good agreement with the GM
model or could be incorporated by slight modifications (Garrett and Munk 1975;
Cairns and Williams 1976; Müller et al. 1978; Munk 1981). In a broad-brush view,
the GM spectrum is characterized by a ω−2 decay of energy power in frequency
space with a minor peak at ω = f , and a m−2 decay in vertical wavenumber space
with a roll-off at m = m	 to a plateau at low wavenumbers; see Figure 3.3. The
wavenumber m	 of the roll-off is referred to as the bandwidth of the spectrum. Note
that GM is horizontally isotropic, vertically symmetric, and of the factorized form
E (m, ω, φ, z) = E(z)A(|m|)B(ω)/2π .

Atmospheric gravity wave spectra are reviewed by Fritts and Alexander (2003),
and a working base for our purpose of constructing an atmospheric IDEMIX model
is presented in Section 3.2.2.2. The general functional class considered for the spec-
trum is in fact very similar to GM except for a distinct azimuthal distribution of
wave propagation directions, E (m, ω, φ, z) = E(z)A(|m|)B(ω)Φ(φ). The power
laws in frequency and vertical wavenumber are different from GM and seen as not
as universal as the oceanic counterpart. The energy level E(z) and peak (or roll-off)
wavenumber m	 are not following WKB scaling as GM does. Also, as Fritts and
Alexander (2003) emphasize, this canonical spectrum does not capture the true com-
plexity of the gravity wave field in altitude and does not account for considerable
variability. To a certain degree, this drawback applies as well to GM.
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Fig. 3.3 GM76model, displayed in (a) asE (k, ω) and in (b) asE (m, ω). The coordinates are plotted
logarithmically so that plane surfaces represent power laws, some of which are indicated in the
graphs. The partially integrated forms MS and DS of the moored and dropped spectra, respectively,
are displayed as respective projections, and the moored coherences MHC and MVC are related
to the corresponding bandwidths, as indicated. All quantities are normalized with reference to the
scale b and N0 of the Brunt-Väisälä frequency profile N (z) = N0ez/b. In the figure, the notation
α = k, β = m, and γ = (1 − f 2/ω2)1/2 is used. After Garrett and Munk (1975), Olbers (1986)

3.2 The IDEMIX Model

Müller and Natarov (2003) suggested to base a model for the propagation and dissi-
pation of internal waves on the radiative transfer equation (3.7) of weakly interacting
waves in the 6-dimensional phase space. However, theoretical, practical, and numer-
ical limits hamper the realization of such a comprehensive model. Olbers and Eden
(2013) discussed a drastic simplification of the concept which they called IDEMIX
(Internal wave Dissipation, Energy and Mixing). Instead of resolving the detailed
wave spectrum as suggested by Müller and Natarov (2003), they integrate the spec-
trum in wavenumber and frequency domain, leading to conservation equations for
integral energy compartments in physical space. These equations can be closed with
a few simple but reasonable parameterizations. IDEMIX describes the generation,
interaction, propagation, and dissipation of the internal gravity wave field and can
be used in ocean general circulation models to account for vertical mixing (and fric-
tion) in the interior of the ocean. In its simplest version, IDEMIX consists of two
compartments of interacting up- and downward propagating waves (Olbers and Eden
2013). In a more complex version, low vertical mode compartments at near-inertial
frequencies and frequencies of tidal constituents are added which also account for
horizontally anisotropic wave propagation (Eden and Olbers 2014). For some more
details, we refer to Section 3.2.1. Eden et al. (2014) demonstrate how an energet-
ically consistent ocean model can be constructed connecting IDEMIX with other
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energy-based parameterizations for the unresolved dynamical regimes of mesoscale
eddies and small-scale turbulence. IDEMIX is central to the concept of an energeti-
cally consistent ocean model, since it enables to link all sources and sinks of internal
wave energy, and furthermore all parameterized forms of energy in an ocean model
without spurious sources and sinks of energy.

3.2.1 Details of the Oceanic IDEMIX

Both the simple and extended versions of IDEMIX are based on the radiative trans-
fer equation (3.9) and the boundary condition (3.8) which describe the evolution
in time of the energy spectrum E (m, ω, φ, x, z, t) of an ensemble of weakly inter-
acting gravity waves in wavenumber and physical space. Using the 6-dimensional
space (m, ω, φ, x, z) is too difficult, and integrated energy compartments are thus
considered instead. In the simple version of IDEMIX by Olbers and Eden (2013),
E is integrated over frequency ω, azimuth φ, and over vertical wavenumber m, but
separately for positive m (yields E−, downward propagating waves) and negative m
(yields E+, upward propagating waves). Defining total energy E = E+ + E− and
energy asymmetry ΔE = E+ − E−, the projection of (3.7) leads to

∂t E + ∂zc0ΔE = −Fdiss = −μE2

∂tΔE + ∂zc0E = Fww = −ΔE/τv (3.10)

This applies to the simplest IDEMIX model where horizontal homogeneity is
assumed. The crosswise form of the vertical energy fluxes in (3.10) derives from
the vertical group velocity ż = ±c of up- and downward waves being opposed to
the vertical wavenumber m. However, a parameterization of the integrated group
velocity is needed, and this is done in a typical way for parameters in IDEMIX
energy balances: here, the mean vertical propagation with group speed c0 is calcu-
lated analytically by assuming a spectrum of the gravity wave field of fixed shape but
unknown amplitude E , the factorized GM76 spectrum (which may vary with E in
space and time). The form of the energy balances is thus exact, but the group velocity
c0 (modulus) is that of a related GM spectrum. IDEMIX consequently assumes that
the actual wave spectrum is always close to the GM spectrum with respect to the
shape; the unknown energy is then given by E± or E andΔE and governed by (3.10).

Surface and bottom reflections lead to a flux from E± to E∓, respectively, and
forcing by tides and near-inertial pumping is added as a surface and bottom flux
∼ ΔE into the total wave energy E , resulting from the integration of (3.8). Wave–
wave interactions in the simple IDEMIX version are parameterized as damping of
the differences of up- and downward propagating waves with a timescale of a few
days, leading to the relaxation term Fww in the asymmetry balance of (3.10). This
simple closure is supported by the observation of a nearly symmetric wave field
in m (as the GM spectrum) and the evaluation of the wave–wave interactions for
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slightly perturbed GM spectra (McComas 1977). There is no corresponding term
in the balance of total energy since wave–wave interactions conserve energy. The
closure for the dissipation of gravitywaves in (3.10) by the term Fdiss = μE2 follows
the method of finestructure estimates of dissipation rates (Gregg 1989; Kunze and
Smith 2004) and is given by a quadratic functional in the total wave energy E , as
found by Olbers (1976), McComas and Müller (1981) from the scattering integral
of resonant triad interactions. The parameter μ is a known function of N , f , and the
GM bandwidth m	.

The simple IDEMIX version can be extended to horizontal inhomogeneity con-
ditions but cannot treat well lateral propagation of waves. This issue is resolved in
the extended IDEMIX version by Eden and Olbers (2014), where low vertical mode
energy compartments En at fixed frequency ωn (e.g. tidal frequency) are separated
from the rest (the wave continuum) and which resolve horizontal wave propagation.
The En are accordingly governed by a corresponding radiative transfer equation

∂t En + ∇ · cg En + ∂φφ̇En = Wn + Tn (3.11)

where cg denotes the lateral group velocity at ωn , and φ̇ denotes the refraction of the
wavenumber angle φ with k = k(cosφ, sin φ). The En are functions of x and φ (and
time) and are chosen as tidesM2, S2 or local near-inertial waves. They are represented
by vertically integrated low vertical modes, while all other frequencies and higher
vertical modes are still contained in the vertically resolved wave continuum E+ and
E−.

Equation (3.11) describes the lateral propagation and refraction of low-mode
baroclinic tidal or near-inertial energy compartments, the scattering into the wave
continuum by rough topography by the term Tn , and the wave–wave interaction
with the continuum by the term Wn , which were derived analytically by Eden and
Olbers (2014). They show up with opposite signs in the conservation equation for
E = E+ + E−. Tidal forcing enters in the extended version of IDEMIX partly as
a bottom flux for the wave continuum as in the simple IDEMIX version, but also
in the energy compartment of the respective tidal constituent where it will laterally
propagate over considerable distances before it is transferred to the wave continuum
and to dissipation. Both the simple and extended versions of IDEMIX are available
as stand-alone versions with prescribed stratification and forcing without feedback
on the circulation, and coupled to a general circulation model (https://wiki.zmaw.de/
ifm/TO/pyOM2).

The link from the wave energy balance to mixing is as follows. Knowledge of the
wave energy E enables us to compute the wave dissipation term Fdiss = μE2 which
is a source of turbulent kinetic energy (TKE). Assuming steady state and a few other
simplifications, the TKE balance reads (Osborn and Cox 1972)

Fdiss + b′w′ − ε = 0 (3.12)

Here, b′w′ denotes the vertical turbulent buoyancy flux, i.e. the exchange with poten-
tial energy, and ε the dissipation rate of TKE by molecular friction, i.e. the exchange

https://wiki.zmaw.de/ifm/TO/pyOM2
https://wiki.zmaw.de/ifm/TO/pyOM2
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with internal energy (‘heat’). Assuming a conventional downgradient turbulent buoy-
ancy flux b′w′ = −KρN 2, where Kρ denotes a vertical diffusivity, and a constant
mixing efficiency δ = KρN 2/ε (usually taken equal 0.2), the diffusivity Kρ can be
computed from the wave energy E and given δ. More elaborate coupling of TKE
and E is considered in Eden et al. (2014).

3.2.2 The IDEMIX Concept Applied to Atmospheric Gravity
Waves

IDEMIX is not yet realized for atmospheric internal gravity waves. We describe here
howan atmospheric IDEMIXcan be built. Unlike the ocean casewhere parameteriza-
tion ofmixing is a first goal, the atmospheric IDEMIX should aim at parameterization
of wave drag, i.e. the wave-induced Reynolds stress.

We restrict ourselves to the single-column approximation (i.e. we assume a hor-
izontally homogeneous background flow at each geographical location, which is
analogous to the plane-parallel approximation in radiative transfer computations)
such that the coordinate dependence is reduced to that on height z. Furthermore,
we assume gravity wave propagation only in particular azimuthal directions. In the
actual gravity wave parameterization, we then add up the contributions from 4 or
8 equally distributed azimuths, denoted by the index j . Note that these approxima-
tions are made as well in any conventional gravity wave scheme used in climate
models. Regarding the dependence on the wavenumber vector in horizontal and ver-
tical directions, we express the spectral energy density with regard to the horizontal
wavenumber k in terms of the intrinsic frequency,3 denoted as ω. The total spectral
energy is given by E (m, ω, φ, z, t) = ∑

j E j (m, ω, z, t)δ(φ − φ j ). The radiative
transfer equation

∂tE j + ∂z(ż E j ) + ∂m(ṁ E j ) + ∂ω(ω̇ E j ) = Sj + ω̇ E j/ω − Dm2 E j (3.13)

for the wave energy compartment for the azimuth direction j is derived from (3.9)
after integration over the azimuth angle. Our sign convention is such that ω > 0
and m < 0 for upward group propagation (downward phase propagation), as before
for the oceanic case. In (3.13), D = D(z, t) denotes a vertical diffusion coefficient
which describes damping due to wave breaking. This coefficient must be computed
according to some dynamic stability criterion and should in principle also include
the diffusion coefficient computed by the vertical diffusion scheme of the model
(e.g. the boundary layer diffusionwill damp orographic gravity waves). Furthermore,
Sj = Sj (m, ω, z, t) is a source function that needs to be specified in order to describe
the various generation mechanisms of atmospheric gravity waves such as flow over a
rough surface, convection, frontal activity, and secondary gravity waves.Wave–wave

3Conventional parameterization schemes often assume a fixed k for the assumed gravity wave
spectrum.
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interactions would also add to Sj , but are not further discussed here since they play
a less dominant role compared to the ocean. The other terms in (3.13) describe wave
propagation, wave refraction, and interactions (reversible and irreversible) with the
mean flow.

For the ocean case, energy compartments of up- and downward propagatingwaves
are considered. This is important because of the nearly vertical symmetry of the
wave field in the ocean, but less so for the atmosphere since surface reflection and
strong wave–wave interactions, which lead to the symmetry, are missing. Reflection
at the top is entirely absent. We will therefore dispense with this differentiation
in compartments of up- and downward propagating waves for the atmosphere. We
propose to use four directional compartments as a starting point. Conventional gravity
wave schemes for atmosphere models often use 8 azimuthal directions.

3.2.2.1 Wave–Mean Flow Interaction and Energy Conservation

Regarding the effects of the parameterized gravity wave spectrum on the mean flow,
we resort to the general theoretical framework of the two-way Reynolds average
approach to filter out small-scale turbulence and mesoscale gravity waves as pre-
sented in Becker (2004) and Becker and McLandress (2009). A more detailed dis-
cussion can also be found in Shaw and Shepherd (2009). For a prognostic gravity
wave scheme as envisioned in our case, the following framework applies. The rate
of change of mean momentum and energy by the wave-induced stress is

(ρ ∂tv)GW = −∂zF (3.14)

(ρ cp ∂t T )GW = −( ∂z Fp + F · ∂zv ) − ∂t eGW (3.15)

Here, v denotes the horizontal wind vector of the mean flow, and hence, the left-hand
side of (3.14) simply describes the familiar gravity drag. The in situ air temperature
is denoted by T , and the direct heating that accompanies the gravity wave drag is
given by the right-hand side of (3.15), where the first term is the so-called energy
deposition (e.g. Hines 1997). The energy deposition involves both the vertical flux of
horizontal momentum, F, and the pressure flux, Fp, induced by the wave field. The
second term is the tendency of the total energy4 of the gravity wave field, denoted as
eGW . This energy

eGW (z, t) =
∑
j

−m0∫
−∞

dm

ω1∫
ω0

dω E j (m, ω, z, t) (3.16)

is obtained by integrating (3.13) over wavenumber and frequency and by summation
over all azimuths. Here, m0 defines a minimum absolute vertical wavenumber, ω0 a

4This direct heating term vanishes for a conventional parameterization due to the assumption of
stationary wave energy.
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minimum intrinsic frequency that is of the order of the Coriolis parameter at middle
latitudes, andω1 amaximum intrinsic frequency that is of the order of the background
buoyancy frequency N .

Energy conservation is trivially fulfilled since Fp and v vanish at the surface,
z = zs , and since F and Fp vanish for z → ∞. Hence,

∞∫
zs

dz ∂t eGW +
∞∫

zs

dz v · (ρ ∂tv)GW +
∞∫

zs

dz (ρ cp ∂t T )GW ≡ 0 (3.17)

The momentum flux and pressure flux are obtained by using the polarization rela-
tions for gravity waves having vertical wavelengths not larger than the scale height,
yielding

F(z, t) =
∑
j

Fj ( cosφ j ex + sin φ j ey ) (3.18)

with

Fj (z, t) =
−m0∫

−∞
dm

ω1∫
ω0

dω
ω

N
E j (m, ω, z, t)

Fp(z, t) =
∑
j

∞∫
m0

dm

ω1∫
ω0

dω
ω

m
E j (m, ω, z, t) (3.19)

Here, φ j is the angle of the azimuthal direction j with the unit vector in eastward
direction denoted as ex , while ey is the unit vector in northward direction. In these
expressions, the mid-frequency approximation was made which can, however, be
relaxed as for the oceanic IDEMIX version.

3.2.2.2 Factorization of the Spectrum and Prognostic Equations

Since the treatment of (3.13) in the 3-dimensional space (z,m, ω) will be computa-
tionally too expensive,we follow the IDEMIXconcept and assumea simple factoriza-
tion of the wave spectrum with unknown amplitude E j (z, t). Having E j (z, t,m, ω)

in such a form, the integrals overm andω for the fluxes (3.19) in the model equations
(3.14) and (3.15) are readily calculated as functionals of E j (z, t). The assumption of
a factorized wave spectrum with unknown amplitude is key to the IDEMIX concept
which we also use here, but we also allow for variations of the shape parameters.

While a generic spectral shape is observed in the ocean with only rare exceptions,
this is not expected for the atmosphere. We therefore attempt to introduce additional
prognostic equations to characterize the spectral shape. This concept was originally
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introduced byHasselmann et al. (1973) for the simulation of the energetics of surface
wind waves. In the atmospheric case, the generalized Desaubies spectrum according
to Fritts and VanZandt (1993) has proven to work well in advanced gravity wave
schemes using the conventional framework (Scinocca 2003). Here, we apply the
Desaubies spectrum (Desaubies 1976) (this actually is a derivative of GM; see also
Müller et al. 1978) for each azimuthal direction as:

E j (m, ω, z, t) = E j (z, t) n(ω0,m
∗
j (z, t), q, r, s)

(ω0

ω

)q (m /m∗
j (z, t) )s

1 + (m /m∗
j (z, t))

r+s

(3.20)
Like in IDEMIX, E j (z, t) is the total energy contained in the spectrum at (z, t); i.e. n
is a normalization factor such that E j = ∫

dω
∫
dm E j . The shape of the spectrum

regarding itsm-dependence is allowed to vary with height and time via the parameter
m∗

j (z, t). The exponent q used in (3.20) can be chosen within 1 ≤ q ≤ 5/3, while
typical values for s and r are 1 and 3, respectively. As a starting point for the new
parameterization, we set q = 1, s = 1, and r = 3. For large m, the spectrum is then
proportional tom−3. Such a behaviour is consistent with the scaling laws of stratified
turbulence.5

To compute the temporal evolution of E j (z, t) and m∗
j (z, t), we have to solve

(3.13) for each azimuth. To this end, we have to compute ż and ω̇ from the dispersion
relation. For the most simple case of mid-frequency gravity waves with upward
grouppropagation (i.e. form < 0),weget ż = −ω/m, ṁ j = N−1ω (m ∂zu j + ∂z N )

and ω̇ j = −ω2N−1∂zu j , where u j is the projection of v into the direction of φ j .
Furthermore, we have to specify the diffusion coefficient and some source functions.
In IDEMIX, the resulting radiative transfer equation is then integrated over m and
ω to obtain a prognostic equation for just the amplitude of the spectrum, i.e. for
E j (z, t).

To allow, however, for variations of the spectral shape with altitude and time,
we use another method to solve (3.13). We propose to apply the Gaussian varia-
tion principle in order to determine ∂t E j (z, t) and ∂tm∗

j (z, t) from the functional
derivatives

δ χ2
j (z, t)

δ ( ∂t E j (z, t) )
= 0 ,

δ χ2
j (z, t)

δ ( ∂tm∗
j (z, t) )

= 0 (3.21)

that are obtained from requiring that

χ2
j (z, t) =

−m0∫
−∞

dm

ω1∫
ω0

dω
[
∂tE j + ∂z(ż E ) + ∂m(ṁ j E ) + ∂ω(ω̇ j E )

−Sj − ω̇ j E j/ω + Dm2 E j
]2

(3.22)

5The aspect ratio for stratified turbulence, k ∝ m3, converts a spectral energy density proportional
to m−3 into a k−5/3-spectrum with respect to the horizontal wavenumber.
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is minimum. The procedure is straightforward. All integrals in (3.22) for m and ω

can be solved analytically.

3.2.2.3 Dissipation and Forcing

A particular and important aspect of the project is to set up a proper parameterization
of the diffusion coefficient, D(z, t), and the source function Sj (m, ω, z, t) to force
gravity waves. Regarding the diffusion, we plan to rely on the saturation assumption
of Lindzen (1981) which has proven to work equally well for non-orographic and
orographic gravity waves (see the model description in Garcia et al. 2007). This
has, however, to be further specified for the present entirely new framework for an
atmospheric gravity wave scheme. Also note that, like in the generalized Doppler
spread parameterization of Becker and McLandress (2009), the diffusion coefficient
should be the same for the entire gravity wave field.

While wave–wave interactions are of importance in the oceanic case, this appears
less so for the atmosphere. Wave–wave interactions will thus be neglected in the first
phase. The dissipation in the oceanic case is inferred from the flux in wavenumber
space due towave–wave interactions to large vertical wavenumbers and is a quadratic
functional of the total wave energy (Olbers 1976; Müller et al. 1986), which is also
used for observational estimates of dissipation rates (Gregg 1989; Kunze and Smith
2004). It remains to be seen how this process relates to the aforementioned non-
linear wave-breaking theories and whether it can eventually be incorporated in the
new atmospheric gravity wave scheme.

Regarding the source function, we plan to use specifications for gravity wave
generation by orography, frontal activity, and convection that have proven to work
well in conventional schemes used in global climate models. We will take advantage
of the specification of orographic sources as proposed by McFarlane (1987) and use
gravity wave sources due to frontal activity and convection as outlined by Charron
and Manzini (2002) and Richter et al. (2010).

3.3 Oceanic Processes in Present and Future IDEMIX

Internal gravity waves have a major share of the energy contained in oceanic motions
(e.g.Wunsch and Ferrari 2004).When they break by shear or gravitational instability,
they feed their energy to small-scale turbulence in the interior of the ocean and
thus contribute to density mixing. This process, transferring wave energy to large-
scale potential energy, becomes an important part of the oceanic energy cycle. It is
furthermore thought to be an important driver of the ocean circulation (e.g. Wunsch
and Ferrari 2004; Kunze and Smith 2004).

The part of the gravity wave field which is prone to break is by far unresolved by
ocean model components of climate models, since a lateral and vertical resolution
of less than 100 and 10 m, respectively, is required. Consistent parameterizations to
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Fig. 3.4 (a) Tidal forcing and (b) near-inertial wave forcing in log10 F/[m3s−3]

include the effects of wave breaking have been missing for a long time. A varying
diffusivity was introduced for the ocean interior by Bryan and Lewis (1979) with
a prescribed depth function and, among others, by Cummins et al. (1990) with a
dependenceon the stability frequency.The energy source formixingwasnot specified
in these and other early approaches although the vertical diffusivity was supposed
to parameterize the effect of breaking internal waves. Jayne and St. Laurent (2001)
suggested to link the conversion of barotropic tidal energy into internal waves as
simulated by a barotropic tidal model to a profile of vertical diffusivity adapted to
observations. However, the lateral spreading of baroclinic tides and the effect of
the other sources of gravity waves are left unconsidered, and the parameterization
remains energetically inconsistent. The recently developed IDEMIX concept (Olbers
and Eden 2013; Eden andOlbers 2014), on the other hand, implements this spreading
and treats gravity wave sources in an energetically consistent way. For details, see
Section 3.2.1.

Prominent forcing mechanisms of internal waves occur very localized in the fre-
quency domain. Near-inertial waves with frequencies slightly above the local Cori-
olis frequency are excited by wind stress fluctuations at the surface (Alford 2001;
Rimac et al. 2013) and can propagate over large distances in horizontal direction,
while slowly propagating down into the interior ocean (Garrett 2001). A further
monochromatic source is related to the scattering of the barotropic tide at topogra-
phy, predominantly at the continental shelf, the mid-ocean ridges but also at the more
random-type small-scale roughness of the seafloor (Nycander 2005). The flux from
the barotropic tide into the internal wave field occurs at the ocean bottom, shown
in Figure 3.4(a). The flux from radiation of near-inertial waves out of the surface
mixed layer is depicted in Figure 3.4(b). These fluxes are currently the main drivers
implemented in the IDEMIX versions.

Several other generation processes have been discussed (see, e.g., Thorpe 1975;
Müller and Olbers 1975; Olbers 1983, 1986; Polzin and Lvov 2011) occurring over a
broad range of frequencies, e.g. dissipation ofmesoscale eddies by spontaneouswave
emission or other processes (Ford et al. 2000; Molemaker et al. 2010; Tandon and
Garrett 1996; Eden and Greatbatch 2008a; Brüggemann and Eden 2015), resonantly
interacting surface gravitywaves (Olbers andHerterich 1979;Olbers andEden2016),
the generation of lee waves by large-scale currents or mesoscale eddies flowing over
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Fig. 3.5 Validation of the simple IDEMIX version: (a) observational estimate of the dissipation
of gravity wave energy calculated from density profiles of ARGO floats following Whalen et al.
(2012) averaged between 500 and 1000 m. (b) Same as (a) but simulated by IDEMIX in a fully
coupled mode. From Pollmann et al. (2017)

topography (Nikurashin and Ferrari 2011), and wave–mean flow interaction (Müller
1976; Polzin 2008). There are also indications that mixed-layer turbulence generates
waves close to the local stability frequency below the mixed layer (Bell 1978).

Both IDEMIX versions show agreement with observational estimates in first diag-
nostics, but also biases: Figure 3.5 shows that magnitude and lateral pattern of the
simulated dissipation rates of internal waves in the simple IDEMIX version agree
with observational estimates (more details in Section 3.3.5). It turns out that the dis-
sipation of mesoscale eddy energy is important for the maxima in dissipation rates
seen in the western boundary currents and the Antarctic Circumpolar Current (ACC).
Without the eddy dissipation, some of these maxima are not simulated (not shown).
In the Southern Ocean, however, IDEMIX simulates too much dissipation within
the ACC and thus too large diffusivities (as shown in Eden et al. 2014), when all
eddy energy is dissipated locally and injected into the wave field as assumed in the
mesoscale eddy closure by Eden and Greatbatch (2008b). This points towards the
need to better understand the dissipation of mesoscale eddy energy and its relation
to the internal wave field. More details are given in Section 3.3.1.

When waves are propagating in a vertically sheared mean flow, they exchange
energy with the mean flow and even can break due to critical layer absorption or
wave capture. The former effect is also called gravity wave drag in the atmospheric
literature (see Section 3.2.2.1), where it is of importance for the dynamics of the
upper atmosphere. The direction of the energy exchange can be from the mean flow
to the waves or vice versa. When waves break in a critical layer, on the other hand,
their energy is transferred to small-scale turbulence. In Section 3.2.2.1, we propose
an extension of IDEMIX to incorporate the energy exchange with the mean flow
for the atmospheric case. The effect on the mean flow figures in this concept as a
divergence of a vertical eddy momentum flux due to wave activity in the residual
momentum equation, similar to vertical friction, but can accelerate and decelerate the
mean flow. It can be shown that the energy transfer between waves and large-scale
mean flow is present in the ocean, but amounts to only a fraction of, e.g. the energy
exchange between mean flow and mesoscale eddies (see Section 3.3.2). However,
the effect of critical layers where waves break and contribute to density mixing has
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Fig. 3.6 Validation of the extended IDEMIX version: (a) equivalent surface elevation ζ due to the
baroclinic M2 tide in cm simulated by IDEMIX. (b) Observed surface elevation ζ in m of M2 tide
taken from Müller et al. (2012) on the same colour scale as in (a). Taken from Eden and Olbers
(2014)

not been discussed so far in IDEMIX, although this might be the more important
effect in the ocean. Effects similar to critical layers occur when horizontally sheared
mean currents are present; the process is called wave capture (see, e.g., Jones 1969;
Bühler and Mcintyre 2005). This points towards the need to include wave–mean
flow interaction and the effect of critical layers and wave capture into IDEMIX. We
expand this issue further in Section 3.3.2.

Figure 3.6 shows that the extended version of IDEMIX simulates well the gen-
eration of the low-mode M2 tide and also its propagation but that there are also
biases. It remains at the moment unclear whether these differences are due to errors
in the observational estimates—the identification of the baroclinic tidal signal in the
altimeter data is rather difficult (Dushaw et al. 2011)—but it is clear that IDEMIX
also has shortcomings. Most important is the forcing by the barotropic tide, which is
taken at the moment for simplicity as isotropic for the wave propagation direction.
On the other hand, anisotropic wave generation is most likely responsible for many
features seen in the observational estimates, such as the energy maximum between
the Aleutian and the Hawaiian Islands which is not reproduced by IDEMIX. This
points towards the need to include anisotropic wave generation in IDEMIX and a
detailed comparison with observations and direct simulations of baroclinic tides in
ocean models. Details are found in Section 3.3.3.

Unlike the internal wave energy generated by near-inertial motions in the mixed
layer and the tides which have low frequencies and propagate through the entire
water column, internal waves generated by resonant interactions of surface waves
are of high frequency (Olbers and Herterich 1979; Olbers and Eden 2016). The
same is true for the wave generation by mixed-layer turbulence near the stability
frequency (Bell 1978; Polton et al. 2008). Since the stability frequency at larger
depth is normally much smaller than within the seasonal thermocline close to the
mixed layer or the upper permanent thermocline, waves generated by these processes
have shallow turning points and are thus likely to be trapped in the upper ocean. They
could contribute to mixing just below the mixed layer. Recent estimates of the global
energy transfer from the surface waves to the internal wave field are given by Olbers
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(a) (b)

Fig. 3.7 (a) Mean flux from surface waves to internal waves in log10(Φtot/[mW/m2]) in 2010. (b)
Same as (a) but maximum of the year. From Olbers and Eden (2016)

andEden (2016). Figure 3.7 shows the annualmean total flux and itsmaximumduring
the year. The largest fluxes show up in the storm track regions of the oceans, while
towards the equator the flux and its maximum almost vanish. The implied dissipation
rates are found to reach magnitudes comparable to observational estimates close to
the mixed layer, in particular during strong wind events. This points towards the need
to include in IDEMIX surface–internal wave interactions and waves generated by
mixed-layer turbulence. See Section 3.3.4 for more details.

3.3.1 Including Energy Transfers from Mesoscale Eddies
to Internal Waves

Dissipation of balanced flow is thought to happen on different routes; lee wave
generation, bottom friction, and loss of balance are often considered as important
processes. Other processes which have been discussed are topographic inviscid dis-
sipation of balanced flow (Dewar and Hogg 2010), direct generation of unbalanced
ageostrophic instabilities (Molemaker et al. 2005), or geostrophic adjustment of bal-
anced flow (Wang and Zhang 2010). Further, wave–mean flow interaction can lead
to an energy transfer between the wave field and the vertically sheared mesoscale
and large-scale mean flow, a process called gravity wave drag in the atmospheric
literature. This ‘drag’, however, can take both directions.

3.3.1.1 Lee Wave Generation

Scott et al. (2011) estimate an energy flux of 0.34 to 0.49 TW as the global transfer
of energy by internal lee wave generation of eddies and mean flow over varying
topography, while Nikurashin and Ferrari (2011) estimate a lower energy flux of 0.2
TW by the process. However, both numbers are only a fraction of the total eddy
energy production: von Storch et al. (2012) report 0.83 TW global eddy energy
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production by conversion from mean to eddy available potential energy (baroclinic
instability) and additionally a transfer of 0.1 TW from mean to eddy kinetic energy
(barotropic instability) in agreement with observational estimates.

Linear theory (Bell 1975) shows that the energy flux into the internal wave field
for subcritical topographic slopes is given by

Flee = ρ0

4π2

∫
f 2<(U·k)2<N 2

d2kP(k)U · k/|k|
√
N 2 − (U · k)2

√
(U · k)2 − f 2

(3.23)
where P(k) is the topography spectrum,U the balanced bottomflow, N is the stability
frequency at the bottom, and k the horizontal wave vector. We will implement the
effect of lee wave generation using for (3.23) estimates of topographic spectra from
Goff and Arbic (2010) and magnitudes of balanced bottom flow from the model
of von Storch et al. (2012). To describe the topography spectrum, we use (as in
Eden and Olbers 2014) digital maps of geophysical parameters given by Goff and
Arbic (2010) for the root mean square topographic height hrms of abyssal hills and
k = 2π/λn , where λn is a characteristic width and k̄ a mean wavenumber. These
maps are based on estimates of palaeo-spreading rates of the mid-oceanic ridge
system and sediment thickness. Specific formulae for hrms and λn and data sources
are given in Eden and Olbers (2014). Assuming an isotropic spectrum and a fixed
power law for P(k) = P0k1−μ, it is possible to evaluate the integral in (3.23) for
| f | � N analytically as

Flee ≈ ρ0P0
π

N |U|5/2 f −1/2

(
9

5
− 7

3
| f/N |1/2 + O( f 2/N 2)

)
(3.24)

written here for simplicity for the parameter μ = 7/2, as suggested by Nikurashin
and Ferrari (2011). Note that P0 relates to h2rms , if evaluated for the characteristic
range of lee waves P0 = 4h2rms/λn

√|U |/ f . We will compute the flux Flee from
the bottom flow U of the global eddy-resolving STORM model (von Storch et al.
2012), which provides a map of energy injection due to lee wave generation as lower
boundary condition for a stand-alone version of IDEMIX (in addition to the tidal
forcing). For IDEMIX coupled to a non-eddy-resolving general circulation model,
we will use the mean flow from that model, and in addition the (square root of) EKE
from the closure by Eden and Greatbatch (2008b) for U in (3.24).

3.3.1.2 Bottom Friction

The transfer by bottom friction is likely of similar order ofmagnitude as the one by lee
wave generation: the dissipation of eddy energy by bottom friction was estimated by
Arbic et al. (2009) from different model bottom velocities as a global energy transfer
ranging between 0.14 and 0.65 TW by a simple quadratic drag law. In the model by
von Storch et al. (2012), the global transfer is only 0.12 TW (Brüggemann and Eden
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2015). Here, we will assume that bottom friction generates small-scale turbulence in
a bottom boundary layer only, without energy transfer to internal waves.

3.3.1.3 Loss of Balance

Williams et al. (2008) estimate 1.5 TW energy extracted from quasi-geostrophic
flow and transferred into internal gravity waves by Lighthill radiation (Lighthill
1952) based on a laboratory experiment extrapolated to the global ocean. Although
their extrapolation is presumably quite crude, the experiment suggests that dissipa-
tion by Lighthill radiation might play an important role in the ocean energy cycle.
Brüggemann and Eden (2015) find in idealized model experiments of forced-
dissipative baroclinic instability that a kinetic energy cascade towards smaller scales
is generated for dynamical conditions characterized by a low Richardson number
(Ri) or large Rossby number (Ro), i.e. for ageostrophic conditions, while the famil-
iar inverse energy cascade towards larger scales (and to bottom friction) dominates
for Ri� 1 or Ro� 1. From a simple fit of the energy transfer towards smaller scales
as a function of the local Ri, Brüggemann and Eden (2015) estimate the fraction of
the local baroclinic eddy production rate which would go into the forward cascade
in the model by von Storch et al. (2012) (Figure 3.8). The global transfer by this
process amounts to 0.31 ± 0.23TW, i.e. only a fraction of the total production but
comparable to the generation by lee waves. The flux by the forward cascade is not
only large in the surface mixed layer where the stratification vanishes, or near the
equator where geostrophic balance becomes a weaker constraint, but also at high
latitudes in western boundary currents and the Southern Ocean, where the vertical
shear becomes large.

We will assume that this energy transfer by the forward energy cascade at large
Ri in the interior of the ocean generates gravity waves, while the remainder of the
total eddy energy production is assumed to be dissipated by bottom friction. We
will thus provide the flux by the forward cascade as an interior source to IDEMIX.
The flux in the surface mixed layer will be assumed to contribute to small-scale

Fig. 3.8 Horizontal and meridional sections of the implied energy transfer Ds due to the for-
ward energy cascade in the high-resolution ocean model by von Storch et al. (2012). Taken from
Brüggemann and Eden (2015)
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turbulence there, while the flux near the equator within 5◦ latitude will be disregarded
since here the inference from the simulations of mid-latitude baroclinic instability
by Brüggemann and Eden (2015) might not hold. To include the interior flux in a
version of IDEMIX coupled to a general circulation model, the dissipation of EKE
implied by the mesoscale eddy closure by Eden and Greatbatch (2008b) will be used.
Other proposed sources of eddy dissipation will be neglected in the first phase of this
project, but will be considered in later phases if necessary.

Both, the bottom flux due to lee wave generation and the interior flux due to the
forward energy cascade will be prescribed in a stand-alone version of the simple
version of IDEMIX. Experiments with tidal and surface forcing with and without
the flux due to the eddy dissipation will be compared with observational estimates
of dissipation rates as in Figure 3.5 to identify and to validate the effect of eddy
dissipation.

3.3.2 Including Wave–Mean Flow Interaction

Waves propagating in a vertically sheared mean flow exchange energy with the mean
flow and can even break when they hit a critical layer or run into a wave capture
domain. In the presence of a mean shear, the radiative transfer equation (3.9) for
the energy spectrum correspondingly contains an exchange term with the mean flow
(last term on the right-hand side). This exchange depends on the magnitude of the
shear, internal wave energy, the direction of the wave propagation, and other wave
properties. Assuming as before a fixed (but locally varying) form of the spectrum
of unknown amplitude, it becomes possible to evaluate the effect of the wave–mean
flow energy exchange for the energy compartments E± integrated in wavenumber
space, as shown in Olbers and Eden (2017), Eden and Olbers (2017). An extension
of IDEMIX including the wave–mean flow energy exchange requires only the split
of E± or equivalently E and ΔE into energy components which propagate in four
different lateral directions, while all other parameters and closures remain identical
to before. The corresponding IDEMIX model becomes

∂t Ee + ∂z(c0ΔEe) = −ŨzΔEe − μEe(Ee + Ew)

∂tΔEe + ∂z(c0Ee) = −Ũz Ee − ΔEe/τv

∂t Ew + ∂z(c0ΔEw) = ŨzΔEw − μEw(Ee + Ew)

∂tΔEw + ∂z(c0Ew) = Ũz Ew − ΔEw/τv (3.25)

for eastward (Ee,ΔEe) and westward propagating waves (Ew,ΔEw), with Ũz =
(
√
8/π)Λ∂zU , and similar for northward (En,ΔEn) and southward propagating

waves (Es,ΔEs), except that ∂zU is replaced with ∂zV . The wave–mean flow inter-
action terms are those involving the mean shear. They derive from the last term in
the radiation balance (3.9). The interaction coefficient Λ is computed in IDEMIX
manner using the GM spectral shape (Olbers and Eden 2017).
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Fig. 3.9 Instantaneous energy transfer from mean flow to waves in 10−6 W/m3 at 300 m depth in
a high-resolution model of the North Atlantic Ocean. From Eden and Olbers (2017)

The effect on themean flowfigures then as a divergence of a vertical eddymomen-
tum flux due to wave activity in the residual momentum equation, similar to vertical
friction, although the direction of the energy exchange can be from the mean flow
to the waves but also vice versa, as demonstrated in Figure 3.9. The figure shows
the energy transfer from the mean flow to the waves due to wave drag at 300 m
depth of a simulation with a realistic, eddying North Atlantic Ocean model for a
snapshot in September. The energy transfer due to the wave drag is significant for
the kinetic energy balance of the mean flow. At 300 m depth, the horizontally inte-
grated energy transfer from the mean flow to the waves is 19.9 × 106 W/m, while
it is 149.8 × 106 W/m for the dissipation due to lateral biharmonic friction. This
ratio of 10 to 20% can also be found at other depths. The energy transfer from mean
flow to small-scale turbulence by the parameterized vertical friction at 300 m depth
amounts to 56.9 × 106 W/m but is only significant within the mixed layer, and very
low below; i.e. in the interior of the model, only lateral friction and the wave drag act
as dissipation of mean kinetic energy. The depth-integrated values of the transfer due
to lateral friction, wave drag, and vertical friction are 0.224 × 1012 W, 0.018 × 1012

W, and 0.115 × 1012 W, respectively. For the balance of internal wave energy itself,
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Fig. 3.10 Rays for propagation in a vertical shear flow. Upper row: weak mean shear, U0 = 0.1,
lower row: strong mean shear, U0 = 0.3. Left: f and N (red), ωenc (black), ω(z) = ωenc − kU (z)
(blue). Right: ray (black), energy E(t) (blue), minimum available energy f E(t0)/ω(t0) (red), shear
E(t)m2(t) (magenta). Energy and shear have an unspecified scale. The horizontal wavelength is
5000 m. Other parameters are f = 5 × 10−4 s−1, N0 = 2 × 10−3 s−1

the energy transfer due to the wave drag is less important, i.e. on the order of 5%,
since the tidal forcing amounts to more than 0.4 × 1012 W in the North Atlantic.

The effect of critical layers and wave capture, where waves break and contribute
to density mixing, has not been discussed so far. The conditions for a generic case
of a critical layer is N = const and a purely vertical shear flow U = U(z) so that the
vertical wavenumber changes according to

ṁ = −k · ∂zU (3.26)

such that |m| increases in time (linearly as k remains constant) and the frequency
ω of the wave ultimately approaches f where the intrinsic group velocity goes to
zero and the intrinsic propagation comes to a halt. At the same time the vertical
wavelength diminishes, the wave is prone to break (in fact, as action is conserved,
E(t)/ω(t) = const, but the shear E(t)m2(t) tends to infinity). We demonstrate the
behaviour in an exponentially increasing Brunt-Väisälä frequency and a tanh-shaped
mean flow in Figure 3.10with different current amplitudes. The rays start at a depth of
500 m (at the zero of the mean current) and a downward group velocity. With a weak
mean flow (upper panels), the shear does not yet allow a critical layer to appear. Note
that the rays’ cycle, energy, and shear are completely periodic. The situation changes
dramatically (lower panels) when the shear is increased to an amplitude such that
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Fig. 3.11 Generic cases of wave capture, after Bühler and Mcintyre (2005). The streamfunc-
tion of the horizontal flow is ψ = −axy + c(x2 + y2)/2 with U = −ψy = ax − cy, V = ψx =
−ay + cx . Hence, Vx +Uy = 0,Ux + Vy = 0, β = a2 − c2. Left: β > 0, hyperbolic case for
c = a/2. Middle: β = 0, parabolic case. Right: β < 0, elliptic case for c = 3a/2. Upper panels:
streamfunction (red) and ray (black). Lower panels: ki/k0, i = 1, 2 as function of time

at a certain level the intrinsic frequency can approach the local Coriolis frequency,
i.e. ω(z) = ωenc − k · U(z) → f . At such a level, the vertical group velocity goes
to zero while the energy approaches the minimum value, however residing in ever
decreasing vertical scales. The wave must eventually break.

A similar behaviour occurs in a flow with horizontal and vertical shear, U =
U(x, z) where the horizontal wave vector increases exponentially

k̇ = −k · ∂xU (3.27)

under certain conditions on the mean flow gradient. Equation (3.26) still holds such
that |m| also increases exponentially. This is the generic case ofwave capture. IfUz ∼
U/H,Ux ∼ U/L , then the aspect ratio of thewavenumbers approachesm/k ∼ L/H
and the ratio of wavelength (vertical to horizontal) approaches H /L . The frequency
of the wave in this state goes to ω2(t) → f 2 + N 2(H/L)2 which is close to f 2

(Bühler andMcintyre 2005). The group velocity is exponentially decreasing, and the
wave will be captured (trapped) in the mean flow and break. Note, however, that the
captured wave is still moving with the mean current. In Figure 3.11, we show wave
capture for three generic cases of mean flow: a hyperbolic flow with a saddle point
(the wavenumber increases exponentially), a parabolic case of parallel currents (the
wavenumber increases linearly), and an elliptic case with closed streamlines (the
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wavenumber shows a cyclic behaviour). In the first two cases, the wave is prone to
breaking.

The critical layer process will be implemented by calculating the fraction of the
vertical (up or down) flux of wave energy at any level that will eventually be absorbed
in critical layers (at shallower or deeper levels) and contribute to mixing there. As
for the other closures in IDEMIX, the assumption of a fixed spectral shape for the
local wave energy will be used. The flux portion which is absorbed depends on the
mean flow profile, on f /N and the total wave energy at the respective level. We will
convert this flux portion directly into dissipation over the respective water column,
obtaining a parameterization of the mixing induced by critical layer absorption. We
attempt a similar treatment for wave capture.

3.3.3 Including Anisotropic Tidal Forcing

The linear theory byBell (1975) can also be used to generatemaps of energy transfers
from the barotropic tide to internalwaves, similar to the leewave generation of amean
flow in (3.23). Two effects can lead to anisotropy in the wave generation: anisotropy
in the barotropic flow (tidal ellipse) and anisotropy in the topography. A realistic
estimate of the barotropic tidal velocity field is provided by the TPXO.7 model for
eight tidal constituents (M2, S2, etc.) with a resolution of 1/4◦ (Egbert et al. 2010).
Anisotropic abyssal hill spectra are provided by the digital maps given by Goff and
Arbic (2010), similar as used for (3.23), but to be implemented here in its anisotropic
form on a 2 min horizontal grid. However, it is clear that also topographic variations
with scales larger than about 10 km, not covered by the data set by Goff and Arbic
(2010), will contribute to anisotropic baroclinic tide generation. Following Nycander
(2005),wewill also use the latest satellite-derived topography bySmith andSandwell
(1997) on a 2 min grid to extend the spectra by Goff and Arbic (2010) to smaller
wavenumbers taken from the observed topography. Local two-dimensional spectral
estimates of subregions of X km × X km size from the satellite-derived topography
will be averaged and blendedwith the anisotropic spectrumbyGoff andArbic (2010),
averaged over the same region. X and Y will be of order 50 to 100 km but varied to
obtain the sensitivity on these parameters.

Based on this estimate of the topography spectrum and using the tidal velocity
averaged over the same region for each tidal constituent, linear theory predicts the
energy transfer to the baroclinic tides. We will use the spectral tapering method by
Nycander (2005) to account for finite depth effects in the linear theory byBell (1975).
The flux Φt ide into the barotropic tide of frequency ωn and velocity amplitude |U|
for an isotropic tidal ellipse can be written as

Φt ide(k) = 1

2
ρ0

|U|2N
ωnπknks

h2rms(μ/2 − 1)(ω2
n − f 2)1/2k(

1 + k2/k2s cos
2(θ − θs) + k2/k2n sin

2(θ − θs)
)μ/2

(3.28)
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Fig. 3.12 Example of an anisotropic tidal forcing (left) due to anisotropic topographic spectrum
(right) given by the form of Goff and Arbic (2010). Both are shown as normalized functions of
k = (k1, k2) on a logarithm scale

as density in wavenumber space, where hrms and μ are defined above in Section
3.3.1.1 and where kn , ks , and θs define the anisotropy of the spectrum by Goff
and Arbic (2010). The case with an anisotropic tidal ellipse is analogous but more
involved. The resulting fluxΦtide is shown in Figure 3.12 as function of wavenumber
vector k for an artificial but typical topography spectrum based on the parameters
given by Goff and Arbic (2010). The φ-dependency of the forcing will generate a
baroclinic tide propagating predominantly in the direction anticipated from thefigure,
which is clearly different from the isotropic flux used before by Eden and Olbers
(2014), and we expect a corresponding effect of the improved forcing function for
IDEMIX.

We will use Φt ide as interior forcing in (3.11) for the corresponding energy com-
partment in the extended version of IDEMIX. Expressing the k-dependency of Φtide

in terms of vertical wavenumber m or vertical mode number, using the dispersion
relation, it becomes also possible to determine from (3.28) the amount of energy
transferred to the low modes and the amount transferred to the wave continuum.
This will be an improvement of Eden and Olbers (2014) who simply transfer 50% to
the continuum and 50% to the lowmodes. The fluxΦtide from (3.28) will be included
in a stand-alone extended version of IDEMIX, and the results will be compared with
observations.

3.3.4 Including High-Frequency Compartments

Waves forced at the base of the mixed layer by resonant surface–internal wave inter-
action (Olbers and Herterich 1979; Olbers and Eden 2016), mixed-layer turbulence
(Bell 1978), and convective pumping (Polton et al. 2008) are of high frequency
and thus trapped close to the surface. Their energy will thus predominantly con-
tribute to near-surface mixing. Similar to the low-mode tidal and near-inertial energy
compartments of the extended IDEMIX version by Eden and Olbers (2014), we
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Fig. 3.13 Transfer for SC (blue) and MI (red) mechanisms as function of mode number (left) and
wind speed (right). The respective lowest curves are for wind speed 5 m/s or mode 10, and the
uppermost is for wind speed 20 m/s and mode 1. The curves are for N0 = 0.0157s−1. The black
dashed lines (right panel) display a U2 and U7 dependence. From Olbers and Eden (2016)

will split energy compartments of high-frequency and high vertical modes from the
wave continuum and will treat them separately from the spectral continuum. This
energy compartment couples to the wave continuum by induced diffusion, a process
of wave–wave interactions (McComas 1977), across the boundaries in frequency
domain and to the low vertical mode near-inertial waves. The waves described by
this compartment are thought to break predominantly in the upper ocean and are thus
of central importance for dissipation in and above the main thermocline.

Resonant triad interactions between surface gravity waves (SW, with frequen-
cies ω j = √

gk j , j = 1, 2) and internal gravity waves (IW, with frequency ω) are
hampered by the extreme difference of their frequencies in the resonance condition
ω1 − ω2 − ω = 0. The scattering cross section is of order (ω2/gk j )

2 � 1. Two pro-
cesses compete: spontaneous creation (SC) in which two SW generate an IW and
modulation interaction (MI) where a preexisting internal wave is modulated by a
surface wave and interacts with another one (Watson 1990; Olbers and Eden 2016).
SC is always a source of IW energy, andMImight establish a damping of the internal
wave field, thus acting against SC. Interesting is the dependence of the respective
transfer rates on the wind speed U (via the spectral energy content of the SW spec-
trum). For MI, the rate varies as U 2, for SC however as U 7, so that the dominant
process at low wind speeds (roughlyU < 10 m/s) is MI, while at stronger winds the
interactions between surface and internal gravity waves are always controlled by SC
(see Figure 3.13).

Figure 3.7 shows the annual mean total SC flux Φtot and its maximum during the
year entering the internalwavefield diagnosed froma simulationwith an oceanmodel
which contains a mixed-layer parameterization after Gaspar et al. (1990). It is driven
by wind stress forcing; this and alsoU are taken from the year 2010 of the reanalysis
by Kalnay et al. (1996). The total SC flux is computed from a parameterization of
the SC scattering integral, as explained in Olbers and Eden (2016), depending on
the simulated mixed-layer depth, the Brunt-Väisälä frequency at the mixed-layer
base, and the wind speed U . The largest fluxes show up in the storm track regions
of the oceans, while towards the equator the flux and its maximum almost vanish.
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The flux varies a lot in space and time. In the global integral, it is only about 0.5
to 1 × 10−3 TW, i.e. two orders of magnitude smaller than the flux due the inertial
pumping. Locally in space and time, however, it can reach similar magnitudes. Since
the internal waves generated by interaction with surface waves are of high frequency,
their turning points lie close to the mixed layer. It is therefore likely that the fluxΦtot

is also dissipated close to the mixed layer. This is different from the fluxes due to
inertial pumping and the tides which generate low-frequency waves penetrating the
entire depth range of the ocean. Our estimate of the implied dissipation shows that
it sometimes reaches magnitudes comparable to observational estimates close to the
mixed layer, in particular during strong wind events, but stays in general below them.

3.3.5 Evaluation with Available Observations

The results of the improved versions of IDEMIX need to be evaluated against obser-
vations. Measurements that resolve turbulence, however, are to date not available on
a global scale. For the evaluation of IDEMIX, we therefore estimate dissipation rates
of turbulent kinetic energy (TKE) and internal gravitywave energy fromfinestructure
data, i.e. observations on 10–100 m vertical scales. The fundamental assumption of
this ‘finestructure method’ is that TKE dissipation can be identified with the spec-
tral energy transport caused by non-linear wave–wave interactions, which manifest
themselves in the finescale variability of the internal wave field (Gregg 1989; Polzin
et al. 1995). Based on the approach by Kunze et al. (2006) and Whalen et al. (2012),
TKE-dissipation rates can be estimated from finescale strain information derived
from Argo CTD profiles,6

ε = ε0
N 2〈ξ 2

z 〉2
N 2
0 〈ξ 2

z,GM 〉2 h(Rω)L( f, N ), (3.29)

where the observed strain variance 〈ξ 2
z 〉 is scaled by the corresponding value for the

GM model, 〈ξ 2
z,GM 〉, L( f, N ) is a function correcting for latitudinal variations, and

ε0 is a constant. Due to the lack of shear information, the shear-to-strain ratio Rω has
to be set constant, reducing the function h(Rω) to unity for the GM value of Rω = 3.
Under the assumption that the observed internal gravity wave energy has the same
wavenumber and frequency dependence as the GM model, it, too, can be estimated
from finescale strain information (see Pollmann et al. 2017).

Figure 3.14 shows a comparison of Argo-derived and IDEMIX-based internal
gravity wave energy levels. Like for dissipation rates (cf. Figure 3.5), IDEMIX well
reproduces the magnitude as well as the spatial variations of the Argo-based esti-
mates. Inconsistencies are, for example, found at high latitudes, e.g. in the northern

6The Argo programme maintains almost 4,000 freely drifting floats that profile temperature and
salinity down to 2,000 m depth every 10 days, making the data publicly available within hours after
their collection (www.argo.ucsd.edu).

www.argo.ucsd.edu
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Fig. 3.14 Same as Figure 3.5 but for internal gravity wave energy. From Pollmann et al. (2017)

Pacific or Drake Passage, where IDEMIX simulates too high energy levels. In the
250–500m depth range (not shown), this discrepancy is less pronounced, underlining
the need to better understand and implement the depth dependence of the different
forcing functions (e.g. the interaction with the mesoscale eddy field). Global esti-
mates of internal gravity wave energies based on finescale strain information alone,
like Figure 3.14, have to our knowledge not been attempted before.

The uncertainty of the Argo-derived dissipation rate and energy level estimates
with respect to parameter choices and assumptions inherent in the finestructure
method is shown in Figure 3.15. With variations amounting to more than a fac-
tor of two, the dissipation rate estimates prove more sensitive to modifications of the
parameter settings than energy levels. Particularly, the value of the shear-to-strain
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Fig. 3.15 Sensitivity of Argo-derived dissipation rate and energy level estimates: each bar repre-
sents a different scenario, where one parameter at a time was changed from the reference settings.
These are given by ξz = (N 2 − N 2

f i t )/N
2
mean , GM76 with A(m) ∝ (m2 + m2∗)−1, a resolution of

10m, 〈ξ2z 〉 ≤ 0.1, Rω = 3, λmin = 10m, λmax = 100m and segments of 200m length. Bars are
shown in blue when the null hypothesis of a Welchs t-test, assuming equal mean dissipation rates in
the reference case and the scenario in question, can be discarded for a significance level of α = 0.05;
cyan bars denote the failure to do so. Modified after Pollmann et al. (2017)
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ratio, which is observed to vary between 2 and 7 in the global ocean (Kunze et al.
2006), strongly affects the dissipation rates’ magnitude. In total, technical and statis-
tical uncertainties can accumulate to a factor of 6–8 uncertainty, but compensations
between the different forms are possible. Since dissipation rates vary globally by
three orders of magnitude, a general comparison to IDEMIX is still feasible in any
case. We aim to reduce the bias of these comparisons, for example, by evaluating
IDEMIX against improved dissipation rate estimates that are based on a combination
of shear and strain information.

3.4 Atmospheric Processes in IDEMIX

Important processes which generate gravity waves in the atmosphere are large-scale
flow over orography, convection as well as spontaneous emission from jet streams,
fronts, and other balanced flows. The waves propagate vertically and laterally over
large distances and interact with the mean flow, and they feed energy to small-scale
turbulencewhen they break.While in the ocean the density-mixing effect duringwave
breaking is considered to be most important since it generates potential energy and
thus drives large-scale flow, it is the wave–mean flow interaction known as momen-
tum and energy deposition that is most important in the atmosphere (e.g. Miller et al.
1989). Regarding the atmosphere, the momentum deposition, also known as gravity
wave drag, is in the focus of parameterization schemes since it strongly contributes
to driving the residual circulation in the middle atmosphere, to constrain the tropo-
spheric jets, and to induce the quasi-biennial oscillation in the tropical stratosphere.
The turbulent frictional heating that accompanies wave breaking becomes important
in the middle atmosphere and needs consistent treatment as part of the energy depo-
sition (Becker 2004). In contrast, this heating can be safely neglected in the ocean
(McDougall 2003; Olbers et al. 2012; Eden 2015).

In general circulation models of the atmosphere, the gravity wave field is only
marginally resolved and its effects on the mean flow need to be parameterized. The
first theory that gave rise to simple gravity wave parameterizations in global circula-
tion models is the saturation concept by Lindzen (1981). Here, upward propagating
monochromatic waves are assumed to be damped by turbulent vertical diffusion
above a certain critical height such that convective instability is marginally avoided.
This wave damping leads to non-conservative wave–mean flow interaction accord-
ing to the non-acceleration theorem (Andrews and McIntyre 1976). Other damping
mechanisms are possible as well. For example, gravity wave schemes may employ
a spectrum of waves that is truncated with height due to some criterion at the high
vertical wavenumber end (Hines 1997; Alexander and Dunkerton 1999; Warner and
McIntyre 2001). Lindzen’s simple wave saturation concept has also been applied
to orographic gravity waves by McFarlane (1987), and corresponding schemes are
currently used in many climate models in order to simulate realistic jets in the tropo-
sphere and winter stratosphere. The response of orographic gravity waves is partic-
ularly essential in climate scenarios with regard to changes in the Brewer–Dobson
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circulation (McLandress and Shepherd 2009). A basic overview of the wave driving
of the middle atmosphere is given by Becker (2012).

Non-orographic gravity waves are sometimes also parameterized by concepts
which go beyond linear theory, such as, for example, the Doppler spread theory
(Hines 1997), where not only the Doppler shift by the mean flow but also that by
the entire spectrum of parameterized waves is considered as a criterion for spectral
truncation. Another example is the non-linear saturation theory of Medvedev and
Klaasen (e.g. Yiğit et al. 2008), where non-linear wave interactions are assumed to
trigger convective instabilities leading to a wave-induced eddy diffusion, as a first
step towards accounting for the effect of resonant wave–wave interaction. Overviews
of the gravity wave schemes currently used in global models are given in Fritts and
Alexander (2003) and Alexander et al. (2010).

We emphasize that all conventional gravity wave schemes are based on the frame-
work of the single-column approximation, as well as on the strong assumptions of
a stationary background state and a stationary wave energy equation (see discussion
in Becker and McLandress 2009). Conservative (reversible) wave–mean flow inter-
actions, which may take place when a wave packet propagates through a vertically
variable background atmosphere, are excluded in such a framework. Furthermore,
the wave parameters have to be specified at a particular launch level; sources that
are continuous in space and time, e.g. due to convection or frontal activity, cannot
be incorporated in a consistent fashion. The latter restriction holds even for more
sophisticated parameterizations that are based on ray tracing (Dunkerton and Fritts
1984; Warner and McIntyre 1996; Preusse et al. 2009; Senf and Achatz 2011). Con-
ventional gravity wave schemes often also lack a consistent representation of scale
interactions and energetics (Becker 2004; Becker and McLandress 2009). Particu-
larly, the stationarity assumptions lead to parameterization errors when the interac-
tion between gravity waves and thermal tides (having planetary scales and periods
of 8, 12, and 24 hours) is considered. As shown by Senf and Achatz (2011), gravity
wave–tidal interaction changes significantly when a non-stationary parameterization
based on the full ray tracing equations is used instead of the conventional frame-
work. One particular reason is that the horizontal phase speed (or ground-based fre-
quency) of a gravity wave changes when the background wind is temporally variable
(Fritts and Dunkerton 1984). In addition, horizontal propagation and refraction play
an important role for gravity wave propagating from the lower to the middle atmo-
sphere (Preusse et al. 2009; Fritts et al. 2006), but is neglected in the single-column
approximation.

Müller and Natarov (2003) suggested to base a model for internal waves in
the ocean on the radiative transfer equation of weakly interacting gravity waves
(Hasselmann1968), a conceptwhichhas—toour knowledge—never been considered
for gravity wave parameterizations for the atmosphere. This equation describes (1)
the propagation and refraction of the gravity wave field in physical and wavenumber
space, (2) the wave–mean flow interaction, (3) non-linear wave–wave interactions,
and (4) the forcing and dissipation of the waves. Olbers and Eden (2013) considered
a drastic simplification of the concept which they called IDEMIX (Internal wave
Dissipation, Energy and Mixing). Instead of resolving the detailed wave spectrum
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as proposed in Müller and Natarov (2003), they integrate the radiative transfer equa-
tion in the wavenumber and frequency domain, leading to conservation equations for
integral energy compartments in physical space, which can be closed with a few sim-
ple but reasonable parameterizations. The IDEMIX concept yields an energetically
consistent framework to describe wave effects and has been shown to be success-
ful for ocean applications. We propose to follow this approach and to base a new,
energetically consistent gravity wave parameterization for atmosphere models on the
radiative transfer equation. Applying the IDEMIX concept will also foster transfer
of knowledge from the oceanic community to the atmospheric community and vice
versa.

Integrating the radiative transfer equation in wavenumber space yields prognostic
equations in physical space for energy compartments describing the mean wave
propagation, refraction, and wave–mean flow interaction, and the integrated effects
of wave–wave interaction, forcing and dissipation. The key to describe the mean
propagation, refraction, and wave–mean flow interaction of the compartments in
IDEMIX is the assumption that the actual wave spectrum is close to a wave spectrum
of known shape but unknown amplitude. In the ocean, this would be the well-known
Garrett–Munk spectrum (e.g. Garrett andMunk 1972). In the atmosphere, it would be
a different shape as described, for example, by Fritts andVanZandt (1993) orNastrom
and Gage (1985), which was also assumed in the scheme by Warner and McIntyre
(2001). The free parameters of the energy compartments are then used as additional
prognostic variables in a circulation model. Olbers and Eden (2013) use only two
energy compartments for the up- and downward propagating part of the full spectrum
in a simple IDEMIX version. The wave–wave interaction is parameterized as linear
decayof the asymmetry in the vertical propagation, and the dissipationofwave energy
is given by a quadratic functional of total wave energy (Olbers 1976; Gregg 1989;
Müller et al. 1986). In the atmospheric case, we will have different compartments for
different directions of horizontal phase propagation, and it is sufficient to consider
only upward group propagation.

Recently, IDEMIXwas extended by single-column approximation of wave–mean
flow interaction (Olbers and Eden 2017; Eden and Olbers 2017). Figure 3.16 shows
wave energy compartments in a one-dimensional (z, t) idealized simulation using
IDEMIX with waves propagating through a mean flow with vertical shear that is
concentrated in the upper part of the domain. The waves are forced from below with
a magnitude representative of oceanic tidal forcing. Shown are energy compartments
of east- and westward and up- and downward propagating waves. The governing
equations are given by (3.25). While up- and eastward (Figure 3.16b) and down- and
westward (Figure 3.16c) propagating waves lose energy to the mean flow, down- and
eastward (Figure 3.16a) and up- and westward (Figure 3.16d) propagating waves
gain energy from the mean flow, while they propagate through the shear zone. Note
that changes in wave energy outside the shear zone are only due to the variable
buoyancy frequency. Without dissipation, the energy exchange of the waves with the
mean flow would be completely reversible. Up- and eastward propagating wave lose
energy, but are reflected at the surface to down- and eastward propagating waves
and regain the same amount of energy; then, they are reflected at the bottom, lose
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Fig. 3.16 Energy compartments in an idealized IDEMIX simulation as a function of height z
and time t . Solid lines denote the shear zone. (a) Energy compartment of down- and eastward
propagating, (b) of up- and eastward propagating, (c) down- and westward propagating, and (d)
up- and westward propagating waves. Note the different colour scales in the upper and lower row.
Energy magnitudes are representative of oceanic waves forced by the barotropic tidal flow at the
bottom. From Olbers and Eden (2017)

energy, and so forth. The same is true for the westward propagating waves. Only
if there is dissipation, as in the simulation shown in Figure 3.16, this symmetry
is broken and a net energy exchange with the mean flow takes place. Note that
this behaviour of IDEMIX is fully consistent with the non-acceleration theorem of
Andrews and McIntyre (1976). In the atmosphere, surface reflection is missing and
reversible energy exchanges with the mean flow are less likely than in the ocean,
such that irreversible wave–mean flow interaction is of significant importance for
the large-scale circulation. For a mean shear as shown in Figure 3.16, the energy
transfer is from the mean flow to the waves, which is akin to a wave drag, but other
configurations (jet-like situations) can also lead to an acceleration of the mean flow
by the waves.

3.5 Summary

The recently proposed parameterizationmodule IDEMIX (Internal wave Dissipation
Energy and Mixing) describes the generation, propagation, interaction, and dissipa-
tion of the internal gravity wave field and can be used in ocean general circulation
models to account for vertical mixing (and friction) in the interior of the ocean. It is
based on the radiative transfer equation of a weakly interacting internal wave field,
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for which spectrally integrated energy compartments are used as prognostic model
variables. IDEMIX is central to the concept of an energetically consistent ocean
model, since it enables to link all sources and sinks of internal wave energy and
furthermore all parameterized forms of energy in an ocean model without spurious
sources and sinks of energy.

In its simplest version, IDEMIX consists of two energy compartments of interact-
ing up- and downward propagating waves; in a more detailed version, low vertical
mode compartments at near-inertial and frequencies of tidal constituents are added
which also account for horizontally anisotropic wave propagation. It is proposed to
extend IDEMIX

• with forcing mechanism by mesoscale eddy dissipation, such as lee wave genera-
tion or spontaneous wave emission of balanced flow

• with the effect of the interaction of the internal wave field with mesoscale and
large-scale mean flow including critical layers and wave capture

• with anisotropic forcing of the low-mode tidal energy compartments
• and with additional energy compartments for high-frequency, high-wavenumber
waves which are in particular effective for upper ocean mixing.

All these processes have never been implemented in oceanmodels but have an impor-
tant effect onmixing and the energy transfers in the ocean.Wewill validate the simple
and more complex versions of IDEMIX and the new version using available fine-
and microstructure data sets. The simple and more complex IDEMIX versions will
be implemented into the ICON and FESOM ocean models. By linking the wave
sources with the wave dissipation using IDEMIX both in the ocean and atmosphere,
we envision to close the energy cycle in a consistent way for the coupled system.

Gravity waves are an important part of the energy cycle of the atmosphere and
exchange momentum and energy with the mean flow due to wave breaking and
wave refraction. Wave breaking and the resulting mean flow effects need special
parameterization in global climate models as they usually resolve at most a small part
of the full spectrum of gravity waves. Here, we apply the IDEMIX concept to develop
corresponding gravitywave schemes for atmospheric circulationmodels.Wepropose
to base a new, energetically consistent gravity wave parameterization on the radiative
transfer equation for a field of waves. This method is fundamentally different from
conventional schemes which describe the superposition of monochromatic waves
launched at a particular level and which make the strong assumption of a stationary
mean flow.

The IDEMIX concept was shown to be successful for ocean applications, but
instead of focussing on the mixing effect by breaking waves as for the oceanic
case, the focus in the atmospheric application is on the wave–mean flow interaction,
i.e. the gravity wave drag and the energy deposition. We will extend the concept of
energetically consistent closures to atmospheric gravitywave closures.Wewill derive
gravity wave source functions due to flow over orography and due to the forcing by
frontal dynamics and convection.Wewill include the effects of transience of themean
flow on the gravity wave field, and we will allow to incorporate sinks and sources
that are continuous in space and time. During the first phase of the project, we will
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stick to the single-column approximation in order to allow for easy implementation
of the derived gravity wave scheme in global circulation models.

There are several ways to generalize the proposed gravity wave scheme. The
most obvious one is to use the general dispersion relation for gravity waves such
as to incorporate also high-frequency and inertial-gravity waves. In the latter case,
the momentum flux must be substituted by the pseudo-momentum flux in order
to account for the Stokes drift when ω approaches the Coriolis parameter (Fritts
and Alexander 2003), as is in principle always the case close to a critical level.
Furthermore, we may dispense with discrete azimuths and rather use a continuous
directional representation, thereby modifying also the radiative transfer equation
(3.13). Furthermore, one should consider existing theories to account for non-linear
effects and wave–wave interaction in the wave-breaking process (Yiğit et al. 2008)
and incorporate this insight into the new framework. Simple closures for the wave–
wave interaction in the oceanic case are outlined in Olbers and Eden (2013) and may
be considered also for atmospheric case. Finally, we may relax the single-column
approach and consider wave propagation and refraction in all three directions.
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Chapter 4
Observations and Models of Low-Mode
Internal Waves in the Ocean

Christian Mertens, Janna Köhler, Maren Walter, Jin-Song von Storch
and Monika Rhein

Abstract The generation of internal gravity waves in the ocean is largely driven by
tides, winds, and interaction of currents with the seafloor. Models and observations
indicate a global energy supply for the internal wave field of about 1TW by the
conversion of barotropic tides at mid-ocean ridges and abrupt topographic features.
Winds acting on the oceanic mixed layer contribute 0.3–1.5TW, and mesoscale flow
over rough topography adds about 0.2TW. Globally, 1–2TW are needed to maintain
the observed stratification of the deep ocean by diapycnalmixing that results from the
breaking of internal waves. Ocean circulation models show significant impact of the
spatial distribution of internal wave dissipation and mixing on the ocean state, e.g.,
thermal structure, stratification, andmeridional overturning circulation.Observations
indicate that the local ratio of generation and dissipation of internal waves is often
below unity, and thus, the energy available for mixing must be redistributed by
internal tides and near-inertial waves at low vertical wavenumber that can propagate
thousands of kilometers from their source regions. Eddy-permitting global ocean
circulation models are able to quantify the different sources of energy input and
can also simulate the propagation of the lowest internal wave modes. However, the
variation of the internal wave energy flux along its paths by wave–wave interaction,
topographic scattering, and refraction by mesoscale features as well as its ultimate
fate by dissipation remains to be parameterized.
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4.1 Introduction

Internal gravity waves are generated in stratified fluids by perturbations from a state
of equilibrium. These perturbations cause currents that rotate in a two-dimensional
plane that is inclined to the horizontal. The restoring forces are the buoyancy force in
the vertical and the Coriolis force in the horizontal. The angle of inclination, which is
a monotonic function of the frequency, sets the direction of phase propagation. The
upper and lower limits of the frequency range of propagating linear internal waves
are determined by the local buoyancy and inertial frequencies. Low-frequency waves
have a nearly vertical and high-frequency waves a nearly horizontal phase propaga-
tion. The group velocity and thus the direction of energy radiation is perpendicular to
the phase propagation, nearly horizontal for low-frequency waves and nearly vertical
for high-frequency waves.

The supply of energy into the oceanic internal wave field comes primarily from
two sources: Tides that flow over sloping topography and generate internal waves at
tidal frequencies, known as internal tides, and winds that act on the sea surface and
generate near-inertial waves. Other generation processes include lee wave generation
by geostrophic flow impinging on topography and spontaneous emission through loss
of balance. A cascade of dynamical processes ultimately leads to turbulent mixing
and viscous dissipation at small scales in the interior and the boundaries of the
ocean. Observations indicate that the local ratio of generation and dissipation of
internal waves is often below unity (Waterhouse et al. 2014), and thus, the energy
available for mixing must be redistributed by internal tides and near-inertial waves
at low vertical wavenumber that can propagate thousands of kilometers from their
source regions.

Low-mode internal waves, with horizontal wavelengths of typically 100–200km,
are crucial for the oceanic energy pathways and ocean interiormixing, since they hold
a large amount of the kinetic energy of the entire internal wave field (e.g., Wunsch
1975). It is still a challenge to quantify the fluxes associated with these waves on a
global scale and to properly include them in ocean general circulationmodels. This is
particularly true regarding the observation and simulation of the fate of these waves
away from their generation sites.

Observations andnumericalmodels indicate a global input of about 1TW(1012W)
from tides available for deep ocean mixing (Egbert and Ray 2000; Müller 2013;
Nycander 2005; Simmons et al. 2004). Power estimates from wind forcing vary
between 0.3 and 1.5TW transferred into near-inertial motions in the surface mixed
layer (Waterhouse et al., 2014). From observations at Ocean Station Papa in the
northwest Pacific, it was found that 12–33% of the energy input were transmitted into
the deep ocean (Alford et al. 2012). The total energy flux from lee wave generation is
about 0.2TW (Nikurashin and Ferrari 2011). The fractions of the individual sources
of power input vary in the literature, but in total they sumup to account for the roughly
1–2TWnecessary tomaintain the deep ocean stratification (Munk andWunsch 1998;
Wunsch and Ferrari 2004).
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To accurately simulate the ocean circulation, not only the total power input, but
also the geographic distribution of deep mixing needs to be known. A number of
model studies show that besides the strength of the climate-relevant meridional
overturning circulation (MOC), the deep ocean stratification and the distribution
of passive tracers respond to changing patterns of imposed deep mixing (Eden et al.
2014; Exarchou et al. 2012, 2014; Melet et al. 2013, 2014). The importance of
the representation of lee wave-driven mixing in climate models was emphasized by
Nikurashin and Ferrari (2013). Up to now, it is unclear where and when exactly the
waves break and lead to mixing.

This paper reviews observational and modeling studies on internal wave ener-
getics, relevant for the energy transfer in the ocean. Numerical model studies
(Section4.2), sorted according to wave generation mechanisms, are used to derive
quantitative estimates of wave sources in the global ocean. Dissipation mechanisms,
which are less well observed and extremely difficult to be properly treated in numer-
ical models, are discussed in Section4.3. The observational studies (Section4.4),
sorted according to measurement methods, are devoted mainly to detecting coherent
signals of low-mode internal tides and to quantifying wave energy fluxes and turbu-
lent dissipation, especially in terms of diapycnal mixing. A summary and the outlook
are given in the final section.

4.2 Numerical Modeling

The generation of internal waves, both with respect to the globally integrated genera-
tion rates and to the spatial distribution of the generation, has been studied extensively
using numerical models.

4.2.1 Wind

Temporally varying winds at the sea surface generate near-inertial waves. The early
estimates ofwind power input into near-inertialmotionswere obtained by calculating
the wind-induced inertial motions ui = (ui , vi ) from a slab oceanmodel and estimat-
ing the wind-induced inertial energy flux across the sea surface using τ · ui , where
τ = (τx , τy) is the wind stress obtained from a reanalysis. To obtain ui = (ui , vi ),
the approach of D’Asaro et al. (1995) and Pollard and Millard (1970) is used, in
which the momentum equations are given by

dZ

dt
+ ωZ = X

H
. (4.1)

H is the mixed layer depth, ρ density, Z = (u + iv), X = (τx + iτy)/ρ, and ω =
(r + i f ), with f being the local inertial frequency and r an empirical damping
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constant. The solution of Eq. (4.1) can be written as the sum of a time-varying Ekman
transport ZE = X/ωH and an inertially rotating current Zi = ui + ivi = Z − ZE ,
which is the solution to

dZI

dt
+ ωZI = − 1

ω

d(X/H)

dt
. (4.2)

The solution of Equation (4.2), which can be obtained spectrally, is then used to
estimate the wind power input to the near-inertial motions. Integrated globally, this
power input is estimated to be about 0.7TW in Watanabe and Hibiya (2002) and
0.47TW in Alford (2003a). The strongest wind power input is found in the western
portion of each ocean basin at mid-latitudes, especially in the winter season, confirm-
ing the role of mid-latitude storms for providing the bulk of the near-inertial energy
flux.

Plueddemann and Farrar (2006) pointed out that slab oceanmodels do not account
for the energy lost due to vertical shear instability and may therefore systematically
overestimate thewindwork.The later estimates are hence basedon three-dimensional
OGCMs in which the effect of shear instability is parametrized. Furuichi et al. (2008)
used the Princeton OceanModel (POM,Mellor 2003) on a grid with horizontal spac-
ing of 0.15◦ in longitude and 0.125◦ in latitude, but without simulating mesoscale
flows. The global ocean was divided into three subregions, and numerical simula-
tions were carried out separately for each subregion. By applying a high-pass filter
to retain fluctuations at frequencies larger than 0.8 f , they estimated the annual
mean global wind energy input to be 0.4TW. Simmons and Alford (2012) used the
Generalized Ocean Layer Dynamics (GOLD) model, an evolution of the Hallberg
Isopycnal Coordinate Model (HIM, Hallberg 1997), with a nominal horizontal res-
olution of 1/8◦. The model simulates mesoscale eddies along with the large-scale
circulation. The wind power input to near-inertial motions is again estimated from
the band-passed wind stress and surface velocities. Averaged over different seasons,
the global input is about 0.36TW. The small difference between this estimate and the
results obtained by Furuichi et al. (2008) was taken as an indication that the effect
of mesoscale eddies is small.

Jiang et al. (2005) showed that the near-inertial wind power input is sensitive to the
wind products used. Rimac et al. (2013) investigated the detailed role of spatial and
temporal resolution of the wind stress forcing for the near-inertial wind power input
using a series of numerical experiments. Considerably higher values are obtained
when forcing the model with high-frequency (higher than 6 hourly) wind stress
data. Generally, the near-inertial wind-induced power is transferred downward and
equatorward (e.g., Alford and Zhao 2007). However, a large fraction of the wind
power input dissipates within the mixed layer. The recent estimates of the fraction
that enters the deep ocean, about 10% (Rimac et al. 2016), are much lower than the
early one of about 37% (D’Asaro et al. 1995).
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4.2.2 Tides

Barotropic tides generate internal waves at tidal frequencies over rough topography.
The higher mode internal tides have short wavelengths and break near the generation
sites and dissipate locally (e.g., Klymak et al. 2008). This results in enhanced mixing
near the generation sites. This effect of tides can be parametrized in an OGCM
following the scheme by St. Laurent et al. (2002). The low modes of internal tides
have long wavelengths of a few tens to about 100–200km (group velocities are in
the order of cm/s). They carry most of the energy converted from the tides and can
radiate thousands of kilometers away from their sources. Their effect is normally
parametrized in an OGCM in terms of a uniform mixing coefficient.

Global studies on the tidal generation of internal waves have followed different
approaches. Sjöberg and Stigebrandt (1992) calculated the tidal generation in terms
of barotropic to baroclinic energy transfer due to baroclinic wave drag. To fulfill the
condition of vanishing normal velocity at non-horizontal topography, the approach
assumes that baroclinic waves have to be generated so that the sum of the baroclinic
and barotropicmodes satisfies the kinematic boundary condition.Using this approach
and a state-of-the-art numerical tidal model, Gustafsson (2001) estimated the total
loss of barotropic tidal energy in the deep ocean (between 70◦ Sand70◦Nand at depth
greater than 1000 m) to be about 0.7TW from the M2 tide. The approach is purely
local, although wave generation is a non-local process. The approach following Bell
(1975a, b) and Llewellyn Smith and Young (2002), on the other hand, is non-local. It
is based on linear wave theory. A direct consequence of linear wave theory is that the
solutions are linear transformations of the bottom topography, so that in phase space
they are proportional to the Fourier transform of the topography. The total energy
flux from tides to internal waves at a location is a convolution integral around that
location. Nycander (2005) studied the tidal generation of internal waves following
this approach.Using a bottom topography having a nominal resolution of twominutes
and the tidal velocity field from the TPXO.6 model (Egbert and Erofeeva 2002), he
estimated the tidal generation over the area below 500m to be about 1.2TW.

These early studies on tidal generation rely on barotropic tidal models and linear
wave theory, as the OGCMs were unable to resolve internal tides. With increasing
computer power, it becomes possible to resolve low-mode internal tides using an
OGCM. Two groups have achieved to perform concurrent simulations of the eddy-
ing circulation and internal tides. One is the HYCOM group, based on the HYbrid
Coordinate Ocean Model with a hybrid isopycnal/terrain-following vertical coor-
dinate and a horizontal resolution of about 1/12.5◦ (Arbic et al. 2010, 2012). The
other is the STORMTIDE group, based on the 0.1◦ Max-Planck Institute Ocean
Model (MPIOM) developed with the German consortium project STORM (Müller
et al. 2012). In both the HYCOM and STORMTIDE models, barotropic tides are
reasonably well simulated. The simulated internal tides’ signatures in the sea sur-
face height compare also well with those obtained from the altimeter data. Li et al.
(2015) show further that away from strong currents such as theAntarctic Circumpolar
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Fig. 4.1 Barotropic to baroclinic tidal energy conversion in Wm−2 (color scale is logarithmic) for
the semidiurnal M2 tide from the high-resolution ocean circulation model STORMTIDE (Müller
2013). Arrows denote energy flux (taken from Alford 2003b) for low-mode internal tides from
historical mooring records

Currents, the Gulf Stream, and the Kurioshio, the baroclinic velocities at M2 fre-
quency simulated by STORMTIDE represent indeed the M2 internal tides.

In OGCMs in which internal tides are resolved, the tidal generation of internal
waves can be derived from the barotropic to baroclinic tidal energy conversion (Kang
and Fringer 2012). This approach is based on the energy equations for barotropic and
baroclinic motions. The barotropic to baroclinic conversion rate, which couples the
two energy equations, is determined by the product ρ

′
W with ρ

′
being the perturba-

tion density due to wave motions and W the barotropic vertical velocity. Following
this approach, Müller (2013) estimated the energy conversion from tides (including
M2, S2, K1, and O1) to internal waves from the STORMTIDE simulation and found
the tidal generation to be 1.2TW (0.8TW) over the ocean with depths greater than
1000 m (2000 m). The geographical distribution of this generation of internal waves
from the M2 tide is shown in Figure 4.1.

4.3 Dissipation

Low-mode internalwave energy can be dissipated in variousways.Onemechanism to
cause energy loss is non-linear interaction with the ambient internal wave field (e.g.,
parametric subharmonic instability, PSI) (McComas 1977;McComas andBretherton
1977; Polzin and Lvov 2011). Candidates for enhanced dissipation are mid-basin
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topographic features (e.g., Johnston et al. 2003), or continental slopes and shelves,
where low-mode waves may reflect and/or scatter into higher mode waves that are
more likely to break (Kelly et al. 2012, 2013). In general, wave energy flows toward
higher vertical wave numbers and likely leads towave breaking and dissipation (Lvov
et al. 2010; McComas 1977; Olbers 1976). PSI is potentially important where the
subharmonic of the M2 tidal frequency is equal or smaller than the local inertial
frequency (Nikurashin and Ferrari 2011), i.e., in the range between approximately
29◦N and 29◦ S for the semidiurnal tides. Observational evidence was found in
hydrographic and current measurements (Hibiya and Nagasawa 2004; Kunze et al.
2006), as well as in satellite altimetry (Tian et al. 2006). However, observations
dedicated to PSI north of Hawaii found only slightly elevated mixing (MacKinnon
et al. 2013) and no change in the amplitude of the mode 1 internal tide (Dushaw
et al. 2011). Other processes are refraction of low-mode waves through, for instance,
eddies and other mesoscale features.

In addition to the spatial inhomogeneity of dissipation, the wave field itself is
variable. The forcing and the generation mechanisms for internal waves vary in
time and space. Thus, it is plausible that they produce a regionally and temporally
heterogeneous wave field (Polzin and Lvov 2011). There are only a few ocean obser-
vations of the temporal variability of mixing as a sink of energy—in a region with
a tidal spring–neap cycle and topographically trapped waves (Shag Rocks Passage,
Damerell et al. 2012), in the presence of eddies or variable background flow (North
Atlantic Current, Walter and Mertens 2013), or of an annual cycle (Whalen et al.
2012)—but these observations show diapycnal diffusivities that vary by up to two
orders of magnitude.

4.4 Observations

In situ observations of propagating low-mode internal waves are only sparsely avail-
able because they require time seriesmeasurements froma research vessel ormooring
(Figure4.2). While a mooring stays in the water for extended periods of up to several
months, measurements from a ship are only carried out over few tidal cycles. Satel-
lite altimetry measurements can be analyzed for barotropic and low-mode baroclinic
tides but lack information about higher modes and incoherent signals. One exper-
iment combined with models to estimate wave generation, fluxes, and dissipation
was carried out in the South China Sea (Alford et al. 2015). An agreement within a
factor of two between modeled and observed energy fluxes was found that allowed
to establish an energy budget for the region that is supported by observations.

4.4.1 Satellite Altimetry

The long-term satellite altimetry measurements available today permit the extraction
of the coherent part of the low-mode internal tide signals despite the repeat times of
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Fig. 4.2 Processes and observational techniques associated with the generation, propagation, and
dissipation of near-inertial waves and internal tides. Internal tides are induced by barotropic tides
over topographic features (depicted by the bathymetry of a seamount southeast of the Azores).Wind
generates inertial oscillations in the surface mixed layer that result in the generation of near-inertial
waves below. Both high and low modes are excited by wind and tides. Low-mode waves propagate
long distances, while higher modes have stronger shear that results in local dissipation and mixing.
The pattern of vertical displacement of an internal M2 tide as inferred from satellite altimetry is
shown at the bottom of the figure (data provided by B. Dushaw, pers. comm.). Measurements of
internal wave energy fluxes are carried out by moored instruments or by repeatedly lowering the
instruments from a ship over the duration of one or two tidal cycles

several days as the tidal signals alias to longer periods (approximately 62 days for
M2 from TOPEX/Poseidon).

Different methods are currently successfully used to derive sea surface displace-
ments induced by internal tides (≈2 cm). Using TOPEX/Poseidon data, a spatially
continuous frequency–wavenumber analysis was carried out by Dushaw et al. (2011)
and a good agreement between the sea surface height expression of the mode 1
internal tide deduced from satellite altimetry and from acoustic tomography mea-
surements, e.g., from the Hawaiian Ocean mixing experiment (HOME, Pinkel and
Rudnick2006) is found.This studywas later extended toglobal coverage (Figure 4.3).
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Fig. 4.3 Sea surface height amplitude (cm) of internal M2 tide from AVISO satellite altimetry
(Dushaw et al. 2011; Dushaw 2015). Data provided by B. Dushaw

Using local plane wave fits to TOPEX/Poseidon data, Zhao and Alford (2009)
showed that the directionof their satellite altimetry derived energyfluxes in the central
North Pacific is in general agreement with energy fluxes derived from mooring time
series. Due to the low spatial resolution of about 250 km (Zhao and Alford 2009)
of the satellite data, the flux magnitude was lower compared to energy fluxes from
mooring time series or the PrincetonOceanModel (POM). Ray and Zaron (2016) and
Zhao et al. (2011) use data frommultiple satellites in an empirical mapping approach
and a local plane wave fit method in 120 km × 120 km subregions, respectively. The
use ofmulti-satellite altimetry improves the spatial resolution of internalwave energy
fluxes calculated from the local planewavemethod and their agreementwith thePOM
as shown in a regional study around the Hawaiian Ridge (Zhao et al. 2011). Recently,
this method was extended to global coverage (Zhao et al. 2016) and compared to
historical mooring data and model results.

The study from Zhao and Alford (2009) revealed internal tidal beams as narrow
as 200km and stretching more than 3500km across the North Pacific Ocean. Off
the Hawaiian Ridge, Zhao et al. (2010) combined altimeter data with six profiling
moorings and showed that the coherentmode1 internal tide dominated the energyflux
over the whole distance (1400 km) of the array. However, at the northern end of the
array phase differences were found and attributed to refraction bymesoscale flows. A
decrease ofmode1 internal tide amplitudeby less than20%over the2000kmbetween
theHawaiianRidge at 20◦ Nand 40◦Nwas found byDushaw et al. (2011). In general,
the satellite observed internal tides compare well with mooring measurements and
numerical models. The studies so far indicate that low-mode internal tides propagate
hundreds to thousands of kilometers before they dissipate.
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4.4.2 Shipboard Observations

Repeated top-to-bottom CTD and lowered ADCP profiles, taken for periods of 24–
36h to capture semidiurnal to diurnal and inertial signals, can be used to measure
low-mode internal wave energy fluxes. The data are decomposed into mean, diurnal,
and semidiurnal components by harmonic analysis of velocity and displacement at
each depth, and the energy flux is then computed (Nash et al. 2005). The separation
of energy flux constituents from short time series can be difficult. However, in their
analysis of shipboard observations in Luzon Strait Alford et al. (2011) found that
the total energy flux measured nearly equaled the sum of diurnal and semidiurnal
components.

Turbulent dissipation can also be determined from shipboard observations and
related to the observed loss in internal wave energy. Directmeasurements of turbulent
dissipation or diapycnal mixing with microstructure instrumentation are difficult
and expensive, and thus sparse. Therefore, finescale parameterizations are used to
estimate the diapycnal diffusivity from routinely observed properties (Gregg et al.
2003; Kunze et al. 2006): the vertical shear of horizontal flow and strain of the
density field. These empirical methods rely on the observation that the variance of
these properties on the finescale (order of tens to hundreds of meters), the so-called
finestructure variance, is related to energy dissipation and mixing (Gregg 1989). The
underlying assumption is that in steady state the internal wave spectral energy on the
finescale is subject to a continuous spectral transport toward higher wavenumbers.

Using finescale parametrizationwith large data sets, e.g., NorthAtlantic shipboard
observations (Figure4.4, Walter et al. 2005), the WOCE hydrographic data (Kunze
et al. 2006), or ARGO floats (Whalen et al. 2012), have led to a substantial increase
in the database of diapycnal mixing estimates. Regional and global comparisons
between these results and microstructure measurements showed that the diapycnal
diffusivities based on the finescale parameterization are on average accurate within
a factor of 2–3 (Polzin et al. 2014; Waterhouse et al. 2014), but can locally deviate
from microstructure measurements by a factor of up to 10 (e.g., Waterman et al.
2013).

An alternative method of using hydrographic (temperature/density) data to esti-
mate energy dissipation and diapycnal diffusivities is the overturn or Thorpe scale
method (Thorpe 1977). Here, instabilities detected in the density profiles are used to
determine characteristic length scales for individual turbulent patches, which then are
used to calculate the dissipation rate ε. However, in regions of weak stratification, the
detections of instabilities are impaired by the poor signal-to-noise ratio, and there-
fore, the uncertainties associated with diffusivity estimates derived with the overturn
method increase (Frants et al. 2013). For mixing regimes that are dominantly driven
by convection, the overturn method may overestimate mixing (Mater et al. 2015).
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Fig. 4.4 Diapycnal diffusivity Kρ (m2 s−1) estimated from repeated finescale measurements of
velocity shear and density strain along a section across the North Atlantic at about 47◦ N. The
calculation was carried out as described in Walter et al. (2005)

4.4.3 Moorings

Altimetric estimates of the internal tide cannot detect the portion of the signal that
has lost coherence with astronomic forcing, and near-inertial waves have no coherent
component at all. Therefore, time series measurements that have a higher temporal
resolution are required to study the variability of phase, energy, and fluxes of this
part of the wave field.

Using 80 globally distributed moored data records mainly from the 1980s and
1990s, Alford (2003b) showed that fluxes of the low-mode internal tides are gener-
ally away from regions of rough topography (Figure 4.1). Historical mooring data are
archived by the Oregon State University Buoy Group. The archive contains approxi-
mately 2000 current records from theWorld Ocean Circulation Experiment (WOCE)
and more than 7000 non-WOCE records. Using their criterion of at least four cur-
rent meters in a specific depth range, Alford (2003b) found only 80 moorings with a
sampling interval of 3h or less and a record length of at least 180days. Theybandpass-
filtered the historical velocity and temperature data to extract the near-inertial and
semidiurnal components and obtained full-depth profiles of modal velocity and dis-
placement for the first two modes by performing a least squares inverse for each time
step. The analysis showed that the fluxes in both frequency bands are of the order
of 1kWm−1 and directed away from their respective source regions (Figure4.1).
The tidal fluxes are uniform throughout the year, while the near-inertial fluxes are
generally stronger in winter.
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4.5 Summary and Outlook

Because of the cascades of dynamical processes involved before the low-mode
internal waves break and lead to mixing, and the different—and partly unknown—
geographical distribution of generation and dissipation, it is evident that the param-
eterization of mixing in ocean circulation and climate models cannot simply be a
constant vertical diffusion coefficient as shown by Olbers and Eden (2013). As men-
tioned before, the MOC, the deep ocean stratification, and the distribution of passive
tracers (for instance anthropogenic carbon) respond to changing patterns of imposed
deep mixing. Olbers and Eden (2013) and Eden and Olbers (2014) propose an ener-
getically consistent mixing module dubbed Internal Wave Dissipation, Energy and
Mixing (IDEMIX) that describes the generation, interaction, propagation, and dis-
sipation of internal gravity wave energy, dissipation rates, and diapycnal mixing
(Figure4.5).

0.2 m4 s-3

Fig. 4.5 Energy flux of baroclinic M2 tide (m4 s−3) and vertically integrated energy content
(log E/m2 s−2) in the North Atlantic from IDEMIX (C. Eden, pers. comm.). The arrow length
is limited to 0.2 m4 s−3, and fluxes with amplitudes less then 0.02 m4 s−3 are not shown. The fluxes
appear isotropic due to the boundary conditions; directionality is not yet implemented
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Observations to study the propagation and dissipation of low-mode internal waves
are quite sparse. The main processes are known: non-linear wave–wave interac-
tion (PSI), interaction with the mesoscale shear/vorticity, scattering over deep ocean
topography or breaking at continental slopes, but how much of the energy is going
into each of the processes is not clear (MacKinnon et al. 2013).

The quantification of generation and propagation of internal waves in the global
ocean, the pathways of radiated low-mode internal waves including processes oper-
ating along the pathways, and the identification of regions of sources and sinks are
challenging tasks. Furthermore, the quantification of the contribution to local dis-
sipation and identification of the involved processes remains difficult. So far, these
tasks have been often tackled by either using observations or numerical models. In
particular, the observations have not been used to evaluate the estimates based on
numerical model simulations. Moreover, it is a common practice to study different
mechanisms within different frameworks. For instance, the wind generation has been
studied exclusively in isolation from the tidal generation of internal waves. The goal
of this project is to unify or to connect different frameworks and to combine or to
evaluate model simulations with observations. The former will concentrate on the
development of an OGCM that operates not only with high-frequency winds but also
with the full tidal potential so that the wave generation through both winds and tides
can be studied in a dynamically consistent way. The latter will concentrate on wave
energy fluxes with the goal of producing the best estimate of the global distributions
of sources and sinks needed for validation and improvement of parameterizations
and ultimately to the development of energetically consistent climate models.
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Chapter 5
Toward Consistent Subgrid Momentum
Closures in Ocean Models

Sergey Danilov, Stephan Juricke, Anton Kutsenko and Marcel Oliver

Abstract State-of-the-art global ocean circulation models used in climate studies
are only passing the edge of becoming “eddy-permitting” or barely eddy-resolving.
Such models commonly suffer from overdissipation of mesoscale eddies by rou-
tinely used subgrid dissipation (viscosity) operators and a resulting depletion of
energy in the large-scale structures which are crucial for draining available potential
energy into kinetic energy. More broadly, subgrid momentum closures may lead to
both overdissipation or pileup of eddy kinetic energy and enstrophy of the smallest
resolvable scales. The aim of this chapter is twofold. First, it reviews the theory of
two-dimensional and geostrophic turbulence. To a large part, this is textbook mate-
rial with particular emphasis, however, on issues relevant to modeling the global
ocean in the eddy-permitting regime. Second, we discuss several recent parameter-
izations of subgrid dynamics, including simplified backscatter schemes by Jansen
andHeld, stochastic superparameterizations byGrooms andMajda, and an empirical
backscatter scheme by Mana and Zanna.

5.1 Introduction

Climate studies require model simulations over periods from centuries to millenia,
which are only affordable if ocean models are kept relatively coarse. Many of them
stay at a resolution of about one degree and need to parameterize the effect of unre-
solved mesoscale eddies and smaller-scale motions. The issue of mesoscale eddy
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parameterization attracts continuing interest as exemplified by recent studies on eddy
potential vorticity fluxes (Marshall and Adcroft 2010; Eden 2010; Ringler and Gent
2011; Marshall et al. 2012). With increasing computational power, eddy-permitting
(barely resolving the first baroclinic Rossby radius) or eddy-resolving models are
becoming feasible for climate studies, too, so that mesoscale dynamics will gradually
be resolved. Nonetheless, as the first baroclinic Rossby radius varies widely (with
values below 10km in high latitudes), even eddy-resolving models will not necessar-
ily represent eddy dynamics with the same skill everywhere unless their resolution is
on the scale of a few kilometers. Combining resolved mesoscale dynamics in some
parts of the ocean with parameterized dynamics in the other part is an interesting
possibility, but cautionary results by Hallberg (2013) indicate that the transition from
parameterized eddies to resolved eddies can introduce problems of its own.

Even though state-of-the-art eddy-permitting or eddy-resolving models simulate
the mesoscale dynamics with a certain skill, they still use some form of explicit
and/or implicit viscosity, thought to represent the effect of unresolved small-scale
subgrid dynamics. The motivation is based on the picture of quasigeostrophic tur-
bulence (Charney 1971), which indicates that the direct cascade of enstrophy has to
be removed at the grid scale to prevent the enstrophy from piling up, causing code
instability. Fox-Kemper andMenemenlis (2008) discuss common approaches used in
oceanographic practice, in particular the Smagorinsky or Leith parameterizations in
either harmonic or biharmonic implementation. While these ideas appear plausible,
there are no solid theoretical arguments, especially outside the limits of applicability
of quasigeostrophic theory which is questionable at grid scale.

The detailed form of the subgrid operators (e.g., Laplacian vs. biharmonic vis-
cosity), however, is known to impact the large-scale dynamics such as the path and
separation of the Gulf Stream (Hecht et al. 2008b). Moreover, removal of enstrophy
at the grid scale is accompanied by energy dissipation. For example, Danilov (2005)
has shown that a direct enstrophy cascade in two-dimensional turbulence is always
associated with a noticeable direct energy cascade, resulting in dissipation at finite
resolution. Jansen and Held (2014) point out that the popular biharmonic viscosity
operator suppresses resolved eddy motion in models where the separation between
the mesoscale and the grid scale is insufficient. This reduces the ability of the flow
to drain eddy kinetic energy from the available potential energy (APE), thereby dis-
torting the entire energy cycle. The effect is most pronounced for eddy-permitting
models where the grid scale and the scale of APE release are not well separated. It is
also important for eddy-resolving models as the first baroclinic Rossby radius may
locally drop below grid scale. The remedies are less immediate and open for inves-
tigation; searching for them is the main aim of ongoing studies. There is growing
interest in this topic in the community as eddy-permitting models are now beginning
to be used in climate research, so that the question of how tomake themmore realistic
becomes pressing; see, e.g., Jansen et al. (2015), Berloff (2015), Cooper and Zanna
(2015), and Cooper (2017).

Analyzing the effects of spectral pileup and backscatter of eddy energy in response
to common subgrid parameterizations is rather straightforward for simple two-
dimensional flows with a prescribed kinetic energy production rate (Graham and
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Ringler 2013), but the question remains open in the context of more realistic dynam-
ics which includes the effects of baroclinicity and where the geometry of boundaries
and topography makes spectral analysis only locally applicable. Moreover, in real
flows the balance between energy production and dissipation ceases to be local,which
further complicates the situation. It is not clear how the subgrid operators affect the
energy exchange between balanced (quasigeostrophic) and non-balanced motions as
the resolution is increasing. More broadly, the mathematical side of subgrid param-
eterization as used in oceanographic tasks needs a more firm basis which would
dictate a scale- and frame-invariant structure for admissible parameterizations.

It is important to note that the dynamics on scales close to the grid scale is
affected not only by explicit subgrid parameterizations, but also by details of the
discretization of momentum advection (see Figure 5.1). For example, high-order
upwind transport algorithms based on the flux form of the advection operator have
implicit numerical dissipation of the same order of magnitude as typical explicit
dissipation (see, e.g., Mohammadi-Aragh et al. 2015). Further, there is evidence
for a numerical (Hollingsworth) instability associated with the vector-invariant form
of momentum advection which creates noise in the vertical velocity field and thus
influences the APE to kinetic energy conversion; see the discussion in Gassmann
(2013) and Danilov andWang (2015). Understanding the effects induced by these or

Fig. 5.1 Effect of momentum advection discretization on the relative vorticity field in a baroclini-
cally unstable channel flow (top: vector-invariant form, bottom: flux form; near-surface snapshots
are shown).Mesh resolution varies (1/36 degree in the central part and coarser elsewhere). Observed
scales and amplitude of small eddies in the central part differ substantially between the two schemes
due to the difference in implicit dissipation anddiscretization residual. Thevariance of vertical veloc-
ity (not shown) is substantially lower for the flux form, modifying the APE to eddy KE conversion
rate. The figure is based on simulations reported in Danilov and Wang (2015)
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other numerical details on the energy balance and accounting for their interplay with
subgrid parameterizations is a necessary element on the road to rigorous analysis.

The need to explore the interplay between resolution, parameterized subgrid, and
spurious numerical dissipation is particularly important for future earth systemmod-
els employing multi-resolution technology, for example models based on FESOM
(Wang et al. 2014) or ICON (Korn 2017). Recent results point to the retardation of
eddy saturation when the upstream resolution is coarse (Danilov and Wang 2015).
In multi-resolution models on unstructured meshes, subgrid momentum closures are
also needed to stabilize against spurious numerical modes appearing on staggered
triangular meshes (Danilov 2013), which adds numerical complexity.

For all the reasons mentioned, the question of how to return the overdissipated
energy to the resolved scales is of central importance when working at eddy-
permitting resolutions. This is known as the energy backscatter problem. On coarser
meshes, one needs to additionally parameterize the contribution from mesoscale
eddies. In both cases, there is growing interest in stochastic parameterizations.
Stochastic parameterizations have been successfully used to maintain sufficient vari-
ance in ensemble forecasts (Palmer et al. 2009). However, energy and momentum
consistency especially over long simulation timescales have not received as much
attention (cf. the discussion in Franzke et al. 2015).

For the momentum closure problem in the ocean, stochastic parameterizations
hold promise far beyond the idea of pure dissipation pursued by traditional deter-
ministic subgrid parameterizations and also beyond downgradient parameterizations
for unresolved mesoscale eddies. In the ocean context, systematic work on stochastic
parameterizations is rather recent: Duan andNadiga (2007),Mana and Zanna (2014),
Jansen and Held (2014), Grooms et al. (2015b), Cooper and Zanna (2015), Cooper
(2017), and Berloff (2015) all implement backscatter as stochastic forcing acting on
the resolved flow, showing the potential of the approach, but also raising questions
about the structure of this forcing and the choice of parameters. Stochastic backscat-
ter can be implemented in a purely statistical way; more sophisticated approaches
seek to include dynamical information, for example by shaping the backscatter forc-
ing according to the nonlinear self-interaction derived from elementary solutions to
the tangent linear equation (Berloff 2015, 2016).

Further open questions pertain to finding a more general mathematical framework
and generalizations away from a quasigeostrophic setting toward the full primitive
equations; work in this direction is at the very beginning. Related work on stochas-
tic LES closures for the Navier–Stokes equations was done by San (2014) for the
two-dimensional problem in vorticity form and by Xun and Wang (2014) for chan-
nel flow in three dimensions. Jansen and Held (2014) show that backscatter for the
two-layer quasigeostrophic equations can be parameterized both stochastically and
deterministically, with very similar results. Their approach is generalized to a sim-
plified primitive equation isopycnal model in the presence of topography in Jansen
et al. (2015). This is a very valuable step, providing one promising starting point and
baseline benchmark.

Concerning subgrid dynamics, in most of the approaches cited, the model is either
entirely local or is based on global energy constraints and thus couples the energy
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budget over the entire domain. There are, however, early attempts at “second-order
closures” by Daly and Harlow (1970) and Deardorff (1973), where the Reynolds
tensor is treated as a prognostic variable and closure conditions have to be supplied
for the higher-order moments. Schumann (1975) suggested a model with a single
scalar transport equation for the subgrid energy. However, the algebraic closure
relations for the diagnostic subgrid contributions are complicated and subject to
solvability constraints; see Schmidt and Schumann (1989) and Schumann (1991).
These ideas have been revisited subsequently by Schiestel and Dejoan (2005) and
Chaouat (2012), but the problem remains open.

To summarize, the main open questions are:

• Find a suitable mathematical framework for subgrid momentum parameterization
with minimized spurious energy dissipation.

• Implement practical backscatter algorithms in primitive equation ocean circulation
models.

Any progress will have substantial impact on the energetic consistency of existing
and future climate models.

This chapter aims at an elementary introduction to the circle of questions outlined
above. Our intent is not to give ready and complete answers, but to highlight the
issues and survey some of the emerging approaches.

We begin with a brief summary of the concept of subgrid momentum closures
in Section 5.2. In Section 5.3, we review theoretical ideas on quasigeostrophic tur-
bulence, with a brief summary on ocean mesoscale and submesoscale turbulence.
Our main goal is to emphasize that the notion of “subgrid” scale, as related to ocean
modeling, depends on the resolution, which complicates the question on subgrid
closures.

In Sections 5.4 and 5.5, we review several proposed parameterizations. The first
is the approach by Jansen and Held (2014) which is based on a local subgrid energy
budget and an essentially empirical backscatter term which may be either deter-
ministic or stochastic. The second, more sophisticated, but also more expensive and
less easily generalized approach is due to Grooms and Majda (2013, 2014) who
replace the Reynolds stress term with a stochastic process and explicitly evolve
the local subgrid statistics in a local micro-cell attached to each grid box. The last
emerging closure scheme is due to Mana and Zanna (2014); it was initially intro-
duced semi-empirically, but later justified under precise assumptions by Grooms and
Zanna (2017). The section closes with a brief review on α-models which provide
a framework for regularizing fluid equations without adding dissipation which may
possibly be interpreted as a nonlinear remapping of wavenumbers.

Section 5.6 offers concluding remarks and somevery brief pointers to the literature
for further directions beyond those covered so far.
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5.2 Subgrid Momentum Closures

To fix concepts, let us focus on the momentum equations for a homogeneous incom-
pressible or Boussinesq rotating ideal fluid,

∂tu + ∇ · (u ⊗ u) + 2Ω × u + ρ−1 ∇p = F + Du , (5.1a)

∇ · u = 0 , (5.1b)

where u is the three-dimensional velocity field, Ω the rotation vector, ρ the constant
density, and p the pressure. All force terms are subsumed into F. In particular, the
system can represent the Boussinesq equations when augmented by thermodynamic
equation(s) andwith F representing all other forces including buoyancy. The operator
D represents dissipation through physical processes or prior modeling. This equation
may be read either as a partial differential equation (PDE) or as a fine-scale numerical
approximation thereof.

In analogywith classical large eddy simulation, we introduce a coarsened velocity
field u. We assume very little about the coarsening process other than that it is linear
and commutes with time differentiation. In the classical PDE setting, u may be
obtained from u by convolution with a filter kernel. However, the more interesting
point of view is that u represents the solution of a modified numerical model at lower
resolution. Then, u satisfies the equation

∂tu + ∇ · (u ⊗ u) + 2Ω × u + ρ−1 ∇ p = R(u) + F + Du , (5.2a)

∇ · u = 0 , (5.2b)

with eddy source term

R(u) = ∇ · (u ⊗ u) − ∇ · (u ⊗ u) + Du − Du (5.3)

where ∇ and D denote the coarsened gradient or divergence operator and coarsened
dissipation operator, respectively. Thinking of coarsening as a change of numerical
resolution, we do not assume that coarsening commutes with the fine-scale operators
even though this is often true for convolution coarsening on the continuum. However,
we have made two minor simplifying assumptions: First, we have commuted the
coarsening operation into the Coriolis term, which is exactly true on the f-plane
and approximately true for a slowly varying Coriolis parameter, and second, we
are assuming that the flow is incompressible at the coarse level with p denoting the
implied coarsened pressure. (So, p is not obtained by convolution of p with the filter,
but is chosen to enforce incompressibility of the coarse velocities.)

When considering the full Boussinesq system, the transport equations for poten-
tial temperature and other thermodynamic quantities need to be coarsened simi-
larly (Aluie and Kurien 2011). For fully compressible flows, it is more natural
to coarse-grain the product ρu, thus modifying the expression for R(u) above;
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see, e.g., Aluie (2013). Additional complications arise with nonlinear equations of
state; see, e.g., Eden (2016).

The modeling task is now the following: Find a closure or subscale model R(u)

which correlates highly with the true R(u). The closure may be deterministic or
include stochastic terms to reduce bias; it may also include infinitesimal or finite
memory. If the momentum equation is coupled to thermodynamics, the same con-
siderations apply to each of the prognostic equations.

One of the most elementary concerns is the distribution and flux of energy across
scales, as the statistical behavior of the solution depends on it. In the next section,
we illustrate the issues relevant to stratified turbulence in the ocean, concentrating
mainly on the quasigeostrophic equations. They allow us to explore themain features
of large-scale rotating stratified flow and are also used inmost of the recent theoretical
studies in the field.

5.3 Quasigeostrophic Turbulence and Ocean Eddies

In this section, we review the energetics of large-scale quasigeostrophic (QG) tur-
bulence. In contrast to three-dimensional turbulence where energy cascades to small
scales, QG turbulence is distinguished by an inverse cascade of barotropic kinetic
energy to large scales and a cascade of enstrophy to small scales. Thus, it is often said
that numerical schemes are required to provide a sink for QG enstrophy at grid scale
without dissipating energy. In the following, we explain how and under which con-
ditions this picture arises, but also point out its limitations when used in the context
of ocean circulation models.

We emphasize that the classical picture of QG turbulence is strictly valid only
under the assumption that QG enstrophy is dissipated at scales much smaller than the
forcing scale and that turbulence remains geostrophic across all scales. In stratified
flow, the main source of barotropic kinetic energy is the conversion of available
potential energy via baroclinic instability. The most unstable baroclinic modes occur
close to the first internal Rossby radius of deformation Ld. As we move to even
smaller scales in a full model, the ageostrophic or non-balanced component of the
flow increases and the quasigeostrophic approximation becomes inaccurate. Thus,
there is only a finite small range of scales between Ld and the scalewhere ageostrophy
starts to be important; at smaller scales, the energy cascade is direct. Moreover, since
this direct cascade acts as an energy sink, there must also be some downscale flux of
energy across the geostrophic range to feed it.

All of the quasigeostrophicmodels are able to capture only the part of the dynamics
that stays close to geostrophic balance, often referred to as mesoscale eddies. In
the real ocean, the scales at which ageostrophic effects are becoming important
are rather close to Ld (see, e.g., Callies and Ferrari 2013) so that the presence of
ageostrophic motions, often accompanying smaller-size submesoscale eddies, may
have a significant impact on the direction of the energy transfer across scales. An
additional complication arises from the fact that there is also a direct cascade of
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available potential energy which implies that the forcing of the barotropic cascade
does not only take place near themost baroclinically unstablemode, but is distributed
across a wider range of scales.

In the following, we begin with the simplest concepts in a purely two-dimensional
setting, thenmove to a two-layermodel, and finally discuss the continuously stratified
quasigeostrophic equations.

5.3.1 Two-Dimensional Turbulence

The very basic notions of rotating turbulence and ocean mesoscale eddies can be
introduced in the framework of two-dimensional quasigeostrophic dynamics.

The barotropic quasigeostrophic equations are reviewed, e.g., in Franzke et al.
(2019). In the beta-plane approximation and written in terms of the relative vorticity
ζ , they read

∂tζ + [ψ, ζ ] + β ∂xψ = F + Dζ , (5.4a)

ζ = Δψ , (5.4b)

where brackets denote the Jacobian operator [ψ, ζ ] = ∇⊥ψ · ∇ζ with ∇⊥ =
(−∂y, ∂x ), ψ denotes the stream function, β is the beta-parameter, D is a dissipation
operator to be specified below, and F is the forcing. The forcing F is maintained by
baroclinic or barotropic instabilities evolving at some intermediate scales.1

To begin,we setβ = 0. Further, to simplify the discussion,wenon-dimensionalize
the horizontal length scale and consider (5.4) on the doubly periodic domain T

2 =
[0, 2π ]2, so that we can pass to the Fourier representation2 where

ζk = 1

2π

∫
T2
e−ik·x ζ(x) dx (5.5)

for k ∈ Z
2. It is useful to separate the dissipation operator D into “infrared" and

“ultraviolet" parts that effectively act on large (Di) and small (Du) scales. For sim-
plicity, we assume that these operators are diagonal in Fourier space, so that the
transformed vorticity equation (5.4a) takes the form

∂tζk + Jk = Di(k) ζk + Du(k) ζk + Fk (5.6)

1For simplicity, our definition of vorticity (5.4b) does not include a barotropic stretching term
modeling the effect of free surface elevation. In a geophysical context, this means that (5.4) is
restricted to scales smaller than the external Rossby radius of deformation Le = c/ f , where c is the
speed of surface gravity waves and f is the Coriolis parameter. This is a reasonable assumption for
the ocean where Le ≈ 2000 km with c = 200m/s and f = 0.0001 s−1, but is more questionable
for the atmosphere.
2For the purpose of this exposition, we are using the symmetric definition of the Fourier transform
so that the Parseval identity holds with constant one.
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where, writing p = | p| and likewise for the other wavenumber vectors, the Jacobian
term is described by

Jk = 1

2π

∑
k= p+q

p⊥ · q
p2

ζ p ζq . (5.7)

In the absence of dissipation and forcing, equation (5.6) conserves energy

E =
∑
k∈Z2

Ek = −1

2

∑
k∈Z2

ψ∗
k ζk (5.8)

and enstrophy

Z =
∑
k∈Z2

Zk = 1

2

∑
k∈Z2

ζ ∗
k ζk , (5.9)

with star denoting the complex conjugate.
The presence of two integrals imposes constraints on how energy and enstrophy

are transferred in spectral space. The energy balance in each mode k is obtained by
multiplying (5.6) by ψ∗

k and taking the real part, so that

∂t Ek = Tk + 2 Di(k) Ek + 2 Du(k) Ek + Pk , (5.10)

where Pk = −�[ψ∗
k Fk] is the rate of energy pumping and Tk = �[ψ∗

k Jk] is the rate
of nonlinear energy transfer into mode k.3 Using (5.7), we can write

Tk =
∑

{ p,q} : k+ p+q=0

T (k| pq) , (5.11)

where

T (k| pq) = 1

2π
p⊥ · q (q2 − p2)�[ψk ψ p ψq] (5.12)

denotes the rate of energy transfer into mode k from modes { p, q} and the sum in
(5.11) is taken over un-ordered sets { p, q}.

Summing up all the Tk, we obtain the overall rate of nonlinear energy transfer
T . Clearly, T = 0 as the rates of sending and receiving energy must balance across
all modes. Following (Fjørtoft 1953), we sort the terms in this sum according to
membership in resonant triads of modes

S = {{k, p, q} : k + p + q = 0} , (5.13)

3Expression (5.11) shows that the instantaneous rate of energy transfer into mode k can only be
nonzero provided ψk is nonzero. This, however, does not imply that a mode which is initially zero
remains zero for t > 0 as (5.6) allows a tendency for ζk . See, e.g., the discussion in Moffatt (2014).
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so that
T =

∑
{k, p,q}∈S

(T (k| pq) + T ( p|kq) + T (q|k p)) . (5.14)

Within each triad, k⊥ · q = − p⊥ · q. This directly implies4 that

T ( p|kq) = − q2 − k2

q2 − p2
T (k| pq) (5.15a)

and

T (q|k p) = − k2 − p2

q2 − p2
T (k| pq) . (5.15b)

These identities constrain the transfer of energy within the triad: If p < k < q and
mode k loses energy by interacting with modes p and q, the two other modes gain
energy; vice versa, if mode k gains energy in this triad interaction, then modes p
and q lose energy. The same holds true for enstrophy. In other words, nonlinear
interactions between three modes always transfer energy and enstrophy either from
or to the central component.

The total transfer Tk involves all triads this mode participates in and cannot be
predicted without additional arguments. Consider first the case without forcing and
dissipation, and define the energy wavenumber ke as the centroid of the spectral
energy density E(k):

ke = 1

E

∑
k

k E(k) , (5.16)

where we assume that the distribution of energy is isotropic in wavenumber space
with E(k) denoting the energy in the shell k = |k|. The second moment

I =
∑
k

(k − ke)
2 E(k) = Z − k2e E (5.17)

is expected to increase with time if energy spreads over wavenumbers. This is natural
to expect for any energy spectrum that is initially spectrally localized. Conservation
of energy and enstrophy implies that

4An independent, conceptual proof goes as follows. Consider a flow in the absence of dissipation
and forcing where the Fourier coefficients of only a single resonant triad are nonzero. Such a flow
preserves energy and enstrophy, so that ∂t (Ek + E p + Eq) = 0 and ∂t (k2 Ek + p2 E p + q2 Eq) =
0. But with only a single active triad, we can factor out �[ψk ψ p ψq ] from the expressions for the
rate of energy and enstrophy transfer. Thus, the algebraic prefactors must already cancel, implying
triadwise conservation of energy and enstrophy also for general flows; (5.15) is a direct consequence
of these conservation laws.
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dI

dt
= −E

dk2e
dt

, (5.18)

so when energy spreads over wavenumbers, ke decreases; i.e., energy moves to larger
scales. Similarly, it can be shown that the enstrophy centroid moves downscale if and
only if the second moment of enstrophy indicates a spread of the enstrophy distribu-
tion; seeVallis (2006) for details. This consideration indicates that if two-dimensional
freely evolving turbulence develops cascades, we should expect an inverse energy
cascade and a direct enstrophy cascade. It does not mean that there is no energy
transfer to small scales or enstrophy transfer to large scales, it only means that on
average energy tends to go upscale and enstrophy tends to go downscale.

In practice, turbulent flows are forced–dissipative systems.5 They can reach a
statistically steady state if dissipation is present at both spectral ends, as is envisioned
in (5.6). Although the cause of infrared dissipation is not immediately apparent, in
many cases its role can be efficiently played by bottom friction.6 We thus return to
the forced–dissipative case and consider the idealized situation when the forcing F
is spectrally localized to a small interval around a forcing wavenumber kf , infrared
dissipation is localized towavenumbers k < ki, and ultraviolet dissipation is localized
to k > ku, with ki < kf < ku.7 Assuming statistical stationarity, the mean rate of
energy injection ε is balanced by the mean rate of energy dissipation in the infrared
εi and the mean rate of energy dissipation in the ultraviolet εu, i.e.,

ε = εi + εu . (5.19)

Likewise, writing η to denote the mean rate of enstrophy injection near wavenumber
kf , we balance with the mean enstrophy dissipation rates ηi and ηu in the respective
dissipation ranges, so that

η = k2f ε = ηi + ηu . (5.20)

5The real ocean is close to this idealization, but not fully, as some eddies leave their regimeof creation
and evolve freely before being dissipated. Thus, temporal averages of forcing and dissipation may
not balance locally in space.
6Physically, bottom or surface drag is due to small-scale turbulence, yet modeled in the equations
without horizontal differential operators. Thus, the bulk of energy dissipation will happen at the
scales where energy is residing; i.e., it will be infrared.
7In practice, this assumption is well satisfied at the infrared end because we commonly get energy
spectra that are sufficiently red (with theoretical slopes of−5/3 or−3), so that most energy is resid-
ing at small wavenumbers. Thus, linear (Rayleigh) friction modeling bottom drag with Di = −λ

is concentrated where the kinetic energy is concentrated—at small wavenumbers. The same holds
true for quadratic friction proportional to u|u|. The situation is more subtle at the ultraviolet end.
Laplacian viscosity has Du(k) = −νk2; i.e., it is concentrated where the enstrophy is concentrated.
Here, we have a formal problem, for if the spectral slope is −3, Du(k) E(k) will have a maximum
in the forcing range. The slope is frequently even steeper (when coherent vortices are formed), so
Laplacian viscosity will affect the forcing range. Thus, for true ultraviolet dissipation one needs
hyperviscosity (a biharmonic operator at least, but even that is insufficient if the spectra are steeper
than −4 which sometimes occurs).
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Noting that ηi ≤ k2i εi, we estimate

η ≥ ηu = k2f ε − ηi ≥ k2f ε − k2i εi ≥ (k2f − k2i ) ε = (1 − k2i /k
2
f ) η . (5.21)

Thus, ηu → η in the limit ki/kf → 0. Similarly, noting that ηu ≥ k2u εu, we can show
that εi → ε when kf/ku → 0.

Thus, in the asymptotic limit ki � kf � ku, there is only upscale energy trans-
fer for k < kf and only downscale enstrophy transfer for k > kf . As a result, these
regimes are called (inverse) energy range and (direct) enstrophy range, respectively.
The mean energy spectral density 〈E(k)〉 should be such that a constant spectral
energy flux is carried across each range.8 Assuming that the mean energy transfer
is spectrally local, as well as spatially homogeneous and isotropic, one expects that,
in the energy range, 〈E(k)〉 depends only on the infrared energy dissipation rate
εi = ε and on k. This lead Kraichnan (1967), Leith (1968), and Batchelor (1969),
hereafter KLB (following earlier arguments by Kolmogorov for classical turbulence)
to conclude that the only dimensionally consistent scaling law is

〈E(k)〉 = CE ε
2
3 k− 5

3 . (5.22)

Likewise, in the enstrophy range, one expects that 〈E(k)〉 will depend only on the
ultraviolet enstrophy dissipation rate ηu = η and on k, leading to the scaling law

〈E(k)〉 = CZ η
2
3 k−3 . (5.23)

The picture outlined above has two important limitations. The first one relates to
the KLB assumption that only local triad interactions (triads where p, k, and q are
of the same magnitude) contribute to the mean transfer of energy. For an individual
wave number k in the energy or the enstrophy range where forcing and dissipation
are absent, we expect that the mean transfer rate 〈Tk〉 is zero, which only means that
some triads carry energy to k and some from it. How they do this, however, does
not really agree with the KLB picture—in real forced–dissipative two-dimensional
turbulence, the contribution from non-local triads is indispensable. For a mode p in
the energy range, one cannot neglect triads with two long legs k and q in the forcing
or enstrophy range. The local triads with legs being about p dominate locally, but

8To be mathematically precise, the averaging operation 〈·〉 must be seen as an ensemble average,
even though we have no a priori knowledge of the probability measure. In practice, the necessary
size of the ensemble is also an issue, so one may want to resort to averaging in time: A configuration
is “practically statistically stationary” if the difference of averages over an interval [t, t + T ] and
[t, t + 2T ] is less than some prescribed tolerance.One needs, however, to recognize that the required
time interval T depends on the quantities we work with. It is relatively small for E(k) and the mean
spectral energy flux Π(k), it is relatively large for Ek or Tk , and it is even larger for partial transfers
T (k| pq).
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contrary to expectations their average effect is not leading to the inverse energy
transfer. Similarly, for mode k in the enstrophy range, one cannot neglect triads with
one short leg p in the forcing or energy range. The first such analysis is due to
Maltrud and Vallis (1993) and was corroborated by Danilov and Gurarie (2001).
This means that vortices near the forcing scale are strong enough to stir small-scale
vortices in the enstrophy range, which is precisely the way these smaller vortices are
formed. The presence of non-locality violates the KLB argument, for it is explicitly
assumed that 〈E(k)〉 in the energy range may only depend on the mean energy flux ε

and on k (and not, e.g., on the forcing range), and similarly for the enstrophy range.
The second limitation of the classical KLB picture is that in real systems, the

energy and enstrophy ranges are finite. If forcing pumps energy at intermediate scale
kf with finite separation from ki and ku, both energy and enstrophy are transferred to
large and small scales through nonlinear interactions. If the wavenumber intervals
separating forcing from dissipation are sufficiently broad, most of the energy is
transferred upscale and most of the enstrophy downscale. However, these intervals
are never broad enough in the ocean, and the question of the amplitude of the direct
energy cascade relevant to the ocean is open.

However, even on finite ranges, the classical picture is not entirely lost. The
following argument due to Gkioulekas and Tung (2007) provides integral bounds
on energy and enstrophy fluxes which do not depend on infinite scale separation.
To ease notation, we assume a wavenumber continuum (i.e., an unbounded domain
in physical space) and, as before, consider energy densities and energy transfer rate
densities as a function of the wavenumber modulus k. The argument, in essence,
does not depend on this assumption. In a statistically stationary state, the average
〈∂t Ek〉 = 0, so that, taking the time or ensemble mean of (5.10) and averaging over
the shell |k| = k, we obtain

〈T (k)〉 = −D(k) 〈E(k)〉 − 〈P(k)〉 (5.24)

where we assume that the dissipation operators depend only on k, so that we can
write D(k) = 2Di(k) + 2Du(k). Retaining the assumption that Di is dissipating at
wavenumbers smaller than ki and Du is dissipating at wavenumbers larger than ku,
the mean spectral energy flux

Π(k) =
∫ ∞

k
〈T (κ)〉 dκ = −

∫ k

0
〈T (κ)〉 dκ (5.25)

is necessarily negative for k < ki and positive for k > ku. The equality between the
two integrals in (5.25) holds for each realization pointwise in time due to conservation
of energy in the inviscid unforced system. Analogous statements hold true for the
spectral enstrophy flux. Then,
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∫ k

0
2ξ Π(ξ) dξ =

∫ k

0
(κ2 − k2) 〈T (κ)〉 dκ

= −
∫ ∞

k
(κ2 − k2) 〈T (κ)〉 dκ

=
∫ ∞

k
(κ2 − k2) (D(κ) 〈E(κ)〉 − 〈P(κ)〉) dκ , (5.26)

where the first identity is obtained by exchanging the order of integration, the second
identity is once again based on the conservation of energy and enstrophy in the
inviscid unforced case, and the last step uses the statistical stationarity relation (5.24).
When k > ku, the rate of energy pumping P(κ) appearing in the integrand of (5.26)
is zero, while the contribution from dissipation is negative. Thus, for every k > ku
and, trivially, for every k < ki,

∫ k

0
ξ Π(ξ) dξ < 0 . (5.27)

Due to the weight in this integral, we see that the upscale flux of energy for k < ki
must be typically larger than the downscale flux of energy for k > ku. A similar
inequality shows that the enstrophy flux is predominantly downscale (Gkioulekas
and Tung 2007).

Whether or not inertial ranges can be observed depends on the spectral loci of
dissipation and forcing. In particular, when an inverse cascade is observed, it only
means that some energy dissipation is located at smaller wavenumbers than energy
forcing. As a rule, dissipation and forcing are spread over wavenumbers and may
even intersect. Moreover, when forcing extends up to the spectral cutoff kmax of a
simulation, the small direct cascade of energy may be partially hidden. Thus, in most
cases, clean inertial ranges are absent. And even when inertial ranges void of dissi-
pation and forcing exist, the observed spectra may deviate from the KLB predictions
because non-local triad interactions are always present and may be significant for
finite ranges; see the discussion and examples in Danilov (2005). We conclude that
spectral slopes alone tell very little about the nature of the underlying dynamics, and
one must turn to exploring the distribution of forcing and dissipation over scales.

Let us comment briefly on the case when β �= 0. In this situation, energy is
channeled into zonal modes and large-scale features become highly anisotropic: Jets
appear near the Rhines scale LRh = E1/4/β1/2 which is several hundred km for
ocean conditions (see Rhines 1975 and the discussion in Danilov and Gurarie 2004).
Smaller scales are largely unaffected.

As far as subgrid closures are concerned, the framework of two-dimensional
incompressible turbulence implies that the closures should be consistent with the
k−3 power law in the enstrophy range. The extent to which this is possible with
traditional closures is explored by Graham and Ringler (2013). The degree to which
this is relevant to the dynamics of the real ocean remains an open question, for
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dynamics at scales smaller than the internal Rossby radius develop an ageostrophic
component.

5.3.2 Two-Layer Geostrophic Flows

In the presence of stratification, the situation becomes more complex. The general
picture as presented in textbooks (see Salmon 1998; Vallis 2006) is as follows.
On scales larger than the first internal Rossby radius Ld, there is a direct cascade
of baroclinic (available potential plus kinetic) energy and an inverse cascade of
barotropic (kinetic) energy. The baroclinic cascade ismaintained through instabilities
that release the available potential energy froman existing pool. It feeds the barotropic
cascade at scales around Ld via the mechanism of baroclinic instability. This energy
is transferred upscale where it is dissipated. On scales smaller than Ld, the layers
interact only weakly and behave similarly to two-dimensional turbulence discussed
above. In this regime, the dynamics are governed by the direct enstrophy cascade,
implying the scaling exponent −3 for the modal or layer kinetic energy spectra. We
note that this implies the presence of a direct energy cascade at these scales.

In this section, we discuss these concepts in the simplest possible setting, the
two-layer quasigeostrophic model. It is essential that the two-layer model allows for
a coupling between the eddy potential energy dynamics and the eddy kinetic energy.
In this sense, it represents a minimum model for the real dynamics in ocean and
atmosphere.

The two-layer QG model introduces important corrections to the single-layer
situation explained inSection 5.3.1 above. First, it shows that the concept of spectrally
localized forcing does not work, for the energy is supplied to the system over a broad
range of scales, with the maximum spectral density of pumping shifted toward the
scale of the energy spectrum maximum. Second, the notion of cascade has to be
adjusted, for predictions are made for the baroclinic and barotropic energies, not for
the layers.

For simplicity, we assume the layer depths are equal. The two-layer system can
then be written as

∂t qi + [ψi , qi ] = Fi + δ2i Diψi + Duψi + (−1)i+1 κ (ψ1 − ψ2) , (5.28a)

qi = f0 + βy + Δψi + (−1)i k2d (ψ1 − ψ2)/2 , (5.28b)

where i ∈ {1, 2},
kd = 1

Ld
=

√
8 f0

N0H
(5.29)

is the inverse of the baroclinic Rossby radius, f0 is the Coriolis frequency, N0 is the
typical Brunt–Väisälä frequency, and H is the total fluid depth; see, e.g., Franzke
et al. (2019) for details.
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We remark that when diagnosed using the leading-order per-layer geostrophic
balance relation, the difference in layer stream functions, ψ1 − ψ2, is proportional
to the displacement of the interface between the layers. Thus, the last term in (5.28b)
can be interpreted as the contribution to potential vorticity perturbations from the
layer interface and is referred to as the stretching term.

We think of infrared dissipation Di acting as bottom drag only on the lower
layer. Then, Di = −λΔ with λ the bottom drag coefficient. Ultraviolet dissipation is
typicallymodeled by hyperviscosity of some order n ≥ 2, so that Du = ν(−Δ)n with
hyperviscosity coefficient ν. The last term in (5.28a)models thermal relaxation of the
layer interface, with 2κ/k2d the inverse timescale. It restores interface displacement
and thus enters the layer equations with the opposite sign.

Although the ocean is mainly driven by wind stress applied to the upper layer, a
theoretically simpler situation occurs when the interface between layers is relaxed
toward a position with a uniform slope, i.e., taking Fi = −(−1)i κU y, with y the
meridional coordinate. Equation (5.28a) in this case has an equilibrium solution
ψ1 − ψ2 = −Uy, which in the presence of bottom drag implies ψ1 = −Uy and
ψ2 = 0.9 The velocity U defines the vertical shear and interfacial slope in the two-
layerQGmodel. This equilibriumsolution corresponds to a pool of available potential
energy (APE) and can be baroclinically unstable.

Splitting the stream functions into the equilibrium stream functions and pertur-
bation or “eddy” stream functions ψ

eddy
1 and ψ

eddy
2 , we write

ψ1 = −yU + ψ
eddy
1 and ψ2 = ψ

eddy
2 . (5.30)

Further, it is useful to rewrite the system in terms of the eddy barotropic stream
function ψ and the eddy baroclinic stream function τ , respectively, defined by

ψ = ψ
eddy
1 + ψ

eddy
2

2
and τ = ψ

eddy
1 − ψ

eddy
2

2
, (5.31)

and the corresponding eddy barotropic potential vorticity q and eddy baroclinic
potential vorticity ω defined as

q = Δψ and ω = Δτ − k2d τ . (5.32)

We note that the stretching term from (5.28b) appears as the second term in the
definition of ω.

Substituting (5.30) into (5.28), writing out the sum and the difference of the layer
equations, and rewriting all expressions in terms of themodal stream functions (5.31)
and their associated potential vorticities, we obtain

9To see this, add a small deviation from the linear dependence in the y-direction and then consider
the limit when this deviation vanishes.
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∂t q + [ψ, q] + [τ, ω] + U

2
∂x (q + Δτ) + β ∂xψ = 1

2
Di(ψ − τ) + Duψ , (5.33a)

∂tω + [ψ, ω] + [τ, q] + U

2
∂x (ω + q + k2d ψ) + β ∂xτ = −1

2
Di(ψ − τ) + Duτ + κτ .

(5.33b)

In the following, we will endow the perturbation quantities with doubly periodic
boundary conditions. This is possible because the forcing terms, which are non-
periodic in the y-direction, drop out of the equations for the perturbation quantities.
However, the information on forcing is retained in the terms proportional to U .

The barotropic equation (5.33a) contains self-advection (i.e., the advection of
barotropic eddy PV by the barotropic velocity field), whereas the baroclinic equation
(5.33b) is linear in the baroclinic variables. Thus, barotropic dynamics are similar
to two-dimensional vorticity dynamics characterized by an inverse energy cascade,
whereas baroclinic dynamics are similar to the advection of a passive tracer which
possesses a direct energy cascade.10

As in Section 5.3.1, we consider the modal energy balances for the barotropic
(kinetic) energy

Eψ =
∑
k∈Z2

Eψ

k = −1

2

∑
k∈Z2

ψ∗
k qk (5.34)

and baroclinic energy

Eτ =
∑
k∈Z2

Eτ
k = −1

2

∑
k∈Z2

τ ∗
k ωk = 1

2

∑
k∈Z2

(k2 + k2d) |τk|2 , (5.35)

where the contribution prefactored by k2 is baroclinic kinetic energy and the contri-
bution prefactored by k2d is available potential energy. Taking the Fourier transform
of the barotropic and baroclinic equations, multiplying with ψ∗

k and τ ∗
k , respectively,

and taking the real part, we obtain

∂t E
ψ

k = T ψ

k + Cψ

k + Dψ

k , (5.36a)

∂t E
τ
k = T τ

k + Cτ
k + Gk + Dτ

k . (5.36b)

The terms

T ψ

k = �[ψ∗
k Jk(ψ, q)] , (5.37a)

T τ
k = �[τ ∗

k Jk(τ, q)] − k2d �[τ ∗
k Jk(ψ, τ)] (5.37b)

with k = (kx , ky) describe energy transfer within the barotropic and baroclinic
modes,

10Scott and Arbic (2007) show that there will be baroclinic self-interactions for unequal layers,
leading to an inverse cascade of baroclinic kinetic energy.
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Cψ

k = �[ψ∗
k Jk(τ, ω)] − U

2
k2 �[ikx ψ∗

k τk] , (5.37c)

Cτ
k = �[τ ∗

k Jk(ψ,Δτ)] − U

2
k2 �[ikx τ ∗

k ψk] (5.37d)

describe transfer from baroclinic to barotropic modes and vice versa, respectively,

Gk = U

2
k2d �[ikx τ ∗

k ψk] (5.37e)

represents the generation of energy, and all dissipative terms are subsumed into Dψ

k
and Dτ

k .
One can readily see that the generation term is proportional to the meridional

buoyancy fluxwhich tends to level off the layer interface (for APE has to be released)
if the system is baroclinically unstable. In this case, its mean value has to be positive
definite in a statistically stationary sense. Note that Gk is defined by the dynamics
and is not an external parameter as in 2D barotropic turbulence theory.

Since

∑
k∈Z2

T ψ

k =
∑
k∈Z2

T τ
k = 0 , (5.38)

these two terms only redistribute energy between scales. Likewise,

∑
k∈Z2

Cψ

k = −
∑
k∈Z2

Cτ
k , (5.39)

so that these terms only redistribute energy between baroclinic and barotropicmodes.
In the traditional view of baroclinic turbulence (Rhines 1977; Salmon 1980), one

introduces spectral energy fluxes analogous to (5.25),

Πψ(k) = −
∫ k

0
T ψ(κ) dκ and Πτ(k) = −

∫ k

0
T τ (κ) dκ , (5.40)

describing the redistribution of energy between scales. There are numerous publica-
tions discussing the behavior of fluxes in this situation (e.g., Scott and Arbic 2007).
The barotropic flux Πψ can be shown to be negative at k < kd corresponding to an
inverse cascade of barotropic energy, while the baroclinic flux Πτ is always positive
corresponding to a direct cascade of full (i.e., potential and kinetic) baroclinic energy.
Although there is an upscale (i.e., toward large scales) transfer of barotropic kinetic
energy, there is no inertial range at k < kd because the transfer of energy from the
baroclinic into barotropic mode is spread over all wavenumbers, being stronger at
smaller k.

Thus, no spectral law can be predicted for the inverse cascade in this case. In
contrast, on scales smaller than Ld the stretching term in the expression for the
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quasigeostrophic potential vorticity becomes small compared to the relative vorticity
and, as already mentioned, each layer behaves as in two dimensions implying the
scaling exponent −3 for the kinetic energy.

This picture relies on the fact that the assumed forcing maintains a pool of avail-
able potential energy which is then transferred to eddies through baroclinic instabil-
ity, which develops into a nonlinear regime of quasistationary balance between the
release of potential energy, nonlinear transfer, and dissipation. In general, forcing
will drive both barotropic and baroclinic components of the mean flow. But even if
forcing is only baroclinic, as is the case here, a mean barotropic flow is created in
the presence of friction and/or topography. For uniform shear, the release of APE
through baroclinic instability is the main source of energy for the eddies, but the
kinetic energy of the mean flow may also be important in general.

The picture described so far is tied to the choice of writing the fields in terms of
barotropic and baroclinic modes. Arguments will differ when looking at the transfer
of energy between layers or between kinetic and potential energy. In particular, the
sum of transfers between modes is zero only when integrated over wavenumbers.
This explains why the picture of transfers will be modified if considered for layers
(there will be transfers between the layers) and for the total energy (when baroclinic
and barotropic kinetic energies will be combined, and potential energy split off the
baroclinic energy).

The total energy at wave vector k,

Ek = 1

4
k2 (|ψ1|2k + |ψ2|2k) + 1

2
k2d |τ |2k (5.41)

has a rate of change

∂t Ek = T K
k + T P

k + Gk + Di
k + Du

k (5.42)

with transfer rates

T K
k = 1

2
�[

ψ∗
1k Jk(ψ1,Δψ1) + ψ∗

2k Jk(ψ2,Δψ2)
]
, (5.43a)

T P
k = −k2d �[

τ ∗
k Jk(ψ, τ)

]
, (5.43b)

a generation term Gk as before, and rates of frictional (infrared) dissipation Di
k and

viscous (ultraviolet) dissipation Du
k.

Intermodal or interlayer transfers are now included in the kinetic and potential
energy transfers. The emergingpicture is perhaps themost transparent; seeFigure 5.2.
It shows that generation is nearly compensated by large-scale dissipation, that the
EPE flux is direct, for it takes the generated eddy energy Gk and carries it to larger
wavenumbers gradually releasing it to kinetic energy, and that the EKEflux is inverse,
for it takes the released potential energy and carries it back to the interval of small
wavenumberswhere it is dissipated. It is important to note that transfers into EKE and
from EPE are centered at kd and occupy at least one octave of wavenumbers more on
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Fig. 5.2 Spectral energy fluxes corresponding to the fluxes in (5.42), integrated over the wavenum-
ber shell |k| = k. Figure adapted from Jansen and Held (2014), their Figure 4. Note that the vertical
axis shows k ∂t Ek , so that area under the curve in singly logarithmic scaling corresponds to total
transfer rates. Note further that the scale of wavenumbers k shown is normalized by 2π/L , where
L is the domain size. The deformation scale kd = 1/Ld is marked by the vertical dotted line

the short-wave side. Simulations by Jansen and Held (2014) demonstrate a spectrum
of barotropic EKE close to but steeper than −3 starting from kd and toward larger
wavenumbers. Yet, a substantial part of the interval where this spectrum is observed
is where the transfers take place, i.e., where there cannot be an inertial range. In other
words, the existence of a well-defined spectral slope is not an indicator of an inertial
range, which is frequently forgotten.

Although the theoretical prediction of the inverse cascade is formally made for
the barotropic kinetic energy, it is commonly observed for baroclinic kinetic energy
and for layer kinetic energies. This behavior is clarified by Scott and Arbic (2007).

We see that if there is a hope for the interval of self-similar behavior in layer
QG dynamics, such behavior should be on the side of small wavenumbers and be
consistent with the −3 spectral law. However, the two-layer setup indicates very
clearly that the transfer from EPE to EKE involves wavenumbers around kd or larger.
For this reason, this spectral law and self-similar behavior of inertial range can only
be expected to hold for wavenumbers essentially larger than kd, which come too
close to the scales where ageostrophy is important in the real ocean. The wavelength
associatedwith kd = 1/Ld is 2πLd.Onmesheswith spacinga = Ld, thiswavelength
is well resolved, but this extra resolution is just needed to accommodate for spectral
exchanges between EPE and EKE. In practice, in ocean circulation models, the
resolution of k−1

d is not always (or not everywhere) achieved. In this case, eddy
dynamics may suffer not only from excessive subgrid dissipation but also from the
mere fact that the interval where EPE has to feed EKE is too short. The spectral
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interval where most of the generation (conversion from the available potential energy
to the EPE) takes place tends to be at wavenumbers smaller than kd. Yet, as shown
by Jansen and Held (2014), the generation turns out to be sensitive to dissipation in
the vicinity of kd. We propose that the ability of subgrid closures to least interfere
with energy generation presents a convenient guiding principle in these cases.

An important parameterization for relatively coarse, non-eddy-permitting ocean
simulations was introduced by Gent and McWilliams (1990); it is now known as
the Gent–McWilliams parameterization. Here, we explain the idea in the context
of the two-layer model (5.28). On scales larger than Ld, the relative vorticity is
expected to be small compared to the stretching term, the last term in (5.28b), which
models perturbations of the layer interface. Correspondingly, the dominant nonlinear
contribution to (5.28a) is the divergence of the thickness flux

(−1)i k2d [ψeddy
i , 1

2 (ψ
eddy
1 − ψ

eddy
2 )] = (−1)i k2d [ψ, τ ] = (−1)i k2d ∇ · (τ ∇⊥ψ) .

(5.44)
This term will be very small if mesoscale eddies are not well resolved. The proposal
of Gent and McWilliams (1990) amounts to adding a flux divergence of the form

Fi = (−1)i k2d ∇ · (κ ∇τ) (5.45)

to the right-hand sides of the two-layer equations as a parameterization for the effect
of unresolved eddies on the resolved flow. The coefficient κ is sometimes taken con-
stant, more frequently, however, selected as a polynomial of the velocity difference
U = |u1 − u2| based on qualitative theory where degree and the coefficients of the
polynomial are chosen empirically. In this case, κ is a measure of vertical instability
in the system; see, e.g., Stone (1972), Cessi (2008), and Held and Larichev (1996).

By construction, the Fi model only the subgrid layer thickness flux, not the full
potential vorticity flux. They provide a sink for potential energy, thus emulating the
effect of baroclinic instability on the potential energy balance in a model that is too
coarse to resolve this process directly. This technique prevents the buildup of an
unlimited pool of available potential energy, but does not model Reynolds stresses
nor does it feed energy back into the pool of resolved eddy kinetic energy.

Note that while (5.45) looks like diffusion, it acts on the layer thickness.Whenever
the interface between two layers is inclined, thickness diffusion means that it will be
leveling the interface. This implies that fluid will move in opposite direction in the
layers, showing that the Gent–McWilliams parameterization creates a circulation
that tends to flatten isopycnals. Thus, while thickness diffusion proceeds in two
dimensions, the generated fluid motion is three-dimensional, and it is advective. See
Gent (2011) for a detailed discussion.
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5.3.3 Continuously Stratified and Surface QG Dynamics

Even within the quasigeostrophic family of models, the picture presented so far is
not the end of the story. First, when allowing for continuous stratification, there are
many baroclinic vertical modes. Second, there are surface-trapped motions that can
be understood in the framework of surface geostrophic dynamics (SQG); see, e.g., a
discussion and further references in von Storch et al. (2019).

For simplicity, we consider the three-dimensional QG equations on a layer of
uniform depth H with rigid lid upper boundary condition at z = 0. The model then
reads

∂t q + [ψ, q] = 0 , (5.46a)

q = f + Δhψ + f 20 ∂z
∂zψ

N 2(z)
(5.46b)

where Δh denotes the horizontal Laplacian and brackets, as before, the horizontal
Jacobian, with boundary conditions for the buoyancy b at z = 0,−H :

∂t b + [ψ, b] = 0 , (5.47a)

b = f0 ∂zψ . (5.47b)

According toWunsch (1997), the bulk of ocean kinetic energy is well captured by the
barotropic and first baroclinic modes. For this reason, themajor conclusion regarding
the spectral slope −3 of the direct enstrophy cascade remains valid for the bulk of
the ocean. However, the standard basis for vertical modes, as given by the eigenvalue
problem

f 20 ∂z
∂zΨn(z)

N 2(z)
+ λ2

n Ψn(z) = 0 (5.48)

with zero boundary conditions for ∂zΨ at z = 0,−H, does not take into account sur-
face buoyancy perturbations. Baroclinic instabilities evolving as solutions of (5.46)
deal with the modes of the full operator that satisfy the boundary conditions (5.47),
and cannot be understood in the frame of the standard basis. Certain textbook instabil-
ities, for example the Eady problem (see, e.g., Vallis 2006), rely entirely on surface-
trapped dynamics.

Even though it is possible to reformulate the surface dynamics as δ-sheets of
potential vorticity, such solutions cannot be represented in terms of the vertical
eigenmode basis. Layered models, however, include the surface dynamics in their
upper and lower layer potential vorticity. Therefore, the two-layer model described in
Section 5.3.2 above cannot separate surface-driven instabilities from interior instabil-
ity mechanisms, and the simplest model where this can be explored is the three-layer
model studied in Badin (2014).
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To separate the surface dynamics from the interior in the continuously stratified
QG model, one considers the case where q = const in an infinitely deep layer, so
that only surface dynamics remains. Then, the horizontal Fourier coefficients of the
stream function ψ representing the surface buoyancy perturbation satisfy

f 20 ∂z
∂zψk(z)

N 2(z)
− k2 ψk(z) = 0 (5.49)

with non-homogeneous Neumann conditions at the top and decay toward infinite
depth. When N = const, the ψk decay with depth as exp(kNz/ f0); i.e., they decay
on a vertical scale

H � f0
kN

. (5.50)

Correspondingly, in a uniformly stratified layer of depth H , only surface perturba-
tions larger in size than the first baroclinic Rossby radius may reach through the fluid
depth.

In the absence of forcing and dissipation, surface dynamics will preserve integrals
of buoyancy variance and the product ψb. The latter leads to an inverse cascade at
large scales with a −1 spectrum of surface kinetic energy, and the former leads to
a direct buoyancy variance cascade with a −5/3 spectrum (see, e.g., Smith et al.
2002). Note that the prediction concerns surface kinetic energy and is valid for
uniform stratification. Since in this case |∇ψk| = k |ψk| ∼ |bk|, we expect the same
spectral law for kinetic energy

EEKE = 1

4

∑
k

|∇ψk|2 (5.51)

and available potential energy

EAPE = 1

4N 2

∑
k

|bk|2 . (5.52)

Small scales do not penetrate deep, and spectra become steeper. Furthermore, they
are modified by stratification; examples including exponential stratification and the
case of a mixed upper layer are discussed in Callies and Ferrari (2013).

Instabilities in the real oceanproject onbothdeep-oceanmodes and surfacemodes,
and depend on the structure of PV of the basic ocean state. Surface dynamics are
expected to be an important contributor at locations where the interior PV gradients
are weak. Since shallow surface modes are excited as a result of evolving instability,
the transfer of available potential energy into eddy kinetic energy is not spectrally
local. This implies that the argument in favor of precisely the −1 or −5/3 spectral
slope at the surface is rather weak. However, it is appropriate to expect that spectral
laws for near-surface velocities at small scales are shallower than the −3 prediction
for the enstrophy range.
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5.3.4 Ocean Models and Observational Evidence

To study ocean turbulence beyond the idealized models mentioned before, we must
turn to numerical studies of the primitive equations, full ocean circulation models,
and observational evidence. In this context, mesoscale or submesoscale structures
which become ageostrophic in high-resolution models are of particular interest. In
the following, we review a few studies which highlight these issues with the under-
standing that this selection is far from being complete or representative.

To begin, the recent interest in surface quasigeostrophic (SQG) dynamics was
triggered by the observation that energy spectra of surface geostrophic velocities
derived from altimetric data are noticeably shallower at many locations than spectra
predicted by the theory of QG turbulence (Lapeyre 2009). High-resolution simula-
tions also lend support to the relevance of the SQG concept for understanding the
simulated behavior and observations. However, at scales about the first baroclinic
Rossby radius and smaller, in real situations as well as in high-resolution simulations
with full primitive equations, surface quasigeostrophic dynamics are accompanied
by frontal and mixed-layer instabilities which deviate from geostrophy. Klein et al.
(2008) andCapet et al. (2008) analyze the near-surface dynamics in ocean simulations
performed at the resolution of 2 km and down to 0.75 km, respectively, and demon-
strate that there is a close resemblance to SQG dynamics. The spectra of surface
kinetic energy have a slope close to −2 from the spectral maximum to the spectral
cutoff at large k. This is much shallower than the slope predicted by quasigeostrophic
theory. The conceptual difference to SQG is, however, that the Rossby numbers of
eddies at these scales are no longer small and a substantial ageostrophic flow compo-
nent is generated, whichmodifies the turbulent energy fluxes. The presence of frontal
and mixed-layer instabilities implies that the transfer of available potential energy
into kinetic energy continues at rather small scales associated with these instabilities.
Nevertheless, the near-surface velocities are nearly in geostrophic balance and the
ageostrophic components explain only a small fraction of kinetic energy, only visible
close to the high-wavenumber spectral end. Despite their smallness with respect to
the dominant rotational component (computed via the Helmholtz decomposition),
they are responsible for the downscale cascade of the total eddy kinetic energy. The
cascade of the dominant rotational component of the velocity behaves differently: It
is upscale and of smaller amplitude than the cascade of full velocity. The fact that it is
upscale is perhaps not surprising: As there are transfers from the available potential
energy to kinetic energy, as in QG or SQG turbulence, the flux of rotational kinetic
energy proceeds to larger scales from the scale of forcing.

Callies and Ferrari (2013) discuss existing views and assess two data sets shedding
light on the behavior of ocean submesoscales. They consider scales from about 200 to
1 km. For a site in the Gulf Stream, they found steep (−3) spectra of kinetic energy
for scales between 200 and 20 km, and shallower spectra at smaller scales consistent
with the −2 slope of the internal gravity wave spectrum. For a site in the North
Pacific, they report shallower spectra whose behavior with depth, however, does not
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agree with the prediction of SQG. It is proposed that the gravity wave continuum
and unbalanced motions can contribute to this behavior.

To summarize, the range of submesoscale, where the subgrid scales of eddy-
permitting (and eddy-resolving) ocean circulation models are located, combines
features of QG and SQG turbulence but also includes ageostrophic (unbalanced)
motions, depending onmesh resolution and ocean stratification.Wavenumbers larger
than kd are those of the forward cascade ofEKE, but the inverse cascade can be present
for the rotational component of EKE at even smaller scales if small-scale instabilities
continue to transfer the available potential energy to EKE. No true slope prediction
can be made on scales around kd because of intermodal exchanges and spectrally
spread dissipation.

Inertial ranges may emerge on the side of smaller scales on very high-resolution
meshes, but even there one should expect a dependence on the depth and a contri-
bution from submesoscale (frontal) instabilities. So even when they emerge, inertial
ranges may deviate from the predictions of QG turbulence because of a forward
energy cascade. The dominance of the rotational velocities in the energy spectra
does not imply their dominance in energy transfers at large wavenumbers. One may
try to draw a certain analogy with the −5/3 spectrum observed in the atmosphere
between 500 and 10 km, which is that of stratified turbulence with forward energy
cascade; see the bibliography, discussion, and analysis of high-resolution simulations
in Augier and Lindborg (2013). On larger scales, it matches the dynamics predicted
by QG theory.

At present, resolutions in ocean circulation models are such that the near-subgrid
scales are in a range where self-similar behavior is unlikely. Subgrid closures can
therefore not be universal in the range of resolutions about the Rossby radius. Hence,
perhaps the guiding principle should be that ofminimizing their damping effect on the
rate at which energy is released from the pool of APE and the KE of the background
state to the EKE at the resolved scales.

5.4 Energy Backscatter

Although most ocean circulation models used for climate research are coarse, the
number of eddy-permitting models is increasing and will dominate in the future.
Such models simulate eddy dynamics, but cannot resolve it fully for they suffer
from overdissipation. Its origin can be explained as follows. In order to remove the
variance of velocity and enstrophy at grid scales for numerical stability, they use
harmonic or biharmonic dissipative subgrid viscosity operators (Fox-Kemper and
Menemenlis 2008). Together with removing the grid-scale noise, these operators
also dissipate energy at adjacent scales, which are in this case the scales close to
the internal Rossby radius. As we have seen, these scales host exchanges between
the potential and kinetic energy compartments and also determine the eddy energy
release from the available potential energy. Their overdissipation is the reason why
eddy-permitting flows seldom reach the observed levels of eddy kinetic energy.
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The problem of overdissipation and, inmore broad context, of subgrid closure that
takes into account the existence of unresolved scales has been known in atmospheric
sciences for a long time. First papers on this issue appeared almost simultaneously
with the KLB concept of two-dimensional turbulence; see Leith (1971) and the
discussion in Frederiksen and Davies (1997). It may be explained within the spectral
picture of triad interactions in two-dimensional turbulence as follows: Since we can
only resolve wavenumbers up to some kmax numerically, it is clear that we miss
not only spectrally local interactions responsible for the enstrophy transfer through
the boundary at k = kmax, which lead to a net energy drain and hence behave as
a form of dissipation in the ensemble mean, but also non-local triads, having two
legs at k > kmax or on both sides of kmax and one leg at large scales kLS � kmax,
which might force the resolved scales. These interactions are termed backscatter. It
is not represented by the usual dissipative subgrid operators, which is the main cause
of overdissipation in conventional models. A fully deterministic representation of
backscatter is impossible as the details of the state of the subgrid are in principle not
available. Thus, the best we can hope for is some stochastic model of backscatter.

Theoretical developments in this direction assume as a rule QG dynamics, peri-
odic boundary conditions or spherical geometry, ensemble averaging, and “spectral
language” to come up with parameterizations. As an example, we mention the work
by Kitsios et al. (2013) who derive both stochastic and deterministic closures by
comparing truncated and high-resolution dynamics in a two-layer QG setup on the
sphere. It is believed that both types can be equally skillful, for, in any case, useful
formulas rely on ensemble averaging and thus do not describe realizations.

Although the turbulent dynamics dictates that drain and backscatter should be
described as stochastic processes, additional issues such as numerical stability have
to be taken into account. For deterministic parameterizations, the resulting expres-
sions contain powers of the Laplacian, sometimes going beyond the biharmonic
one. Their study shows that even in the context of two-layer QG turbulence which
is statistically homogeneous in the zonal direction, the final parameterizations of
drain and backscatter depend not only on kd and kmax, but also on the extent of the
energy-containing range.

It will be much more difficult to propose parameterizations for domains with
horizontal boundaries where spectral language and zonal homogeneity are missing.
In addition, all backscatter parameterizations raise the question of numerical stability
due to the effective negative viscosity of the terms providing backscatter. Finally, in
addition to eddy–eddy interactions considered by Kitsios et al. (2013), contributions
may come from interactions involving the unresolved mean field (in the sense of
time averages) component. These examples show that progress is possible, but we
can hardly expect universally valid solutions.

In the following, we review two specific backscatter parameterizations in detail.
The first, due to Jansen and Held (2014), is based on a very straightforward scalar
model for the subgrid energy. The second, due to Grooms and Majda (2014), uses a
more sophisticated linear model for the subgrid dynamics.
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5.4.1 Models with Scalar Subgrid Energy Budget

Since, as mentioned above, comprehensive first-principle models are necessarily
complex, we think that simplified implementations of energy backscatter proposed
by Jansen and Held (2014) and Jansen et al. (2015), who consider kinetic energy
backscatter for QG and primitive equations, respectively, deserve attention. These
parameterizations do not aim at mimicking missing interactions with subgrid scales,
but seek instead to compensate for the overdissipated energy, which is much easier.
Importantly, the amount of energy returned through the proposed backscatter para-
meterization can be controlled, which is a prerequisite for stability of the algorithm.

Jansen and Held (2014) study the two-layer quasigeostrophic equations with the
Leith parameterization as nonlinear small-scale dissipation operator. In each layer i ,

Duψi = −Δ(νi Δ
2ψi ) with νi = CL a

6 |Δ2ψi | , (5.53)

where a denotes the grid-spacing and CL = 0.005. The associated overall rate of
viscous dissipation at wavenumber k is

Vk = 1

2

∑
i∈{1,2}

k2 (ψi )
∗
k (νi Δ

2ψi )k . (5.54)

(The layers are assumed to be of equal thickness, hence the additional factor of 1/2
in the expression for Vk and in similar expressions below.) The rate of frictional
dissipation in the bottom layer at wavenumber k is

Fk = 1
2 λ k2 |ψ2|2k . (5.55)

Summing over wavenumbers, the total rate of ultraviolet and infrared dissipation is

V =
∑
k

Vk and F =
∑
k

Fk (5.56)

Since transfers are summed to zero, the overall balance of energy is

∂t E = G − F − V , (5.57)

where G is the generation term with Fourier representation (5.37e).
To compensate for the excessive dissipation at small scales, the simplest model

is to add an energy source that returns energy at a rate

S = (1 − ε) V (5.58)

so that all but a small fraction ε ≈ 0.1 representing the physical rate of ultraviolet
dissipation is returned. Jansen and Held (2014) tested two different models for this
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source, one deterministic and the other stochastic. In the deterministic version, each
layer potential vorticity equation is given a source term

si = −A(t)Δ2ψi (5.59)

which corresponds to negative Laplacian viscosity in the momentum equations. The
amplitude A(t) is set by the condition that the constraint (5.58) is satisfied at every
instance in time. Since the Laplacian is less scale-selective than the biharmonic
ultraviolet dissipation, energy will be returned at larger scales than those at which it
is dissipated.

The second implementation is stochastic, with

si = A(t)1/2 η(x, t) , (5.60)

where the η is Gaussian noise, δ-correlated in space and time. The forcing is kept
barotropic; i.e., the same noise process is used for both layers, to replenish the inverse
cascade of barotropic kinetic energy. In this case, the ensemble mean 〈S〉 will be
proportional to A(t) so that the amplitude can be found at each time step from the
constraint (5.58). Of course, (5.58) is satisfied only in the ensemble mean. However,
it is also approximately satisfied for each realization as the stochastic forcing is
distributed over a large number of spatial locations of the computational grid. The
rate of backscatter energy pumping at mode k is given by

Sk = 1

2

∑
i∈{1,2}

(ψi )
∗
k (si )k . (5.61)

Thus, even when the si have a white noise spectrum, energy backscatter is biased
toward the scales with already high energy content. In practice, this involves scales
larger than those of Vk.

Jansen and Held (2014) conclude that both parameterizations work rather simi-
larly; however, the stochastic implementation returns energy over a broader interval
of wavenumbers. The principal question here, namely how much energy has to be
returned and where it should be returned, is left without answer and presents a topic
for future research. The amplitude of backscatter is selected globally, which is only
appropriate if flow energy is distributed uniformly. In the general case, one needs a
local criterion.

A small variation of the kinematic backscatter assumption (5.58) is the introduc-
tion of a dynamic global subgrid energy budget Esg via

Ėsg = V − S − 2λγ Esg . (5.62)

The last term represents dissipation of subgrid energy by bottom friction, where the
parameter γ is the fraction of subgrid energy residing in the lower layer and λ the
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bottom drag coefficient.11 This form of a global subgrid energy reservoir is suggested
by Jansen and Held (2014) as a motivation to justify assumption (5.58), but could
also be used computationally by assuming that the amplitude of backscatter A(t) is
proportional to the total subgrid energy in the reservoir.

At the next level of complexity, onemay use a local subgrid energy budget. Jansen
et al. (2015) suggest a budget for the subgrid energy density e of the form

∂t e = v − s − ∇ · F − d , (5.63)

where v is the rate of viscous dissipation per unit volume of the resolved scales, s is
the rate of backscatter per unit volume, F is the flux redistributing subgrid energy,
and d is the rate of dissipation of subgrid energy per unit volume. Each of these terms
must be modeled. Jansen et al. (2015) assume biharmonic ultraviolet dissipation

v = 1

H

∑
i

hi νi |Δui |2 , (5.64)

where H is the total depth, hi are the layer depths, and νi are the layer horizontal
biharmonic viscosity coefficients, assumed positive. In this setting, all operators act
in the horizontal only. For the backscatter source, one can take harmonic viscosity
so that

s = − 1

H

∑
i

hi νbs |∇ui |2 (5.65)

with negative coefficient of viscosity

νbs = −Cbs a
(
max{2e, 0}) 1

2 (5.66)

with Cbs an order-one constant. If the energy to be scattered back becomes too large,
e becomes negative and backscatter viscosity goes to zero. This controls the amount
of energy returned back.

Amajor point for discussion is the choice of flux F for the subgrid energy. Jansen
et al. (2015) choose the purely diffusive flux

F = −ksg ∇e , (5.67)

where ksg is an appropriately selected constant of diffusivity. This choice is guided
by the observation that the transfer from and to the subgrid can be very spatially
rough so that a mechanism is needed to regularize the distribution of e horizontally.

11In a more realistic setting, one may wish to also model the dissipation of the fraction of subgrid
energy that cascades downscale and turns into fully three-dimensional turbulence. This intention is
implicit in the closure condition (5.58).
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However, the question arises whether subgrid energy should not perhaps be advected
by the resolved flow or be subject to some other non-local mechanism of transfer.

Finally, the dissipation rate d in (5.63) is typically small and may be neglected.
It turns out that the backscatter parameterizations by Jansen and Held (2014) and

Jansen et al. (2015) lead to noticeable improvements even in situations where non-
trivial bottom topography is present, and allow themesoscale eddy dynamics in eddy-
permitting simulations to approach those of high-resolution runs. On a qualitative
level, the success of these simple implementations of backscatter rests on the idea
that energy needs to be scattered back only in places where it is strongly dissipated.
Although the vertically averaged or basin-averaged subgrid kinetic energy balance
used to assess the backscatter viscosity presents an oversimplification, the energy
scattered back is nevertheless modulated by the distribution of resolved energy. This
also implies that the parameterization may bring improvements only in situations
when an eddy-permitting model already correctly simulates the pattern of kinetic
energy distribution but lacks amplitude. In realistic applications resolving the vertical
structurewithmanymore layers, the vertical distribution of backscatter viscositymay
matter, since surface-trapped modes may exhibit more vertical structure, but this
remains to be seen. A theory of where to return the energy scattered back presents
an interesting question for further research too. Clearly, with only the harmonic
operator at one’s disposal, the deterministic backscatter parameterization has limited
capabilities so that stochastic closures may still be needed. Furthermore, a missing
point is the cascade of EPE which is dissipated too by subgrid diffusive closures or
through upwind transport algorithms. Too diffusive transport schemes may result in
the reduced transfer between EPE and EKE, so that the role of subgrid closures in
the tracer equations should be explored. Conversely, Ilıcak et al. (2012) show that
spurious mixing of transport algorithms depends on velocity variance at grid scales,
so that energizing these scales above a certain level is not recommended. This issue
is further explored in Klingbeil et al. (2019). This set of questions shows that even
in the context of energy backscatter, the problem is far from being resolved and new
ideas are required.

To apply these ideas to the full primitive equations, we face further questions. To
our knowledge, this has not been pursued exhaustively, and we can only sketch a
direction; more theoretical analysis and numerical experiments are needed here. To
start, we may localize even further, treating the subgrid energy density e as a full
three-dimensional field, so that the evolution equation (5.63) now takes the form

∂t e = v − s − ∇h · Fh − ∂z Fz − d , (5.68)

where F is the flux redistributing the subgrid energy, taken as Fh = −Kh ∇he and
Fz = −Kz ∂ze, where Kh and Kz are appropriately selected horizontal and vertical
diffusion coefficients. As before, d is the rate of dissipation of subgrid energy; it is
small and may be neglected. This approach is more expensive, for now the evolution
equation has to be integrated in three spatial dimensions.

The contribution from ultraviolet dissipation now takes the form
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v = −νvisc |Δhu|2 , (5.69)

where νvisc is the coefficient of horizontal biharmonic viscosity. Vertical viscosity in
the momentum equation would generally be provided by a vertical mixing parame-
terization which relies on some physics and empirical data, e.g., using a KPP closure
(Large et al. 1994) or k-ε closure (Umlauf and Burchard 2003). The corresponding
backscatter source term reads

s = −νbs |∇u|2 (5.70)

where νbs is again given by an expression of the form (5.66).
Onemay consider stochastic implementation options for the backscatter source. A

caveat here is that for the primitive equations, the source must respect the divergence
condition. This could be done by a simple projection. Another possibility is to write
the horizontal source in the form

s = ∇ × (Ψ k) , (5.71)

withΨ (x, t) = P(x) η(x, t) A(t). Here, P is a spatial pattern of eddy kinetic energy
(which may be modeled, inferred from high-resolution simulations, or taken from
observations), A(t) is the amplitude (selected to ensure subgrid energy balance),
and η is a random field generated, for example, by a Markov process. Despite the
presence of a differential operator, one has to introduce correlations in time and space
to ensure that the resulting forcing is smooth.

Another issue is that, for the primitive equations, the concept of backscatter
relates in equal measure to the momentum and to the tracer equations. Compensation
for kinetic energy overdissipation is not necessarily sufficient if tracer variance is
overdissipated. In principle, an approach resembling the one applied to the quasi-
geostrophic potential vorticity equations can be proposed. However, there are some
technical difficulties. First, in many cases dissipation is already built into the imple-
mentation of the transport operators and cannot be easily accessed. Second, even
if it is not, biharmonic operators are not always available for tracers.12 Finally, the
production of tracer variance and the production of kinetic energy are linked, so that
additional theoretical analysis is required.

5.4.2 Stochastic Superparameterizations

While the backscatter approximation by Jansen and Held (2014) and Jansen et al.
(2015) seeks to return excessively dissipated energy back to the main flow, it needs

12For tracers, one commonly uses rotated operators that mix along isopycnals. Their biharmonic
versions are more expensive and less stable. Furthermore, such operators do not directly dissipate
potential energy.



176 S. Danilov et al.

an eddy-permittingmodel that is able to simulate a correct pattern of eddy variability.
Their subgrid representation only captures the subgrid energy e and does not attempt
to represent the parameterized action of the Reynolds stress. In models that are not
fully eddy-permitting, this approachwill notwork and one needs amore sophisticated
model of the subgrid. We will discuss so-called stochastic superparameterizations
as proposed by Grooms and Majda (2013, 2014) and Grooms et al. (2015b) in the
context of quasigeostrophic two-layer models.

Themain difference between the stochastic parameterization (SP) and the stochas-
tic superparameterization (SSP) is that the latter involves a prognostic fine grid equa-
tion which is motivated by the underlying physical evolution equation and involves
coarse mesh quantities as well as a stochastic source term. We first explain the idea
in the context of the simple single-layer model (5.4), where the essential features of
the method are already visible with less notational effort.

Let us decompose the stream function ψ into a coarse mesh stream function ψc

and a finemesh stream functionψ ′, and likewise define the corresponding vorticities,
so that

ψ = ψc + ψ ′ and ζ = ζc + ζ ′ , (5.72)

where it is understood that ζc = Δψc and ζ ′ = Δψ ′. We also split the forcing into a
deterministic physical forcing Fc on the coarse mesh and a stochastic forcing F ′ on
the fine mesh. Inserting this ansatz into (5.4), we obtain

∂tζc + ∂tζ
′ + [ψc, ζc] + [ψc, ζ

′] + [ψ ′, ζc] + [ψ ′, ζ ′]
+ β ∂xψc + β ∂xψ

′ = Fc + F ′ + Dζc + Dζ ′ .
(5.73)

We now split this equation into an evolution equation for the coarse variables and
an evolution equation for the fine mesh variables. This procedure is non-rigorous,
so there is some freedom of choice. However, the fine system should be linear with
constant coefficients so that it can be solved explicitly, for otherwise the combined
computational cost would be higher than the cost of simulating the entire system on
the fine grid.

Following Grooms and Majda (2014), we decompose the domain Ω into disjoint
subdomainsΩi . Each subdomain contains exactly one grid point of the coarse mesh,
and the coarse mesh variables are assumed constant on each adjacent subdomain.
The fine systems are then solved independently for one coarse time stepwith periodic
boundary conditions on each subdomain.

The coarse system should contain all coarse terms and the divergence of the eddy
potential vorticity flux13

Fepv = ζ ′ ∇⊥ψ ′ . (5.74)

13The overbar operation denotes averaging over one fine grid cell. Note that it is not possible to
simply take the fine grid Jacobian and average over a coarse cell, as this expression would be
identically zero. Instead, one uses the average flux and practically operates on it with the coarse
grid divergence.
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All the remaining terms go into the fine mesh system which is solved independently
on each coarse mesh cell. The coarse system then takes the form

∂tζc + [ψc, ζc] + ∇ · Fepv + β ∂xψc = Fc + Dζc , (5.75)

and the fine system reads

∂tζ
′ + [ψc, ζ

′] + [ψ ′, ζc] + β ∂xψ
′ = S + F ′ + Dζ ′ , (5.76)

where the nonlinear eddy–eddy interactions are represented by

S = ∇ · Fepv − [ψ ′, ζ ′] . (5.77)

The coarse system is solved on the coarse grid. The fine system is linear except for
the eddy–eddy term which must be modeled. Grooms and Majda (2014) suggest
to replace each Fourier mode Sk by the right-hand side of an Ornstein–Uhlenbeck
stochastic process of the form

dζ = −γ ζ dt + σ dW , (5.78)

where W is a standard Wiener process.14 The Ornstein–Uhlenbeck process is con-
trolled by two parameters, the inverse correlation time γ and the variance σ 2/(2γ )

whichwill later be chosendifferently for differentwavenumbers. They further assume
that the coarse grid fields can be held constant in each fine cell and that there is no
forcing on the fine scale. Then, the full fine-scale model in the Fourier representation
reads

dζ ′
k = (�k − γk) ζ ′

k dt + σk dWk , (5.79)

where �k is the Fourier symbol of all linear terms in (5.76) and the Wiener processes
Wk are mutually independent.

The crucial observation is that S is quadratic in fine-scale quantities, so that a
space average corresponds, by the Plancharel theorem, to an integral over |ψk|2.
Averaging further over the stochastic ensemble, it is clear that it suffices to compute
the evolution ofE[|ψk|2]. By the Itô Lemma, it is easy to derive a deterministic linear
ordinary differential equation for this quantity, which can be solved explicitly and
independently for each wavenumber.

The coefficients γk are tuned so that the equilibrium distribution without the
interaction terms �k matches a given power spectrum. Later, when initializing the
second moment equation, the initial value is taken to be the equilibrium value, again
without interactions. Thus, the effect of the interactionwith the coarse grid quantities,

14The stochastic process can also be viewed as accounting for all other approximations which are
implicitly made: the replacement of exact operators by coarse grid approximations in (5.75), the use
of periodic boundary conditions for the fine cell dynamics, and the uncertainty in the initialization
and re-initialization of the fine grid dynamics.
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which are encoded in �k, is to color the fine grid statistics consistent with the coarse
grid flow. In particular, when applying this method to stratified models, �k > 0 at
scales where the flow is baroclinically unstable, resulting in growth of the primed
quantities.

At this point, the effective subgrid dynamics as seen from the coarse grid is purely
deterministic. Grooms and Majda (2014) found that it is necessary to take a large
number of modes in the subgrid to match the correct spectral decay. To keep the
computational cost low, and to account for the observation that real ocean eddies
have anisotropies that vary in space and time, they select at random a direction in
each subgrid cell, independent for each point in coarse space–time, and choose a
one-dimensional spectral decomposition in this cell.

Grooms et al. (2015b) perform a detailed computational study of their stochas-
tic superparameterization in a two-layer zonally reentrant channel mimicking the
Antarctic Circumpolar Current. They compare the model with a deterministic Gent–
McWilliams (GM) parameterization in a regime where mesoscale eddies are not
resolved on the coarse grid and with an eddy-resolving high-resolution simula-
tion. Their setting is similar to the two-layer quasigeostrophic model discussed in
Section 5.3.2, with vorticity equations

∂t q1 + [ψ1, q1] = − 2

ρ0H
∂y F(y) + ν2 Δ2ψ1 , (5.80a)

∂t q2 + [ψ2, q2] = −r Δψ2 + ν2 Δ2ψ2 , (5.80b)

where ν2 is Newtonian viscosity, r is the Ekman drag coefficient, and the layer
potential vorticities are given by

q1 = f0 + βy + Δψ1 + 1
2 k

2
d (ψ2 − ψ1) − k2e ψ1 , (5.81a)

q2 = f0 + βy + Δψ2 + 1
2 k

2
d (ψ1 − ψ2) + 2 f0

H
hb . (5.81b)

The lateral boundary conditions are periodic in the zonal and stress-free in the merid-
ional direction. This system is different from the two-layer equation (5.28) in the
following way: The flow here is driven by a steady sinusoidal wind forcing F(y).15

It includes explicit bottom topography hb to avoid unrealistic spin-up of the mean
current. A stretching term with coefficient ke = 1/Le = f/

√
gH is included in the

upper layer potential vorticity so that the model is formally valid to scales up to the
external Rossby radius of deformation Le. Finally, dissipation is second order as is
common for relatively coarse resolution models; the eddy-resolving simulation and
the fine grid dynamics, however, are set up with fourth-order dissipation.

In the coarsemodel, the divergence of the subgrid potential vorticity fluxes is intro-
duced layerwise as explained in the single-layer setting; for details, see (Grooms and

15The steady wind stress tilts the layer interface through Ekman pumping. When it is sufficiently
tilted, the flow becomes baroclinically unstable. So here, as before, the mean forcing maintains a
pool of mean kinetic and available potential energies.
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Fig. 5.3 Timemean bias of interface elevation inmeters of the Gent–McWilliams parameterization
(top) vs. the stochastic superparameterization (bottom). The zonal direction is shown in the hori-
zontal in units of 10 000 km, the meridional direction in the vertical in units of kilometers. Graphs
are adapted from Grooms et al. (2015b)

Fig. 5.4 Ratio of interface elevation time variance of the reference simulation over time variance
corresponding to the data shown in Figure 5.3. The variance deficiency of the Gent–McWilliams
parameterization (top) is significantly larger than the variance deficiency of the stochastic superpa-
rameterization (bottom). Graphs are adapted from Grooms et al. (2015b)

Majda 2014). In order to compare the performance of GM and SPP, the authors
analyze the temporal statistics of the surface elevation at each fixed point; in partic-
ular, they compute the bias of the mean and the bias of the variance relative to the
highly resolved reference simulation. While the time mean biases of both parameter-
izations are similar in magnitude and spatial pattern (Figure 5.3), the time variance
of the stochastic superparameterization run is significantly closer to the reference
simulation, even though both models are variance deficient (Figure 5.4).

While this model achieves a spectrally consistent proxy for the missing potential
vorticity flux, it imposes locality and spatial uniformity of the subgrid model. In
reality, however, as follows from the pattern of eddy kinetic energy in Grooms et al.
(2015b), the eddy kinetic energy is (i) essentially non-uniform and (ii) does not
correlate with the places of maximum instability—indeed, EKE spots are always
downstream of places with maximal baroclinic instability. So, the main conceptual
question is how to introduce non-trivial advection of subgrid quantities by the coarse
flow.

Another question is how to make this approach practical. In essence, we need the
dependence of mean subgrid fluxes as a function of velocities and quasigeostrophic
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PV gradients. For a two-layer quasigeostrophic model, this can still be done. How-
ever, for continuous stratification and for the primitive equations, there is the vertical
dependence which will soon require more computational effort than directly apply-
ing an eddy-resolving mesh. Another question is how to avoid overexciting gravity
waves in a gravity wave-permitting model.

There may be possible simplifications. For example, since the fine grid dynam-
ics depends only on the magnitude of resolved velocities, PV gradients, and the
angle between the velocities and gradients, one may only consider a finite set of
velocity values and PV gradients, and interpolate the results for the eddy flux diver-
gence between the simulated patterns computed for this set. Such a lookup table may
considerably reduce computational cost. Further, for primitive equation models, the
subgrid may still be treated in quasigeostrophic approximation. Thus, it will be pos-
sible to represent PV gradients on the subgrid which is seen essential for providing a
proper proxy for baroclinic instability, and cannot be easily done if the superparam-
eterization is formulated in terms of primitive variables where information on PV
gradients would be lost when going to the fine grid.

5.5 Other Closures

5.5.1 The Mana–Zanna Parameterization of Ocean
Mesoscale Eddies

Mana and Zanna (2014) study the correlation of different functional forms for the
eddy source term with a highly resolved direct numerical simulation, select the
best candidate function, and match the remaining coefficients with the empirical
data. More detailed tests in a double gyre configuration are reported in Zanna et al.
(2017). In these two papers, the authors work in a 3-layer quasigeostrophic setting;
possible extensions to primitive equation models are discussed and tested in Anstey
and Zanna (2017). In the following, we describe the Mana–Zanna parameterization
following the concise derivation later given by Grooms and Zanna (2017). We will
present a slightly more general view which raises interesting possibilities for further
optimization of the closure.

For simplicity, we restrict the discussion to the barotropic single-layer QG equa-
tions without β-effect.Working exclusively in the continuum setting on the plane, we
define a time-independent coarsening operation via convolution with a filter kernel,
i.e.,

ζ (x) =
∫
R2

φδ(x − y) ζ( y) d y (5.82)

where φδ is a radial kernel with δ referring to the width of the filter. Applying this
operation to the barotropic vorticity equation (5.4a), we can write
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Dtζ ≡ ∂tζ + [ψ, ζ ] = S + F + D∗ζ , (5.83)

where D∗ is some coarsened dissipation operator and S denotes the eddy source term

S = [ψ, ζ ] − [ψ, ζ ] + Dζ − D∗ζ . (5.84)

In Mana and Zanna (2014), the authors seek to build a model for S in terms of
the divergence of Rivlin–Ericksen stresses which originated in the description of
non-Newtonian fluids with infinitesimal memory (see, e.g., Truesdell and Rajagopal
1999). These tensors satisfymaterial frame invariance and observer objectivity, prop-
erties required of a physical material law. For the barotropic vorticity equation, an
exact implementation of an inviscid second-grade Rivlin–Ericksen fluid would cor-
respond to

S = α DtΔζ (5.85)

which leads to the vorticity formulation of the Euler-α model further discussed in
Section 5.5.2 below. Their study, however, finds that a better correlation is obtained
by using

S = α ΔDtζ (5.86)

which differs from (5.85) by nonlinear commutators, but preserves the property
of frame invariance. They also find that the coefficient α on the right-hand side is
negative,whichprecludes a straightforward interpretation as advectionby a smoothed
velocity field.

Grooms and Zanna (2017) provide a posteriori justification of (5.86) along the
following lines. They argue that, after high-pass filtering, S is the dominant term
on the right-hand side of (5.83).16 In particular, the Laplacian of S dominates the
Laplacians of the other two terms so that

ΔDtζ ≈ ΔS . (5.87)

They proceed to show that S is highly correlated with ΔS, so that (5.87) implies
(5.86).

Let us explore such correlations from a more general perspective. We define a
family of abstract approximate Laplacians which includes the usual 5-point discrete
Laplacian in two dimensions. Suppose that {με}ε>0 is a family of finite positive
Borel measures on R

n with suppμε ⊂ B(x, ε), the ball centered at x with radius ε,
satisfying

16This assumption was tested with harmonic dissipation. It would be questionable with higher-order
dissipation so that, in general, the contribution from dissipation would need to be carried explicitly.
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με({x}) = 0 , (5.88a)

lim
ε→0

∫
B(x,ε)

yi dμε(y) = 0 , (5.88b)

and

lim
ε→0

∫
B(x,ε)

yi y j dμε(y) = 2 δi j (5.88c)

for all i, j = 1, . . . , n. In particular, various normalized symmetricmeasures, includ-
ing pointmeasures and surface Lebesguemeasures in lower dimensions, satisfy these
conditions. Then,

ΔS(x) = lim
ε→0

|με| (Avε(S) − S(x)) , (5.89)

where |με| = με(R
n) and

Avε(S) = 1

|με|
∫
B(x,ε)

S(y) dμε(y) . (5.90)

Assume now that S is a homogeneous isotropic δ-correlated Gaussian random field
with variance σ 2. Setting

w =
(

S(x)
Avε(S) − S(x)

)
(5.91)

and fixing ε > 0 at a small finite value, we find that the covariance matrix of w is
given by

Σ = Cov[w,w] = σ 2

(
1 −1

−1 (b + 1)

)
, (5.92)

with b = |μ2
ε |/|με|2, where |μ2

ε | = ∑
y∈B(x,ε) μ2

ε({y}).17
The eigenvalue ratio corresponding to the subdominant principal component of

Σ is given by

r ≡ λ2

λ1 + λ2
= b − √

b2 + 4 + 2

2 b + 4
. (5.93)

It quantifies the fraction of variance not explained by a linear relationship between
the components of w. When με does not have point measure components, b = 0 and
consequently the eigenvalue ratio r = 0, indicating perfect correlation between the
components of w. The largest value of b in the class of point measures with equal
weights corresponds to the 4-point Laplacian where με consists of three-unit Dirac

17The sum in this definition is countable and convergent as |με| = με(B(x, ε)) < ∞. Thus, |μ2
ε | =

0 if and only if the measure με has no nonzero point measure components, which is the case for
measures that are absolutely continuous with respect to the Lebesgue measure in the ball or on the
sphere.
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masses at angles 0, 2π/3, and 4π/3. In this case, b = 1/3 and r = (7 − √
37)/14 ≈

0.066. For the usual 5-point stencil as considered in Grooms and Zanna (2017),
b = 1/4 and r = 9 − √

65/18 ≈ 0.052.
Thus, even for relatively concentrated measures, a major fraction of the variance

is explained by a linear relationship between S and the approximate Laplacian of
S as defined via the right-hand expression in (5.89) for finite ε. The constant of
proportionality is the ratio of the components of the principal eigenvector of Σ , i.e.,

S(x) ≈ 1
2 (b −

√
4 + b2) (Avε(S) − S(x)) . (5.94)

In the concrete case of the 5-point Laplacian, we find

S ≈ −1

8
(1 − √

65)
ε2

4
ΔS = −(cε)2 ΔS ≈ −(cε)2 ΔDtζ (5.95)

where c ≈ 0.469782, which is close to the empirical value found byMana and Zanna
(2014).18

It is clear from the argument above that the eigenvalue ratio improves when the
measure becomes less localized. On the other hand, the assumption of S being a δ-
correlated randomfieldmust break down on small scales; we expect the decorrelation
length to be at or slightly larger than the grid scale. Thus, it should be possible to
replace the Laplacian in the argument above with a discrete operatorΛwhose stencil
nodes are at least a decorrelation length apart and which is effectively acting as a
high-pass filter. The form of Λ can then be optimized for its eigenvalue ratio. In this
context, we remark that the approximation made in (5.87) does not seem necessary
to proceed, as ΛF and ΛD∗ζ are readily computable. We believe that this question
is worth further investigation.

A different line of reasoning might be based on a random field model for S with
finite spatial correlations. Assuming a given spectrum for S, the characterization
of the two-point correlation function via the Wiener–Khinchin theorem (see, e.g.,
Yaglom 1987) could still allow us to compute the covariance matrix Σ explicitly
and subsequently optimize the filter Λ. Finally, a detailed analysis of the structure
of S is warranted. Grooms et al. (2015a) provide an argument that the spectrum of S
grows like k5, which can likely only be true on a limited range of scales as a perfectly
δ-correlated random field should have a flat spectrum. Thus, in particular the details
of spatial correlation near the grid scale require attention.

18The slight discrepancy in the value of c as compared with Grooms and Zanna (2017) is due to the
different normalizations of the vector w. Ideally, the components of w should have unit variance,
but both our choices are close enough to being normalized for the point being made.
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5.5.2 α-Models

The so-called α-models initially came up in the study of nonlinear waves, not in
turbulence. What is now known as the Camassa–Holm equation was first discovered
by Fuchssteiner and Fokas (1981) who sought completely integrable generalizations
of the Korteweg–de Vries (KdV) equation with a bi-Hamiltonian structure. It was
independently re-derived by Camassa and Holm (1993)—for a more detailed expo-
sition, see Camassa et al. (1994)—as a next order correction to the KdV equation
in small amplitude expansion of unidirectional surface waves in irrotational shallow
water. Camassa and Holm’s work attracted a lot of attention as, in addition to integra-
bility and bi-Hamiltonian structure, they found a family of peaked soliton solutions.
Solutions of the Camassa–Holm equation can be seen as geodesics on the diffeomor-
phism group with respect to a right-invariant H 1-metric (Kouranbaeva 1999). The
striking parallel to Arnold’s (1966) view of ideal three-dimensional hydrodynamics
as geodesic flow on the volume-preserving diffeomorphism group endowed with an
L2-metric was pointed out by Holm et al. (1998) who, replacing the L2 with an
H 1-metric, obtained a hydrodynamic analog to the Camassa–Holm equations which
is now known as the Euler-α equations or the Lagrangian-averaged Euler equations.
In velocity–momentum variables, they read

∂tv − u × (∇ × v) + ∇p = 0 , (5.96a)

v = (1 − α2Δ)u , (5.96b)

∇ · u = 0 . (5.96c)

The Euler-α equations arise from the “kinetic energy” Lagrangian

Lα = 1
2

∫
|u|2 + α2 |∇u|2 dx , (5.97)

which is a constant of the motion.
The connection to turbulence was made soon after its discovery, based on a num-

ber of observations. The momentum v is transported by a velocity field u which is
smoother than the momentum; see (5.96b). This was seen as analogous to Reynolds
averaging, even though the two operations are not equivalent; further, the non-viscous
terms take the form of a Rivlin–Erikson tensor, so that, in their inviscid form, they
coincide with the equations of motion for a non-Newtonian fluid of second grade
(Foias et al. 2001). Analytically, the Euler-α equations possess properties which are
notably lacking in ideal and Newtonian fluids: In two dimensions, the Euler-α model
has unique global point vortex solutions (Oliver and Shkoller 2001), and in three
dimensions, the viscous α-equations have global classical solutions (Marsden and
Shkoller 2001; Foias et al. 2002). We note that it is not a priori clear how to add
viscosity to (5.96): The references quoted so far argue that momentum should be
diffused; see Chen et al. (1999a) for a discussion of this issue. The classical equa-
tions of a viscous second-grade fluid, in contrast, diffuse velocity—amathematically
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weaker form of dissipation so that, correspondingly, the global existence of solution
is only known for small initial data (Cioranescu and Girault 1997), much like the
situation for the Navier–Stokes equations in three dimensions.

Several authors have given derivations of the Euler-α equations as the equations of
motion for some notion of a Lagrangian mean flow. Holm (1999, 2002) recognized
a close connection between Lagrangian averaging and the generalized Lagrangian
mean (GLM) of Andrews and McIntyre (1978). To provide closure, Holm assumes
that first-order fluctuations in a small amplitude expansion are parallel-transported
by the mean flow—an assumption he refers to as a Taylor hypothesis in analogy
with G.I. Taylor’s observation that turbulent fluctuations are correlated in the down-
stream direction of a flow (Taylor 1938). Marsden and Shkoller (2003), in contrast,
assume that first-order fluctuations are transported as a vector field and that parallel
transport of second-order fluctuations is, on average, orthogonal to the velocity field.
Recently, Gilbert and Vanneste (2018) have pointed out that a geometric view of
the Lagrangian mean fixes the higher-order closure conditions. In this framework,
the Euler-α equations emerge from Lagrangian averaging under the minimal set of
assumptions that (i) the averaged map is the minimizer of geodesic distance, (ii)
first-order fluctuations are statistically isotropic, and (iii) first-order fluctuations are
transported by the mean flow as a vector field (Oliver 2017; Badin et al. 2018).

The numerical evidence supporting the use of α-models is mixed. Early numer-
ical studies for homogeneous turbulence were encouraging (Chen et al. 1999b;
Mohseni et al. 2003). The underlying idea has also been ported to rotating geo-
physical fluid flow (Holm and Nadiga 2003) and used in various test cases (Hecht
et al. 2008a; Aizinger et al. 2015). Careful comparative studies for two-dimensional
quasigeostrophic turbulence, however, show that the α-model perturbs the dynam-
ics of two-dimensional turbulence. In particular, it suffers from accumulation of
enstrophy at small scales (Lunasin et al. 2007; Graham and Ringler 2013) and has
inferior correlation with an empirically observed subgrid stress tensor (Mana and
Zanna 2014), where the computationally observed behavior is close to (5.95), a rela-
tionship that is similar, but not identical to the α-model closure. In addition, as the
inversion of the Helmholtz filter in (5.96b) is non-local, it is not appealing for use
in a full ocean model. We note, however, that the idea of filtering in a geometrically
intrinsic setting is more general than what is usually pursued and may have some
merit even in the setting of the nearly geostrophic turbulence in mesoscale ocean
dynamics.

In the final part of the section,we shall sketch a possible nonstandard interpretation
of the α-model dynamics as a model for two-dimensional turbulence. For simplicity,
we return to the barotropic vorticity equation of Section 5.3.1withβ = 0 and initially
ignore forcing and dissipation. In this setting, the model coincides with the well-
studied two-dimensional Euler-α equation whose vorticity dynamics reads

∂tξ + [ψ, ξ ] = 0 , (5.98a)

ξ = LαΔψ , (5.98b)
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where (5.96b) corresponds to the choice Lα = 1 − αΔ, but Lα could also be a more
general operator defined via a Fourier symbol �α(k). The α-energy at wavenumber k
is Ek = − 1

2 ψ∗
k ξk, and the α-enstrophy is given byZk = k2 �α(k)Ek; system (5.98)

conserves total α-energy and α-enstrophy.
Now suppose that α-wavenumber k corresponds to a different physical wavenum-

ber κ(k) and that there is a corresponding physical energy

E(κ) = E (k)/h(k) . (5.99)

A straightforward computation shows that total physical energy and enstrophy are
conserved if and only if

κ2(k) = �α(k) k2 (5.100a)

and

h(k) = 1
2 k �′

α(k) + �α(k) . (5.100b)

Looking at the detailed triad interactions of the α-model, we find transfer rate
relations similar to (5.15) where the rate of nonlinear energy transfer is with respect
to α-wavenumbers, whereas the prefactors on the right-hand side are satisfied with
respect to physical wavenumbers. Thus, in general, it is not even approximately true
that the α-triad picture corresponds to the physical triad picture under the wavenum-
ber mapping implied by energy and enstrophy conservation. However, there is one
class of triads for which this is approximately the case: when one leg of the triad is in
the low wavenumbers and two legs are in the high-wavenumber range; to be definite,
we take p � k < q and set δ = p/k � 1. We might call such interactions catalytic
triads as (5.15) shows that there is an O(1) energy exchange between modes k and
q while mode p exchanges energy only at a rate O(δ). In other words, mode p
takes the role of a catalyst, mediating the transfer of energy in the high-wavenumber
regime while not participating in it to leading order. Provided the turbulent regime is
dominated by catalytic triads (which is not the classical KLB picture, but it is likely
that these triads are key players in the inverse cascade), then under mild assumptions
on �α , an α-model can be interpreted as representing the physical interactions under
the mappings (5.100) up to relative errors in rates and mapped wave numbers of
O(δ). The details of this computation involve only elementary estimates and shall
be omitted here.

Thus, to interpret theα-dynamics consistently via the remapping ofwavenumbers,
the samemapmust be appliedwhen adding forcing and dissipation terms.Dissipation
in theα-modelmomentumequation, in particular, should take the form D(κ(k)). This
corresponds to momentum rather than velocity diffusion and thus coincides with the
dissipation operator typically used in connection with α-models as reviewed earlier
in this section.

Finally, to consistently interpret the energy spectrum, it must be mapped back
to physical wavenumbers. In the comparison of Graham and Ringler (2013), for
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example, no such map is applied. This constitutes an interesting open question as,
to our knowledge, such analysis has never been done. A related open problem is to
formulate the α-model subgrid closure mapped to physical wavenumbers.

5.6 Concluding Remarks

In this chapter, we have reviewed the foundations of geostrophic turbulence and its
implications for ocean models in the eddy-permitting regime. In the past decade,
a number of authors have looked at the problem of effective parameterizations for
subgrid eddy activity and for the resulting backscatter of energy into the resolved grid.
Most of the detailed testing so far has been done in the context of quasigeostrophic
layer models, with increased attention to full primitive equation setups in recent
years.

Our selection of parameterizations for close discussion is necessarily incomplete,
highlighting recent developments in favor of older ideas, putting an emphasis on
mathematical structure toward systematic, or even rigorous, analysis, and with a
view toward applicability for a new generation of global circulation models featuring
irregular grids with spatially varying grid resolution which rules out approaches that
require explicit Fourier transforms or other constructs tied to a regular grid.

To a large extent, the ideas expressed here are exploratory. None of the parame-
terizations described here is widely used in operational models so that a major devel-
opment cycle of introducing more energy-consistent parameterizations lies ahead. It
is also not clear which of these approaches will be the most fruitful in the long run
or whether some new or possibly old ideas will prevail.

Such old ideas could include the anticipated vorticity method of Sadourny and
Basdevant (1985) which seeks to introduce a force−Dk × u such that, for example,
when D is chosen as an upwind estimate of the layer potential vorticity, the scheme
conserves energy exactly while dissipating enstrophy. In practice, this approach is
insufficient as it does not remove the component of small-scale numerical noise in u
that does not project on curl as required for numerical stability. Graham and Ringler
(2013) report that first-order anticipated vorticity results in either an excess of energy
at all scales or dissipation of enstrophy across a too large portion of the spectrum;
they suggest that applying a high-order spatial operator within the anticipated PV
formalismmay solve this issue, but at the expense of easy implementability in current
GCMs. Yet, the underlying idea is interesting as the mathematically most direct way
to reconcile energy conservation with enstrophy dissipation.

The classical development of Smagorinsky closures has been central in the mod-
eling and simulation of turbulent flow regimes; see, e.g., the review byMeneveau and
Katz (2000). However, it is not directly applicable to typical ocean regimes where,
due to the scales at which forcing, instabilities, and dissipation act, one is often not in
a self-similar scaling regime which is a prerequisite of LES and Smagorinsky-type
closures. Dynamical Smagorinsky closures (when the subgrid viscosity is computed
by applying an additional coarsening filter and fitting the difference between this and
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the original filter to the simulated stresses) could be of interest, although even with
these techniques the lack of self-similarity may be an issue.

Stochastic modeling of subgrid interactions and backscatter has been developed,
based on the direct interaction approximation of Kraichnan (1959), by Frederik-
sen and co-workers (Frederiksen and Davies 1997; O’Kane and Frederiksen 2008;
Kitsios et al. 2013, 2014, 2016). While their work involves a detailed analysis of
unresolved eddy–eddy interactions, it also heavily relies on spectral language, so that
it is not clear how applicable this approach is in the context of complex geometries
and possibly non-uniform grids and what the trade-offs in terms of skill vs. compu-
tational expense are. We also remark that there is similarity between the expression
for the subgrid drain dissipation matrix in Kitsios et al. (2013) and the estimation of
a dynamic Smagorinsky coefficient in the spirit of Germano et al. (1991).

For systems with an explicit fast–slow scale separation, it may be possible to
model the fast timescale component with a stochastic process and use stochastic
mode reduction to reduce the system to a stochastic equation on the slow timescale.
Such methods are reviewed in Section 5 of Franzke et al. (2019). However, it is com-
pletely open whether this approach is applicable to subscale modeling in geostrophic
turbulencewhere there is no clear scale separation andwhether these techniques scale
up to full ocean models.
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Chapter 6
Diagnosing and Parameterizing
the Effects of Oceanic Eddies

Alexa Griesel, Julia Dräger-Dietel and Kerstin Jochumsen

Abstract Oceanic eddies, fluctuations on scales on the order of one km to hundreds
of km, derive their energy primarily from baroclinic instability processes. Currently,
climate models do not incorporate the space and time variability of the effects of
eddies and sub-mesoscale processes in an energy-consistent way. Eddy diffusivities
are specified without connection to the energy budget and, more fundamentally, it is
unclear to what extent, where and on what scales the downgradient eddy diffusion
model is appropriate at all. Rotational components of the eddy fluxes associated
with the advective terms in the eddy variance equation are generally large, so that
production and dissipation of eddy energy do not balance locally.Wewill review here
the current understanding of the spatial and temporal variability of eddy diffusivities
and eddy–mean flow interactions that have been inferred in both observations and
eddying ocean models. A focus will be on Lagrangian particle statistics as an ideal
tool to describe the effects of eddies on a time mean transport and to assess the
limits and validities of the eddy diffusion model. Eddy diffusivity diagnostics and
the current state of eddy parameterizations in ocean models will be discussed as well
as prospects for energy-consistent parameterizations.

6.1 Introduction

Oceanic eddies, fluctuations on scales on the order of one km to hundreds of km,
and with typical timescales on the order of a month, derive their energy primarily
from baroclinic instability processes, a key component in the oceanic energy cycle
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leading to the release of available potential energy.Most current ocean components of
climate models are still rather coarse (about 1o horizontal resolution), do not resolve
mesoscale eddies, and need to parameterize their effects on the mean variables. Here,
we discuss the aspects and challenges of the parameterization of the effects of eddies
as diffusion down mean tracer gradients (“Austauschansatz”). The focus is on the
stratified oceanic interior, while mixed-layer eddies will not be specifically covered
and parameterization in models that partly resolve eddies and their effect in the mean
momentum equation is covered in Chapter 5 (Danilov et al. 2019).

The effects of mesoscale eddies in the ocean are usually parameterized using
three different components. The first component, sometimes referred to as a skew
diffusion, can be interpreted as advection of properties by an additional eddy-driven
velocity, which can be related to mixing of isopycnal layer thickness (Gent and
McWilliams 1990; Griffies 1998). The first component can be parameterized in terms
of horizontal diffusion of buoyancy and leads to the dissipation of available potential
energy. The second component, referred to as isopycnal diffusion, can be interpreted
as turbulent mixing of properties along isopycnal surfaces. The third component,
diapycnal diffusion, considers a possible eddy-induced diapycnal mixing of density
and other properties.

In this chapter, we discuss the challenges that arise when diagnosing and param-
eterizing the eddy diffusivities that arise from the diffusive paramterizations, where
the focus is on the isopycnal and skew diffusion that dominate in the oceanic interior.

To derive the different components of the parameterizations, we start with consid-
ering the conservation equation for a tracer T , for example, temperature, salinity, or
buoyancy (in the Boussinesq approximation), where the overline is a time average,
with averaging properties of a Reynolds average1

∂t T + u · ∇T + ∇ · u′T ′ = Q, (6.1)

where Q are sources and sinks of tracer. Using the transformed Eulerianmean (TEM)
framework (e.g., Andrews et al. 1987), the eddy tracer flux is decomposed into
components across and along isosurfaces of the mean tracer, i.e., a diffusive and
skew diffusive flux, u′T ′ = −K · ∇T + B × ∇T , which yields2

∂t T + (u + ∇ × B) · ∇T = ∇ · K · ∇T + Q (6.2)

where B is the vector streamfunction that defines the eddy-driven advection velocity
∇ × B, which depends on the tracer T, and K is a 3×3 diffusivity tensor quantifying
irreversible mixing of the tracer T . Note that in the eddy flux decomposition, an
arbitrary rotational flux ∇ × θ that drops out in the divergence of the eddy flux can
be added to the diffusive and skew fluxes :

1We refer here to transient eddies, i.e., T ′ = T − T and u′ = u − u, denote the fluctuations in time
due to eddies. For statistically stationary flows, time averaging is equivalent to ensemble averaging.
2The divergence of the skew part of the eddy flux ∇ · Fskew = ∇ · (

B × ∇T
) = (∇ × B) · ∇T ≡

u� · ∇T and hence can be expressed as advection by an eddy-driven velocity u� = ∇ × B.

http://dx.doi.org/10.1007/978-3-030-05704-6_5
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u′T ′ = −K · ∇T + B × ∇T + ∇ × θ ≡ Fdiff(T ) + Fskew(T ) + Frot(T ). (6.3)

We will discuss this gauge freedom and how it can be exploited in section 6.2.3.

6.1.1 Isopycnal and Diapycnal Diffusion

The formof the diffusion tensorK depends on themagnitude ofmixing in the different
spatial directions. A simple form that accounts for the much larger horizontal scales
of the eddies as compared to the vertical ones would be to choose K11 = K22 = Kh

and K33 = Kv, with Kh >> Kv and Kmn = 0 for n �= m. More accurately though,
the principal directions ofmixing are expected to be in the directions along and across
the local neutral density surfaces. They are defined as surfaces perpendicular to their
normal vector e = γρ∇S − αρ∇Θ , where S is salinity, Θ is (conservative) temper-
ature, α, γ are thermal expansion and saline contraction coefficients, respectively.
A diffusion tensor that distinguishes between isopycnal and diapycnal components
is, for example, of the form K = Kd + Ki with Kd = κd

ee
e2 and Ki = κi

(
I − ee

e2
)
. K

in this case is symmetric (i.e. Kmn=Knm), and Ki assumes mixing is isotropic in the
along isopycnal direction. In small-isoneutral slope approximation,3 the isopycnal
diffusion tensor has the form

Ki = κi

⎛

⎝
1 0 s1
0 1 s2
s1 s2 s21 + s22

⎞

⎠ (6.4)

where s1, s2 are the isoneutral slopes in zonal and meridional direction of the hor-
izontal slope vector s = −eh/e3 (Olbers et al. 2012). In general, isopycnal mixing
can also be anisotropic, for instance, it is expected to be reduced in the cross-stream
direction, then yielding a more complicated formulation of Ki .

6.1.2 Skew Diffusion

The tensorK describes the isopycnal and diapycnal diffusion components of the eddy
parameterization. To understand the skew diffusive component, we now consider the
TEM framework applied to buoyancy b = −g/ρ0ρ, where ρ is density and ρ0 is a
background density as used in the Boussinesq approximation. Then the isopycnal
component Ki · ∇b vanishes and only the diagonal component κd of K remains.
Analogous to equation (6.2), decomposing the eddy buoyancy flux in components
along and across mean buoyancy contours (see, e.g., Olbers et al. 2012) (at this point

3In the oceanic interior, isoneutral slopes are small, whereas in the well-mixed boundary layer of
the ocean, this would not be a good approximation.
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omitting any possible rotational parts) yields

∂t b + (u + ∇ × Bb) · ∇b = Qb + ∇ · κd∇b, (6.5)

with the eddy advection velocity∇ × Bb. In the oceanic interior,Qb and the diffusiv-
ity κd are small.4 Then the residual velocity (u + ∇ × Bb) is along mean isopycnals
in steady state. Neglecting κd , and using the gauge conditionBb · ∇b = 0,5 the vector
streamfunction can be expressed with the eddy buoyancy fluxes, and in small-slope
approximation

Bb = −|∇b|−2

⎛

⎝
v′b′∂zb − w′b′∂yb
w′b′∂xb − u′b′∂zb
u′b′∂yb − v′b′∂xb

⎞

⎠ ≈ −|∇b|−2

⎛

⎝
v′b′∂zb

−u′b′∂zb
u′b′∂yb − v′b′∂xb

⎞

⎠ . (6.6)

The parameterization for the horizontal eddy buoyancy flux as a diffusion down the
mean horizontal buoyancy gradient u′

hb
′ = −κb∇hb leads to the parameterization by

Gent and McWilliams (1990), GM in the following, with the eddy advection veloc-
ity u�

h = −∂z(κbs) and w� = ∇h · (κbs). This form of the eddy-induced advection
velocity u� was chosen because it mimics the effects of baroclinic instability and
leads to a global sink of available potential energy. The horizontal component of
the GM skew flux of ρ, F(ρ)skew = Bb × ∇ρ, is downgradient, while the vertical
component is always directed up the vertical density gradient. For the total skew flux
Fskew(ρ) · ∇ρ = 0, meaning there is no net dianeutral GM skew flux of ρ (hence the
adiabatic nature of GM). The upgradient tendency of the vertical skew flux results
in a tendency for the GM closure to reduce potential energy locally, i.e., to rotate the
density surfaces leading to a flattening of the isopycnals.

We note that with the GM parameterization, it is assumed that all tracers are
advected by the same eddy-induced velocity ∇ × Bb. The advective and skew fluxes
however depend on the tracer. As was shown, e.g., by Griffies (1998), for an arbitrary
tracer T , the divergence of the GM advective flux Fadv = u�T , which is equivalent to
the divergence of the skew flux Fskew = Bb × ∇T , can be attributed to an antisym-
metric skew diffusive tensor A with u� = −∇ · A. Hence, the small-slope isoneutral
diffusion tensor Ki can be combined with the antisymmetric GM stirring tensor A to
yield

J = A + Ki =
⎛

⎝
κi 0 (κi − κb)s1
0 κi (κi − κb)s2

(κi + κb)s1 (κi + κb)s2 κi s2

⎞

⎠ (6.7)

4By exploiting the gauge freedom of rotational eddy flux addition, the diapycnal diffusivity κd can
be defined such that κd = 0 follows from zero diabatic forcing Qb as in Eden et al. (2007a).
5The component of B in equation 6.3 parallel to ∇T plays no role and without loss of gen-
erality we can use the gauge condition Bb · ∇b = 0. The solution for B can be found taking
Fb × ∇b = −∇b × (

Bb × ∇b
) = −Bb

(∇b · ∇b
) + ∇b

(
Bb · ∇b

)
and the eddy streamfunction

becomes Bb = − (
Fb × ∇b

) |∇b|−2 (where we have neglected κd and a possible rotational flux in
the eddy flux decomposition).
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which is currently implemented in many ocean models to represent the isopycnal
effects of eddies. It requires the specification of the isopycnal and skew diffusivities,
κi and κb.

6.1.3 Diagnosing and Parameterizing the Diffusivities

The production of eddy kinetic energy in the ocean through baroclinic instability is
spatially and temporally highly variable, and this variation needs to be captured by
the diffusivities. Hence, significant horizontal and vertical variation in eddy diffu-
sivities have been indicated by both observations and eddying model studies (e.g.,
Eden 2006; Marshall et al. 2006; Griesel et al. 2010; Naveira Garabato et al. 2011;
Vollmer and Eden 2013; Griesel et al. 2014; Klocker andAbernathey 2014), although
different methods to infer diffusivities can result in conflicting magnitudes and spa-
tial distributions. It is also largely unclear how and where the eddy kinetic energy is
dissipated. In most current eddy parameterizations, the dissipation of the available
potential energy by the GM parameterization is simply lost and not considered fur-
ther. One process of eddy energy dissipation is for example considered in Chapter 2
(von Storch et al. 2018).

Closures for both, the skew and isopycnal eddy diffusivities have been based
on mixing length arguments, motivated by Green (1970), where the diffusivity, κ ,
depends on a length scale, Le, and a typical velocity scale, ve, κ = Leve. Here,
we also discuss approaches based on quasigeostrophic (QG) theory (e.g., Killworth
1997; Eden 2011) which offers a physically more elaborate alternative to the clas-
sical mixing length framework, from which potential vorticity (PV) and buoyancy
diffusivities based on eddy fluxes resulting from the fastest growing unstable waves
can be inferred. Quasigeostrophic linear stability analysis (LSA) results in PV dif-
fusivities, κPV , that are reduced at the surface in strong jets such as the Antarctic
Circumpolar Current (ACC) and enhanced at the steering level where the velocity of
the background flow equals the phase speed of the unstable waves (e.g., Killworth
1997; Vollmer and Eden 2013). Steering levels are hence areas where enhanced dis-
sipation of energy is expected, and classical mixing length theory can be extended
to include this effect (Ferrari and Nikurashin 2010; Klocker and Abernathey 2014;
Griesel et al. 2015).

On a more fundamental note, it still remains unclear whether, where, or on what
scales the eddy diffusion model is appropriate at all. If eddy diffusivities are diag-
nosed from observations or models, correlations between the eddy fluxes and mean
gradients are typically low and the distributions are unphysical and noisy, which can
be attributed to the presence of strong rotational parts (equation 6.3) that play no role
in the mean tracer equation but bias the definition of diffusivities. When diffusivi-
ties are diagnosed from Lagrangian particle dispersion, Griesel et al. (2010, 2014)
showed that floats travel large distances before their mean square displacement can

http://dx.doi.org/10.1007/978-3-030-05704-6_2
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be characterized as diffusion, in analogy to the molecular diffusion of Brownian
particles, if at all. The eddy flux depends on the history of mean gradients and not
just on the gradients at the point under consideration (Davis 1987). This non-local
effect, and how it depends on the scale of interest, has never been systematically
quantified on a global scale. The presence of large rotational parts of the eddy fluxes
are connected to the non-locality of the eddy energy cycles, where the production
and dissipation of eddy energy do not occur at the same location (e.g., Wilson and
Williams 2006).

In the next section, we will give an overview over some Eulerian and Lagrangian
methods to diagnose eddy diffusivities from both observations and models. Section
6.3will summarize eddy diffusivity distributions found in the oceanwith the different
models. Section 6.4 comments on the applicability of the eddy diffusion model
itself with a focus on Lagrangian dispersion statistics, and Section 6.5 introduces
concepts for the parameterization of the eddy diffusivities taking into account energy
consistency.

6.2 Eddy Diffusivity Diagnostics

Diffusivities can be quantified using both Eulerian and Lagrangian methods. The
Lagrangian approach is based on the analysis of the spreading of a tracer or particles
as they follow the flow (Taylor 1921), whereas Eulerian diffusivities can be quantified
fromEulerian eddy tracer fluxes (e.g., Eden 2006; Fox-Kemper et al. 2013). Estimates
of eddy diffusivities in the ocean have been made using all of these methods, with a
focus on surface distributions (Ferreira et al. 2005; Marshall et al. 2006; Eden 2006;
Sallée et al. 2008; Smith and Marshall 2009; Shuckburgh et al. 2009; Abernathey
et al. 2010; Ferrari and Nikurashin 2010; Griesel et al. 2010; Naveira Garabato et al.
2011).

6.2.1 Lagrangian Particle Dispersion

The Lagrangian perspective can be used to describe the effects of eddy variability
on a time mean transport (Davis 1991) and to evaluate linear QG theory as dis-
cussed in section 6.2.2 (Griesel et al. 2015). Einstein’s theory of Brownian motion
for molecules predicts the diffusive regime, where the mean square displacement of
the particles grows linearly with time and diffusivity is constant. A ballistic regime
where the dispersion grows quadratically with time is observed for shorter time lags.
In turbulence, single-particle dispersion has been shown by Taylor (1921), under
certain conditions, to be similar to Einstein’s theory of Brownian motion. Follow-
ing Taylor (1921), the Lagrangian single-particle diffusivity is half the time rate
of change of the dispersion, which is the mean square particle displacement from
a starting point. It can also be written as the integral of the Lagrangian velocity
autocovariance function (Taylor 1921; Davis 1987; Griesel et al. 2010, 2014):



6 Diagnosing and Parameterizing the Effects of Oceanic Eddies 199

κL(x, τ ) =
∫ 0

−τ

d τ̃ 〈u′(t0|x, t0) u
′(t0 + τ̃ |x, t0)〉L , (6.8)

where u′(t0 + τ |x, t0) denotes the velocity of a particle at time t0 + τ passing through
x at time t0 with the background mean flow at the particle’s location subtracted. The
brackets 〈〉L denote the Lagrangian average over many trajectories. Here, the theory
of Taylor was extended to apply to oceanic flows with a background mean flow
(Davis 1987), and hence the single-particle diffusivity as defined in equation 6.8 is a
mixed Eulerian–Lagrangian quantity. If κ is converging to a constant for some time
t > T , where T is a typical eddy timescale, then we can conclude that the behavior
can be described as diffusion for times t > T . In the oceanic interior, if particles are
advected along isopycnal surfaces, and if the dispersion is isotropic, the Lagrangian
diffusivity is equivalent to the isopycnal diffusivity κi in the tensor K from equation
6.1. As discussed below, a linearized form of the Lagrangian diffusivity is equivalent
to the PV diffusivity from linear stability analysis.

The approach taken by Davis (1987), strictly speaking, is valid for an ensemble
of particles passing through a fixed position at different moments in a shear flow.
In practice, particles do not all pass through exactly the same point, and instead
an ensemble of particles taken from a finite area (or bin) is considered. Generally,
the Lagrangian diffusivity in equation (6.8) is a symmetric tensor for homogeneous
statistics and negligible shear dispersion. As shown by Oh et al. (2000), if shear
dispersion cannot be neglected, it is the along-stream diffusivity that is affected by
shear dispersion. If we remove a spatially uniform average from each float velocity,
we are left with a residual due to the mean shear that may dominate the diffusivity
estimate (Bauer et al. 1998; Koszalka et al. 2011). Griesel et al. (2010, 2014) com-
puted the Lagrangian diffusivity tensor in the Southern Ocean of an eddying ocean
model in a coordinate system projected along and across the Eulerian mean velocity
and found that the off-diagonal components were indistinguishable from zero, while
the diffusivity in the along-stream direction was about 6 times larger than in the
cross-stream direction. This means that in the tensor Ki (equation 6.4) anisotropic
diffusion should be implemented.

In the real ocean, it is unclear whether and where the diffusive regime exists. We
will discuss this question in section6.4. If the integral converges to a constant, κ∞

L ,
then the probability density function (PDF) of the particle displacements should be
Gaussian (LaCasce 2008). An alternative method to assess convergence properties of
equation (6.8) is hence to compare the observed PDFs with Gaussians using different
diffusivities (LaCasce et al. 2014). In the presence of coherent vortices, like eddies,
the velocity autocovariance does not just decay to zero but oscillates with time lag
(Figure 6.1). The linearized Lagrangian velocity autocovariance, assuming advection
of particles in the presence of small amplitude Rossby waves with wavenumber k,
can be written as (Ferrari and Nikurashin 2010; Klocker et al. 2012a)

R(τ ) = Eek e
−γ τ cos (|k| (n · U − cr ) τ ) , (6.9)



200 A. Griesel et al.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6.1 Circling and meandering trajectories produce no net dispersion but oscillations in the
velocity autocovariance, leading to the mixing barrier effect in the diffusivity. Left panels: idealized
scenario: a random velocity field plus a constant mean flow in x-direction (“along-stream”) super-
imposed on a velocity component producing particle trajectories that meander and circle around
eddies. a Resulting trajectories that meander (black) and circle around eddies (red). b Velocity
autocovariance in meridional (“cross-stream”) direction, c corresponding cross-stream diffusivities
as a function of time lag. Right panels: more realistic scenario from and eddying ocean model.
d Some circling and meandering numerical trajectories at 300 m depth. e Corresponding velocity
autocovariance f diffusivities as a function of time lag (from Griesel et al. 2014)

where Eek is eddy kinetic energy, U is the background mean flow, n is the direction
of wave/eddy propagation, cr is the phase velocity of the waves/eddies, and γ is
the Lagrangian decay scale or the linear damping term of the stochastic forcing as
in Klocker et al. (2012a). This velocity autocovariance oscillates in the presence of
large differences between mean flow and wave speeds (Figure 6.1). The integral, in
the limit τ → −∞, becomes

κL AG = Eek γ

γ 2 + |k|2 (n · U − cr )
2 . (6.10)

This is equivalent to the PV diffusivity from linear stability analysis as will be shown
in section 6.2.2, if γ, k, cr are the growth rate, wavenumber, and phase velocity of
the most unstable wave, respectively.
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The Lagrangian single-particle diffusivity can be written as the product of the
Lagrangian integral timescale, which is the integral of the normalized Lagrangian
velocity autocorrelation and eddy kinetic energy. Near the surface, in the presence
of strong jets, when the phase speed of the eddies and mean flow differs, the floats
are carried through meanders and circle around eddies, leading to oscillations in
the velocity autocovariance and large negative lobes (Figure 6.1) that reduce the
Lagrangian integral timescale, consistent with the idea of a reduced mixing length
(Klocker et al. 2012a).

Single-particle Lagrangian statistics are an ideal tool to investigate the relative
importance of eddy kinetic energy and mixing barrier/steering level effects on the
diffusivity, as well as quantifying the non-localness of the mixing and applicability
of the diffusive model.

6.2.2 Quasigeostrophic Linear Stability Analysis

We now discuss the eddy diffusivities in the framework of quasigeostrophic linear
theory, where one can define a buoyancy diffusivity, equivalent to the skew diffu-
sivity, and a potential vorticity (PV) diffusivity that is equivalent to the linearized
Lagrangian diffusivity. Starting point for the linear stability analysis is the linearized
quasigeostrophic potential vorticity equation around a basic stateΨ = Ψ + Ψ ′, with

∂t q
′ + Uh · ∇q ′ + u′

h · ∇Q = Ah∇2q ′ (6.11)

q ′ = ∇2Ψ ′ + ∂z

(
f 2

N 2
∂zΨ

′
)

(6.12)

= ∇2Ψ ′ + Γ Ψ ′ (6.13)

with the operator Γ = ∂z

(
f 2

N 2 ∂z

)
, N and Uh are background stratification and hori-

zontal velocity, respectively, q ′ and u′
h are the perturbation PV and velocity, respec-

tively, Ψ is the quasigeostrophic streamfunction. The lateral viscosity Ah is related
to subgrid-scale friction and is introduced to filter fast growing small-scale modes
that are often related to dynamically less important surface instabilities. Assuming
horizontally homogeneous conditions, the mean PV gradient becomes

∇Q = βey − ∂z

(
f 2

N 2
∂zUh¬

)
(6.14)

where ey is the unit vector in the meridional direction. Inserting solutions of the form
ψ ′ = Ψ0�(z)ei(kx+ky−ωt) with vertical structure function � and constant amplitude
Ψ0 leads to a vertical eigenvalue equation
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Γ � =
( n¬ · ∇Q

c − n · Uh + i Ahk
+ k2

)

�. (6.15)

in the interior, with no normal flow boundary conditions, where c = ω/|k| is the
complex phase velocity, n = k/|k| is the direction of phase propagation. Vectors

with the subscript¬ are rotated anticlockwise in the horizontal, e.g.,∇¬ = (−∂y, ∂x ).

The eigenvalue problem (6.15) can be solved numerically following Smith (2007)
and Vollmer and Eden (2013). Eigenfunctions � and eigenvalues ω might be com-
plex. For a positive imaginary part of ω, the amplitude grows exponentially in time.

6.2.2.1 Eddy PV Flux and Diffusivity

With u′
h = ∇¬Ψ ′ = k¬Ψ ′ and q ′ = Ψ0

(−k2� + Γ �
)
ei(kx+Ky−ωt), the eddy PV flux,

averaged over one wave cycle

u′
hq

′ = −Ψ 2
0

2

( n¬ · ∇Q

c − n · Uh

)

�2ci k¬ (6.16)

is in the direction perpendicular to the wave propagation and defines a PV diffusivity

κPV = u′
hq

′ · ∇Q

|∇Q|2 = Ψ 2
0

2
|k| ci |�|2

|n · Uh − c|2 (6.17)

where ci = ωi/|k| is the imaginary part of the phase velocity. Equation (6.17) implies
again the assumption that there is a local relationship between the eddy fluxes and
the mean gradient, and that the unstable waves locally produce the mixing. The
streamfunction amplitude can be parameterized using

Ψ0 = Kwci Lmax , (6.18)

with scale of largest growth Lmax , and constant scaling factor Kw (Killworth 1997;
Eden 2011; Vollmer and Eden 2013). With Eek = 1

2Ψ
2
0 |k|2� (��∗), the PV diffu-

sivity can be written as

κPV = ωi Eek(z)

ωi
2 + |k|(n · Uh(z) − cr )2

(6.19)

where cr is the real part of the (Doppler shifted) phase speed of the most unstable
wave and ωi = ci |k| is the growth rate. Note that the diffusivity has no singularity
since for unstable waves ωi �= 0 (and for stable waves κPV = 0).
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6.2.2.2 Eddy Buoyancy Flux and Diffusivity

The eddy buoyancy flux related to the wave can be written as

u′b′ = k × ∇Ψ ′ f ∂zΨ ′ = −Ψ 2
0

2
k¬ f �

(
i�

d��

dz

)
= κb∇b, (6.20)

where�� is the complex conjugate eigenfunction. The eddy buoyancy flux projected
across mean buoyancy contours defines a diffusivity κb, that in the quasigeostrophic
framework is equivalent to the GM skew diffusivity. Both PV and buoyancy diffu-
sivity can be estimated by solving the linear stability problem using local profiles of
vertical shear and stratification (Smith and Marshall 2009; Vollmer and Eden 2013;
Griesel et al. 2015).

The eddy PV (equation 6.13) contains contributions from both the relative and
stretching PV, and in the quasigeostrophic framework, the eddy PV and buoyancy
fluxes are related in the Taylor relation

u′q ′ = ∇¬ · u′u′ + f0∂z

(
u′b′

N 2

)

− 1

2

∇¬b′2

N 2
(6.21)

The eddy buoyancy as well as the eddy momentum flux divergence contribute to the
eddy PV flux. Hence, equation (6.21) suggests that the convergence of the eddy
momentum flux that appears in the mean momentum budget can be parameter-
ized in terms of eddy PV and buoyancy fluxes (see, e.g., Marshall et al. 2012 and
Chapter 5; Danilov et al. 2019). If the buoyancy flux term dominates in equation
(6.21), inserting the definition of the diffusivities, the buoyancy diffusivity is related
to the vertical integral of the PV diffusivity

κPV∇Q = f0∂z

(
κb∇b

N 2

)

. (6.22)

The advantage of using quasigeostrophic linear stability analysis is that it leads
to diffusivities that are a direct consequence of the properties of the mean flow to
generate eddies and does not rely onmixing length hypotheses. A disadvantage is that
it assumes horizontally homogeneous conditions, relies on the linearized equations,
and implies that the energy of the unstable waves is locally “dissipated.” Eddy energy
that was generated elsewhere and advected into the region of interest is not taken
into account.

A large fraction of the eddy field appears as coherent structures with large ampli-
tudes and non-linear processes likely play a large role (Chelton et al. 2011). The
effects of the non-local, non-linear nature of eddy–mean flow interaction on energy
cascades, eddy properties, and eddy fluxes remain unclear (Chen et al. 2014a). Nev-
ertheless Griesel et al. (2015) have shown how Lagrangian statistics for the fully

http://dx.doi.org/10.1007/978-3-030-05704-6_5
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non-linear case can be used to assess the QG diffusivities, and that the Lagrangian
decay scale is on average four times larger than the growth rate of the most unstable
linear waves and depth dependent.

6.2.3 Diffusivities from Eulerian Eddy Fluxes

Wenowdiscuss howEulerian eddy tracer fluxes from non-linear eddying oceanmod-
els can be used to define physicallymeaningful eddy diffusivities. From aLagrangian
perspective, “mixing” means decorrelation of particle trajectories and is generally a
non-local process since particle trajectories need to be long enough to have reached
the largest scales of the eddies to average over the oscillations in the velocity autocor-
relation. Similarly, Eulerian eddy heat fluxes, averaged, must have a net component
down the mean gradient so that mean available potential energy may be released.
However, locally the association between eddy flux and mean gradient is not so
strong because large rotational parts in the Eulerian eddy fluxes with both up- and
downgradient components locally bias estimates of eddy diffusivities. To still esti-
mate physically meaningful diffusivities, the idea is to isolate the local irreversible
downgradient mixing processes from other reversible transport processes, taking into
account the eddy variance budget (Osborn and Cox 1972; Marshall and Shutts 1981;
Nakamura 2001; Medvedev and Greatbatch 2004; Eden et al. 2007a). This approach
can be applied to both GM and PV diffusivity, using the eddy buoyancy variance
(related to eddy potential energy) and eddy enstrophy (eddy PV variance) budgets.
Generally, a large part of the eddy fluxes are not directed downgradient, as shown in
Figure 6.2 for eddy buoyancy flux and mean buoyancy gradients in an eddying ocean
model. Even if the part of the eddy flux that is across mean contours is considered,
it is not necessarily downgradient.

In order to estimate physically meaningful diffusivities, analogous to the three-
dimensional decomposition in equation (6.3) the horizontal eddy buoyancy flux can
be decomposed into a component that is across the horizontal buoyancy gradient with
buoyancy diffusivity κb as used in the GM parameterization, a component along
isolines of mean buoyancy b with parameter ν, and a rotational component with
rotational potential θ that does not play a role in the divergence of the eddy fluxes
but influences the definition of the buoyancy diffusivity

u′
hb

′ = −κb∇hb + ν∇¬b + ∇¬θ. (6.23)

The buoyancy diffusivity can then be diagnosed from the Eulerian quantities in the
models

κb = −
(

u′
hb′ − ∇¬θ

)
· ∇hb/|∇hb|2, (6.24)
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Fig. 6.2 a Horizontal eddy buoyancy flux (vectors) and mean buoyancy (color, in m min−2) in an
eddy-resolving model of the North Atlantic (1/12o resolution) at 300 m depth. Shown are 5-year
averages for two different regions (from Eden et al. (2007b)). While some part (south of about 26
oN) of the eddy flux is downgradient in the subtropical gyre (a), it is along mean buoyancy contours
particularly in the North Atlantic current (b)

where rotational parts of the eddy fluxes can be defined by taking into account the

equation for eddy variance Φ2 = b′2
2

∂tΦ2 + ∇h · uhΦ2 + u′
hb′ · ∇hb = −N 2w′b′. (6.25)

which is equivalent to the conservation equation for available potential energy in QG.
The second termon the left-hand side is the advection of eddypotential energybyboth
the mean flow and eddies, the third term is the eddy flux across b contours and related
to baroclinic instability, and the term on the right-hand side is the exchange between
eddy potential and eddy kinetic energy and hence can be considered as “dissipation”
of eddy potential energy.We have neglected any diabatic forcing. N 2 is the buoyancy
frequency of the background stratification. Using the flux decomposition, equation
(6.23) in steady state leads to

∇h · uhΦ2 + ∇¬θ · ∇hb = κb|∇hb|2 − N 2w′b′. (6.26)

Similar to approaches of Marshall and Shutts (1981), Greatbatch (2011), Medvedev
and Greatbatch (2004), Eden et al. (2007a), one can associate the advection of eddy
variance (first term of the LHSof equation (6.26))with the projection of the rotational
flux along the buoyancy gradient (second term of the LHS of equation 6.26). This
assumption allows then to associate the diffusivity κb with dissipation of eddy vari-
ance (RHS of equation (6.26)) and is hence related to the release of mean available
potential energy as intended in the GM parameterization. However, also the eddy
variance flux can have components along and across the mean buoyancy contours,
and only the part that is along b contours should be associated with the rotational
potential, whereas the flux of eddy variance across b contours should contribute to
the horizontal diffusion of b expressed with κb. Hence, we decompose also the eddy
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variance flux,
uhΦ2 = −κ2∇b + ν2∇¬b, (6.27)

inserted into the eddy variance equation leads to

∇h · κ2∇hb + ∇¬ (θ − ν2) · ∇hb = κb|∇hb|2 − N 2w′b′. (6.28)

Choosing the rotational potential θ = ν2 = uhΦ2 · ∇¬b/|∇hb|2, the diffusivity

κb = |∇hb|−2 (
N 2w′b′ + ∇h · κ2∇b

)
(6.29)

is also associated with the eddy variance flux across b contours, where κ2 = uhΦ2 ·
∇b/|∇hb|2. However, also the eddy variance flux in κ2 contains rotational parts and
we can now consider higher order moments and add a rotational flux θ2¬ in the eddy

variance flux decomposition equation (6.27) which can be determined considering
the equation for Φ3 = b′3/3.

Even higher order moments can be taken into account analogous to Eden et al.
(2007a), and the diffusivity, in steady state, can be expressed as

κb = N 2

|∇hb|2
w′b′ − N 2

|∇hb|2
∇h ·

(
∇hb

|∇hb|2
wΦ2

)

+ O(wb′n; n > 2). (6.30)

This means that in principle, eddy diffusivities associated with the production of
eddy variance and higher order moments in steady state can be devised. The ques-
tion remains whether in practice such a procedure will indeed converge to a local
diffusivity.

6.3 Eddy Diffusivity Estimates in the Global Ocean

We discuss now results from different eddy PV, isopycnal and buoyancy (GM) dif-
fusivity estimates, in both observations and eddying ocean models, and their consis-
tency with predictions from linear stability analysis. In the linear QG framework, PV
and Lagrangian diffusivity are equivalent, and PV diffusivity is expected to display a
maximumat the steering level. Abernathey et al. (2013) showed principal consistency
and agreement of PV, isopycnal diffusivity for different tracers and Lagrangian eddy
diffusivity, using various diagnostics in a circumpolar channel without topography.
They also found a steering level signature as predicted from linear QG theory consis-
tent with the findings in the zonal channel of Treguier (1999). They also concluded
that the buoyancy diffusivity is not identical to the isopycnal diffusivity. Riha and
Eden (2011) comparedLagrangian andEulerian PVdiffusivities fromaflux–gradient
relationship in a zonal flat-bottom channel and found that the Eulerian estimate shows
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an increase with depth and clear minima of meridional diffusivities within the zonal
jets, indicating mixing barriers. In that study, the Lagrangian estimates agreed with
the Eulerian method on the vertical variation.

In the zonally averaged flat-bottom framework, however, the downgradient rela-
tionship is expected to be more robust since, e.g., rotational fluxes are reduced.
Zonal asymmetries, introduced in the form of topographic barriers, lead to different
eddy statistics upstream and downstream of the barriers. For example, smaller-scale
baroclinic eddies can be organized by larger-scale topography generated stationary
waves to form localized storm tracks (locally enhanced eddy kinetic energy) (e.g.,
Abernathey and Cessi 2014; Bischoff and Thompson 2014; Chapman et al. 2015).
The strong along-stream variation of eddy properties requires considering local time
mean–eddy statistics and taking into account strong rotational parts (e.g., Wilson
and Williams 2004). As a consequence, diffusivity estimates become challenging in
more realistic configurations with realistic topography.

For example, Lagrangian methods need to consider long enough trajectories or
tracer contours to estimate diffusivities, and those diffusivities correspond to an aver-
age over trajectories and tracer contours rather than providing local 2D diffusivity
maps, a direct consequence of the non-localness of the eddy mixing (section 6.4).
In spite of the challenges, and since observations of Eulerian eddy fluxes are too
sparse and biased by rotational parts, a large part of observational estimates of eddy
diffusivities rely on Lagrangian dispersion statistics in various regions (e.g., Davis
1991; LaCasce 2008; Koszalka et al. 2011; Sallée et al. 2008). Some studies did
not use long enough time lags for the diffusivity to converge and thereby overes-
timate or underestimate diffusivity, leading to large correlation with eddy kinetic
energy (Griesel et al. 2010). Some include the effect of shear dispersion which is no
eddy effect. Estimates of surface eddy diffusivity were obtained by Marshall et al.
(2006), Ferrari and Nikurashin (2010), Klocker and Abernathey (2014), Abernathey
and Marshall (2013) advecting a tracer with velocities as computed from satellite
altimetry. Effective diffusivity directly measures the enhancement of mixing due to
the stretching of tracer contours by eddies, but is also a non-local estimate. Generally,
surface eddy diffusivities are in the order 100–10,000 m2 s−1 and agree in that they
are reduced in the cross-stream direction in areas with strong mean flows.

While estimates of surface diffusivities are more widely available, inferences
of depth dependence rely mostly on numerical models and theories. Vollmer and
Eden (2013) analyze both GM and PV diffusivities from linear stability analysis
using observed stratification and geostrophic velocity shear, showing enhanced PV
diffusion at the steering level. Griesel et al. (2015) tested the predictions from linear
theory in an eddying model in the Southern Ocean and found that the Lagrangian
integral timescale was enhanced at the steering level at many places in the ACC
(upper right panel of Figure 6.3), but not everywhere. However, the spatial variation
of the Lagrangian diffusivity also crucially depends on the vertical structure of eddy
kinetic energy (EKE) and was diagnosed in Griesel et al. (2015) to be without clear
steering level signals (lower right panel of Figure 6.3).

Estimates of isopycnal diffusivity and depth dependence from observations are
limited. Naveira Garabato et al. (2011) and Cole et al. (2015) used a mixing length
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Fig. 6.3 Left: Lagrangian diffusivities (upper panel) and velocity autocovariance (lower panel) as
a function of time lag at three depth levels for a region southwest of Australia. Right: Lagrangian
integral timescale (upper panel) and Lagrangian diffusivity (lower panel) diagnosed from numerical
particle dispersion in an eddying ocean model in the Southern Ocean as a function of depth and
longitude along the main jets of the Antarctic Circumpolar Current. The black line is the steering
level depth where enhanced mixing is expected from linear theory (from Griesel et al. 2015)

framework that relates observed tracer anomalies to gradients of the mean tracer
to estimate isopycnal diffusivity. Cole et al. (2015) used salinity anomalies on den-
sity surfaces from ARGO float profiles, defining a mixing length (as described by
(S′2)1/2/|∇S|, where S′,∇S are salinity anomaly and salinity gradient on isopycnal
surfaces, respectively) and diffusivity computed asmixing length times u′2. The study
by Cole et al. (2015) supports the picture that while mixing lengths have both surface
and subsurface maxima, diffusivity has less pronounced subsurface maxima due to
the decay with depth of the velocity field. The significance, extent and magnitude,
of a subsurface maximum and whether it is consistent with the depth at which mean
flow and phase speeds of unstable linear Rossby waves are the same, remains under
debate (Abernathey et al. 2010; Griesel et al. 2010, 2014; Klocker et al. 2012a, b;
Tulloch et al. 2014; Chen et al. 2014b, 2015; LaCasce et al. 2014). Roach et al.
(2016) recently used trajectories of ARGO floats together with an eddying ocean
model of the Southern Ocean, SOSE and found cross-stream diffusivities at 1000
m ranged between 300 and 2500 m2 s1, with peaks corresponding to topographic
features. Eddy diffusivities in the regions of topographic steering were greater than
what would be theoretically expected and the ACC experienced localized enhanced
cross-stream mixing in these regions. Estimates of the GM diffusivity have been
obtained considering eddy buoyancy fluxes in eddying ocean models. Nakamura
and Chao (2000) and Tanaka et al. (2007) estimated the GM diffusivity from the
divergence of the eddy fluxes directly, yielding extremely noisy distributions. Eden
(2006); Eden et al. (2007b) estimate GM diffusivity from a high-resolution model
of the Southern Ocean and North Atlantic, respectively, subtracting rotational parts
using approaches similar to equation (6.24) and find that the subtraction of rotational
parts improves the estimates.
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The full diffusivity tensor (equation 6.7) has been estimated by Fox-Kemper
et al. (2013) and Liu et al. (2012) from global eddying ocean models. Fox-Kemper
et al. (2013) used multiple tracers, assuming they share the same diffusion tensor,
to estimate its components with a least squares method (Bratseth 1998), without
subtracting rotational parts. Their results suggested isopycnal and GM diffusivities
to be similar, something that is not predicted by LSA (equation 6.22) for example. Liu
et al. (2012) estimated both isopycnal andGMdiffusivities with an adjoint technique,
including the parameter ν from equation (6.23), finding GM diffusivities ranging
from−800 to 2500m, i.e., including negative ones. They also found some evidence of
enhanced mixing at the steering level. Overall, the studies suggest significant spatial
variations in eddy diffusivitieswith open questions regarding their depth dependence,
whether GM and isopycnal diffusivities should be similar, and, more fundamentally
over what scales and where a downgradient diffusive model is appropriate.

6.4 Limits of the Eddy Diffusion Model and Anomalous
Diffusion

As noted before, the presence of rotational parts (or in other words, the reversible
components in the eddy variance equation, like advection of eddy variance by the
eddies and the mean flow) makes it difficult to locally parameterize the effects of
eddies as a diffusive process, since production of EKE and “dissipation” does not
occur in the same place. The subtraction of rotational parts including higher order
moments as in Eden et al. (2007a) presents in theory the possibility to estimate a local
eddy diffusivity that is related to dissipation of variance. But those rotational parts
of the eddy fluxes may overwhelm the total eddy tracer flux making a local estimate
challenging if possible at all (e.g., Griesel et al. 2009). Looking at the eddy variance
budget of a passive tracer advected by geostrophic velocities derived from satellite
altimetry, Abernathey and Marshall (2013) concluded that on large-scale mixing
is “approximately local.” More explicitly, they argued, that variance is generally
dissipated within 500 km, of where it is produced. The areas where the advection
terms and thereby the rotational parts are significant are mostly in boundary currents,
the ACC, or near the equator.

The lack of local relationship between eddy fluxes and mean gradients is also
reflected in the fact that longtime lags are needed for the Lagrangian diffusivity
to reach the diffusive regime (see also Figure 6.3). Specifically this might lead to
experimental situationswhere the diffusive regime is not reached at all during the time
of observation. For example, as discussed in section 6.2.1 in the presence of vortices,
or eddies, the velocity autocovariance oscillates. Amajor part of the eddy flux rotates
around contours of eddy variance (upper panel of Figure 6.4) and is both up and down
themean tracer gradient, producing rotational fluxes that do not influencemean tracer.
The eddy heat fluxes may have a net downgradient component only when averaged
(lower panel of Figure 6.4). Meanders and coherent eddies dominate the Lagrangian
dispersion at small time lags, leading to no net dispersion (the mixing barrier effect
as discussed in section 6.2.1, and cf Figure 6.1) and still well-correlated trajectories.
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Fig. 6.4 Upper panel: horizontal eddy heat flux (vectors in W m−2) rotating around eddy temper-
ature variance Θ ′2 (color in oC2), leading to eddy fluxes up and down the mean temperature Θ

(red contours in oC) gradient for a region in the Southern Ocean west of Drake Passage. Lower
panel: cross-stream eddy heat flux along three Lagrangian trajectories (black, left axis; W m−2)
and associated cumulative mean cross-stream eddy heat flux averaged along each trajectory (red,
right axis; W m−2. The averaged heat flux converges for time lags greater than 50 days to a net
downgradient (negative) one that is much smaller than the local eddy heat flux (black lines) (from
Griesel et al. 2010)

Only when the particles become uncorrelated the diffusive regime can be reached,
where the dispersion grows linearlywith time as is characteristic ofBrownianmotion.
For smaller scales, due to the underlying complex dynamics described above, strong
deviations from normal diffusion occur. The transport can be ballistic, where the
dispersion, that is the mean square displacement, 〈r2〉, grows quadratically in time.
But even anomalous dispersion

〈r2(t)〉 ∼ tβ (6.31)
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with power laws different from linear (β = 1) or quadratic (β = 2) can take place.
Superdiffusion where β > 1 has been observed in numerical and laboratory exper-
iments, but also, e.g., for sea ice in the Fram Strait region (Gabrielski et al. 2015),
where β ≈ 5/4 has beenmeasured. Anomalous diffusion, its hallmark being the non-
linear growth of the mean square displacement with time (equation 6.31), is found
in a wide diversity of complex systems, like liquid polymers, proteins, biopolymers,
glasses or even in economics. In general, the temporal evolution of, and within, such
systems deviates from Fick’s diffusive law. With the development of more sophisti-
cated experimental methods leading to higher resolutions in laboratory experiments
or with the emerging higher resolutions in ocean and climate models, these devia-
tions have become more prominent. From a mathematical point of view, anomalous
diffusion rests on the generalized central limit theorem for such situations where
underlying distributions are so broad that not all of their moments exist, which is
the hallmark of so-called Lévy distributions. A Lévy flight, for instance, does not
converge toward a Gaussian stochastic process, but instead is “attracted” toward a
Lévy stable process with infinite variance (Mandelbrot 1982; Bouchaud and Georges
1990). The requirement of finite variance of a physical process can be met by intro-
ducing spatial–temporal coupling (Montroll andWeiss 1965; Shlesinger et al. 1993).
While for superdiffusion (β > 1), long-range correlations dictate the temporal evo-
lution of the system, broad distributions of residence times, e.g., due to geometrical
constraints, can lead to subdiffusion (β < 1). As also discussed in section 6.2.1
subdiffusive dispersion in the ocean occurs, for example, due to longtime trapping
of particles by coherent structures or eddies and planetary waves (e.g., Berloff and
McWilliams 2002). Another diffusional anomaly, which has been explored much
less, displays even logarithmically slow dependence on time of the so-called Sinai
type<r2(t)> ∼ lnβ t and can also be describedwithin the same framework (Draeger
and Klafter 2000).

In practice, estimating the Lagrangian diffusivities from ocean field experiments
relies on grouping different trajectories together in geographical bins. As a conse-
quence of the above-described features the bin sizes, then need to be large enough
so that the trajectory segments are sufficiently long for convergence. Due to the
complex dynamics on smaller and intermediate timescales, Lagrangian convergence
properties and scales have not yet been quantified in a consistent way on a global
scale. In some previous studies, the Lagrangian diffusivity has been evaluated as the
maximum diffusivity in a given time lag interval (Krauss and Böning 1987; Lumpkin
et al. 2001; Zhurbas and Oh 2003), which is not the right measure of diffusivity in
the presence of meandering mean flows and coherent eddies (Veneziani et al. 2005;
Griesel et al. 2010) and overestimates or underestimates the diffusivity. Fox-Kemper
et al. (2013) and Zhurbas et al. (2014) discuss estimates of Lagrangian surface eddy
diffusivities that were computed from available surface drifter trajectories. They
obtained their values from comparatively short time lags (10, 15, or 20 days). Sallée
et al. (2008) used surface drifters and fit an analytical expression of the autocorrela-
tion, consisting of an exponential decay and a cosine oscillation with a period of the
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first zero crossing. While the analytical expression is similar to the one derived by
Klocker et al. (2012b) from dynamical arguments (equation (6.9)), it underestimates
the mixing barrier effect by emphasizing the early lag times and hence consistently
overestimates diffusivity (Griesel et al. 2015). Instead, Sallée et al. (2011) used time
lags of up to 300 days in a cross-stream coordinate system and detected two regimes:
a transition regime with periods less than approximately 50 days where dispersion
grows quadratically (ballistic transport) and a second regime where the dispersion
converges toward linear growth, starting around day 70. Griesel et al. (2010, 2014,
2015) have shown that in the Southern Ocean of an eddying model time lags of
at least 30 days were required for the Lagrangian diffusivity to converge (Figure
6.1). LaCasce et al. (2014) reported that diffusivities from observed trajectories in
the region west of Drake Passage failed to converge before the particles had left
the region at depth levels above 1000m. At the deeper levels, convergence took
a whole year.

While single-particle dispersion yields information about themean flow and diffu-
sivity, multiple particle statistics measure the cross-correlation between velocities of
different particles and thereby enables to quantify straining, which reflects the spread
about the center of a cloud of tracers with time. In particular, Lagrangian pair disper-
sion statistics can shed light on the physics at different scales and can give insight into
energy cascades that are present at the scale of the separation (e.g., LaCasce 2008).
The study of pair (“relative”) dispersion goes back to Richardson’s famous work on
atmospheric diffusion in 1926 (Richardson 1926) and has been derived from surface
drifters in the ocean in recent years as more Lagrangian data become available (e.g.,
LaCasce 2008; Koszalka et al. 2009; LaCasce and Ohlmann 2003; Poje et al. 2014).
Relative dispersion, computed from particle pairs, is quantified by the mean square
separation d of the pairs

〈d2(t)〉 = 〈|x1(t) − x2(t)|2〉 (6.32)

where the averages are taken over all pairs of particles 1 and 2 with x1,2(t) being
their location at time t . Similarly to single-particle diffusivity (equation 6.8), one can
define the relative diffusivity

κr (t) = 1

2

d

dt
〈d(t)2〉 = 〈d0ν〉 +

∫ t

t0

〈ν(t)ν(t ′)〉dt ′ (6.33)

where ν is the pairs’ separation velocity, and d0 is their initial separation. For small
enough initial separations the contribution of the first term can be neglected and the
time dependence of the relative diffusivity is governed by the second term. When
the particle separation is large enough, relative dispersion has the same asymptotic
diffusive behavior as absolute (single) particle dispersion but the relative diffusivity
approaches twice the absolute diffusivity from equation (6.8). At earlier times, due
to velocity correlations induced by the Eulerian flow, relative dispersion shows a dif-
ferent behavior (see below). Under conditions of stationary Lagrangian statistics and
homogeneous incompressible flow, relative dispersion can be related to the Eulerian
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energy spectrum. If the spectrum has a power-law dependence E(k) = k−α , the dis-
persion scales as 〈d2(t)〉 ∼ t4/(3−α) for shallow spectra 1 < α < 3. For the turbulent
inertial range, for which α = 5/3, the relative dispersion increases cubically in time

〈d2(t)〉 = Cεt3, (6.34)

where ε is the energy transfer rate and C is the Obukhov–Richardson constant. While
equation (6.34) originally was derived by Richardson from empirical findings, later
Obukhov and Batchelor derived the t3-dispersion law by applying scaling arguments
of Kolmogorov. Richardson dispersion can be interpreted by a scale-dependent diffu-
sivity κ ∝ d4/3 (see, e.g., Bennett 1984; LaCasce 2008). This anomalous dispersion
which also referred to as local dispersion is controlled by eddies that are comparable
in size to the pair’s separation.

For steeper Eulerian spectra, α ≥ 3 particle pair separations grow exponentially
〈d2(t)〉 ∼ exp(t/τs), where the unfolding time τs is related to the strain rate. In
this non-local regime, the dispersion is determined by eddies which are larger than
the pair’s distance. The diffusivity then scales linearly with the dispersion. In 2D
turbulence in the presence of baroclinic instability, one would expect to observe
exponential growth of relative dispersion until the deformation radius is reached,
and then dispersion would increase cubically in time, until the scale of the largest
eddies is reached from which on the dispersion would increase linearly in time with
constant diffusivity. In the asymptotic (diffusive) regime, the pair’s separation is
larger than the largest eddy in the system. Roughly speaking in the diffusive regime,
the two particles are nomore affected by the same eddy or more precisely this regime
is characterized by uncorrelated pair velocities. Similarly to Brownianmotion, where
the particles are kicked independently by different molecules, pair dispersion in the
ocean asymptotically grows linearly with time, i.e., it can be described by a constant
diffusivity.

Observations of relative dispersion in the ocean from floats or drifters that were
not deployed in pairs as it is done in most field experiments are limited since in
these cases the analysis has to rely on so-called chance pairs, that is on pairs which
randomly come close to each other. When drifters or floats are released in pairs (or
triplets) Richardson-type dispersion is often found within certain separation scales,
which depends on the region (Okubo 1971; LaCasce and Bower 2000; LaCasce and
Ohlmann 2003; Ollitraut et al. 2005; LaCasce 2008; Koszalka et al. 2009; Draeger-
Dietel et al. 2018). The diffusive regime in contrast is observed for much larger
scales beyond the local deformation radius.Koszalka et al. (2009), for example, found
evidence for the diffusive regime for scales larger than 100km in theNordic Seas from
relative dispersion. For the Benguela upwelling region in the South Atlantic Draeger-
Dietel et al. (2018) found the diffusive regime to take place at scales larger than about
200 km. Ohlmann and Niiler (2005) observed relative dispersion with initial pair
separations smaller than 1 km in the Gulf of Mexico, where the deformation radius
is roughly 45 km. The dispersion never reached the diffusive regime and a power-law
dependence persisted up to the largest observed scales (a few hundred kilometers).



214 A. Griesel et al.

While the Richardson regime is expected to occur under a turbulent energy cas-
cade, it also can occur in the presence of a mean shear. Since, as noted above, in the
first case the velocities of the pairs are correlated, this leads to an increasing mean
square separation velocity. In the latter case however due to the absence of correla-
tions, a constant mean square separation velocity should be detected. By means of
analyzing the velocity correlation Koszalka et al. (2009) discounted shear dispersion
to be responsible for the Richardson dispersion observed at intermediate scales in
their experiment in the Nordic Seas and concluded that their results are consistent
with an inverse turbulent energy cascade in the region.

To conclude, since particles cover large distances before the corresponding dis-
persion becomes diffusive, if at all, parameterizations of the effects of eddies that are
based on the concept of a downgradient diffusionwith a scale-independent diffusivity
need to be aware of the scales and regions for which they are applicable. Especially
with higher resolution of climate models, interpretation of the diffusivities becomes
more challenging. Therefore, approaches which take into account the intermediate
anomalous diffusive regimes and go beyond the concept of diffusive system possibly
in terms of recent stochastic methods can be discussed; see Chapter 1 (Franzke et al.
2019).

6.5 Eddy Diffusivity Parameterization

To account for the spatial variability of the eddy diffusivities, closures of the diffu-
sivities κb, κPV , κi have been based on mixing length arguments, first proposed by
Green (1970) and Stone (1972). Mixing length is similar to the concept of free mean
path in thermodynamics, where a parcel retains its property for a characteristic length
scale until it mixes with its surroundings. Assuming the mixing length is related to
the size of the eddies, parameterizations of the form

κb = c1 Eek Te = c2 Eek
1/2 Le = c3L

2
eσ. (6.35)

have been employed, where Eek is eddy kinetic energy, Le, Te are typical eddy length
and timescales, respectively. The ci are tuning parameters. Several different variants
of equation (6.35) have been used. Visbeck et al. (1997) chose the inverse of the
vertically averaged Eady growth rate σ as a timescale and the maximum of the local
Rossby radius, the grid spacing and the width of the baroclinic zone of the region of
interest as the eddy length scale Le. By adjusting the parameter c3, using the Rossby
radius as length scale yields either too small values of κb in high latitudes or too
large ones in low latitudes so Eden and Greatbatch (2008) concluded to use instead
of the minimum of Rossby radius and Rhines scale, which is consistent with the
theory of Theiss (2004). To include depth dependence Danabasoglu and Marshall
(2007) used a parameterization that depended on the local stability frequency, N ,

http://dx.doi.org/10.1007/978-3-030-05704-6_1
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κb = κ0N 2/N 2
re f . Marshall et al. (2012) derived a geometric interpretation of eddy–

mean flow interactions and proposed a GM coefficient similar to equation (6.35),
however using the total (kinetic plus potential) eddy energy. The parameterization of
Visbeck et al. (1997) can be considered as a simple version of the parameterization
proposed by Eden and Greatbatch (2008), that will be discussed below, if (σ Le)

1/2

is an approximation of Eek , and the local, instead of vertically averaged Eady growth
rate is used.

However, as suggested by, e.g., Ferrari and Nikurashin (2010) and Klocker and
Abernathey (2014), and as discussed in section 6.2, mixing length scales like eddy
size in the absence of mean currents, but is reduced when eddies propagate with
speeds smaller than the mean flow speed, leading to mixing length that is reduced
at the surface increasing with depth. This mixing suppression is supported by obser-
vations. The starting point is based on quasigeostrophic LSA (equation 6.19). This
expression is strictly valid for the PV diffusivity, but the GM diffusivity is related to
the PV diffusivity under certain assumptions (equation 6.22). It is not entirely clear
how the variables that appear in equation (6.19) and also in (6.10) are related to
the non-linear eddies in the ocean. The kinetic energy of the growing linear waves
could be replaced by the EKE of the turbulent eddies and parameterized as in the
framework of Eden and Greatbatch (2008) (next section). The linear growth rate ωi

may not be applicable to the non-linear eddies in the ocean that grow and decay.
The Lagrangian parameter γ from equation (6.10) is the Lagrangian decay scale of
the velocity autocovariance and is related to the Lagrangian decorrelation time. The
Lagrangian decay scale was diagnosed to be about 4 times the growth rate of linear
waves by Griesel et al. (2015) in the Southern Ocean, and also depth dependent
exhibiting a maximum close to the steering level. In the stochastic theory of Ferrari
and Nikurashin (2010), γ is the decay rate of a random superposition of Rossby
waves. The inverse damping rate can be considered as a lifetime of the eddies, or
the time it takes for large-scale straining motions to distort the eddy (Salmon 1998;
Bates et al 2014). Under the assumption that the wavenumber k = |k| of the unstable
waves is related to the size of the eddies Le = 2π/k (which might be larger than k
in an inverse cascade), and that the phase speed of the eddies is related to the phase
speed of the linear Rossby waves, one can estimate diffusivities based on equations
(6.19), (6.10) (Ferrari and Nikurashin 2010; Klocker and Abernathey 2014; Bates
et al 2014; Chen et al. 2014b; Griesel et al. 2015). We discuss in the next section
how to parameterize EKE from equation (6.19).

6.5.1 EKE Equation

To connect to the energy budget, in the approach of Eden and Greatbatch (2008) the
terms in the equation for eddy kinetic energy, Eek ,

Dt Eek = S + w′b′ − ∇ · M − ε (6.36)
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are parameterized in termsof the large-scale variables. S = −u′u′ · ∇hu − u′v′ · ∇hv
describes the production of eddy kinetic energy related to eddy momentum fluxes
and exchange with mean kinetic energy, the energy production term w′b′ due to
baroclinic instability, the flux divergence term ∇ · M containing the advection of
eddy kinetic energy by the eddies and correlations between pressure and velocity
fluctuations, and ε is the dissipation of eddy kinetic energy.

The baroclinic production term (denoting the conversion of eddy potential to eddy
kinetic energy) is parameterized with κb as

w′b′ = κb|∇hb|2/N 2. (6.37)

From a global eddying ocean model von Storch et al. (2012) estimate a global eddy
energy production of 0.83 TW through baroclinic instability. The global conversion
from mean to eddy kinetic energy through barotropic instability, (S), was estimated
to be 0.1 TW. This term can also locally be negative if the eddies transfer energy
to the mean flow, i.e., upgradient. Nevertheless, a simple downgradient momentum
flux closure is usually applied in ocean models that dissipates mean kinetic energy;
see Chapter 5 (Danilov et al. 2019). An alternative to parameterize the effect of eddy
momentum fluxes is to consider the downgradient diffusion of PV, as mentioned
in section 6.2.2 . Spatial variations of κPV can be linked to the eddy momentum
flux convergence and generation of zonal jets, that act as mixing barriers (e.g., Eden
2010).

Several mechanisms have been proposed for the dissipation of EKE (ε). Flows
in quasigeostrophic balance feature an inverse kinetic energy cascade from smaller
to larger scales (see, e.g., Vallis 2006), while flows on much smaller scales transfer
energy in the opposite direction, i.e., from larger to smaller scales until dissipa-
tion occurs at the molecular scales (Kolmogorov 1941). Processes like, e.g., lee
wave generation (Nikurashin and Ferrari 2011), loss of balance (Bell (1975) and
Chapter 2 (von Storch et al. 2018)) or ageostrophic instabilities can cause a damp-
ing of the EKE. Dissipation by bottom friction has been estimated to be between
0.12 and 0.65TW (Arbic et al. 2009)—however, this estimate strongly depends on
the drag coefficient cD . How much of the eddy energy is dissipated at the smallest
scale as the result of a forward energy cascade seems to depend on the presence of
ageostrophic components of the flow (e.g., Molemaker et al. 2010; Brüggemann and
Eden 2014). For example, simulations of Capet et al. (2008a, b, c) of an idealized
Eastern boundary current system show sub-mesoscale features and filaments that are
out of geostrophic balance which are accompanied by a forward energy flux at spatial
scales smaller than the first baroclinic Rossby radius. On the other hand, Molemaker
et al. (2005) find that for Richardson numbers (i.e., the ratio of the vertical density
stratification to the vertical shear of the horizontal velocity) Ri = O(1) as found in
the mixed layer, the dominating baroclinic instabilities are still mainly geostroph-
ically balanced. Instabilities that arise for Ri � 1 are mainly in quasigeostrophic
balance (e.g., Stone 1966). The strength of the direct route to dissipation can hence
be related to the Richardson number—a low Richardson number flow likely contains
ageostrophic components and will foster a downscale energy cascade at the expense

http://dx.doi.org/10.1007/978-3-030-05704-6_5
http://dx.doi.org/10.1007/978-3-030-05704-6_2
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of the inverse cascade. The study by Brüggemann and Eden (2014) has suggested
to use a dissipation with a coefficient r that is dependent on the local Richardson
number Ri , ε = r(Ri)Eek . The relative contribution of the dissipation mechanisms
to the total is unclear.

Theflux term∇ · M is important to connect regionswhere Eek is producedwith the
regions where it is dissipated. It can be interpreted as wave radiation, e.g., radiation
of Rossby waves for quasigeostrophic dynamics, or eddy advection. As a first step
it can be parameterized in the horizontal by simple isotropic horizontal diffusion of
Eek with diffusivity K . It is also important to account for the vertical fluxes, since
eddy energy is predominantly produced close to the surface but may be dissipated at
the bottom.

6.6 Conclusions

From observational estimates and analyzes of eddying ocean models, is there a con-
sensus on spatial variation of eddy mixing coefficients? It has to be clear what kind
of eddy diffusivity is considered. One distinguishes between advective and diffu-
sive effects of the eddies, which can be represented as symmetric and antisymmetric
(skew diffusive) components of a mixing tensor, respectively. In general, different
tracers with different mean tracer gradient orientationsmay be associated with differ-
ent diffusivities. Eddy diffusion is also non-isotropic (e.g., in the presence of strong
mean flows), and one has to distinguish along- and cross-stream diffusion. The diffu-
sivities can be diagnosed by quantifying that part of the downgradient eddy flux that
is associated with irreversible mixing, e.g., through defining appropriate rotational
fluxes.

Also, different eddy advection velocities can be defined, depending on tracer and
averaging method. The commonly used GM skew diffusivity parameterizes the eddy
advective effects as horizontal diffusion of buoyancy. PV and GM diffusivities gen-
erally are not the same, consistent with QG theory and observations (Abernathey
et al. 2013; Vollmer and Eden 2013), whereas similar magnitudes and spatial dis-
tributions for passive tracers and PV have been inferred. The Lagrangian diffusivity
is equivalent to PV diffusivity in linear theory if the growth rate of the unstable
waves is a multiple of the Lagrangian decay scale. In the following, we distinguish
between diffusivity, which can be diffusion of PV, passive and active tracers, and
skew diffusivity, e.g., the diffusivity employed in the GM parameterization.

1. Surface distributions of eddy diffusivities are suppressed in regions where the
speed of the mean flow and eddies differ, such as the ACC jets, western boundary
currents, and hence are better represented by theories based on quasigeostrophic
dynamics that include steering level effects, than using mixing length based on
Rossby radius or eddy size only. Linear QG theory can predict eddy diffusivities
as long as the flow is in a QG regime, and non-linear effects are negligible.
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2. Apart from steering level effects, there is strong control of topography over mix-
ing. EKE is often enhanced in the wake of topographic features, where mix-
ing barrier effect breaks down. It is hence as important to correctly predict the
enhanced EKE and associated mixing hot spots, as it is to include steering level
effects.

3. The depth dependence of eddy diffusivities is less well observed than surface
distributions. Linear QG predicts eddy PV diffusivities to be enhanced at the
steering level, but since EKE decays rapidly with depth, it is unclear how sig-
nificant a mid-depth maximum is in the ocean. Also, the linear growth rate ωi

may not be applicable to the non-linear eddies in the ocean that grow and decay.
Since EKE predicted by LSA does not take into account eddy propagation, meth-
ods to parameterize the diffusivity based on linear QG theory may be improved
by including non-linear effects through larger and depth-dependent decay rates,
correct eddy propagation speeds and with the predictive EKE model of Eden and
Greatbatch (2008), including EKE transport and dissipation mechanisms.

4. Skew diffusivities have been estimated largely in eddying ocean models or from
linear QG theory using observed geostrophic mean flow. In QG, the skew diffu-
sivity is related to the vertical integral of the PV diffusivity and can, under certain
assumptions, be predicted once the PV diffusivity has been parameterized. The
skew diffusivity is central to the theory of Southern Ocean residual overturning
circulation and setting the transport of the ACC. So far, ocean models which per-
mit eddies have predicted less sensitivity of overturning circulations and ACC
transport to increases in Southern Ocean wind stress (the so-called eddy compen-
sation and saturation mechanisms) than models in which eddies are parameter-
ized, even though the extent of the compensation and saturation depends on the
timescale, wind stress magnitude and location, and the surface buoyancy forcing
(see Munday et al. 2013; Farneti et al. 2015, for an overview). Flow-dependent
parameterizations (e.g., Viebahn and Eden 2010; Hofmann and Morales 2011;
Gent and Danabasoglu 2011; Mak et al. 2017) have decreased this sensitivity. On
the other hand, Jochum and Eden (2015) show the meridional overturning circu-
lation is insensitive to Southern Ocean winds despite using a coarse resolution
model with parameterized eddies as long as there is enough diapycnal mixing
in the Indo-Pacific. Understanding and parameterizing the response of EKE and
subsequent dissipation to changes in wind energy input are crucial. It should also
be noted that numerical diffusivities, associated with the discretization of advec-
tion, can play a large role affecting ocean dynamics (Chapter 8, Klingbeil et al.
2019) and need to be considered on top of the physical ones.

5. It is important to quantify the limits and validities of the eddy diffusion model.
Lagrangian diffusivities converge to a constant often only after several eddy length
scales if at all. This “non-locality” makes estimating the “true diffusivity” chal-
lenging in regions with spatially variable mean flows and eddy characteristics, if
possible at all. Local diffusivities can in principle be estimated by the method of
Eden et al. (2007a), by defining that part of the eddy flux that is associated with
the irreversible mixing, taking into account higher order moments (if the esti-
mate converges). The question is how to interpret the Lagrangian diffusivity if

http://dx.doi.org/10.1007/978-3-030-05704-6_8
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convergence takes place only after the floats have traveled out of the region of
interest. Pair dispersion statistics can help identify which dispersion regimes exist
at what scale. The question then is when and how can scale-dependent diffusivi-
ties be implemented. An idea was recently presented by Cushman-Roisin (2008)
and Kämpf and Cox (2016) based on linear increase of the width of the dispersion
patches (instead of with the square root of time as in Fickian diffusion), which
is closer to the Richardson regime observed for scales smaller than the dominant
oceanic eddies. The diffusivity then specifically depends on the scale of separa-
tion of the particles and cannot be considered a constant. Those approaches are
particularly interesting in models where eddies are partially resolved. It is crucial
to quantify on a global basis what dispersion regimes can be found where and
for what scales, how long it takes to reach a diffusive limit, if at all, and how the
diffusivity then depends on the regimes found at earlier lag times.
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Chapter 7
Entropy Production in Turbulence
Parameterizations

Almut Gassmann and Richard Blender

Abstract The atmosphere is a forced-dissipative system. It has to export more
entropy than it imports in a steady state. Therefore, the entropy inflow and out-
flow have to be distinguished from the internal entropy production, which has to be
positive in the mean on long timescales. This principle does not only hold for the
whole atmosphere, but also for subsystems like individual grid boxes in a numeri-
cal model. However, the constraint of positive internal entropy production was not
taken into account when developing contemporary subgrid-scale parameterization
schemes for atmospheric models. Some of these schemes suit automatically into
this framework; some do not. This article discusses the current understanding and
scientific discussion of this topic and illustrates possible future development paths.

7.1 The Numerically Modeled Atmosphere
as a Forced-Dissipative System

The atmosphere is a forced-dissipative system. Its dynamics is forced either directly
or indirectly by solar radiation. A part of this thermal forcing enters the atmosphere
by the lower boundary through latent and sensible heat fluxes. Another part is the
absorption of long-wave radiation inside the atmosphere itself. A pure radiative
convective equilibrium in every atmospheric column is already in itself dissipative
with regard to the radiation field but alsowith regard to the dissipation associatedwith
heat, water vapor, and precipitation fluxes. Horizontal temperature differences may
not be kept stable with respect to dynamic phenomena and lead to the generation of
baroclinic eddies. The supplied energy to the dynamics of the atmosphere is opposed
by kinetic energy dissipation which occurs when initial wave energy has passed
through the macro-, meso-, and microscale energy cascade. Lorenz (1967) proves

A. Gassmann (B)
Leibniz-Institut für Atmosphärenphysik e.V., Universität Rostock, Rostock, Germany
e-mail: gassmann@iap-kborn.de

R. Blender
Center for Earth System Research and Sustainability (CEN), Universität Hamburg,
Hamburg, Germany
e-mail: richard.blender@uni-hamburg.de

© Springer Nature Switzerland AG 2019
C. Eden and A. Iske (eds.), Energy Transfers in Atmosphere and Ocean,
Mathematics of Planet Earth 1, https://doi.org/10.1007/978-3-030-05704-6_7

225

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05704-6_7&domain=pdf
mailto:gassmann@iap-kborn.de
mailto:richard.blender@uni-hamburg.de
https://doi.org/10.1007/978-3-030-05704-6_7


226 A. Gassmann and R. Blender

that the net heating of the atmosphere equals the frictional heating. The exact pathway
of energy dissipation is difficult to estimate as it occurs on molecular and viscous
scales in nature. Those scales may not be explicitly simulated by atmospheric models
which are used for climate projection or numerical weather prediction. The role of the
diverse energy-dissipating processes due to friction, heat fluxes, constituent fluxes,
and phase changes is not yet well known. Pauluis and Held (2002a, b) made large
efforts to quantify all these processes in their relative contributions.

When atmospheric modelers build their models, they look at the dissipative pro-
cesses appearing on the unresolved subgrid scale from a process-oriented viewpoint.
Turbulencemodelers use terms like countergradient fluxeswhen they refer to thermal
fluxes of unresolved, but large, eddies. Cloud process modelers talk about entrain-
ment and detrainment rates with respect to updrafts or downdrafts of convective
cloud systems. Mathematicians tend to associate any diffusion in their equations
with dissipative processes. All these concepts are very convenient but disguise the
fact that the second law of thermodynamics contains a clear and unique definition
of energy dissipation. Energy dissipation is simply defined as the temperature times
the internal entropy production.

The way to account for energy dissipation is constrained by the second law of
thermodynamics. It is often assumed that the second law of thermodynamics does
not apply for the coarse-grained equations used in climate modeling or numerical
weather prediction. This is however not true, because reversible phenomena which
exchange energy between different energy compartments in a two-way fashion can
only be imitated on the resolved scales, but not on unresolved scales. Only irre-
versible processes may occur on unresolved scales. The exclusive way to modulate
the strength of dissipation is thus to tune the parameterization of diffusion coeffi-
cients of entropy-consistent algebraic flux formulations. It is known that models are
often overdissipative. They tend to exhibit too steep kinetic energy spectra compared
to nature indicating that too much energy is dissipated at too large scales. There-
fore, one needs some fluctuations of turbulence in space and time which are able to
obstruct the energy cascade or even lead to energy backscatter during short times.
Such events occur with some finite probability according to the Fluctuation Theorem
(FT) and can be described by negative diffusion coefficients. To explore this proba-
bilistic nature is a future task for numerical modeling and faces several challenges.
Numerical stability has to be guaranteed for occasionally negative diffusion coeffi-
cients. Numerical methods for stochastic differential equations have to be employed.
And even before that, the statistical properties of fluxes have to be estimated in order
to generate a suitable probability density function.

Most of the frictional and thermal dissipation occurs in the atmospheric boundary
layer. But for the general comprehension of the full circulation of the atmosphere,
the dissipation of Rossby waves and gravity waves in the middle atmosphere plays
an important role, too. Here, apart from the turbulence parameterization schemes,
gravity wave parameterization schemes imitate the dissipative processes. It is a chal-
lenge to prove compliance with the second law of thermodynamics for those highly
sophisticated parameterization schemes. The same holds for the heat and moisture
fluxes associated with deep convection schemes.
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7.2 The Entropy Budget Equation in Numerical Models
of the Atmosphere

Weare interested in thermodynamic entropy and refer to the literature for the problem
of the entropy of the radiation field. Yet the entropy budget equation for atmospheric
flow is problematic with respect of the perception of turbulent heat fluxes. It has
been noted by many authors (Goody 2000; Romps 2008; Raymond 2013; Gassmann
and Herzog 2015) that if one is tempted to diffuse potential temperature instead
of temperature, the diagnosed entropy production will be negative in case of stable
stratification, just in contrast to the demands of the second law of thermodynamics.
As discussed, for instance, by Verkley and Gerkema (2004), the diffusion of temper-
ature would drive the atmosphere to an isothermal profile in equilibrium, which is
not observed. Already Priestley and Swinbank (1947) argued in view of the stability
of the dry-adiabatic lapse rate that eddy diffusion is from regions of high to regions
of low potential temperature. They noted already that at first sight this is a contraven-
tion of the well-established second law of thermodynamics, but argued that the work
done by wind shear essentially provides the energy to diffuse temperature against
its own gradient. Similar arguments were recently repeated by Akmaev (2008). The
work done by wind shear is the mechanical turbulent friction, which clearly leads to
frictional heating. The momentum diffusion tensor and the heat flux are, however,
unrelated thermodynamic fluxes, because they are of distinct tensor order (de Groot
and Mazur 1984). This thermodynamic argumentation questions the common con-
ception that shearing stresses provide the energy for thermal diffusion. In order to
resolve this dilemma, Gassmann (2016) suggested to distinguish heat fluxes and
buoyancy fluxes explicitly. This allows to diffuse potential temperature for any strat-
ification, but needs a further subscale buoyancy term in the vertical velocity equation
acting like a Rayleigh damping in case of stable stratification. The kinetic energy
of the vertical motion lost by this buoyancy term provides the energy for pushing
isentropes down.

A further problem in the numerical modeling of dissipation is the perception of air
constituents like water vapor as passive tracers. Moist air is slightly lighter than dry
air, and therefore, water vapor is slightly more likely mixed upward than a passive
constituent. Such subtleties are not yet found in the practice of modeling.

It is also often speculated that numerical problems of the dynamical core create
or destroy entropy arbitrarily (Egger 1999; Woolings and Thuburn 2006; Raymond
2013). Inmodern dynamical cores, this is no longer the case, because they often reside
on Hamiltonian dynamics and imitate energy conversion correctly. Numerical cores
that mimic the product rule of differentiation ∇ · F = ψ∇ · (F/ψ) + F/ψ · ∇ψ for
any scalar ψ and any flux F will correctly imitate energy conversions and will also
provide the correct discrimination of entropy flux divergences and internal entropy
production terms.

Let us now become more specific and give a mathematical framework to the
dynamics of moist air. Gassmann and Herzog (2015) gave a detailed derivation of
the entropy budget equation. Their framework did not yet contain the mentioned
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Table 7.1 Thermodynamic and dynamic quantities

Symbol Explanation

ψ̂ , ψ ′′ Barycentric mean and deviation ψ = ψ̂ + ψ ′′,
ψ̂ = ρψ/ρ

ψ̄ , ψ ′ Reynolds mean and deviation ψ = ψ̄ + ψ ′

qi = ρi/ρ,
∑

i qi = 1 Specific content of an air constituent
i = d, v, l, f ; dry air, water vapor, liquid, and
frozen water

ρi , ρ = ∑
i ρi Density of i , total density

u = ∑
i ui qi Internal energy

h = ∑
i hi qi Enthalpy

s = ∑
i si qi Entropy

μ = ∑
i μi qi , μi = hi − T si Chemical potential

ui = cvi (T − T0) + u0i Specific internal energy

hi = cpi (T − T0) + h0i Specific enthalpy

cvi , cv = ∑
i cvi qi i-th/total heat capacity at constant volume

cpi , cp = ∑
i cpi qi i-th/total heat capacity at constant pressure

Ri = cpi − cvi , R = Rdqd + Rvqv i-th/total specific gas constant

lv = hv − hl Latent heat of vaporization

ls = hv − h f Latent heat of sublimation

T Temperature

pi , p = pd + pv Partial pressure of i , total pressure

θ = T/Π , θv = θR/Rd Potential temperature, virtual potential
temperature

Π = (p/p0)Rd/cpd Exner pressure

vi , v = ∑
i viρi/ρ Velocity of i , barycentric velocity

Jdi = ρqi (vi − v) = ρqivdi Diffusive flux, significant during precipitation,∑
i J

d
i = 0

Jti = ρv′′q ′′
i Turbulent flux of i ,

∑
i J

t
i = 0

Ii Source term of i-th constituent,
∑

i I = 0

Js = cpρv′′T ′′ Sensible heat flux

Jθ = ρw′′θ ′′k Potential temperature (buoyancy) flux

θdv = k · Jθ /(ρ̄ŵ) Diffusive addend to θv

τ = ρv′′v′′ Momentum diffusion tensor

ε f r = −τ · ·∇v̂ ≥ 0 Frictional heating

K = v2/2 Specific kinetic energy

Φ = gz Geopotential

ωa = ∇ × v + 2Ω Absolute vorticity vector

N 2 = g∂z ln θ̂ Brunt–Väisälä frequency

N 2
iso = g2/(cpdT ) Brunt–Väisälä frequency as for an isothermal

atmosphere

R Radiation flux

g Gravity acceleration
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distinction between buoyancy fluxes and heat fluxes. Here we give a formulation
which comprises all processes. Table 7.1 defines the involved variables. A complete
set of prognostic equations for atmospheric flow is found to be

ρ̄
d̂ v̂
dt

= −cpd ρ̄(θvE + θdkk) · ∇Π − ρ̄∇Φ − ρ̄2Ω × v − ∇ · τ (7.1)

ρ̄
d̂ û

dt
= − p̄∇ · v + ε f r − cpdΠ̄∇ · Jθ − ∇ · (R + Js +

∑

i

ĥi (Jti + Jdi )) (7.2)

d̂ρ̄

dt
= −ρ̄∇ · v (7.3)

ρ̄
d̂q̂i
dt

= −∇ · (Jti + Jdi ) + Ii . (7.4)

The internal energy is usually not a prognostic variable. Rather temperature or poten-
tial temperature is predicted. In view of the derivation of the entropy budget equation,
the internal energy equation is, however, useful. The Gibbs relation is a starting point
for the derivation of the entropy budget equation

ρ̄
d̂ û

dt
= − p̄∇ · v +

∑

i

μ̂i ρ̄
d̂q̂i
dt

+ T̂ ρ̄
d̂ ŝ

dt
. (7.5)

Inserting the internal energy equation (7.2) and treating moisture quantities as in
Gassmann and Herzog (2015) yield as the desired entropy budget equation

ρ̄
d̂ ŝ

dt
= −∇ ·

(
Js
T̂

+ cpdJθ

θ̂
+

∑

i

ŝi (Jti + Jdi )

)

+ ε f r

T̂
− Js · ∇ T̂

T̂ 2
− Jθ · cpd∇ θ̂

θ̂2

−
∑

i Ii μ̂i

T̂
−

∑
i (J

t
i + Jdi ) · ∇μ̂i |T̂

T̂
. (7.6)

This form discriminates between entropy flux divergences and internal entropy pro-
duction terms σ related to distinct processes. The dissipative processes are in the
order as they appear in the previous equation: friction, heat and buoyancy fluxes,
irreversible phase changes, and mixing of air constituents. The associated single
entropy productions have to be positive definite for long timescales. This require-
ment shapes the structure of the still unknown fluxes τ , Js , Jθ , Ii , Jti , and Jdi . A
hypothetical atmosphere has reached an equilibrium state if the single entropy pro-
ductions vanish and the associated gradients are erased. This does not mean that all
fluxes are vanishing instantaneously, but the probabilities of fluxes in the one or the
other direction are the same.
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7.3 Moisture and Precipitation Fluxes

As was shown in Gassmann and Herzog (2015), the turbulent fluxes of gaseous air
constituents Jti and the diffusive fluxes in case of precipitation J

d
i are constrained by

the requirement that the last term of (7.6) has to be positive definite. The gradients
of chemical potentials μ̂i at constant temperature can be expressed as gradients of
partial pressures ρ̄q̂d,v∇μ̂d,v|T̂ = ∇ p̄d,v.

Then the vertical turbulent flux of water vapor becomes

Jtv · k = −ρ̄Kv

(
q̂d∂z p̄v − q̂v∂z p̄d

p̄

)

. (7.7)

This is different from the usual assumption that water vapor is mixed as a passive
tracer

Jtv · k = −ρ̄Kv′
∂zq̂v. (7.8)

The vertical gradient of q̂v can be alternatively expressed as

∂zq̂v = R

Rvq̂d + Rdq̂v

(
q̂d∂z p̄v − q̂v∂z p̄d

p̄

)

+ (Rd − Rv)q̂vq̂d
Rvq̂d + Rdq̂v

∂z ln(
p̄

R
). (7.9)

Figure 7.1 displays a scatter plot of the terms on the left and the immediate right
of this equation for arbitrary radiosonde data in the tropics. The second term on the
right makes for the deviation of the scatter points from the diagonal. The fact that
all points are found to the left of the diagonal signifies that the vertical flux with the
entropy-compliant formulation (7.7) is slightly more upward directed than the flux

Fig. 7.1 Scatter plot of the
conventional and the
entropy-compliant vertical
gradients needed for water
vapor fluxes. γ is an
abbreviation for
R/(Rvq̂d + Rdq̂v). See the
discussion of equation (7.9)
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(7.8) under the passive tracer assumption. This is due to the different gas constants
of water vapor and dry air. Water molecules have a smaller molecular weight than
dry air considered as the mixture of N2 and O2. The passive tracer perspective would
presume an air constituent which is indistinguishable from dry air in its thermody-
namic properties. This tracer could be diffused for its own but would not contribute
to energy dissipation and thermodynamic entropy production. Regarding this exam-
ple, the difference between the concepts of diffusion and dissipation becomes most
obvious.

Pauluis and Held (2002a) fathered the dissipation associated with precipitation on
friction occurring in the microscopic shear zones surrounding the hydrometeors. The
inspection of the last term of (7.6) reveals, however, that this dissipation is formally
due to mixing of air and precipitation. The governing equations consider air parcels
moving with a barycentric velocity. Due to the sedimentation of the hydrometeors
inside these air parcels, the non-sedimenting air constituents have an upward-directed
relative velocity wd with respect to the barycentric total velocity. The is expressed
in the condition

∑
Jdi = 0. As ∇μ̂l, f |T̂ = 0 for sedimenting particles, the energy

dissipation is
T̂σ |precip = −wd∂z p̄ ≈ wd ρ̄g ≥ 0. (7.10)

The concept of the barycentric velocitywith its relative velocities for sedimenting and
non-sedimenting parts has to be correctly taken into account in numerical modeling
as a prerequisite for the correct imitation of the discussed energy dissipation.

7.4 Thermal Fluxes

As discussed in Gassmann and Herzog (2015), the buoyancy flux term has to be
discretized in a downgradient manner

Jθ = ρw′′θ ′′k = −ρ̄K θ ∂z θ̂k (7.11)

in order to obtain−Jθ · cpd∇ θ̂/θ̂2 ≥ 0. Hence, when inserting an additional subgrid-
scale buoyancy term −cpdθd∂zΠ̄ in the vertical velocity equation and diffusing
the potential temperature downgradient, energy is conserved and a positive entropy
source is guaranteed. Further inspection reveals that the buoyancy term acts like a
Rayleigh friction term in the vertical velocity equation if the atmosphere is stably
stratified

∂t ŵ|turb = −cpdθ
d∂zΠ̄ ≈ g

θd

θ̂
= −N 2K θ

ŵ
= −rwŵ. (7.12)

As the Rayleigh friction term is not allowed to become singular, the associated
Rayleigh damping coefficient rw = N 2K θ /ŵ2 has to remain finite also for ŵ → 0.
This constrains in turn the diffusion coefficient K θ which is then not connected with
the momentum diffusion coefficient Km via a fixed Prandtl number. The assumption



232 A. Gassmann and R. Blender

that vertical diffusion of horizontal momentum and Rayleigh damping of vertical
momentum act on similar timescales for shortest resolvable waves suggests a flow-
dependent Prandtl number

Pr = (Δz)2N 2

π2ŵ2
. (7.13)

Here, the vertical grid distance parameterΔz/π may also be associatedwith a vertical
mixing length Λ. This Prandtl number leads to the buoyancy flux

Jθ · k = −ρKmπ2ŵ2θ̂

(Δz)2g
. (7.14)

This flux is downward directed and vanishes for vanishing vertical velocity. The
latter property is the main difference to the conventional potential temperature flux.
When buoyancy fluxes are applied within a breaking gravity wave, only the flanks of
the isentropes are pushed down, but not the wave through, which leads to a flattening
of the wave trough. This is schematically displayed in the upper example of Figure
7.2. As displayed in the lower example, a conventional scheme pushes the isentropes
down in thewave trough, too. This increases thewave amplitude instead of supporting
the wave overturning by just widening the wave trough.

The energy enabling the diffusion counter the temperature gradient stems from
subscale buoyancy forces and not from shearing stresses. Kinetic energy proportional
to ρ̄K θ N 2 = ρ̄Kmπ2ŵ2/(Δz)2 is converted into internal energy. Shearing stresses
play only a role for the determination the momentum diffusion coefficient Km .

In case of unstable stratification, the subscale buoyancy term (7.12) would result
in a further amplification of the vertical velocity, hence a generation of kinetic energy
out of unavailable internal energy. This is not intended by a dissipative process which
should increase the unavailable internal energy. Therefore, the sensible heat flux Js
instead of the buoyancy flux shall be used. Since the vertical gradients of temperature
and potential temperature are parallel in case of unstable stratification, the specific
algebraic form of the vertical heat flux is unimportant

Js · k = −ρ̄K θ Π̄∂z θ̂ = −ρ̄KT ∂z T̂ . (7.15)

The diffusion coefficients KT and K θ are both positive and related by

KT = −N 2

N 2
iso − N 2

K θ . (7.16)

Fig. 7.2 Schematic of the
pushing down of isentropes
due to potential temperature
fluxes. The upper example is
for the entropy-compliant
flux, and the lower panel for
a conventional flux
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The classical formulation of the sensible heat flux as downgradient with respect to
θ and with fixed Prandtl number remains possible for unstable stratification.

The described combination of the heat flux Js for unstable stratification and the
buoyancy flux Jθ for stable stratification delivers an explanation for the stability of the
adiabatic lapse rate in the atmosphere. With the new philosophy, the long-standing
question of entropy production in case of stable stratification is solved.

It is of interest to investigate the practical implications of the proper discrimination
of heat and buoyancy fluxes. Gassmann (2016) simulated breaking gravity waves in
the mesosphere and found that the filamental structure of resulting mesospheric
inversion layers was more realistically simulated if subscale buoyancy fluxes were
used instead of the traditional diffusion of potential temperature at stable stratification
as in (7.15). Figure 7.3 displays the specific energy deposition K θ N 2 as ameasure for
the downward pushing of the isentropes by subscale turbulence for a gravity wave
breaking event in the mesosphere. As can be inferred from the figure, the energy
deposition of the entropy-compliant model run vanishes in the wave trough where
the vertical velocity is zero. This is not the case for the conventional run. Since the zero
vertical wind line bends with height toward the horizontal, the temperature inversion
layer at the bottomof the breaking region represented by the tight isentropes is sharper
for the entropy-compliant run. This sharpness is also seen in typical Rayleigh lidar
measurements by Liu and Meriwether (2004).

Turbulence parameterizations have to be applicable to the whole atmosphere. The
successful simulation of breaking gravity waves is only a first application example of
entropy-consistent heat and buoyancy fluxes. The simulation of atmospheric bound-
ary layers, jets, and orographic wave breaking in the troposphere span future research
fields.

Boundary layer schemes often employ a countergradient term inside the heat flux

Js · k = −ρ̄K θ Π̄
(
∂z θ̂ − γ

)
. (7.17)

This countergradient term imitates continuing upward heat flux even in case of
slightly stable stratification. Therefore, it prevents the occurrence of negative entropy
production−Js · ∇ T̂ /T̂ 2 < 0 to some extent in the upper part of the planetary bound-
ary layer. The countergradient term is said to mimic large eddies of the order of
magnitude of the whole boundary layer depth. This heat flux is called the non-local
heat flux.

According to the discussed distinction between heat fluxes for unstable stratifi-
cation and buoyancy fluxes with Rayleigh damping for stable stratification, another
perspective on countergradient schemes could be taken into account. Future research
should investigate whether the countergradient flux is really needed or whether other
means might replace it. One direction of research could be motivated by the obser-
vation that boundary layer eddies are very intermittent. Therefore, when simulating
the respective heat fluxes in unstable stratification, the subscale fluxes do not have
to be equal for equal mean ambient gradients. This indicates that heat fluxes should
have some stochastic nature. The different intensities of the heat fluxes give rise to
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Fig. 7.3 K θ N 2 (colors) as a measure of the downward pushing of isentropes (isolines) due to
subscale turbulence. The results are shown for a experiments with a conventional heat flux Js · k as
in (7.15) (upper panel), with an entropy-compliant buoyancy flux Jθ · k (middle panel), and without
any subscale heat or buoyancy flux (lower panel) in case of stable stratification

the bumping of subscale eddies onto the top of the boundary layer. The such gener-
ated horizontal temperature gradients lead to resolved dynamical motions including
nonzero vertical velocities in the stably stratified top of the boundary layer. Such
resolved vertical velocities are a prerequisite for the buoyancy fluxes which in turn
entrain air into the boundary layer from above. This full cycle may deliver a realistic
representation of the structure of the boundary layer.
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7.5 Momentum Fluxes

It has been early recognized that atmospheric models need some amount of horizon-
tal and vertical momentum diffusion and that this diffusion is not only needed in the
atmospheric boundary layer.When running early general circulation models, models
crashed because of nonlinear instabilities. Two pathways were explored to solve this
problem. Arakawa (1966) proposed to enforce the conservation of potential enstro-
phy in addition to potential vorticity and energy by the introduction of the Arakawa
Jacobian. Phillips (1959) suggested to introduce amomentum diffusion term just as a
numerical means to keep the model stable. In retrospect, the Arakawa Jacobian was a
success for the dynamics of vortical motions, but could not be appliedwhen divergent
motions were allowed to evolve unconstrained by an explicit balance equation as it
had been the case during the time of quasi-geostrophic numerical models. With the
emergence of the primitive equations for numerical modeling, enstrophy-conserving
schemes lead to the danger of the Hollingsworth instability (Arakawa and Lamb
1981; Hollingsworth et al. 1983; Gassmann 2013). Consequently, the momentum
diffusion is the surviving method of choice. However in early applications, the hor-
izontal diffusion coefficient was only crudely chosen or set to a constant. This lead
to significant overdiffusion for second-order diffusion operators. Therefore, hyper-
viscosity operators were introduced which only damp the smallest resolved scales.
At this time, compliance with the second law of thermodynamics was not a topic
of interest. Hyperviscosity schemes were not tested on their conformance with the
second law of thermodynamics. As the frictional heating was not considered at all
as a source term in the internal energy equation, it was not even noticed that the
eventual frictional heating of hyperviscosity schemes would sometimes lead to a
frictional cooling, just in contrast to the second law of thermodynamics. Finally, any
type of nonlinear momentum diffusion of Smagorinsky type (Smagorinsky 1993) is
the remaining form of momentum diffusion and the challenge of research is to deter-
mine suitable and flexible formulations of the diffusion coefficients. For instance,
the dynamic Smagorinsky parameterization delivers flow-dependent diffusion coef-
ficients which lead to a reasonable development of the kinetic energy spectrum.

Still today, the state-of-the-art conception of momentum diffusion is problematic
regarding a structural break occurring for the transition from anisotropic to isotropic
turbulence. Intuitively, one would assume that in this limit case the horizontal and
vertical diffusion coefficient should equalize and later converge to the molecular
viscosity for viscous scales where the Navier–Stokes stress tensor

τ NS = −μρ

(

∇v + v∇ − 2

3
(∇ · v)I

)

(7.18)

determines the diffusion of momentum. This tensor is symmetric and trace-free and
guarantees positive entropy production. The problematic aspects of this definition are
twofold. First, it is not clear where the distinction of horizontal and vertical diffusion
coefficients can consistently be introduced. Second, this tensor is not invariant to a
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rotation of the coordinate system in one plane. If onewrites τ NS down in components,
it yields

τ NS = −μρ

⎛

⎝

2
3 E + 2

3 I F G
F − 2

3 E + 2
3 J H

G H − 2
3 I − 2

3 J

⎞

⎠ (7.19)

with the shear deformations

F = ∂xv + ∂yu G = ∂zu + ∂xw H = ∂yw + ∂zv, (7.20)

and the strain deformations

E = ∂xu − ∂yv I = ∂xu − ∂zw J = ∂yv − ∂zw. (7.21)

The strain deformations appear on the diagonal, and the shear deformations are the
off-diagonal elements. Rotating, for instance, the horizontal coordinate plane by 45◦
would swap the meaning of the horizontal shear and strain deformations (see Figure
7.4). But unexpectedly, this purely mathematical change of the coordinate system
leads to a change in the amount of deformation by the factor 2/3, which should not be
the case from a physical point of view. Therefore, the traditional Navier–Stokes stress
tensor is questionable. The additional requirement of invariance to rotations in one
plane enforces the factors 2/3 to be discarded in (7.19). The resulting form allows also
for a meaningful distinction between stresses in horizontal and vertical planes with
the coefficients Km

h and Km
v for anisotropic turbulence and coarse-grained numerics

τ = −ρ̄

⎛

⎝
Km

h Ê + Km
v Î Km

h F̂ Km
v Ĝ

Km
h F̂ −Km

h Ê + Kv Ĵ Km
v Ĥ

Km
v Ĝ Km

v Ĥ −Km
v Î − Km

v Ĵ

⎞

⎠ . (7.22)

Fig. 7.4 Strain (left) and shear (right) deformations



7 Entropy Production in Turbulence Parameterizations 237

The different diffusion coefficients are confined to the plane in which the deforma-
tions are measured. In numerical modeling of the atmosphere at resolutions typical
for climate models, the horizontal diffusion coefficients are of O(105) m2/s and the
vertical diffusion coefficients are ofO(10) m2/s. From (7.22), it is also obvious that
the incompressibility condition does not play any simplifying role in the formulation
of the tensor, just unlike as in the traditional form (7.18). The form (7.22) coin-
cides with the concepts described in Smagorinsky (1993) for horizontal diffusion
but diverges for vertical diffusion.

The dynamic Smagorinsky model determines the strength of the diffusion coeffi-
cients in dependence on the modulus of the deformation stresses and a dynamically
determined mixing length which depends on the resolution scale and the actual flow
state. The careful determination of such diffusion coefficients is a current and future
challenge for any fluid dynamical modeling. Physical constraints which step in at this
place are scale independence and stochastic aspects associated with the Fluctuation
Theorem.

As a last remark, it should be stressed that the discrete equivalent of the product
rule −v̂ · ∇ · τ − τ · ·∇v̂ = −∇ · (τ · v̂) has to be guaranteed. This is not a trivial
endeavor if non-traditional meshes are used. One example is the hexagonal C-grid
of the ICON-IAP model (Gassmann 2013). Recognizing that Gauss and Stokes the-
orems can be adapted for the evaluation of strain and shear deformations helps to
define meaningful numerical schemes. In case of the hexagonal C-grid as it is used
in the ICON-IAP model, the correct imitation of the mentioned product rule requires
the shear deformation to be defined on a set of three kites just like the vorticity and
the strain deformation to be defined on the hexagons just like the divergence (see
Figure 7.5). For the ICON model with its triangular C-grid, the meanings are just
swapped (Wan et al. 2013). Then, however, it becomes clear that the divergence has
to be computed on a triple set of kites, too. This implies again that there are too many
degrees of freedom in the mass field which cannot be slaved by intelligent numer-
ics (Gassmann 2011). For either ICON mesh, the positivity of the frictional heating
−τ · ·∇v̂ ≥ 0 is currently only proven for equilateral grids. This poses a problem

Fig. 7.5 The ICON-IAP model uses normal velocity components with respect to the hexagon
edges. Shear deformations are computed for each double-triangle (kite) touching a central triangle.
Strain deformations are computed for each hexagon. The divergence of the horizontal stress tensor
is evaluated using the Gauss theorem for the dashed rectangle
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especially in the vicinity of the 12 pentagons constituting the initial dodecahedron.
As the ICON model on the triangular C-grid needs further numerically introduced
divergence smoothing, the actual amount of friction cannot be attributed to the stress
tensor alone. Therefore, for this model, a consistent energy or entropy budget equa-
tion may presumably not be formulated. The pathway of the energy flow remains
thus to some extent obscure.

7.6 Fluctuation Theorem

Any heat, constituent or momentum flux has some probability density function. It
might be quite broad and also contain nonzero small probabilities of negative entropy
production. Then, the energy cascade is obstructed or even reversed. The latter means
energy backscatter.

In small systems and on short timescales, the Fluctuation Theorem (FT) predicts a
finite probability of negative entropy production (Gallavotti andCohen1995). TheFT
shows how such a violation of the second law becomes exponentially unlikely when
the time period increases. The FT, which has been observed to hold in experiments
and numerical simulations of out-of-equilibrium statistical mechanical systems, is a
large deviation result that relates the ratio of the probabilities for positive to negative
entropy production rateswith the absolute value of entropy production and the growth
time τ . For large τ , negative values become exponentially less likely and for infinitely
long times τ the probability of negative entropy production vanishes.

The Fluctuation Theorem is not a single unique theorem, but a set of closely
related theorems; for reviews, see Evans and Searles (2002) and Sevick et al. (2008).
Common to all is that a FT quantifies the probability of observing second law viola-
tions in small systems observed for a short time. The ratio of probabilities for positive
and negative values of time-averaged internal entropy production Σ̄t satisfies in the
long-term limit

lim
t→∞

1

t
log

P(Σ̄t = A)

P(Σ̄t = −A)
= Σ̄t . (7.23)

Prominent versions of the FT are: (i) Steady State Fluctuation Theorems (SSFT),
which are valid in the long time limit (Evans et al. 1993), (ii) Transient Fluctuation
Theorems (TFT), and (iii) the Crooks relation which involves work and free energy
difference for forward and backward processes. Furthermore, local FTs are valid and
FTs can be derived for dissipative systems under thermodynamic constraints (e.g.,
thermostatted conditions, Gallavotti and Lucarini (2014)). The FT has been derived
by a maximum entropy condition (Dewar 2005).

Numerical models are not able to resolve all dynamical scales. Processes below
the resolution of a numerical model are parameterized, i.e., they are retrieved from
resolved variables. A grid box in a model represents a subsystem with unresolved
degrees of freedom. In hydro-thermo-dynamic models, these fluctuations are coined
as unresolved eddies. Here we assume that such a subsystem has a finite number
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of degrees of freedom. In this case, the fluctuations are relevant. The properties of
fluctuations are determined by the Fluctuation Theorem (FT) which is valid for a
forced-dissipative system out of equilibrium. The FT is relevant for a system with a
finite size or when the timescale is finite, i.e., below the thermodynamic limit. In a
large system, fluctuations are negligible and the FT cannot be detected.

Gallavotti (1999) and Michel and Searles (2013) determined the modification
of the FT for a small open subsystem embedded in a large system. Michel and
Searles (2013) considered highly correlated systems; therefore, the results therein are
applicable to turbulent hydro-thermo-dynamic systems. The authors find a correction
term 1 + α in the large system Fluctuation Theorem

log

(
p(Σ̄�,t = A)

p(Σ̄�,t = −A)

)

= (1 + α)Σ̄�,t (7.24)

and coined the result the Local Fluctuation Theorem (LFT). The dissipation function
Σ̄�,t is measured over a time interval t and describes the irreversibility of the process.
The index � denotes the length scale of the subsystem (grid box). The probability
p(Σ̄�,t = A) means that Σ̄�,t is in the range (A − d A, A + d A), and the ratio is
determined for small d A. Thus, the general form of the FT is still valid but with a
correction term α. The correction is due to correlations of the subsystem with the
surroundings and depends on the size and geometry of the subsystem. We assume
that a model grid box is an open subsystem where this LFT is valid. Note that the
probabilities on the left-hand side (7.24) can be written for any phase space function
instead of the dissipation function Σ̄�,t . For the dissipation function, the standard
form of the FT is obtained. The dissipation function can be determined for an external
thermodynamic force Fe and a dissipative flux Jt

Σ̄�,t = 1/(kBT )Fe · Jt (7.25)

where T is the temperature and kB is the Boltzmann constant guaranteeing a non-
dimensional shape of the dissipation function.

Michel and Searles (2013) determined the dependency of α on the size of the
subsystem. For large size �, α ∼ �0/�, with the molecular mean free path �0. In
hydrodynamic applications, �0 is estimated by the size of the unresolved eddies.
Hence, α should be inverse to the grid box size. For large grid boxes with many
eddies, α is small and the FT is valid instead of the LFT. For higher resolutions,
i.e., with smaller �, fluctuations become more important. In general, the parameter
α depends on the specific experimental conditions and needs to be estimated in
numerical experiments or data.

Due to the fluctuations, the subsystem can behave as a sink or source for available
energy. Sinks are parameterized in terms of diffusion-like eddy viscosities for pos-
itive diffusion coefficients. When the subscale system forces the large system, the
process is described as backscatter. Energy is made available again. This backscatter
can be transient or permanent. The LFT yields a guidance for stochastic backscatter
parameterizations. In a stochastic model, the probability of a negative dissipation
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function can be used as the probability for positive backscatter events at individual
grid points. Out of these thoughts, it becomes clear that diffusion and backscat-
ter parameterizations should have the same algebraic form in numerical models. A
probability function for the diffusion coefficient describes the direction of the energy
transfer. The occurrence of negative dissipation values due to parameterization of
subscale fluxes has never been explicitly related to the possibility of observing devia-
tions from positivity in the entropy production associated with the FT. A prerequisite
to simulate and study transient negative dissipation is the formulation of the subscale
flux terms such that in the long timescale limit, positive dissipation rates are guar-
anteed. Then, using the probability distribution of positive and negative diffusion
coefficients derived from FT becomes feasible in a stochastic parametrization.

Shang et al. (2005) analyzedRayleigh–Bénard convection in an upright cylindrical
cell filled with water. The system is far from equilibrium. The authors determine
fluctuations of the local vertical convective sensible heat transport Js,z . The entropy
production is given by the heat flux and the thermodynamic forcewhich is the gradient
of the inverse temperature,

σ ∝ Js,z∂z(1/T ). (7.26)

The Fluctuation Theorem determines the ratio of the probabilities for positive vs.
negative heat transports

log

(
P(+ J̄s,z)

P(− J̄s,z)

)

= c J̄s,z∂z(1/T )τ (7.27)

where J̄s,z is the running mean of the local flux Js,z in a time interval τ ; for the
constant c, see Shang et al. (2005). The prediction of the linear relation (7.27) for the
logarithm of the probability ratio versus J̄s,z and τ was verified. The relation (7.27)
provides a basis for the analysis of turbulent heat fluxes in the Planetary Boundary
Layer simulated with the ICON-IAP model.

7.7 Applicability of the Fluctuation Theorem
in Geophysical Flows

The validity of large deviation results on the Lyapunov exponents of geophysical fluid
models has been recently discussed in Schalge et al. (2013). In this study, the entropy
production rate is approximated by the local largest Lyapunov exponent (LLLE).
The largest Lyapunov exponent is determined by the instability of the state space
trajectory for individual time steps (hence the exponent is not long-term averaged).
Figure 7.6 shows a Gaussian fit of the LLLE in the model PUMA with different
resolutions which are typically used in many long-term climate integrations. The
prediction of the Fluctuation Theorem
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Fig. 7.6 Frequency distribution of the Local largest Lyapunov exponent (LLLE) in the model
PUMA with different resolutions (top). Logarithm of the ratio of opposite sign probabilities versus
entropy production for different time intervals in PUMA (bottom)

lim
τ→∞

1

τ
log

P(+Σ)

P(−Σ)
= Σ (7.28)

was verified for different time windows τ for the linear relationship versus Σ (see
Figure 7.6, bottom).

Negative values of the local largest Lyapunov exponent are due to a reduced insta-
bility for the global atmospheric flow. The results explain variations in predictability,
in particular the so-called return of skill (Patil et al. 2001) which might be associated
with negative local Lyapunov exponents. A further finding is that numerical models
in geophysical fluid dynamics with O(10,000) degrees of freedom can be consid-
ered as mesoscopic systems. Systems of this size have a transient non-negligible
probability for being in a state with negative entropy production.
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Seiffert et al. (2006) determined the subscale forcing of large scales in a global
atmospheric primitive equation model to understand large-scale eddy diffusivities
and backscatter. An aim of this study was to constrain stochastic forcings in weather
forecast models. The approach used a T42 simulation of the model PUMA (Portable
University Model of the Atmosphere) and retrieved the forcing of the embedded T21
modes. The residuals are projected on large-scale modes to determine parameter-
izations, and unexplained parts are interpreted as stochastic forcing. The analysis
is performed in spectral space and allows an assessment of diffusion. The subscale
forcing is largest in the mid-tropospheric mid-latitudes, and the decay timescale of
unexplained residuals is of the order of one day. Simulations in T21 with additive
stochastic forcing were compared.

The experiments demonstrate that it is possible to derive subscale forcings for
large scales and to interpret these as either stationary parameterizations or stochastic
backscatter. Later on, the method has been used to determine stochastic forcings by
the ECMWF (Hermanson et al. 2009).

A recent result by Gallavotti and Lucarini (2014) demonstrates that if the friction
in a non-equilibrium system is adjusted appropriately to a so-called thermostatted
system, dynamical properties are similar to an equilibrium system. The authors used
the Lorenz-96model with viscosity adjusted to preserve energy. Themain property is
that the dynamics is fully reversible. The average contraction rate of the phase space
of the time-reversible model agrees with that of the irreversible model. The phase
space contraction rate obeys the Fluctuation Theorem. The Fluctuation Theorem
predicts for the τ -averaged phase space contraction rate

1

τ σ̄R
log

PR
τ (p)

PR
τ (−p)

= p + O(τ−1) (7.29)

where R is the constant forcing. Here PR
τ (p)dp is the probability for observing the

τ -averaged phase space contraction rate σ (normalized by the time average) in the
interval [p, p + dp]. Figure 7.7 shows (7.29) for R = 512 versus p. For large τ , the
correction term ∼ 1/τ vanishes and the slope approaches 1.

Fig. 7.7 Fluctuation
Theorem in the thermostatted
Lorenz-96 model
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The current proposal is an application of concepts developed in statisticalmechan-
ics to geophysical flows (Lucarini and Sarno 2011). These flows are forced and dis-
sipative systems, where the asymptotic evolution is restricted to a strange attractor
in a compact manifold Ruelle (2009). On the basis of the Chaotic Hypothesis of
Gallavotti and Cohen (1995), it is assumed that the attractor is hyperbolic and stable
against small stochastic perturbations. Time and phase space averages of measurable
observables are identical.

To determine the response of non-equilibrium flows to perturbations, the Mori–
Zwanzig formalism has been combined with the extension by Ruelle (Lucarini 2012;
Lucarini and Colangeli 2012; Wouters and Lucarini 2012). Ruelle’s response theory
is used to determine stochastic forcing in a multi-level system (Wouters and Lucarini
2012, 2013). In this analysis, stochastic terms with given spectral properties are
obtained at second order in a perturbation analysis. A summary of mathematical and
statistical mechanics approaches to geophysical fluid dynamics can be found in the
review by Lucarini et al. (2014).
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Chapter 8
Reducing Spurious Diapycnal Mixing
in Ocean Models

Knut Klingbeil, Hans Burchard, Sergey Danilov, Claus Goetz
and Armin Iske

Abstract Transport algorithmsof numerical ocean circulationmodels are frequently
exhibiting truncation errors leading to spurious diapycnal mixing of water masses.
This chapter discusses methods that might be useful in diagnosing spurious diapy-
cnal mixing and describes some approaches that might be helpful for its reduction.
The first one is related to the use of the Arbitrary Lagrangian Eulerian (ALE) vertical
coordinate which allows the implementation of vertically moving meshes that may
partly follow the isopycnals even if the basic vertical coordinate differs from isopyc-
nal. The second approach relies on modified advection schemes with the dissipative
part of the transport operators directed isopycnally. Finally the third approach deals
with new efficient and stable advection algorithms of arbitrary high order based on
theWENO-ADERmethod, which can be applied to both structured and unstructured
meshes. While practical benefits of using the reviewed approaches depend on appli-
cations, there are indications that equipping present state-of-the-art ocean circulation
models with them would lead to reduced spurious transformations.
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8.1 Introduction

Spurious mixing of water masses in ocean circulation models based on a z- or gener-
alised terrain-following vertical coordinate is a numerical artefact intrinsic to trans-
port algorithms that use upstream flux estimates or employ limiters to avoid the
development of artificial extreme values and negative concentrations. The interior of
the ocean is nearly adiabatic, which implies that water parcels generally move along
surfaces of neutral density. Since these surfaces are intersected by coordinate levels,
advection of a water parcel by a (high-order) upwind or total variance diminishing
(TVD) transport algorithm is accompanied by spurious diapycnal mixing caused by
truncation errors. Numerous studies (see, e.g., Urakawa and Hasumi 2014) demon-
strate the effect of mixing, and there is ongoing research aimed at quantifying spu-
rious mixing in ocean circulation models, understanding its causes, and designing
the technology that allows one to minimise its adverse effects. In addition to water
mass modification, spurious mixing also impairs the energetic consistency. Indeed
the increase in the flow’s potential energy accompanying spurious mixing happens
without any available energy sources, which is physically incorrect and prevents one
from formulating a closed energy balance. Estimates in Ilicak et al. (2012) show
that spurious diapycnal mixing may imply energy fluxes making up to a quarter of
energy input by tides and winds. As a consequence, the way toward formulation of
energetically consistent ocean circulation models demands solving the questions on
spurious diapycnal mixing. These concerns are not common for atmospheric mod-
elling. In contrast to the ocean, which is largely adiabatic in the interior outsidemixed
and boundary layers and some vicinity of topographic features, the atmosphere is a
forced-dissipative system where spurious effects are masked. Our focus is therefore
on the ocean where spurious effects are of more significance than in the atmosphere.

The following sections of this chapter describe a selection of approaches that
can contribute to the reduction of spurious mixing in ocean circulation models. The
rest of this section explains briefly why these approaches have been selected, with
intention to help the reader to see the general framework.

The question on diagnosing spurious mixing is a subject of numerous papers.
Griffies et al. (2000), Burchard and Rennau (2008), Getzlaff et al. (2010, 2012),
Hill et al. (2012), Klingbeil et al. (2014), Ilicak (2016) and Gibson et al. (2017)
introduce methods to quantify either diapycnal or full spurious mixing associated
with transport schemes. While the diagnostics of Griffies et al. (2000) and Gibson
et al. (2017), based in essence on the concept of reference potential energy (RPE),
is global, the quantification in Getzlaff et al. (2010, 2012) and Hill et al. (2012)
is based on the analysis of tracer spreading and could be sensitive to the initial
structure of the tracer field. The concept of RPE has certain caveats as applied to
the real ocean with a non-linear equation of state, so that using it implies some
approximations. Ilicak (2016) introduced the temporal derivative of RPE density as
a local measure of diapycnal mixing. The variance decay approach of Burchard and
Rennau (2008) and its further developments by Klingbeil et al. (2014) allows one
to obtain a three-dimensional view of the total spurious dissipation, see Figure 8.1.
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Fig. 8.1 Physical mixing (upper panels) and numerical mixing (lower panels) of temperature along
a transect across the North Sea simulated with GETM using adaptive coordinates (left) and σ

coordinates (right). A reduction of numerical mixing and an according increase of physical mixing
when using adaptive coordinates is clearly seen. This figure is adapted from Gräwe et al. (2015)

Further applications of this approach and the RPE analysis by Mohammadi-Aragh
et al. (2015) to a selection of transport schemes show that the amount of mixing is
related to the type of scheme (dissipative or neutral), and that certain limiters may
lead to spurious unmixing, which is as undesirable as spurious mixing, for it still
creates new water masses. Schemes providing highest accuracy are found to show
minimum spurious effects, in agreement with the conclusion by Hill et al. (2012).

These results indicate that the use of more accurate transport schemes in ocean
models presents a promising direction despite the long history of research and the
availability of numerous accurate algorithmic solutions.Additionalmotivation comes
from the fact that at present some groupsworkwith or develop ocean circulationmod-
els formulated on unstructured meshes (see Danilov 2013). Climate system models
using the ocean component fitting in this class are already available and new ones
will appear soon (see, e.g., Wan et al. 2013; Ringler et al. 2013; Wang et al. 2014;
Sidorenko et al. 2015). Accurate and cost effective transport schemes for unstruc-
tured meshes and low-order spatial discretisations are actively discussed, and current
practical solutions are equivalent to the third-order upwind or fourth-order centered
differences if the mesh is locally uniform (see, e.g, Skamarock and Gassmann 2011;
Danilov 2013). The algorithms based on direct flux estimates involving high-order
centered polynomial reconstruction do not generally show significant improvements
compared to the methods analogous to that by Skamarock and Gassmann (2011).
Further developments in this direction augmented with practical estimates of the
effect on spurious mixing present a challenging direction of research.
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Toro et al. (2001) proposed an explicit one-step finite volume scheme, termed
ADER, which is of Arbitrary high order, using high-order DERivatives of polyno-
mials. The finite volume discretisation of Toro et al. (2001) combines high-order
polynomial reconstruction from cell averages with high-order flux evaluation. The
latter is done by solving generalised Riemann problems across the cell interfaces, i.e.,
boundaries of adjacent control volumes. Therefore, the finite volume ADER scheme
of the seminal work Toro et al. (2001) (and from their subsequent developments Toro
and Titarev 2001; Titarev and Toro 2002) can be viewed as a generalisation of the
classical first-order Godunov scheme to arbitrary high orders.

ADER schemes have since then gained considerable popularity in applications to
gas and aerodynamics (see e.g. the text book by Toro 2009), and they were shown
to be of particular high performance in combination with WENO (Weighted Essen-
tially Non-Oscillatory) reconstructions. In fact, the resulting ADER-WENOmethod
yields a computational method for the numerical simulation of fluid flow of arbitrary
high order (see, e.g., Dumbser and Käser 2007) on both structured and unstructured
meshes.

WENO reconstruction is a basic ingredient for a class of finite volume methods,
used to avoid spurious oscillations in the solution of nonlinear hyperbolic problems.
The WENO method works with a weighted sum (convex combination) of recov-
ery functions from scattered samples, where the samples, for each reconstruction,
are taken from stencils. The construction of the stencils requires particular care, as
well as the selection of a suitable oscillation indicator (to determine the weights in
the convex combination). Kernel-based methods provide natural choices of oscil-
lation indicators, unlike traditional WENO schemes that are relying on polynomial
reconstructions. The kernel-based reconstruction method is mesh-free, optimal (in
the sense of splines), very flexible and inherently supports adaptivity. This was first
demonstrated in the work by Aboiyar et al. (2010), where kernel-based WENO
reconstructions were introduced first.

Alongside with the research on increasing accuracy of transport algorithms there
are promising results related to the measures helping to minimise spurious effects
accompanying transport. They have been proposed by the ROMS (Regional Ocean
Modeling System) community and consist in modifying the high-order upwind-
biased advection schemes by splitting them into a centered, non-diffusive part (dis-
persive truncation error) and a diffusive (biharmonic) operator, with the diffusion
coefficient depending on the amplitude of velocity and mesh spacing. The bihar-
monic operator is further modified by directing it to mix along the isoneutral surfaces
(Lemarié et al. 2012a, b). Only small residual mixing, related to numerical stabilisa-
tion, remains in this case. The technology ismost rewarding formodels formulated on
terrain-following coordinates, since slopes between isopycnals andmodel levels may
be substantial in this case in many places. Indeed, this is the main motivation behind
the studies by Lemarié et al. (2012a, b). Although the terrain-following meshes are
not common in global ocean circulation modelling, mixed meshes, combining the
geopotential and terrain-following levels, are beginning to be used to better resolve
processes on the continental shelf (see, e.g., Nakayama et al. 2014) or in ice cavities
(see Timmermann et al. 2012), where accurate rendering of local topography is of
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primary importance. In these situations the reduction in spurious mixing is a desired
feature of transport algorithms.

Spuriousmixing depends on the choice of vertical coordinates because this choice
defines the angles between isoneutral surfaces and model levels as well as the grid-
related vertical velocity.Additionally, spuriousmixing is coupled to sub-gridmomen-
tum dissipation (Ilicak et al. 2012) and, more broadly, to the structure (smoothness)
of the velocity field at smallest resolvable scales, which also depends on the mesh
vertical motion. The aspects of vertical discretisation and mesh motion can be han-
dled in the framework of Arbitrary Lagrangian Eulerian (ALE) vertical coordinates.
The ALE method is well known in computational fluid dynamics (for a brief review
see Donea et al. 2004) and presents a reformulation of motion equations to moving
coordinates. One gets a Lagrangian representation if the mesh follows fluid particles,
an Eulerian representation if it is fixed and any arbitrary combination in between,
hence the name. In ocean modelling the ALE vertical coordinate was in fact used
by models with generalized vertical coordinates. However, the notion of ALE was
hardly mentioned before the analysis of Adcroft and Hallberg (2006).

In the ALE implementation proposed by Adcroft and Hallberg (2006) coordinate
surfaces are moved with the vertical flow in a Lagrangian manner (thus without any
spuriousmixing) and then relocated using a remapping algorithm to take into account
watermass transformationor anyothermesh tendency.Alternatively, theALEvertical
coordinate can be implemented as the adjustment of model levels according to a
selected law, such as tendency towards isopycnals or locally increased layer number
in places with sharp density transitions. Through its ability to take into account
the isopycnal (Lagrangian) tendency, the ALE vertical coordinate may lead to a
substantial reduction in spuriousmixing if pairedwith appropriate algorithms of layer
motion. This motivates the use of this coordinate in new ocean model developments
such as MPAS-ocean (Model for Prediction Across Scales, Los Alamos National
Laboratory, Ringler et al. 2013) or MOM6 (Modular Ocean Model, Geophysical
Fluid Dynamics Laboratory). Needless to say that the ALE vertical coordinate is in
essence the basis of the Hybrid Coordinate Ocean Model (HYCOM) and numerous
coastal models including the General Estuarine Transport Model (GETM) and many
others. However, the ALE method is just the way of writing motion equations, and
the degree of spurious mixing reduction in setups that are based on geopotential or
terrain-following coordinate depends on the particular algorithm of mesh motion.
Two particular implementations deserve mentioning.

The first one involves the non-uniform adaptation of vertical terrain-following
grids as proposed by Hofmeister et al. (2010), see Figure 8.1. It aims at adjusting the
layers thicknesses depending on a goal function that favours increased resolution and
the alignment of level surfaces with isopycnals in places where the density gradients
are strong, which results in a significant reduction in spurious effects (Gräwe et al.
2015). The latter functionality is, in fact, available in GETM (see, e.g., Hofmeister
et al. 2010).

The second one is the so-called z̃-coordinate (Leclair and Madec 2011) which
aims to follow high-frequency baroclinic motions, so that transport operators “feel”
only the low-pass filtered vertical exchange. The intention is to reduce spurious
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mixing in regimes when internal wave contributions are substantial. The experi-
ments by Petersen et al. (2015) show that it is indeed possible. Except for these
examples the question of optimal algorithms for level motion in function of basic
vertical coordinate (z or terrain-following) and dynamical regimes remains largely
unexplored.

Below we provide a brief review of the developments mentioned above. Many
aspects remain a subject of research and may need further adjustments. Other mea-
sures of reducing spuriousmixingmay exist. The selection here picks up themeasures
that reflect the authors’ interests and are practically affordable for the current global
ocean circulation models. Furthermore, there are indications of their efficiency in
the available literature. Learning about their actual contributions in the reduction of
spurious mixing is a challenging program for future research.

The plan of the rest of this chapter is as follows. We start from the methods of
diagnosing spurious mixing and present examples showing its behaviour in test cases
and in practice (Section 8.2). We continue in Section 8.3 with the description of the
ALE framework and details of the mesh adjustment technology. The description of
the approaches by Lemarié et al. (2012a, b) will be presented in Section 8.4 and
ADER-WENO algorithms will be reviewed in Section 8.5. In the Conclusion we
briefly outline some of the open questions that could be addressed in future research.

8.2 Diagnosing Spurious Mixing

The local quantification of spurious mixing helps to detect hotspots of spurious
mixing and offers the comparison with physically induced mixing. This is essential
for the development and assessment of new numerical techniques like advection
schemes and algorithms for mesh adaptation.

8.2.1 An Analytical Example

Spurious mixing is induced by truncation errors due to the discretisation of the origi-
nal differential equation. Because of these truncation errors the solution of a discrete
difference scheme satisfies not the original differential equation but amodified equa-
tion (Hirt 1968; Warming and Hyett 1974). In principle the modified equation can
be derived analytically by Taylor series expansion of the discrete quantities within
the difference scheme.

For example, for the 1D advection equation,

∂ϕ

∂t
+ ∂

∂x
{uϕ} = 0, (8.1)
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the discretisation on an equidistant gridwith the explicit First-OrderUpstream (FOU)
scheme for a constant velocity u > 0 is given by

ϕ
(n+1)
i − ϕ

(n)
i

�t
+ u

ϕ
(n)
i − ϕ

(n)
i−1

�x
= 0. (8.2)

Taylor series expansion around ϕ
(n)
i = ϕ (x = i�x, t = n�t) yields the modified

equation

∂ϕ

∂t
+ u

∂ϕ

∂x
+ 1

2

(
�t

∂2ϕ

∂t2
− u�x

∂2ϕ

∂x2

)
+ 1

6

(
�t2

∂3ϕ

∂t3
+ u�x2

∂3ϕ

∂x3

)
+ HOT = 0,

(8.3)

with higher-order terms lumped into HOT. Successive replacement of higher-order
temporal derivatives and mixed derivatives in (8.3) by the modified equation itself
results in

0 =∂ϕ

∂t
+ u

∂ϕ

∂x

− 1

2
C (1 − C)

�x2

�t

∂2ϕ

∂x2

+ 1

6
C (1 − C) (1 − 2C)

�x3

�t

∂3ϕ

∂x3
+ HOT, (8.4)

with the Courant number

C = u�t

�x
. (8.5)

Thus, instead of the original advection equation (first row in (8.4)), a modified equa-
tion including a diffusion term (second row) and a dispersion term (third row) as
well as further higher-order terms is solved by the solution obtained from the explicit
FOU-scheme (8.2). It is this erroneous diffusion term that causes spurious mixing.
The associated numerical diffusivity of the explicit FOU-scheme,

νFOU = 1

2
C (1 − C)

�x2

�t
, (8.6)

consists of contributions from temporal truncation errors (first-order expansion
around (n)) and spatial truncation errors (upstream approximation of advective
fluxes).

The analytical derivation of the diffusion term in the modified equation is imprac-
tical for themore advanced higher-order non-linear schemes on non-equidistant grids
used in state-of-the-art numerical models. An alternative, general diagnostic method
to quantify numerical mixing is presented in the remainder of this section.



252 K. Klingbeil et al.

8.2.2 Variance Decay as a Measure for Mixing and
Dissipation

An alternative to the direct evaluation of diffusion terms is the indirect quantification
of the effects of diffusion. As will be shown below, this can be done in terms of
variance decay. Starting with the 1D diffusion equation,

∂ϕ

∂t
+ ∂

∂x

{
−ν

∂ϕ

∂x

}
= 0, (8.7)

a diffusion equation for the second moment can be derived by multiplication of (8.7)
with 2ϕ:

∂
(
ϕ2
)

∂t
+ ∂

∂x

{
−ν

∂
(
ϕ2
)

∂x

}
= −2ν

(
∂ϕ

∂x

)2

= −χ ana (ϕ) ≤ 0. (8.8)

The term χ ana (ϕ) on the right-hand side represents the local variance decay rate
associated with the diffusion of ϕ. This variance decay rate quantifies the smoothing
of gradients, i.e. the mixing of tracers or the dissipation of kinetic energy associated
with the diffusion of velocity (ϕ = u).

Since there is no analytical variance decay associated with advection (derived
from the advection equation (8.1)),

∂
(
ϕ2
)

∂t
+ ∂

∂x

{
u
(
ϕ2
)} = 0, (8.9)

the variance decay rate can be established as a reasonable indirect measure for dif-
fusion and the associated mixing and dissipation.

8.2.3 Discrete Variance Decay

Although no variance decay is associatedwith the continuous advection equation, see
(8.9), numerical advection schemes cause spurious discrete variance decay (DVD)
due to truncation errors as demonstrated in Section 8.2.1.

AFinite-Volume (FV)discretisationof the advection equation (8.1), that facilitates
a later extension to 3D, is given by

V (n+1)
i ϕ

(n+1)
i − V (n)

i ϕ
(n)
i

�t
+ [Ai ′ui ′ ϕ̃i ′ ]

i ′=i+1/2

i ′=i−1/2 = 0, (8.10)

with Vi being the volume of the i-th FV-cell and with the discrete first moment ϕ(n)
i =

1
V (n)
i

∫
V (n)
i

ϕdV . Rectangular brackets [ψi ′]
i ′=i+1/2

i ′=i−1/2 = ψi+1/2 − ψi−1/2 will be used as
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shorthand notation for differences. Quantities with half indices are located at the
corresponding interface between two FV-cells, e.g. the area of the interface Ai ′ and
the interfacial values ϕ̃i ′ approximated according to the applied advection scheme.

In order to quantify the associated variance decay, it is obvious that the discrete
second moment equation must not be obtained by an independent discretisation of
the analytical second moment equation (8.9), but should be derived from the original
prognostic equation (8.10). This also guarantees the consistency of discretemoments,

i.e.
(
ϕ2
)(n+1)
i ≡

(
ϕ

(n+1)
i

)2
, and actually turns the discrete second moment equation

into a diagnostic equation for the DVD rate. The derivation of a straight-forward
expression for the DVD rate is only possible for trivial schemes. Nevertheless, a gen-
eral derivation of the discrete second moment equation is possible, as discussed in
Klingbeil et al. (2014). Formally (8.10) can be split into two steps, the first describing
the decomposition of the old FV-cell (n) into subvolumes advecting out to neighbour-
ing cells and into the portion (∗) remaining in the cell, and the second representing
the recombination of the remained portion and the subvolumes advected into the cell
(see Prather 1986),

V (∗)
i ϕ

(∗)
i = V (n)

i ϕ
(n)
i − �t

[
Ai+1/2u

+
i+1/2ϕ̃i+1/2 − Ai−1/2u

−
i−1/2ϕ̃i−1/2

]
, (8.11a)

V (n+1)
i ϕ

(n+1)
i = V (∗)

i ϕ
(∗)
i − �t

[
Ai+1/2u

−
i+1/2ϕ̃i+1/2 − Ai−1/2u

+
i−1/2ϕ̃i−1/2

]
, (8.11b)

with u+
i ′ = max {0, ui ′ } and u−

i ′ = min {ui ′ , 0}. A graphical example for this decom-
position and recombination is shown in Figure 8.2. The existence of subvol-
umes offers a mathematically sound definition of variance in a single FV-cell
(MoralesMaqueda andHolloway 2006). The variance gain during the decomposition(�σ 2

)d
and the variance loss during the recombination

(�σ 2
)r
can be calculated as

(�σ 2
)d,(n)

=
(

V (∗)
i

(
ϕ

(∗)
i

)2+�t Ai+1/2u
+
i+1/2

(
ϕ̃i+1/2

)2−�t Ai−1/2u
−
i−1/2

(
ϕ̃i−1/2

)2
V (n)
i

−
(
ϕ

(n)
i

)2)− 0, (8.12a)
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ϕ
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−
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(
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(
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)2
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i

−
(
ϕ
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i
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. (8.12b)

The net DVD rate can then be defined as

χ
adv,(n+1)
i = − 1

�tV (n+1)
i

(
V (n)
i

(�σ 2
)d,(n)

i + V (n+1)
i

(�σ 2
)r,(n+1)

i

)
. (8.13)
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Fig. 8.2 Advection in a FV-framework (taken from Klingbeil et al. 2014): The schema sketches
the exemplary decomposition of FV-cells into subvolumes and their recombination on a fixed 1D
grid for uniform flow. V , A, u, ϕ and ϕ̃i±1/2 denote the volumes and interfacial areas of the FV-
cells, the velocity, the quantity to be advected and its approximated interfacial values. During
the decomposition subvolumes and variance are created inside a single FV-cell, whereas during
the recombination subvolumes and variance are destroyed. The associated variance gain and loss
determine the net variance decay during one timestep and can be calculated according to (8.12a)–
(8.13)

For anti-dissipative advection schemes, which tend to steepen gradients, the net DVD
rate can be negative. Combination of (8.12a), (8.12b) and (8.13) finally yields the
discrete second moment equation, from which the DVD rate can be diagnosed:

V (n+1)
i

(
ϕ

(n+1)
i

)2 − V (n)
i

(
ϕ

(n)
i

)2
�t

+ [Ai ′ui ′ ϕ̃
2
i ′
]i ′=i+1/2

i ′=i−1/2
= −V (n+1)

i χ
adv,(n+1)
i .

(8.14)

The extension of (8.14) to 3D is straightforward by simply considering the additional
fluxes through the other interfaces of the FV-cell.

For the 1D explicit FOU-scheme (8.14) can be derived directly by multiplication

of (8.10) with
(
ϕ

(n)
i + ϕ

(n+1)
i

)
and further reformulation with the help of the conti-

nuity equation ((8.10) with ϕ = 1), see Morales Maqueda and Holloway (2006) and
Burchard (2012). Interestingly, for ui ′ > 0 the derived DVD rate coincides with a
straightforward discretisation of the analytical variance decay rate derived in (8.9)
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for a diffusion equation with the numerical diffusivity of the FOU scheme derived
in (8.6):

χ
FOU,(n+1)
i = 2νFOU,(n+1)

i

(
ϕ

(n)
i − ϕ

(n)
i−1

�xi

)2

. (8.15)

The numerical diffusivity in (8.15),

ν
FOU,(n)
i = 1

2C
(n)
i

(
1 − C (n)

i

) �x2i
�t , (8.16)

depends on a generalised Courant number C (n)
i = �t Ai−1/2ui−1/2/V

(n)
i which coin-

cides with (8.5) for equally-sized FV-cells.

8.2.4 Applications

The diagnostic method (8.14), outlined in Section 8.2.3, was implemented into the
General EstuarineTransportModel (GETM,Burchard andBolding2002;Hofmeister
et al. 2010; Klingbeil and Burchard 2013). Here results from its application to a
realistic Western Baltic Sea model are presented. In the Western Baltic Sea saline
bottom inflows from the Kattegat are subject to mixing induced by various sources.
This mixing determines the final salinity of the plumes and thus their interleaving
at the corresponding density levels in the downstream basins of the Baltic proper.
Therefore, the accurate simulation of themixing in theWestern Baltic Sea is essential
for realistic model results. The effective mixing within a model combines the well-
calibrated physically induced mixing due to turbulence closure schemes and the
spurious mixing induced by the numerics. In Figure 8.3 physically and numerically
induced mixing of salinity in the Western Baltic Sea are juxtaposed. As is obvious
from (8.8), any kind of mixing requires both, sharp gradients and high diffusivities.
Therefore, significant mixing of salinity usually takes place in the vicinity of the
halocline (see Figure 8.3c, d). High-turbulent regions with increased diffusivities
can be detected as hotspots of physically induced mixing, e.g. boundary layers.
Coarse vertical resolution, strong advective fluxes through the cell interfaces and
the non-alignment of model layers with isohalines can be identified as sources for
increased numerically induced salt mixing.

It is noteworthy that even in today’s realistic simulations with state-of-the-art
ocean models, numerically induced spurious mixing is still of the same order of
magnitude as the physically induced counterpart. In Section 8.3 adaptive meshing
techniques will be outlined that (i) refine the spatial resolution in the vicinity of
gradients to decrease truncation errors, (ii) move with the fluid to minimise the
advective transports through themesh, and (iii) align themodel layerswith isopycnals
to facilitate a reasonable physical mixing.
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Fig. 8.3 Mixing of salinity in a realistic Western Baltic Sea model (taken from Klingbeil et al.
2014): Depth-integrated (a, b) and depth-resolved (c, d) mixing rates averaged over 19–28 Sep
2008. Ticks above the colorbars belong to a, b and ticks below to c, d. Grey countour lines in a,b
show isobaths with an interval of 25 m. The black line with markers depicts the transect along the
stations Fehmarn Belt (FB), Darss Sill (DS), Arkona Basin (AB), Bornholmsgat (BG), Bornholm
Basin (BB) and Słupsk Furrow (SF), shown in c, d. In c, d isohalines with an interval of 2 gkg−1 are
drawn as contour lines. It is obvious that numerically induced spurious mixing can be of the same
order as the physical mixing contribution. Negative numerical mixing indicates spurious steepening
of gradients due to anti-dissipative advection schemes
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8.3 Arbitrary Lagrangian Eulerian Vertical Coordinate

TheArbitrary Lagrangian Eulerian (ALE) framework is commonly used in computa-
tional fluid dynamics in situations when dynamical equations have to be considered
on moving meshes. As such, it is a subject of textbooks, and its brief exposition can
be found, for example in Donea and Huerta (2003) and Donea et al. (2004). The
essence of the method reduces to the observation that for a scalar quantity ϕ the
material derivative (for a fixed fluid particle Lagrangian coordinate X) on a moving
mesh can be written as

Dϕ

Dt
= ∂ϕ

∂t
|X = ∂ϕ

∂t
|χ + c

∂ϕ

∂x
, (8.17)

where χ are the coordinates related to the moving mesh points and x are the original
(fixed)Eulerian coordinates. In this formula the timederivative is computed following
themesh and c = v − vm = Dx/Dt − ∂x/∂t |χ is the so called “convection” velocity,
i.e. the difference of the Eulerian fluid velocity (the first term) and mesh velocity
(the second term), or in still other words, the transport velocity through the mesh
surfaces. Introducing fluid particle velocity in χ coordinates,w = ∂χ/∂t |X, we have
c = w(∂x/∂χ), i.e., they are connected through the Jacobian. Note that the gradient
term in (8.17) is expressed with respect to the original coordinates x. The same
modification concerns all other full time derivatives. Perhaps a more handy way of
expressing this, especially in the view of finite-volume discretisation used in practice,
is to use the Reynolds transport theorem, writing for a conserved quantity ϕ (like a
mass fraction)

d

dt

∫
V (t)

ϕdV +
∫

∂V (t)
ϕcndA = 0, (8.18)

where ∂V is the moving boundary of volume V and n is the outer normal to the
surface. Thus, the ALE procedure reduces in essence to using the velocity of motion
relative to the moving mesh to describe the exchange between the interacting vol-
umes. Note that themesh need not necessarily tomove, it can be fixed,with arbitrarily
drawn (but not intersecting) surfaces. Whatever the case one will be working with
the transport velocity through the faces of computational cells on this mesh.

The oceanographic community came to the use of ALE framework through the
concept of a generalized vertical coordinate r = r(x, y, z, t), a special case of χ

above. Transforming from the (x, y, z, t) to (x, y, r, t) representation one gets the
basic set of governing equations in the form

Du
Dt

+ f k × u + (1/ρ0)(∇r p + gρ∇r z) = F, (8.19)

∂r p + gρ∂r z = 0, (8.20)

∂t h + ∇r (hu) + ∂r (hṙ) = 0, (8.21)

∂t (hϕ) + ∇r (huϕ) + ∂r (hṙϕ) = Qϕ, (8.22)

∂tη + ∇r

∫
uhdr = P. (8.23)
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Here h = ∂r z is the Jacobian of transform from z to r coordinate, which will be
called thickness in what follows, ϕ is the temperature T or salinity S, F and Qϕ

are the “sources” in the respective equations, the operator ∇ is the horizontal one.
The index r with ∇ implies that computations are along the surfaces of constant
r , while the same index with ∂ points to the derivative with respect to r . The rest
of notations is standard, with u the horizontal velocity, g the acceleration due to
gravity, p the pressure, ρ0 and ρ the reference density and the deviation from it
respectively, f the Coriolis parameter, k the vertical unit vector, η the elevation
and P the freshwater added to the ocean. The density ρ obeys the equation of state
ρ = ρ(T, S, p0) (p0 = −ρ0gz).

This set of equations includes the cases of isopycnal coordinate when r is the
potential density, or generalized terrain following coordinate (including the standard
sigma-coordinate) if r is defined appropriately. By construction, the equations above
are already written in the ALE framework, restricted to the case of only vertical mesh
transforms. Indeed, the velocity ṙ entering these equations is the velocity relative to
the mesh (in analogy to w above and to c if taken together with the Jacobian), and
not the Eulerian velocity relative to the original set of coordinates (x, y, z, t). The
difference in the form of these equations compared to the ALE equation (8.17) stems
from the fact that they are written with respect to the transformed coordinates, while
it has not been done above.

The extent the algorithm isEulerian orLagrangiandepends onhowequation (8.21)
is treated. Adcroft and Hallberg (2006) introduce the terminology of Eulerian and
Lagrangian vertical direction, EVD and LVD respectively. One gets the EVD if the
construction of r is fully prescribed, as is the case for the standard sigma-coordinate.
In this case

r = σ = z − η

H + η
,

where H is the oceandepth and the Jacobian h = ∂r z = H + η. As a result, ∂t h = ∂tη

in equation (8.21) is known from the evolution of η, which is solved together with
the momentum equation. In this case equation (8.21) is used to diagnose the quasi-
vertical transport velocities hṙ , beginning from the bottom. More interesting cases
follow when r = f (x, y, σ )σ , in which case one may select the function f so that
the discrete values of h, denoted by the index k become hk = h0k(1 + η/H), where
h0k are the thicknesses of layers in the quiescent ocean, i.e, the Jacobian becomes
the actual layer thickness.

One gets the LVD if Equation (8.21) is purely prognostic. An obvious case is
that of adiabatic vertical coordinate r = ρ when ṙ = 0 (no mass flux through the
isopycnal surfaces). In this case there is no property exchange between the layers,
and advection becomes horizontal. Adcroft and Hallberg (2006) consider the ALE
framework as a method associated to the LVD and serving to allow some mass
exchange (non-zero ṙ ) needed in practice to simulate physical vertical mixing. In
reality, (i) the ALE framework is more general than LVD or EVD for it contains
them as special cases and (ii) it does not enforce one to first integrate in a truly
Lagrangian manner and then remap. This is only one interesting possibility. Perhaps,
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cases that are sufficiently close to the isopycnal vertical coordinate deserve special
attention. The alternative is to split the tendency ∂t h into a prescribed and adapting
parts, aswould bemore appropriate inmodels relying on quasi-geopotential or terrain
following layers. Indeed, the so-called z̃ vertical coordinate proposed by Leclair and
Madec (2011) and also explored by Petersen et al. (2015) follows this direction,
without remapping.

Although the approach relying on the transform to the generalized vertical coordi-
nate is popular, the transform can be avoided, for one may directly derive equations
for flow in vertically moving layers by integrating the governing equations in the
Eulerian representation vertically over these layers. This approach is selected by
MPAS (Ringler et al. 2013) and is followed by FESOM2 (Danilov et al. 2017). The
appendix of Ringler et al. (2013) presents a succinct derivation. In this case h is the
physical layer thickness. The difference from the transformed equations above is that
terms like ∂r (hṙ) are replaced by the difference in quasi-vertical transports through
the top and bottom surfaces of each layer. This approach is more transparent, and
technically easier to introduce in cases where the number of layers is variable (the
geopotential basis coordinate). Adding it to existing z-coordinate codes is relatively
straightforward.

We thus see that equipping ocean model codes with ALE vertical coordinate is
a relatively straightforward task and many terrain-following models routinely have
it without explicitly stating. Its availability opens up new possibilities allowing one
to use general distributions of layer thicknesses (such as a combination of z- and
terrain following layers). Gaining real benefits from the ALE framework as concerns
spurious mixing requires a strategy of adapting the layer thicknesses. Indeed, if layer
thicknesses were moving isopycnally, spurious water mass transformations would be
eliminated altogether. However, depending on applications, physical aspects of the
dynamics to be simulated may require other basic vertical coordinate (for example,
it is terrain-following in most coastal applications; see Klingbeil et al. 2018a). In
this case the question is how to introduce elements of isopycnal behaviour or how to
locally refine vertical resolution in order to minimize spurious smoothing. We will
present two examples below.

The implementationmay raise additional questions such as accurate time stepping
and numerical stability, the need in reducing pressure gradient errors, or in adapting
parametrisations that might be sensitive to the choice of vertical coordinate. Another
important aspect is the correct interpretation of residual dynamics in a particular
coordinate system (Klingbeil et al. 2018b).

8.3.1 z̃-Vertical Coordinate and its Effect on Spurious Mixing

Spurious mixing is significantly reduced in Lagrangian vertical coordinates because
of themissing advection through the coordinate surfaces.However, a pureLagrangian
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movement of model layers following arbitrary motions is prone to strong mesh
distortion and thus impractical for numerical models. The ALE approach offers to
consider Lagrangian tendencies up to a desired level.

A trivial example are separable terrain-following coordinates of the form z − η =
S(r)D(x, y, t) with the total water depth D = H + η. These coordinates treat the
barotropic portion of motion in a Lagrangian way (Shchepetkin and McWilliams
2009). This can easily be shown by deriving the prognostic equation for h from the
transformation function above. Using (8.23) with P = 0 and the barotropic velocity
(here approximated by the depth-averaged velocity) U = ∫ uhdr/D yields:

∂t h = (∂r S) ∂tη = − (∂r S) ∇r (DU) = −∇r ((∂r S) DU) = −∇r (hU) . (8.24)

Combination with (8.21), split into a prognostic part for h and a diagnostic part for
ṙ according to

∂t h + X︸ ︷︷ ︸
=0

+ ∇r (hu) − X + ∂r (hṙ)︸ ︷︷ ︸
=0

= 0, (8.25)

shows that X = ∇r (hU) and thus ṙ = 0 for purely barotropic motions with u = U.
Recently, Leclair and Madec (2011) proposed to also treat the fast oscillating

baroclinic portion of motion in a Lagrangian way by introducing the so-called
z̃-coordinates. These coordinates are not defined by an explicit transformation func-
tion, but by a prescribed X in (8.25),

X = h

D
∇r (DU) − ∂t

〈
h̃
〉
HF,τh

, (8.26)

with the simple high-passfilter ∂t 〈ψ〉HF,τ =∂tψ − 〈ψ〉HF,τ /τ and thehigh-frequency
displacements of coordinate surfaces obtained in terms of the high-frequency part
of the baroclinic flow divergence ∂t h̃ = −〈∇r (hu) − h/D∇r (DU)〉HF,τu

. In order
to avoid grid distortion due to a long-term drift, the prognostic equation for the
high-frequency displacements contains a term restoring the displacements back to

zero, which is equivalent to the secondary high-pass filter
〈
h̃
〉
HF,τh

. Additionally, the

optional inclusion of a lateral thickness diffusion term was suggested to suppress
grid-scale noise.

The performance of z̃-coordinates was compared against that of z-level, z∗, σ and
isopycnal coordinates by Petersen et al. (2015), who repeated the idealised experi-
ments of Ilicak et al. (2012) and confirmed reduced diapycnal mixing. Furthermore,
for a global spin-up simulation significantly reduced vertical cross-coordinate trans-
ports were demonstrated. Despite the advantages of z̃-coordinates in regimes dom-
inated by (internal) waves, Petersen et al. (2015) also experienced stability issues
with z̃ coordinates that need to be investigated. In addition, the definition of X
in (8.26) needs further research, because only X = ∇r (hU) + ∇r (h 〈u − U〉HF)
treats barotropic and high-frequency baroclinic motions with u = U + 〈u − U〉HF
in a Lagrangian way.
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8.3.2 Additional Techniques for Adaptive Vertical Model
Layers

In addition to adjustable Lagrangian tendencies, the adaptive coordinates presented
by Hofmeister et al. (2010) also offer adjustable isopycnal tendencies. From a trun-
cated Taylor series for a prescribed target density ρ̂ = ρ

(
ẑ
)
, the corresponding target

position of the layer is estimated as

ẑ = z + (∂zρ)−1
(
ρ̂ − ρ (z)

)
. (8.27)

The tendency to move the layer to this target position can be adjusted and deter-
mines the isopycnal tendency. Clipping towards prescribed positive minimum layer
thicknesses avoids invalid meshes. Furthermore, a final stretching of all layers is
required to guarantee that the sum of layer heights coincides with the total water
depth. The resulting isopycnal alignment of layers reduces the spurious diapycnal
mixing associated with lateral advection.

In order to reduce the spurious mixing caused by truncation errors associated
with vertical advection, Burchard and Beckers (2004) developed an optimisation
technique for the vertical resolution, i.e. the layer heights within a water column.
The desired zooming of layers towards boundaries, stratification and shear is based
on a vertical diffusion equation for the interface positions zκ=k±1/2 with κ ∈ R and
k ∈ [1, kmax] denoting the layer number,

∂t z − ∂κ

(
Dgrid∂κ z

) = 0, (8.28)

with boundary conditions zκ=1/2 = −H and zκ=kmax+1/2 = η. Diffusion coefficients
Dgrid that are uniform in the vertical cause the layer heights to become uniform
as well, i.e. a tendency towards equidistant layers. In contrast, a locally increased
diffusion coefficient, e.g. proportional to stratification or shear, tends to decrease the
local layer height, i.e. refines the vertical resolution in the vicinity of gradients. The
resulting layer distribution in adjacent water columns can be homogenised by lateral
diffusion of layer heights and interface positions (Hofmeister et al. 2010), which
must be combined with a subsequent stretching of layer heights as described above.

Figure 8.1 shows the reduced spurious mixing for adaptive coordinates compared
to σ -coordinates in an exemplary realistic coastal ocean model simulation.

8.4 Advection Algorithms Stabilized with Isoneutral
Mixing

Many popular high-order transport schemes rely on upwind-biased reconstructions
in order to warrant numerical stability. Along with stability, upwinding also intro-
duces spurious numerical mixing. However, if one assumes that the velocity field is
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uniform, the dissipative part of such transport schemes canbe explicitly identified. For
example, the widely used 3rd-order algorithm (see, e.g., Webb et al. 1998; Shchep-
etkin and McWilliams 1998 for structured meshes and Skamarock and Gassmann
2011; Abalakin et al. 2002 for unstructured meshes), forming the basis of many
advection schemes, can be written as a sum of the fourth-order centered method and
a dissipative correction, which reduces the order to the third (see below). This correc-
tion resembles biharmonic diffusion with a diffusivity coefficient that is proportional
to the amplitude of velocity and cube of mesh element size. The centered estimate of
fluxes introduces a residual error of dispersive nature (scaling with odd derivative). It
does not lead to mixing on its own, for the residual terms with odd derivatives do not
contribute to domain-mean variance decay. Yet it cannot work without the dissipative
part, since it is prone to instabilities caused by small-scale dispersive errors.

This consideration underlies the analysis of Lemarié et al. (2012a) who propose
to use this explicit splitting into high-order centered part and velocity-dependent
dissipative correction to reduce spuriousmixing accompanying numerical advection.
It will be clarified below based on 1D example. Let discrete values of tracer be Ti
at location indexed by the index i . Let the velocity u be positive (in the direction of
i increasing). The upwind gradient-based reconstruction leading to the third-order
scheme is in this case

T−
i+1/2 = Ti + (1/2)ΔxG−

i+1/2,

where the gradient G is the combination of central and upwind estimates

G−
i+1/2 = (2/3)Gc

i+1/2 + (1/3)Gu
i+1/2,

with Gc
i+1/2 = (Ti+1 − Ti )/Δx , Gu

i+1/2 = (Ti − Ti−1)/Δx , and Δx the mesh hori-

zontal increment. Computing the flux leaving cell i at location i + 1/2 as F (3)
i+1/2 =

uT−
i+1/2 gives the third order advection scheme. Introducing the reconstruction for

the opposite (downwind) direction,

T+
i+1/2 = Ti+1 − (1/2)ΔxG+

i+1/2,

with
G+

i+1/2 = (2/3)Gc
i+1/2 + (1/3)Gd

i+1/2,

whereGd
i+1/2 = (Ti+2 − Ti+1)/Δx , and combining it with the previous one gives the

centered flux estimate F (4)
i+1/2 = u(T+

i+1/2 + T−
i+1/2)/2 and the method of the fourth

order which has a dispersive leading error and needs to be augmented with diffusion
in practical applications. As a rule, the third-order method is too dissipative but its
combination with the fourth-order method F = γ F (4) + (1 − γ )F (3) with γ = 0.75
or higher works invariably well in practice (cf. Skamarock and Gassmann 2011).
Obviously the difference of two estimates,

Fi+1/2,diss = F (3)
i+1/2 − F (4)

i+1/2
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corresponds to a dissipative diffusive contribution stabilizing the method. It can
be easily shown that it leads to the residual term ∂x (|u|Δx3/12)∂xxx T in the flux
divergence, which is biharmonic diffusion (cf. Lemarié et al. 2012a). It will enter
with the additional factor (1 − γ ) for the combined flux estimate. In the case of
three dimensions the flux F becomes a three-dimensional vector and an analogous
dissipative term will appear. It will cause mixing which will necessarily have a
cross-isopycnal (diapycnal) component. One can introduce an isoneutral projection
operator K which eliminates the diapycnal component of the flux. Introducing the
slope vector

s = −∇hρ/∂zρ, (8.29)

where the index h implies quasi-horizontal (along layers) directions and an agreement
is made that ρ should be referenced to local pressure in estimation of derivatives, in
the small-slope approximation the operator reads

K =
⎛
⎝ 1 0 sx
0 1 sy
sx sy s2x + s2y

⎞
⎠ .

Indeed, the flux KFdiss has no projection on the diapycnal vector (−sx ,−sy, 1).
However, because of K, it also ceases to be purely dissipative in a general case and
may limit the time step if the parameter S = |s|Δx/Δz exceeds one, with Δz the
vertical mesh increment. It remains to see whether this simple approach is useful.

Lemarié et al. (2012a) propose to substitute the dissipative term by the appropri-
ately scaled modified biharmonic diffusion operator. They write this operator as a
combination

D4T = D2D2T,

where
D2T = ∇κK∇T,

and the diffusivity κ is computed as κ = (|u|Δx3/12)1/2 (the attenuation factor
(1 − γ ) may be added in general case). It also needs stabilization carried out with
a variant of the method of stabilizing corrections (MSC). Applying stabilization
requires care, because the projection operator K appears twice, effectively squaring
the contributions from mixed (vertical-horizontal) derivatives which cause the prob-
lem. Although the use of two isoneutral harmonic operators implies certain code
simplification, computations involving K are relatively expensive.

Two remarks are due here. First, functioning of the proposed approach on unstruc-
tured triangular meshes may pose additional challenges with respect of numerical
stability, leaving aside the aspects of a consistent implementation of the isoneutral
projection operator (see the discussion in Lemarié et al. 2012b).

Second, the algorithm presents a special interest for meshes with generalized level
surfaces that follow the bottom topography at some locations. They may deviate
stronger from isopycnals than the geopotential surfaces do, and spurious mixing will
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be increased there. Many practical tasks involving interactions of ocean shelf with
the deep ocean would benefit from using such locally terrain following meshes. In
this case the slope entering the expression forK is with respect to the level surfaces if
horizontal derivatives are computed along the level surfaces. As should be clear from
foregoing the strongest time step limitationswill be in the places where the product of
mesh aspect ratio with slope is large, S = |s|Δx/Δz > 1, which can easily happen.
The implication is that practical utility of the algorithm proposed is inseparable from
the issues related to mesh geometry and should be studied together. This links the
question considered in this section to the implementation of ALE vertical coordinate.

While themeasures based on the suggestion of Lemarié et al. (2012a) are valuable,
transport schemes may include limiters, in which case it is impractical to explicitly
write the operator responsible for dissipation. A question arising in the context of
present discussion is whether the accompanying spurious dissipation can be mini-
mized or controlled. The answer should depend on the nature of the limiter used. For
example, the flux corrected transport (FCT) algorithm, which is based on comparing
a low-order, but monotonic, solutionwith the high-order, but non-monotone solution,
limits antidiffusive fluxes which are the difference between the high-order and low-
order fluxes. The difference between the limited and full antidiffusive fluxes should
be analogous to the diffusive flux considered above, and one may try to reduce its
diapycnal component (although this may interfere withmonotonicity). The ideas like
this one are purely hypothetical at present, but research in this direction isworthwhile.

The extent to which these measures lead to the reduction in spurious mixing needs
to be quantified in realistic applications. The change in advection scheme also implies
some change in dynamics, which may influence spurious effects. Furthermore, spu-
rious mixing may interfere with physical mixing (the latter may be triggered by
small-scale dispersive errors which in theory do not contribute to mixing on their
own). The task is therefore, alongside with mathematical developments, to learn
about accompanying practical details. This presents a major task for future research.

8.5 ADER High Order Flux Evaluation and WENO
Reconstruction

In this section, we explain how to combine ADER high order flux evaluation with
WENO reconstruction. The resulting ADER-WENO method yields a high perfor-
mance method for the numerical simulation of fluid flow of arbitrary high order (see,
e.g., Dumbser and Käser 2007). The ADER scheme of the seminal work by Toro
et al. (2001) can be viewed as a generalisation of the classical first-order Godunov
scheme to arbitrary high orders. In this generalisation, the ADER method provides
the numerical solution of the generalized Riemann problem (GRP), as discussed in
Section 8.5.1. Then, in Section 8.5.2, we explain how to design WENO (Weighted
Essentially Non-Oscillatory) reconstructions for the recovery step of finite volume
methods, where particular emphasis is placed on kernel-based reconstructions for
unstructured data, as proposed in Aboiyar et al. (2010).
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8.5.1 The Generalized Riemann Problem

The (classical) Riemann problem is the initial value problem for an evolutionary
PDE with piecewise constant but discontinuous initial data. Interest in such prob-
lems originates from the study of shock-tube problems in gas dynamics, where a high
pressure part of a gas in a tube is separated from a low pressure part by a membrane.
When this membrane is removed very quickly, high and low pressure parts interact
instantaneously and several interesting wave phenomena can occur. A similar prob-
lem arises in hydrodynamics when we consider a dam-break problem where large
water heights interact with low water heights after the instantaneous removal of an
obstacle. For a general conservation law in 1D, the Riemann problem has the form

∂u(x, t)

∂t
+ ∂f (u(x, t))

∂x
= 0. (x, t) ∈ R × (0,∞), (8.30)

u(x, 0) =
{
ūL , x < 0,
ūR, x > 0,

(8.31)

with constant states ūL , ūR .
The Riemann problem is an important building block, not only for modelling and

computing, but also in the analytical treatment of conservation laws. Modern results
concerning existence and uniqueness of solutions and the continuous dependence
on the initial data can be achieved by carefully piecing together local Riemann
problems, seeBressan (2000). The analytical solution ofRiemann problems, together
with several examples, is discussed, e.g., in the textbooks by Dafermos (2010) and
Smoller (1994).

From a computational point of view, the Riemann problem naturally occurs in
Finite Volume schemes: When the discrete solution of the PDE is represented by its
cell-averages, our interpretation is that we have a piecewise constant function that is
constant in each computation cell and has jumps at the boundaries of the cells. In this
sense, a Finite Volume Method (approximately) solves Riemann problems at each
time-step at each cell boundary. For a survey of numerical techniques for solving the
Riemann problem numerically, we refer to Toro (2009, 2016)

For hyperbolic conservation laws, the Riemann problem has been studies thor-
oughly and for many systems of practical interest it can be either solved exactly
or robust, efficient and accurate methods for approximately solving the Riemann
problem are available. Thus, we can use these Riemann solvers directly to compute
numerical fluxes in our Finite Volume update. This idea dates back to Godunov
(1959) and the method that employs the exact Riemann solver has become famous
as the Godunov scheme.

High-order accurate one-step finite volume methods can then be constructed by
allowing spatial variation of the discrete solution in each cell. Instead of a piecewise
constant representation of the discrete solution, we seek a discrete representation
such that in each cell we a have smooth function (say, a polynomial of a prescribed
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degree), but in order to deal with shock waves we still allow for discontinuities at
the cell boundaries. In order to construct a method that is of generalized Godunov
type, we then want to solve the generalized Riemann problem (GRP), that is, the
initial value problem with piecewise smooth, but discontinuous data. In fact, any
high order method that represents the discrete solution by a piecewise polynomial,
be it a WENO reconstruction or a polynomial from a discontinuous Galerkin finite
element space, in some way or the other has to deal with the generalized Riemann
problem.

A generalized Godunov method can be understood in the REA-framework
(Reconstruct—Evolve—Average) described byLeVeque (2002).Weneed three com-
ponents (compare Figure 8.4):

• R: A conservative reconstruction operator R. That is, a method that computes a
higher order accurate representation w from cell averages, such that the integral
of w in each cell is the cell average in that cell. How this can be done with WENO
reconstruction is described in the next section.

• E : An approximate evolution operator, that describes the exact (or at least, well
approximated) evolution of the initial value problem given by the data from the
reconstruction step. In this section, we focus on the construction of approximate
evolution operators by solving the generalized Riemann problem.

• A : Computation of cell averages of the evolved data. In fact, evolution and aver-
aging can be done in one step if we use a conservative finite volume method.

Generally speaking, there are two strategies for solving the GRP in a high order
Godunov type scheme: The first is the evolution in the small approach, in which the
data is evolved in each cell and then Riemann problems at times t > 0 are solved to
compute the interaction between different cells. The second approach is the instan-
taneous interaction variant, in which we first compute an interaction between neigh-
bouring cells at t = 0 and then do the evolution after that.

Our focus here lies on instantaneous interaction solvers, but let us briefly discuss
the first (evolution in the small) ansatz. Early methods following this line of thought
are van Leer’s MUSCL scheme (van Leer 1979), the PPM method of Colella and
Woodward (1984), and the Harten-Engquist-Osher-Chakravarthy method originally
proposed in the context of ENO schemes (Harten et al. 1987). A recent variant of this
approach is the use local space-time discontinuous Galerkin predictors, put forward
by Balsara et al. (2013), Dumbser et al. (2008a, b), in which a weak formulation
of the PDE is used for the evolution of the data in each cell. A similar space-time
expansion approach is due to Gassner et al. (2011, 2008), Lörcher et al. (2007).
This modern interpretation of ADER schemes currently is a very popular research
topic and the approach has been applied successfully to a broad range of complex
flow problems, see for example Dumbser et al. (2016), Zanotti and Dumbser (2016),
Zanotti et al. (2015) and references therein. For an application of the ADER approach
in a Lagrangian or arbitrary Eulerian-Lagrangian framework see Boscheri et al.
(2014a), Boscheri and Dumbser (2013, 2014), Boscheri et al. (2014b).

Now let us get back to instantaneous interaction methods, in which we use a
direct solution strategy for the GRP as a building block in the numerical scheme. The
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Fig. 8.4 Schematic
description of a generalized
Godunov scheme
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solution of the generalized Riemann problem is generally not available in a closed,
analytic form. We therefore need to construct approximate solutions, typically in
the form of space-time polynomial expansions. The idea of turning a direct solution
strategy for the GRP into a numerical method was introduced by Ben-Artzi and
Falcovitz (1984, 2003) for piecewise linear initial data and consequentially this
method has become known as the GRPmethod. We will, however, use the termmore
broadly, allowing any kind of piecewise smooth initial data. Convergence of the GRP
method for scalar problems was proven in Ben-Artzi et al. (2009), recent versions of
the GRP scheme are presented in Ben-Artzi et al. (2006) or Yang et al. (2011).
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ū0 ū3

Fig. 8.5 Corresponding wave pattern for a generalized Riemann problem and the associated clas-
sical Riemann problem for a 3 × 3 system

Different techniques for solving the GRP numerically are available. They are
usually rooted in a deep analytical examination of the problem. For example, the
treatment of the GRP in terms of Riemann invariants by Ben-Artzi and Li (2007) was
used to construct a third-order solver byQian et al. (2014).Goetz andDumbser (2016)
constructed a GRP solver motivated by the analysis via asymptotic series expansion
carried out by Bourgeade et al. (1989), LeFloch and Raviart (1988). Castro and
Toro (2008) and Montecinos et al. (2012) ran extensive numerical tests, comparing
different solvers for the GRP. A novel and conceptually different GRP solver is the
recent implicit solver of Toro and Montecinos (2015).

The fundamental observation that allows us to construct approximate GRP solu-
tions is the fact that the GRP inherits its wave structure from the so-called associated
classical Riemann problem, see Figures 8.5 and 8.6. We describe this connection
more precisely below, but at first let us recall a few well-known facts about classical
Riemann problems. Consider the Riemann problem for an m × m system. We give
a very short outline of what the solution of a Riemann problem looks like and refer
to Dafermos (2010), Smoller (1994) for a detailed discussion. Under some mild reg-
ularity assumptions (see Lax 1957), the solution of the classical Riemann problem
consists of m + 1 states separated by m waves.

ūL = ū0, ū1, . . . , ūm = ūR .
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(a) t = 0

(b) t = t1 > 0

Fig. 8.6 Solution of a generalized Riemann problem for a 1D shock tube problem together with
the associated classical Riemann problem

These constant states are separated by different kinds of waves: Rarefaction waves,
which describe a continuous transition between two states; and shock waves, or
contact discontinuities, which correspond to jumps in the solution.
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An i-contact discontinuity between states ūi−1, ūi travels with speed given by
the i th eigenvalue λi of the Jacobian A(ūi ) = Df(ūi ):

σi = λi (ūi−1) = λi (ūi ) .

In the case of an i-shock wave, ūi−1 and ūi are connected by a jump discontinuity
with speed σi , such that the Lax entropy condition holds:

λi (ūi−1) ≥ σi ≥ λi (ūi ) .

An i-rarefaction wave describes the continuous transition from ūi−1 to ūi . This
transition takes place over a zone whose boundaries travel with speeds σ i < σ i .
These speeds are given by

σ i = λi (ūi−1) , σ i = λi (ūi ) .

If the i-wave in the solution is a jump discontinuity, let us denote σ i = σ i = σi .
For convenience, let us also write σ 0 = −∞, σm+1 = +∞. The the solution of the
Riemann problem satisfies

u(x, t) = ū0
i for σ i <

x

t
< σ i+1.

In particular, there exist an i∗ such that σ i∗ < 0 and σ i∗+1 > 0, which means that the
domain

D0
i∗ =

{
(x, t) ∈ R × [0,∞) | σ i <

x

t
< σ i+1

}

contains the line {x = 0} × [0,∞). We call the corresponding state ūi∗ theGodunov
state of the Riemann problem and denote it simply by ū∗.

For the generalized Riemann problem, assume that the initial data

u(x, 0) =
{
uL(x), if x < 0,
uR(x), if x > 0,

(8.32)

with uL , uR : R → Ω, is piecewise smooth but discontinuous at x = 0.
It can be shown that (8.30), (8.32) has a unique entropy admissible weak solution

in a neighbourhood of the origin, provided that the initial states ū0
L = uL(0) and

ū0
R = uR(0) are sufficiently close, see Li and Yu (1985), Tatsien and Libin (2009).
Similar to the wave pattern for the classical Riemann problem, we can give a

geometric description of the solution in the x − t-plane: For sufficiently small T > 0,
the strip R × [0, T ) can be decomposed into m + 1 open domains of smoothness
Di , 0 ≤ i ≤ m. These domains are separated by smooth curves γ j (t) passing through
the origin, or by rarefaction zones with boundaries γ

j
(t), γ j (t), where γ

j
(t), γ j (t)

are smooth characteristic curves passing through the origin.More precisely:We have
curves γ j (t) and rarefaction zones
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R j =
{
(x, t) ∈ R × [0, T )

∣∣∣ γ
j
(t) < x < γ j (t)

}
.

For γ j (t), we let γ j
(t) = γ j (t) = γ j (t) for all t ∈ [0, T ). Then, we can write

D0 =
{
(x, t) ∈ R × [0, T ) | x < γ

1
(t)
}

, Dm = {(x, t) ∈ R × [0, T ) | γm(t) < x
}
,

Di =
{
(x, t) ∈ R × [0, T ) | γ i (t) < x < γ

i+1
(t)
}

, 1 ≤ i ≤ m − 1.

The solution u is smooth inside each domain Di and inside each rarefaction zone
R j . Moreover, u has a shock or contact discontinuity across each curve x = γ j (t)
and is continuous across the characteristic curves x = γ

j
(t), x = γ j (t).

Locally we can think of the GRP as perturbation of a classical Riemann problem.
It is therefore natural that the solution of the generalized Riemann problem and has
a wave structure determined by the solution of the associated classical Riemann
problem with the initial states ū0

L = uL(0) and u0
R = ūR(0). For example, if the

j-wave in the solution of the associated Riemann problem is a shock wave, the
corresponding j-wave in the generalized Riemann problem is also a shockwave. The
same hold for contact discontinuities and rarefaction waves. A typical configuration
of corresponding wave patterns for a 3 × 3 system is shown in Figure 8.5.

We denote the constant states in the solution of the associated Riemann prob-
lem with initial data u0

L , u0
R by ū0

i , for i = 0, . . . ,m, and the wave speeds by
σ 0

j , σ 0
j , j = 1, . . . ,m. Here we have set σ 0

j = σ 0
j = σ 0

j if the j-wave is a shock
or contact discontinuity. Then the slope of the curves γ

j
, γ j for t → 0 is given

by the corresponding wave speed in the associated Riemann problem. That is, for
j = 1, . . . ,m we have

γ
j
(0) = 0, γ j (0) = 0 and lim

t→0
γ̇

j
(t) = σ 0

j , lim
t→0

γ̇ j (t) = σ 0
j .

Inside each domain of smoothness Di , the solution u of the generalized Riemann
problem is given in the limit towards the origin by the corresponding state in the
associated Riemann problem:

lim
(x,t)→(0,0)
(x,t)∈Di

u(x, t) = ū0
i for i = 0, . . . ,m.

With this knowledge about the structure of GRP solution is mind, let us now
consider techniques for constructing approximate GRP solutions. Our presentation
of the topic is intended to be a rather broad introduction, so we will only discuss the
original solver of Titarev and Toro (2002), Toro et al. (2001), Toro and Titarev (2001,
2002, 2006) to highlight some basic concepts. Approximate GRP solver do involve
large amount of technical work, so to keep the presentation of the material concise
and accessible, we will only discuss the 1D case. With this in mind, the initial value
problem we are interested in is
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∂u(x, t)

∂t
+ ∂f (u(x, t))

∂x
= 0. (x, t) ∈ R × (tn,∞), (8.33)

u(x, tn) =
{
wi (x), x < xi+1/2,

wi+1(x), x > xi+1/2,
(8.34)

for each cell boundary xi+1/2 and each time step tn . To use this as a building block of
a high order method, we need three components: First, a conservative reconstruction
method, that computes a high order accurate piecewise polynomial representationwi

for the given cell averages Un
i . How this can be done with WENO reconstruction is

explained in the next second. Second, we need a GRP solver. That is a computational
method that finds an approximate solutionUUU (x, t) of problem (8.33), (8.34). Finally,
we need a way to compute a numerical flux from the approximate solution:

fi+1/2 ≈ 1

Δt

∫ Δt

0
f
(
UUU (xi+1/2, t)

)
dt.

Assume that we can evaluate the approximate solution UUU (xi+1/2, t) for all times
0 < t < Δt . Then one simple option for computing the numerical flux is to replace
the time integral by some Gaussian quadrature, i.e.,

fi+1/2 = 1

Δt

G∑
p=1

ωpf
(
UUU (xi+1/2, tp)

)
,

where ωp, tp are Gaussian weights and nodes and the number G of nodes is chosen
according to the desired accuracy.

Let us assume for simplicity that xi+1/2 = 0 and tn = 0 anddenoteuL = wi , uR =
wi+1. The most direct approach is to take UUU (x, t) as a space-time Taylor approxi-
mation of the exact solution u. Denote by D(�,k) the differential

D(�,k)u(x, t) = ∂�

∂x�

∂k−�

∂t k−�
u(x, t), (�, k) ∈ N0 × N0, k ≥ �.

We choose a N > 0 (typically, the degree of the reconstruction polynomial w) and
approximate u by

u(x, t) ≈
N∑

k=0

k∑
�=1

D(�,k)u(0, 0+)
x�t k−�

�!(k − �)!

= u(0, 0+) +
N∑

k=0

t k
k∑

�=0

D(�,k)u(0, 0+)

�!(k − �)!
( x
t

)�

.
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x

u(x, 0)

uL(0−), d
dxuL(0−), d2

dx2uL(0−), . . .

uR(0+), d
dxuR(0+), d2

dx2uR(0+), . . .

Fig. 8.7 Spatial derivatives at t = 0 are known from the initial data

where D(�,k)u(0, 0+) denotes the limit

D(�,k)u(0, 0+) = lim
(x,t)→(0,0)
(x,t)∈Di

D(�,k)u(x, t).

Clearly, in order to compute this expansion, we need time and mixed space-time
derivatives of the solution at times t > 0. What we have is information about spatial
derivatives at t = 0, compare Figure 8.7.

The Cauchy-Kovalevskaya theorem is a classical result in the theory of PDEs.
Roughly speaking, applied in our context, it states that when the flux f and the initial
data u(x, 0) are analytic at the point (0, 0) then the solution u of (8.30) is analytic
in a neighbourhood of the origin. Recall that a (real) analytic function is a function
that can be expanded locally into a convergent power series.

This does imply that time derivatives and mixed space-time derivatives can be
computed from spatial derivatives up to the same order, which is called the Cauchy-
Kovalevskaya procedure. It was shown by Harabetian (1986) that for a generalized
Riemann problem with piecewise analytic data a local Cauchy-Kovalevskaya proce-
dure can be used inside each domain of smoothness. For r ≥ s ≥ 0 we can construct
a function CCC r,s such that

∂ru
∂tr−s∂xs

= CCC r,s

(
u,

∂u
∂x

, . . . ,
∂ru
∂xr

)
, CCC 0,0(u) = u.

Let us writeCCC r forCCC r,0, i.e. for the map the gives pure time derivatives from spatial
derivatives. In particular, we want to compute a the evolution of u at the cell interface
x = 0 during one time step, so we are interested in

u(0, t) ≈ u(0, 0+) +
N∑

k=1

∂k

∂t k
u(0, 0+)

t k

k!

= u(0, 0+) +
N∑

k=1

CCC k

(
u,

∂u
∂x

, . . . ,
∂ru
∂xk

)
(0, 0+)

t k

k! .
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Thus, if we can give a meaning to the spatial derivatives ∂u
∂x (0, 0

+), . . . , ∂Nu
∂xN (0, 0+),

we can construct the time expansion. The Cauchy-Kowalewskaya procedure, how-
ever, can be computationally challenging and is indeed tied to to rather cumbersome
symbolic manipulations. As an alternative, it was suggested by Goetz and Dumb-
ser (2016) to use a local space-time discontinuous Galerkin ansatz similar to the
evolution in the small method of Dumbser et al. (2008b). The local space-time DG
approach also requires only knowledge about spatial derivatives as initial data.

One popular strategy for computing spatial derivatives at the origin is the Toro-
Titarev solver, see Titarev and Toro (2002), Toro et al. (2001) and Toro and Titarev
(2001, 2002, 2006). The basic idea is to compute an approximate solution of the
GRP via a sequence of classical Riemann problems.

At first, in the Toro-Titarev solver we solve the (nonlinear) associated Riemann
problem to find the Godunov state u(0, 0+) = ū0∗. Next, denote by

uk(x, t) = ∂k

∂xk
u(x, t)

the kth spatial derivative of the solution. Wherever the solution u is smooth, it is
straightforward to show that all uk satisfy a semilinear hyperbolic PDE of the form

∂

∂t
uk(x, t) + A (u(x, t))

∂

∂x
uk(x, t) = Hk(u(x, t),u1(x, t), . . . ,uk(x, t)).

(8.35)
Denote the the one-sided derivatives of the initial data at the cell interface by

ūk
L = lim

x→0−

dk

dxk
uL(x), ūk

R = lim
x→0+

dk

dxk
uR(x), k = 1, . . . , N . (8.36)

Toro and Titarev suggested to use equation (8.35) with Riemann data provided by
(8.36) to determine the values ∂ku

∂xk (0, 0
+). Moreover, they linearised (8.35) around

the Godunov state ū0∗ and neglected the source terms Hk . In this approach, spatial
derivatives are found by solving the classical, linear Riemann problem

∂

∂t
uk(x, t) + A

(
ū0

∗
) ∂

∂x
uk(x, t) = 0, (8.37)

uk(x, 0) =
{
ūk
L , if x < 0,

ūk
R, if x > 0.

(8.38)

The sought value uk(0, 0+) is then given by the Godunov state ūk∗ of (8.37), (8.38).
This approach is in fact an acoustical approximation, whichmeans that we assume

the leading term is continuous and only derivatives have jumps. It was observed that
this can lead to poor results if the initial data contains large jumps in the state,
see Castro and Toro (2008), Montecinos et al. (2012). However, the test cases with
very large jumps in the initial data are often of limited importance for practical
applications. Wherever the solutions is smooth, the assumptions of the Toro-Titarev
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solver are justified and good numerical results are achieved. A theoretical discussion
of the Toro-Titarev solver and analysis how jumps in the states relate to numerical
errors introduced by the solver was done by Goetz and Iske (2016).

8.5.2 Kernel-Based WENO Reconstruction

To explain theWENO reconstruction scheme, let us first discuss the basic concepts of
theFinite VolumeParticleMethod (FVPM) (for further details, we refer to Iske 2013).
In the prototypical approach of FVPM, scattered data approximation algorithms are
required in the recovery step of the WENO reconstruction.

To explain basic features of the FVPM, let Ξ = {ξ1, . . . , ξn} ⊂ Ω denote a finite
point set of particles (i.e., particle positions). Moreover, for any particle ξ ∈ Ξ we
denote its influence area by VΞ(ξ) ⊂ Ω . To make a rather straight forward example,
the particles’ influence areas may, for instance, be given by the Voronoi tiles

VΞ(ξ) =
{
x ∈ Ω : ‖x − ξ‖ = min

ν∈Ξ
‖x − ν‖

}
⊂ Ω for ξ ∈ Ξ

of the Voronoi diagram VΞ = {VΞ(ξ)}ξ∈Ξ for Ξ , in which case VΞ yields a decom-
position ofΩ into convex and closed subdomains VΞ(ξ) ⊂ Ω with pairwise disjoint
interior, see Figure 8.8 for illustration.

Now, for any particle located at ξ ∈ Ξ at time t , its particle average is defined by

ūξ (t) = 1

|VΞ(ξ)|
∫
VΞ (ξ)

u(x, t) dx for ξ ∈ Ξ and t ∈ [0, T ].

Note that the particle average ūξ may be viewed as cell average, according to the
classical concept of finite volumemethods (FVM), see (LeVeque 2002),whereVΞ(ξ)

is referred to as control volume.

Fig. 8.8 Finite volume
particle method (FVPM). A
finite set Ξ of scattered
particles ξ (displayed as •)
and their influence areas,
here given by their Voronoi
tiles VΞ (ξ), are shown
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Further according to the concept of FVM, for each ξ ∈ Ξ the average value ūξ (t)
is, at time step t −→ t + τ , updated by an explicit numerical method of the form

ūξ (t + τ) = ūξ (t) − τ

|VΞ(ξ)|
∑

ν

fξ,ν, (8.39)

where fξ,ν is the numerical flux between particle ξ and a neighbouring ν ∈ Ξ \ ξ .
The required exchange of information between neighbouring particles ismodelled

via a generic numerical flux function, which may be implemented by any suitable
finite volume flux evaluation scheme, such as by the generalized Godunov approach
of high order ADER flux evaluation, as explained in Section 8.5.1.

The following algorithm reflects one basic time step of the FVPM.

Algorithm 1 Finite Volume Particle Method (FVPM).

INPUT: Time step τ > 0, particles Ξ , particle averages {ūξ (t)}ξ∈Ξ at time t.

FOR each ξ ∈ Ξ DO

(a) Determine set Nξ ⊂ Ξ \ ξ of neighbouring particles around ξ ;
(b) Compute numerical flux fξ,ν for each ν ∈ Nξ ;
(c) Update particle average ūξ for ξ by (8.39).

OUTPUT: Particle averages {ūξ (t + τ)}ξ∈Ξ at time t + τ .

Now let us turn to essentially non-oscillatory (ENO) andweighted ENO (WENO)
schemes. To this end, let us view the influence area VΞ(ξ) of any particle ξ ∈ Ξ as
the control volume of ξ , where the control volume VΞ(ξ) is uniquely represented
by ξ .

The basic idea of the ENOmethod is to first select, for each particle ξ ∈ Ξ , a small
set {Si }ki=1 of k stencils, where any stencil Si ⊂ Ξ is given by a set of particles lying
in the neighbourhood of ξ . Then, for each stencil Si , 1 ≤ i ≤ k, a reconstruction
si ≡ sSi is computed, which interpolates the given particle averages {ūν(t) : ν ∈ Si }
over the control volumes {VΞ(ν)}ν∈Si of the stencil Si .

Among the k different reconstructions si , 1 ≤ i ≤ k, for the k different stencils Si ,
the smoothest (i.e., the least oscillatory) reconstruction is selected, which constitutes
the numerical solution over the control volume VΞ(ξ). The selection of the smoothest
si among the k reconstructions is done by using a suitable oscillation indicator I .

In aWENO reconstruction, all reconstructions si , 1 ≤ i ≤ k, are used to construct,
for a corresponding control volume VΞ(ξ), a weighted sum of the form

s(x) =
k∑

i=1

ωi si (x) with
k∑

i=1

ωi = 1,

where the weights ωi = ω̃i
/∑k

j=1 ω̃ j , with ω̃i = (ε + I (si ))−ρ for some ε, ρ > 0,
are determined by using the aforementioned oscillation indicator I .
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We remark that commonly used ENO/WENO schemes work with polynomial
reconstruction, which, however, may lead to numerical instabilities, especially for
anisotropic distributions of particles, see Abgrall (1994). This severe drawback has
motivated Aboiyar et al. (2010) to construct a numerically stable reconstruction
method of arbitrary high order, which essentially avoids (plain) polynomial recon-
struction. The utilized reconstruction relies on a variational formulation, which
also provides a natural choice for an efficient oscillation indicator I , as pro-
posed in (8.44).

Next we explain how to employ kernel-based reconstruction (rather than poly-
nomial reconstruction) in particle flow simulations, in particular in the FVPM. In a
generic formulation of particle methods (Iske 2007), we are essentially concerned
with the reconstruction of a numerical solution u ≡ u(t, ·), for fixed time t ∈ [0, T ],
from its discrete values

uΞ = (u(ξ1), . . . ,u(ξn))
T ∈ R

n,

taken at a scattered set Ξ = {ξ1, . . . , ξn} ⊂ R
d of particles, cf. Figure 8.9.

Numerical particle flow simulations usually require flexible reconstruction meth-
ods from multivariate scattered data approximation to establish, at any time t , the
coupling between the discrete model for the numerical solution u and its continu-
ous output in the recovery step. To this end, (conditionally) positive definite kernel
functions are popular tools.

To explain the basic features of such kernel-based reconstructions, we restrict
ourselves to the special case of interpolation, where we seek to compute a suitable
interpolant s : Ω → R satisfying uΞ = sΞ , i.e.,

u(ξk) = s(ξk) for all k = 1, . . . , n. (8.40)

According to the general formulation of kernel-based interpolation, we assume that
the reconstruction s has the form

s(x) =
n∑
j=1

c jϕ(x − ξ j ) + p(x) for p ∈ Pd
m, (8.41)

Fig. 8.9 A finite scattered
set Ξ = {ξ1, . . . , ξn} ⊂ R

2

of particles. Each particle ξ

(displayed as •) bears a
scalar function value
u(ξ) ≡ u(ξ, t) of the
numerical solution u at time
t ∈ [0, T ]
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for some coefficients c1, . . . , cn ∈ R, where ϕ : Ω → R is a fixed (conditionally
positive definite) kernel function andPd

m is the linear space of all d-variate polyno-
mials of a specific order m ∈ N0. The required order m in (8.41) is determined by
the choice of ϕ. If m = 0, then the polynomial part in (8.41) is empty, in which case
the reconstruction s has the form

s(x) =
n∑
j=1

c jϕ(x − ξ j ). (8.42)

Rather than dwelling much on explaining (conditionally) positive definite kernel
functions,we refer to the text books (Buhmann2003; Iske 2018;Wendland 2005). For
the following of our discussion, it is sufficient to say that scattered data interpolation
by positive definite kernels (where m = 0) leads to a unique reconstruction of the
form (8.42). Moreover, for conditionally positive definite kernels of order m ∈ N,
we obtain under vanishing moment conditions

n∑
j=1

c j p(ξ j ) = 0 for all p ∈ Pd
m (8.43)

a reconstruction s of the form (8.41), where s is unique, if any polynomial p ∈ Pd
m

can uniquely be reconstructed from its values at the points Ξ , i.e., pΞ = 0 implies
p ≡ 0.

Let us make examples of commonly used radial kernel functions ϕ(x) = φ(‖x‖),
alongwith their ordersm ≡ m(φ), where r = ‖x‖ ∈ [0,∞) is, for x ∈ R

d , the radial
variable w.r.t. the Euclidean norm ‖ · ‖ on R

d .

Example 8.1 The positive definite Gaussian function

φ(r) = e−r2 for r ∈ [0,∞)

is a radial kernel of order m = 0, so that the reconstruction s has the form (8.42).

Example 8.2 The multiquadric

φ(r) = (1 + r2
)β

for β > 0 and β /∈ N

is a conditionally positive definite kernel of order m = �β�.
The inverse multiquadric

φ(r) = (1 + r2
)β

for β < 0

is positive definite, i.e., m = 0. In this case, the reconstruction s has the form (8.42).
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Example 8.3 The compactly supported radial characteristic functions (Askey 1973)

φ(r) = (1 − r)β+ =
{

(1 − r)β for r < 1
0 for r ≥ 1

are for d ≥ 2 positive definite on R
d , provided that β ≥ (d + 1)/2. In this case,

m = 0, and so the reconstruction s has the form (8.42).

Next, we add polyharmonic splines to the list of our examples. Polyharmonic
splines are extraordinarily useful radial kernels. In fact, we will give a strong rec-
ommendation in favour of polyharmonic splines, where our arguments are based on
their superior numerical stability at arbitrary high local approximation order.

Polyharmonic splines, due to Duchon (1977), are traditional tools for Lagrange
interpolation frommultivariate scattered data. According to the polyharmonic spline
interpolation scheme, the reconstruction s has the form (8.41), where the radial
polyharmonic spline kernel ϕ(x) = φd,m(r), for r = ‖x‖, is given as

φd,m(r) =
{
r2m−d log(r) for d even
r2m−d for d odd

}
for 2m > d,

with m being the order of the kernel φd,m , i.e., m is the order of the polynomial
in (8.41).

According toDuchon (1977), scattered data interpolation by polyharmonic splines
is optimal in its native reproducing kernel Hilbert space, as given by the Beppo Levi
space

BLm(Rd) = {u : Dαu ∈ L2(Rd) for all |α| = m
} ⊂ C (Rd),

being equipped with the semi-norm

|u|2BLm =
∑

|α|=m

(
m

α

)
‖Dαu‖2L2(Rd ).

In other words, the reconstruction s in (8.41) minimizes the Beppo Levi energy
functional | · |BLm among all recovery functions u in BLm(Rd), i.e.,

|s|BLm ≤ |u|BLm , for all u ∈ BLm(Rd) with uΞ = sΞ .

Therefore, the energy functional | · |BLm is a natural choice for the oscillation
indicator I required in the WENO reconstruction (cf. Aboiyar et al. 2010). Hence,
we let

I (u) := |u|BLm (8.44)

for the oscillation indicator of the utilizedWENO reconstruction.We remark that the
semi-norm |s|BLm of the polyharmonic spline reconstruction s is readily available by
the quadratic form
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|s|2BLm =
n∑

j,k=1

c j ckφd,m(‖ξk − ξ j‖),

whose coefficient vector c = (c1, . . . , cn)T ∈ R
n is determined by the solution of

the interpolation problem’s resulting linear equation system. This allows efficient
evaluations of the reconstruction’s oscillation indicatorI (s), giving the above choice
in (8.44) yet another advantage.

We finally remark that numerical properties of polyharmonic splines in kernel-
based WENO reconstruction were first investigated in (Aboiyar et al. 2010) and
further explained in (Iske 2013). The following advantages in favour of the kernel-
based polyharmonic WENO reconstruction were identified (see Iske 2013).

Well-posedness. Polyharmonic spline interpolation yields a well-posed WENO
reconstruction method, which works for arbitrary distributions of scattered particles
Ξ ⊂ R

d , for arbitrary average values ūΞ , and in arbitrary space dimensions d ≥ 1.
Optimality. Polyharmonic spline reconstruction is optimal in its Beppo-Levi

space BLm(Rd). Note that the optimal recovery spaceBLm(Rd) is the Sobolev space
H m(Rd), which is a relevant function space in nonlinear hyperbolic problems.

Meshfree reconstruction and high flexibility. The reconstruction scheme of
polyharmonic splines is meshfree and therefore very flexible, especially when it
comes to adaptively modifying the set of moving particles. This property is particu-
larly important for problems with solutions of rapid variation or singularities, or for
problemswith free or complicated boundaries aswell as for various other challenging
problems, where the simulation of multiscale phenomena is an issue.

Efficient implementation. The implementationof thepolyharmonic spline recon-
struction scheme merely requires solving a square linear system, which is small, if
the number of particles in Ξ is small. But the linear system may be ill-conditioned,
if the separation qΞ := minξ,ν∈Ξ,ξ �=ν ‖ξ − ν‖ of the particles in Ξ is small.

Numerical stability. The polyharmonic spline reconstruction scheme allows for
numerically stable evaluations of the interpolant, by using the preconditioner pro-
posed in Iske (2013).

Arbitrary local approximation order. Polyharmonic spline reconstruction has
local approximation order m with respect to C m functions, for the kernel φd,m .

Adaptivity. Polyharmonic spline reconstruction supports the implementation of
effective adaption rules. This is due to a customized error indicator, which comes
with the design of the reconstruction scheme. In fact, the error indicator provides
suitable rules for the coarsening and refinement of particles (see Iske 2013).

We conclude our discussion by giving a strong recommendation in favour of poly-
harmonic splines, especiallywhen they are used in combinationwith adaptive particle
methods for numerical flow simulation, where highly flexible and sufficiently robust
reconstructions of arbitrary order are needed. This recommendation is supported by
our numerical experiments (Aboiyar et al. 2010; Iske 2013).
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8.6 Discussion and Conclusions

While the methods reviewed above may contribute to the reduction of spurious mix-
ing, the extent to which they do so remains unexplored and is expected to depend on
applications. It is therefore important that they are analysed in more detail, together
with accompanying questions of numerical stability and efficiency. The focus of this
chapter was on measures largely involving tracer dynamics, however the question of
spurious mixing involves not only tracers, but also the small-scale structure of the
simulated velocity field. By analysing the behaviour of RPE in a series of test cases
Ilicak et al. (2012) show that spurious mixing is strongly sensitive to the grid-scale
Reynolds number and demonstrate that the amount of diapycnal mixing in a suite of
ocean models with different high-order advection schemes can indeed be controlled
by keeping this number around two via the Smagorinsky viscosity. Coupling of spuri-
ous mixing to functioning of other popular operators of sub-grid momentum mixing
and also to the momentum advection implementation (flux or vector-invariant, its
spatial accuracy), remains to be explored. In many unstructured-mesh discretisa-
tions the sizes of velocity and scalar spaces are inconsistent (Danilov 2013), which
may have additional impact on the diapycnal mixing. Commonly the velocity space
is too large, resulting in spurious inertial oscillations generating spurious vertical
velocities in eddying regimes. In contrast, a triangular C-grid approach has too many
pressure points, leading to a mode in the divergence of horizontal velocity, but finally
in the vertical velocity too. The related questions on the implications of discretisation
detail, mesh geometry and the implementation of momentum advection need to be
explored. One more question is related to the mere effect of mesh unstructuredness
for models formulated on unstructured meshes. All these questions present an inter-
esting direction of research which will contribute to improving consistency of ocean
circulation models.

To conclude, this chapter reviewed a selection of methods that might be useful in
reducing spurious mixing in ocean circulation models. Most of them are known from
previous research, yet their adaptation to new appearing models as well as learning
about the full extent of their effect remains a pressing topic.
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Chapter 9
Diffuse Interface Approaches
in Atmosphere and Ocean—Modeling
and Numerical Implementation

Harald Garcke, Michael Hinze and Christian Kahle

Abstract We propose to model physical effects at the sharp density interface
between atmosphere and ocean with the help of diffuse interface approaches for
multiphase flows with variable densities. We use the thermodynamical consistent
variable density model proposed in Abels et al. (Mathematical Models and Methods
in Applied Sciences 22:1150013, 2012). This results in a Cahn–Hilliard-/Navier–
Stokes-type system which we complement with tangential Dirichlet boundary con-
ditions to incorporate the effect of wind in the atmosphere. Wind is responsible for
waves at the surface of the ocean, whose dynamics have an important impact on
the CO2—exchange between ocean and atmosphere. We tackle this mathematical
model numerically with fully adaptive and integrated numerical schemes tailored
to the simulation of variable density multiphase flows governed by diffuse inter-
face models. Here, fully adaptive, integrated, efficient, and reliable means that the
mesh resolution is chosen by the numerical algorithm according to a prescribed
error tolerance in the a posteriori error control on the basis of residual-based error
indicators, which allow to estimate the true error from below (efficient) and from
above (reliable). Our approach is based on the work of Hintermüller et al. (Journal of
Computational Physics 235:810–827, 2013),Garcke et al. (AppliedNumericalMath-
ematics 99:151–171, 2016), where a fully adaptive efficient and reliable numerical
method for the simulation of two-dimensional multiphase flows with variable densi-
ties is developed. In a first step, we incorporate the stimulation of surface waves via
appropriate volume forcing.
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9.1 Introduction

The energy and momentum transfer from the atmosphere to the ocean is an essential
ingredient for the accurate modeling of the energy cycle. In fact, the vast majority of
the energy input to the ocean comes from the winds (∼20 TW), with much smaller
inputs from tides (∼3.5 TW) and geothermal heating (∼0.05 TW) (numbers taken
fromWunsch and Ferrari 2004). It is therefore not surprising that the energy transfer
from the wind to the surface wave field, and the ensuing energy dissipation through
breaking waves, represents the largest transfer of energy in the oceans (Wunsch and
Ferrari 2004). Despite the enormous importance of the processes of surface wave
generation and dissipation, there are still fundamental gaps in our ability to conduct
both process modeling and observational studies of these processes operating near
the air–sea interface.

However, many major advances have recently been made through the use of
powerful numerical simulations (see the recent review by Sullivan and McWilliams
2010). These simulations have shown that classical modeling and parameterization
techniques, such as the use of the law-of-the-wall turbulence scaling, must be revised
to account for the dynamics of wind waves. For a number of results which the
geoscience community expects to be included if an accurate, and energy consistent,
treatment of atmosphere–ocean interactions is to be accomplished, see, e.g., Sullivan
et al. (2007), Drennan et al. (1998), Sutherland and Melville (2015), McWilliams
et al. (1997), Sullivan et al. (2007), Polton et al. (2008).

Here, we propose an holistic approach to an accurate and energy consistent treat-
ment of atmosphere–ocean interactions based on the thermodynamically consistent
diffuse interface model suggested in Abels et al. (2012) to model the air–water inter-
face between atmosphere and ocean. This model will be extended to produce a series
of direct numerical simulations of wind generated waves. Only very few studies have
examined the evolution of wind waves using such a fundamental approach (Kihara
et al. 2007; Shen et al. 2003; Sullivan et al. 2000; Sullivan and McWilliams 2002;
Tsai and Hung 2007; Tsai et al. 2015; Lubin and Glockner 2015). However, these
studies often do not involve a proper coupling of the water surface and the air flow
above. For example, the water surface is often replaced by another simpler boundary
condition, such as an impermeable sinusoidal wall (Shen et al. 2003), or an uncou-
pled propagating water wave solution (Sullivan et al. 2000; Sullivan andMcWilliams
2002). In these situations, the evolution of the air-water interface is not driven by
wind or the actual flow field of the ocean. The recent study of Lubin and Glock-
ner (2015) has shown how powerful a direct coupling of the air and water layers is
for predicting turbulent air-entraining structures in the breaking of surface waves.
Another study that utilizes a fully coupled treatment of the air and water layers is that
of Tsai et al. (2015). They show the important result that turbulent water flows are
generated even under the conditions of non-breaking surfacewaves. In all approaches
above, a so-called sharp representation of the air–water interface is used. One major
drawback of this formulation is model break down as, e.g., topology changes, which
appears in the case of wave breaking. We believe that the diffuse interface methods
developed for the Cahn–Hilliard/Navier–Stokes system will provide an improved
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method to deal with the current shortcomings of simulating a direct coupling of
the air–water interface. In diffuse interface models, the surface is assumed to have
a positive thickness, where both air and water exist in a mixed state. Further, this
surface is not explicitly given, but is an outcome of the model. The distribution of
fluid and air is described by a smooth indicator function, called phase field variable,
which is a smooth function taking the value +1 in the pure air phase and −1 in
the pure water phase, with a rapid transition between the phases across the diffuse
interface. The topology of the phases is not explicitly specified in the model so that
topology changes like wave breaking are possible with this model. Another benefit is
the mass-conserving property of the approach; see, e.g., Hintermüller et al. (2013).
On the long run, it is planned to use the method to simulate wind-wave growth and
compare the numerical results to laboratory experiments using the PIV technique to
resolve the airflow and water surface elevation.

The diffuse interface method of treating the air–water interface using the Cahn–
Hilliard/Navier–Stokes (CHNS) system forms a new approach to the model studies
described so far. We note, however, that there are several contributions to numerical
approaches to the simulation of multiphase flows in the sharp interface formulation.
Here, we refer, e.g., to the book of Gross and Reusken (2011), the work of Ganesan
and Tobiska (2009), and the works of Barrett et al. (2014) andWan and Turek (2007).
A benchmark for sharp interface approaches to the numerical simulation of rising
bubble dynamics is proposed by Hysing et al. (2009), which is accomplished with
diffuse interface simulations byAland andVoigt (2012). A reviewof the development
of phase field models and their numerical methods for multicomponent fluid flows
with interfacial phenomena is given by Kim (2012). In the context of mechanical
engineering andmeteorological applications, phase field models for two-phase flows
are often referred to as the two-fluid formulation; see, e.g., Mellado et al. (2010), and
Druzhinin and Elghobashi (1998); compare also the related volume-of-fluid schemes;
see, e.g., James and Lowengrub (2004), as well as the references cited therein.

Since the dynamics of multiphase flows essentially depend on the dynamics at the
interfaces, it is important to resolve the interfacial region in diffuse interface models
well. Here, adaptive numerical concepts are the method of choice. Concerning the
existing literature on the solver development for the coupled CHNS system, we note
that in Kay and Welford (2007) a robust (with respect to the interfacial width) non-
linearmultigridmethodwas introducedwith a double-well homogeneous free energy
density. We refer to Kay and Welford (2006) for the multigrid solver for the Cahn–
Hilliard (CH) part only. Later, in Kay et al. (2008) error estimates for the coupled
system were derived and numerically verified. Coupled CHNS systems were also
considered in Boyer et al. (2010) with a double-well potential in the case of three-
phase flows; see also (Boyer 1999, 2002; Boyer et al. 2004) and (Aland et al. 2010;
Aland and Voigt 2012) as well as the references therein for rather qualitative studies
of the behavior of multiphase and mixture flows.

Stable numerical schemes for the recently developed thermodynamically consis-
tent diffuse interface model (Abels et al. 2012) are developed in Garcke et al. (2016),
Grün et al. (2016), Grün and Klingbeil (2014). Concerning the numerical treatment
of the sole CH system, many contributions can be found in the literature. For a
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rather comprehensive discussion of available solvers, we refer to Hintermüller et al.
(2011). In the latter work, a fully integrated adaptive finite element approach for the
numerical treatment of the CH system with a non-smooth homogeneous free energy
density was developed. The notion of a fully adaptive method relates to the fact
that the local mesh adaptation is based on rigorous residual-based a posteriori error
estimates (rather than heuristic techniques based on, e.g., thresholding the discrete
concentration or the discrete concentration gradient). The concept of an integrated
adaptation couples the adaptive cycle and the underlying solver as the latter might
need to be equipped with additional stabilizationmethodologies such as theMoreau–
Yosida regularization in the case of non-smooth homogeneous free energy densities
for guaranteeing mesh independence. The latter is indeed obtained upon balancing
regularization and discretization errors. When equipped with a multigrid scheme for
solving the linear systems occurring in the underlying semi-smooth Newton itera-
tion, an overall iterative scheme is obtained which is optimal in the sense that the
computational effort grows only linearly in the number of degrees of freedom.

InHintermüller et al. (2013), the approach ofHintermüller et al. (2011) is extended
to a fully practical adaptive solver for the two-dimensional CHNS system with a
double-obstacle potential according to Blowey and Elliott (1991). To the best of the
applicant’s knowledge, the work of Hintermüller et al. (2013) contains the first rig-
orous approach to reliable and efficient residual-based a posteriori error analysis for
multiphase flows governed by diffuse interface models. This approach is combined
with a stable, energy-conserving time integration scheme in Garcke et al. (2016) to a
fully reliable and efficient adaptive and energy-conserving a posteriori concept for
the numerical treatment of variable densitymultiphase flows. This approachwas very
successfully validated against the existing sharp and diffuse interface rising bench-
marks of Hysing et al. (2009) and Aland and Voigt (2012), respectively, in the field.

9.2 Diffuse Interface Approach

9.2.1 Notation

Let Ω ⊂ R
n , n ∈ {2, 3} denote a bounded domain with boundary ∂Ω and unit outer

normal νΩ . Let I = (0, T ] denote a time interval.
We use the conventional notation for Sobolev and Hilbert spaces; see, e.g., Adams

and Fournier (2003). With L p(Ω), 1 ≤ p ≤ ∞, we denote the space of measurable
functions on Ω , whose modulus to the power p is Lebesgue-integrable. L∞(Ω)

denotes the space of measurable functions on Ω , which are essentially bounded.
For p = 2, we denote by L2(Ω) the space of square-integrable functions on Ω with
inner product (·, ·) and norm ‖ · ‖. For a subset D ⊂ Ω and functions f, g ∈ L2(Ω),
we by ( f, g)D denote the inner product of f and g restricted to D, and by ‖ f ‖D

the respective norm. ByWk,p(Ω), k ≥ 1, 1 ≤ p ≤ ∞, we denote the Sobolev space
of functions admitting weak derivatives up to order k in L p(Ω). If p = 2, we write
Hk(Ω). The subset H 1

0 (Ω) denotes H 1(Ω) functions with vanishing boundary trace.
We further set
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L2
(0)(Ω) = {v ∈ L2(Ω) | (v, 1) = 0},

and with

H(div,Ω) = {v ∈ H 1
0 (Ω)n | (div(v), q) = 0 ∀q ∈ L2

(0)(Ω)}

we denote the space of all weakly solenoidal H 1
0 (Ω) vector fields.

For vector fields u ∈ Lq(Ω)n , q > n, and v,w ∈ H 1(Ω)n , we introduce the trilinear
form

a(u, v,w) = 1

2

∫
Ω

((u · ∇) v)w dx − 1

2

∫
Ω

((u · ∇)w) v dx .

Note that there holds a(u, v,w) = −a(u,w, v), and especially a(u, v, v) = 0.
Further for matrices A = (Ai j )

n
i, j=1, B = (Bi j )

n
i, j=1 ∈ R

n×n , we define A : B :=∑n
i=1

∑n
j=1 Ai j Bi j .

9.2.2 The Mathematical Model

In the present work, we consider the following diffuse interface model for two-phase
flows with variable densities proposed in Abels et al. (2012):

ρ∂t v + ((ρv + J ) · ∇) v − div (2ηDv) + ∇ p =μ∇ϕ + ρg ∀x ∈ Ω, ∀t ∈ I,

(9.1)

div(v) =0 ∀x ∈ Ω, ∀t ∈ I,
(9.2)

∂tϕ + v · ∇ϕ − div(m∇μ) =0 ∀x ∈ Ω, ∀t ∈ I,
(9.3)

−σεΔϕ + σ

ε
F ′(ϕ) − μ =0 ∀x ∈ Ω, ∀t ∈ I,

(9.4)

v(0, x) =v0(x) ∀x ∈ Ω, (9.5)

ϕ(0, x) =ϕ0(x) ∀x ∈ Ω, (9.6)

v(t, x) =0 ∀x ∈ ∂Ω, ∀t ∈ I,
(9.7)

∇μ(t, x) · νΩ = ∇ϕ(t, x) · νΩ =0 ∀x ∈ ∂Ω, ∀t ∈ I,
(9.8)

where J = − dρ
dϕ
m∇μ describes an additional flux that appears due to the diffuse

interface. Here, ϕ denotes the phase field, μ the chemical potential, v the volume
averaged velocity, p the pressure, and ρ = ρ(ϕ) = 1

2 ((ρ2 − ρ1)ϕ + (ρ1 + ρ2)) the
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mean density, where 0 < ρ1 ≤ ρ2 denote the densities of the involved fluids. The
viscosity is denoted by η = η(ϕ) and can be chosen as an arbitrary positive function
fulfilling η(−1) = η1 and η(1) = η2, with individual fluid viscosities η1, η2. The
mobility is denoted by m = m(ϕ). The gravitational force is denoted by g. Note that
the material properties, i.e., the density and viscosity, are encoded by the phase field
variable ϕ. The free energy density is denoted by F and is of double-well type with
exactly two minima at ±1. By the structure of F , solutions to (9.1)–(9.8) fulfill that
ϕ ≈ ±1 in the air and water phase, but the model allows ϕ to take arbitrary values.
For F , we use a splitting F = F+ + F−, where F+ is convex and F− is concave.
Finally, by Dv = 1

2

(∇v + (∇v)t
)
we denote the symmetrized gradient. The scaled

surface tension is denoted by σ and the interfacial width is proportional to ε.
The above model couples the Navier–Stokes equations (9.1)–(9.2) to the Cahn–

Hilliard model (9.3)–(9.4) in a thermodynamically consistent way; i.e., a free energy
inequality holds. In the Navier–Stokes equation, the term μ∇ϕ models the surface
forces that appear due to surface tension. Further, an additional flux J appears due to
the diffuse interface. The remaining part of the Navier–Stokes equations is standard,
but note the spatially varying variables ρ and η. The Cahn–Hilliard equation contains
a transport equation for the phase field, i.e., (9.3), while an additional flux m∇μ is
present. This flux arises from the chemical potentialμ and drivesϕ toward the desired
phase field form. It is the main goal to introduce and analyze an (essentially) linear
time discretization scheme for the numerical treatment of (9.1)–(9.8), which also
on the discrete level fulfills the free energy inequality. This in conclusion leads to a
stable scheme that is thermodynamically consistent on the discrete level.

Existence of weak solutions to system (9.1)–(9.8) for a specific class of free ener-
gies F is shown in Abels et al. (2013a, b). See also the work of Grün (2013), where
the existence of weak solutions for a different class of free energies F is shown by
passing to the limit in a numerical scheme.We refer toAki et al. (2014), Boyer (2002),
Ding et al. (2007), Lowengrub and Truskinovsky (1998), and the review Anderson
et al. (1998) for other diffuse interface models for two-phase incompressible flow.
Numerical approaches for different variants of theNavier–Stokes/Cahn–Hilliard sys-
tem have been studied in Aland and Voigt (2012), Boyer (2002), Feng (2006), Grün
(2013), Grün and Klingbeil (2014), Guo et al. (2014), Hintermüller et al. (2013),
Grün et al. (2016), and Kay et al. (2008).

Our numerical treatment approach is based on the following weak formulation,
which is proposed in Garcke et al. (2016).

Definition 9.1 (Garcke et al. 2016, Def. 1) We call v, ϕ, μ a weak solution to (9.1)–
(9.8) if v(0) = v0, ϕ(0) = ϕ0, v(t) ∈ H(div,Ω) for a.e. t ∈ I and

1

2

∫
Ω

(∂t (ρv) + ρ∂t v)w dx +
∫

Ω

2ηDv : Dw dx

+a(ρv + J, v,w) =
∫

Ω

μ∇ϕw + ρgw dx ∀w ∈ H(div,Ω),

(9.9)
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∫
Ω

(∂tϕ + v · ∇ϕ) Φ dx +
∫

Ω

m(ϕ)∇μ · ∇Φ dx = 0 ∀Φ ∈ H 1(Ω), (9.10)

σε

∫
Ω

∇ϕ · ∇Ψ dx + σ

ε

∫
Ω

F ′(ϕ)Ψ dx −
∫

Ω

μΨ dx = 0 ∀Ψ ∈ H 1(Ω),

(9.11)

is satisfied for a.e. t ∈ I .
We note that we restrict to solenoidal velocity fields v(t) ∈ H(div,Ω) which

allows us to skip the pressure. Given v(t) ∈ H(div,Ω), the pressure can be uniquely
reconstructed by standard results; see, e.g., Constantin and Foias (1988).

For the assumptions on the data, we refer to Garcke et al. (2016). In the present
work, we use the relaxed double-obstacle free energy given by

F(ϕ) = 1

2

(
1 − ϕ2 + sλ2(ϕ)

)
, (9.12)

with

λ(ϕ) := max(0, ϕ − 1) + min(0, ϕ + 1),

where s  0 denotes the relaxation parameter. F is introduced in Hintermüller et al.
(2011) as Moreau–Yosida relaxation of the double-obstacle free energy

Fobst (ϕ) =
{

1
2

(
1 − ϕ2

)
if |ϕ| ≤ 1,

0 else,

which is proposed in Blowey and Elliott (1991) to model phase separation.
Let v, ϕ, μ be a sufficiently smooth solution to (9.9)–(9.11). Then, we have from

Garcke et al. (2016) the energy relation

d

dt

(∫
Ω

ρ

2
|v|2 + σε

2
|∇ϕ|2 + σ

ε
F(ϕ) dx

)
= −

∫
Ω
2η|Dv|2 + m|∇μ|2 dx +

∫
Ω

ρgv dx .

(9.13)

9.3 Discretization

9.3.1 The Temporal Discretization

We now introduce a time discretization which mimics the energy inequality in (9.13)
on the discrete level. Let 0= t0 < t1 < . . . < tk−1 < tk < tk+1 < . . . < tM = T
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denote an equidistant subdivision of the interval I = [0, T ]with tk+1 − tk = τ . From
here onward, the superscript k denotes the corresponding variables at time instance
tk .

Time integration scheme (Garcke et al. 2016)
Let ϕ0 ∈ H 1(Ω) and v0 ∈ H(div,Ω).

Initialization for k = 0:
Set ϕ0 = ϕ0 and v0 = v0.
Find ϕ1 ∈ H 1(Ω), μ1 ∈ H 1(Ω), v1 ∈ H(div,Ω), such that for all w ∈ H(div,Ω),
Φ ∈ H 1(Ω), and Ψ ∈ H 1(Ω) it holds

1

τ

∫
Ω

ρ1(v1 − v0)w dx +
∫

Ω

((ρ0v0 + J 1) · ∇)v1 · w dx

+
∫

Ω

2η1Dv1 : Dw dx −
∫

Ω

μ1∇ϕ1w + ρ1gw dx = 0 ∀w ∈ H(div,Ω),

(9.14)

1

τ

∫
Ω

(ϕ1 − ϕ0)Φ dx +
∫

Ω

(v0 · ∇ϕ0)Φ dx

+
∫

Ω

m(ϕ0)∇μ1 · ∇Φ dx = 0 ∀Φ ∈ H 1(Ω),

(9.15)

σε

∫
Ω

∇ϕ1 · ∇Ψ dx −
∫

Ω

μ1Ψ dx

+σ

ε

∫
Ω

((F+)′(ϕ1) + (F−)′(ϕ0))Ψ dx = 0 ∀Ψ ∈ H 1(Ω),

(9.16)

where J 1 := − dρ
dϕ

(ϕ1)m1∇μ1.

Two-step scheme for k ≥ 1:

Given ϕk−1 ∈ H 1(Ω), ϕk ∈ H 1(Ω), μk ∈ W 1,q(Ω), q > n, vk ∈ H(div,Ω),
find vk+1 ∈ H(div,Ω), ϕk+1 ∈ H 1(Ω), μk+1 ∈ H 1(Ω) satisfying

1

2τ

∫
Ω

(
ρkvk+1 − ρk−1vk

)
w + ρk−1(vk+1 − vk)w dx

+a(ρkvk + J k, vk+1,w) +
∫

Ω

2ηk Dvk+1 : Dw dx

−
∫

Ω

μk+1∇ϕkw − ρkgw dx = 0 ∀w ∈ H(div,Ω),

(9.17)
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1

τ

∫
Ω

(ϕk+1 − ϕk)Φ dx +
∫

Ω

(vk+1 · ∇ϕk)Φ dx

+
∫

Ω

m(ϕk)∇μk+1 · ∇Φ dx = 0 ∀Φ ∈ H 1(Ω), (9.18)

σε

∫
Ω

∇ϕk+1 · ∇Ψ dx −
∫

Ω

μk+1Ψ dx

+σ

ε

∫
Ω

((F+)′(ϕk+1) + (F−)′(ϕk))Ψ dx = 0 ∀Ψ ∈ H 1(Ω), (9.19)

where J k := − dρ
dϕ

(ϕk)mk∇μk .
We note that in (9.17)–(9.19) the only non-linearity arises from F ′+, and thus,

only the equation (9.19) is non-linear. For a discussion of this scheme, we refer to
Garcke et al. (2016). Grün and Klingbeil (2014) propose a time discrete solver for
(9.1)–(9.8) which leads to strongly coupled systems for v, ϕ, and p at every time
step and requires a fully non-linear solver. For this scheme, Grün (2013) proves an
energy inequality and the existence of so-called generalized solutions.

9.3.2 The Spatial Discretization and Energy Inequalities

For a numerical treatment, we next discretize the weak formulation (9.17)–(9.19)
in space. We aim at an adaptive discretization of the domain Ω , and thus to have a
different spatial discretization in every time step.

LetT k = ⋃NT
i=1 Ti denote a conforming triangulation of Ω with closed simplices

Ti , i = 1, . . . , NT and edges Ei , i = 1, . . . , NE , E k = ⋃NE
i=1 Ei . Here, k refers to

the time instance tk . On T k , we define the following finite element spaces:

V 1(T k) ={v ∈ C(T k) | v|T ∈ P1(T )∀T ∈ T k} =: span{Φ i }N P
i=1,

V 2(T k) ={v ∈ C(T k) | v|T ∈ P2(T )∀T ∈ T k},

where Pl(S) denotes the space of polynomials up to order l defined on S.
We introduce the discrete analogon to the space H(div,Ω):

H(div,T k) = {v ∈ V 2(T k)n | (divv, q) = 0 ∀q ∈ V 1(T k) ∩ L2
(0)(Ω), v|∂Ω = 0}

:= span{bi }NF
i=1,

We further introduce a H 1-stable projection operator Pk : H 1(Ω) → V 1(T k)

satisfying

‖Pkv‖L p(Ω) ≤ ‖v‖L p(Ω) and ‖∇Pkv‖Lr (Ω) ≤ ‖∇v‖Lr (Ω)
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for v ∈ H 1(Ω) with r ∈ [1, 2] and p ∈ [1, 6) if n = 3, and p ∈ [1,∞) if n = 2.
Possible choices are the H 1-projection, the Clément operator (Clément 1975) or, by
restricting the preimage to C(Ω) ∩ H 1(Ω), the Lagrangian interpolation operator.

Using these spaces, we state the discrete counterpart of (9.17)–(9.19):
Let k ≥ 1, given ϕk−1 ∈ V 1(T k−1), ϕk ∈ V 1(T k), μk ∈ V 1(T k), vk ∈ H(div,
T k), find vk+1

h ∈ H(div,T k+1), ϕk+1
h ∈ V 1(T k+1), μk+1

h ∈ V 1(T k+1) such that
for all w ∈ H(div,T k+1), Φ ∈ V 1(T k+1), Ψ ∈ V 1(T k+1) there holds:

1

2τ
(ρkvk+1

h − ρk−1vk + ρk−1(vk+1
h − vk),w) + a(ρkvk + J k, vk+1

h ,w)

+(2ηk Dvk+1
h , Dw) − (μk+1

h ∇ϕk + ρkg,w) = 0,
(9.20)

1

τ
(ϕk+1

h − Pk+1ϕk, Φ) + (m(ϕk)∇μk+1
h ,∇Φ) + (vk+1

h ∇ϕk, Φ) = 0,

(9.21)

σε(∇ϕk+1
h ,∇Ψ ) + σ

ε
(F ′

+(ϕk+1
h ) + F ′

−(Pk+1ϕk), Ψ ) − (μk+1
h , Ψ ) = 0,

(9.22)

where ϕ0 = Pϕ0 denotes the L2 projection of ϕ0 in V 1(T 0), v0 = PLv0 denotes the
Leray projection of v0 in H(div,T 0) (see Constantin and Foias 1988), andϕ1

h, μ
1
h, v

1
h

are obtained from the fully discrete variant of (9.14)–(9.16).
We have from Garcke et al. (2016) that the fully discrete system (9.20)–(9.22)

admits a unique solution, where the analysis crucially depends on an energy inequal-
ity for the solution (ϕk+1

h , μk+1
h , vk+1

h ) of (9.20)–(9.22). The energy inequality for
one time instance, which is also proven in Garcke et al. (2016), is given as:

For k ≥ 1:

1

2

∫
Ω

ρk
∣∣vk+1

h

∣∣2 dx + σε

2

∫
Ω

|∇ϕk+1
h |2 dx + σ

ε

∫
Ω

F(ϕk+1
h ) dx

+1

2

∫
Ω

ρk−1|vk+1
h − vk |2 dx + σε

2

∫
Ω

|∇ϕk+1
h − ∇Pk+1ϕk |2 dx

+τ

∫
Ω

2ηk |Dvk+1
h |2 dx + τ

∫
Ω

mk |∇μk+1
h |2 dx

≤ 1

2

∫
Ω

ρk−1
∣∣vk∣∣2 dx + σε

2

∫
Ω

|∇Pk+1ϕk |2 dx

+σ

ε

∫
Ω

F(Pk+1ϕk) dx + τ

∫
Ω

ρkgvk+1
h . (9.23)

In (9.23), the Ginzburg–Landau energy of the current phase field ϕk+1 is esti-
mated against the Ginzburg–Landau energy of the projection of the old phase field
Pk+1(ϕk). Since our aim is to obtain global in time inequalities estimating the energy
of the new phase field against the energy of the old phase field at each time step, we
assume
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Assumption 1 Let ϕk ∈ V 1(T k) denote the phase field at time instance tk . Let
Pk+1ϕk ∈ V 1(T k+1) denote the projection of ϕk in V 1(T k+1). We assume that
there holds

σ

ε
F(Pk+1ϕk) + 1

2
σε|∇Pk+1ϕk |2 ≤ σ

ε
F(ϕk) + 1

2
σε|∇ϕk |2. (9.24)

This assumption means that the Ginzburg–Landau energy is not increasing through
projection. Thus, no energy is numerically produced.

Assumption 1 is in general not fulfilled for arbitrary sequences (T k+1) of trian-
gulations. To ensure (9.24), a postprocessing step can be added to the adaptive space
meshing; see Section 9.3.3.

With this assumption we immediately get

Theorem 9.1 (Garcke et al. 2016, Thm. 7) Assume that for every k = 0, 1, . . .,
Assumption (1) holds. Then, for every 1 ≤ k < l we have

1

2
(ρk−1

h vkh, v
k
h)+

σ

ε

∫
Ω

F(ϕk
h) dx + 1

2
σε(∇ϕk

h ,∇ϕk
h) + τ

l−1∑
m=k

(ρmg, vm+1
h )

≥ 1

2
(ρl−1vlh, v

l
h) + σ

ε

∫
Ω

F(ϕl
h) dx + 1

2
σε(∇ϕl

h,∇ϕl
h)

+
l−1∑
m=k

(ρm−1(vm+1
h − vmh ), (vm+1

h − vmh ))

+ τ

l−1∑
m=k

(2ηmDvm+1
h , Dvm+1

h )

+ τ

l−1∑
m=k

(m(ϕm
h )∇μm+1

h ,∇μm+1
h )

+ 1

2
σε

l−1∑
m=k

(∇ϕm+1
h − ∇Pm+1ϕm

h ,∇ϕm+1
h − ∇Pm+1ϕm

h ).

In our presentation, F denotes the relaxed double-obstacle free energy depending
on the relaxation parameter s. Let (vs, ϕs, μs)s∈R denote the sequence of solutions
of (9.17)–(9.19) for a sequence (sl)l∈N. Then, we are able to argue convergence to
solutions of a limit system related to the double-obstacle free energy Fobst . More
specifically, from the linearity of (9.17) and (Hintermüller et al. 2011, Prop. 4.2) we
conclude that there exists a subsequence, still denoted by (vs, ϕs, μs)s∈R, such that

(vs, ϕs, μs)s∈R → (v∗, ϕ∗, μ∗) in H 1(Ω),

where (v∗, ϕ∗, μ∗) denotes the solution of (9.17)–(9.19), where Fobst is chosen as
free energy. Especially |ϕ∗| ≤ 1 holds. Details are given in Garcke et al. (2016).
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9.3.3 A posteriori Error Estimation

For an efficient solution of (9.20)–(9.22), we next describe an a posteriori error
estimator-based mesh refinement scheme that is reliable and efficient up to terms of
higher order and errors introduced by the projection. We also describe how Assump-
tion 1 on the evolution of the free energy, given in (9.23), under projection is fulfilled
in the discrete setting.

Let us briefly comment on available adaptive concepts for the spatial discretization
of Cahn–Hilliard/Navier–Stokes systems. Heuristic approaches exploiting knowl-
edge of the location of the diffuse interface can be found in Kay et al. (2008),
Aland and Voigt (2012), Grün and Klingbeil (2014). In Hintermüller et al. (2013),
a fully adaptive, reliable and efficient, residual-based error estimator for the Cahn–
Hilliard part in the Cahn–Hilliard/Navier–Stokes system is proposed, which extends
the results of Hintermüller et al. (2011) for Cahn–Hilliard to Cahn–Hilliard/Navier–
Stokes systemswithMoreau–Yosida relaxation of the double-obstacle free energy. A
residual-based error estimator for Cahn–Hilliard systems with double-obstacle free
energy is proposed in Baňas and Nürnberg (2009).

In the present section, we propose a fully integrated adaptive concept for the
fully coupled Cahn–Hilliard/Navier–Stokes system, where we exploit the energy
inequality of (9.13).

For the numerical realization, we switch to the primitive setting for the flow part
of our equation system. The corresponding fully discrete system now reads:
For k ≥ 1, givenϕk−1 ∈ H 1(Ω),ϕk ∈ H 1(Ω),μk ∈ W 1,q(Ω), q > n, vk ∈ H 1

0 (Ω)n

find vk+1
h ∈ V 2(T k+1), pk+1

h ∈ V 1(T k+1),
∫
Ω
pk+1
h dx = 0, ϕk+1

h ∈ V 1(T k+1),
μk+1
h ∈ V 1(T k+1) such that for all w ∈ V 2(T k+1), q ∈ V 1(T k+1),

Φ ∈ V 1(T k+1), Ψ ∈ V 1(T k+1) there holds:

1

2τ
(ρkvk+1

h − ρk−1vk + ρk−1(vk+1
h − vk),w) + a(ρkvk + J k, vk+1

h ,w)

+(2ηk Dvk+1
h ,∇w) − (μk+1

h ∇ϕk + ρkg,w) − (pk+1
h , divw) = 0,

(9.25)

−(divvk+1
h , q) = 0,

(9.26)

1

τ
(ϕk+1

h − Pk+1ϕk, Φ) + (m(ϕk)∇μk+1
h ,∇Φ) − (vk+1

h ϕk,∇Φ) = 0,

(9.27)

σε(∇ϕk+1
h ,∇Ψ ) + σ

ε
(F ′

+(ϕk+1
h ) + F ′

−(Pk+1ϕk), Ψ ) − (μk+1
h , Ψ ) = 0.

(9.28)

Thus, we use the famous Taylor–Hood LBB-stable P2 − P1 finite element for
the discretization of the velocity–pressure field and piecewise linear and continuous
finite elements for the discretization of the phase field and the chemical potential.
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For other kinds of possible discretizations of the velocity–pressure field, we refer to,
e.g., Verfürth (2010).

Note that we perform integration by parts in (9.27) in the transport term, using
the no-slip boundary condition for vk+1

h . As soon as Pk+1 is a mass-conserving
projection, we by testing equation (9.27) with Φ = 1 obtain the conservation of
mass in the fully discrete scheme.

The link between equations (9.25)–(9.28) and (9.20)–(9.22) is established by the
fact that for vk+1

h , ϕk+1
h , μk+1

h denoting the unique solution to (9.20)–(9.22), there
exists a unique pressure pk+1

h ∈ V 1(T k+1) satisfying
∫
Ω
pk+1
h dx = 0, such that

(vk+1
h , pk+1

h , ϕk+1
h , μk+1

h ) is a solution to (9.25)–(9.28). The opposite direction is
obvious.

Next, we describe the error estimator which we use in our computations. We
follow Hintermüller et al. (2011) and restrict the presentation of its construction to
the main steps.

We define the following error terms:

ev :=vk+1
h − vk+1, ep :=pk+1

h − pk+1,

eϕ :=ϕk+1
h − ϕk+1, eμ :=μk+1

h − μk+1,

as well as the discrete element residuals

r (1)
h :=ρk + ρk−1

2
vk+1
h − ρk−1vk + τ(bk∇)vk+1

h + 1

2
τdiv(bk)vk+1

h

− 2τdiv
(
ηk Dvk+1

h

) + τ∇ pk+1
h − τμk+1

h ∇ϕk − ρkg,

r (2)
h :=ϕk+1

h − Pk+1ϕk + τvk+1
h ∇ϕk − τdiv(mk∇μk+1

h ),

r (3)
h :=σ

ε
F ′

+(ϕk+1
h ) + σ

ε
F ′

−(Pk+1ϕk) − μk+1
h ,

where bk := ρkvk + J k . Furthermore, we define the error indicators

η
(1)
T :=hT ‖r (1)

h ‖T , η
(1)
E :=h1/2E ‖2ηk

[
Dvk+1

h

]
ν
‖E ,

η
(2)
T :=hT ‖r (2)

h ‖T , η
(2)
E :=h1/2E ‖mk

[∇μk+1
h

]
ν
‖E ,

η
(3)
T :=hT ‖r (3)

h ‖T , η
(3)
E :=h1/2E ‖ [∇ϕk+1

h

]
ν
‖E .

(9.29)

Here, [·]ν denotes the jump of a discontinuous function in normal direction ν pointing
from the triangle with lower global number to the triangle with higher global number.
Thus, η

( j)
E , j = 1, 2, 3 measures the jump of the corresponding variable across the

edge E , while η
( j)
T , j = 1, 2, 3 measures the trianglewise residuals.

In (Garcke et al. 2016, Thm. 99), the following theorem is proven.
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Theorem 9.2 (Garcke et al. 2016, Thm. 9) There exists a constant C > 0 only
depending on the domain Ω and the regularity of the mesh T k+1 such that

ρ‖ev‖2 + τη‖∇ev‖2 + τm‖∇eμ‖2 + σε‖∇eϕ‖2 + σ

ε
(F ′

+(ϕk+1
h ) − F ′

+(ϕk+1), eϕ)

≤ C
(
η2

Ω + ηh.o.t + ηC
)
,

holds with

η2
Ω = 1

τη

∑
T∈T k+1

(
η

(1)
T

)2 + τ

η

∑
E∈E k+1

(
η

(1)
E

)2

1

τm

∑
T∈T k+1

(
η

(2)
T

)2 + τ

m

∑
E∈E k+1

(
η

(2)
E

)2

1

σε

∑
T∈T k+1

(
η

(3)
T

)2 + σε
∑

E∈E k+1

(
η

(3)
E

)2
,

ηh.o.t. =τ(div(ev), ep),

and ηC =(Pk+1ϕk − ϕk, eμ) − σ

ε
(F ′

−(Pk+1ϕk) − F ′
−(ϕk), eϕ).

Here, ρ, η, m denote lower bounds for ρ(ϕ), η(ϕ), and m(ϕ).

In the numerical part, this error estimator is used togetherwith themesh adaptation
cycle described in Hintermüller et al. (2011). The overall adaptation cycle

SOLVE → ESTIMATE → MARK → ADAPT

is performed once per time step. For convenience of the reader, we state the marking
strategy here.

Algorithm 2 (Marking strategy)

• Fix amin > 0 and amax > 0, and set A = {T ∈ T k+1 | amin ≤ |T | ≤ amax}.
• Define indicators:

1. ηT = 1
τη

(
η

(1)
T

)2 + 1
τm

(
η

(2)
T

)2 + 1
σε

(
η

(3)
T

)2
,

2. ηT E = ∑
E⊂T

[
τ
η

(
η

(1)
T E

)2 + τ
m

(
η

(2)
T E

)2 + σε
(
η

(3)
T E

)2
]
.

• Refinement: Choose θ r ∈ (0, 1),

1. Find a set RT ⊂ T k+1 with θ r
∑

T∈T k+1 ηT ≤ ∑
T∈RT ηT ,

2. Find a set RT E ⊂ T k+1 with θ r
∑

T∈T k+1 ηT E ≤ ∑
T∈RT E ηT E .

• Coarsening: Choose θ c ∈ (0, 1),

1. Find the set CT ⊂ T k+1 with ηT ≤ θ c

N

∑
T∈T k+1 ηT ∀T ∈ CT ,

2. Find the set CT E ⊂ T k+1 with ηT E ≤ θ c

N

∑
T∈T k+1 ηT E ∀T ∈ CT E .
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• Mark all triangles of A ∩ (RT ∪ RT E ) for refining.
• Mark all triangles of A ∩ (CT ∪ CT E ) for coarsening.

Ensuring the validity of the energy estimate

To ensure the validity of the energy estimate during the numerical computations,
we ensure that Assumption 1 holds trianglewise. For the following considerations,
we restrict to bisection as refinement strategy combined with the iFEM coarsening
strategy proposed in Chen (2008). This strategy only coarsens patches consisting of
four triangles by replacing them by two triangles if the central node of the patch is an
inner node ofT k+1 and patches consisting of two triangles by replacing them by one
triangle if the central node of the patch lies on the boundary of Ω . A patch fulfilling
one of these two conditions we call a nodeStar. By using this strategy, we do not
harm the Assumption 1 on triangles that are refined. We note that this assumption
can only be violated on patches of triangles where coarsening appears.

After marking triangles for refinement and coarsening and before applying refine-
ment and coarsening to T k+1, we make a postprocessing of all triangles that are
marked for coarsening.

Let MC denote the set of triangles marked for coarsening obtained by the marking
strategy described inAlgorithm2.To ensure the validity of the energy estimate (9.23),
we perform the following postprocessing steps:

Algorithm 3 (Postprocessing)

1. For each triangle T ∈ MC:
if T is not part of a nodeStar
then set MC := MC \ T .

2. For each nodeStar S ∈ MC:
if Assumption (1) is not fulfilled on S
then set MC := MC \ S.

The resulting set MC does only contain triangles yielding nodeStars on which the
Assumption 1 is fulfilled.

9.4 Numerics

Let us finally give a numerical example to show the applicability of the provided
method to the simulation of the complex interaction at the air-water interface.We use
the implementation from Garcke et al. (2016) that was developed for the validation
of results for the rising bubble benchmark from (Aland and Voigt 2012; Hysing et al.
2009). For this reason, it is not adapted to the present situation and we will comment
on the restrictions and the future work to tackle the given problem after showing the
numerical results.

We use Ω = (0.0, 3.0) × (0.0, 1.0) and a time horizon of I = (0, 10.0) that we
subdivide into equidistant time steps of length τ = 5e − 4. To mimic the wind forc-
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Fig. 9.1 Volume force f that generates the ‘wind’ together with the zero level line of ϕ0

ing, we introduce a volume force f = ( f1, f2)� = ( f1, 0)� as shown in Figure 9.1
on the right-hand side of the Navier–Stokes equation that is defined as

( f1(x)) =
{
0 if ‖(x − m)/σ‖ ≥ 1,

cos(π‖(x − m)/σ‖)2 else,

wherem = (1.0, 1.2)�,σ = (1.0, 0.1)�, and the division (x − m)/σ has to be under-
stood componentwise. This is an approximation of a Gaussian bell with compact
support. In Figure 9.1, we further show the zero-level line of the initial phase field
ϕ0 that is given by

z(x1, x2) :=(x2 − 0.02 sin(2πx1) + 0.2)/ε,

z0 = arctan
√
s − 1,

ϕ0(z) :=

⎧⎪⎪⎨
⎪⎪⎩

√
s

s−1 sin(z) if |z| ≤ z0,
1

s−1

(
s − exp

(√
s − 1(z0 − z)

))
if z > z0,

− 1
s−1

(
s − exp

(√
s − 1(z0 + z)

))
if z < −z0.

Note that z measures the distance in x2 direction to the wave 0.2 − 0.02 sin(2πx1)
scaled by ε−1 and ϕ0(z) is the first-order approximation to a phase field with relaxed
double-obstacle free energy (9.12); see (Kahle 2014, Section 10). The initial velocity
is v0 ≡ 0, and we have no-slip boundary data at ∂Ω .

As parameters we choose ρwater = 1, ηwater = 0.01, σwater = 0.0005. Using unit
velocity V = 1 and unit length d = 1, this results in aWeber number ofWe = 2000,
and after a required scaling due to the chosen free energy, see Abels et al. (2012), we
have σ = 0.00032. The gravity is g = (0.0,−9.81)�, and the mobility is b = ε

500σ .
We note that especially the chosen density ρwater does not correspond to the real-
world parameter.We use the air–water ratio ρair = 0.01ρwater and ηair = 0.01ηwater ,
which is ten times larger than the real-world ratio. To overcome the limitations of the
current implementation with respect to the density ratio is subject of future research.

For the adaptation process from Algorithm 2, we choose θ r = 0.5, θ c = 0.01,
Vmin = 8e − 6, Vmax = 3e − 4. This results in about 44000 cells for the spatial
discretization, where the interface is resolved by 16 cells in orthogonal direction.
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Fig. 9.2 Distribution of the elements at final time. Note the high resolution close to the surface
layer, while the elements are larger in the pure phases. We only show a part of the computational
domain, to be able to sufficiently resolve the elements in the picture

This corresponds to cells with an area of |T | ≈ 4e − 6 inside the interface, while in
the ocean and air we obtain |T | ≈ 3e − 4. For the numerical results presented, we
switched off the postprocessing proposed in Algorithm 3. In Garcke et al. (2016),
the influence of this postprocessing on the numerical simulation of the rising bubble
benchmark is investigated in detail. The resulting equations are solved by Newton’s
method using a preconditioned GMRES iteration; see Garcke et al. (2016).

In Figure 9.2, we show the grid at final time, and in Figure 9.3, we show snapshots
of the evolution of the interface between water and air, given by the zero-level line
of ϕ, and the velocity field presented by streamlines of v, colored by |v|. We observe
that, despite the unphysical parameters and boundary data, the method is able to deal
with the complex two-phase interaction at the air-water interface.

9.5 Outlook on the Direction of Research

The numerical results proposed in Section 9.4 are only preliminary and should be
regarded as a proof of concept for the proposed diffuse interface approach. The
method is able to copewith the complexphenomena at the air–water interface. Further
research is necessary to further develop our approach and to make it applicable for
real-world scenarios. This includes:

Boundary data

As a first step, the application of periodic boundary data for v parallel to the water
surface will be incorporated together with an open boundary on the top and the
bottom of the domain. For ϕ and μ, periodic boundary conditions are sufficient in
the water parallel directions only.



304 H. Garcke et al.

Fig. 9.3 Snapshots of the evolution of ϕ and v. For t ∈ {1.7, 3.3, 5.0, 6.7, 8.3, 10.0} (left top to
right bottom), we present streamlines of v in grayscale together with the zero-level line of ϕ in
black. Darker streamlines means higher velocity. Due to the unphysical boundary data and the
given forcing, we observe large vortices that generate several waves at different locations. We stress
that especially breaking waves are captured by our approach as it is able to capture topological
changes

3D computations

For 3D computations, an efficient solution of the linear systems arising throughout
the simulation is essential. Here, results on preconditioning of the Cahn–Hilliard
system from Bosch et al. (2014) or a multigrid approach as proposed in Kay and
Welford (2006) might be used. For the solution of the Navier–Stokes equation, well-
developed preconditioners exist and we refer to (Benzi et al. 2005; Kay et al. 2002).

Real-world parameter

Incorporating real-world parameters will require several changes on the architec-
ture of the solver. Especially, we note that this will lead to large Reynolds number
which require stabilization techniques like grad-div stabilization, which have to be
incorporated into the finite element code. We note that the drawback of grad-div
stabilization, namely a stronger coupling of the unknowns, does not appear here, as
in (9.1) all variables are coupled anyway due to the term 2Dv = ∇v + (∇v)�.

Incorporation into Earth System Models

If our concept proves applicable for the numerical simulation of the air–water region
in atmosphere and ocean on themeter scale, it has to be incorporated into simulations
on the next coarser (kilometer) scale. In this context, homogenization concepts might
be an option. We refer to, e.g., Eck (2004), where homogenization of phase field
models has been done in a different context.
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