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Preface

These proceedings contain the papers presented at the 2018 IFIP International Con-
ference on Network and Parallel Computing (NPC 2018), held in Muroran, Hokkaido,
Japan, from November 29 to December 1, 2018. The goal of the conference is to
establish an international forum for engineers and scientists to present their ideas and
experiences in network and parallel computing.

A total of 72 submissions were received in response to our Call for Papers. These
papers originate from Australia, Asia (China, Japan), Europe, and North America
(USA). Each submission was sent to at least three reviewers. Each paper was judged
according to its originality, innovation, readability, and relevance to the expected
audience. Based on the reviews received, 22 full papers (about 30%), including 12
papers published as Special Issue papers of the International Journal of Parallel
Programming, and ten papers published as LNCS proceedings were retained. A num-
ber of strong papers that could not be accepted to the full-paper track were considered
for the short-paper tracks. Finally, we selected 12 short papers. These papers cover
traditional areas of network and parallel computing, including parallel applications,
distributed algorithms, parallel architectures, software environments, and distributed
tools.

We share the view that, during the past decade, the tools and cultures of
high-performance computing and big data analytics are diverging to the detriment of
both, and the international community should find a unified path that can best serve the
need of a broad spectrum of major application areas. Unlike other tools, which are
limited to particular scientific domains, computational modeling and data analytics are
applicable to all areas of science and engineering, as they breathe life into the
underlying mathematics of scientific models.

We sincerely appreciate the work and effort of the authors in preparing their sub-
missions for review, and addressing the reviewers’ comments before submitting the
camera-ready copies of their accepted papers, and attending the conference to present
and discuss their work. We also want to thank every member of the NPC 2018
Organizing Committee and Steering Committee for their help in putting together such
an exciting program. Finally, we thank all the attendees.

August 2018 Feng Zhang
Jidong Zhai
Marc Snir

Hai Jin
Hironori Kasahara

Mateo Valero
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CNLoc: Channel State Information
Assisted Indoor WLAN Localization

Using Nomadic Access Points

Jiang Xiao1(B), Huichuwu Li1, He Li2, and Hai Jin1

1 Services Computing Technology and System Lab,
Cluster and Grid Computing Lab, School of Computer Science and Technology,

Huazhong University of Science and Technology, Wuhan 430074, China
jiangxiao@hust.edu.cn

2 Department of Information and Electronic Engineering,
Muroran Institute of Technology, Muroran, Hokkaido, Japan

Abstract. Wireless local area network (WLAN) based indoor localiza-
tion is expanding its fast-paced adoption to facilitate a variety of indoor
location-based services (ILBS). Unfortunately, the performance of cur-
rent WLAN localization systems relying on fixed access points (APs)
deployment is constrained by the spatial localizability variance (SLV)
problem that different locations may exhibit significantly distinct local-
ization resolution. Prior approaches tackle this problem through nomadic
APs with favorable mobility to dynamically adjust the network topol-
ogy. However, the lack of prior knowledge of nomadic AP’s position has
been a challenge for location distinction and will lead to prohibitive per-
formance degradation. In this paper, we propose and develop CNLoc,
a novel CSI-based (Channel State Information) indoor WLAN localiza-
tion framework to overcome the location uncertainty of nomadic APs.
Our implementation and evaluation show that CNLoc can improve the
accuracy with unknown location information of nomadic APs. We also
discuss some open issues and new possibilities in future nomadic AP
based indoor localization.

Keywords: WLAN · CSI · RSS · Mobility

1 Introduction

The rapid proliferation of indoor location-based services (ILBS) has spurred the
indoor location market [9], leading to a rash of proposals for developing new
localization systems [21]. WLAN-based indoor localization is one of the most
efficient methodologies, which applies general WiFi devices in position analysis.
Owing to the high availability of infrastructure and low cost, WLAN has become
an increasingly attractive choice, ranging from research community [6,8,22] to
industry (e.g., Google, Apple, Microsoft, etc.).
c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018
F. Zhang et al. (Eds.): NPC 2018, LNCS 11276, pp. 1–12, 2018.
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In the deployment of WLAN-based indoor localization services, there are
some issues which affect the localization accuracy. An important issue is the
placement of WLAN access points (APs), which is also very difficult since most
APs are deployed for wireless communications. Nomadic APs are those mobile
devices that can provide localization services, which brings an opportunity for
deployment of WLAN-based indoor localization. In our previous work, we have
proposed an indoor localization method based on the nomadic APs, which shows
good efficiency in providing localization services.

However, a challenge in the nomadic AP based indoor localization is the
location uncertainty of the nomadic APs. In the previous work, we need to know
the position of each nomadic AP to estimate the final location. Since the accuracy
of the nomadic APs is not always enough and determined, the accumulated
error of the estimated location will affect the quality of localization. There are
several ways to solve this problem. The first way is to apply some other devices
such as microphones or cameras for assistance. Although additional environment
information can improve the localization accuracy, the special devices will bring
more cost and energy consumption to nomadic APs.

Channel state information (CSI) is another opportunity that improves the
localization accuracy by distinguishing the status of different nomadic APs. In
the nomadic AP based indoor localization, the location uncertainty is usually
brought by moving nomadic APs. Since the mobility of nomadic APs will affect
the CSI in WLAN communications, it is possible to distinct static APs and
moving APs by analyzing CSI data.

Therefore, in this paper, we propose a new design of CNLoc, to tackle the
challenges brought by nomadic APs in indoor WLAN localization. CNLoc lever-
ages the favorable fact that CSI possesses the temporal stability and frequency
diversity properties, which makes it capable of inferring the object’s status (i.e.,
moving or static) by the CSI-based location distinction mechanism.

Overall, we summarize the main contributions of our work as:

– We exploit the distinctive capability of CSI to investigate the object’s mobility
status, which is the crucial premise for better utilizing the nomadic APs’
mobility. Due to the advantages of both temporal stability and frequency
diversity characteristics, CSI-based location distinction can achieve very high
accuracy.

– We overcome the limitation of nomadic APs’ location uncertainty by further
aggregating the sensor information to the SP-based method which is less
sensitive to the nomadic APs’ position errors.

– From evaluation results, we observe that CNLoc can achieve great SLV reduc-
tion, and outperform the corresponding static AP deployment.

This paper is organized as follows. Section 2 reviews the state-of-the-art
researches. Section 3 gives an overview of the technical challenges and then
presents the architecture of CNLoc. Section 4 presents our methodology in detail.
We present a thorough evaluation in Sect. 5, and demonstrate that it is more
accurate compared to the static AP deployment. In Sect. 6 we discuss the prac-
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tical issues. Finally, we draw our conclusions and indicate some directions for
future work in Sect. 7.

2 Related Work

In this section, we introduce some researches in the following categories: (1)
deployment of indoor localization infrastructure, and (2) CSI-assisted localiza-
tion.

2.1 Deployment of Indoor Localization Infrastructure

A localization problem is to transform virtual coordinates of localization infras-
tructures into physical ones, such as a set of anchors or landmarks. Since the
geometric layout of the localization infrastructures significantly affects the local-
ization performance, AP deployment will lead to the SLV problem that the
accuracy of indoor localization differs with different layouts. Chen et al. [3] first
introduced the landmark placement problem in indoor localization with wire-
less networks and proposed a placement algorithm to minimize the maximum
localization error.

Dulman et al. [4] focused on the anchor deployment in wireless networks.
Meng et al. [10] proposed an optimal AP deployment method to improve posi-
tioning accuracy in indoor Wi-Fi environments, which maximizes the RSS (radio
signal strength) euclidean distance between physical locations.

Due to the complex indoor structure, AP deployment inevitably incurs the
SLV problem, where the localization accuracy differs at different locations, lead-
ing to user experience inconsistence. Lin et al. [7] proposed an AP selection
mechanism based on AP positioning capabilities to improve WiFi fingerprinting
accuracy. Gao et al. [5] optimized the placement of landmarks for localization in
a warehouse by maximizing the difference degree in each space unit.

2.2 CSI-Assisted Localization

The accuracy of RSS-based indoor localization systems is limited by the multi-
path effect [1,24]. Bhartia et al. [2] measured the frequency diversity of WLAN
channels and proposed some methods to harness diversity by leveraging the
CSI in WLAN communications. Yang et al. [23] first introduced the CSI into
WLAN-based indoor localization systems and analyzed the frequency diversity
from collected CSI data. Wu et al. [18] proposed FILA which is a novel approach
that eliminates the multipath effect by leveraging the CSI in indoor scenarios.
The CSI is also applied to separate line-of-sight (LOS) path in communications,
which can assist location estimation in complex indoor environments [14,15].

Building location fingerprints is another way to optimize the multipath effect
in indoor WLAN localization. Sen et al. [16] proposed an indoor localization
system called PinLoc that builds location signatures by harnessing the CSI in
WLAN channels. Moreover, since many works focused on the motion detection
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by using WLAN CSI, it is possible to detect the object position directly with
the similar method. Pilot is a device-free indoor localization system that builds
different radio maps with CSI data to estimate the positions of entities in the
WLAN signal area [19].

3 CNLoc Framework

To deal with the SLV problem due to the static deployment of APs, we lever-
age nomadic APs to improve localization accuracy and mitigate user experience
inconsistence at different locations. This section starts with the challenges to
utilize nomadic APs for localization, before presenting the overall framework of
our CNLoc system.

To harness nomadic APs to establish a dynamic topology so as to avoid the
SLV problem, we need to address the following challenge: how to resolve the
location uncertainty of nomadic APs for robust location determination? Since
nomadic APs tend to move stochastically within the area of interest, it is diffi-
cult to obtain their coordinates accurately. As the location estimation error of
nomadic APs accumulates, the localization accuracy also degrades. To deal with
this challenge, we design a localization framework that is less sensitive to the
location uncertainty of nomadic APs.

OFDM 
Modula onData

SP-based Loca on 
Es ma on

PDP-based Proximity 
Determina on

CSI-based Loca on 
Dis nc on

Sensor-based 
Coordinate Acquisi on

Mobile Device

Server

Channel 
Es ma on

OFDM 
Demodula on

Data

Sensor Reading

Nomadic AP

Channel 
Es ma on

OFDM 
Demodula on

Data

Sta c AP

RF Signal

Fig. 1. Architecture of CNLoc

We harness the mobility of nomadic APs via space partition. In this way,
CNLoc neither requires a pre-collected fingerprint database, which is labor-
intensive to construct [24], nor sophisticated calibration to achieve accurate
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ranging in complex indoor environments [18]. Figure 1 shows the iterative local-
ization framework, which is resilient to location uncertainty of nomadic APs
and gradually converges to an accurate location estimate. To enable proximity
determination in multipath and NLOS environments, we introduce CSI into the
time domain and adopt PDP (power of direct path) for distance estimates. PDP
filters out signal power from paths with long delays so as to mitigate the impact
of multipath on distance estimation. Since CNLoc only needs relative proximity
rather than precise distance between each nomadic AP and the object, the adop-
tion of PDP is sufficient to achieve high localization accuracy even in complex
indoor environments. Different from the preliminary work NomLoc [20], we do
not assume the coordinates of nomadic APs are known, and obtain them using
sensor-based coordinate acquisition.

4 Methodology

This section presents the detailed design of the three key modules, (1) PDP-based
proximity determination, (2) CSI-based location distinction, and (3) Sensor-
based coordinate acquisition.

4.1 Proximity Determination

CNLoc uses the maximum power of the power delay profile to approximate PDP
of links if there is a strong LOS path. However, it may over-estimate the distance
if the LOS path is severely attenuated or even blocked in NLOS propagation
situations. To mitigate the impact of NLOS propagation or propagation without
a LOS path, CNLoc adopts previous approaches on CSI-based LOS identification
schemes for both nomadic and static APs with at least two antennas [17]. As
such, we use the PDP as an indicator for proximity determination, which filters
out signal power from paths with long delays. Note that CNLoc may still falsely
determine the proximity information if there is no LOS path. Nevertheless, since
we formulate the localization problem into a space partition problem, which is
solved by optimization with redundant measurements, our approach can also
tolerate certain extent of errors induced by NLOS propagation.

4.2 CSI-Based Location Distinction

In current CNLoc design, SP-based algorithm is operated under the assumption
that the object stays at an identical location. In other words, the status of the
object is necessitated to be stationary during the positioning procedure. In this
case, we can derive the object’s location jointly from the partition results of
nomadic APs. It is unlikely to directly apply the proposed SP-based derivation
using the measurement of the nomadic AP at multiple positions if the object
is walking around in an indoor venue. For example, if an object moves from
location A (LA) to location B (LB), it is inappropriate to aggregate the SP-
based output of LB with LA for positioning. This is because the present partition
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result of LB only correlates with the preceding ones at LB , while independent of
those at LA. As a consequence, it raises a prerequisite of detecting the mobility
status of the object, i.e., static or moving, which directly bounds up with the
outcome of SP-based algorithm. Now that we need to take the object’s status
into consideration in the design of CNLoc. Because it needs to be guaranteed
that the object keeps stationary as long as the nomadic APs fulfil the localization
task. To achieve this, we focus our efforts on the location distinction relying on
the fine-grained CSI. The basic idea is to exploit the suitable CSI-based feature
which can distinguish the statuses between static and moving, taking advantage
of both the temporal stability and frequency diversity characteristics. We denote
the CSI measurements over sliding window W of length N by H as,

H = [H1,H2, . . . ,HN ] (1)

For each Hi, it consists of 30 subcarriers and can be expressed as a vector
Hi,

Hi = [|H1
i |, |H2

i |, ..., |H30
i |]T (2)

where |Hk
i | corresponds to the amplitude of k-th subcarrier CSI.

The location distinction feature can then be formulated as the following Ct:

Ct =
1

N − 1

N∑

j=1

corr(Ht,Ht−j) (3)

In CNLoc, Ct is compared to a preset threshold τ . If Ct is a higher value
than the τ , the object is determined to stay stationary in the area of interest
without tendency to change position. On the other hand, the movement of the
object will be detected when Ct falls below the τ . Moreover, we can fuse the
detection outputs over multiple links to produce a more accurate result.

To summarize, we can employ the CSI-based location distinction feature from
multiple static APs deployed in the positioning region. Lying on the benefits of
temporal stability and frequency diversity, such feature can be steady in static
status while sensitive to the mobility of the object.

4.3 Sensor-Based Coordinate Acquisition

As previously noted in Sect. 3, the uncertainty of nomadic APs’ location can
result in performance degradation, which is incompatible with our design objec-
tive. To confront such difficulty, we assume built-in sensors of nomadic APs
become handy tools for identifying the absolute coordinates. In particular, when
the prior knowledge of nomadic APs’ initial coordinate is available, we suggest
a simple yet effective dead reckoning approach based on the sensor information
including three phases: (1) leveraging low-pass filter and additional constrains
comparing with existing methods for step detection, (2) minimizing the efforts
for personalize step length estimation, and (3) direction determination. This
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method makes it very convenient to ensure accurate nomadic APs’ coordinates
for optimal preparation of SP-based location estimation.

We start by detecting and counting the number of steps during nomadic
APs’ movement using the accelerometer sensor reading. A novel AFSM (augment
finite state machine) algorithm is derived to achieve this goal. AFSM algorithm
incorporates the following functionalities:

– to apply the butterworth low pass filter for mitigating the high frequency noise
and spikes in raw acceleration magnitudes as to recover the true periodicity
of the steps;

– to further remove the erroneous detection by adding two-fold heuristic con-
strains: (1) for each step, the time duration in respect to the descend and
ascend parts of vertical acceleration should be identical; and (2) the maxi-
mum time duration of one step is limited.

As the second step, we directly apply the well-known step length model [12,
13] to estimate the step length a as follows,

l = a ∗ f + b (4)

where a, b are the parameters need to be estimated, f is the frequency of steps.
More specifically, we eliminate the time-consuming calibration efforts with a per-
sonalized estimation method. In our experiment, we observe that the nomadic
APs with similar variance and average of the vertical acceleration in one step
are likely to exhibit similar step length. Relying on this fact, we modify the
model for each nomadic AP with minimal efforts required from it. For instance,
when a new nomadic AP is tracked for the first step, the model computes the
similarly in terms of feature parameters including acceleration variance V , mean
M , and frequency f between this new comer and the previous nomadic APs.
If it shares the same feature as that of the previous nomadic AP, they presum-
ably share the same a, b. Direction of the nomadic APs’ movement is another
key factor for acquiring the coordinates. In complex indoor environments, the
accuracy of direction determination can be influenced by both ferromagnetic and
electrical materials in the vicinity. Fortunately, the gyroscope is decoupled from
the geomagnetic sensor, which is insensitive to ambient magnetic fields. There-
fore, CNLoc leverages the magnetometer to provide the initial phase as well the
gyroscope sensor to obtain the relative angular displacement of the nomadic AP
for the purpose of direction determination. This means that CNLoc can detect
the orientation of nomadic APs’ movement even in the face of the surrounding
noises.

5 Performance Evaluation

We evaluate the performance of CNLoc system in this section. We collect
CSI measurements from external NICs and sensor readings from smartphones
because CSI information is currently unavailable on phones. Each nomadic AP
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is placed on a wheeled desk and pushed by volunteers to move randomly in the
area of interest. To record the ground truth trajectories of each nomadic AP, we
record the experiments via video and adopt computer vision based localization
scheme to pinpoint the location of each nomadic AP.

5.1 Performance of CSI-based Location Distinction

Next comes to study the performance of location distinction based on CSI in
the scenarios Lab and Lobby. In Lab, we first keep the object staying at site L2

for CSI measurements. Afterwards, the object slightly moves to a close site with
around 1m distance. By leveraging the CSI-based location distinction feature,
we can identify whether the object has changed the location. Figure 2 depicts the
results in terms of detection rate (Y-axis) versus false alarm (X-axis). As shown
in Fig. 2, the FP rate is negligible which proves the effectiveness of the proposed
approach in Sect. 5.1. We further perform the similar measurements at sites L5

and a position one meter nearby in Lobby. Even in such a considerably large area,
the FP rate only increases very slightly. Hence, we show that in practice, the
CSI-based location distinction technique makes it effective and reliable enough
to imply the mobility status of the object.
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Fig. 2. Location distinction accuracy

5.2 Impact of Nomadic APs’ Location Uncertainty

Finally, to provide insights into how the uncertainty of nomadic APs’ location
influences the overall performance, we show the results in Fig. 3(a) and (b).
We can observe in Fig. 3(a) that the sensor information is responsive enough
to handle such uncertainty. In general, the smaller coordinate error improves
the performance of location estimation in Lab due to the SP-based method
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barely depends on the AP location which other range-based methods do. We also
obtain similar results in Lobby as shown in Fig. 3(b). Thus, it demonstrates the
promise of ensuring the overall localization performance by accurately coordinate
acquisition with embedded sensors of nomadic APs.
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Fig. 3. Sensor-based coordinate acquisition performance in two scenarios

6 Discussion

As an important step forward, CNLoc leaves several open issues and new pos-
sibilities for future research. In this section, we briefly comment on the most of
important of these here.
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6.1 Influence of AP Mobility on CSI Measurement

A possible side-effect of nomadic APs lies in the fact that the dynamic move-
ment can give rise to Doppler shift. In particular, nomadic APs move relatively
towards or away from an object, resulting in positive or negative Doppler shift
as transmission frequency changed. Such Doppler shift may bring in undesirable
impact on CSI measurement and degrade the performance of SP-based algo-
rithm. We then calculate the Doppler shift frequency Δf as below:

Δf =
vnomAP

vnomAP + c
f0 (5)

where c is the speed of light (i.e., 3 × 108 m/sec), vnomAP and f0 are the speed
and frequency of a nomadic AP, respectively. In the typical 2.4 GHz wireless
networks, a moving nomadic AP with velocity of vnomAP (i.e., 2 m/sec) results
in a maximum Doppler shift of 2Δf = 32 Hz which is very small comparing to
the center frequency and can be negligible [11].

6.2 Impact of Diverse APs

Note that CSI is the key to enable proximity determination and location dis-
tinction, which is collected at the AP side in our system. All the APs in current
prototype are identical. In practice, the WLAN-based localization infrastructure
can be consisted of a variety of APs supplied by different manufacturers (e.g.,
Belkin, D-Link, Linksys). Yet these APs can have diverse antenna gain which
is an influential factor for proximity determination. To handle this factor, we
suggest that multiple APs mutually measure the transmission power and then
proceed to server for calibrating the differences.

6.3 Improvement with Nomadic APs’ Moving Pattern

From our evaluation results, CNLoc is capable of improving AP deployment
by performing random walk of nomadic APs. Nevertheless, it still leaves upside
potential for specifying moving pattern to cover the region of poor localizability.
Intuitively, the more the moving traces of nomadic APs approaching an area
of dissatisfied localizability, the higher the effectiveness of SP-based scheme.
That means optimizing moving pattern can lead to optimum coverage of AP
deployment, which ensures to provide users better experience of ILBS at any
indoor locations. To this end, we are interested in studying such influence on
localization performance resulting from moving pattern of nomadic APs in the
future.

7 Conclusion

CSI in WLAN communications provides vast opportunities for indoor localiza-
tion. With the help of fine-grained CSI data, the CNLoc framework advocates
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the use of mobility for addressing the critical SLV problem, and improves the
accuracy of the nomadic AP based localization. Our approach is, to the best of
our knowledge, the first one to investigate the static AP deployment, and har-
ness the mobility of nomadic APs to adjust the network topology. To be specific,
in the mobile environment, CNLoc also shows good performance in monitoring
the object’s mobility status without calibration efforts. Furthermore, it permits
the sensor-based information for resolving the location uncertainty of nomadic
APs’. Through extensive experiments, we show the benefits of CNLoc in effec-
tively reducing the SLV and improving the localization accuracy compared to
static AP deployment.

In summary, we have taken an important first step towards enabling the
mobility of APs for indoor positioning. Our major ongoing work is to arrogate
multiple nomadic APs for overall performance enhancement.
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under Grant No. 61702203, Hubei Provincial Natural Science Foundation General Pro-
gram No. 2018CFB133.
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Abstract. Many distributed key-value storage systems employ the sim-
ple and effective Raft protocol to ensure data consistency. They usually
assume a homogeneous node hardware configuration for the underlying
cluster and thus adopt even data distribution schemes. However, today’s
distributed systems tend to be heterogeneous in nodes’ I/O devices due to
the regular worn I/O device replacement and the emergence of expensive
new storage media (e.g., non-volatile memory). In this paper, we propose
a new data layout scheme called Adaptive Layout Optimization of Raft
groups (ALOR), considering the hardware heterogeneity of the cluster.
ALOR aims to optimize the data layout of Raft groups to achieve a
better practical load balance, which leads to higher performance. ALOR
consists of two components: leader migration in Raft groups and skewed
data layout based on cold data migration. We conducted experiments on
a practical heterogeneous cluster, and the results indicate that, on aver-
age, ALOR improves throughput by 36.89%, reduces latency and 99th
percentile tail latency by 24.54% and 21.32%, respectively.

1 Introduction

Due to the excellent scalability and efficiency, key-value (KV) stores have been
widely adopted by many big data systems (e.g., Cassandra and HBase). Many
distributed KV storage systems employ the Raft [1] protocol to ensure data
consistency because it is easy to be implemented in practical systems. These
distributed KV systems coupled with Raft are usually designed for homoge-
neous systems. However, today’s distributed systems tend to be heterogeneous,
especially for nodes’ I/O devices. The reason lies in the following two aspects:

– The annual disk replacement rates in large-scale distributed systems are typ-
ically 2–4% and can be up to 13% in some systems [2]. The replacement
rates of Solid State Drives (SSDs) are usually higher than disks due to the

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018
F. Zhang et al. (Eds.): NPC 2018, LNCS 11276, pp. 13–26, 2018.
https://doi.org/10.1007/978-3-030-05677-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05677-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-05677-3_2


14 Y. Wang et al.

limited write endurance of Flash chips. That is to say, in a large-scale dis-
tributed KV system, I/O devices are regularly replaced with new generations
of I/O products, and these new products usually have higher performance
and cost-efficiency than the old ones.

– The emerging storage devices (e.g., SSDs or non-volatile memory (NVM)
[3]) have obvious performance advantages over the traditional ones. However,
these new devices are usually much more expensive, so we usually deploy
them in only a subset of the clusters for cost efficiency.

In distributed storage systems, the Raft protocol is usually adopted to ensure
data consistency by defining the different behaviors of the only leader and the
other followers for the same data segment. In consequence, the Raft protocol has
the inherent heterogeneous feature, i.e., the leader in a Raft group usually takes
more jobs and has greater impact on the performance than the followers do. In a
heterogeneous distributed KV storage system based on the Raft protocol, if many
leaders locate on slow nodes, the performance of the entire system will be slowed
down, because the result is not returned to the client until the corresponding
leader completes applying the log into the data set (see Sect. 2.1 for more details).
Considering this feature of Raft, the hardware heterogeneity is not necessarily a
negative factor. Instead, if we can adapt heterogeneity of Raft to the hardware
heterogeneity of distributed KV systems through data layout optimization of
Raft groups, the system performance can be improved.

In this paper, we propose a new scheme called Adaptive Layout Optimization
of Raft groups (ALOR) to match the data layout with the hardware heterogene-
ity of distributed KV systems for higher performance. ALOR consists of two
components: leader migration in Raft groups (Sect. 3.1) and skewed data layout
based on cold data migration (Sect. 3.2). The experiments based on a practical
heterogeneous cluster indicate that, on average, ALOR improves throughput by
36.89%, reduces the average latency by 24.54%, and reduces 21.32% tail latency.
Furthermore, if we construct hybrid devices with two kinds of different devices
(e.g., NVM and SSDs) on each node of the cluster, ALOR can still achieve a
28.57% higher write throughput compared with this homogeneous hybrid device
solution coupled with the same hardware resources.

The rest of this paper is organized as follows. Section 2 introduces the back-
ground and related work. The detailed design of our proposed ALOR is presented
in Sect. 3, followed by the evaluations in Sect. 4. Finally, Sect. 5 concludes this
paper with a summary of our contributions.

2 Background and Related Work

2.1 The Raft Protocol

Traditionally, Paxos [4] is a classical protocol to ensure data consistency in dis-
tributed systems. However, Paxos was particularly difficult to understand and
implement. In this case, the Raft protocol [1], which is readily comprehensible
and realized, has been quickly adopted by many practical distributed systems
like Etcd [5], TiKV [6], and PolarDB [7] since it was proposed in 2014.
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Fig. 1. The main process of serving requests according to Raft.

According to Raft, the main process of serving read and write requests can
be found in Fig. 1. We assume a Raft group contains three copies located in
three different nodes in the cluster, i.e., one and only one elected leader and two
followers.

When a write request arrives at the leader from users, the leader both
appends the new contents to the local log and forwards them to the two fol-
lowers. After more than half of the nodes (i.e., two in this case, including the
leader itself) have accomplished the logging action successfully, the leader will
proceed to apply the request log, i.e., insert/update the new data into the struc-
tured key-value store. Then, the user can get the response of this write request
from the leader.

In addition, all read requests are served by the leader alone to ensure the
data consistency. In order to ensure linear consistency, Raft will ensure that all
the previous logs have been applied before the read request is served.

2.2 Related Work

Raft/Paxos Improvements. In order to reduce the high latency of the Paxos
protocol, Wang et al. proposed APUS [15], the first RDMA-based Paxos protocol
that aims to be fast and scalable to client connections and hosts. PolarFS [16]
implements a parallel Raft to allow parallel submission of logs, breaking Raft’s
strict limitation that log has to be continuous, with the benefit of increasing
concurrency. In order to reduce the latency of distributed systems, Guerraoui
et al. proposed Incremental Consistency Guarantees (ICG) [17]. In addition,
Alagappan et al. [18] proposed correlated crash vulnerabilities to ensure data
security in distributed systems.

Heterogeneous Systems. Zhang et al. developed Mega-KV [19], a high-
performance distributed in-memory key-value store system on a heterogeneous
CPU-GPU cluster. Dey et al. [20] proposed an approach that gives multi-item
transactions across heterogeneous data stores. Strata [21] and OctopusFS [22]
designed file systems for heterogeneous storage devices on a single node.

Therefore, few research works consider the heterogeneous I/O performance
among nodes in a cluster. This paper will focus on the performance optimization
in heterogeneous distributed key-value storage systems.
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3 The Design of ALOR

In this section, we will present the detailed design of our proposed Adaptive
Layout Optimization of Raft groups (ALOR) scheme, which aims to improve the
performance of distributed key-value storage systems in case of heterogeneous
situations. The two main components of ALOR will be introduced in Sects. 3.1
and 3.2, respectively.

3.1 Leader Migration in Raft Groups

According to the Raft protocol, the performance of service nodes does not affect
the leader election. In this case, the leader and the followers in a Raft group
are usually randomly and evenly distributed among all the service nodes for
the sake of load balance no matter the underlying system is homogeneous or
heterogeneous. For example, as Fig. 2 shows, we assume that there are four Raft
groups and each group contains three copies of data in a distributed KV storage
system with six nodes. According to the original Raft protocol, the data blocks
and the leaders are evenly distributed.

Fig. 2. Raft groups are usually evenly distributed among nodes for load balance.

However, the leader in a Raft group plays the most important role in affecting
the performance (e.g., users always read data from leaders and write requests
are not confirmed until the leader applies the log). If the leader is placed on a
slow node, the performance of accessing this Raft group will be slowed down.
Therefore, ALOR gradually migrates leaders to the node with the best perfor-
mance in Raft groups. The larger the performance gap among the nodes in a
Raft group is, the higher priority of migration the corresponding leader will be
given in ALOR, as illustrated in Fig. 3. Furthermore, as long as a follower catches
up the same status of logging and applying data as the leader, it can be easily
set as the new leader with negligible overhead.

For write operations, the leaders and the followers perform the same work
(i.e., writing the log first and then applying it). In this case, although the nodes
with higher performance undertake more leaders, their average loads are the
same as each other. In fact, ALOR just fully utilizes the fast processing of high-
performance nodes in a heterogeneous system to reduce the process time of users’
write requests.
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Fig. 3. ALOR migrates the leaders in Raft groups to the faster node as far as possible
for higher performance.

For read operations, according to ALOR, the nodes with high performance
usually store more leaders than the nodes with low performance. Because users
always read data from leaders for strong consistency, the high-performance nodes
serving most read requests can reduce the response time of read request process-
ing in most cases. Although the high-performance nodes will undertake more
read requests, the read request processing is much more lightweight than the
write requests in a key-value storage system due to the significant write ampli-
fication of the KV indexes (e.g., B-tree, LSM-tree, etc.).

For a read-write mixed workload, write operations will slow down read oper-
ations, because Raft ensures linear consistency, i.e., read operations must be per-
formed after all the previous write operations have been completed. So speeding
up the write operations is critical for improving system performance.

3.2 Skewed Data Layout Based on Cold Data Migration

Skewed Data Layout. The idea of promoting system performance in a hetero-
geneous distributed store is to put appropriate load on nodes according to their
ability. Although the aforementioned leader migration mechanism in ALOR puts
more leaders on the strong nodes, this is not enough. We should further optimize
the data amount distribution during the disk-filling process, i.e., putting more
data on the high-performance nodes. The skewed data layout in ALOR can fully
utilize the fast processing speed of the high-performance nodes for higher system
performance.

However, it also causes two issues: (1) How to set an appropriate data-filling
speeds according to the performance of a node? (2) Assuming all nodes have
the same storage capacity, some high-performance nodes will be full ahead of
others due to the different data-filling speed setting. Thus how to process the
new arrival data after some nodes are full is a problem. The solutions to these
two problems in ALOR will be presented in the following parts.

Disk-Filling Speed Setting. In ALOR, the disk-filling speed of nodes is set
to be proportional to the average performance of writing key-value pairs into
the KV store in the node. For example, shown as Fig. 4, assuming there are six
nodes and their KV accessing performance is 3:3:2:2:1:1, the proportion of data
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that they get is similar to this ratio. In this case, the load on a node matches its
key-value pairs processing ability.

The next problem is how to estimate the key-value accessing performance of
the nodes. The difficulty lies in that a distributed key-value store usually does
not supply a KV accessing interface on a single node. Our solution is to automat-
ically measure the I/O performance of a node during its initialization process
by calling tools like fio [23]. However, the I/O performance is not linear with
the node’s KV accessing performance. Thus we measured both the I/O and the
KV performance of several representative nodes and construct their relationship
beforehand. Then we can fit the KV performance of the nodes through their
measured I/O performance (See Fig. 10 in the experimental part for reference).

Fig. 4. The distribution of Raft groups in ALOR.

Cold Data Migration. In ALOR, the skewed data layout is achieved through
the specially designed data migration mechanism. An important weight, i.e.,
Data Weight, is employed to control the data migration among nodes. The con-
dition of migrating some data in node A to node B can be expressed as Eq. 1,
where SA and SB are the data volume of node A and B respectively, and SM is
the size of the to-be-migrated data.

SA − SM

DataWeightA
>

SB + SM

DataWeightB
(1)

If the nodes A and B have the same data weights, Eq. 1 aims to balance the
stored data amount between them through data migration. In a heterogeneous
system, the strong nodes should have larger data weight values to undertake
more data and more requests than weak nodes. In order to reach the above
disk-filling speed setting, the data weight values of nodes can be set according
to their key-value accessing performance.

When the data volume of a node reaches a specified threshold (e.g., 95% of its
capacity), we need to migrate some cold data in this node to others, thus making
room for the new arrivals. Then the node’s data weight will be set to a very small
value (e.g., 10−6), some of its cold data will be migrated to other nodes. When
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its data volume is lower than the threshold again, the data migration of this
node is stopped, avoiding introducing too much overhead.

The advantage of the cold data migration mechanism in ALOR is to promote
the hotness of the stored data in high-performance nodes (e.g., Node 0 in Fig. 4),
whose side-effect lies in the additional overhead of data migration among nodes.
However, the overhead of migrating data is small, because sequential read and
write operations of key-value pairs are performed during the data migration
process, which are much faster than random GET/PUT operations from users.

4 Implementation and Evaluation

We implemented ALOR based on TiDB [8], one of the most widely used open
source NewSQL databases similar to Google Spanner [9]. TiDB is mainly com-
posed of three projects: TiDB (i.e., the SQL Layer), TiKV (i.e., a distributed
key-value storage system based on Raft), and the Placement Driver (PD), which
is the managing component of the cluster. PD consists of 480K LOC of Go and
TiKV consists of more than 84K LOC of Rust. TiKV has become one of the
largest open source projects in the Rust community. To implement ALOR, we
have added 200+ LOC of Rust in TiKV and 400+ LOC of Go in PD. The source
codes of our implementation of ALOR are on Github now (https://github.com/
vliulan/ALOR).

4.1 Experimental Setup

We will compare our proposed ALOR scheme with the widely used scheme which
evenly distributing (ED) all the data and leaders of Raft groups in distributed
systems. The experiments were performed in a cluster of eight physical nodes;
each of them is coupled with Linux Centos 7 3.10.0, 16 GB DRAM and a 16-GB
non-volatile memory (NVM) block device, where NVM is emulated by DRAM.
Nodes can be equipped with two kinds of Solid State Drives (SSDs), i.e., a 280 GB
version of Intel Optane 900p PCIe SSD (a.k.a, high-end SSD) or a 256 GB Intel
SATA SSD (a.k.a, plain SSD). Six of the nodes serve as TiKV node, one node
as PD, and one node runs the benchmark tool, i.e., go-YCSB [10].

Go-YCSB is a Go language version of the widely used YCSB benchmark
[11]. In the experiments, the workloads we selected include Load (insert-only),
Workload A (50:50 read/update), Workload B (95:5 read/update), and Workload
C (read-only) of YCSB. Other configurations of the workloads can be found in
the specification [12]. Each key-value pair contains a 16-B key and a 1-KB value,
and each data block has three copies in TiKV. Although the performance of the
storage devices is heterogeneous, the data capacities of all the TiKV nodes are
set to be the same (5 GB by default).

In the following experiments, we adopt the system throughput (operations
per second, i.e., ops/sec), the average latency, and the 99th percentile latency to
evaluate the system performance.

https://github.com/vliulan/ALOR
https://github.com/vliulan/ALOR
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4.2 Overall Results

In the overall experiments, among the six TiKV nodes in the cluster, one node
equips the fastest NVM block device, two node equip the high-end SSDs, and the
slowest plain SSDs are deployed in the other three nodes. We first load 10 GB
of data to fill the cluster (i.e., 30 GB data considering the replicas), and then
perform workloads A, B, and C, respectively, accessing 10 GB of data each.

As Fig. 5 plots, ALOR achieves higher throughput than ED in most cases, i.e.,
72.6% higher in Load, 61.5% higher in Workload A, and 13.7% higher in Workload
B. On average, ALOR promotes the throughput by 36.89%. Compared with the
traditional even distribution (ED) solution, which is appropriate in homogeneous
distributed systems, ALOR puts properly more data and more leaders on the
fast nodes according to nodes’ heterogeneous ability. In fact, the practical load
balance of a heterogeneous system is improved coupled with ALOR, leading to
a higher throughput.

For read operations, ALOR concentrates more leaders, which serve all the
read requests, on fast nodes. The benefit is to boost the processing of read
requests; the disadvantage lies in that when the load of fast nodes is too high,
some requests have to wait a moment. So in the read-only Workload C, the
throughput of ALOR is a bit lower than, but very close to ED.

For write operations, ALOR certainly boosts the request processing. The
reason lies in two aspects: (1) Since a leader has to log and apply the written
data before replying the user, the faster nodes can boost these actions of leaders.
(2) More than half nodes have to log the written data before replying the user,
and more data segments (leader or follower) in a Raft group have the possibility
to locate on faster nodes because of the skewed data layout in ALOR.

Fig. 5. Overall throughput results. Fig. 6. Overall write latency results.

Figures 6 and 7 exhibit the results of the average latency and the 99th percentile
latency. One average, ALOR reduces the latency by 24.54% compared with ED.
The average read latency improvement of ALOR in Workload C is slightly larger
than ED, but those of ALOR Workload A and Workload B are smaller than ED,
because reducing the write processing time leads to less waiting time of read oper-
ations in read-write mixed workloads. For both read and write operations, ALOR
reduces the tail latency, i.e., 21.32% on average compared with ED.
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Fig. 7. Overall read latency results. Fig. 8. Throughput during the data
loading process.

Figures 8 and 9 plot the changes of throughput and latency during the data
loading process. In the very beginning, three copies of data are written into
the three fast nodes first for both ALOR and ED, so the performance of the
front ALOR and ED is almost the same. Then, the performance of ALOR and
ED both decreased due to the filled cache, but ED dropped more. The overall
performance of ALOR is much higher than ED during the whole data loading
process in all the aspects of throughput, average latency, and tail latency.

4.3 KV Performance Estimation

Recall Sect. 3.2 that we estimate key-value accessing performance according to
I/O performance. The KV engine used by TiKV is RocksDB [13], a famous open
source KV engine based on LSM tree developed by Facebook. The granularity
of RocksDB writing is megabytes (e.g., 8 MB). Therefore, we first utilize fio to
measure the I/O performance of randomly writing 8-MB blocks.

We selected three typical devices: NVM block device (emulated by DRAM),
high-end SSD, and plain SSD in the measurements, and performed multiple
single-point I/O performance tests based on fio and KV performance tests based
on go-YCSB and RocksDB on the single node. Then we can build the estimated
relationship between the two factors through polynomial function fitting.

The measured I/O and KV performance results and the curve of the fitted
function are shown in Fig. 10. Taking the red box in the figure as an example, if
the disk performance measured by fio is 2 GB/s, we can estimate the nodes’ KV
performance as 22 MB/s.

4.4 Impacts of Different Heterogeneous Configurations

In this part, we will evaluate ALOR under different heterogeneous configura-
tions, including two high-end SSDs and four plain SSDs (i.e., 2H4P), one NVM
block device, two high-end SSDs and three plain SSDs (i.e., 1N2H3P), two NVM
block devices, two high-end SSDs and two plain SSDs (i.e., 2N2H2P), and three
NVM block devices, two high-end SSDs and one plain SSD (i.e., 3N2H1P). For
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Fig. 9. Latency during the data load-
ing process.

Fig. 10. Relationship between I/O and
KV performance.

different settings, we all loaded 10GB data into the cluster to measure the sys-
tem throughput, latency, and tail latency of ALOR and ED, as shown in Figs. 11
and 12, respectively.

The performance of ALOR is improved compared with ED, but the 2N2H2P
and 3N2H1P configurations’ enhancements are not as much as the other two.
The reason lies in that the heterogeneous situations in the 2N2H2P and 3N2H1P
configurations are not as significant as the other two ones.

Fig. 11. Throughput under different
heterogeneous configurations.

Fig. 12. Latency under different het-
erogeneous configurations.

4.5 Impacts of System Scale

In order to evaluate the scalability of ALOR, we performed experiments on
clusters with different counts of TiKV nodes (i.e., 4, 5, or 6 TiKV nodes). The
configuration of the 4 TiKV nodes is one high-end SSD and three plain SSDs,
that of the 5 TiKV nodes is one NVM block device, one high-end SSD, and
three plain SSDs, and the configuration of the 6 TiKV nodes is one NVM block
device, two high-end SSDs, and three plain SSDs.

For the 6 TiKV nodes, we wrote 10 GB data into the cluster; proportionally,
we wrote 8.33 GB data into the 5 TiKV nodes, and 6.67 GB data into the 4
TiKV nodes. The throughput and latency results of ALOR and ED are shown
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in Figs. 13 and 14, respectively. As the cluster’s node count increases, the per-
formance of ALOR and ED both increase. ALOR exhibits stable performance
advantage compared with ED under various system scales.

4.6 Analysis of ALOR Components

Recall Sect. 3 that ALOR has two components, i.e., the leader migration and
the skewed data layout based on cold data migration. In this part, we will eval-
uate how much the two components of ALOR contribute on the performance
improvement. Therefore, we constructed a special version of ALOR with only
the leader migration module, i.e., Leader Migration Only (LMO). The compar-
ison among ED, LMO, and ALOR can show us the performance contributions
of ALOR’s two components.

Fig. 13. Throughput under different
system scales.

Fig. 14. Latency under different sys-
tem scales.

As Figs. 15 and 16 plot, we first load (insert-only) 10 GB data to fill the
cluster, and then perform Workload C (read-only) by reading 10 GB data. The
experimental results show that the load performance of LMO is 22.85% higher
than ED and ALOR is 40.53% higher than LMO. That means within the 72.64%
throughput improvement of ALOR compared with ED, the leader migration
module contributes about 31.45% of it, while the skewed data layout contributes

Fig. 15. Throughput comparison
among ED, LMO, and ALOR.

Fig. 16. Latency comparison among
ED, LMO, and ALOR.
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about 68.55%. The average latency and the tail latency of writing are both
improved by ALOR’s two modules.

The read throughput and average latency of ED, LMO and ALOR are very
close to each other, indicating the two modules of ALOR both do not affect the
read performance much.

4.7 ALOR vs. Homogeneous Hybrid Device Solution

When both fast storage devices and slow devices are deployed in a distributed
system, an alternative solution is to distribute the fast devices evenly among
all the nodes and to construct hybrid devices, in which a fast device acts as
the cache of a slow device. In this case, although different devices are in the
system, the resources and configurations on each node are homogeneous. We
use Flashcache [14] to combine NVM block devices and plain SSDs into hybrid
devices on each node. The homogeneous hybrid device solution consumes exactly
the same resources as ALOR.

In this part, the experiments were performed on 4 TiKV nodes. Both ED and
ALOR are deployed in a cluster with one NVM device and three plain SSDs,
each of which can hold up to 5 GB data. For the Flashcache solution, it requires
four plain SSDs and 4 NVM devices. In order to guarantee the fairness, each
plain SSD for Flashcache can only store 3.75 GB data (i.e., 3*5 GB/4), and each
NVM device can hold 1.25 GB data (i.e., 5 GB/4).

We first loaded 5GB data into the cluster (i.e., 15GB including replicas),
and then performed Workload C to read 5GB data. The experimental results
are shown in Figs. 17 and 18. Although the Flashcache solution achieves higher
write performance compared with ED due to better utilization of fast devices,
the write throughput of ALOR is 28.57% higher than Flashcache. This indicates
that ALOR coupled with heterogeneous node performance configuration is more
appropriate for Raft than the homogeneous hybrid device solution.

Fig. 17. Throughput comparison
among ED, Flashcache, and ALOR.

Fig. 18. Latency comparison among
ED, Flashcache, and ALOR.
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5 Conclusion

In this section, we conclude this paper with a summary of our contributions:

(1) We found and verified that by matching the inherent heterogeneity of Raft
groups and the hardware heterogeneity of distributed key-value stores, the
system performance could be promoted.

(2) We proposed a new optimized data layout scheme called ALOR, which
achieves an appropriate layout of data and Raft leaders in a heterogeneous
distributed key-value storage system through the leader migration and the
skewed data layout mechanisms.

(3) The experiments based on a practical heterogeneous cluster indicate that
ALOR can promote the write throughput by up to 72.6% than the even
data distribution solution, while achieving similar read performance.
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Abstract. The development of next-generation sequencing (NGS) tech-
nology presents a considerable challenge for data storage. To address
this challenge, a number of compression algorithms have been devel-
oped. However, currently used algorithms fail to simultaneously achieve
high compression ratio as well as high compression speed. We propose an
algorithm STrieGD that is based on a trie index structure for improv-
ing the compression speed of FASTQ files. To reduce the size of the
trie index structure, our approach adopts a sampling strategy followed
by a filtering step using quality scores. Our experiment shows that the
compression ratio of our algorithm increased by approx. 50% over GZip,
while being nearly equal to that of DSRC. Importantly, the compression
speed of the STrieGD is 3 to 6 times faster than GZip and about 55%
faster than DSRC. Moreover, with the increase of compressors, the com-
pression ratio remains stable and the compression speed is nearly linear
scalable.

Keywords: Sampling trie · FASTQ file · Data compression

1 Introduction

Analysis of large DNA sequencing datasets is extensively applied to a wide range
of research areas, including genetic engineering, medical diagnosis, and forensic
biology [1]. Importantly, with the development of next-generation sequencing
(NGS) technology, the cost of DNA sequencing has decreased considerably. DNA
sequencing data has grown rapidly and had gotten to the petabyte scale until
2017 [2], presenting a considerable challenge for data storage, content access and
transfer [3]. Compressing DNA data is an effective way to solve these problems.

In addition, DNA data generated by mainstream high-throughput sequencing
platforms, including the SOLiD sequencer independently developed by Illumina
GA and ABI [4], are generally stored in the FASTQ format [5]. Therefore, com-
pression of FASTQ is important for computational biology. FASTQ files consist
c© IFIP International Federation for Information Processing 2018
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of records, each record has four lines as shown in Fig. 1: title line, genomic
sequence, “+” and quality scores. Genomic sequence is the nucleotide sequence
obtained by sequencing, containing only five different kinds of characters. The
character which is not identified as A, C, G and T, is expressed as the “N”.
The quality score is the probability of the character being incorrectly identi-
fied, which means that the length of Quality scores is the same as that of the
genomic sequence. In addition, the length of the title line is shorter than that
of the genomic sequence. Therefore, the genomic sequence occupies one-third
or more of the entire file, which means that compressing genomic sequence is
important for the FASTQ file.

Fig. 1. Format of the FASTQ file

Based on the FASTQ file described above, one can draw a conclusion that
compressing four parts of FASTQ data can naturally be processed (almost) inde-
pendently. Great efforts have been put towards improving compression of gene
data with FASTQ format. However, currently used algorithms fail to simulta-
neously achieve a high compression ratio as well as high compression speed.
General compression algorithms do not consider the feature of the FASTQ file,
causing a low compression ratio. However, special compression algorithms add
judging operations to achieve a high compression ratio, causing a low compres-
sion speed. Here, we propose an algorithm STrieGD that is based on trie index
structure for improving the compression speed. To reduce the size of the trie
index structure, our approach adopts a sampling strategy followed by a filtering
step using quality scores, simultaneously aiming at high compression ratio and
high compression speed.

The following sections: Sect. 2 describes the related works in compression
algorithms. Section 3 describes our algorithms. Section 4 describes the details
about the implementation of the distributed compression system. Section 5
presents the evaluation we conducted in the distributed compression system.
The last chapter summarizes the paper.

2 Related Research

Genomic sequence occupies one-third or more of FASTQ file. It is redundancy,
which dues to the simple structure, great depth of sequencing and large simi-
larity between the same species [6]. How to take full advantage of the peculiar
redundancy of genomic sequence is the key to improve compression ratio and
compression speed. In recent years, scholars had done in-depth research on the
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characteristics of genes data and proposed various compression algorithms for
the FASTQ file.

G-SQZ algorithm [7] constructs the unit <bases, Quality scores> and adopts
the Huffman algorithm to compress. G-SQZ is too simple. The compression ratio
and speed are only slightly better than GZip.

The DSRC algorithm [8] moves the character “N” to the quality stream and
uses the LZ algorithm [9] to compress the remainder. For the quality scores, the
DSRC algorithm records the place of “#” that means the character “N” appears
in the genomic sequence and uses RLE algorithm to compress the characters
that are repeated with a continuously high rate. However, it achieves a high
compression ratio but low compression speed.

KungFQ [10] stores a single bit flag and up to three base calls or a run length
for repetitions longer than four bases. The bit flag is necessary to discriminate
between these two cases. The quality scores are directly compressed with RLE
[11]. This method achieves a high compression ratio, but low compression speed.
Moreover, KungFQ wastes space on encoding “N”.

LFQC algorithm [2] splits the sequences into non-overlapping l −mers with
an empirically decided l − value and counts the frequency of distinct quality
scores in each l − mer. Assume that the quality score qi has a frequency of fi
in l − mer. LFQC picks the quality score qi with the largest frequency fi in
Lj∀j . Lj goes to the qthj bucket. l − mers where none of the symbols showed a
majority of occurrences go to a special bucket called generic bucket BG. The file
is also compressed using Huffman Encoding. The encoding method of genomic
sequence is similar to that of the quality score. LFQC is able to achieve a high
compression ratio. However, the process of separating buckets slows down the
overall compression speed.

Using GZip as a benchmark (compression ratio and compression speed are
all set to 1), the compression ratio and compression speed of various compression
algorithms are shown in Fig. 2. We found that the compression speed is inversely
proportional to compression ratio, which means that to further improve the
compression ratio requires more CPU time and memory space. Therefore, it is
important to maintain a balance between compression ratio and compression
speed in the compressing process.

Fig. 2. Comparison of FASTQ file compression algorithms
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3 A Trie Index Structure Based Compression Algorithm

Fragments of genomic sequence are highly repeatable in a FASTQ file. How to
fully replace repeatable fragments is the key to improve the effect of compression.
The most ideal method is to store the repeatable fragment only once. Therefore,
we need an index structure to index the repeatable fragments. The index struc-
ture is better to support to quickly query and insert data. However, all of the
existing algorithms adopted hash table to index data, which needs to traverse all
strings before searching. Therefore, to improve the compression speed, we adopt
a trie structure to index strings.

3.1 Trie Index Structure

Trie is a tree structure, which only saves the same prefix once. The first step of
compressing involves searching a fixed-length sub-string in the trie index struc-
ture. If the same fragment is found, the position and length of the matching
fragment are recorded. Otherwise, the sub-string will be added into the trie
index structure. Query and insert contribute most of the overhead among all the
operations. Although the time complexity of the hash table and trie both are
O(n), only a trie is able to avoid the collision and support partial matching, thus
reducing unnecessary string comparing.

Trie index structure is able to achieve partial matching, which is different
from the hash table. If we search string “TCCTA” in the trie shown in Fig. 3, we
will obtain the best matching sub-string with the length of four. This matching
process reduces the unnecessary character comparison by trie index structure. If
we search string “TTACG” in the same trie shown in Fig. 3, we will fail to match
the best sub-string on the third character “A” of the string. It is not necessary
to match the other characters, which is helpful to query efficiently.

Fig. 3. Trie constructed by the string “GGGTTTTCCTGAAA” with the sub-string’s
length 5.

Trie is a typical space-time trade-off data structure, which means trie have
to consume more memory to achieve efficient query. As the scale of data grows,



STrieGD: A Sampling Trie Indexed Compression Algorithm 31

if the hardware cannot provide enough memory, a query will be less efficient
as data will exchange frequently between memory and disk. If the trie index
structure only occupies limited memory, the subsequent string will not be added
to the index structure, thus decreasing the successful matching rate. In order
to reduce excessive memory occupied by the trie, we propose two optimization
strategies.

3.2 Optimization of Trie Tree

In order to describe the characteristics of the genomic sequence, we propose
two concepts: String coverage calculated by formulas (1), SubString coverage
calculated by formulas (2), shown in Fig. 4. As the length of the string grows,
the SubString coverage drops from 50% to 27% and the String coverage increases
to 82%, indicating that the repeated substring is relatively concentrated.

Fig. 4. String coverage and substring coverage.

Mlength indicates the number of substring types whose length is length, NMi

indicates the number of substrings Mi, Sum (Mlength) indicates the number of
substrings that are generated in length, Coverstr indicates the coverage of the
string and CoverSubStr indicates the coverage of the substring.

CoverSubStr =
∑Mlength

i=1 a

Mlength
, NMi

>
sum(Mlength)

Mlength
(1)

CoverStr =
∑Mlength

i=1 NMi

sum(Mlength)
, NMi

>
sum(Mlength)

Mlength
(2)

Therefore, it is not necessary to store all the strings to obtain a higher com-
pression ratio in the trie. However, how to choose the right string to save and
how many strings to save are problems.

Sampling. Sampling is mainly used to reduce the scale of referenced objects
to a certain size that is covered by the processing system. We still take the
string in Fig. 3 as an example. Several strings are inserted into the trie structure
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when the sampling rate is 1/3. Figure 5(a) shows substrings and Fig. 5(b) shows
the trie. The occupied space greatly reduces. However, the sampling rate has
a great influence on matching. If the sampling rate is too high, the problem
of excessive memory space will still exist. If the sampling rate is too low, the
matching will often fail, causing the compression ratio to decrease. Therefore,
when we select the sampling rate, we need to consider occupied memory space
and the compression ratio.

The trie is a perfect structure for a partial matching. For the Trie struc-
ture in Fig. 5, we obtain the best matching sub-string with the length of 4 to
compress the string of “TCCTA”. This matching reduces unnecessary character
comparisons as much as possible and achieves efficiently query.

Fig. 5. String coverage and substring coverage.

However, not all substrings are inserted into the trie structure, causing a
problem in the matching process. For the string “GTTTT”, the matching length
is one (matching to the insert string one) and the matching length is too short. If
we ignore the first character “G” and starts to match from the second character
“T”, we will obtain a matching length of four (matching to the insert string 2).
In the actual process, the normal matching will be done first. If the substring
is not completely matched, the first character will be ignored. Then compare
the two ways and select a longer matching length. This process is called “lazy
match”.

Filtering by Quality Scores. The quality score is the probability of the base
being incorrectly identified. It is known that if a sequence’s quality score is too
low, it indicates that the accuracy of the sequence obtained by sequencing is low,
meaning that the sequence is next to impossible to be matched in the future.
Therefore, the quality score is used to decide whether the string deserves to
be inserted into the trie index structure. Strings with low quality score will be
filtered out, which ensures high speed.
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4 Implementation of Distributed Compression System

4.1 Compression of Quality Portion and Identification Portion

Each identification field of the record is highly similar. Therefore, we divide the
identification field into four fields according to the feature of each field.

1. The data remains unchanged in different record. (Field 1)
2. Integer values vary monotonically over consecutive records. (Field 2)
3. Integer values vary in a certain range. (Field 3)
4. The data does not belong to any of the above-mentioned types. (Field 4)

StrieGD stores Field 1 only once and uses RLE algorithm to encode Field
2. In addition, StrieGD stores Field2 with a minimum of bits and stores Field 4
without compressing.

4.2 Compression of Quality Portion

Since the quality scores range from 33 to 126, it is possible to restore the char-
acter of “N” according to its Quality scores during the decompression process.
Therefore, we add the score 128 representing “N” of sequence portion to the
quality scores, achieving to delete the character of“N” from sequence portion.
Although the length of the quality scores is equal to that of the sequence portion,
quality scores contain much more variety of characters than sequence portion,
causing that to improve the compression performance of the quality score is
more difficult. Therefore, we did not take much effort to improve the compres-
sion performance of the quality score. Our STrieGD adopts the RLE algorithm
to encode characters with high repeatable and Huffman algorithm to encode
others. STrieGD stores a single bit flag to discriminate between these two cases.

4.3 Implementation of Distributed Compression System

It is impractical to support compressing a large volume of DNA files for a single
server. To compress large-scale genetic data, we designed and implemented a
distributed compression system, Dic-DNA. Dic-DNA includes client, server and
compressor shown in Fig. 6.

Fig. 6. String coverage and substring coverage.
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In the distributed system, the client asks to write (compress), read (decom-
press), search, and delete genomic sequence. In addition, the client will send the
genomic sequence to the server if the server allows the client to write.

The server plays a bridge role, connecting the client and the Compressor and
maintains a request queue to receive requests. The server extracts the request
from the queue and selects the appropriate processing according to the type of
request. In addition, requests of compression and decompression are forwarded to
the compressed node. The server maintains a file-block map that stores file-block
mapping information, including block offsets, target compression nodes and other
useful information. The server make it possible to compress and decompress the
same file in different clients.

The compressor compresses and decompresses the files. Each compressor
employs individual block-location to map information, thus the distributed sys-
tem is more scalable.

5 Evaluation

The distributed system includes eight clients, four servers and eight compressors.
Each node runs on 64-bit CentOS 6.3 operating system with 16-core 2.00 GHz
Intel(R) Xeon(R) CPU and memory 16 G. The test data is from the NCBI, ENA
and other sites. The size of files ranges from 3 GB to 15 GB and the length of
each sequence is between 45 and 120.

5.1 Performance of Compressing Single FASTQ File

In order to verify whether our optimization strategy is effective, we evaluated
the compression speed and compression ratio in different sampling rates and
different thresholds of quality scores.

Firstly, Fig. 7 shows compression speed and compression ratio at different
sampling rates. The compression ratio is the highest when the sampling rate is
1. However, the compression speed is very slow, only 1 MB/s or so, due to that
the size of the trie structure is quite large. With the decrease of the sampling rate,
the compression ratio gradually decreases but without great fluctuation, because
the repeated fragments are relatively concentrated. In addition, with the decrease
of the sampling rate, the compression speed increases. When the sampling rate
is 1/8, the compression speed reaches the maximum value. As the sampling rate
further decreases, both the compression speed and the compression ratio begin to
decrease quickly. The lower sampling rate, the more sub-string adopts Huffman
encoding, affecting the compression speed and compression ratio. Therefore, the
data shows that our sampling strategy considerably improves the compression
speed and simultaneously obtain a high compression ratio.

Secondly, we evaluated compression speed and compression ratio at different
threshold values shown in Fig. 8. Only the sequence, whose the average value
of quality scores reaches the threshold, was inserted into the Trie. With the
increase of the threshold, the compression speed increases, because a number of
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strings with the lower quality score than the threshold are filtered out. When
the threshold value is 62, the compression speed reaches the maximum. As the
threshold further increase, less and less strings are inserted into the trie structure,
causing that many strings are encoded with Huffman and compression speed and
compression ratio decrease. Therefore, the data shows that our filter strategy
considerably improves the compression speed and simultaneously obtain a high
compression ratio.

Fig. 7. Effects of different sampling rates trie index structure for compression speed
and compression ratio.

Fig. 8. Trie indexing structures of different effects on the quality scores threshold speed
and compression ratio values.

Moreover, in order to compare our STrieGD with other compression algo-
rithms, we evaluated the compression speed and compression ratio of four algo-
rithms: GZip, Bzip2, DSRC and STrieGD. The compression speeds and com-
pression ratios of two files (SRR608881 and ERR217195) are respectively shown
in Figs. 9 and 10.

Compared to other compression algorithms, the compression speeds of both
test files in STrieGD are the highest and reach 40 MB/s or more shown in Fig. 9.
However, the compression speeds of two general algorithms (GZip, Bzip2) are
both below 10 MB/s and the compression speeds of the DSRC algorithm are
below 30 MB/s. Therefore, our STrieGD achieves a high compression speed. In
addition, we found that the compression speed fluctuates greatly in different
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files, due to that the levels of file redundancy are different. Moreover, we found
that the compression ratio of our STrieGD is 50% higher than that of GZip,
18% higher than that of Bzip2 and nearly equal to that of DSRC shown in
Fig. 10. Therefore, our STrieGD is able to achieve high compression speed and
high compression ratio.

Fig. 9. FASTQ file compression speed comparison stand-alone case.

Fig. 10. FASTQ file compression ratio vs. stand-alone case.

5.2 Performance of System

In order to test the scalability of our STrieGD, we evaluated the compression
speed and compression ratio at 1–8 different compressors. The testing environ-
ment includes eight clients, four servers with four threads. As shown in Fig. 11,
with the number of compressors increases, the compression ratio linearly grows
and the compression ratio is stable, which shows that the distributed system has
a good scalability.

Moreover, we test the bandwidth of the system with the number of com-
pressors from one to eight. As shown in Fig. 12, the system bandwidth is about
200 MB/s when the compressed node is 1, because the system spent many sources
in compressing, causing the actual disk write rate in the compressor is much lower
than the rate of data received. With the number of node increasing, the system’s
bandwidth linearly grows. Therefore, our data shows that our STrieGD is highly
scalable.
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Fig. 11. FASTQ file compression ratio vs. stand-alone case.

Fig. 12. FASTQ file compression ratio vs. stand-alone case.

6 Conclusions

The advance of NGS produces huge volume of data, presenting a big challenge
for gene data storage. To address this challenge, we proposed a sampling trie
indexed compression algorithm to compress FASTQ files. It adopts tried indexed
structure to accelerate compression speed, and employ a sampling strategy to
reduce the size of tried index structure to support large scale gene data. Through
evaluation on our distributed compression system, the results show that STrieGD
is able to gain a high compression ratio as well as the highest compression speed
compared with other related works. With its features of high compression speed
and high compression ratio, STrieGD is able to be used on the filed of online
processing for gene data.
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Abstract. Nowadays, a large number of accelerators are proposed to
increase the performance of AI applications, making it a big challenge
to enhance existing AI programming frameworks to support these new
accelerators. In this paper, we select TensorFlow to demonstrate how
to port the AI programming framework to new hardwares, i.e., FPGA
and Sunway TaihuLight here. FPGA and Sunway TaihuLight represent
two distinct and significant hardware architectures for considering the
retargeting process. We introduce our retargeting processes and experi-
ences for these two platforms, from the source codes to the compilation
processes. We compare the two retargeting approaches and demonstrate
some preliminary experimental results.

Keywords: Retarget · AI programming framework · FPGA · Sunway

1 Introduction

In recent years, AI has moved from research labs to production, due to the
encouraging results when applying it in a variety of applications, such as speech
recognition and computer vision. As the widespread deployment of AI algo-
rithms, a number of AI processors [1,2] and FPGA accelerators [3,4] are pro-
posed to accelerate AI applications meanwhile reducing power consumption,
including DianNao [1], EIE [2], ESE [4], etc. Therefore, it is a significant issue
for retargeting AI programming frameworks to different hardware platforms.

Some popular AI programming frameworks, e.g., TensorFlow/MXNet, have
enhanced the fundamental infrastructure for retargetability using compiler tech-
nologies. In particular, TensorFlow introduces XLA [5] to make it relatively easy
to write a new backend for novel hardwares. It translates computation graphs
into an IR called “HLO IR”, then applies high-level target-independent opti-
mizations, and generates optimized HLO IR. Finally, the optimized HLO IR
is compiled into a compiler IR, i.e., LLVM IR, which is further translated to
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machine instructions of various architectures using the compiler of the platform.
Similarly, MXNet introduces NNVM compiler as an end-to-end compiler [6].

The evolving compiler approach significantly enhances the retargetability of
AI programming frameworks. However, it still has a number of challenges. First,
the non-compiler version is of the essence since it guarantees performance via
directly invoking underlying high performance libraries. Therefore, maintain-
ing the TensorFlow non-XLA and MXNET non-NNVM versions are necessary
when retargeting the frameworks to a new platform. Second, the existing com-
piler approaches rely on LLVM backend of the AI processors, since the final
binary code generation is implemented by the backend compiler. But for emerg-
ing AI processors especially designed for inference, vendors typically provide only
library APIs without compiler toolchains. Therefore, it requires us to consider
retargetability of non-compiler approaches for AI programming frameworks.

In this paper, we select one representative AI programming framework, Ten-
sorFlow, to present our experience of retargeting it to FPGA and Sunway Tai-
huLight. For FPGA, the architecture is the X86 CPU equipped with FPGA as
an accelerator, thus we discuss how to add a new accelerator in TensorFlow.
Meanwhile, we also design a set of software APIs for controlling FPGA in high-
level C/C++ languages. For Sunway TaihuLight, the processor is a many-core
architecture which has 260 heterogeneous cores. All these cores are divided into 4
core groups (CG), with each CG including a big core and 64 little cores. Sunway
can be regarded as a chip integrating CPUs (big cores) and accelerators (lit-
tle cores), thus we discuss how to change the CPU type in TensorFlow. In this
paper, we respectively discuss how to retarget TensorFlow to these two distinct
architectures, and present some preliminary experimental results on FPGA and
Sunway TaihuLight. We wish this paper can be helpful for programming frame-
work developers to retarget TensorFlow to other newly designed hardwares.

The rest of this paper is organized as follows: Sects. 2 and 3 discuss how to
retarget TensorFlow to FPGA and Sunway TaihuLight respectively. Section 4
demonstrates experimental results. Section 5 discusses differences of retargeting
to FPGA and Sunway. Section 6 discusses the related work. Section 7 concludes.

2 Retargeting TensorFlow to FPGA

2.1 FPGA Execution Model

A representative approach to utilizing FPGA is Amazon EC2 F1 [3], which is a
compute instance with FPGA that users can program to create custom acceler-
ators for their applications. The user-designed FPGA can further be registered
as an Amazon FPGA Image (AFI), and be deployed to an F1 instance.

We also follow the design rule for leveraging FPGA in AI programming frame-
works. In particular, we create an abstract execution model for FPGA, and pro-
vide a set of APIs for the developers to register an FPGA into the system. In
this paper, we use the naive first-in-first-out policy (FIFO) to model the FPGA
execution, shown in Fig. 1a. Furthermore, the task execution on our FPGA is
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(a) Execution model of FPGA. (b) APIs of FPGA.

Fig. 1. Abstract execution model and APIs of target FPGA accelerators.

non-preemptive. Our current execution model is similar with GPU kernel execu-
tion (without streams). Certainly designers can create different execution models
for FPGA, and TensorFlow runtime shall be adjusted correspondingly.

2.2 FPGA APIs and Implementation

Furthermore, we also provide a set of abstract APIs for accessing FPGA accel-
erators. The abstract APIs are designed to be standard C functions and data
structures, as shown in the top part of Fig. 1b. The APIs are:

– FPGA InitConfig. FPGA resource initialization and configuration.
– FPGA Malloc/Free. FPGA memory management.
– FPGA CopyBufH2D. Copy data from host to device, using DMA.
– FPGA CopyBufD2H. Copy data from device to host, using DMA.
– FPGA TaskDesc t. Data structure for FPGA task description.
– FPGA CommitTask. Commit a task to FPGA.

The APIs are implemented in the operating system (middle part of Fig. 1b)
and user-space libraries (top part of Fig. 1b) coordinately. User-space libraries
encapsulate the FPGA accelerators into APIs, based on interfaces provided by
the FPGA driver framework. The FPGA driver framework interacts with FPGA
hardware via PCIe bus, and consists of four functional components: “PCIe
Driver” for handling PCIe device registration and interrupts, “DMA Configure”
for DMA memory transfer requests, “Software Task Queue” for FIFO execu-
tion model and“FPGA Monitor & Management” for monitoring and managing
FPGA devices, such as querying FPGA states and task status.

2.3 TensorFlow Architecture for Supporting Retargetability

Figure 2a illustrates how TensorFlow executes user-defined dataflow graphs.
When the session manager receives a message of session.run(), it starts the
“computational graph optimization and execution” module, which automati-
cally partitions the dataflow graph into a set of subgraphs, and then assigns the
subgraphs to a set of worker nodes.
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(a) TensorFlow dataflow graph execution. (b) Architecture of TensorFlow [7].

Fig. 2. TensorFlow architecture and its execution of user-defined dataflow graphs.

The execution of subgraphs is managed by “dataflow executor”, which is
local to one worker node where the subgraphs are assigned to. The dataflow
executor schedules operations in subgraphs to the underlying devices. Dataflow
executor prepares the input and output data for each kernel invocation, launches
the specific kernel via device executor (e.g. CPU/GPU Executor in Fig. 2a).

Figure 2b further depicts the overall architecture of TensorFlow framework.
The modules related to retargeting are: “Device Layer”, “Dataflow Executor”
and “Kernel Implementation”. “Device Layer” aims to provide proper abstrac-
tion of FPGA resources and launching FPGA tasks. “Dataflow Executor” should
be aware of the FPGA devices and be able to assign operations to them, and
“Kernel Implementation” is the fundamental operation kernels on the FPGA.

2.4 Supporting FPGA in TensorFlow

Step 1. FPGA Device Abstraction. First, we add the FPGA device into the
device layer. Two important issues are addressed here:

Memory Management: FPGA accelerators are commonly equipped with
DDR memory to hold input/output features and/or weights. This memory is
treated as a memory pool in our work and C-style memory management scheme
is provided. Thus, four critical routines: memcpyDeviceToHost, memcpyHost-
ToDevice, malloc, and free are implemented using APIs provided in Sect. 2.2.

Execution Model: Execution model determines how TensorFlow runtime inter-
acts with underlying devices and must match the nature of corresponding
devices. The abstracted FPGA in this paper is a synchronous FIFO device.
An FPGA executor is implemented using APIs defined in Sect. 2.2.

Step 2. FPGA Device Runtime. Second, runtime support for the new FPGA
device will be implemented, including the kernel launching and high level mem-
ory management wrapper.
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Kernel Launching. In TensorFlow, the dataflow executor assigns operations to
specific device by invoking the Compute method of corresponding device, which
is set to launch the Compute function of the given kernel.

High-Level Memory Management Wrapper. The device abstraction pro-
vides low-level C-style memory management API. And TensorFlow runtime
requires high-level APIs to deal with tensor data. In particular, a ‘best-fit
with coalescing’ memory allocator, FPGABFCAllocator, is provided to serve
the tensor data allocation/free of TensorFlow runtime. Furthermore, two high-
level APIs, CopyCPUTensorToDevice and CopyDeviceTensorToCPU, are imple-
mented to manipulate tensor data, instead of raw data.

Besides, a factory class, namely “FPGADeviceFactory” is provided to create
and instantiate instances of “FPGADevice”.

Fig. 3. An example of implementing an operation in TensorFlow.

Step 3. FPGA Kernel Implementation. Figure 3 shows an example operation in
TensorFlow, where the Compute function takes the input tensor parameters, the
target device, and the context. All the input parameters are encapsulated into
the data structure of OpKernelContext.

When defining an operation, its specific implementation on a device is called
a kernel, which is typically implemented as libraries. For example, most CPU
kernels are implemented via Eigen libraries [8], and most GPU kernels are
implemented via CUBLAS or CUDNN libraries. Therefore, when we intro-
duce FPGA for acceleration, we first define the implementation of operations
on FPGA, which translates to function calls to FPGA CommitTask defined
in FPGA APIs. After implementing an operation on a new device, we should
register the new implementation into TensorFlow, using the REGISTER OP and
REGISTER KERNEL BUILDER.
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Figure 3 shows an example for registering a new operation ZeroOut, which
has two input tensor parameters a and b, and generates one output tensor c.
We specify these information in REGISTER OP and implement the operation in
OpKernel. Finally, REGISTER KERNEL BUILDER is used for registering the kernel.

3 Retargeting TensorFlow to Sunway

In this section, we first briefly introduce the architecture of Sunway processor,
and then present our retargeting process.

3.1 Sunway Architecture

Sunway 26010 processor [9] is composed of 4 core groups (CGs) connected via
an NoC. Each CG includes a Management Processing Element (MPE) and 64
Computing Processing Elements (CPEs) arranged in an 8 by 8 grid. MPE and
CPE cluster in one CG share same memory space. All the MPEs and CPEs run
at the frequency of 1.45 GHz.

On the software side, Sunway uses a customized 64-bit Linux with a set of
compilation tools, including native C/C++ compiler and cross compiler.

Aiming at Sunway processor, we regard MPEs as CPUs and leverage CPEs
for acceleration. However, the MPEs and CPEs share same memory space, mak-
ing it pointless to transfer data between them. Thus, we firstly retarget the
TensorFlow framework which runs on CPUs to the Sunway MPEs, and then
CPEs for acceleration in the retargeted TensorFlow.

3.2 Compiling TensorFlow for Sunway MPEs

We have two ways to compile TensorFlow for Sunway. The first is to use the
native compiler of Sunway nodes by submitting compilation process as a job
for Sunway. The second is to cross-compiler TensorFlow on an X86 server. We
select cross-complication, since the native compiler is too restricted to compile
the large-scale complex TensorFlow source codes. We met a series of obstacles
during the retargeting process, and we discuss them here for providing some
experience of porting a large scale software package to Sunway TaihuLight.

Static Linked Library. First, Sunway TaihuLight does not support dynamic
linked library when CPEs are expected to be used. Therefore, we choose to
cross-compile TensorFlow into a static linked library, i.e., libtensorflow.a.

The Bazel Compilation Tool. TensorFlow is configured to use Bazel as its default
compilation tool, which can generate dynamic linked library, but does not work
well for generating static linked library. Meanwhile, a number of unexpected
problems raised when using the cross compiler swgcc in Bazel. Therefore, we
switch to use Makefile as our compilation tool.

The Python Support. TensorFlow is tightly coupled with the language of Python,
which is not supported on Sunway TaihuLight. A number of modules utilize
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Python-based tools, such as tf.train and tf.timeline. Therefore, we decouple these
modules from the TensorFlow framework. As a result, our retargeted TensorFlow
on Sunway TaihuLight only supports C++ programming interface, without sup-
port for the Python binding.

Processing Protobuf. The Protobuf tool protoc is used both during the compila-
tion of TensorFlow (on X86 platform), and during the execution of TensorFlow
(on Sunway TaihuLight platform). For such purpose, protoc is required to be
compiled on x86 platform using X86 native gcc and cross compiler swgcc.

Two-Phase Compilation. The compilation of TensorFlow is a two-phase compi-
lation. In the first phase, the X86 gcc compiler is used to generate some tools
for X86 platform, e.g., the X86 protoc, which reads the *.pb files in TensorFlow
source code and generates the corresponding C++ files. In the second phase, the
cross compiler swgcc is used to generate the final libtensorflow.a. During this
phase, all dependent libraries should be switched to the static linked versions,
e.g., protobuf, libstdc++, libm, etc.

After TensorFlow is cross-compiled successfully, it can run on the MPEs of
Sunway TaihuLight. Since Python module like tf.train is disabled, the ported
TensorFlow does not support training.

Now we have had a baseline TensorFlow which completely runs on the MPEs
of Sunway. The operations can be implemented following steps in Sect. 2.4. Next
we add CPEs for acceleration. Specially, MPEs are responsible for graph creation
and optimization, together with task creation and scheduling. Meanwhile CPEs
can execute the computation-intensive kernels, e.g. convolutions.

3.3 Using CPEs for Acceleration

We have two approaches for using CPEs. First, we can force the CPU kernel
implementation to invoke CPE libraries, which means MPEs and CPEs are con-
sidered together as one device. Alternatively, we can consider CPEs as individual
accelerators, similar with GPUs and FPGAs. In this paper, we select first app-
roach as the second approach has been discussed in Sect. 2.

To use CPEs in an operation, consider the steps described in Fig. 3. Take
matmul for example, the original implementation will use Eigen as the math
library in Compute part. We will change the math library from Eigen to
SWCBLAS library, i.e. from Eigen call MatMul<CPUDevice> to sgemm/dgemm
call in SWCBLAS. As SWDNN library is being developed, we only use
SWCBLAS for implementing the operations in this work. When SWDNN is
released, we can use the same approach to change the library from SWCBLAS
to SWDNN.

4 Evaluation

We select four DNN models, i.e., Cifarnet [10], Lenet [11], Inception-V3 [12] and
Resnet-50 [13], to evaluate our retargeted TensorFlow on FPGA and Sunway
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TaihuLight. The trained models are obtained from TensorFlow model zoo. We
only focus on inference phase. Our experimental results demonstrate that our
retargeted TensorFlow can run correctly on FPGA and Sunway platforms.

The functionality of retargeted TensorFlow relies on underlying operation
kernels. For the aforementioned four DNN models, CPU and Sunway MPE sup-
port all seven main operations: Conv2D, BiasAdd, Pooling, Relu, Softmax, Mat-
mul, FusedBatchNorm. Our FPGA doesn’t implement FusedBatchNorm, which
means it can’t support Inception-V3 and Restnet-50. Sunway CPE supports only
Conv2D, Softmax and Matmul. Other operations can be easily supported once
SWDNN is deployed.

Fig. 4. Evaluated hardware of target FPGA accelerator.

4.1 Hardware Platforms

FPGA Implementation: We implement a custom PCIe-attached acceleration
card based on a Xilinx Virtex-7 690T FPGA chip as shown in Fig. 4. The card
communicates with host CPU via the standard PCIe Gen 3 × 8 interconnect.
We leverage dual off-chip DDR3-1600 SODIMMs with total capacity of 8 GB as
device memory. Xilinx Vivado 2016.4 toolset is used and the synthesized core
accelerator logic and DMA engine operate at the frequency as high as 200 MHz.

Figure 4 further illustrates the design of our FPGA accelerator. For details,
we implement a unified hardware template of DNN accelerator with a config-
urable number of processing elements (PEs) for per layer specific operations, like
convolution and full-connection. The processing element is composed of a 1-D
array of multiply-and-accumulation (MACC) units, loop tiling and unrolling are
leveraged to partition computation into specific PEs. An on-chip buffer is also
implemented to hold tiled input feature map. To reduce the external memory
bandwidth, temporary results are pushed into the PE buffer. Data movements
between PE array and on-chip buffer is elaborately controlled by the PE con-
troller according to the loop unrolling and tiling strategies.

Sunway TaihuLight: The Sunway TaihuLight is described in Sect. 3, and we
use one node for evaluation. As we focus on the inference, the number of nodes
does not matter.
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Baseline Platforms: For comparison, we also run these models on a CPU
and nVIDIA GPU. In particular, the CPU is Intel Xeon E5-2620 which runs
at 2.0 GHz and has a main memory of 32 GB. The nVIDIA GPU is Tesla K40c
which has the frequency of 745 MHz, and the global memory is 12 GB.

4.2 Results on FPGA Platform

With our retargeted TensorFlow, programmers can use the “with tf.device
(“fgpa:0”)” statements to use the FPGA, with no modifications in their source
codes.

Figure 5 shows the overall execution time (data transfer time included) of
Cifarnet and Lenet on FPGA, CPU and GPU. In this paper, we focus on retar-
geting process, thus the underlying FPGA implementation is not optimized.

Fig. 5. Overall execution time of Cifarnet and Lenet on FPGA, CPU and GPU.

Fig. 6. The overall execution time on Sunway MPE, CPU and GPU.

4.3 Results on Sunway TaihuLight Platform

As we treat Sunway MPE and CPEs as a CPU, the source codes needs no
modification and the models can be directly executed on the ported TensorFlow.

Figure 6 shows the overall execution time when using only MPE, in compar-
ison with CPU and GPU. Note that the vertical axis is in log scale. Besides,
we use only one core of Sunway and CPU, frequency of which are 1.45 GHz and
2.0GHz respectively. Therefore, Sunway MPE performs worse than CPU.
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Fig. 7. Performance of convolution with 3 × 3 filter size.

Figure 7 demonstrates the execution time of one convolution operation (with
the filter size of 3 × 3) on Sunway MPEs and CPEs, in comparison with CPU.
We don’t evaluate the overall execution as some operations are not supported
on CPEs. The horizontal axis marks different scales of input feature sizes and
input/output channel numbers, e.g. 224 ∗ 224 ∗ (3− 16) means input feature size
is 224 ∗ 224 while input channel is 3 and output channel is 16. The vertical axis
is execution time in log scale. The results show that CPEs can obtain signifi-
cant performance improvement, up to 45 times than MPE. Furthermore, in our
experiments, only one core group is leveraged (the reason is that the SWCBLAS
interface is designed for one core group). The performance is expected to be
improved when all core groups are utilized and SWDNN is released.

5 Discussion and Future Work

We have discussed two types of TensorFlow retargeting processes, i.e., FPGA
and Sunway TaihuLight. In particular, FPGA represents the approach of intro-
ducing a new accelerator into TensorFlow while Sunway TaihuLight represents
the approach of changing the CPU architecture in TensorFlow.

Retargeting to a New AI Accelerator. Most of emerging AI processors will
be deployed as accelerators. Thus, our experience of retargeting to FPGA can
apply for such scenarios. The modification for the device layer is the same with
the process for FPGA. The runtime support shall be designed by vendors of AI
processors, in corresponding to their execution model. Furthermore, amount of
work is needed for implementing hundreds of operation kernels. Even if most AI
processors will provide machine learning libraries, porting these operation kernels
are still time-consuming. We will further explore automatic kernel generation.

Exploiting the Computation Ability of Sunway TaihuLight. Sunway
TaihuLight exhibits performance potential for machine learning, e.g., some pre-
liminary work on SWDNN [14] has been released. To enable more machine learn-
ing programs, especially model training, to run on Sunway TaihuLight, a more
robust TensorFlow is necessary. Thus, we will further consider following issues,
i.e., Bazel compilation tool, Python support, and stable SWDNN library.
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Data Layout Issue. Moreover, the data layout is a significant issue for the
framework developers. For example, TensorFlow stores the tensor with the
default format of NHWC. But NCHW is the default format for GPU libraries,
e.g. cudnn [15], making it the framework’s burden to transform between them.
Sunway TaihuLight has not finally determined its data layout in SWDNN. When
TensorFlow is retargeted to a new platform, data format shall be designed by
taking hardware and/or library into consideration.

6 Related Work

In recent years, AI has drawn many interest from both researchers and industry,
especially DNNs (Deep Neural Networks [12,13,16,17]). Despite the enormous
advance in AI algorithms, researchers have also done extensive work to meet the
performance/energy/programming requirements of DNN applications.

First, from the aspect of software, a huge number of software tools are pro-
posed to enable flexible programming of DNN applications, such as Tensor-
Flow [18], Caffe [19], and MXNet [20]. All these tools support general purpose
CPU and high performance nVIDIA GPU, both of which have mature compiler
toolchains [21] and highly optimized libraries [15].

Second, from the aspect of hardware, a series of domain specific acceler-
ators [1,2,22,23] are explored. DianNao [1] leverages loop tiling to efficiently
reuse data and supports both DNNs and CNNs. EIE [2] focus on inference for
compressed DNN models. Furthermore, researchers also explore FPGA as accel-
erators [4,24,25] for DNN applications. And to the best of our knowledge, all
these accelerators lack mature compiler toolchains, for example, a C compiler.

At last, it is becoming a big challenge to utilize these diverse hardware
accelerators in software tools. TensorFlow proposes XLA [5], which leverages
compiler technology to transform high-level dataflow graph to compiler inter-
mediate representation, i.e. LLVM IR, relies on hardware-specific backend to
generate binary code, e.g., NVPTX for nVIDIA GPU. Similarly, MXNET intro-
duces NNVM [6], which also makes use of compiler backend. However, these
compiler-based approaches require a mature compiler backend, which is rarely
seen in AI processors. Thus, this work explores non-compiler approach of retar-
geting software frameworks to diverse AI hardwares. Besides, [26] proposes a NN
compiler to transform a trained NN model to an equivalent network that can
run on specific hardwares, which sheds some light on automatic retargeting of
AI frameworks.

7 Conclusion

We have presented our experience of retargeting TensorFlow to different hard-
wares, e.g. FPGA and Sunway, together with some preliminary evaluation results
using popular DNN models. We have investigated the differences between FPGA
and Sunway with respect to retargeting.



50 J. Zhao et al.

Acknowledgments. This work is supported in part by the National Key R&D Pro-
gram of China (2016YFB1000402), the National Natural Science Foundation of China
(61802368, 61521092, 61432016, 61432018, 61332009, 61702485). The authors would
like to thank all the anonymous reviewers for their valuable comments and helpful
suggestions.

References

1. Chen, T., et al.: DianNao: a small-footprint high-throughput accelerator for ubiq-
uitous machine-learning. In: ASPLOS 2014, NY, USA. ACM, New York (2014)

2. Han, S., et al.: EIE: efficient inference engine on compressed deep neural network.
In: ISCA 2016 (2016)

3. Amazon EC2 F1. https://aws.amazon.com/cn/ec2/instance-types/f1/
4. Han, S., et al.: ESE: efficient speech recognition engine with sparse LSTM on

FPGA. In: FPGA 2017 (2017)
5. Tensorflow XLA. https://www.tensorflow.org/performance/xla/
6. Li, M.: Introducing NNVM compiler: a new open end-to-end compiler for AI frame-

works (2017)
7. Tensorflow architecture. https://www.tensorflow.org/extend/architecture
8. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org
9. Lin, H., et al.: Scalable graph traversal on sunway taihulight with ten million cores.

In: IPDPS 2017 (2017)
10. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)
11. Lécun, Y., Bottou, L., Bengio, Y., Haner, P.: Gradient-based learning applied to

document recognition. In: Proceedings of the IEEE (1998)
12. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-

tion architecture for computer vision. CoRR vol. abs/1512.00567 (2015)
13. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.

CoRR vol. abs/1603.05027 (2016)
14. Fang, J., Fu, H., Zhao, W., Chen, B., Zheng, W., Yang, G.: swDNN: a library

for accelerating deep learning applications on sunway taihulight. In: IPDPS 2017
(2017)

15. Chetlur, S., et al.: cuDNN: efficient primitives for deep learning. CoRR vol.
abs/1410.0759 (2014)

16. Lecun, Y., Bottou, L., Bengio, Y., Haner, P.: Gradient-based learning applied to
document recognition. In: Proceedings of the IEEE, pp. 2278–2324, November 1998

17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: NIPS 2012 (2012)

18. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI
2016 (2016)

19. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: MM
2014, pp. 675–678 (2014)

20. Chen, T., et al.:, MXNet: a flexible and efficient machine learning library for het-
erogeneous distributed systems. CoRR vol. abs/1512.01274 (2015)

21. Nvidia Corporation: Nvidia cuda C programming guide. Nvidia Corporation (2011)
22. Chen, Y.-H., Emer, J., Sze, V.: Eyeriss: a spatial architecture for energy-efficient

dataflow for convolutional neural networks. In: ISCA 2016 (2016)
23. Parashar, A., et al.: SCNN: an accelerator for compressed-sparse convolutional

neural networks. In: ISCA 2017 (2017)

https://aws.amazon.com/cn/ec2/instance-types/f1/
https://www.tensorflow.org/performance/xla/
https://www.tensorflow.org/extend/architecture
http://eigen.tuxfamily.org


On Retargeting the AI Programming Framework to New Hardwares 51

24. Suda, N., et al.: Throughput-optimized OpenCL-based FPGA accelerator for large-
scale convolutional neural networks. In: FPGA 2016 (2016)

25. Qiu, J., et al.: Going deeper with embedded FPGA platform for convolutional
neural network. In: FPGA 2016 (2016)

26. Ji, Y., Zhang, Y., Chen, W., Xie, Y.: Bridge the gap between neural networks and
neuromorphic hardware with a neural network compiler. In: ASPLOS 2018 (2018)



An Efficient Method for Determining Full
Point-to-Point Latency of Arbitrary

Indirect HPC Networks

Chengchun Liu1, Zhang Yang2(B), Limin Xiao1(B), Baicheng Yan1,
Zhihao Wang1, and Hongyun Tian2

1 School of Computer Science and Engineering, Beihang University,
Beijing 100191, China
xiaolm@buaa.edu.cn

2 Institute of Applied Physics and Computational Mathematics,
No. 2 East Fenghao Road, Haidian District, Beijing 100094, China

yang zhang@iapcm.ac.cn

Abstract. Point-to-point latency is one of the most important metrics
for high performance computer networks and is used widely in commu-
nication performance modeling, link-failure detection, and application
optimization. However, it is often hard to determine the full-scale point-
to-point latency of large scale HPC networks since it often requires mea-
surements to the square of the number of terminal nodes. In this paper,
we propose an efficient method to generate measurement plans for arbi-
trary indirect HPC networks and reduces the measurement requirements
from O(n2) to m, which is often O(n) in modern indirect networks con-
taining n nodes and m links, thus significantly reduces the latency mea-
sure overhead. Both analysis and experiments show that the proposed
method can reduce the overhead of large-scale fat-tree networks by orders
of magnitudes.

1 Introduction

Point-to-point latency is a fundamental metric of high performance computer
networks, and is widely used in network performance modeling [1,2], commu-
nication performance optimization [3], and high performance computer main-
tenance. The first and formost step to make use of the latency is to measure
the latency. A common method to get the latency is to measure the round-trip
time (RTT) between any pair of nodes. While one measurement of RTT is quick
enough, obtaining the full-network point-to-point latency can be extremly time-
consuming since it involves n(n − 1)/2 (or O(n2)) measurements, where n is the
number of terminal nodes. One may use parallel measurements to reduce the
round of measurements, but parallel measurements can interfere with each other
and reduce the accuracy of the results. Thus, it is essential to reduce the total
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number of measurements, so as to make it possible to use these latency-based
methods on modern super-computers with tens of thousands of computer nodes.

In this paper, we propose a minimal and parallel method for full-scale point-
to-point latency measurements on super-computers with indirect networks (such
as fat-tree, dragonfly and slimfly networks), abbreviated as PMM. Our method
first construct a minimal set of node pairs between which the RTT is measured,
given the network topology and the routing table, then compute a measurement
plan to make use of the parallelism between the measurements with the gurantee
that concurrent measurements will not interfere with one another. The minimal
set of node pairs goes from n(n−1)/2 to m, where m is the number of links con-
necting the network interface and the routers, which is often proportional to the
number of nodes, thus reduces the number of measurements from O(n2) to O(n).
The parallel measurement plan can further reduce the round of measurements,
for example, by 33.3% in our experimental settings.

The reset of this paper is organized as follows. In Sect. 2, we introduce some
related works on network latency measurement. In Sect. 3, we present our latency
measurement method in detail. In Sect. 4, we prove the effectiveness of our meth-
ods by theoretical analysis and experiments. We also present performance anal-
ysis of the method itself. In Sect. 5, we discuss the possible applications of our
proposed method. In the last section comes the conclusions.

2 Related Works

Communication latency or distance measurement are investigated in some litera-
tures. Authors in [4] proposed a latency system based on GNP for fast obtaining
latency information between arbitrary web client pairs distributed in wide area
networks. This method has been used in the Google’s content distribution net-
work which helps to find the nearest data center for a web client. This method
can estimate latency results quickly only with a small number of CDN modifi-
cations and decouples with web client, but is not suitable for the dense network
such as HPC network or data center network. The literatures [5,6] also aim to
obtain the latency in wide area network environment in different ways, but those
methods are not suitable for dense networks.

Authors in [7] proposed a system called Pingmesh for latency measurement
and analysis in large scale data center networks. The latency measurement sys-
tem represents the network topology as three complete graphs, namely the server
complete graph, the switch complete graph, and the data center complete graph.
The method needs to select some representative node pairs and measure the
latency information between those nodes. With these information, the method
can approximately estimate the latency between different nodes in the same
switch, in different switches, or in different data centers. But this method mea-
sures only partially the network and can not be used in full-network measure-
ments.

The work [8] is the most similar to our work. They proposed a method to mea-
sure the communication distance between nodes on the Internet. This method
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also needs to construct the communication distance equations through a large
number of measurements and then solve the least squares solution of the equa-
tions, which is considered as the distance. The main concern of the method is
whether the calculation result of the communication distance is accurate with-
out considering the time cost caused by the inappropriate measurement set. In
contrast, our method carefully selects a minimal measurement set and then mea-
sures the latency between node pairs in the set in parallel to reduce the total
time cost.

3 The PMM Method

3.1 Definitions

In order to simplify the introduction of our measurement method, we intro-
duce some definitions, mathematical symbols and necessary assumptions in this
section. Data transmission in the network is a complex process, which is affected
by communication protocol, network topology, and hardware architecture. Since
point-to-point latency on direct networks can be easy, we only focus on indirect
networks in this paper. The data is transmitted from the source NIC, through
the links, to routers, and direct to other routers, and finally to the destination
NIC, as shown in Fig. 1. The NIC is connected to a computing node, which is
called a terminal node. We also assume the network uses static routing instead
of adaptive routing.

Fig. 1. Data transmission in indirect networks. The data is transmitted from the source
terminal node to the destination through links and routers.

Definition 1. a single link refers to a physical link between any adjacent devices
in an indirect network. The latency of a single link refers to the time for a
measuring packet to pass through the link from the buffer of the device at one
end of the link to the buffer of the device at another end.

Definition 2. a measuring path refers to the entire path contained in the trans-
mission of data between two communication nodes in an indirect network, which
passes through some middle routing devices and physical links. The latency of
the measuring path refers to the sum of latency of all single links in the path.
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Definition 3. an aggregated link refers to a subpath of a measuring path which
consists of one or more adjacent links. The method is not able to calculate the
latency of any single link in an aggregated link, but is able to calculate the latency
of the aggregated link.

We provide some mathematical symbols to represent the elements in the
method, as shown in Table 1.

Table 1. All mathematical symbols used in the method

Symbol Description

kx Computing node

Px,y The measuring path from node x to node y

P rtt
x,y The round-trip measuring path between node x and node y

lx Single link

a<x,y>,z The times the single link z appears in the path P rtt
x,y

α<x,y> The vector form of a path whose elements are a<x,y>,z

ox The latency of link x

Ox The latency of path x

S The set of path whose elements are α<x,y>

S
′
x A maximal linearly independent subset of S

3.2 Method

Now we describe our latency measurement method in detail. Our method
assumes that one can get the route of arbitrary node pairs. Through our paper,
we use a simple network as shown in Fig. 2 for illustration. The network consists
of 3 switches, 6 nodes and 8 single links. We can find many redundant measure-
ments when we measure the latency between all node pairs. We take the 4 nodes
connected by r1 as an example. When measuring all pairs, we need to measure
the latency of 6 paths, i.e., P rtt

k1,k2
, P rtt

k1,k5
, P rtt

k1,k6
, P rtt

k2,k5
, P rtt

k2,k6
, P rtt

k5,k6
. But if we

just measure P rtt
k1,k2

, P rtt
k1,k5

, P rtt
k1,k6

, P rtt
k2,k5

for latency, and make use of the fact
link latency is additive, we can get Eq. 1.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ol1 + ol2 = 1/2·OP rtt
k1,k2

ol1 + ol7 = 1/2·OP rtt
k1,k5

ol1 + ol8 = 1/2·OP rtt
k1,k6

ol2 + ol7 = 1/2·OP rtt
k2,k5

(1)

By solving Eq. 1, we can obtain ol1 , ol2 , ol7 , ol8 and calculate OP rtt
k2,k6

= 2·(ol2 +
ol8), OP rtt

k5,k6
= 2·(ol7 + ol8). Further more, there are redundant measurements
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between the nodes connected to different switches. Suppose we have measured
the path latency between some nodes directly connected to the same switch.
We need to measure P rtt

k1,k3
, P rtt

k1,k4
, P rtt

k2,k3
, P rtt

k2,k4
, P rtt

k5,k3
, P rtt

k5,k4
, P rtt

k6,k3
, P rtt

k6,k4
for

latency when measuring one by one. In fact, we can only measure P rtt
k1,k3

to get
ol1 +ol3 +ol4 +ol5 = OP rtt

k1,k3
and calculate ol3 +ol4 . In addition, we can measure

node pairs which do not share any link in parallel. For example, we can measure
the latency of P rtt

k1,k2
and P rtt

k3,k4
in parallel.

Fig. 2. A sample network with 6 nodes, 8 single links and 3 switches. Only 7 rather
than 15 measurements are necessary for full-network point-to-point latency.

The example above illustrates the core idea of our method. By assuming the
node-to-node latency is the addition of link latencies, we can select a number
of node pairs which covers all links in the network and measure the node-to-
node latencies, then recover the link latencies by solving a linear equation. The
measurement can further be done in parallel. Although we only consider link
latency here, our method applies to cases where both link and router latency are
included, since they only add more variables and does not change the additive
nature of latency.

Concretely, for a network containing n nodes and m links, the method
includes the following steps.

a. Construct full measurement path set S, which contains all measuring paths.

By querying routing information, we can get the single link set of any path
between node ki and kj . The lateny of path P rtt

ki,kj
can be expressed as

Latency(P rtt
ki,kj

) = a<i,j>,1·ol1 + a<i,j>,2·ol2 + · · · + a<i,j>,m·olm = α<i,j> · β

where α<i,j> = (a<i,j>,1, a<i,j>,2, · · · , a<i,j>,m−1, a<i,j>,m), β = (ol1 , ol2 , · · · ,
olm−1 , olm). The full measuring path set S={α<1,2>,α<1,3>,· · ·, α<n−2,n>,
α<n−1,n>} which consists of n(n − 1)/2 measuring paths. For the net-
work shown in Fig. 2, S = {α<k1,k2>, α<k1,k3>, α<k1,k4>, α<k1,k5>, α<k1,k6>,
α<k2,k3>, α<k2,k4>, α<k2,k5>, α<k2,k6>, α<k3,k4>, α<k3,k5>, α<k3,k6>, α<k4,k5>,
α<k4,k6>, α<k5,k6>}. Taking α<k1,k2> as an example. α<k1,k2> = (2, 2, 0, 0,
0, 0, 0, 0) means that the measuring path P rtt

k1,k2
consists of l1, l2, l2, l1.
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b. Select the minimal measurement path set S
′
, which is the subset after remov-

ing redundant measurement path in S.

By linear algebra theory, any element in S can be expressed as a linear com-
bination of the maximal linearly independent subset of S. Thus, we choose the
maximal linearly independent subset of S as the minimal measurement path set
S

′
, and name it as MMSets. The maximal number of elements in any MMSet

is never greater than the dimension of the linear space, which is the number of
single links m. Thus, if we can find the MMSets, we can reduce the number of
measurements from n(n− 1)/2 to m. Given the fact that HPC networks contain
links only proportional to the number of terminal nodes, m = O(n), we reduce
the total number of measurements from O(n2) to O(n), which is very significant.

The MMSets can be found using the Gaussian elimination method. Due to
different order of elements in S, the Gaussian elimination method can result in
different valid MMSets. This suggests we have different minimal measurement
path sets. For the previous sample network, we can obtain three different MMSets
which are:

S
′
1 = {α<k1,k2>, α<k1,k3>, α<k1,k4>, α<k1,k5>, α<k1,k6>, α<k2,k5>, α<k3,k4>},

S
′
2 = {α<k1,k2>, α<k1,k3>, α<k1,k4>, α<k1,k5>, α<k1,k6>, α<k2,k6>, α<k3,k4>},

S
′
3 = {α<k1,k2>, α<k1,k3>, α<k1,k4>, α<k1,k5>, α<k1,k6>, α<k5,k6>, α<k3,k4>}

c. Measure the latency of paths in S
′
in parallel.

We can simultaneously measure the latency of paths that do not contain the same
single link. We define a measuring path graph MPG<V,E> in which each vertex
represents a measuring path and edge between the two vertexes indicates that the
two measuring paths represented by these two vertex share at least one simple
link. We propose an innovative method based on graph coloring to divide the
graph into a number of subsections and simultaneously measure the latency of
all paths in the same subsections. The method stipulates that adjacent vertexes
can not have same color. Finally, according to the graph coloring results, we can
determine the number of parallel measurements and the path set to be measured
in each measuring round. For graph coloring is essentially NP-Hard problem, we
use an adaptive coloring algorithm, such as the Welch Powell algorithm, when
the graph is large. Only when the measurement set is small enough, we make
use of the divide algorithm to get an optimal scheme.

It should be noted that there are often multiple S
′
for the same S. Although

different S
′
have the same number of measuring paths, the layout of measuring

paths in those set are different, which bring different coloring results. For small
networks, we determine an optimal S

′
as the final MMset by comparing the

coloring results of all S
′
. For large scale networks, we randomly select some sets

from all S
′
and find out the one with best dyeing scheme as the final optimized

MMSet. In the previous network, we select S
′
1 as the final MMSet because there

are the same coloring results for all three S
′
. The MPG<V,E> colored is showen

in Fig. 3. Five rounds of measurement will be carried out finally.
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Fig. 3. A coloring result of MMSet. Five instead of 7 rounds of measurement is needed
finally. (Color figure online)

d. Construct single link latency equations to calculate the latency of all paths
in S.

Let O
′

= (O1, O2, · · · , Ox) be the latency of all paths in MMset after parallel
measuring. We construct a matrix C which contains x rows and m columns whose
rows correspond to the single link composition of measuring paths in MMset. We
can get a general solution by solving equation C · βT = O

′
. Any solution can be

used to calculate the unique latency of all measuring paths in S
′
, which means

that we can also calculate the unique latency of all measuring paths in S. For the
previous network, suppose that the real latency of each path in the network are
Oprtt

k1,k2
= 16, Oprtt

k1,k3
= 37, Oprtt

k1,k4
= 36, Oprtt

k1,k5
= 18, Oprtt

k1,k6
= 17, Oprtt

k2,k3
= 39,

Oprtt
k2,k4

= 38, Oprtt
k2,k5

= 20, Oprtt
k2,k6

= 19, Oprtt
k3,k4

= 25, Oprtt
k3,k5

= 41, Oprtt
k3,k6

= 40,
Oprtt

k4,k5
= 40, Oprtt

k4,k6
= 39, Oprtt

k5,k6
= 21. After only measuring the latency of x

paths in S
′
, we get a solution ol1 = 3.5, ol2 = 4.5, ol3 = 8.5, ol4 = 0, ol5 = 6.5,

ol6 = 6, ol7 = 5.5, ol8 = 5 which can be used to calculate the latency of all paths
in S.

Although it is not necessary to calculate all aggregated links’ latency for
getting path latency, the latency of the aggregated link reflects the character-
istics of the network in more detail. It is useful in some application scenarios,
such as link fault detection. According to step b, we know rank(C) ≤ m. When
rank(C) = m, the equation has unique solution. When rank(C) < m, the equa-
tion has countless solutions which means that some single links’ latency in the
network can not by accurately calculated. We propose a method of link aggre-
gation, which can merge several single links into an aggregated link to ensure
all aggregated links’ latency in network is accurate and unique. We construct
augmented matrix (C|O′

) and transfer it into row canonical form matrix G. All
non-zero columns in a row correspond to all single links in aggregated link and
the last column represents the latency of the aggregated link. In our example, the
matrix (C|O′

) and G are shown in Eq. 2. The latency of all aggregated links are
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ol1 = 3.5, ol2 = 4.5, ol3 + ol4 = 8.5, ol5 = 6.5, ol6 = 6, ol7 = 5.5, ol8 = 5. l3 and l4
make up an aggregation link, which is reasonable for that they always transmit
the data at the same time.

(C|O′
) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 2 0 0 0 0 0 0 16
2 0 2 2 2 0 0 0 37
2 0 2 2 0 2 0 0 36
2 0 0 0 0 0 2 0 18
2 0 0 0 0 0 0 2 17
0 2 0 0 0 0 2 0 20
0 0 0 0 2 2 0 0 25

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 3.5
0 1 0 0 0 0 0 0 4.5
0 0 1 1 0 0 0 0 8.5
0 0 0 0 1 0 0 0 6.5
0 0 0 0 0 1 0 0 6
0 0 0 0 0 0 1 0 5.5
0 0 0 0 0 0 0 1 5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

4 Validation and Analysis

4.1 Exprimental Settings

Since our method is based on rigorous mathematical process, the method is
applicable to arbitrary indirect networks. Thus as a validation, we only evalu-
ate the effectiveness of our method in synthesised fat-tree networks. We imple-
ment a source routing fat tree network simulator using the topology described
in [9], to simulate fat-tree networks commonly used in data centers and super-
computers. p− port q − tree InfiniBand network which contains 2×(p/2)q nodes
and 2×q×(p/2)q single links are simulated. To simulate typical fat-tree networks,
we choose 7 different fat-tree configurations as shown in Table 2.

Table 2. Fat-tree configurations used in the experiments

Configuration Number of terminal nodes Number of links

4 − port2 − tree 8 16

4 − port3 − tree 16 48

6 − port3 − tree 54 162

8 − port3 − tree 128 384

10 − port3 − tree 250 750

12 − port3 − tree 432 1296

16 − port3 − tree 1024 3072

4.2 Accuracy of the Measurement

We first show our method can recover the link latency of the network. We design
the following experiments: Firstly, We set every link in the network a random
latency. Secondly, we compute a parallel measurement plan using our method.
We carry out the measurement by simply aggregating the link latencies along
the measuring path. Thirdly, we calculate the latency of all measuring paths and
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aggregated links in the network. Finally, we check those calculated link latency
with the preset values. Our method finds the correct values for all the links.
Table 3 shows that the calculated latency of all measuring paths is the same as
the actual values in 4-port 2-tree network separately. In fact, we get the same
conclusion as this example in the other 6 networks.

Table 3. Actual latency and calculated latency of all measuring paths in 4 − port
2 − tree network

(a) Actual latency of all mea-
suring paths

Node 1 2 3 4 5 6 7 8
1 0 25 54 51 67 49 58 54
2 25 0 55 52 68 50 59 55
3 54 49 0 25 61 53 52 58
4 57 52 25 0 64 56 55 61
5 67 55 61 61 0 31 65 64
6 62 50 56 56 31 0 60 59
7 58 53 52 59 65 57 0 30
8 60 55 54 61 67 59 30 0

(b) Calculated latency of all
measuring paths

Node 1 2 3 4 5 6 7 8
1 0 25 54 51 67 49 58 54
2 25 0 55 52 68 50 59 55
3 54 49 0 25 61 53 52 58
4 57 52 25 0 64 56 55 61
5 67 55 61 61 0 31 65 64
6 62 50 56 56 31 0 60 59
7 58 53 52 59 65 57 0 30
8 60 55 54 61 67 59 30 0

4.3 Measurement Reduction

We then show that our method can greatly reduce the number of measurements
in full-network point-to-point latency measurements. We compute the measure-
ment plan for 6 different network configurations, and compute the round of
measurements required. Each round of measurements involves a collection of
measurements can be done concurrently. We assume one measurement takes
T seconds, and compare the total measurement execution time in Fig. 4. We
compare our method with the brute-force one-by-one measurement of all node
pairs. In the brute-force method, it takes us (n×(n−1)/2)T seconds to measure
the latency of all paths serially. In our measurement method, it takes about m
T seconds to serially measure the latency of all paths in MMset. In the net-
work with 3-tree, the total measurement time can be further reduced by 33.3%
compared with the serial measurement. With parallel measuring the latency of
paths in the same MMset, only n T seconds are needed. We can conclude that
the proposed methods can reduce the overhead of large-scale fat-tree networks
containing thousands of nodes by three orders of magnitude.

4.4 Complexity Analysis of the PMM Method

Although the proposed method reduces the time costed in measuring the latency,
it brings additional computing overhead. We analyze the complexity of the extra
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computing here. We choose the time during which CPU completes an arithmetic
operation or access a variable in memory as the unit.

The first part of the computing overhead comes from generating the mea-
surement scheme. We use Gaussian elimination to transfer matrix A into row
echelon form for getting all maximal linear independent subsets of S, during
which about m eliminations are required. In each elimination, we need to look
up an main row from n(n−1)/2 rows firstly, and then carry out n(n−1)/2 elemen-
tary transformations. Thus the average time overhead of Gaussian elimination
is T1.

T1 = m(mn(n − 1)/2 + mn(n − 1)/2) = m2n(n − 1). (3)

The second part of the computing overhead comes from deriving
MPG<V,E> to get parallel measurement scheme. We use Welch Powell algo-
rithm to get an optimized solution of the NP-Hard Graph Dying problem in
large-scale network. The time complexity of the algorithm is O(m3).

The third part of the computing overhead comes from calculating the latency
of all paths and links. Our method use Gaussian elimination to solve m linear
equations for getting the latency of all aggregated links, and then calculate the
latency of all paths. The average time overhead is T2

T2 = 2m3 + n(n − 1)/2 (4)

For p − port q − tree network, n < m < n(n − 1)/2. As a result, a loose time
complexity of our method is O(n2·m2).

We further investigate reducing the computing overhead by parallel comput-
ing. We substitute the Gaussian elimination with a MPI based implementation
and run the computing of a 12 − port 3 − tree with 432 nodes and 1296 links on
Tianhe-2 super computer. The timing results are shown in Fig. 5 and it shows
than we can compute the measurement plan in less than 30 s with 116 MPI
processes, which is pretty acceptable in HPC environments.

Fig. 4. The measurement time of two
methods. Each measurement takes T
seconds.

Fig. 5. The computing overhead of
generating measurement plan and cal-
culating the latency of all paths and
links in 12 − port 3 − tree network in
parallel settings
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5 Applications

Being a low level method, our PMM method can be used in many application
scenarios where full point-to-point latency is required. We discuss some of these
applications in this section.

5.1 Communication Performance Modeling and Prediction

In many cases we want to model the communication network, so as to predicate
the application performance on given supercomputers, to inspect the communi-
cation bottlenecks of parallel applications, and to compare design alternatives
of network parameters. For example, when we optimize the application commu-
nication performance, we can use trace simulators such as LogGOPSim [10] to
simulate the communication and find the bottlenecks. The LogGOPSim relies
on point-to-point latency to make an accurate predication for small messages,
which often require one to measure the full-network point-to-point latency of a
given super-computer. Our methods can greatly reduce the number of measure-
ments and thus improve the model accuracy by being able to incorporate the
difference of per node pair latencies.

5.2 Transitional Link Failure Detection

Transitional link failures happens a lot on large scale high performance computer
networks, which often results in downgraded communication performance, and
gradual system failures. Extra hardware can be built into the network to moniter
each link to detect these problematic states, but this is not practical on many
networks. Our method provides a software-based alternative. One can generate
a measurement plan for any suspecting subnet and measure the point-to-point
latency quickly to obtain per-link latency, and flag links with larger latency than
expected as problematic for further investigation.

5.3 Parallel Communication Optimization

Automatic optimization of communication performance often requires knowing
the inter-node message latency of the running nodes, which can only be mea-
sured online. For example, in topology-aware process mapping algorithms, one
often needs to model the per-note message latency, and accurate online model-
ing of these latency is essential for real-world parallel applications. Our method
can help by generating the measurement plan and measure the point-to-point
latency on the fly quickly, thus make the optimization applicable to any indirect
networks.

6 Conclusion

In this paper, we propose an efficient method, namely PMM, to generate full-
network point-to-point latency measurement plans for arbitrary indirect HPC
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networks. Our method reduces the measurements required from O(n2) to O(n)
for modern high performance computer networks such as fat-tree based infini-
band networks, and can be extremely useful in communication performance mod-
eling, transitional link failure detection, and parallel communication optimiza-
tion.

Although being effective, there are still aspects to improve in our methods.
We go through some or all MMsets to find out an optimized one in our method,
which is ineffective. We also consider find out heuristics to locate measurement
plans with the maximal parallelism. We can also make the measurement additive
to allow for continuously monitoring link latencies.
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Abstract. With the data volume increasing, key-value (KV) store plays
an important role in today’s storage systems due to its flexible architec-
ture and good scalability. There are two types of data organization in
current KV stores: key-order layout and write-order layout, which orga-
nize records according to key order and write sequence, respectively.
While the former and the latter layouts deliver high throughput for
range-query and write operations respectively, neither of them can per-
form well for both write and range-query operations. In this paper, we
propose a hybrid KV store, KT-Store, which combines the key-order
and write-order layout together to improve performance. More specif-
ically, KT-Store stores keys and value metadata into a LSM-tree, and
stores values into multiple tables called TrieTables. By inserting the value
among multiple TrieTables in a key-order fashion leveraging a trie, and
into a specific TrieTable in a write-order fashion, KT-Store can obtain
the advantages of existing two layout types and avoid their shortcom-
ings. We implement KT-Store in RocksDB 5.7.2. Extensive evaluations
demonstrate that KT-Store can simultaneously obtain encouraging write
and range-query performance: compared with key-order based RocksDB,
the write performance is improved by 4.3×−12.6× on HDDs; compared
with write-order based Wisckey, KT-Store has 54.2 × −112.6× range-
query performance on HDDs. Besides, KT-Store also has encouraging
performance on SSDs.

1 Introduction

Key-value stores play a critical role in today’s large-scale, high-performance,
data-intensive applications in recent years. Compared with conventional SQL
databases and other NoSQL data stores, key-value stores have stronger hor-
izontal scalability, more flexible architectures, and more portable supports of
different types of applications [1]. Due to their importance and benefits, KV
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stores are widely used in distributed storage systems, such as BigTable, HBase
and local storage systems, such as LevelDB and RocksDB.

Similar to traditional databases, KV stores need to support basic system
workloads, such as data inserts, data updates, and range-queries. Data-intensive
applications often run with massive data. These operations involve a large num-
ber of I/O read and write activities on hard disk drives (HDDs), which are the
dominate media in current KV storage systems. As different workloads exhibit
various data access characteristics, previous KV stores use different index struc-
tures to organize the key-value items, such that the system can provide desirable
performance for different workloads.

There are two main types of data layouts in the data organization of current
KV systems. The first type is the key-order layout that organizes the key-value
items according to lexicographical order. Typical systems include conventional
LSM-tree, its variants [2–4], B+-tree [5], and its variants [6,7]. As all the key-
value items are organized in key-order, such data layout can greatly improve
range-query performance by utilizing the sequential read I/Os on HDDs. The
second type is the write-order layout that organizes the key-value items based on
the order of write sequence, which is inspired by the idea of Log-structured file
system [8]. The typical systems applying this policy are Wisckey [9] and LSM-
Trie [10]. By performing the append operations, random write I/O operations are
translated into sequential ones on the HDDs, which means high I/O efficiency,
thus such data layout can bring high throughput for write operations.

While the above approaches show decent performance for write and range-
query workloads respectively. Unfortunately, to the best of our knowledge, none
of them can perform well for write and range-query simultaneously. For example,
while write-order layout can get high write throughput, it has inherent short-
coming of poor random read performance in the range-query operations; the
key-order layout would cost lots of time to sort the key-value items like LSM-
tree or to search the targeted storage location like B+-tree, which results in
limited write throughput.

To bridge this gap, we propose a hybrid KV store, which combines the key-
order and write-order layout together to organize key-value items in the systems.
KT-Store consists of three parts, one LSM-tree, one trie and multiple TrieTables.
These components are used to store the keys and the metadata of values, to index
the TrieTables according to a given key, and to store the values, respectively. In
KT-Store, the values among multiple TrieTables are organized by the key-order
while the values within each TrieTable are organized by the write-order. Thus,
such hybrid structure can achieve high performance for both write and range-
query operations.

KT-Store separates values from keys and stores them into different locations
to eliminate the unnecessary compaction of values for enhanced write perfor-
mance. While this design is inspired by the idea of Wisckey [9], it differs from
Wisckey in that it stores the values into multiple tables while Wisckey [9] stores
them into a single table. By leveraging a trie and organizing all the TrieTables in
a key-order fashion, KT-Store can also achieve high throughput for range-query.
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Fig. 1. LSM-tree data structure.

We implement KT-Store in RocksDB 5.7.2. Extensive evaluations demon-
strate that KT-Store can simultaneously obtain encouraging write and range-
query performance: it significantly outperforms RocksDB with 4.3 × −12.6×
write performance and Wisckey with 54.2 × −112.6× range-query performance.

The proposed hybrid data layout scheme creates a better balance between
write performance and range-query throughput. It can be applied in both HDDs
and SSDs.

The following of this paper is organized as follows. Section 2 describes
the related work. Section 3 describes the system design and implementation.
Section 4 presents and discusses the evaluation results. Finally, we conclude this
paper in Sect. 5.

2 Related Work

Key-order layout organizes key-value pairs ordered by the key. Log-Structured
Merge-Tree (LSM-tree) is the typical structure, which was proposed by Patrick
O’Neil et al. in 1996 [11]. LSM-tree is composed of multiple components, gener-
ally including one memory resident component and multiple disk resident com-
ponents, as shown in Fig. 1. The key-value pairs in each component is sorted and
arranged in lexicographical order. Each component size is limited to a predefined
threshold, which grows exponentially. LSM-tree first uses an in-memory buffer,
called MemTable, to hold the incoming KV items and keeps them sorted. When
an MemTable exceeds its capacity threshold, it will be dumped into the hard
disk as an immutable SSTable, such as T12. Every disk component consists of
multiple SSTables. Each SSTable contained the sorted KV items which have been
sorted in the compaction procedure. During compaction procedure, KV items
are merged and sorted. KV items of both Ci and Ci+1 within the same key-range
are firstly read into memory, then merged and sorted, and finally written back
to Ci+1 as the fix-sized SSTables. The compaction procedure is extremely I/O-
intensive for repeated reads and writes, and dominates the disk I/Os of LSM-tree
[2]. As a result, compactions that keep the key-value pairs in key-order layout
bring write throughput decrease seriously. Several methods have been adopted to
improve the write throughput key-order layout LSM-tree-based systems. First,
fully utilizing the available hardware/software resources. PCP [12] makes use of
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the parallelism of CPUs and I/O devices. LOCS [13] leverages the multiple chan-
nels of an SSD. Second, reducing the unnecessary data blocks moving. Skip-tree
[2] skips some compaction procedures. PebblesDB [14], VT-tree [3] reduce the
data rewrite. Third, accelerating the data flow. bLSM [15] and PE [16] parti-
tion the key range into multiple sub-key range and confine compactions in hot
data key ranges. Others, like [17] applies LSM-tree to non-volatile memories,
and GTSSL [18] uses layered mix of storage devices such as Flash SSDs and
magnetic disks.

Write-order layout organizes key-value pairs ordered by the write sequence
like LSM-trie [10] and Wisckey [9]. LSM-trie [10] stores data in a hierarchical
structure by sacrificing the supporting of range-query operations. Wisckey orga-
nizes values in a value-log file, named vLog. The values in vLog is ordered by the
write sequence. When a key-value pair is inserted, Wisckey first separates the
key and the value, and append the value to the vLog. Then Wisckey inserts the
key and the value metadata into LSM-tree. The values are appended to vLog as
the insert procedure goes on. The write throughput keeps a high level because
Wisckey spends no time to sort the values. As the value are arranged in vLog by
write-order, Wisckey implements the range-query operations by parallel search
the targeted key-value pairs. Under SSD environment, Wisckey could get compa-
rable range-query performance as RocksDB [9]. Although SSDs are widely used
nowadays, hard disks are still the main devices for conventional data stores. The
range-query operations of Wisckey performs undesirable in hard disks for the
reason that the search procedure is through random I/Os and can’t utilize the
sequential I/Os.

Key-order data layout can obtain attractive range-query performance but
bad write performance, while write-order data layout can obtain attractive write
performance but bad range-query performance. In RocksDB, we insert 100 GB
data volume with value size as 4 KB by random order and by sequential order.
The result shows that random insert performance only reaches about 30% of
sequential insert performance. In Wisckey, the range-query performance with
the values is randomly arranged only reaches about 22% of that with the value
is sorted when the value size is 4 KB [9] with SSDs. There remains a need to well
balance the write performance and range-query performance. Consequently, we
are motivated to propose a hybrid KV store, KT-Store, to obtain attractive write
and range-query performance simultaneously in one typical key-value store.

3 Design and Implementation

3.1 The Basic Idea of KT-Store

For effective balancing write and range-query throughput, we suggest KeyTrie-
Store (KT-Store), which is designed as a replacement of RocksDB or Wisckey.
The major distinction of KT-Store is that it uses a new key-and-write hybrid
data layout to organize values. Figure 2 depicts the overall architecture of KT-
Store. Each KT-Store instance consists of three parts, one LSM-tree, one trie,
and multiple TrieTables. The basic concept of organizing keys and light-weighted
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Fig. 2. The overall architecture of KT-Store (the strings in circles present the path
from the root node to the child node or leaf node).

Table 1. The data structure of the trie node

Type Property Value

Internal node ID Denote the trie node and corresponding to one TrieTable

Leaf flag False

Children
mapping

Map to the child node with a mapping of <Character,
Trie Node> (the character is the edge value in Fig. 2)

Leaf node ID Denote the trie node and corresponding to one TrieTable

Leaf flag True

value metadata into LSM-tree is similar to Wisckey. But different from Wisckey
arranging values to one vLog, KT-Store leverages trie to split the input values
into multiple TrieTables. Trie divides the whole key-range into multiple sub-
ranges and sorts the sub-ranges in key-order. Every sub-range is correspond to
a TrieTable, while trie keeps track of TrieTable locations in memory. TrieTables
are in key-order among multiple TrieTables. Within a specific TrieTable, values
are organized by write-order. Each leaf node of trie is correspond to a TrieTable,
while all the internal nodes are correspond to one TrieTable TTIN . In the write
operation, all incoming values are appended at the end of the corresponding
TrieTable to get the desirable write performance. In the range-query operation,
the required values are stored in TrieTables under the key-and-write layout for
the random I/Os can be avoided.

3.2 The Three Parts of KT-Store

The LSM-tree, which is originated from the conventional LSM-tree structure,
is designed to store the key-metadata pairs. The value metadata includes its
corresponding TrieTable ID, the offset in TrieTable, and the value size. We could
locate the value based on the metadata.

One index structure of KT-Store, trie, is one of the most popular search
trees, where keys are arranged in order. As shown in the Fig. 2, the root node
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Fig. 3. The key-and-write hybrid order layout.

Fig. 4. The insert procedure of
KT-Store.

Fig. 5. The range-query procedure of KT-
Store.

is associated with empty string and each edge presents one character. The path
from the root node to the child node contributes to a key prefix or a key. Hence,
the child nodes of one common node share the same key prefix. When one key-
value pair is inserted, trie nodes are searched to match the key prefix and the
matched node determines the TrieTable.

The two node formats of trie, also shown in Table 1, are: (1) internal node;
and (2) leaf node. For example, the leaf node ‘ab’ in Fig. 2 has the properties
of <ab, true, TTab>. If there exists one key-value pair with key as ‘b’, its value
would be appended to TrieTable TTIN , since all the internal nodes are corre-
sponding to one TrieTable TTIN .

TrieTables are used to store the values. The values are organized by key-
and-write hybrid order as shown in Fig. 3. For example, TTab, TTba and TTbb

are in lexicographical order which denote the key prefix of ‘ab’, ‘ba’ and ‘bb’
respectively. In a specific TrieTable, the values are arranged by write-order which
is in key random sequence.

3.3 The Main Procedures in KT-Store

Write Procedure. When a insert request of a key-value pair K1V1 arrives,
KT-Store would separate K1V1 into the key and the value. Figure 4 presents
the insert procedure. First, search the trie nodes to match the key pre-
fix. A node and corresponding TrieTable are created when the node doesn’t
exist. Second, the value of K1V1 would be appended at the end of corre-
sponding TrieTable. Third, original key and value metadata are bounded as
<key, TrieTable ID|offset|value size> to be stored into LMS-tree. For exam-
ple, for a key-value pair <abh, V alue>, we search trie to get the ‘ab’ node first.
Next, the value ‘Value’ will be append to TrieTable TTab. We presumes that the
start offset is 500. Then the <abh, Tab|500|6> would be inserted into LSM-tree
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as one key-value pair. Since disk writes are performed sequentially for appending
to the TrieTable, the write performance of KT-Store is much better than that
of RocksDB.

Range-Query Procedure. A range-query operation first does the range-query
operation in the LSM-tree to get the LSM-values in 2© of Fig. 5. Then parse the
LSM-values and group them by the TrieTable ID and compute the minimal
offset and the maximal offset for each TrieTable in 3©. Contiguously Read each
TrieTable and get the data from the minimal offset to the maximal offset. This
makes that every TrieTable would be read no more than once in one range-
query operation. As known that disk I/Os cost a lot of time, KT-Store utilizes
the sequential I/Os to decrease the range-query latency. Then, we pick the data
that is read from TrieTables into key-value pairs according to their metadata.
Last, aggregate the key-value pairs from TrieTables as output and return them
in 5©. For the TrieTable, we contiguously read the part rather than the whole
TrieTable. Values are arranged on TrieTable by time sequence. Thus, in small
length range-query operations or sequential insert, the targeted values only locate
in part of one TrieTable.

Read Procedure. The read procedure begins with searching LSM-tree to find
the key and the metadata, then it gets the value according to the metadata.
KT-Store first searches the targeted TrieTable through the TrieTable ID, then
it reads the targeted TrieTable to obtain the value. The beginning location is
the offset address and the length is the value size. As this procedure is rela-
tively straightforward and the page space is limited, here we ignore the detailed
procedure.

3.4 Implementation

We build KT-Store with insert, update, read, delete and range-query interfaces.
We integrate RocksDB 5.7.2 into KT-Store as the LSM-tree part. As RocksDB is
written by C++, we develop KT-Store by C++. Except RocksDB, we implement
all the other structures without utilizing other existing code. We implement the
range-query API through the iterator in RocksDB referred to the RocksDB wiki
in GitHub. We implement Wisckey also by integrate RocksDB 5.7.2 and develop
it by C++ according its design.

3.5 Discussion

Reliability Mechanisms. When the system crashed, KT-Store needs to
restore two types of data during the recovery procedure. One type is the key-
value pairs that have been written into the TrieTables but have not been written
into LSM-tree. The other is the key-value pairs that stored in MemTable of LSM-
tree. For the former type, we utilize the write-ahead log to rerun the operations
and ignore the data that have been appended to the TrieTable. For the latter
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one, we utilize the existing LSM-tree reliability mechanism to recover the LSM-
tree. Trie works as an index of the TrieTable in the insert procedure. As the trie
changes infrequently, we persist the trie to the disk when the trie changes. When
the storage server crashed, we recover trie from the disk.

Trie Scalability. In the current implementation, we only use fixed levels in trie
part of KT-Store. We acknowledge that dynamic level numbers that varies with
data volume would further improve the performance of KT-Store and adapt to
the workloads with un-uniform key distribution. However, the focus of this study
is to balance the write and range-query performance well. Thus, we believe the
fixed levels do not hurt the conclusions and contributions of this study. We will
develop adaptive policy in the future work.
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Fig. 6. The average write throughput of KT-Store, RocksDB and Wisckey for the value
sizes vary from 1 KB to 64 KB for a 100GB dataset.

4 Evaluation

4.1 Experiment Setup

We evaluate KT-Store and RocksDB, Wisckey on one Linux servers with hard
disk devices and Solid State Drives. RocksDB is a persistent key-value store
based on LSM-tree, started by Facebook. In every evaluation, we compare KT-
Store with RocksDB and Wisckey. Except the compression type, which we set it
as non-compression, the parameter values of RocksDB are applied to its defaulted
settings as described following. The compaction style is level compaction which
is the same as LSM-tree designed to be. The SSTable size is 64 MB and the ratio
of Ci+1 size to Ci size is 10. We use YCSB to generate workload traces, which
are replayed in a light-weight workload generator. YCSB generates synthetic
workloads with various degrees of read/write ratio, statistical distribution and
value size. We configure YCSB to generate different datasets that are described
in following subsections.
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4.2 Write Performance

We load datasets with different value sizes and different scales into KT-Store,
RocksDB and Wisckey to evaluate the write performance. The YCSB workload
is set to 100% insert operations and insert key-value pairs randomly with uni-
form key distribution. We use the parameter of insert operations per second to
evaluate the write performance.
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Fig. 9. The average range-query latencies of KT-Store, RocksDB and Wisckey for
different value sizes with querying 40 MB data from a 100 GB database.

We conduct experiments on KT-Store, RocksDB and Wisckey with the value
size grows from 1 KB to 4 KB, 16 KB and 64 KB, and the data volume is 100 GB.
Figure 6(a) shows the write throughput of KT-Store is about 4.3 × −12.6× of
that of RocksDB with HDDs. With the value size increasing, KT-Store obtain
better write throughput than RocksDB. Moreover, KT-Store has comparable
write throughput with Wisckey, which is about 16% decrease in best case. For
SSDs, KT-Store outperforms RocksDB in all the cases and has almost the same
performance with Wisckey in the best case as Fig. 6(b) depicts. To evaluate
the write performance under different scales, we conduct experiments with the
data volumes are 5 GB, 20 GB, 50 GB and 100 GB and the value size as 4 KB as
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Fig. 7 shows. With the data volume increasing, KT-Store outperforms RocksDB
further. KT-Store matches Wisckey for about only 23% decrease. Without sort-
ing every key-value pairs, KT-Store obtain attractive write performance than
RocksDB, and get comparable write performance than Wisckey.

4.3 Range-Query Performance

YCSB supplies the range-query interface required two parameters, the ‘startkey’
and the ‘recordcount’. The former denotes the first key searched in range-query
operation. The latter denotes the number of key-value pairs that this range-
query operation requires, that is, the range length. We measure range-query
performance for workloads with different range length of 2000, 3000, 5000, 15000
and 20000, and with different value sizes of 1 KB, 4 KB and 16 KB respectively.
The data that already in the store is with uniform key distribution and inserted
randomly. And the data volume is 100 GB.

Figure 8 presents the comparison of average range-query latencies in KT-
Store, RocksDB and Wisckey with HDDs. It can be found that the range-
query performance of KT-Store is 54.2 × −112.6× of that of Wisckey. And is
3.42 × −5.81× of that of RocksDB. Figure 9(a) and (b) depict the range-query
latencies of KT-Store, RocksDB and Wisckey for querying 40 MB data from a
100 GB database on HDDs and on SSDs. KT-Store outperforms Wisckey in all
our cases. The range-query operation in RocksDB is complemented by the iter-
ator, and the index block and data block have iterators respectively. First, the
data block of targeted key-value pair is determined by the index block iterator.
Then according to the index which contains the offset information, RocksDB
reads the targeted key-value pairs. KT-Store utilizes the sequential I/Os to read
the parted TrieTable into the memory. Then KT-Store matches each key with
its value and returns the range-query result.
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We attribute the difference of above evaluation to the following observations.
First, RocksDB reads key-value pairs one by one with the key-order, but multi-
ple versions of a same key can exist in different components in the same time.
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Multiple component searches make that RocksDB can’t fully utilize the sequen-
tial I/Os of hard disk and affects the range-query performance seriously. Second,
KT-Store reads TrieTables one by one to fully utilize the sequential I/Os. The
key-and-write hybrid order layout of TrieTables decreases the number of TrieTa-
bles that need to be read. As for Wisckey, the range-query operation relies on
multiple read operations which results in massive random I/Os.

4.4 Read Performance

We conduct read operations on 5 GB, 20 GB, 50 GB and 100 GB YCSB datasets
and evaluate the average read latencies on KT-Store, RocksDB and Wisckey on
HDDs. We set the number of read operations as 1000 in each experiment and the
value size as 4 KB. The dataset that already in the store is inserted randomly.
Figure 10 shows the average read latencies of KT-Store, RocksDB and Wisckey.
We can see that KT-Store shows a average read performance with RocksDB and
Wisckey.

4.5 YCSB Standard Workload Evaluation

Our final set of experiments compares the performance with YCSB standard
workloads, which can be treated as a basic benchmark for storage systems. Each
of the six standard workload combines one or two operation types and can make
us understanding the performance of the system. All the standard workloads are
based on the Zipf distribution of key-value pairs.

Workload A is an update heavy workload. Workload B is a read mostly
workload. Workload C is a read only workload. Workload D is a read latest
workload which has 95% reads of the most recently inserted KV pairs. Workload
E is a short ranges workload which does the short range-query operations. In
Workload E, the max range-query length is 100 and the range-query length
is under uniform distribution. Workload F is a read-modify-write workload. In
Workload F, the key-value pairs will be read first, be modified next, and then
be written back to the storage system.

We perform the six workloads on KT-Store, RocksDB and Wisckey with the
4 KB value size on HDDs. For each value size, we load 100 GB dataset with Zipf
key distribution, then perform each workload and evaluate the throughput.

Figure 11 presents the operations throughput of KT-Store, RocksDB and
Wisckey. In load stage, Workload A-D and F, KT-Store outperforms RocksDB
by 1.8 × −7.0× throughput and obtains comparable performance with Wisckey.
In Workload E, KT-Store performance is about 2.32× of that of Wisckey. As have
been discussed in Subsect. 3.5, each range-query almost read the whole TrieTable
since the key-value pairs are organized by write-order in every TrieTable. In
short range-query, KT-Store would only read one TrieTable in most case, while
RocksDB maybe only read several blocks. Since the I/Os cost most time, reading
the TrieTable in KT-Store would take much more time than reading several
blocks in RocksDB. As a consequence, KT-Store performs a little worse than
RocksDB in short range-query, but outperforms RocksDB in normal or long
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range-query as described in Subsect. 4.3. Moreover, KT-Store gets attractive
performance compared with Wisckey in Workload E.

5 Conclusion

In this paper, we propose KT-Store, based on a key-and-write hybrid order data
layout. KT-Store well balance the write and range-query performance. Extensive
evaluations demonstrate that KT-Store can simultaneously obtain encouraging
write and range-query performance: compared with key-order based RocksDB,
write performance is improved by 4.3 × −12.6×; compared with write-order
based Wisckey, KT-Store has 54.2 × −112.6× range-query performance. The
YCSB standard workload evaluation shows that KT-store balances RocksDB
and Wisckey well in various workload. In the future, we will dynamically extend
the trie and limit each TrieTable in a threshold size, which would make KT-Store
adapted to more workloads. We will also do some research to collect garbage.
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Abstract. In HPC systems, rich metadata are defined to describe rich
information about data files, like the executions that lead to the data
files, the environment variables, and the parameters of all executions,
etc. Recent studies have shown the feasibility of using property graph to
model rich metadata and utilizing graph traversal to query rich metadata
stored in the property graph. We propose to utilize GPU to process the
rich metadata graphs. There are generally two challenges to utilize GPU
for metadata graph query. First, there is no proper data representation
for the metadata graph on GPU yet. Second, there is no optimization
techniques specifically for metadata graph traversal on GPU neither.
In order to tackle these challenges, we propose GRAM, a GPU-based
property graph traversal and query framework. GRAM uses GPU to
express metadata graph in Compressed Sparse Row (CSR) format, and
uses Structure of Arrays (SoA) layout to store properties. In addition,
we propose two new optimizations, parallel filtering and basic opera-
tions merging, to accelerate the metadata graph traversal. Our evaluation
results show that GRAM can be effectively applied to user scenarios in
HPC systems, and the performance of metadata management is greatly
improved.

Keywords: Rich metadata management · Property graph
Graph traversal · GPU

1 Introduction

Graph structures are widely used in various domains to solve real problems, such
as friend recommendation in social networks where people are vertices and their
relationships are edges, or shortest path selection in digital maps where locations
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are vertices and routes connecting them are edges. Among all the graph struc-
tures, property graph [3] is one commonly used one, whose vertices and edges
are associated with arbitrary properties. Because of its richness in expressing the
graph entities and their relationships, the property graph has been used widely
in graph computing frameworks [13] and graph storage systems [1].

Recently, property graphs have been used in modeling metadata of large-scale
parallel computing systems [7–9]. Unlike traditional metadata management [24]
that relies on directory trees and inode data structure [22], property graph can
utilize graph structure to represent and manage various entities and their com-
plex relationships. This is particularly useful for the case where rich metadata like
provenance is recorded and managed. In addition, using graph model, complex
metadata queries can be easily expressed as graph traversal. To accomplish that,
GraphTrek [7], an asynchronous graph traversal engine providing high access
speed and supporting flexible queries, has been proposed and evaluated to show
the effectiveness of property graph in managing rich metadata in HPC systems.

Because of the large volume of information contained in rich metadata,
storing and querying them in property graph is still challenging. Although
many property graph databases have been proposed and developed in recent
years [2,4,17,23], they have limitations regarding speed and throughput during
managing rich metadata in performance critical usage scenarios, such as user
audit [9] and provenance query [21,25]. In these two scenarios, efficient rich
metadata querying is needed, which brings significant burden on modern CPUs,
particularly in computation speed and memory bandwidth. Harish et al. [14]
have found that many graph algorithms run faster on GPU, for example, the
Single Source Shortest Paths (SSSP) algorithm and Breadth-first search (BFS)
algorithm implemented on GPU can provide more than 100 times speedup. As
we have described before, queries on graph-based rich metadata can be eas-
ily mapped to level-synchronous graph traversal operations, with extra filtering
and path selection. This inspires us to cooperate GPU to further enhance the
performance of rich metadata management.

It is non-trivial to use GPU to accelerate graph-based rich metadata man-
agement. On the model side, it lacks a proper metadata graph representation on
GPU. On the algorithm side, the parallelism of graph traversal is largely lim-
ited by the super-step in level-synchronous traversal. In order to fully utilize the
potentials of GPU, new optimization techniques are required for graph traversal.

To this end, we propose GRAM, a GPU-based property graph traversal and
query framework for HPC rich metadata management. Our design focuses on
reducing memory access overhead and improving procedure efficiency and uti-
lization of GPU. Specifically, the amount of data processed by rich metadata
graph traversal could be very large due to the attached arbitrary properties.
Hence, GPU’s high memory bandwidth helps significantly in reducing the mem-
ory access latency and improving the efficiency of memory access. Furthermore,
since the data unit processed by property graph is independent, we can make
full use of GPU’s parallelism and storage resources to further improve the per-
formance.
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In GRAM, we arrange data using the Structure of Arrays (SoA) layout.
Specifically, the graph topological data (vertices and their connecting edges) are
represented using Compressed Sparse Row (CSR) which consists of three arrays;
the property data attached to vertices and edges are put separately in other
arrays. Through our property graph representation and layout, the metadata
management activities are translated into arrays operations. The property graph
traversal to query rich metadata is becoming a n-step iterative process. There
are two array operations in each step: detecting whether one of the properties
conforms to the filter criteria and gathering the vertices/edges with a qualified
label. In GRAM, these two operations on arrays are optimized by GPU, while
the complex relationships between the arrays are suitable for CPU to process.
In addition, we use parallel filtering and basic operations merging to optimize
the performance of GRAM. Our contributions in this study are three-fold:

– To the best of our knowledge, we are the first to utilize GPU for managing
graph-based rich metadata generated in HPC systems.

– We propose metadata graph representation on GPU, combining CSR graph
structure and SoA layout to represent graphs to represent and store rich
metadata information.

– We parallelize filtering and merge basic operations in GRAM, and experi-
mental results show that our design improves the performance of property
graph traversal and query in metadata management usage scenarios.

The rest of the paper is organized as follows. The design and implementation
details of GRAM are presented in Sect. 2, including overall architecture, meta-
data graph representation on GPU, metadata graph operations model on GPU,
metadata operations translating and GRAM’s optimizations. We evaluate the
performance of GRAM, and present the results in Sect. 3. Related work is given
in Sect. 4. Section 5 concludes the paper.

2 Design and Implementation

GRAM is designed to manage HPC rich metadata using GPU. In GRAM, the
rich metadata graphs are stored in arrays and the queries on rich metadata, i.e.,
the graph traversal operations are mapped to GPU operations on these arrays.
More design and implementation details will be discussed in this section. Specif-
ically, Sect. 2.2 introduces rich metadata graph representation on GPU. After
that, Sect. 2.3 states how rich metadata graph operations are modeled on GPU.
In addition, Sect. 2.4 presents the translation details of rich metadata manage-
ment and property graph traversal and query. Finally, Sect. 2.5 describes two
optimizations proposed in GRAM to enhance the rich metadata query perfor-
mance.

2.1 Overall Architecture

We design and implement GRAM, a GPU-based framework for HPC rich meta-
data management. GRAM is designed to support HPC rich metadata query
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through property graph traversal on GPU. The overall architecture of GRAM is
shown in Fig. 1. It includes four modules internally: Query Interface, Metadata
Translating, Query Engine, and Storage. Query Interface module receives user’s
metadata management requests, and forwards the requests to Query Engine
module. Query Interface module interacts with Metadata Translating module
through basic query operations. Metadata Translating module translates the
representation of the property graph and maps metadata to Storage module.
In this way, Query Engine can directly operate on arrays stored in the Storage
module. Storage return results to Query Engine for further processing. These
four parts work together to perform rich metadata graph traversal and query.

Fig. 1. Overall architecture of GRAM

The four components are designed in both GPU and CPU. Query Interface
and Metadata Translating module are expected to run on CPU. They prepro-
cess the rich metadata graphs before executing any operation on GPU. Users
submit their queries through a sequence of API calls to Query Interface mod-
ule. Query Interface module works as a coordinator with necessary functional
APIs to translates users’ queries into a sequence of basic query operations. These
basic query operations are then dispatched to the Metadata Translating module.
The Metadata Translating module handles the relationships between the entities
of the property graph. The Metadata Translating module and Query Interface
module collaborate together to translate the sequence of queries into metadata
operations on the two modules (Query Engine and Storage) running on GPU.

Storage module and Query Engine module are running on GPU, which play a
key role in reducing memory access overhead and improving procedure efficiency.
The Storage module uses arrays to describe information of rich metadata. In
addition, these arrays are abstracted by metadata graph representation on GPU,
which are arranged together in a contiguous memory chunk to reduce the time
of memory allocation, initialization, and management. In Query Engine module,
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the HPC rich metadata queries are turned into two basic array operations: the
detecting operation and the gathering operation, which are performed on arrays
stored in Storage module.

2.2 Metadata Graph Representation on GPU

As GRAM manages rich metadata by GPU-based property graph traversal and
query, a suitable graph representation is needed. In GRAM, we design metadata
graph representation with the GPU’s benefits in mind. It is well known that,
to take full advantage of GPU’s high memory bandwidth, a coalesced memory
access pattern is necessary, by which each cache line transmission contains more
data required by the concurrent threads and then transferred to register files
other than discarded. In other words, the data access instructions require less
data traffic from memory to cache and register files. Considering the efficient
and beneficial coalesced memory access pattern for GPU, we choose Structure of
Arrays (SoA) instead of Array of Structure (AoS) as the layout of the property
graphs, in which multiple arrays are used to hold the property values attached
to vertices and edges of the graph. Comparing with AoS, SoA allows coalesced
global memory accesses, which benefit GPU-based system. For the topological
data of the graph, the commonly used Compressed Sparse Row (CSR) format
is applied, simply because CSR format is easy to implement many graph algo-
rithms (i.e., metadata graph traversal) in our vertex-centric programming model.
Only CSR format can not meet our requirements for storing the properties of
metadata, so more arrays are required in our graph representation.
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Fig. 2. Metadata graph representation on GPU

Figure 2 shows a detailed example of the metadata graph representation. The
topology of the graph is described by array Edge ptr and array Edge dst which
construct the CSR structure. The property data including the IDs, names, types,
values for vertices and edges are grouped into the other arrays that each array
stores one simple data item for every vertice/edge. Importantly, these multiple
arrays in Storage module are arranged together in a contiguous memory chunk
to reduce the time of memory allocation, initialization, and management.
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Algorithm 1. Detect(Frontier, PropertySet, Predicate and Marks)
1: Marks ← empty
2: for each Item in Frontier do
3: if Marks.get(Item) == 0 then
4: P ← PropertySet.read(Item)
5: if Predicate(P) > 0 then
6: Marks.set(Item)

7: return Marks

Algorithm 2. Gather(Frontier, Marks, NextFrontier, Collector)
1: NextFrontier ← empty
2: ResultMarks ← empty
3: for each Item in Frontier do
4: if Marks.get(Item) > 0 then
5: Coll ← Collector(Item)
6: for each Result in Coll do
7: if ResultMarks.get(Result) == 0 then
8: ResultMarks.set(Result)
9: NextFrontier.put(Result)

10: return NextFrontier

2.3 Metadata Graph Operations Model on GPU

As described above, the HPC rich metadata queries are translated into property
graph traversals and finally mapped to array operations on GPU, which offers
significantly better performance due to its high parallelism. In this section, we
will introduce the array operations in GRAM’s Query Engine module. Specifi-
cally, traversal and query in metadata graph are generalized into two basic array
operations. By utilizing the array-based data layout, we focus on how the opera-
tions are performed on the arrays. Two types of basic operations are as follows:

– Detect whether properties conform to the filter criteria: During the
detection of entities, one or more properties need to be filtered based on
whether they conform to the criteria. Algorithm1 presents the filter method.
Different properties are filtered in a parallel or sequential manner. In addition,
multiple filter criteria of properties can form a step of detection. Whether to
parallelize the filtering depends on the procedure’s efficiency. In addition, the
multiple filters in each step is called combined filters. As shown in Fig. 3,
combined filters of 1-step detection consist of two filters, and combined filters
of 2-step detection consist of three filters.

– Gather the vertices/edges with a qualified label: The gathering oper-
ation collects all vertices conformed to the filter criteria into a new frontier
queue. Algorithm 2 shows how it works. The frontier queue may be a set of
edges or a set of vertices. The whole process is iterative and convergent, the
frontier queue is either the intermediate results to process in next iteration
or the correct results.
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Fig. 4. The processing of frontier array operations: detection and gathering on ver-
tex/edge frontier

It is an iterative process to query metadata by operations on arrays. Further-
more, each step is composed of a detection operation and a gathering operation.
Each iteration gets a new vertex/edge frontier queue. The detection and gath-
ering operation of each iteration are shown in the Fig. 4a and b. There may be
dependencies between steps of different iterations, but the data processed inside
each iteration are independent. The synchronization step is achieved in BSP
model. BSP operations leverage the parallelism of the GPU without any lock
operations.

2.4 Metadata Operations Translating

GRAM manages rich metadata in a new fashion by introducing two basic opera-
tions on arrays. In Dai’s previous research, GraphTrek [7] uses an asynchronous
property graph traversal to query metadata. It defines property graph traversal
operations based on an iterative query-building language. Several core methods
in Query Interface module are applied to manage rich metadata. Query Inter-
face module and Metadata Translating module cooperate to translate Graph-
Trek’s main traversal methods into corresponding operations on arrays men-
tioned above. This section describes the translation in detail.

– Vertex/Edge selector: v(), e(). The vertex selector v() selects a specific set of
vertices by setting a specific parameter, which represents the entry of property
graph traversal to manage metadata in HPC systems. The edge selector e()
selects a specific edge set from all the edges of a vertex by a specific label.
Both of these two methods are very important and can select a specific subset
based on the label of the vertex/edge. In the implementation of GRAM, these
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two selection methods are transformed to gather the vertices/edges with a
qualified label on vertex/edge frontier.

– Property filters: va(), ea(). These two property filters have three parameters,
property key, property values, and type of filter. Three types of filter include
EQ, IN, and RANGE. Because each entity can have more than one property,
multiple properties can be filtered by different property filters at the same
time. In the implementation on the GPU, each filter turns to detect whether
one of the properties conforms to the filter criteria.

Overall, metadata management is processed as graph traversal query, which
in turn is translated into a series of operations on the corresponding arrays on
GPU. The relationships between different entities and the storage schema for
entities and properties are maintained on the CPU and then queried during the
translation. After that, the main part of the query process which requires a large
amount of data accesses and computation is dispatched to the GPU as a number
of kernel functions launch that correspond to each operation on arrays. The CPU
part manipulates a small amount of data structures that would involve dozens of
to hundreds of successive random memory accesses, which could perform poorly
on the CPU due to the low parallelism. The remaining part is suitable for GPU
cause it can read and process the massive amount of data concurrently with its
high bandwidth and computation power.

2.5 GRAM’s Optimization

In this section, we describe two optimizations applied to the metadata manage-
ment in property graph traversal and query fashion. The experimental results
show that these two methods are effective. The design details are described as
follows:

– Parallel filtering. In the detection phase, there are multiple types of filter
criteria, which means that multiple properties of an entity are to be filtered.
The filter criteria can be chosen to process serially or concurrently. Multiple
filters are combined to detect concurrently. It is proved by our evaluations
that the efficiency of concurrently detecting on combined filters is higher than
that of serial selection.

– Basic operations merging. Metadata graph traversal and query is multi-step
convergent iterations. The iteration in each step is based on two basic oper-
ations, detecting whether a vertex’s property value conforms to some certain
values, and gathering all the entities to a frontier queue as the next processing
set. With the iteration of multiple steps merging, the performance of GRAM
is improved.

Considering the requirements of HPC rich metadata management use cases,
we design GRAM as graph traversal and query framework to manage rich meta-
data. The design and implementation of GRAM focus on managing rich meta-
data in a more efficient fashion.
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3 Evaluation

3.1 Experiment Environment and Datasets

Our experiments are conducted on a NVIDIA Telsa K20m GPU with 6 GB
main memory and 2688 CUDA cores. The GPU is installed on a machine with
a 2.6 GHz Intel Xeon E5-2670 CPU and 64 GB memory.

To evaluate the metadata management capability of GRAM, we conduct
experiments with GRAM on synthetic graphs. Our property graph datasets are
generated as power-law metadata graphs by a RMAT graph generator [6], and
during the generation, we also refer to Darshan log files [5]. In the graphs, ver-
tices represent three kind of entities, user, job, and data files in Darshan log
files, whereas edges reflect the relationships between them. We choose the same
parameters as used in Dai’s previous work [7] for the RMAT graph generator,
that is a = 0.45, b = 0.15, c = 0.15, d = 0.25 for distribution parameters, 20 for
graph scale and 16 for edge factor. The generated power-law graphs have mod-
erated out-degree skewness, and each contains 220 vertices and 16 ∗ 220 edges.
Besides the graph topological data, we also generate several sets of uniformly
distributed property values for both vertices and edges. When evaluating the
8-step graph traversal query, 8 sets of properties will be generated and used in
each step for corresponding vertex and edge property checking.
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Fig. 5. The each step time cost of 8-step metadata graph traversal with different filters

3.2 Evaluating on Graph Traversal with Filters

As described before, graph-based rich metadata management can be easily
mapped to level-synchronous graph traversal operations, with extra filtering and
path selection, which leads to more memory accesses and filtering computations
than the traversal of normal graphs. Compared to traditional level-synchronous
graph processing, using metadata graph to manage rich metadata requires to
improve the performance of rich metadata queries through the high parallelism
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and high memory bandwidth of GPU. We compare the metadata queries on
CPU and the metadata queries on GPU without considering the user scenarios
in HPC systems. The metadata graph traversal begins with filtering all entities
in this part of experiment. The number of filters determines the number of enti-
ties to process in next step. Furthermore, the number of entities is decreasing
with the number of filters increasing. As shown in Fig. 5, we change the number
of filters in each step in metadata graph traversal. Figure 5a shows each step
time cost of 8-step metadata graph traversal with 1 filters. The evaluations on
CPU are conducted by 16 threads. As shown in Fig. 5a, the time cost of meta-
data queries on CPU is 4.44 times lager than the time cost of metadata queries
on GPU on average. In addition, with the number of filters increasing to 2, as
shown in Fig. 5b, the ratio is 6.43 on average. The efficiency of metadata graph
traversal and query on GPU is better with more filters.

While serving metadata queries by property graph traversal, some properties
will be filtered. As the evaluation results show, CPU has limitations to manage
rich metadata in use cases in HPC fields. GPU’s high memory bandwidth helps
significantly in reducing the memory access latency and improving the efficiency
of memory access. In addition, GPU’s parallelism and storage resources can
further improve the performance of metadata management.

3.3 Metadata Management Performance

We evaluate the performance of GRAM on the synthetic graph datasets. As we
described above, HPC rich metadata management requests are translated into
metadata graph traversal and query, the features of which are determined by rich
metadata management use cases. Unlike level-synchronous traversal described
in Sect. 3.2, rich metadata management use cases begin with a certain vertex,
and the number of entities in frontier queue is increasing with the depth of the
traversal hierarchy. The level of metadata traversal is not deep depending on
the HPC metadata management scenarios, and not less than 3 steps in most
cases. Actually, Dai’s previous work [7] has found that rich metadata traversal
are no more than 8-step graph traversal typically. Therefore, we perform 1 to 8
step metadata graph traversal to audit user in both GRAM-CPU and GRAM-
GPU. The filtering probability and the scale of graph dataset in each step, which
greatly affect the performance of the metadata management, are determined by
the variation of user audit. The performance of GRAM’s metadata traversal
is shown in Fig. 6a. The x-axis of Fig. 6a illustrates the traversal steps, while
the y-axis denotes to the total traversal time. If the traversal level is low, the
number of entities to process is relatively small, and the time cost is too small to
omit. Overall, we can see that GRAM based on GPU can significantly improve
the performance of traversal performance compared to graph traversal based on
CPU.

As described in Sect. 2.3, it is an iterative process to manage metadata by
operations on arrays. Furthermore, one or more properties need to be filtered
according to the criteria. We use multiple detections to realize filtering paral-
lelism. The number of filters influence the traversal performance of GRAM, so
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Fig. 6. The performance of rich metadata management

we execute the performance of graph traversal by changing the number of filters.
As shown in Fig. 6b, we set the number of filters 2, 4, and 8 respectively, and the
corresponding time cost grows with the increment of filter number. The GPU’s
advantage becomes more obvious when the filter number increases. We do not
consider the filter number more than 8 due to usage scenarios.

4 Related Work

Using property graph to manage rich metadata is firstly proposed in Dai’s pre-
vious work [9], and they have done many researches [7,8] in asynchronous prop-
erty graph traversal for rich metadata management in HPC systems. Our work
also translates rich metadata into one property graph, and uses property graph
traversal and query to manage metadata. Dai’s previous work [7,8] have focused
on an asynchronous property traversal to manage metadata. In fact, the amount
of data processed by metadata property graph traversal is large and property
graph traversal requires more memory access. Our GPU-based property graph
traversal framework for HPC rich metadata management can deal with the prob-
lems better.

Diverse property graph databases have been developed to manage property
graph in recent years, such as Neo4j [23], DEX [2], G-Store [17], and Titan [4].
These property graph databases have been proposed to conduct property graph
traversal and query, but the performance of these property graph databases
in rich metadata management is limited. For example, Titan stores property
graphs based NoSQL storage systems like HBase [15] or Cassandra [18], in which
all vertices are mapped to different rows; edges and properties are mapped to
separate columns in the rows of the related vertices. In fact, because of HPC
system’s requirements of rich metadata management, traversal and query for
property graphs need to be more efficiently supported.

There are many distributed graph processing frameworks. The search struc-
ture of Pregel [19], PowerGraph [12], GraphX [13] and other distributed graph
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processing frameworks is level-synchronous, just like breadth first search struc-
ture. These distributed graph processing frameworks have focused on different
problems, while we focus on rich metadata management in HPC systems.

Harish and Narayanan [14] have given the first CUDA implementations of
various graph algorithms. Merrill et al. [20] have implemented a scalable high-
performance BFS graph traversal using CUDA. Their concern has been the opti-
mization strategies of the GPU graph traversal, while our focus is the optimiza-
tion strategies of property graph traversal and query on the GPU. Totem [11] is
a CPU-GPU hybrid graph processing engine that overcomes the GPU memory
limitations by assigning workloads on CPU cores and GPU cores. MapGraph
[10] is a parallel programming framework on GPU, using dynamic scheduling
and two-stage decomposition strategy to balance workload thread-divergence
problems. CuSha [16] is a user-defined vertex-centric graph processing frame-
works that can process large-scale graphs on a GPU. The concern of these graph
processing frameworks are not property graph, while HPC metadata property
graph processing is more challenging.

5 Conclusions

In this work, we manage rich metadata in property graph traversal and query
fashion. Proper graph representation for the metadata graph on GPU is needed.
Furthermore, there is lack of optimization techniques specifically for graph
traversal to utilize the potentials of GPU. We propose GRAM, a GPU-based
property graph traversal framework for HPC rich metadata management. GRAM
uses property graph representation on GPU, by which metadata management
is transformed to operations on arrays. In addition, we use two optimizations,
parallel filtering and basic operations merging, to accelerate graph traversal.
The performance comparison of metadata management confirms that GRAM
achieves better performance than metadata management on CPU. In addition,
our GPU-based graph traversal and query method achieves better performance
than the traditional level-synchronous approach.
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Abstract. Pouch latent tree models (PLTMs) are a class of proba-
bilistic graphical models that generalizes the Gaussian mixture models
(GMMs). PLTMs produce multiple clusterings simultaneously and have
been shown better than GMMs for cluster analysis in previous studies.
However, due to the considerably higher number of possible structures,
the training of PLTMs is more time-demanding than GMMs. This thus
has limited the application of PLTMs on only small data sets. In this
paper, we consider using GPUs to exploit two parallelism opportunities,
namely data parallelism and element-wise parallelism, for PTLMs. We
focus on clique tree propagation, since this exact inference procedure is
a strenuous task and is recurrently called for each data sample and each
model structure during PLTM training. Our experiments with real-world
data sets show that the GPU-accelerated implementation procedure can
achieve up to 52x speedup over the sequential implementation running
on CPUs. The experiment results signify promising potential for further
improvement on the full training of PLTMs with GPUs.

Keywords: GPU acceleration · Clique tree propagation
Pouch latent tree models · Parallel computing
Probabilistic graphical models

1 Introduction

Clustering [7,18] is a fundamental problem in machine learning. For soft cluster-
ing, the Gaussian mixture models (GMMs) are often used [23]. However, a GMM
contains only one latent variable and can produce only a single clustering. This
limitation may make GMMs not suitable for modern clustering applications,
especially when the data sets contain many attributes and are multifaceted.

The pouch latent tree models (PLTMs) [28,29] have been proposed as a gener-
alization of GMMs to allow multiple latent variables. They can produce cluster-
ings on multiple facets and are more versatile for data of higher dimensions. They
have been evaluated on several real-world data sets and have been shown better
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than GMMs in terms of model quality and clustering performance [27,29]. How-
ever, the structure learning of PLTMs can be more time-demanding than GMMs
due to the considerably larger number of possible model structures. For GMMs,
the structure learning typically involves only the estimation of the number of
the mixture components. In contrast, the structure learning of PLTMs involves
determining the number of latent variables, the cardinalities of the latent vari-
ables, and the connections among the latent variables and the observed variables.
The onerous structure training of PLTMs may pose a serious challenge for apply-
ing PTLMs on large data sets. Consequently, previous studies considered data
with less than 100 attributes and 2000 samples [27,29]. Those sizes of data sets
may be regarded as at most moderate in the Big Data Era.

In recent years, graphical processing units (GPUs) have become more preva-
lent in scientific computing. They have been demonstrated to achieve significant
speedup in different artificial intelligence applications that involve high dimen-
sional data, such as those in the fields of computer vision [16,33], constraint
satisfaction [5,15], and clustering [1,4,25,31].

In this paper, we consider the possibility of using GPUs to accelerate the
training of PLTMs. We focus on the clique tree propagation algorithm for per-
forming exact inference during the training process. The inference task is used
for computing the likelihood and marginal probabilities on a data set during
training. It is the most strenuous one and needs to be called recurrently for
each data sample and each model structure. To evaluate the performance of the
GPU-accelerated inference procedure, we use it to compute likelihood of a given
PLTM on a given data set. This computation requires running inference on each
data sample and exhibits resemblances to the other computationally intensive
steps for PLTM training. Our study thus constitutes an important first step
for using GPUs to accelerate the whole training process of PLTMs to make it
feasible for application on larger data sets.

The rest of the paper is organized as follows. First, we review PLTMs and the
inference procedure in Sects. 2 and 3. Then, we describe the GPU-accelerated
inference procedure in Sect. 4. Next, we evaluate the performance of the proce-
dure in Sect. 5. After that, we discuss related work in Sect. 6 and conclude the
paper in Sect. 7.

(a) (b)

Fig. 1. (a) An example of PLTM. The observed variables are shown in shaded nodes.
The numbers in parentheses show the cardinalities of the discrete variables. (b) A
GMM depicted as a PLTM.
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2 Pouch Latent Tree Models

A pouch latent tree model [28,29] is a tree-structured probabilistic graphical
model. In the model, each internal node represents a latent variable, and each leaf
node represents a set of observed variables. All the latent variables are discrete,
whereas all the observed variables are continuous. A leaf node, also called pouch
node, may contain a single observed variable or several of them. An example is
shown in Fig. 1a. In the example model, X1–X9 are continuous observed variables
and Y1–Y4 are discrete latent variables. For technical convenience, PLTMs are
often treated as Bayesian networks [26].

Consider a PLTM with observed variables X and latent variables Y . The
dependency of a discrete latent variable Y on its parent Π(Y ) is characterized
by a conditional discrete distribution P (y|π(y)). Let W ⊆ X be the variables
of a pouch node with a parent node Y = Π(W ). The models assume that,
given a value y of Y , W follows the conditional Gaussian distribution P (w |y) =
N (w |μy,Σy), with mean vector μy and covariance matrix Σy. Denote the sets
of pouch nodes and latent nodes by W and Y, respsectively. The whole model
defines a joint distribution over all observed variables X and latent variables Y

P (x ,y) =
∏

W∈W
P (w |π(W ))

∏

Y ∈Y
P (y|π(Y )). (1)

Given a model structure m, the parameters can be estimated by the EM-
algorithm [13], which is well-known for estimating parameters of models with
latent variables. When the model structure is unknown, a greedy search that
aims to maximize a model selection score can be used [29].

The GMMs can be considered as a special case of the PLTMs. This is illus-
trated by the example GMM depicted in Fig. 1b. In the figure, all the observed
variables X1–X9 in the GMM are drawn as a pouch node, which has a multi-
variate normal distribution conditional on its parent latent variable Y1.

Similar to GMMs, PLTMs can be used for clustering. After training PLTMs
on a given data set, the data can be partitioned using each of the latent variables
Y . Each data point d can be classified to one of the states of Y by computing
the posterior probability P (y|d) based on the joint distribution defined by Eq. 1.

3 Clique Tree Propagation

Suppose the values of some variables E ⊆ X are observed in a data sample.
Inference refers to the computation of the posterior probability P (q |e), where
q are the values of some variables Q ⊆ X ∪ Y .

Inference is a core computation task for PLTMs. It is used in the E-step of the
EM-algorithm to estimate the values of the unobserved variables. It is also used
to compute the cluster assignments after training PLTMs for cluster analysis.
The inference task is time-demanding. It is a strenuous task and is recurrently
called for each data sample and each model structure during PLTM training.
Therefore, it is the first target of optimization for streamlining PLTM training.
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Inference can be done on PLTMs similarly as the clique tree propagation (also
known as belief propagation or junction tree algorithm) on conditional Gaussian
Bayesian networks [20]. We describe the main steps of the inference algorithm
and the numerical operations below. Readers are referred to [29] for more details
on inference on PLTMs and to [11,12,20] for the general clique tree algorithm.

Construction of Clique Trees. Clique tree propagation requires converting the
original model to a structure called clique tree T to organize the computation.
Construction of clique trees is simple due to the tree structure of PLTMs. To
construct T , a clique C is added to T for each edge in M , such that C =
V ∪ {Π(V )} contains the variable(s) V of the child node and variable Π(V )
of its parent node. A separator node is added for discrete node in the PLTM. It
is used to connect the two clique nodes containing the separator variable. The
resulting clique tree contains two types of cliques: discrete cliques with at most
two discrete variables and mixed cliques with a discrete variable and multiple
continuous variables.

Propagation. After a clique tree is constructed, propagation can be carried out
on it. The clique tree propagation consists of four main steps: initialization of
cliques, incorporation of evidence, message passing, and normalization.

Step 1 initializes the clique tree with the model parameters. The mean vectors
and the covariance matrices of a pouch node are copied to its corresponding
mixed clique. Similarly, the conditional probability table of a discrete node is
copied to the corresponding discrete clique. Note that the root node does not
have a corresponding clique. Its marginal probability is multiplied to one of the
cliques corresponding to its child variables.

Step 2 incorporates the evidence (observed values) in the potentials. For
brevity, here we consider only the case where there is no missing value in the
data. Consider a pouch node with variables W and with observed values e .
Furthermore, denote its parent variable by Y . This step involves computing the
probability values P (y|W = e) = N

(
e |μy ,Σy

)
, where N

(
·|μy ,Σy

)
denote

the normal distribution conditional on the value of Y .
Step 3 performs a series of computations, each on a small part of the clique

tree, as represented by the process of message passing. Since the clique tree does
not contain any loop, exact inference can be performed by message passing in
two phases. In the first phase, messages are passed from the leaf clique nodes to
the clique corresponding to the root node of the PLTM. We denote that clique as
pivot. In the second phase, messages are passed from the pivot along the opposite
direction back to the leaf nodes.

For the mixed cliques, the messages to be sent from the mixed cliques have
already been computed in step 2. The message passing between discrete cliques
requires performing multiplication and division between potential tables of two
variable and message of one variable. It also requires marginalizing out a variable
to compute the message of one variable from a potential table with two variables.
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After message passing is completed, the likelihood for a data sample can
be determined from the pivot clique. The likelihood is equal to the sum of the
potential entries of the pivot clique.

Step 4 normalizes the clique potentials by multiplying each entry by a par-
ticular constant. It converts the potential values to proper probability values.
This entails dividing each entry of the potential tables by the likelihood value.

Complexity. Let n be the number of nodes in a PLTM, c be the maximum
cardinality of a discrete variable, and p be the maximum number of variables in
a pouch node. The time complexity of the inference is dominated by the steps
related to message passing and incorporation of evidence on continuous variables.
The message passing step requires O(nc2) time, since each clique has at most two
discrete variables due to the tree structure. Incorporation of evidence requires
O(ncp3) time. Although the tree structure of PLTMs allows tractable inference,
with time complexity linear to the number of nodes, the inference can still needs
much time as it has to be performed many times during PLTM training.

Table 1. Data units for performing inference for each data sample. p denotes the
number of variables in a pouch node. c and c′ denote the cardinalities of the variables
of the node and its parent node, respectively, in the PLTM.

Node type in PLTM Node type in
clique tree

Data type Number of entries

Continuous node Mixed clique Mean vector p× c′

Covariance matrix p2 × c′

Discrete node Discrete
clique

Potential table c× c′

All node Separator Message to parent c′

Message to children c

4 Implementation for GPUs

In this section, we describe how to adapt the inference of PLTMs for running
efficiently on GPUs. We refer to the CPU as host and the GPU as device below.

Data Representation. The original implementation of PLTMs1 used the object-
oriented approach to represent the data units as objects. This poses a challenging
for GPU programming. Instead, we represent the data units as arrays for easy
access by the GPU kernel functions. The data units required for performing
inference are shown in Table 1. Each node in a PLTM has a corresponding clique

1 https://github.com/kmpoon/pltm-east.

https://github.com/kmpoon/pltm-east
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node and a separator node in the clique tree.2 The third column describes the
type of data associated with each clique node. The fourth column indicates the
number of entries for each type of data.

Device Memory. The data units in Table 1 are used to store interim computation
results during inference. Therefore, a clique tree (with cliques and separators)
has to be allocated for each data sample. The data units are allocated at the
beginning of likelihood computation so that they are available for the inference
on multiple data samples in parallel. The memory is allocated in a single batch
to minimize the number of API calls. We also allocate an array on the device
for storing the likelihood results computed during inference.

Host-Device Memory Transfer. In the first step of inference, the clique tree needs
to be initialized by the parameters of the model. We perform initialization on the
host and then transfer the array data representing the initialized clique tree to
the device. We transfer only the data corresponding to one instance of the clique
tree. The data is then copied to the arrays representing the other instances of
clique trees for all data samples on the device. This process saves the amount of
data needed to be transferred between host and device. It also simplifies the way
to transfer the model parameters to the device as the parameter values are now
contained in an array rather than in objects. Besides, the data units representing
the clique tree, the data matrix is also transferred to device in a single batch at
the beginning to minimize the number of transfers.

Parallelism. Most computation of clique tree propagation for PLTMs is done
during the two steps for incorporating evidence and message passing. Such com-
putation involves the calculating multiple entries in a target potential or message.
Those entries of a potential or message can be calculated in parallel. We refer
to this parallelism as element-wise parallelism [36].

However, due to the tree structure of PLTMs, the number of entries of a
potential or message is usually small compared to general Bayesian networks.
The parallel computation of those entries may not be sufficient to utilize all
GPU cores. For example, suppose the latent variables in a PLTM has at most
10 states. Then, the number of entries of a message is at most 10. This is much
smaller than the number of cores on a GTX 1080 Ti GPU (3584).

To fully utilize the massive computation power in GPUs, we need to consider
other parallelism opportunities. When the likelihood is being computed, the
clique tree propagation is performed on each sample independently. Hence, they
can be performed in parallel. This form of parallelism is referred to as data
parallelism. As a comparison, the number of samples we used in the experiments
can be at most 2310. With both data parallelism and element-wise parallelism,
the GPU cores can be better utilized.

2 An exception is that the root node sometimes does not have a separate clique node.
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Host-Device Coordination. Compared with CPUs, GPUs can perform parallel
computation very efficiently. However, they have fewer programming language
support and programming on them can be tedious. Therefore, we program on
the CPUs to mainly determine the sequence of computation and to delegate the
highly parallelizable tasks to GPUs. For example, message passing is conducted
one node at a time since the message computation needs to follow the aforemen-
tioned scheme of flow. We use the host to determine the sequence of the message
passing and then invokes the kernel calls for computing the messages for each
node. The kernel call is run with multiple threads on different data samples and
different elements of messages in parallel.

Device-Host Memory Transfer. The computed likelihood values of the data sam-
ples are stored in an array on the device after the clique tree propagation. The
array is transferred to the host and the values are then multiplied together on
the host to obtain the final likelihood value on the whole data set.

It is worthwhile to note that the data structure storing the interim results
do not need to be transferred back and forth between the host and the device.
This reduces the transfer cost. The same situation also applies for the EM-
algorithm. Only the final parameter estimates need to be transferred back to
the host. The intermediate values can be kept in the device memory during
the different iterations of EM steps. This show one resemblance between the
inference procedure and the full PLTM training.

Implementation. We implemented the inference method based on the CUDA
framework [30]. We used the Scala language for host programming and the JCuda
package3 as Java bindings for CUDA. The Java ecosystem was used to reduce
the coding effort since the original implementation was written in Java.

Table 2. Descriptions of real-world data sets from the UCI repository used in the
experiments.

Data set #Attributes #Classes #Samples

glass 9 6 214

image 18 7 2310

ionosphere 33 2 351

vehicle 18 4 846

wdbc 30 2 569

wine 13 3 178

yeast 8 10 1484

zernike 47 10 2000

3 http://www.jcuda.org.

http://www.jcuda.org
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5 Experiments

To evaluate the performance of the GPU-accelerated inference method, we use it
to compute likelihood of a given PLTM on a given data set. We ran it using real-
world data sets in our experiments. We used the same models and data sets in
[29] to estimate the actual improvement in practice. Table 2 show the properties
of the data sets used. The EAST algorithm [29] were used to train PLTMs on
those data sets.

Three different implementations of the clique tree propagation were used in
the experiments. The first implementation runs sequentially on CPUs. It serves
as a baseline for comparison. The second one performs inference on different
data samples in parallel on CPUs. The last one uses the GPUs for acceleration
as described previously. The experiments were conducted on a Linux computer
with a Xeon E3-1245 v5 CPU and a GeForce GTX 1080 Ti GPU. The CPU has
fours cores (eight threads) running at a base frequency of 3.5 GHz. The GPU has
28 streaming multiprocessors with 3584 CUDA cores running with a maximum
clock rate of 1.6 GHz.

Table 3. Average elapsed wall time in milliseconds (ms) for computing the likelihood of
PLTMs on real-world data sets using different implementations of clique tree propaga-
tion, including the sequential version running on CPUs, the parallel version running on
CPUs, and the accelerated version running on GPUs. The speedups over the baseline
sequential version are shown in parentheses.

Average running time (ms)

CPU-sequential CPU-parallel GPU

glass 8.62 3.89 (2x) 1.42 (6x)

ionosphere 48.37 14.67 (3x) 2.76 (18x)

image 1421.30 290.14 (5x) 27.52 (52x)

vehicle 169.90 41.54 (4x) 4.89 (35x)

wdbc 143.04 37.77 (4x) 3.28 (44x)

wine 7.54 2.94 (3x) 1.44 (5x)

yeast 50.74 15.06 (3x) 2.07 (25x)

zernike 2655.91 576.26 (5x) 97.75 (27x)

We measure the performance of the three implementations using the elapsed
wall time for likelihood computation. We report the time averaged over 100
repetitions. The experiments first ran 20 repetitions at the beginning to allow the
just-in-time compiler of the Java Runtime to come into force. Those repetitions
were not included for time reporting.

Table 3 reports the average running time for one likelihood computation in
milliseconds. The results show that the GPU acceleration could achieve 5x to
52x speedups over the baseline sequential version. It also attained 2x to 12x
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speedups over the parallel version running on CPUs. The higher speedups over
the sequential version were obtained on data sets with larger number of samples
(e.g. image, vehicle, wdbc, yeast, and zernike). This can be explained by the
fact that the larger number of samples provide better opportunity for exploiting
data parallelism by GPUs.

The considerable speedups shown above has demonstrated that the GPUs
can be effective in accelerating the inference task. Since the other computation-
ally intensive tasks in the PLTM training procedure show similar parallelism
opportunities as the likelihood computation task, our results signify the promis-
ing potential for further improvement on the full training of PLTMs with GPUs.

Table 4. Proportion of GPU activities and overall running time used for the incorpo-
ration of evidence routine.

% of GPU activities % of Overall time

glass 64.81% 3.02%

ionosphere 82.46% 8.07%

image 98.94% 86.13%

vehicle 97.10% 46.26%

wdbc 84.92% 15.74%

wine 71.70% 3.32%

yeast 32.71% 1.49%

zernike 99.60% 94.25%

To identify possible bottlenecks of the current GPU implementation, we used
the tool nvprof provided in the CUDA Toolkits to profile different kernel calls.
Table 4 lists the proportion of GPU activities and overall running time spent on
the incorporation of evidence routine. We see that this task constituted most of
the GPU activities except on the yeast data set. It even accounted for 86% and
94% of the overall running time on image and zernike, respectively. The two
data sets happened to take the longest running time.

To understand this phenomenon, recall that the incorporation of evidence
routine for a pouch node has a time complexity linear to the cardinality of its
parent variable and cubic to the number of the variables in the pouch node. We
compare the model properties on four data sets with similar number of attributes
in Table 5. We see that the models for image and zernike both have a large
pouch node with 10 and 16 variables, respectively. The problem is exacerbated
by the high cardinality of the parent variables of those two pouch nodes. The
PLTM for wdbc also has a large pouch node with 10 variables. However, that
node has a smaller parent cardinality and the model has small pouch size on
average. Hence, the incorporation of evidence routine was less significant on
wdbc. Future study may consider how to tackle this bottleneck to make PLTMs
more efficient on larger data sets.
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Table 5. Properties of PLTMs on four data sets. The average and maximum number of
variables in a pouch node are listed in the second and third columns, and the cardinality
of the parent variable of the pouch node with maximum size in the fourth column.

Average
pouch size

Maximum
pouch size

Parent
cardinality

ionosphere 4.6 7 3

image 3.6 10 11

wdbc 3.0 10 5

zernike 7.8 16 6

6 Related Work

Several works used GPUs to speed up the EM-algorithm for parameter esti-
mations [3,19,22]. They exploited the innate data parallelism due to the inde-
pendent computation for different data samples. However, they considered only
GMMs. The inference procedure on GMMs is simpler than PLTMs.

Some works used GPUs for belief propagation on Bayesian networks.
Element-wise parallelism and arithmetic parallelism was exploited for infer-
ence [36] and a statistical model was further proposed for optimizing the GPU
parameters [37]. Another work formulated the inference procedure in terms
of operations on sparse matrices [6]. Existing matrix packages utilizing GPU
computation (e.g. PyTorch) were then used to run the inference. Some stud-
ies used better memory layout and better scheduling among memory transfers
and works to improve the inference performance on GPUs [5,15]. Some works
studied belief propagation on Markov Random Fields used for stereo processing
on GPUs [14,17,33]. They considered an approximate inference method that
requires passing messages to the same nodes multiple times.

The above methods on inference usually achieve significant speedup only
when the potential tables have a large number of entries. However, due to the
tree structure in PLTMs, the parallelism exploited by those methods may not
be as effective on PLTMs. Besides, our work considered data parallelism that
were not available as those methods ran inference on only a single data sample.

PLTMs were proposed as a generalization of the latent tree models (LTMs).
The LTMs [34] have discrete observed variables, in contrast to the continu-
ous observed variables in PLTMs. The LTMs have found numerous applications
such as density estimation, multidimensional clustering, spectral clustering, and
topic modeling [24,35]. Attempts have been made to speed up the training of
LTMs. Spectral methods [2] and Progressive EM [9] have been proposed for
faster parameter estimation. Heuristics were proposed to guide the structure
learning [10,21,32] and Stepwise EM was used to reduce the number of samples
involved in computation [8]. Those attempts did not utilize any parallelism for
GPUs. On the other hand, their acceleration techniques can possibly be com-
bined with our proposed method to achieve higher speedups.
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7 Conclusion

In this paper, we show how to use GPUs to accelerate the clique tree propaga-
tion algorithm for PLTMs. We use the likelihood computation task to evaluate
the performance of the inference procedure. The experiment results demonstrate
that substantial speedups (up to 52x) can be achieved. As the other computa-
tionally intensive tasks in the PLTM training procedure show similar parallelism
opportunities as the likelihood computation task, our results signify promising
potential for further improvement on the full training of PLTMs with GPUs. The
GPU acceleration techniques discussed in this paper can be crucial in applying
PTLMs on massive data sets.
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Abstract. Resilience/fault-tolerance has become a key challenge for large-scale
parallel systems. To ensure reliability of high performance computing systems,
various kinds of techniques have been proposed, such as hardware-level fault-
tolerance, checkpointing, replication, algorithm-base fault-tolerance, etc. There
are also many software systems to monitor and handle system-failures, e.g.
management and job-scheduling system of HPC systems. To evaluate the
effectiveness of these systems, it is necessary to provide some kind of tool to
inject failures in a HPC system. This paper proposes HPC-SFI, a system-level
fault injection tool for HPC systems. Basically, HPC-SFI can generate three
kinds of system-failures in a HPC system including in-node faults, failure in the
interconnection network and failure of storage/parallel-file system. In addition,
HPC-SFI can inject system-faults in pseudo-random model according to pre-
defined parameters and probabilities. Preliminary experimental results demon-
strate effectiveness of the tool.

1 Introduction

With the scaling up of high performance computers in recent years, resilience, or fault-
tolerance, has become a key challenge. Currently, top-ranking supercomputers gener-
ally have tens of thousands of processors, e.g. the Summit [1] has 8,712 processors and
26,136 GPUs, while the number of processors in the Sunway TaihuLight [1] is 40,960.
Along with the increasing of system scale, hardware/software-failures occur more
frequently. Statistics show that the MTBF (mean time between failure) of current most
powerful supercomputers has reduced to several hours.

To ensure reliability of high performance computing systems, various kinds of
techniques have been proposed, such as hardware-level fault-tolerance, checkpointing,
replication, algorithm-base fault-tolerance, etc. There are also many software systems
to monitor and handle system-failures, e.g. management and job-scheduling system of
HPC systems. To evaluate the effectiveness of these systems, it’s necessary to provide
some kinds of tools to generate various kinds of failure in HPC systems. However,
current fault injection tools either focus on injection of soft-errors and their influences
over high-level applications, or inject system-level failure in emulated environments
(e.g. virtual machines) to guarantee flexible control over the system.

This paper proposes HPC-SFI, a system-level fault injection tool for HPC systems.
Unlike current fault injection tools, our HPC-SFI inject hardware/software-failures in

© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018
F. Zhang et al. (Eds.): NPC 2018, LNCS 11276, pp. 103–113, 2018.
https://doi.org/10.1007/978-3-030-05677-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05677-3_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05677-3_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05677-3_9&amp;domain=pdf
https://doi.org/10.1007/978-3-030-05677-3_9


real physical systems. Therefore is more suitable for machine vendors and developers
of fault-tolerant-related system software to evaluate the effectiveness of their fault-
tolerant mechanisms.

Main characteristics of HPC-SFI include:

(1) HPC-SFI can inject three kinds of failure to a HPC system: in-node faults, failure
of the interconnection network and failure in storage/parallel-file-system. Typical
in-node faults include processor halt, memory error, network interface/disk failure
as well as the system halts.

(2) HPC-SFI cannot only inject deterministic failure in a HPC system, but also
generate failure in pseudo-random model according to pre-set parameters and
probabilities, which are more approximate to actual systems.

(3) The injected failure can be recovered after a predefined time period.
The rest of this paper is organized as follows. Section 2 discusses our methods of
fault-injection; Sect. 3 introduces architecture of the system and implementation
detail. Section 4 presents preliminary experimental results; Sect. 5 discusses
related work and the paper is concluded in Sect. 6.

2 Approaches

2.1 Types of Failures

Possible hardware/software faults or failure in high performance computer systems are
diverse. To make things simple, our HPC-SFI focuses on system-level failure, which
means under this kind of failure, part or entirely of the system cannot work correctly.
These failure either occur inside computing nodes, or outside the nodes, i.e. in inter-
connection network or storage system.

Based on the above discussion, our HPC-SFI considers three kinds of failures,
described as follows:

(1) In-node faults/failures
In-node faults/failures can be further divided into faults/failures in a different

component of the node, e.g. processors, memory, network interface card, etc. In
addition, crash-down of an entire node should also be considered.

(2) Failure of interconnection network
This kind of failure either occurs in network cable or in switches. Obviously it will

cause communication errors in multiple nodes.

(3) Failure of storage or parallel file system
Current high performance computers generally use dedicated storage systems

together with parallel file systems to provide high-throughput I/O and shared storage to
parallel applications running in different nodes, while the in-node hard-disk just used as
system startup. Failure of storage or parallel file system may occur in various com-
ponents of the storage system or dedicated I/O nodes, and will influence file-accesses of
computing nodes.

104 Y. Wang et al.



2.2 Injection Methods

Different HPC systems have different hardware configurations, and generally come
from different vendors. As a software tool, it is difficult for HPC-SFI to obtain controls
over dedicated equipment such as interconnection switch or RAID array. In other
words, some kinds of failures cannot be generated directly, as a substitution, we
generate “effect” of the corresponding failure, e.g. failure of a switch will cause
communication interruptions on all the nodes that connected to the switch, failure of
storage or parallel file system will cause the corresponding file volume mounted to file
systems of each node unable to access.

Table 1 shows phenomenon and injection methods of failure supported by HPC-
SFI. As shown in the table, the in-node fault injection acts as the basis of the system,
because the other two types of failures, the failure of interconnection network and
storage system, are implemented upon the in-node fault injection, that is, inject failures
in multiple specific nodes simultaneously.

As for in-node fault injection, actually most of the in-node faults/failures can be
generated using Linux shell commands except memory-fault injection, which is
implemented in two forms: i. a kernel module which can access entire memory space;
ii. a user-level interface which can be invoked by applications to modify its own data.

Another problem that needs to be solved is the recovery after the failure injection.
Considering the system scale of current HPC systems, it is impractical to reboot each
node after it is injected faults/failures, instead, the node must be recovered to its
original state after a fault injection. Due to that most failures are generated using shell

Table 1. Failure phenomenon and injection methods

Kind of
failures

Component Phenomenon Injection method

In-node
fault/failure

Entire node System halt Halt the system by shell
commands

Processor 1-n processor (cores) stop
working

Process forcibly consumes
processor resources

Memory Contents of memory units error Modify the specified
memory content

Network
interface

Communication error Disable HBA card by shell
commands

In-node
fixed-disk

Disk error Destroy the super block of
the disk partition

File
volume
access

Volume access error Destroy the disk file
resources

Failure of interconnection
network

Communication interruptions in
all of the related nodes

Disable HBA cards in all
of the related nodes

Failure of storage or
parallel file system

File volume access error in all
of the related nodes

Destroy parallel file
system
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commands, it is easy to recover under the control of the system. The only one failure
that need special treatment is the network-related failures, after the HBA card or NIC
card is disabled, the node becomes isolated and cannot receive later recovering com-
mands, in this situation, the node must be self-recovered, which is implemented using a
shell script working in sequence of “disable-delay-enable”.

2.3 Deterministic vs. Pseudo-random Fault Injection

To approximate actual failure in HPC systems, the HPC-SFI supports two fault-
injection model: the deterministic fault-injection and pseudo-random fault-injection.

(1) Deterministic fault injection
Generate determined failures according to the specified parameters, such as a node,

time, and the fault type.

(2) Pseudo-random fault injection
The fault probability is specified by setting the node range and the number of faulty

nodes, the time range, and the fault type range. The fault can be generated according to
the fault model, so as to simulate the actual running of HPC systems.

In actual HPC systems, the occurrence of faults/failures is non-deterministic and
generally unpredictable. We define a four-tuple of fault-injection pseudo-random prob-
ability model for HPC systems to describe the probability of fault-injection execution:

Pinjec ¼ T ;R;NUM;Fh i ð1Þ

Where T indicates that within a certain time range, R is the range of the nodes to be
tested, NUM is the specified number of injection nodes, and F is the type range of the
fault. The above parameters are defined, and a fault injection model is generated by a
pseudo-random probability model. Such fault injection is more approximate to the
occurrence of faults in real systems and can be used to evaluate the effectiveness of
fault-tolerant diagnostics.

HPC-SFI tool failure is generated by the model, and the user can generate a fault
parameter configuration by specifying a description file. In the configuration file pro-
vided by the tool, the user sets the relevant parameters according to requirements to
define the four-tuple of fault injection probability model.
The process is as follows:

select NODE[R]
while NUM
NUM --; 
rand(f); rand(k);
while Time
inject FAULT[f] to NODE[k];
Time --; 

end
end. 
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This program generates a corresponding fault injection model based on the fault
description to implement fault injection control.

3 System Architecture and Implementation

Figure 1 shows the architecture of HPC-SFI. The HPC-SFI tool mainly consists of two
parts: the first part is the master running in a control node; the second part is the node-
part running on each node of the target HPC system.

In each node, an application process, named HPC-SFI broker, runs in the back-
ground waiting for commands from the master. On receiving a fault injection com-
mand, the HPC-SFI broker invokes the In-node injection module to generate
corresponding faults/failures in the node. The master communicates with the HPC-SFI
brokers via management network of the target HPC system. The In-node injection
module can also be invoked by other application processes, at this time, the master is
overridden and fault injection is controlled by the user-defined application.

In the master, the model-generation module parses the failure description file
defined by the user, generates the fault parameter profile based on the description file,
and uses these fault parameters to determine the type and time of a fault injection. In
order to assess the effectiveness of fault injection, we measure reliability parameters
such as test coverage and latency when performing the appropriate fault injection.

Node 0 Node 1 Node n-1

…

Interconnection network

Storage system

Target HPC system

Node 1

Node n-1

HPC-SFI
broker

In-node injection 
module

Linux

Node 0

ConfigurationFailure 
description file

Commands / 
Feedbacks

Other APs
model-generation 

module

HPC-SFI 
Master

Fig. 1. Architecture of the system.
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HPC-SFI realizes three types of failure of HPC system: in-node faults, failure of
interconnection network, and failure of storage or parallel file system. Because the
failure of the interconnection network and the failure of the storage parallel file system
are generated based on the node fault, various faults of the traditional physical machine
have been realized: memory faults, processor faults, network communication faults and
disk faults.

Memory failure can be injected with a single bit or multiple byte error. The
memory-fault injection program requires a scheme to modify the specified memory
content, partially or completely setting. The virtual address of the process is converted
into a physical address, and the process code segment data are directly modified in the
memory according to the physical address, so as to achieve the purpose of fault
injection. The Linux kernel module mechanism is introduced to obtain the privilege of
modifying any specified memory location.

As mentioned in Sect. 2.2, failure of the interconnection network and storage
system are implemented on the basis of in-node fault injection. For instance, when user
specifies a switch-failure in the fault description file, the model-generation module
parses the description, looks for the nodes that connects to the failure switch according
to the configuration of the target system, then determines the nodes that need to be
injected a network interface failure, after that, multiple fault-injection commands are
sent to the nodes simultaneously.

4 Experiment Results

4.1 Methodology

We evaluate the HPC-SFI in a cluster environment with four nodes. The experimental
target node is an Intel CPU-based computer system running Linux operating system
Ubuntu16.04 with 1 GB of memory and 4.13 kernel versions. Unlike current fault
injection tools, our HPC-SFI inject hardware/software-failures in real physical systems.
So application-level workloads do not affect HPC-SFI fault injection. For the experi-
ment to clearly show the effectiveness of fault injection, we use matrix multiplication as
the workload, which consists of multiple loop of the initialization step of input matrix
data and the multiplication step.

In our experiments, firstly, we run the workload on the target system and start the
HPC-SFI fault injection tool; the user then generates a fault of the specified type by
configuring the relevant parameters; after that, the master node sends the message
parsing package to the target node, and performs fault injection on the target node.
After the fault-injection, the main control node waits for a specific time interval to
observe the response of the target system, collect and analyze the fault response
records. Specifically, we measure fault injection latency as well as the probabilistic
distribution under pseudo-random mode. The fault-injection latency is the elapsed time
from the sending of a fault/error injection command in the master to the completion of
fault-injection in the specified node.
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4.2 Experiment Results

In the experiment, we mainly test the probability of node failure injection and the
coverage of the test between nodes. Tables 2 and 3 show the statistical analysis results
of fault injection data. Each table provides specific information about the behaviors of
the fault injection system. From the system perspective, HPC-SFI can effectively inject
the faults to the system node. Further influence of the running state of the application,
and diagnose the effectiveness of fault injection through the abnormal behaviors of the
application. In the experiment, we realize three types of fault injection. At the same
time, we also test the tool from the three directions: fault injection probability, node
coverage range and fault delay.

The date in Table 2 is based on the single-node fault injection, and is capable of
verifying the validity of injecting memory and processor faults. To better simulate the
random generation of node failure in a cluster. We set the trigger probability in the
model-generation module. In the single-node memory fault injection experiment, we
set the trigger probability to be 50% and 100% respectively. Through the fault injection
of the tool, it can be found that the fault can be injected into the specified position
accurately. By observing the system log and processor behavior, and testing the cor-
responding injection delay, the validity of the tool can be proved. In the process of the
memory fault injection, different injection locations and injection time affect different
system behaviors. Since the data required to execute the partial loader code has been
loaded into the cache, subsequent data does not have to interact with memory, so the
fault diagnosis is delayed and the fault is not fully reflected in the application process,
but the system log file can reflect the effective injection of the fault.

Table 2. Results of injecting memory and processor faults on the single node.

Faulty
component

Failure
activation
probability

Monitoring
information

Times
of fault
node
detected

Detected
probability

Average
fault-
injection
latency
(ms)

Phenomenon

Memory
(Injection
times
T = 20)

100% System log 20 100% 163.67 The system log
shows that the
memory contents
have been rewritten.
The process
interrupts an error
and sets the SIGNAL

Processor 19 95%
50% System log 11 55% 226.67

Processor 11 55%

Processor
(Injection
times
T = 20)

100% System
status

20 100% 35.71 The process is
forcibly stopped; or
the node crashes and
needs to be restarted

Processor
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The failure model of the fault injection tool is generated by the user through the
configuration description file. The tool defines the fault injection probability model by
setting relevant parameters according to the specific fault injection requirements.
According to the four-tuple of fault injection pseudo-random probability model, we set
the test node range R to 4, the specified injection node number NUM is 2 and 3
respectively, and the F fault type is a disk fault. We test the fault injection for parallel
file systems with the node coverage, and the results are shown in Table 3. Through the
fault injection of the tool, it is proved that the setting of the node parameter can be

Table 3. Results of injecting disk faults on the nodes in the cluster.

Faulty
component

Number
of fault
nodes

Node Selected
times

Detected
probability

Average
fault-
injection
latency
(ms)

Phenomenon

Disk
(Injection
times
T = 50;
Node = 4)

2 Node 1 35 48% 41.09 A partition that is not
mounted cannot be
mounted properly and
displays a disk error; the
partition being mounted
cannot be read or written
properly

Node 2 39 50% 50.67
Node 3 41 46% 49.29
Node 4 35 56% 45.45

3 Node 1 24 70% 46.14
Node 2 25 78% 53.17
Node 3 23 82% 50.81
Node 4r 28 70% 49.17

Fig. 2. Latency of the communication between nodes.
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applied to the fault model, and the fault injection probability conforms to the parameter
setting. This kind of fault injection tool based on pseudo-random probability model can
be more close to the actual system environment in the choice of fault injection.

We affect normal node communication through the fault injection tool, and the
impact of the failure is reflected in the latency of node information interaction. In the
HPC system, it is necessary for the fault injection tool to restore part of the fault and
maintain communication, and at the same time, tries not to cause permanent failure to
nodes to ensure the experiment. As showed in Fig. 2, when the fault is being injected,
the message transmission delay between nodes changes dramatically and is much
greater than the normal time. After a certain time, the fault will recover itself and
normal communication between nodes will resume.

5 Related Work

Fault injection technique provides the capacity of evaluating the risibility of HPC
system with synthetic failure occurring in hardware, system, as well as applications. To
emulate the effect of failure in HPC, extensive studies have been conducted to explore
different fault injection methods. Generally, current work fall into three categories:
hardware-implemented fault injection, software implemented fault injection, and sim-
ulator and virtual machine based fault injection.

Hardware-implemented fault injection works by triggering errors in hardware with
specialized device, such as setups producing electromagnetic interference and radiation
[2, 3], or changing the voltage or current of target circuit board [4]. This type of method
can mimic failure caused by environmental factors. However, it increases the risk of
damage to the target hardware. Furthermore, it is difficult to control the fault location
and triggering time.

Software-implemented fault injection method, on the other hand, generates emu-
lated fault effect by inserting instruction into the application or triggering specific
system command. Compared with the hardware-implemented counterpart, this type of
method provides more flexibility and controllability. Therefore, many existed fault
injection tools are implemented in software. For instance, Han et al. [5] proposed
DOCTOR, a software implemented fault injection tool that injects hardware and
software fault for distributed real-time system. Taking advantage of function available
in the operation system, DOCTOR is able to inject architecture-independent hardware
errors e.g., memory, CPU and communication fault and their combination, as well as
system-level error. What’s more, DOCTOR introduces temporal types and probability
distribution for fault injection, which empowers the function of injecting realistic
errors. Carreira et al. [6]. presented Xception, which injects realistic system and
application faults in software by programming the debugging hardware available in
modern processors. Based on the hardware feature, faults injected by Xception can
affect any process running on the target system. Since software implemented fault
injection dependent on the available function in target operation system and hardware,
the variety of fault may be limited.
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Simulator and virtual machine based fault injection, which emulates fault by
revising the instruction of a virtual machine or serves as a module of full-system
simulator, e.g., Gem5 [7], is eligible for performing various kinds of synthetic faults to
HPC. Since this type of method is independent of hardware architecture and easy to
control triggering time and location, there has become an increasing amount of liter-
ature focus on virtualization-based fault injection. For example, Guan et al. [8] pro-
posed a fine-grained fault injector on top of QEMU [9] that emulates both software
error and hardware failure by intercepting and corrupting instruction issued by an
application before they be sent to the host kernel. Levy et al. [10] designed a virtu-
alization based fault injection framework that mimics hardware errors both in indi-
vidual node and across nodes in HPC system. By integrating error executor running on
a virtual machine monitor in each node with error scheduler for dispatching deter-
ministic and stochastic errors across HPC system, their framework is able to mimic
more realistic faults in HPC. The main disadvantage of the simulator and virtual based
fault injection method is the performance overhead, especially those work in full-
system simulator.

6 Conclusion

In this paper, we propose a system level fault injection tool called HPC-SFI for HPC
system. It utilizes software implemented fault injection to inject hardware/software
failure into actual physical systems, and is intended for validation and evaluation of
high-performance computing systems. We implemented a fault injection tool, HPC-
SFI, which injected HPC systems with three types of failure: in-node faults, inter-
connection network failure, and storage/parallel file system failure. It can generate
faults according to the parameters and probability, making it closer to the actual sys-
tem. To avoid some irreversible damage to the node, it can be recovered after a
specified time period. HPC-SFI was implemented on a linux cluster system, and
extensive experiments were conducted, demonstrating its power and utility. We are
also exploring the issues about the specification of fault injection and more extensive
fault coverage. After these extensions, we will conduct more practical experiments.
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Abstract. The training process of a neural network is the most time-
consuming procedure before being deployed to applications. In this
paper, we investigate the loss trend of the training data during the train-
ing process. We find that given a fixed set of hyper-parameters, pruning
specific types of training data can reduce the time consumption of the
training process while maintaining the accuracy of the neural network.
We developed a data fine-pruning approach, which can monitor and anal-
yse the loss trend of training instances at real-time, and based on the
analysis results, temporarily pruned specific instances during the training
process basing on the analysis. Furthermore, we formulate the time con-
sumption reduced by applying our data fine-pruning approach. Extensive
experiments with different neural networks are conducted to verify the
effectiveness of our method. The experimental results show that applying
the data fine-pruning approach can reduce the training time by around
14.29% while maintaining the accuracy of the neural network.

Keywords: Deep Neural Network · Data pruning · SGD
Acceleration

1 Introduction

Scaling up layers and parameters in modern neural networks improves the per-
formance dramatically and enables the discovery of sophisticated high-level fea-
tures. However, it also presents enormous challenges such as the training effi-
ciency of Deep Neural Network (DNN).

Many novel training algorithms and deep neural networks have been designed
and achieved good performance with benchmark datasets and even in industrial
practices. For instance, Constitutional Neural Networks (CNN) demonstrates
impressive performance in areas such as image recognition and classification;
Very Deep Constitutional Networks (VGG) uses an architecture with tiny convo-
lution filters and shows a significant improvement in network performance; Deep
Residual Network (ResNet) is developed to ease the training of the networks that
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are substantially deeper than those used previously and gain the accuracy from
considerably increased depth of the networks; Wide Residual Networks (WRN)
that advances from ResNet contains a more complex architecture of network and
outperforms regular deep ResNets in accuracy and efficiency.

Different configurations of DNN may lead to different level of accuracy and
training efficiency (i.e., time consumption). Therefore, much research has been
conducted to find the better configuration of the networks. Many endeavours
have also been devoted to accelerating the training process by parallel comput-
ing. Our work does not focus on the optimization of the network configuration,
but takes another approach. We assume that the configuration of the network
has been optimized (or is fixed) with given settings of hyper-parameters such
as the learning rate and the number of epochs. We propose to simplify the
training process by reducing the training time of each epoch (regardless of the
network configuration). In this approach, we dig into the training process, moni-
tor and analyse the loss trend of each training instance. A novel method, named
with Data Fine-pruning training, is developed to reduce the time consumption of
training a model by sensibly and temporarily pruning a fraction of input training
data in each training instance. The experimental results show that comparing to
regular training, our approach is effective with majority nets and can reduce the
training time by about 14.29% while maintaining the accuracy of the network.

The remainder of this paper is organized as follows. Section 2 introduces
research backgrounds and motivations of our work. Section 3 reviews recent
remarkable works that are related to our work. Section 4 detailed demonstrates
our methods of analysing individual data, the way we run data pruning and for-
mulations of time saved applying our approach. Section 5 illustrates the experi-
ment results we did. Finally, a conclusion is addressed in Sect. 6.

2 Background and Motivation

DNNs have recently led to a series of breakthroughs in many fields such as
speech recognition and image classification. Many novel learning algorithms are
designed to build an effective model from a set of data and towards a prediction
goal, where the model maps each input data to a prediction. Modern DNNs are
typically powered by a vital training algorithm: Mini-batch Stochastic Gradient
Descent (BSGD). However, there exists a heavy data dependence in the BSGD
training which extremely limits the degree of parallelism.

2.1 Mini-batch Stochastic Gradient Descent

BSGD is the most widely used weight updating algorithm in recent notable
neural networks. It takes a batch of data instead of using only one example
each time as the input data for training. The weights of networks are same for
all the instances in a batch during the forward propagation, and the changes
in the weights depend on an average loss of a batch data. One core benefit
of BSGD is that the changes in weights become much steadier than those in
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regular Stochastic Gradient Descent (SGD). Moreover, BSGD training can take
the advantage of parallel computing by parallelising the calculations within a
batch, so that the processing efficiency can further increase.

ωt+1 = ωt − γ
1
b

b∑

i=1

∇ωt
�(fωt

(xi), yi) (1)

where b is the size of a batch data, ω is a weight vector, γ is a learning rate, and
�(fω(x), y) is a loss function measuring how wrong the model is in terms of its
ability to estimate the relationship between data x and corresponding label y.

2.2 Problem Setting

Figure 1 shows the loss trends when training a commonly used network – ResNet
with the depth of 18 layers. The sub-figure on the top describes the trend of the
values of the loss function over the testing data, which demonstrates that there
are four main periods. Such different performance levels are closely related to the
changes in the learning rate, where the changing points are at 60, 120, 160. The
loss falls sharply from 1.5 to 0.67 in the first interval. However, from the second
stage onwards, the decreasing rate slows down in each part. It can be observed
from the figure that there exists a plateau in each training period with the
corresponding learning rate. Such plateau always occurs in training no matter
which network is used. On the contrary, the sub-figure at the bottom reflects
the accuracy of the network with the test data. It can be seen that the accuracy
increases as the loss decreases and the accuracy curve also contains the plateaus
during the training.

In this paper, we aim to reduce the time spent on such training plateaus
while achieving similar training results.
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3 Related Work

DNNs can produce much better results than most of other techniques in many
fields [3,5,12,19,23] such as human face recognition. However, training the nets
usually take quite a long time and the cost has a significant upward trend [11]. An
outstanding amount of effort has been put into extending deep learning models,
improving prediction performance and reducing training time consumption [8,10,
20–22]. Regarding to the various latest acceleration mechanism for deep learning
system, the technique of those could be sorted into two main cases: (i) utilize
a set of GPUs to work for deep models and large training sets to take benefits
from huge computing capacity facility so as to deal with large scale of models
and data, (ii) optimize the training algorithms to enhance training efficiency so
that directly reduce the time consumption of training.

3.1 Hardware Accelerating

GPUs are quite suitable for the computations in training a network since SGD
and its variants carry high arithmetic density. It is known to all that GPU has
advantages in computation capacity, thus applying a set of GPUs to train nets
can deliver considerably efficient training of modestly sized Deep Neural Network
practical [1,2,4,6]. A common limitation of such strategies is the size of GPU
onboard memory. It restricts network model and training data to be small so
that the model and data can be fitted into the GPU memory. As a result, the
parameters of the network and the number of data used each time are usually
reduced in order to utilise the GPU(s) computation. Apart from that, there exists
a mismatch in speed between GPU compute and interconnects, which leads the
system extremely hard to do data parallelism in real time via a parameter server.

3.2 Algorithm Accelerating

There are a number of works on optimising training algorithm have been done
up to now. Momentum [17] and Nesterov Accelerated Gradient [16] are the meth-
ods that help accelerate SGD in the relevant direction and dampens oscillations
that always happen around local optima. The momentum term increases for
dimensions whose gradients point in the same directions and reduces updates
for dimensions whose gradients change directions. As a result, nets gain faster
convergence and reduced oscillation. Adagrad [7] and its extension (Adadelta)
[24] are the algorithms for gradient-based optimisation that mainly do: adapt
the learning rate to the parameters, performing smaller updates for parameters
associated with frequently occurring features, and more significant updates for
parameters associated with infrequent features. Adam [9] is another method that
computes adaptive learning rates for each parameter. It considers the decaying
averages of past and past squared gradients, and update the parameters in a sim-
ilar way used in Adadelta. Besides, Asynchronous Stochastic Gradient Descent
(ASGD) algorithms [13–15,25] represented by Hogwild [18] purposes to update
the parameter by many workers where they are sharing a parameter server.
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3.3 Data Accelerating

According to the studies on previous works on accelerating the training process,
we find that there is no method that prunes the training data in a reasonable
way so as to train the network with significant data that is a subset of original
one. In this way, the time cost of training will be reduced by the number of
data that is pruned. Our work is the first to propose an algorithm powered by
such an idea. The method does not require making any changes to the original
training settings, but real-time analyses performance on each data to make a
choice on keeping or ignore. Please note that the decisions are not intended to
be permanent, as such decisions are made based on a period of performances.

4 The Data Fine-Pruning Approach

Our data fine-pruning approach reduces the training time of some specific epoch
and therefore reduce the overall training time. We first investigate the loss trends
of individual data in Sect. 4.1. Second, we analyse the type of input data that
should be selected for temporary pruing. Next, we introduce the data selection
process and present the data fine-pruning approach in detail in Subsects. 4.2 and
4.3. Finally, Sect. 4.4 formulates the time consumption reduced by our approach.

4.1 Loss Trends of Individual Data

Figure 2 presents the changes in the value of the loss function over two represen-
tative data in two separate training. The two trainings are carried out with the
same network. The loss of data 1 manifests a trend of continuous dropping from
the beginning to the end in the first training. In contrast, an increasing trend
has been observed with data 2. However, things change in the second run, where
both data 1 and data 2 experience the decrease in loss. These two data have
similar trends as that of overall network performance in the second run. The
results indicate that the individual input data may produce varied performance
in different runs of training even on the same network.

At the end of the training, data 2 cannot be correctly allocated to the category
that it is supposed to be due to the high loss produced in the first run. However,
it still costs the time and computing power to make the model adjustments
using data 2 in each epoch. Our approach makes use of the fact that some data
consistently produce bad results but still cost the time and resources during the
training process.

Based on the above analysis, we proposed a pruning method for the training
data. It temporarily prunes some data that have poor performance evaluated at
real-time during training. Our experiments show that temporarily pruning the
data that performed poorly in recent training rounds makes little changes to the
final model.
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Fig. 2. Performance of same data in same network but different runs

4.2 Loss Monitoring and Pruning Selection

Algorithm 1 outlines the loss monitoring procedure and the selection method for
data pruning. The loss of each data is monitored during the training process. The
DroppingCount is defined for each data to measure its training performance and
used to decide which data should be selected to prune. A larger DroppingCount
of data x, denoted by DroppingCount[x] indicates a higher probability for this
data item to be to pruned. At the end of training in each epoch, the algorithm
examines each loss of the data, denoted by l(fωt

(x), y) (where y is the label of
data x), within the current batch (line 4). Note that fωt

denotes the network
with parameters of ω at the moment of t. Then the algorithm compares the loss
of each data with the loss of the current batch, denoted by l(fωt

(Batchn)). The
loss value of a batch is the average of all losses in the batch. The algorithm selects
the data that perform poorly in this batch and increase their DroppingCount
values (lines 5–7).

Considering that a data item shows the varied behavior through the training
stages, the DroppingCount of data is held for a window (i.e., a preset number of
epochs) and reset at the end of the window (lines 1–3). The algorithm judges the
behavior of a data item according to the DroppingCount value of this data item
in the latest window. The size of the window is initialized at the beginning and
can be dynamically adjusted during the training. Note that e in the algorithm
is the number of current epoch.
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Algorithm 1. Loss Monitoring and Pruning Selection
1: if e mod Window == 0 then
2: DroppingCount = EmptyDictionary
3: end if
4: for all (x, y) such that (x, y) ∈ BatchData do
5: if �(fωt(x), y) >= �(fωt(Batchn)) ∗ (1 + tolerance) then
6: DroppingCount[x]+ = 1
7: end if
8: end for

4.3 Data Fine-Pruning

In each window, the algorithm records the data losses and count their corre-
sponding DroppingCount. The window size is set according to the changes in
learning rate. The windows size is set to a factor of the duration (number of
epochs) of the learning rate (e.g., if the duration of the learning rate is 60, the
window size is set to be 60 or 30). The analysis is performed for the entire
window. However, the data pruning is only performed for the later portion of
the window starting from an epoch defined by StartingPoint. A fluctuation of
the accuracy caused by the adjustment of the learning rate typically lasts for
a period and the period becomes shorter as the training progresses. Thus we
start to reduce the StartingPoint by Attenuation after the first window (lines
2–4). This measure leads to more pruning rounds so as to further reduce time
consumption.

Algorithm 2. Data Fine-pruning during Training
1: for e = 1; e <= Epoch; e + + do
2: if e > PruningWindow then
3: StartingPoint = int(StartingPoint/Attenuation)
4: end if
5: if e mod PruningWindow >= StartingPoint then
6: if e mod PruningBlock < PruningCount then
7: KeepList = minNumData−PruningNum(DroppingCount)
8: (x, y) = (x, y)[KeepList]
9: end if

10: end if
11: ωt+1 = ωt − γ 1

b

∑b
i=1 ∇ωt�(fωt(xi), yi)

12: end for

In the later part of each window (line 5), we select some of the epochs to
train with the pruned data (line 6), while the original data is still used in other
epochs. We only prune the data temporarily because the behaviour of a data
varies in different stages of the training process. In the algorithm, PruningBlock
defines the block of epochs in which the pruned data are used; PruningCount is
the number of the epochs that performs the data pruning. In each data pruning
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epoch, the data are ranked in the decreasing order of DroppingCount and the
first PruningNum number of data in the rank list are pruned in the current
epoch (lines 7–8). In another word, the data with higher DroppingCount values
will has more chances to be pruned. KeepList stores the indexes of the data
that are kept in the training; x is the data index while y is the label of the data.
Then the weights of the network are adjusted by BSGD (line 11) at the end of
each epoch.

PruningCount

PruningBlock

Window1 Window2

1 2 3 4
Reg.

5 6 7
Prune

8 9 10
Reg.

11 12 13
Prune

14 15 16
Reg.

17 18
Reg.

19 20 21
Prune

22 23 24
Reg.

25 26 27
Prune

28 29 30
Reg.

31 32
Prune

Fig. 3. An example of network training with data fine-pruning method

An exemplar training process using our data fine-pruning method is illus-
trated in Fig. 3. The numbers in the figure is the index of the training epoch.
The rounds with gray colour are those running with the regular data before the
StartingPoint. The two parameters, PruningBlock and PruningCount, jointly
determine the allocation of pruning training and regular training.

4.4 Analysis of Performance Improvement

The time consumption of the regular training for a network can be formulated
by Formula 2. The time of regular running is denoted by tregular, the number of
epochs by n, the time of forward and backward propagation a batch of data by
T , and the number of batches by b. The total time equals to all time consumed
over a set of epochs.

tregular =
n∑

i=1

T ∗ b (2)

The number of rounds that are trained with the pruned data is denoted by
nprune, the size of pruning window by w, the pruning count by c, starting point
of pruning by a, the number of iterations using the pruned data by r. According
to Algorithm 2, the value of nprune can be obtained by either Formula 3 in the
case where the total number of epochs can be divided by the size of the pruning
window, or Formula 4 otherwise.

nprune = (
⌊

w − a

r

⌋
∗ c + (w − a) mod r) ∗

⌊ n

w

⌋
(3)
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nprune = (
⌊

w − a

r

⌋
∗ c + (w − a) mod r) ∗

⌊ n

w

⌋

+
⌊

n mod w − a

r

⌋
∗ c + (n mod w − a) mod r (4)

As the number of batches processed in each epoch changes after applying
the data-pruning, the average batches over the entire training can be calculated
basing on Formula 5.

bprune =
1
n

(
nprune∑

i=1

T +
n−nprune∑

i=1

T ) (5)

tprune denotes the training time with the data pruning approach, t0 is the
computing overhead of the approach, tsave is the saved time, which can be
obtained by Formula 6 and further by Formula 7.

tprune =
n∑

i=1

(T ∗ bprune) +
nprune∑

i=1

(t0) (6)

tsave = tregular − tprune (7)

5 Experiments

Our data pruning approach is deployed on several modern neural networks
including LeCun network (LeNet), residual network (ResNet), wide residual net-
work (WRN) as well as Vgg network (Vgg). Performance of our method is evalu-
ated with different hyper-parameters and architectures of such networks. Table 1
presents the average value of the best three accuracies of both regular training
and data-pruning training as well as the percentage of saved time (Speedup in
the table). Our experiments are conducted on a workstation with a CPU Intel
i7-7700K, a GPU Nvidia GTX 1080 Ti, a hard disk Samsung SSD 970 Pro, four
16GB DDR4 2400 Hz memory, Ubuntu 18.04, Cuda 9.0 and cuDNN 7.0.

Table 1 presents the average time consumption of regular training, data fine-
pruned training and the percentage of save time (Speedup) on four networks:
LeNet, VggNet, ResNet and WRN. The data we used in the experiments is a
popular benchmark dataset Cifar-10. It can be seen from the table that our
data pruning approach can effectively save the training time. Further, higher
percentage of time can typically be saved with a larger network. In the best case
when WRN-22 is used for training, 14.29% of time is saved. Besides, According
to our experiments, the overhead of data pruning approach is very lightweight.
It only adds around averaged 4.2 seconds over 200 epochs of the training.

The aim of our data pruning approach is to reduce the training time while
maintaining the accuracy. Table 2 compares the accuracy between our approach
and regular training. It can be seen from the table that the difference in accuracy
is typically less than 0.4% except LeNet with a difference of 0.43%. The reason
why LeNet shows the worse accuracy is because of the limitation of the net
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Table 1. Time consumption of pruning data training and regular training

LeNet VggNet-13 VggNet-16 VggNet-19 ResNet-18

Regular 1220 s 2028 s 2554 s 3110 s 1277 s

Pruned 1071.73 s 1873.67 s 2356.74 s 2867.7 s 1109.92 s

Overhead 4.27 s 4.33 s 4.26 s 4.30 s 4.08 s

Speedup 11.80% 7.40% 7.56% 7.65% 12.76%

ResNet-34 ResNet-50 WRN-10 WRN-16 WRN-22

Regular 2047 s 3931 s 3 h 24 min 5 h 8 min 6 h 53 min

Pruned 1767.79 s 3379.82 s 2 h 56 min 4 h 26 min 5 h 54 min

Overhead 4.21 s 4.18 s 4.12 s 4.25 s 4.32 s

Speedup 13.43% 13.92% 13.73% 13.81% 14.29%

Table 2. Accuracy comparison between pruning data training and regular training

LeNet VggNet-13 VggNet-16 VggNet-19 ResNet-18

Regular 75.15% 93.92% 93.79% 93.35% 91.25%

Pruned 74.72% 93.56% 93.44% 93.30% 91.16%

ResNet-34 ResNet-50 WRN-10 WRN-16 WRN-22

Regular 92.86% 93.75% 92.13% 94.22% 95.08%

Pruned 92.85% 93.46% 91.78% 94.20% 94.71%

itself. Comparing LeNet to others, LeNet has a quite small number of layers and
parameters, which makes the network more uncertain and unstable. The smallest
difference in accuracy observed in our experiments is 0.01% (with ResNet-34).

6 Conclusions and Future Works

Training a deep neural network can be a very time-consuming process. In this
paper, we present a data fine-pruning technique, which analyzes the loss of each
data at real time and prunes a set of data that performs poorly in recent training
epochs. It achieves the noticeable saving of training time while maintaining the
accuracy of the results.

There is more work to be done in future. First, our experiments show that
some data are commonly identified as bad data and are repeatedly selected for
pruning. We would like to investigate whether the bad data contain the common
features. If such common features do exist and can be identified, we can probably
make use of the finding and further reduce the training time.

Second, the data that perform poorly may relate to the type of the networks.
We would like to conduct more in-depth research regarding the relation between
the bad data and the type of networks. If this could be established, we expect
to further improve the performance in practice.
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Abstract. Dijkstra algorithm is widely used in a lot of common network
routing protocols. We consider the problem of quality of service (QoS) and the
Security features of the network routing area using software defined networks
(SDN). The SDN framework enables an efficient decoupled implementation of
dynamic routing protocols which could aware the communication network
status. In this work we consider the varying delay status of the communication
network along with other network security parameters. The routing problem is
formulated as a multi-constrained shortest path problem. A new improved
Dijkstra algorithm is presented named as QS-Dijkstra. The implement and
experiment show that QS-Dijkstra algorithm is able to minimize traffic routing
through vulnerable links while satisfying the QoS constraints of the network.

1 Introduction

Dijkstra algorithm is widely used in a lot of common network routing protocols, like
OSPF and IS-IS. The main idea of Dijkstra algorithm is how to find a shortest path
from a source node to a destination node in a network. So each network link has a cost
value to present its status, and this cost is used to calculate the shortest path. In the
practice, the link cost is defined as a static cost value in OSPF protocol, as the reference
bandwidth divided by interface bandwidth or simply as 1 to reduce the shortest path
weight to a hop count. The reason is that it’s a very easy way in practice. But as the
value of the link cost, it could not cover the feathers and status of the link.

In this work we present a practical way to calculate a more reasonable link cost in
Dijkstra algorithm and consider the problem of QoS and the security features of the
network routing procedure using SDN technology [1–3]. The SDN framework provides
an approach to calculate the shortest path between source and destination based on
dynamic link statuses through SDN’s high network monitoring capability. A lot of
useful link information, like link type, link ownership, interface bandwidth, transition
delay and historical record, can be collected and computed by the SDN controller to
enable more safe, reliable and efficient paths. In this way, we can consider the varying
delay status of the communication network along with other network security
parameters and get a presence of a passive/active adversary in the network routing area.
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The remainder of this paper is organized as follows: double constrained shortest
path problem is discussed and the derivation of QoS constraints and related cost metrics
are presented in Sect. 2, the implementation details are provided in Sect. 3, Sect. 4
investigates the performance of the proposed framework. Conclusions and final
remarks are discussed in Sect. 5.

2 System Model

Consider a graph representation of the communication network. G(V, E, x) is a
weighted undirected graph model and describes an N nodes and E links network. The
node set is V ¼ v1; . . .; vNf g, and the edge set is E ¼ eij i; j ¼ 1; 2; . . .;Nj� �

. The weight
xij on the edge eij is defined as the cost of the link. In this article, the interplaying
between QOS and security features is concerned in the network routing process. The
security metrics of the link between nodes i and j could include these features as:

(1) History LijH: a link that was previously targeted by an attacker in a particular time
could be more likely to be attacked again.

(2) Security installed measures LijS: a link with high encryption is typically hard to be
listened or hijacked. So LijS values are dependent on the pre-installed and pre-
configured security measures of nodes of the link.

(3) Bandwidth LijB: A link with high bandwidth is more difficult to be congested by
data flow.

(4) Ownership LijO: a self-owned or in the same domain channel is more secure than
a shared or leased channel by other domains.

The vulnerability metric LijM should reflect the attributes that make a link more
security.

LijM ¼ LijH � aLijSþ bLijBþ cLijO
� � ð2Þ

Where a, b, and c are the weights of LijS, LijB and LijO depending on the impact
importance of the considered security parameters.

Assume every link eij 2 E has two weights cij [ 0 and dij [ 0 (cij is cost and dij
means delay). For source and destination nodes (s, t), let Pst denote the set of paths
from s to t. Further, for any path p define

c pð Þ ¼
X

i;jð Þ2p LijM ð3Þ

d pð Þ ¼
X

i;jð Þ2p dij ð4Þ

The routing problem seeks to find the paths between s and t nodes with minimum
link cost c pstð Þ, which satisfies d pstð Þ� Tmax. This is a typical NP problem named
constrained shortest path (CSP) [4, 5], which can be solved by the Lagrangian
Relaxation Based Aggregated Cost (LARAC) algorithm [6].
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3 Implementation

The architecture of SDN network comprised of Floodlight controller and Mininet
switches. In the floodlight controller, applications can be written in Java and can
interact with the built-in controller modules via a JAVA API. Other applications can be
written in different languages and interact with the controller modules via the
REST API. And the controller allows the implementation of built-in modules that can
communicate with their implementation of the OpenFlow controller (i.e. OpenFlow
Services). The controller, on the other hand, can communicate with the switches via the
OpenFlow protocol through the abstraction layer present at the forwarding hardware.

We propose a Vulnerable-Link Avoidance Dijkstra (QS-Dijkstra) algorithm to
capture the problem of best-effort avoiding vulnerable links while maintaining the
delay constraint. QS-Dijkstra algorithm uses the previously-defined vulnerability
metric in Eq. (2) to arrive at a set of feasible paths between source node s and desti-
nation node t.

The flowchart of the QS-Dijkstra algorithm that is implemented is shown in Fig. 1.
The algorithm is separated into two parts, the switch side and the controller side. The
algorithm of the controller side performs the following tasks:

The Switches Side)bThe Controller Side)a

Fig. 1. QS-Dijkstra algorithm implementation. The algorithm is separated into two parts; a
controller function which is implemented in Floodlight using Java, and a switch function
implemented in Mininet using Python.
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(1) Listening to messages from switches and calculating link-delay value of each link,
and then constructing the link-delay cost matrix.

(2) Calculating the link-vulnerability cost matrix according to the metric developed in
formula (2); this matrix can be modified and calibrated by network operators or
managers.

(3) Running a topology-update thread, and checking the link-vulnerability cost matrix
updates every Ts; if a change is detected, the controller recalculates the routing
paths.

(4) Calculating the routing paths based on the link cost metrics of interest, and
updating the flow table of each switch by advertise a PACKET OUT message to
switches.

The main function of the algorithm in the switches side is to collect the values of
link-delays for the directly connected switches. This is done through an independent
thread responsible for periodically testing the link between that switch and all con-
nected switches with higher ID. The sampling time is parametric and is tuneable by the
network managers; in our simulation environment, Tsd is set to 60 s. Link delay testing
is done 3 times every Tsd and the average value is then compared with the last known
value. If the new delay is significantly different from the previous value, the switch
updates the controller accordingly.

4 Simulation and Results

We build two large scale network environment with the same topology and route
information. One is running the Dijkstra routing protocol, the other is for QS-Dijkstra.
In order to reach a high performance, in each environment, we use the high-
performance workstation with 10 Intel Xeon Westmere EP six-core processors. Whose
maximum process speed could reach 11.251Tflops. Thus, the whole network includes
260 routers and a controller. For every node, we pick a random number from [1, 10] for
its connection number. And the commercial network flow generator Spirent TestCentre
is chosen to generate some popular network application data, like http, IP, TCP,
UDP. And it sends the same packets to the two networks synchronously.

Fig. 2. The number of transmitted packets on un-safe links. There are 20 links which have very
high vulnerable level.
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In this test case, the link cost and link delay is randomized in the [0–100]. The
maximum path delay constraint T still set as 1000 s. After calculating the link vul-
nerability metric, there are 20 links which have very high vulnerable level. We sampled
the packets number transmitted through these links every 200 s and calculate the
average value on each links. The result is shown in Fig. 2, which shows that the
packets transmitted on these un-safe links in QS-Dijkstra are much less than in Dijkstra.

From the results shown in Fig. 3, the conclusion could be proved that the network
performance in QS-Dijkstra does not lost much except for a few short intervals, and the
maximum responds time in these intervals is still could be acceptable.

5 Conclusion

In this paper, we consider the varying delay status of the communication network along
with other network security parameters. Our approach capitalizes on the SDN frame-
work and technology. The implement and experiment show that QS-Dijkstra algorithm
is able to minimize traffic routing through vulnerable links while satisfying the QoS
constraints of the network.

In the future work, the algorithm could consider more security and performance
features of links and routing nodes, to make a more effective routing protocol.
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Abstract. Many Internet, mobile Internet, and IoT services require
both low tail-latency and high concurrency in datacenters. The current
protocol stack design pays more attention to throughput and average
performance, considering little on tail latency and priority. We address
this question by proposing a hardware-software co-designed Labeled Net-
work Stack (LNS) for future datacenters. The key innovation is a pay-
load labeling mechanism that distinguishes data packets in a TCP link
across the full network stack, including the application, the TCP/IP and
the Ethernet layer. This design enables prioritized data packets process-
ing and forwarding along the full data path, to reduce the tail latency
of critical requests. We built a prototype datacenter server to evaluate
the LNS design against a standard Linux kernel stack and the mTCP
research, using IoT kernel benchmark MCC. Experiment results show
that the LNS design can provide an order of magnitude improvement on
tail latency and concurrency.

Keywords: Tail latency · High concurrent server · Priority · Label
Network stack

1 Introduction

For the new generation of cloud computing server applications such as mobile
Internet and IoT, with characteristics of high concurrency and low latency con-
straints, the behavior, motivation and access time of concurrent clients are all
uncertain [1], so the unconscious resource competition from massive concurrent
requests will lead to fluctuations in service latency. Google put forward the data
center “Tail Latency” issue [2], usually measured with the 99th percentile latency.
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UC Berkeley also highlighted the long tail problem in web applications [3]. One
main goal of their FireBox project [4] is to cope with tail latency for 2020 cloud
computing systems.

Long tail latency will seriously affect Quality of Service (QoS). So, to guaran-
tee the tail latency not exaggerated too much, the utilization rate of data center
resources for online services is usually not very high, i.e., the CPU utilization
rate is generally <30%. Besides, the long TCP connection has become the main-
stream for cloud client/server communication now, i.e. MQTT. Long connection
is used to support many mobile clients, for the server to locate the client (i.e.
many IoT devices only have internal IPs) and to reduce the overhead of multiple
authentications, however, it would bring about high concurrency problem, and
make the tail latency more serious, because of long-term resource occupation.

How to control tail latency has become an important direction for cloud
computing and big data research in recent years. User-mode TCP/IP and NIC
offload are mainly involved recently. While Li et al. [7] found that application,
hardware and operating system may all cause tail-delayed response. However,
many studies overlook one important factor. Different requests have different
delay requirements, while the current works improve delay commonly without
differentiate the requests. Traditional layered network stacks only provide pri-
ority in the flow granularity coarsely at some layers, and lack of finer grained
priority control mechanisms.

Therefore, we proposed a label-based network stack, using payload labeling
and codesign across layers to support full-path data-sensing and prioritization.
Then, we design and implement a prototype. Test results showed that the LNS
got an order of magnitude improvement on tail latency and concurrency over
the mainstream systems. Our two main contributions are as follows.

(1) Labeled Network Stack (LNS) to achieve full-data-path QoS guarantee.
The LNS is to support distinguishing, isolation and prioritizing in packet
granularity across the full data path through payload labeling. It is different
from the traditional flow level control method that only based on prede-
fined protocol header. So, the LNS can do more efficiently to get both high
concurrency and low tail latency.

(2) Prototype of LNS to show an order of magnitude improvement on tail
latency and concurrency over the mainstream. Based on LNS idea and stan-
dard X86 Linux server, we did hardware-software co-design on NIC, TCP/IP
stack, server framework layers and formed the first testbed for LNS. Tests
show that significant improvement. Besides IoT and mobile Microservices,
our server fits into application with features on long connection, high con-
currency and user experience requirement widely.
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2 Labeled Network Stack

We first discuss the motivation on LNS, then address our design.

2.1 Why LNS?

Some requests in the data flow are naturally of priority requirement for many
cloud services. For example, order operation should be more sensitive on latency
than browsing in electronic commerce. However, traditional method lacks distin-
guishing, isolation and prioritizing abilities for packets. This inevitably causes
delay for critical services, especially in the case of resource reuse contention.

Without a doubt, there are many labels in traditional networks, such as
ECN congestion label and DSCP differentiated service field, but no label works
through the whole packet processing after the header peeled off. So, when
without priority policy, data packet processing would use system resources in
unordered state, which inevitably leads to high entropy [5]. While the current
mainstream NICs, TCP/IP stacks, and server frameworks all do not support
priority for the full data path.

Then, we put forward the idea to prioritize some requests in network flow
according to application features and do hardware-software co-design optimiza-
tion in full stack, which finally form the LNS.

2.2 LNS Idea

The main idea is that (1) payload labeling mechanism. When to send a
packet, the sever framework will attach a label in front of the payload accord-
ing to application requirement. For example, to control overhead 1 bit is added
as priority in our experiment, where 0 × 1 stands for high priority and 0 × 0
stands for the low. When the encrypted packet arrives at the receiver, it should
be decrypted before protocol analysis, and put to the right priority queue by
label identifying. Finally, it accesses database with labeled RPC. For simplicity,
the priority in this work is randomly labeled by programmers in flow generator,
while later the label can be attached based on application characteristics auto-
matically; (2) multi-path priority in packet, including queue partition in the
intelligent NIC, multi-queue zero-copy driver, custom user-mode TCP/IP stack
and other layers. It provides a mechanism to avoid frequent blockages caused
by a single queue and prioritize in packet granularity. (3) tail latency QoS
scheduling. As shown in Fig. 1, through payload labeling and priority schedul-
ing in all layers, it can reduce the latency of critical operations more accurately
and improve both overall service efficiency and user experience. In LNS we coor-
dinate well with the design idea on distinguishing, isolate and prioritizing. To
focus, we only research tail latency in single node in this paper.
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Fig. 1. Main idea of LNS. Its features include full-path payload labeling priority in
packet granularity and high priority taking precedence. Assumed the 5th arriving
packet is of high priority, it can be served first before the other four in queue

3 Implementation

Based on the LNS idea, we developed a prototype to achieve label identification
and scheduling across process stages, including customized NIC Sando, mTCP-
based user-mode protocol stack and epoll-based event driven server framework
with priority enhancement.

4 Evaluation

We answer a question in this section that: can we have order of magnitude
improvement on tail latency and concurrency over the mainstream? In Sect. 4.2,
experiment results show that the LNS design can provide that high performance.

4.1 Experiment Setup

We used mainstream X86 servers to build a test system. It uses MCC [8] to sim-
ulate long connections of massive IoT devices with sever, and the load balancer
distributes the data to 4 servers for related processing (limited by the amount
of Sando card). The monitor [8] adopts the full-traffic accurate measurement to
get server-side latency in nanosecond (once timing itself costs about 2.7 ns by
executing clock gettime). To facilitate the distinction, when the LNS is running
on the process node, it is briefly as LNS with Sando for short. A target system
is abbreviated as e1000-Linux, which runs the X86 standard hardware and soft-
ware, then alternative the kernel stack as the user-level protocol stack mTCP
[6] to form the second target system shortly as e1000-mTCP.

4.2 High Concurrency and Low Tail Latency

As shown in Fig. 2, while ranging the 99th percentile latency from 1 to 60 ms, the
LNS with Sando system can reach up 10 million connections, which increases
an order of magnitude compared with e1000-Linux system, and at least 1 times
more than e1000-mTCP, with 4 nodes in the test system.
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Fig. 2. 99-percentile tail latency - Concurrent connection

5 Conclusion

This paper proposes a Labeled Network Stack (LNS) technique for future dat-
acenters, to provide order of magnitude improvement on tail latency and con-
currency. Its main innovation is a labeling mechanism that labels the payload
(packet body) rather than the packet header. Such payload labeling enables
distinguishing different payload requests in the same flow across the full net-
work stack to schedule along the full data path, including NIC hardware, driver,
protocol stack and service software. Evaluation results on a prototype system
show that the hardware-software co-designed LNS technique with label-driven
prioritization has advantages of both Low tail latency and High concurrency.
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Abstract. The Internet and computer networks are currently suffering
from different security threats. This paper presents a new method called
AMF-LSTM for abnormal traffic detection by using deep learning model.
We use the statistical features of multi-flows rather than a single flow
or the features extracted from log as the input to obtain temporal cor-
relation between flows, and add an attention mechanism to the original
LSTM to help the model learn which traffic flow has more contributions
to the final results. Experiments show AMF-LSTM method has high
accuracy and recall in anomaly type identification.

1 Introduction

The Internet and computer networks are currently suffering from different secu-
rity threats [1]. The Global State of Information Security Survey 2015 [2] found
there is a great increase in security incidents during the last several years. Net-
work anomalies stand for a large fraction of the Internet traffic and compromise
the performance of the network resources [1,3]. With the growing network scale,
the traditional methods face two problems: (i) the processing speed is too slow,
unable to cope with the massive network traffic data in today’s Internet envi-
ronments; (ii) it may invade the user’s privacy. This situation can be alleviated
by using machine learning methods, which are successfully used in many other
areas. However, most of the traditional machine learning methods always focus
on the traffic itself and extract their own characteristics to detect the potential
anomalies.

As we know the data transmitted in network is in the form of flows. There
is always a temporal correlation between flows, which is also true for abnormal
traffic in the network. In previous work, researchers focus on the characteristics
of traffic itself, but ignore that many network anomalies have potential temporal
correlation. RNN (Recurrent Neural Networks) is widely used in the fields that
are time series related. Recently, there are some works using RNN and LSTM
(Long-Short Term Memory) to detect abnormal traffic [4,5], but they only use
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a single flow to repeat multiple times, which can only learn the relationship
between themselves and cannot learn the relationship between different flows.

This paper presents an anomaly detection method using deep learning model
based on AMF-LSTM. The proposed method has three important features: (i)
use the previous traffic flows as auxiliary features of the traffic to be detected;
(ii) use LSTM to find the hidden temporal correlation between these flows, and
(iii) use the attention mechanism to make model focus on the traffic and features
that are useful for the results.

2 AMF-LSTM Model

We proposed an AMF-LSTM (Attention-base Multi-Flow LSTM) model for net-
work anomaly detection. Attention means that our model is based on the atten-
tion mechanism [6]. Multi-Flow means that we not only use the characteristics of
the current flow itself to detect the anomalies, but also use the previous traffic
flows with temporal correlation to assist in detecting abnormal traffic. LSTM
means the main body of our network is based on the long short-term memory
networks [7]. Figure 1 shows the structure of AMF-LSTM model.

Fig. 1. Structure of AMF-LSTM

3 Experiment

We use CICIDS2017 [8] as the experimental dataset. The dataset contains benign
and the most up-to-date common attacks, which resembles the true real-world
data. The implemented attacks includes the most common attacks based on the
2016 McAfee report [9].

Our experiment mainly has the following hyperparameters: n, the number of
flows are selected to detect the traffic; the learning rate, which is the step size of
neural network for each learning; and the number of LSTM hidden nodes, which
is the number of nodes that LSTM uses to learn.
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Naïve Bayes Adaboost SVM MLP LSTM AMF-LSTM
Accuracy 82% 71% 83% 77% 82% 91%
Recall 7% 83% 65% 75% 77% 91%
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Fig. 2. Accuracy and recall of 8-category classification

We first study the effect of learning rate and hidden nodes on the model
accuracy, and find the best value of hidden nodes is 256, and the optimal learning
rate is 0.0001. Then, we perform two sets of experiments with n = 10 and n = 20.
The experimental results are similar, probably because the attention can focus on
where it is needed. We compare the performance of our model with several classic
machine learning algorithms, such as Naive Bayes, SVM, AdaBoost, MLP, and
the original LSTM. The results of accuracy and recall comparison are shown in
the Fig. 2. We can see that our model is significantly better than other machine
learning algorithms, both in accuracy or recall.

We further conduct a deeper study on model with n = 10, lr = 0.0001,
node num = 256, which achieves the best performance. The evaluation metrics
are shown in the Table 1. As we know, it is far more harmful for a system to
judge abnormal traffic as normal traffic than to judge normal traffic as abnormal
traffic. Therefore, we pay more attention to the value of recall. According to the
table, our model can identify most of the anomalies correctly.

Table 1. The results of different evaluation metrics

Precision Recall F1-score Flows

Normal 0.98 0.91 0.94 348631

DDoS 0.83 0.98 0.90 25606

PortScan 0.82 0.99 0.90 31786

BOT 0.05 0.75 0.10 394

Infiltration 0.00 0.75 0.01 8

Web attack 0.04 0.81 0.07 436

Patator 0.38 0.53 0.44 2767

DoS 0.87 0.88 0.87 50532
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4 Related Work

In prior studies, a number of approaches have been proposed for network anomaly
detection. Sun et al. [10] present a survey of intrusion detection techniques for
mobile ad-hoc networks (MANET) and wireless sensor networks (WSN). Sper-
otto et al. [11] explain the concepts of flow and classified attacks, and provide
a detailed discussion of detection techniques. Abbes et al. [12] introduce an
approach that uses decision trees with protocol analysis for effective intrusion
detection. Khan et al. [13] use genetic algorithms to develop rules for network
intrusion detection. Tthere are also large number of methods using Neural Net-
work. An example of ANN-based IDS is RT-UNNID [14]. Thilina et al. [15] pro-
pose a novel framework to perform intruder detection and analysis using deep
learning nets and association rule mining. Yuan et al. [16] use the LSTM-CNN
framework to find user’s anomalous behavior. Most recently, Zhu et al. [4] use
CNN model for network anomaly detection and identification and achieve bet-
ter performance than traditional machine learning algorithms. Although RNN
[5] and LSTM [17] have been used to detect abnormal traffic before, they only
use a single flow as the input of RNN and recurrent itself multiple times. In
our opinion, they can only learn the relation in the traffic itself, and can not
fully utilize the characteristics of RNN, which can learn the potential relations
between different traffic.

5 Conclusion

This paper presents a method for abnormal traffic detection in the Internet by
using deep learning model based on AMF-LSTM. We use the statistical features
of multi-flows rather than a single flow as the input to obtain temporal corre-
lation between flows, and add an attention mechanism to the original LSTM to
help the model learn which traffic flow has more contributions to the result. Com-
pared with other classic machine learning algorithms, our model achieves about
10% improvement in accuracy and recall on the multi-classification problems.
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Abstract. It is a big challenge to measure and monitor the performance
of a large-scale distributed storage system accurately. We present a flex-
ible approach based on the message analysis, named FSObserver, which
can accurately and fine-grained trace individual request or response by
observing network traffic. Experiments results show that our approach
can get accurate performance with slight performance degradation.

1 Introduction

Over the past few years, there are tremendous efforts to evaluate and debug
the performance problems of large-scale distributed storage systems. Some prac-
titioners concentrate on monitoring individual devices and machines indepen-
dently. Some researchers focus on detailed analysis of all messages by inserting
some unique IDs into messages during instrumenting the system. Some others
are immersed in the study of the storage system log [1]. System evaluation based
on inner messages analysis has been intensively studied in [2,3]. When design-
ing a monitoring and evaluation system, we should consider the independence,
accuracy, high performance, and broad-applicability.

In this paper, we propose FSObserver, an out-of-band approach to capture
performance related messages between clients and servers. It extracts perfor-
mance characteristics from the messages. The core idea of FSObserver is to
capture the request and reply messages between clients and servers. It extracts
the time, size and operations information from messages. The size of this infor-
mation is very small compared with the size of the messages. By analyzing each
individual message, we can accurately evaluate the performance characteristics
such as IOPS, throughput, and latency.

In the following sections, we discuss how to monitor and evaluate the Ceph
distributed file system, and show the experiment results.
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The remainder of the paper is organized as follows. In Sect. 2 we present
the related work that evaluates Ceph and other distributed storage systems.
Section 3 describes the architecture of FSObserver, and explains how it works on
the Ceph distributed file system. Section 4 illustrates the performance evaluation
results of FSObserver and other widely used tools fio1 respectively. Finally, we
conclude this paper and present the future work of this study.

2 Related Work

Performance of a distributed storage system is very important in data centers.
Past studies proposed various methods to debug and diagnose the systems. They
concentrated on the in-band and out-of-band monitoring systems, black box and
white box, intrusive, and log analysis and so on. There are several tools devel-
oped to monitor the performance of Ceph clusters2. Many black-box diagnosis
techniques have been devised for performance evaluation in distributed systems.
Dianna et al. used 5 tools to evaluate the performance and scalability of the
Ceph distributed storage system [4]. Wang et al. evaluated the file and block
I/O performance and scalability of Ceph, using a commercial high-end storage
system [5]. Computer-system logs provide a glimpse into the states of a running
system, and system diagnostics research around logs never stopped [6].

3 Design and Implement

3.1 Architecture of FSObserver

The FSObserver are designed to measure different aspects of performance in
a large-scale distributed file system by packets analysis. We designed a flexi-
ble packet analyzer, which can capture related packets and save a little infor-
mation from the payload. The analyzers can be turned on/off by a controller.
These designs can get performance data without too much impact on the sys-
tem. Figure 1(a) shows the architecture of FSObserver. There are 3 kinds of
components in the FSObserver. The recorder processes can be turned on/off
dynamically.

– Recorder
It captures related packets using libpcap3, which is a portable C++ library
for network traffic capture. When a recorder process captures a read request
packet, it analyzes the header of payload and outputs key information, such
as time, transaction id, data length. We measure the impact of the recorder
in several read/write scenarios. The performance impact is less than 5%.

– Controller
It can start/stop some observers according to the administrator’s input. The
FSObserver can be used flexibly for various purposes.

1 http://freshmeat.net/projects/fio/.
2 http://www.ceph.com/performance/.
3 http://www.tcpdump.org/.
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– Observer
This is a python program for analyzing the output of observers. It gets IOPS
by counting how many finished IO requests in a given period in the results.
In our prototype, we output the performance information into a text file inside
the nodes under test. Meanwhile, we run the observer on the same nodes.
The performance characteristic of the nodes including IOPS, throughput,
and latency can be calculated through one sequential scan of the text file. In
a large-scale system, we can use the mechanism similar to ganglia. As shown
in Fig. 1(b), we divide nodes into different monitor group. The nodes in one
group save the raw performance data in a database like MySQL or RRDtool.
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Fig. 1. Architecture of FSObserver

3.2 Implement of FSObserver for Ceph

After capturing a related packet using libpcap, it extracts the necessary infor-
mation for performance measurement. Our main purpose is to get performance
data, so we only need to analyze the messages with tag equals to 0x07. Further,
we can only capture and analyze messages from a specific client.

The observer program analyzes the results from recorders. It can get IOPS,
throughput and latency data from the results. For example, IOPS is calculated
by counting the number of transactions finished in a given period. To analyze
the performance of a certain client, we only need to deploy a recorder on the
client. We can also get the same metric from records from all related OSD nodes
with the client. We put the implementation on the GitHub4.

4 Evaluation

We evaluate the accuracy and application of our tools. First, we compare the
test results of FSObserver and widely used benchmarks to show the accuracy
4 https://github.com/zhangxiao2000/fsobserver.

https://github.com/zhangxiao2000/fsobserver
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of our tools. Then, we measure the performance of a real user application to
demonstrate how to use FSObserver in a real environment. The test environment
comprised 10 commodity servers. 6 nodes work as Ceph servers, 4 nodes act as
Ceph clients. The release version of Ceph is 12.2.4 Luminous.

4.1 Block Storage Interface

We use fio to test the performance of block storage interface. In our environments,
we first test the performance use fio, then we lunch FSObserver and test the
performance with fio again. We get two performance data from fio, and one
performance data from FSObserver.

There are 6 different workloads used in our test, including sequence read,
write, and mixed workloads and random read, write, and mixed workloads. For
each workload, we test performance with different block sizes from 4k to 128k.
Due to the page limitations, we only show the results of read and write. From
these figures, the results of fio are almost the same, while one is taken without
a recorder, the other was taken with FSObserver is working. The CPU and
memory used by FSObserver are also very small. According to our experiments,
it only used less than 0.3% CPU during the whole test (Figs. 2, 3 and 4).

(a) Sequence read (b) Sequence write (c) Random read (d) Random write

Fig. 2. The IOPS measured by fio and FSObserver

(a) Sequence read (b) Sequence write (c) Random read (d) Random write

Fig. 3. The throughput measured by fio and FSObserver

4.2 Capture Real Workloads

In this part, we demonstrate how to get the I/O sequence of a real application.
The process of compiling a Linux kernel is a complex task. There are 67 thousand
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(a) Sequence read (b) Random read (c) Sequence write (d) Random write

Fig. 4. The latency measured by fio and FSObserver

files in the Linux kernel 4.16.4. During the compiling process, several compilers
read thousands of files and generate about 71 thousand new files. Figure 5 shows
the IO throughput per minutes during the compiling process. We can find that
during the compiling process, the write throughput is kept at a high level.

Fig. 5. Real workloads of compiling a Linux kernel

5 Conclusion

In this paper, we present a flexible performance monitoring tool for large-scale
distributed storage systems. We have implemented it for Ceph. The experiments
show that it can get coincident performance data with other widely used tools.
We compared the accuracy with wide adapted benchmarks and measure a per-
formance for a real application.
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Abstract. Xen is one of the most popular virtualization platforms
nowadays, which has been broadly used by the industry. Credit sched-
uler, the default scheduler of Xen, was initially designed for serial jobs,
which achieves good performance overall for serial jobs. Unfortunately,
the parallel jobs are likely to co-exist with serial jobs in the same host
in practice, the resource contention between virtual machines results in
severe performance degradation of the parallel jobs. In this paper, we
propose vGrouper, a progressive solution to enhance the performance of
the parallel jobs. The vGrouper focuses on synchronizing the execution
time of the parallel nodes in order to achieve the best performance of
the parallel job. Moreover, the vGrouper guarantees that the parallel
job nodes are able to run concurrently on pCPUs for the entire time
slice, which maximizes the efficiency of communication between parallel
nodes. A prototype of vGrouper is implemented, the experimental results
demonstrate that the performance of the parallel job and resource uti-
lization in Xen have been significantly improved.

Keywords: Xen · Virtual machine · Virtualization · Parallel jobs
Scheduling

1 Introduction

The Xen virtualization platform has been embraced by industry nowadays due
to its impressive scalability and outstanding performance. However, the credit
scheduler, which is the default scheduling strategy of Xen, has been identified
to be less capable of scheduling parallel jobs. A parallel job usually relies on
communication between nodes, which is a completely different working fashion
from the serial job. Due to the lack of knowledge of the parallel job, the credit

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018
F. Zhang et al. (Eds.): NPC 2018, LNCS 11276, pp. 148–152, 2018.
https://doi.org/10.1007/978-3-030-05677-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05677-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-05677-3_15


vGrouper: Optimizing the Performance of Parallel Jobs in Xen 149

scheduler treats the nodes of each parallel job node as a normal serial job, where
the particularity of the parallel job is completely disregarded. The shortcoming
of credit scheduler has been discussed in several studies [2–5].

In this paper, we propose vGrouper, a progressive solution to further enhance
the performance of the parallel job to a new level. The vGrouper focuses on
synchronizing the execution time of the parallel nodes in order to improve the
performance of the parallel job. Moreover, the vGrouper guarantees that the
parallel job nodes are able to run concurrently on pCPUs for the entire time
slice, which maximizes the efficiency of communication between parallel nodes.

2 Background and Related Work

2.1 Credit Scheduler

The credit scheduler, which is a proportionally sharing scheduling strategy based
on fair allocation of resource, was initially designed for scheduling serial jobs.
Each VM will be given credits to consume during execution, which indicates
that how many physical resources a VM can have. There two parameters weight
and cap can be used for customizing the bias of resource allocation according to
user’s need, where the weight indicates the relative proportion of execution time
and cap stands for the maximum amount time of execution time of a VM. In
credit scheduler, two priorities are used to indicate the status of a VM. UNDER
priority is given to those VMs which are remaining credits, while a VM running
out of credits is given OV ER priority. Each vCPU of the VM is allowed to exe-
cuted for a certain time, and the VMs with UNDER priority will be scheduled
one by one.

2.2 Related Work

Several optimizations have been made to improve the performance of the parallel
job in Xen. Chen and et al. found that overcommitted vCPUs brings performance
degradations to concurrent jobs in [1], they mitigate the negative impact by
adjusting the time length of execution of VMs according to the type of the
workload. Shao and et al. also reveal the problem of overcommitted vCPUs in
their research and indicate there is potential penalty on the performance of the
parallel job in Xen [3], they choose to expose the workload types of VMs to Xen
hypervisor to alleviate the decrease of the performance of the parallel job.

3 Problem Analysis

In the virtualized environment, a pCPU is proportionally shared among several
vCPUs, and each vCPU in the local job queue is scheduled for a certain length
of time periodically. We first make some assumptions on the environment of the
virtual system based on the policies of credit scheduler and common experience
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of configuration. Firstly, the size of each parallel job is smaller than the number
of pCPUs. Secondly, VMs of serial workloads are assumed to be in busy status.
Thirdly, the VMs of the parallel job are Uniprocessor systems and only commit-
ted to execute the parallel jobs. Forthly, the total number of the VMs in system
is much bigger than the number of the pCPUs of the host.

Let p be the number of pCPUs, s be the size of a parallel job and j be the total
number of VMs. As the credit scheduler targets for global workload balanced,
the VMs will be evenly and randomly allocated to the pCPUs. Therefore, we
know the probability of the parallel nodes being allocated to different pCPUs is:

PA =
∏i<s

i=0 p− i

ps
(1)

Moreover, the nodes of the parallel job should be placed at the same positions
of their run queues so that they can be scheduled simultaneously. We know the
size of each run queue is:

q = j/p (2)

Thus, the probability of all parallel nodes being placed at the head of the run
queues is:

PB =
1

qs−1
(3)

Therefore, the probability of a parallel job being simultaneously placed on the
head of run queues by the credit scheduler is:

PC =
∏i<s

i=0 p− i

ps
· 1
qs−1
min

(4)

We introduce execution efficiency Es to indicate the percentage of the parallel
sub-tasks being simultaneous executed in a time slice. Additionally, as dom0
processes the I/O request in Xen, it is compulsory to schedule dom0 along with
the parallel nodes. Thus, overall evaluation on the efficiency of scheduling a
parallel job in Xens:

Eoverall =
∏i<s+1

i=0 p− i

ps+1
· 1
qsmin

· Es (5)

As can be seen, the probability of a parallel job being properly scheduled by
credit scheduler is extremely low. Therefore, a co-scheduler is required to assist
the credit scheduler to make the appropriate decision on scheduling the parallel
job. The problem can be illustrated by Fig. 1.
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Fig. 1. Problem of parallel job in Xen
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4 Co-scheduling Solution

The co-scheduling solution solve the problem using three steps. Firstly, it identi-
fies the parallel job in Xen, which requires the VMs of parallel job to be labeled
by the users so that co-scheduler is able to identify parallel workload. Secondly,
the co-scheduler relocates the VMs of the parallel jobs to avoid overcommitted
pCPUs. All VMs of the parallel jobs will be examined in this step, if multiple
VMs of a parallel lie on the same job queue of pCPU, the vGrouper is expected
to redistribute then to different job queues by migrating. Notably, this step is
only taken one time when a parallel job is created. Thirdly, for each parallel
job, we choose a flag VM which indicates the parallel job is encountered. When
the flag VM is about to be scheduled online, the vGrouper schedule all related
VMs of the same parallel job together with the flag VM as a group by boosting
the parallel nodes. The boost mechanism of credit scheduler allows current run-
ning vCPUs to be preempted by others to accelerate the responding time, which
can be used by vGrouper to simultaneously scheduled the VMs of a parallel job
together.
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5 Experiments and Evaluation

We conduct several experiments to evaluate the performance of vGrouper. Firstly,
we test the vGrouper with NPB benchmark suite. As Fig. 2 illustrates, the perfor-
mance of the benchmarking program is significantly increase as expected, espe-
cially on IS and LU, which contains lots of communications between the VMs
of the parallel job. Secondly, we observe the overhead of the vGrouper. Figure 3
shows that overhead incurred by the vGrouper is negligible, even though that
there is a slight increase as the size of the parallel job increases. Finally, we evalu-
ate the improvement of the utilization. We introduce Number of Communications
Per Uni Time (NCUT) as a metric to assess utilization of the system. As can be
seen from Fig. 4, the frequency of communications in unit time is dramatically
increased as the receiving VMs of communications are guaranteed to be online.

6 Conclusion

In this paper, we investigate the reasons for performance degradation of the
parallel job in Xen and analyze the importance of simultaneous scheduling to
the execution of the parallel job in Xen. We present vGrouper to assist the
credit scheduler in handling the parallel application by increasing the length of
synchronous execution of a parallel job. The experiments show that vGrouper
effectively optimizes the performance of the parallel job in Xen and increases
the utilization of the system.
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Abstract. As the depth of DNN increases, the need for DNN calcula-
tions for the storage and computing power of the underlying computing
platform is increasing. In this work, we implement an accelerator on
FPGA for deep learning algorithms (CNN and RNN). The core comput-
ing module of the accelerator is a 32 * 32 systolic array of PEs. A mapping
method for variable size of CNN and RNN algorithms is proposed. The
experiment result shows that the maximum power consumption of the
accelerator is 7.5W@100Mhz, the peak performance is 0.2Tops/s, and
the real performance is 7.6Mops@100Mhz when running the 1st layer of
LeNet-5.

Keywords: Accelerator · Systolic array · DNN · Data mapping

1 Introduction

At present, almost all large companies are developing their own artificial intel-
ligence chips. Facebook’s hardware is optimized for its Caffe2 framework [1].
Amazon is building an ecosystem of cloud infrastructure by AWS [2]. The most
notable example of deep learning algorithm accelerators is Google’s TPU [3].
Google Data Center has been using TPU to accelerate AI services such as image
recognition and language translation.

Compared with CPUs and GPUs, TPU can provide high performance and
high energy efficiency. For example, TPU1 can provide 92Top/s with 8-bit inte-
ger [3]. Google’s TPU brings systolic design, which is an old hardware archi-
tecture [4], back to the face of architecture designers. The core computing unit
of the TPU is a 256 * 256 systolic array of MACs. The systolic array structure
can effectively support the memory intensive and computing intensive features
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of deep learning algorithms. Google introduced some details of TPU1 in a paper
published at ISCA 2017 [3]. However, Google did not disclose much detail about
TPU2 and TPU3 until now.

Therefore, in order to design deep learning accelerators based on the systolic
array, we need to solve the following problems: How to implement a deep learning
accelerator using a systolic array and map different deep learning algorithms to
it? The main contributions of this paper are:

(1) An RTL design of the accelerator architecture whose core computing unit is
a 32 * 32 systolic array and necessary peripheral modules.

(2) We propose a method for mapping arbitrary size convolution and matrix
multiplication operations to the fixed-sized systolic array to accelerate CNN
and RNN computation.

We synthesis the accelerator to Xilinx’s FPGA V7 690T, and perform detailed
functional verification and performance, power and area analysis. The experi-
ment results show that the inference process of the CNN model and RNN model
can be run correctly on this accelerator and be accelerated. The real performance
is 7.6Mops@100Mhz when running the first layer of LeNet-5.

2 Related Work

In addition to google [3] and microsoft work [6], the Cambricon designed a new
generation of edge intelligent processor Cambricon 1M. Farabet et al. proposed
an extensible data flow hardware architecture for running the generic vision
algorithm neuFlow on Xilinx V6 FPGA platform [5]. Chen et al. made a custom
multi-chip machine-learning architecture [7]. Alwani et al. constructed a fused-
layer CNN accelerator for the first five convolutional layers of the VGGNet-E
network [8]. Li et al. designed an 8-Bit fixed-point CNN hardware inference
engine [9].

3 Systolic Array Design

Figure 1 shows the overall architecture of the proposed accelerator design. It
contains the systolic array, input memory, output memory, weight memory, con-
troller, and an AXI interface for data exchange with the host computer.

3.1 Processing Element Design

Figure 2 shows the module diagram of the processing element (PE). The PE
contains input registers, part sum registers, weight registers, and the counter.

The input register is used for receiving an incoming data at each cycle from
the upper computing unit or input memory for MAC and transferring input
data to lower PE. The weight register is used for storing weights and forward
weights to the right PE. The part sum register is responsible for keeping the
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temporary result and continuously accumulate with the new result. The counter
is used for counting the cycles, because, for some algorithm, it will take several
cycles to propagate the result to the adjacent PEs. When the counter reaches
the specified threshold, the final result is transmitted to the upper unit or the
output memory.

Fig. 1. Overall design of
the accelerator.

Fig. 2. Systolic array PE. Fig. 3. Two-dimensional
systolic array’s data flow.
(Color figure online)

3.2 Array Structure and Data Flow

As shown in Fig. 3, the structure of a two-dimensional systolic array has the
following data flow. In the systolic array, the input data flow, represented by
the green dotted solid arrow, is input into the systolic array from the top and
propagates to the bottom until the bottommost PE discards it after use. The
weight data flow, represented by the blue dot-shaped hollow arrow, is similar to
the input data flow but it propagates from the left to the right. The output data
flow, represented by the black solid black arrow, is output from each PE and it
propagates from the bottom to the top.

3.3 Controller Design

The controller module has the following functions. It controls the data to be read
into the memory from the buffer, starts the computation, controls the data to
flow into the array, and controls the results to flow out of the array and to write
back to memory. Finally, it controls the results to be returned to the buffer to
be taken by the host computer.

4 Data Mapping Method

4.1 Mapping of CNN Algorithm

We only discussed the computation of convolution layer at this section. FC layers
mapping to the systolic array is similar to RNN algorithm’s mapping.
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The convolutional layer receives N feature maps as input. Each input feature
map is convolved by a K∗K size kernel to generate one pixel in one output feature
map. The stride is S. M output feature maps will be the set of input feature
maps for the next conv layer. Figure 4 shows the mapping to an ideal systolic
array, assuming that the size of the systolic array is M×(C×R) and the stride is
1. The horizontal axis input is the kernel, the first row is weight[0][ti][∗][∗], ti is
from 0 to N − 1. The second row is weight[1][ti][∗][∗] and so on. The data in the
second row is provided one cycle later than the element of the same position in
the first row, and so on. The vertical axis input is the data block corresponding
to the input feature map, as shown in Fig. 4. The input feature map’s data flows
as similar as the kernel’s data flow.

The last point of the first row of the systolic array is completed in K ×N +
R×C−1 cycles. Each PE in the first row saves the output feature map of output
channel 0. Assuming that the 1st PE of the 1st row can read the first point[0, 0]
of the output channel 0 of output feature map and in K ×N and at K ×N + 1,
it can read the second point[0, 1]. In this way, the last point[C −1, R−1] is read
at K ×N +R×C − 1 cycles. And so forth, the point in time at which each PE
completes the operation is represented as an anti-diagonal line as shown in the
Fig. 4. After completing the operation, all results are transmitted vertically.

Assume that the size of the systolic array is A × B. The ideal systolic size
of the algorithm is M × C × R. It can be seen as a box with the size of A × B,
overlaid on the ideal systolic array layout, and filled with zeros where there is
no data at the boundary.

Fig. 4. A CNN ideal mapping algo-
rithm.

Fig. 5. A RNN mapping algorithm.

4.2 Mapping of RNN Algorithm

The core operation of RNN is matrix multiplication used by forwarding prop-
agation. And matrix multiplication’s operation method is very suitable for the
systolic array. Both of them use a row to multiple a column.

Thus, as shown in Fig. 5, the left matrix is input in rows of the systolic array
and the right matrix in the columns of the systolic array. Then the matrix prod-
uct from the corresponding position of the systolic array can be got. Consider a
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matrix multiplication A×B = C and a systolic array of size M ×N . The size of
A is r×s, the size of B is s×t and size of C is r×t. When r <= M , t <= N , the
matrix multiplication can be operated by the systolic array in one pass. While
if r > M or t > N , it is necessary to split r or t. Separate the rows of matrix
A into parts and divide the columns of matrix B into parts. When the result is
not an integer, PEs not used in the array are filled with zeros.

5 Experimental Result

5.1 Implementation

The accelerator is implemented in Verilog RTL. Vivado 2017.04 is used for syn-
thesis and implementation. The implementation platform is Xilinx’s FPGA V7
690T. This paper implements a one-dimensional 1 ∗ 24 systolic array, 2 ∗ 2, 4 ∗ 4,
8 ∗ 8, 16 ∗ 16 and 32 ∗ 32 systolic arrays, and compares the results. The clock
frequency is set to 100 MHz. Its power consumption is about 7.5 W. The compar-
ison of power consumption of different size systolic array is shown in Fig. 6(a).
As shown in the Fig. 6(b), the on-chip resource consumption ratios of the various
size of systolic arrays are compared.

5.2 Performance Evaluation

In the design, the operand of each PE unit is 32-bit fixed-point, and the clock
frequency is set to be 100MHz. Because the performance metrics are limited by
the size of the specific problem, our metrics in subsequent performance eval-
uations are subject to the above conditions. Peak Performance: The peak
performance is 0.2Tops@100Mhz when the data is completely filled with the
array. Throughput: The peak throughput of the 32 * 32 systolic array is 1600
Mresults/s. The real throughput rate calculated is 60.3 Mresults/s when running
the 1st layer of LeNet-5. Performance/Area Ratio: As shown in Fig. 6(c), as
the array grows, the performance/area ratio decreases. This also shows that as
the number of computing units increases, the performance (throughput) revenue
per PE tends to decrease.

(a) Power consumption
evaluation

(b) Resources utilization (c) Throughout and
Throughout/PE

Fig. 6. Comparison of high level synthesis results of the systolic array of different sizes.
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6 Conclusion and Future Work

This work proposes the implementation of a DNN accelerator based on a 32 ∗
32 systolic array. Then the data mapping method for mapping variable sizes
of CNNs and RNNs to the systolic array is proposed. In the future, we will
enlarge the systolic array and design an instruction set in order to satisfy the
requirements of the controller so that the accelerator can achieve more complex
functions.
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Abstract. The performance issue of HDFS has always been a great con-
cern due to its widely adoption in both production and research environ-
ments. However, a fine-grained performance analysis tool is missing to
effectively identify the bottlenecks as well as to provide useful guidance
for performance optimization. In this paper, we propose a fine-grained
performance bottleneck analysis tool, which extends HTrace with fine-
grained instrumentation points that are missing in Hadoop official distri-
bution. In addition, we propose an effective trace merging method that
improves the understandability of our analysis. We analyze the perfor-
mance of HDFS under different kinds of workloads and get undiscovered
insights.

Keywords: HDFS · Instrumentation · Bottleneck analysis
Performance optimization

1 Introduction

Distributed file systems are widely used in various computing domains such as
supercomputing and big data analytics. However, diagnosing performance issues
of distributed file systems is still a challenging task, because the performance
bottleneck of a distributed file system may come from various components of the
system, and even interaction between different components. Therefore, effective
performance analysis tools for distributed file systems such as Hadoop are of
vital importance. Currently, many researches focus on end-to-end performance
analysis frameworks, which capture the information flow of each request of the
distributed file system and then obtain the performance information of each
component of the system and the interaction between the components such as
Dapper [5], Magpie, Stardust [6], Xtrace [1], HTrace [2], etc.
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Among the above performance analysis tools, HTrace has been merged into
Hadoop release to provide useful performance data. However, the default HTrace
instrumentation within Hadoop has the following limitations for fine-grained per-
formance analysis. Firstly, the default Hadoop provides very limited instrumen-
tation points without detailed information captured. For example, the major
components of HDFS [4] such as Namenode, Datanode and their interactions
are not instrumented. For example, we can not conclude whether Namenode
bookkeeping is the bottleneck because Hadoop’s official implementation haven’t
instrumented Namenode. Secondly, the default instrumentation in Hadoop can-
not obtain the detailed parameter information for the function calls instru-
mented. For better analyzing the performance of a distributed file system, not
only the time series of each function call but also the size of bytes processed by
each function need to be known in order to identify the potential performance
bottlenecks. Lastly, instrumentation information provided in default Hadoop is
difficult to retrieve and visualize. For example, in just a few minutes, hundreds
of megabytes of trace files are generated, making it hard to locate and diagnose
the performance issues.

Therefore, this paper focuses on the performance analysis of HDFS by extend-
ing HTrace to provide fine-grained instrumentation. In addition to solve the
trace explosion problem, we propose a trace compression method that merges
the traces of repeated function calls and only maintains the representative statis-
tics during instrumentation. Finally, through experiments on representative big
data workloads, we obtain some useful insights.

2 Methodology

2.1 Fine-Grained Instrumentation

The instrumentation of Hadoop’s official distribution mainly instrument client
sensed delay or Datanode sensed delay. HDFS contains more complex interac-
tion beyond Datanodes and the client node. What’s more, we can not distinguish
network delay from the local file I/O delay. Due to this reason, we instrument
some new performance-related blocks. They mainly reside in Namenode, Datan-
odes. Our purpose is to get fine-grained Namenode performance, Datanode local
I/O performance, Datanode network performance, Datanode and Datanode data
exchange performance. Except for simply obtaining function call duration, our
instrumentation also encodes important function arguments into traces such as
data size processed, block id and filename so we can monitor data process rate,
I/O error occurrence. One of the biggest challenges of our instrumentation is
that Java has many polymorphous functions. In the case, we will instrument
every function and merge them in the trace processing procedure.

2.2 Trace Compression

The running of HDFS will generate a huge volume of traces. In our experiments,
after several minutes of Spark execution, a trace larger than 1 GB will generate.
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Traditional HDFS performance analysis tools neglect this fact and rely on human
labor to find the bottleneck in a large amount of data.

We present an effective method for compressing traces. We observe that
before compressing, there are many repeated function call. For example, the
receiveBlock function usually contains hundreds of receivePacket functions. We
merge repeated function call receivePacket in this circumstance and only extract
several representative statistics from these merged function calls. The number
of call trees will reduce by more than 90% after trace compression. Formally, we
do a breadth-first traversal from bottom to top inside a call tree and merge the
subtrees with the same structure. After compression inside every call tree, we
compress these trees with the same structure.

3 Evaluation

3.1 Experiment Setup

Our experiments are conducted with a cluster with seven nodes with one master
node (which is Namenode in HDFS), five slave nodes (which are Datanode in
HDFS) and one client Node. The master node and slave nodes are equipped
with Xeon E5-5620, 16 GB memory. To achieve higher throughput, we use Intel
Xeon Phi (Knights Landing) for workload generating. The many-core and high
volume of memory enable Phi to start many HDFS clients simultaneously. The
implementation is shown in Fig. 1. The trace is generated into local files that
are collected and stored in database. The Workload Generator component gen-
erates HDFS I/O requests. The Recover Call Tree component reads from user
configuration to decide the function calls to keep. The Trace Compress com-
ponent traverses call trees and performs compression. Finally, the Bottleneck
Visualization component displays the compressed call tree.

HDFS
Instrumented
Namenode

Instrumented
Datanode

Trace 
Database

Bottleneck 
Visualization

Workload 
Generator

User 
Configuration

Recover Call 
Tree Trace Compress

Fig. 1. The implementation overview of our HDFS performance analysis tool.
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3.2 Performance Bottleneck Analysis

Across Workloads. We choose the tiny sized workload input from Hibench. For
machine learning workloads, data will be iterated for many times generating large
traces thus we use sampling (sample rate is 0.05) to reduce trace size. For Word-
count workload, the largest delay is caused by FileSystem#createFileSystem
which spends total 90.21 s. The second largest delay is caused by DFSOutput-
Stream#close which spends total 10.54 s. Local I/O plays an ignorable role here.
The delay of Datanode flushing buffer into local file system is too small to mea-
sure. And also we can conclude that using faster storage medium won’t speed up
application greatly. We can see the bottleneck is in the client node. The process
for initiating FileSystem object has a large potential to optimize. We have a
similar conclusion for Sort, Terasort, Pagerank, LogisticRegression and Nweight
workloads. Bayes workload is different from the above workloads. The largest
delay is caused by BlockSender#sendBlock. Reading from local file system causes
3.10 s delay and reading from remote Datanode causes 0.49 s delay.

Impact of File Size. We use Wordcount workload to explore the impact of file
size on HDFS performance. We use tiny, small, large, huge sized workloads which
contains 32000, 320000000, 3200000000, 32000000000 respectively. Due to the
trace size explosion, we use a sample rate of 1, 0.01, 0.001, 0.0001 respectively.
With the increase of data size, the impact of FileSystem#createFileSystem is
becoming weaker. In tiny sized workload, this operation causes total 91.92 s delay
compared with application time 28 s (we add up delay from different Datanodes).
In small-sized workload, it takes 1.55 s compared with application time 32 s. And
in larger sized workloads, it hasn’t been sampled. So in small-sized workloads,
the file system creation process is an import bottleneck.

Impact of Request Frequency. In [3], the authors directly model real request
patterns from the AliCloud on IOPS, Inter-arrival time, session size and read
request size. However, Alicloud is a very large cluster contains tens of thousands
of nodes. For our small cluster, we multiply IOPS with different factors α but
retains the distribution the model. With request frequency increasing, we can
explore which part of HDFS facing the request pressure as shown in Table 1.

The delay of request mainly caused by sendBlock operation. How-
ever, the average delay of this operation is decreasing. Although FileSys-
tem#createFileSystem plays an important role in request delay, its duration has
little to do with request frequency. We can find out that the delay of sendBlock
first increase but then decrease with request frequency increasing. In small fre-
quency, HDFS is in cold start state thus the delay is relatively large. And when
request frequency is very large, the resource contention is more severe. The Block-
Sender#sendPacket, FSNamesystem#getBlockLocations (Namenode searching
for block locations for a given file) operation has the same conclusion. Contrary
to common sense, the bottleneck under frequent request is neither in Namenode
nor in Datanode. Thus optimization for the concurrent request in client node is
more important.
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Table 1. The average delay (second) of some major functions under different request
frequencies.

Function α = 0.001 α = 0.005 α = 0.01 α = 0.05 α = 0.1 α = 0.5

FileSystem#
createFileSystem

0.1567 0.1842 0.1827 0.2060 0.1887 0.1992

sendBlock 0.0054 0.0026 0.0020 0.0012 0.0009 0.0015

BlockSender#
sendPacket

0.0005 0.0004 0.0002 0.0001 0.0001 0.0002

FSNamesystem#
getBlockLocations

0.0088 0.0006 0.0005 0.0003 0.0007 0.0014

Total 0.0423 0.0439 0.0426 0.0648 0.0801 0.0674

4 Conclusion

In this paper, we propose an extension to HTrace in order to support fine-grained
performance bottleneck analysis for HDFS. In addition, we propose a trace com-
pression method to merge the repeated function calls for efficient performance
analysis. We’ve also done a series of experiments to explore the bottleneck under
different workloads and get useful insights.
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Abstract. In this paper, we present an optimized data processing
framework: Mimir+. Mimir+ is an implementation of MapReduce over
MPI. In order to take full advantage of heterogeneous computing system,
we propose the concept of Pre-acceleration to reconstruct a heteroge-
neous workflow and implement the interfaces of GPU so that Mimir+ can
facilitate data processing through reasonable tasks and data scheduling
between CPU and GPU. We evaluate Mimir+ via two benchmarks (i.e.
the WordCount and large-scale matrix multiplication) on the Tianhe-2
supercomputing system. Experimental results demonstrate that Mimir+
achieves excellent acceleration effect compared with original Mimir.

Keywords: High-performance computing · MapReduce
Heterogeneous

1 Introduction

With the continuous development of information technology, the data generated
in daily life, industrial productions and scientific researches are exploding. The
convergence of high-performance computing and big data processing is becoming
a promising solution to efficiently tackle with the massive data.

MapReduce is a programming paradigm popularized by Google [1] which
presents a parallel computing model and method for large-scale data processing.
Implementations of MR-MPI [5] have given practical and feasible solutions to
transplant MapReduce to high-performance computing system. However, MR-
MPI suffers from a severe shortcoming which is its simple memory management.
In our previous work, we presented Mimir [2] which is an optimized frame-
work based on MR-MPI. Mimir redesigns the execution model to incorporate a
number of sophisticated optimization techniques that achieve similar or better
performance with significant reduction in the amount of memory used. Never-
theless, we can see that MR-MPI and Mimir mainly perform their calculation
in CPUs.
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Among the latest TOP500 list published in June 2018, Summit captured the
number one spot with a performance of 122.3 petaflops on High Performance
Linpack. Each node of Summit is equipped with two 22-core Power9 CPUs, and
six NVIDIA Tesla V100 GPUs. Summit’s championship demonstrated the capa-
bilities and potentiality of heterogeneous high-performance computing system.
Although MapReduce-MPI and Mimir can implement the MapReduce model
well on high-performance computing system, their lack of heterogeneous archi-
tecture will cause a problem that the heterogeneous resources cannot be fully
utilized.

We continued the work of Mimir and present Mimir+ in this paper. This work
targets to promote the calculation speed of Mimir and support heterogeneous
GPU acceleration on high-performance computing system.

The remainder of the paper is organized as follows. Section 2 introduces the
optimizations of Mimir+. Section 3 describes the experimental environment and
results. Other research related to our paper is presented in Sect. 4. We conclude
this paper in Sect. 5.

2 Design of Mimir+

In this section, we introduce the main optimizations and designs in Mimir+.

2.1 Heterogeneous Workflow

The original Mimir designs two special objects called KV containers and KMV
containers to help manage the intermediate data <key, value> pairs between
map phase and reduce phase. Similar to Mimir and MR-MPI, Mimir+ still adopts
the KV containers and four basic phases: map, aggregate, convert and reduce.
However, in order to further improve the computation speed, we reconstruct
a heterogeneous workflow for Mimir+. Specifically, Mimir+ integrates the map
phase and the aggregate phase into one process called MAP, and the convert
phase and the reduce phase are integrated into another process called REDUCE.

Figure 1 shows the reconstructed workflow of Mimir+. The first thing to do in
MAP is to process the input data according to a user-defined callback function.
Here, we implement a new interface for GPU to perform the map jobs and users
can select whether to perform the calculation on the GPU or on CPU by using
the corresponding interfaces. Then, Mimir+ performs the MPI Alltoallv function
to exchange the KVs and stored them in KVCs through an interleaved execution
model. When the MAP process ends, the REDUCE process starts and Mimir+
converts <key, value> in KVC to <key,<value1, value2, value3...>> into the
KMVC. Mimir+ also has two types of interfaces in reduce phase for users to
determine whether they will use GPU to calculate the reduce jobs or not. A
user-defined reduce GPU function implemented in CUDA is needed to start the
data processing in GPU and the final output data will be transferred back from
GPU memory.
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2.2 Design of GPU Acceleration Modules

When we implement the heterogeneous workflow of Mimir+, we can’t simply
load the map/reduce tasks and data into GPU because GPU is not suitable for
receiving fragmented data. Here we propose a concept of Pre-acceleration. Pre-
acceleration actually refers to the operations we perform before we use GPU to
calculate data. Specifically, operations like data partitioning, data communica-
tion and data transmission required before GPU acceleration can all be regarded
as a part of Pre-acceleration. In combining the concept of Pre-acceleration, we
divide the GPU acceleration process into four modules to achieve an efficient and
convenient management. Figure 2 shows a brief architecture of Pre-processing
Module, Transmission Module, Calculation Module and Feedback Module.

Fig. 1. Workflow of Mimir+ Fig. 2. GPU acceleration modules

3 Evaluation

In this section, we evaluate the acceleration effect of Mimir+ and compare it
with the original Mimir.

3.1 Performance Comparison

We perform WordCount (WC) and matrix multiplication on 4 nodes of hetero-
geneous computing system: Tianhe-2. Each node in Tianhe-2 is equipped with a
2-way 8-cores Intel Xeon CPU E5-4640, 128 GB memory, running at 2.40 GHz.
The GPU equipped on the node is NVIDIA Tesla K80 GPU with two sets of
12 GB GDDR5 memory (24 GB in total), 4992 stream processors, the memory
bandwidth is 240 GB/s. Each node installs a 64-bit Linux 3.10.0 operating sys-
tem, and we use mvapich2-2.2, gcc-4.8.5 and CUDA 8.0 to conduct the tests on
Mimir+.

The results of WC are shown in Fig. 3(a). As we can notice, Mimir+ obtains
a comparatively good acceleration effect on WC. With the increase of test data,
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(a) WordCount (b) Matrix Multiplication

Fig. 3. Performance comparison on WordCount and matrix multiplication

the acceleration effect achieved by Mimir+ is becoming more and more obvi-
ous. Because the tasks of WordCount in MapReduce do not require intensive
computing, the effect of acceleration in Mimir+ is not fully reflected.

Since the tasks of matrix multiplication vary from the map phase and the
reduce phase, we tested and compared the two phases separately in the other
experiment. Moreover, in order to compare the difference between the calculation
of heterogeneous systems and pure parallel GPU computing, we performed the
matrix multiplication in GPU alone using CUDA with the same input data and
put the result into comparison. The results are shown in Fig. 3(b). In the map
phase, because of the little calculation, the effect of acceleration is not good.
However, in the reduce phase which contains a huge amount of calculation,
Mimir+ achieves a considerable speedup of about 7.4 compared with Mimir.
After comparing Mimir+ and Mimir in map and reduce phase, we performed
an overall test and the whole framework can achieve a speedup of about 8.1 to
8.3. Nevertheless, the calculations performed in GPU alone achieved a speedup
of about 8.5 which is close to Mimir+.

4 Related Work

MapReduce is an extremely popular model and many researches intend to
improve the performance of MapReduce jobs on heterogeneous system.

Phoenix [6,8] proposed by Colby Ranger et al. from Stanford University
is a MapReduce implementation on shared memory system targeting thread-
based parallel programming. Shared memory minimizes indirect costs caused by
parallel task spawning and data communication. Mrphi [4] is also a MapReduce
implementation optimized for the Intel Xeon phi. Different from these systems,
Mimir+ works on large-scale distributed-memory systems.

Mars [3] is a MapReduce implementation totally deployed on GPUs. In Mars,
there are a large number of threads running in parallel on the GPUs. Each thread
computes a KV pair at a time. To avoid multi-threaded write conflicts, Mars uses
a lock-free strategy to ensure that parallel programs are correct, with minimal
synchronization costs.
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On high performance computing system, Tsoi et al. developed a heteroge-
neous computing system, Axel [7], which consist of FPGAs and GPUs, and they
implemented a MapReduce framework on Axel which significantly promoted the
speed of calculation.

5 Conclusion

In this paper, we propose an optimized MapReduce framework on heteroge-
neous high-performance computing system: Mimir+. This framework inherits
the core idea of MR-MPI, reconstructs a heterogeneous workflow and imple-
ments the GPU acceleration interfaces so that we can accelerate the data pro-
cessing of MapReduce jobs and make full use of resources on heterogeneous
high-performance computing system. Our results on the Tianhe-2 supercomputer
prove that Mimir+, compared to the original Mimir, significantly improves the
speed of data processing during the computing phase for data-intensive applica-
tions.
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Abstract. The Deep learning processor (DLP), especially ASIC-based
accelerators, have been proved to be a promising device for accelerating
the computation of deep learning algorithms. However, the learning cost
of mastering these DLPs is high as they use different programming inter-
faces. On the other hand, many deep learning frameworks are proposed
to ease the burden of developing deep learning algorithms, but few of
them support DLPs. Due to the special features in DLPs, it is hard to
integrate a DLP into existed frameworks.

In this paper, we propose an intermediate representation (called
DLIR) to bridge the gap between DL frameworks and DLPs. DLIR is a
tensor-based language with built-in tensor intrinsics that can be directly
mapped to hardware primitives. We show that DLIR allows better devel-
oping efficiency and is able to generate efficient code.

Keywords: Deep learning processor · Intermediate representation
Deep learning framework · Deep learning

1 Introduction

Deep learning processors (DLPs) have become powerful devices for processing
large scale neural networks, especially ASIC-based DLPs [1–6]. However, DLPs
are still not fully accepted by DL participants due to the lack of programming
supports. On the other hand, many DL programming frameworks [7–10] have
been proposed to ease the burden of developing DL algorithms but often only
on traditional devices (e.g., CPUs and GPUs). Primitives on such devices are
basically scalar computations and they use cache in their system. Therefore,
frameworks designed for such devices are often lower operators to fine-grained
operations and completely ignore the management of on-chip memories. For
example, TVM [11] is a software stack for deep learning, which leverages Halide
IR to present computation loops and extracts several useful scheduling primitives
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to allow users to manually optimize the computation. However, TVM require
the user to describe the computation through scalar operations and use ten-
sor intrinsics scheduling primitive to map the tensor operation to instructions
in the backend DLP (which is VTA in the case of TVM). This complicates the
programming of the DLP as the code describing the computation of the tensor
intrinsics is completely unnecessary. XLA is a recent proposed backend embedded
in TensorFlow to provide subgraph optimizations. It proposes an High-level opti-
mizer (HLO) and also with an IR to represent the computation graph received
from the TensorFlow frontend. Although XLA provides tensor semantics that
in a way match DLP primitives, operators in XLA is very high-level and does
not provide hardware-specific operations such as memory copying between main
memory and on-chip scratchpad memory which is extensively used in DLPs. Such
frameworks lack necessary components to seamlessly support a DLP. Therefore,
an indirection layer that is specifically designed for DLPs is on demand to bridge
the gap between frameworks and DLPs.

Our solution is an indirection layer composed of an intermediate representa-
tion (called DLIR), a compiler and runtime. DLIR is a tensor-based IR, inher-
ently support tensor types (neurons and synapses) and tensor intrinsics (e.g.,
convolution, pooling, matmul) that can be directly mapped to hardware prim-
itives. By leveraging such structures, DLIR compiler is able to generate highly
efficient code that is comparable to hand-optimized instructions.

2 Intermediate Representation Language

In this section, we introduce the intermediate representation language, i.e.,
DLIR, which can be interpreted into operations supported by DLPs. In order
to reduce the learning costs, DLIR is designed to be embedded in C++ as a
library. It can be directly called by front-ends functions and generate instruc-
tions for backend.

2.1 Data Structure

DVIR defines two N-dimensional (N-D) tensor data types, Neuron and Synapse
to encapsulate data and be used as operands of HLIR operators (see Sect. 2.2).
Both types are defined using a built-in data structure, Dimension, which helps
specify the tiling of a dimension. Due to the limited on-chip resources, an N-
D array often needs to be partitioned into several segments to fit into on-chip
buffers. Computation partitioning on DLPs is complicated as there are multiple
dimensions for a N-D tensor. A dimension with size d can be tiled as d = n×s+r,
which requires at least three variables to describe the partitioning. Dimension is
introduced to encapsulate these variables. By iterating through combinations of
segments of different dimentions of a tensor, we are able to traverse all possible
segments in the tiled tensor. In addition, to enbale explicit memory copy between
the main memory and on-chip buffers, we provide two data structures, i.e., Neu-
ronBuffer and SynapseBuffer, to represent allocated data on on-chip buffers. A
segment in Neuron will be transferred to a corresponding NeuronBuffer.
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2.2 Operators

We classify the programming supports of current DLPs according to whether
they require programmers to manually write tiling and computation partitioning
within a layer, i.e., the ability to process arbitrary scale of computation. We
call the code generator (CG) provided by DLPs as high-level code generator
(HLCG) and low-level code generator (LLCG). HLCG refers to CGs that can
process arbitrary scale of computation, e.g., CG of DianNao and ShiDianNao.
LLCG refers to CG that can compile programs at the level of assembly or ISA,
e.g., Cambricon ISA. Accordingly, we provides two levels of operator that can
map to these two CGs, i.e., high-level operators (HLOP) and low-level operators
(LLOP). Therefore, both types of CG can be integrated into DLIR.

These two levels of OP are also corresponding to the data structures. HLOP
takes Neuron or Synapse as input and output parameters, and LLOP takes
segments in a Neuron or Synapse as input and output parameters. Both HLOP
and LLOP can be translated directly into hardware-specific assembly languages
or instructions by invoking HLCG and LLCG.

In addition to directly invoke vendor-provided CG to generate code, HLOPs
can also be first interpreted to LLOPs, and then translated to instructions.
With such transformation, DLPs with LLCGs can also use HLOPs as the official
programming interface which is typical for DL frameworks.

3 Compilation

The compilation process is shown in Fig. 1. Operations in the computational
graph can be mapped to HLOPs. For DLPs using HLCGs, DLIR passes the
parameters to HLCGs to generate executable code. For those using LLCGs,
DLIR will invoke the HLOP defined with LLOPs and memory operations to
generate LLOP sequences, which will then be compiled by the LLCGs. In the
function that defines HLOPs by LLOPs, users need to specify loop tiling, data
segmentations and the use of on-chip buffers in such functions. In addition,
as DLPs have strict restriction on data layout, the compiler will rearrange a
tensor according to the dimension informations so that the required data can be
sequentially fetched.

Framework
Computational

Graph

Tiling 
Segmentation 
Data Management 

HLOP HLCG

Executable code

LLOP LLCG

Fig. 1. Compilation process of DLIR
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4 Evaluation

We use Caffe as the front-end as it is a commonly used DL framework. We reim-
plement Setup, Forward and Backward functions in the layers in Caffe. Each
call of these functions will invoke the DLIR compiler to generate an instruction
sequence that will be transferred to our backend and executed. We use Cambri-
con as the backend, as it is a state-of-the-art ISA and architecture proposed for
NN algorithms, and it involves many representative features of DLPs.

Fig. 2. Code length reduction of using
DLIR compared to hand-written code.

Fig. 3. Performance of DLIR com-
pared to hand-optimized code.

4.1 Developing Efficiency

We evaluate the developing efficiency of DLVM on five large realistic networks,
i.e., Cifar10, AlexNet, VGG16, VGG19 and ResNet34, covering five representa-
tive algorithms (convolution, pooling, fully-connected, batch normalization, and
local respond normalization) used in popular deep learning networks. Figure 2
shows that by using DLIR, we can reduce the source code by 4.19× on average.
The highest reduction comes from ResNet34 (i.e., 9.72×), and the lowest reduc-
tion comes from Cifar10 (i.e., 1.75×). The more layers a network composed of,
the higher the reduction ratio is. Because the code reduction is primarily gained
from eliminating redundant implementations of the same algorithm with differ-
ent scales.

4.2 Performance

We evaluate the performance of DLVM on the mentioned networks to show that
DLIR is able to generate efficient code. The performance is demonstrated in
Fig. 3. DLIR achieves 89.37% performance compared to that of hand-optimized
code on average. The performance loss primarily comes from the missing overlap-
ping between computations and memory accesses especially between layers and
the memory accesses saved by layer fusion. However, the hand-optimized code
could takes seasoned programmers days to maximize the optimize. In DLIR,
we mostly concern about usability instead of performance, therefore this perfor-
mance loss is acceptable for us.
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5 Conclusion

In this paper, we propose an intermediate representation (DLIR) to bridge the
gap between high-level DL frameworks and DLPs. DLIR is composed of an
intermediate representation language with special designed data structures (i.e.,
Dimension, Neuron and Synapse), hierarchic operators and memory operations.
By leveraging DLIR, we are able to shorten the code by 4.19× on five large
networks on average. In addition, the compiler is able to generate code with
up to 89.37% performance compared to hand-optimized code using Cambricon
as the backend.
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Abstract. Despite the increasing investment in integrated GPUs and
next-generation interconnect research, discrete GPUs connected by PCI
Express still account for the dominant position of the market, the man-
agement of data communication between CPU and GPU continues to
evolve. This paper analyze the address translation overhead and migra-
tion latency introduced by this paged memory management solution in
CPU-GPU heterogeneous systems. Based on the analysis, a new memory
management scheme is proposed: paged memory management solution
supporting incomplete pages, which can limit both address translation
overhead and migration delay. “Incomplete” refers to a page that has
only been partially migrated. This new memory management solution
modifies the address translation and data migration process with only
minor changes in hardware.

1 Introduction

The current GPU paged memory management solution is designed and imple-
mented based on the unified memory [1–3]. When the requested page is missing
on the device side, the system transfers the page to the local memory automat-
ically. Paged memory management solution introduces two major overheads:
address translation overhead and migration latency [4]. Due to the large GPU
memory capacity and limited number of TLB entries, large pages can reduce
address translation overhead. On the other hand, the migration delay is posi-
tively related to the page size.

In order to limit the address translation overhead and migration delay at
the same time, this paper proposes a new GPU memory management scheme:
paged memory management solution supporting incomplete pages. “Incomplete”
refers to a page that has only been partially migrated. We implemented it on the
gpgpu-sim simulator. Experimental results show that, compared to page memory
management, it can reduce address translation overhead and migration latency
at the same time.
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This paper has the following three contributions:

1. We analyzed the address translation overhead and migration latency intro-
duced by paged memory management solution. Based on this, a new memory
management scheme is proposed: paged memory management solution sup-
porting incomplete pages, which can limit both address translation overhead
and migration delay.

2. We defined the “incomplete” page status, added records of the migrated range
in the TLB and page table entries, modified the address translation operation,
and divided it into two steps: check hit/miss and check whether it has been
migrated, to support our new memory management scheme.

3. We modified the page migration operation and adjusted the functionality of
GPU memory management unit (GMMU), so that it can specifies migration
scope and merge requests when generating migration requests, to support our
new memory management scheme and increase bandwidth utilization.

2 Related Work

Lustig and Martonosi [5] designed a fine-grained data dependency tracking mech-
anism to reduce migration delays. However, the system does not migrate data
automatically, and introduces the overhead of tracking full/empty bits. Zheng et
al. used the idle bandwidth to pre-migrate unrequested page based on the obser-
vation that PCI-E bandwidth utilization is low [4]. Agarwal et al. [6] use memory
system information about the characteristics of heterogeneous memory systems
to set the conditions for page migration. However, subsequent experiments have
shown that the overhead exceeds the performance gains compared to the simple
“migrate at the first request” strategy. Vesely et al. [7] analyzed address transla-
tion in heterogeneous systems and found that the cost in the GPU was an order
of magnitude higher than the CPU. Ausavarungnirun et al. [8] designed and
implemented Mosaic to provide application transparency support for multiple
page sizes. In Mosaic, TLB and page tables need to support both large pages
and small pages. The complex design introduces a lot of additional hardware
modifications and overhead.

3 Paged Memory Management Solution Supporting
Incomplete Pages

3.1 Overall Design

Compared with paged memory management solution, this new scheme has the
following two differences. In the address translation process, in addition to deter-
mining whether the request is hit or miss, it is also checked whether the data in
the requested address range has been migrated to the GPU memory. During the
migration process, the system does not transfer the entire page. The generated
migration request needs to specify the scope of the transfer. The architectural
view of GPU MMU and TLBs in paged memory management solution support-
ing incomplete pages is shown in Fig. 1.
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CPU
PCI-E

hit & migrated hit & not migrated miss

Fig. 1. Architectural view of GPU MMU and TLBs in paged memory management
solution supporting incomplete pages

3.2 Address Translation

When querying each level of the TLB or the page table, the first step is to check
whether the page is recorded. If it is missing, the request is passed to the next
level TLB or page table. If it is hit, then check if the request address range has
been migrated to the GPU. If it has been migrated, the address is translated and
returned for cache access; if not, the GMMU informs the corresponding L1 TLB
to suspend the request processing, generates a migration request and sends it to
the CPU. When determining whether the request address has been migrated to
the GPU, the page status and the migrated range are queried sequentially.

3.3 Migration Process

Since only the partial pages corresponding to the request are migrated, the
migration request needs to inform the migration scope. It improves the ratio
of calculation and memory access, reduces the unnecessary data transmission
overhead, and significantly reduces the migration delay. In order not to waste
CPU-GPU bandwidth, the scope of the migration request sets the minimum
length based on the bandwidth value. The GMMU views the migration request
waiting to be processed when generating a new migration request, and merges
the requests whose migration range is less than the default threshold.

3.4 Data Access

When the requested data is migrated to the GPU local memory, the page table
and the TLB are updated, then the request address is re-queried from the
L1 TLB, and the cached and dram are accessed step by step with the con-
verted address until the required data is obtained. Since the address translation
and migration phases have already handled possible data misses, data can be
obtained locally on the GPU.



GPU Memory Management Solution Supporting Incomplete Pages 177

Table 1. Simulator configuration

Simulator GPGPU-Sim 3.x

GPU Arch NVIDIA GTX-480 Fermi-like, 15 CUs @ 1.4 GHz

Caches 16 KB/CU L1, Mem Side 128 kB/Channel L2

TLBs 128-entry Per CU L1, 512-entry Shared L2

Clock Freqs Core:IC:L2:DRAM 700:700:700:1024 (MHz)

GPU GDDR5 12-channels, 384 GB/sec aggregate

MSHR 128Entries/Memory Partition

4 Evaluation

4.1 Simulator and Benchmarks

We implemented our solution on gpgpu-sim [9,10]. The system configuration
we use is shown in Table 1, including the key parameters of the GPU core and
memory partition. It is assumed that the GPU memory is large enough so that
no over-subscription will occur. We test under both 16 GB/sec and 32 GB/sec
as representative of the current and future bandwidth [11]. The 10 benchmarks
tested in our experimental are from ispass2009-benchmarks in gpgpu-sim. They
come from different benchmark suites and are applied in various fields. BFS,
MUM and NN are included in Rodinia, which is a general benchmark suite in
GPGPU research.

4.2 Performance Comparison

We use 1 KB migration unit size as an example of multiple valid ranges migration,
and the page size is 2 MB. Figure 2 shows that, when the bandwidth is 16 GB/sec,
the performance of our new solution (“Incomplete”) is much better than paged
memory management solution (“Complete”, which is called baseline in the follow-
ing part). On average, our scheme improves from baseline’s 82.43× deceleration
to 1.36× acceleration compared with programmers controlled transfer.

Fig. 2. Performance comparison under 16 GB/sec bandwidth. Workload execution time
(lower is better) is normalized to ideal copy + execute overlap execution time.
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5 Conclusion and Future Work

We defined the “incomplete” page status, added records of the migrated range
in the TLB and page table entries, and divided the address translation opera-
tion into two steps: check hit/miss and check whether it has been migrated, to
support our new memory management scheme. We modified the page migration
operation and adjusted the functionality of GMMU, to support our new memory
management scheme and increase bandwidth utilization.

But our experimental part is not perfect enough. There are many aspects to
be tested and analyzed, including the performance comparison with Mosaic. We
will complete the follow-up experiments in the next period of time, and analyze
the experimental results to further improve our scheme. In addition, our scheme
wastes part of memory capacity while reducing address translation overhead and
migration delay, and this part of the cost needs to be further solved.
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Abstract. Deep learning framework plays an important role in con-
necting hardware platform and algorithm. In recent years, some domain-
specific deep learning accelerators with better performance and energy
efficiency were proposed by researchers. However, current frameworks
lack enough considerations about how to better support the possible
new features brought by accelerators. In this paper, we propose to build
a performance portable programming framework with subgraph extrac-
tion. The intuition is that increasing ratio of optimizations are taken
from the top-level framework to the low-level software stack of accel-
erator. In response to this development trend, framework needs to pay
more attention to the splitting strategy of computation graph for the
heterogeneous computation.

1 Introduction

In recent years, we have witnessed many significant breakthroughs of deep learn-
ing algorithm in a multitude of domains. This superior accuracy, however, comes
at the cost of high computational complexity. Researchers try to design more effi-
cient architectures based on the features of deep learning algorithm and get some
promising results [3–5,7–10]. These results show that domain-specific accelerators
outstand in both speed and energy efficiency compared to traditional solutions.

On the other hand, in order to explore and deploy deep learning algorithm
conveniently, both academia and industry have developed several deep learning
frameworks, such as MXNet [2], TensorFlow [1] and Caffe [6]. Those frameworks
automatically optimize the computation flow, generate high-performance kernels
and schedule kernels in parallel if possible.

However, there is a gap between emerging DL accelerators and existing pro-
gramming frameworks. In order to run deep learning algorithm with the highest
performance, some accelerators and its software stacks have tried to break the
wall and search optimal solution in a large space. Unfortunately, current deep
learning frameworks only provide limited adaptions for this new feature.
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2 Motivation

2.1 DLA and Graph Fusion

We designed and implemented a deep learning accelerator and its software stack,
and we call the accelerator DLA in following sections. The design of DLA is con-
cluded from multiple deep learning accelerators, including NVidia DLA, DaDi-
anNao [4] and TPU. There are multiple cores in DLA. Each core in DLA can
complete a computation task independently, which makes it actually a parallel
model with shared global memory.

Compared to traditional limited method that fusing some specific sequence
composed of element-wise operators issued by framework, software stack of DLA
offers a more radical solution. It optimizes and fuses the total graph (see the
Fig. 1). This strategy has several benefits. First, the experts developed lower
stack can give better solution because they know more about hardware architec-
ture. Also, fusing a large graph into a single node greatly saves the kernel launch
cost, which is important for inference task.

Fig. 1. In left part, the framework searches limited templates and generates new kernels
to replace them. In right part, optimization stack of accelerator receives the whole
graph, optimizes and generates a new executor back to framework.

2.2 Heterogeneous Computation

Heterogeneous computation is unavoidable for DLA and other accelerators. Some
operators in new algorithms are hard to parallelize or to abstract to the tensor
operators offered by accelerators, and the frequency of embedding accelerator
in mobile device might be reduced to save energy. As a result, assigning some
parts on CPU might bring better total performance. Thus, before we use lower
software stack to optimize graph, we need to extract a subgraph composed by
operators assigned on DLA. In other words, framework should have a clever
split strategy and method to extract appropriate subgraph from the original
deep networks.
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3 Subgraph Extraction

When we try to extract a subgraph based on whether each operator is well-
supported by accelerator, the direct intuition is to make it a maximum connected
convex subgraph. Connectivity guarantees data relation between operators which
is necessary for most optimizing methods. Maximum grants the largest searching
space and reduces kernel launch overheads. Convexity is used as a constraint to
avoid circle which leads to dead lock when scheduling. A subgraph S of a directed
acyclic graph G is convex if and only if there is no directed path between two
vertices of S which contains an arch not in S (see the Fig. 2).

Fig. 2. Example of convex and non-convex subgraph.

Fig. 3. Post-prune strategy. The ACC node represents operator assigned on accelerator,
and the CPU node represents operator assigned on CPU.

Merging a large subgraph into a single node helps the corresponding compu-
tation to run faster, however, it may hinder scheduler to get maximum paral-
lelism in some case. As Fig. 3 shows, the fused graph must wait for all its input
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to be ready even though some inputs are not necessary at the early stage of its
computation. Similarly, although not all the outputs of a subgraph are generated
at the final stage, all descendants must keep waiting until computation of total
subgraph finishes. So, we append a post-prune process to split each subgraph
into smaller parts, each of which has only one input and output operator.

4 Evaluation

The experiment platform is DLA, a multi-core deep learning accelerator as we
mentioned before. We first evaluate the performance before and after the graph
fusion to demonstrate the validation of graph fusion. As shown in Fig. 4, per-
formance of all six entire-network benchmarks are improved, which achieves a
speedup of 1.18× on average compared with the baseline, which we do not imple-
ment the graph fusion. Specifically, the improvement of ResNet34 and ResNet50
is clearly higher than other four networks.

Fig. 4. Relative speedup of graph.

Fig. 5. Left figure shows the structure of the inception-v3 block. Right figure shows
speedup after the post-prune strategy. Horizontal axis label represents part of the block
assigned to CPU

Then we evaluate the speedup of the post prune process. We use the intu-
itive maximum connected convex subgraph extraction strategy as the baseline.



Leveraging Subgraph Extraction 183

In order to accurately evaluate the prune strategy, we choose a basic block
of operators with multiple branches from inception-v3 networks for its enough
braches. To trigger subgraph extraction, we separately assign operators on dif-
ferent branch to CPU and evaluate the speedup. As the result shown in the
Fig. 5, except for assigning operator on the critical path to CPU, performance
of the other three heterogeneous computation get a speedup of 1.1× on average,
which is an obvious improvement.

5 Conclusion

In this paper, we propose a performance portable programming framework. The
key motivation is that framework needs a subgraph extraction strategy to better
balance schedule parallelism and fusion efficiency. We implement such a frame-
work by migrating MXNet. This strategy is designed to cooperate framework
with lower software stack in heterogeneous computation task, because none of
them can complete the whole task independently. This strategy can be used
in a wider field if accelerators choose to take over framework to optimize the
computation graph by themselves.
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Abstract. Smart parking is a common demand of citizen, especially for people
living in a smart city. It is an important issue since it not only determines the
required parking time of drivers but also impacts the urban population and traffic
congestion. In this paper, an intelligent parking algorithm is presented based on
the predictions of traffics and drivers’ behaviors. The proposed parking algo-
rithm analyzes the historical parking records, predicts the parking traffics and the
driver’s parking length and then schedules the vehicles to the parking grids such
that the maximal benefits can be obtained. The proposed algorithm also
dynamically allocates their reservations but guarantees the parking reservations
for the VIP members. But based on the parking space resource. Performance
analysis through extensive simulations demonstrates the efficiency and practi-
cality of the proposed scheme.

1 Introduction

Parking lots are located all over the world. These parking lots were built in workplaces,
sports centers, entertainment and tourist centers, shopping centers, airports, schools,
family apartments and so on. The increments of cars are leading to more and larger
parking lots, which increases efforts to deploy intelligent parking management systems.
This also increases the motivation for developing an intelligent parking system for
better managing parking space resources, providing a higher quality of parking service
as well as increasing the benefits of the manager of the parking lots.

In the past few years, a number of researchers devoted themselves to improve the
efficiency of parking systems. These studies developed new policies and algorithms,
aiming for improving the utilization of parking grids or reduce the driver’s parking
time, creating advantages of the manager or drivers, respectively. These studies are
generally partitioned into two classes. The first one [1–5] is free parking, which aims to
provide parking information for drivers to easily park their vehicles to the parking grids
of the street. The policy considered in this class is that the parking vehicle is free on the
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street. On the contrary, the second class is paid parking, which asked drivers to pay
money for parking vehicle. Study [6] proposed an algorithm to allocate the incoming
vehicles to available parking grids. It aims to improve the utilization of parking space
such that the benefits of a manager can be maximized. However, most of them did not
consider the predictions of parking traffics and drivers’ behaviors based on parking
history.

This paper proposed a new intelligent parking algorithm which considers the
general needs of VIP members, drivers’ service quality and the manager’s benefits.
Different from the previous works, the proposed algorithm predicts the traffics and the
length of each driver’s parking duration based on parking history. According to the
predictions, the proposed parking algorithm selects the oncoming parking vehicles,
schedules the parking grids and then allocates vehicles to the parking grids, aiming at
maximizing the grid utilization and manager’s benefits. The proposed algorithm not
only guarantees the parking reservations for the VIP members but also improves the
utilization of parking space.

To achieve this, the proposed algorithms consider two issues when developing the
intelligent parking algorithm. The first one is the space reserved for VIP members.
The VIP members have been usually maintained in the most parking management
system. These members prepaid the money and expected to always have reservations of
parking grids for their needs. To meet this requirement, the proposed algorithm con-
siders the VIP members and dynamically reserves parking grids for them. The pre-
sented algorithm analyzes the behaviors of VIP members, predicts the starting parking
time and length of time duration and then dynamically reserves the parking grids for
them. In addition to the issue of VIP member, another important issue is the utilization
of parking space. The proposed scheme aims to maximize the benefits for the manager
of the parking lots.

The remainder of this paper is organized as follows. The assumptions, constraints
and the design of the parking algorithm are proposed in the Sect. 2. The performance
studies of the proposed algorithm and its improvements against the existing works are
investigated in Sect. 3. Finally, the conclusions are drawn.

2 The Proposed Parking Algorithm

2.1 Assumptions, Goal and Constraints

This paper assumes that the information of drivers, their vehicles and their parking
records have been collected in the parking management system. Each parking record
contains the vehicle ID, starting parking time and end parking time. The parking time
length of each parking record can be calculated based on this information. Given a
parking lot which has k parking grids. A constant benefit can be created if the grid has
been parked by vehicle for one basic time unit. Given a time period represented as
T ¼ ½t1; t2� where t1 is a past time point and t2 is a future time point. The overall
benefits created by the parking lot is the summation of all benefits created by each
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parking grid in al he parking lot from t1 to t2. The goal of this paper aims to develop a
parking schedule algorithm such that the overall benefits can be maximized. There are
some constraints needed to be satisfied when finding the solution of the investigated
issue. First, each parking grid can only have two states, the available state or the
occupied state. Another constraint is that any vehicle can only occupy at most one
parking grid at any given time in T. Similarly, each grid can only be occupied by at
most one vehicle at any given time.

2.2 The Proposed Algorithm

The proposed algorithm is organized as three major parts. The first part mainly checks
the validation of the input data and deletes the invalid ones existed in the historical
parking records. After that, the designed algorithm further analyzes the history of
parking records. This helps predict the parking traffic for a given specific day and time.
Another important task in the second part is the behavior analysis, which aims to
estimate the length of parking time for a certain driver. This analysis can help better
schedule the parking grid and predict the time of an occupied grid to be released. Based
on these predictions, the third part further selects proper vehicles from the incoming
vehicles and then allocates them to the parking grids which are available.

There are three different policies proposed in the parking algorithm, namely Basic-
Best-Fit, Basic-Worst-Fit and Parking Behavior Forecast. The designing concept of the
Basic-Worst-Fit is to identify the starting time of each parking grid and guide the
incoming vehicle to the grid with the largest available duration. The second policy,
called Basic-Worst-Fit, guides the incoming vehicle to the parking grid whose available
duration best matches the predicted length of the vehicle. The last part, called Parking
Behavior Forecast (PBF) Scheme, predicts parking behavior based on parking history
and the traffic for any given time of each weekday. The implementation of the Parking
Behavior Forecast algorithm is separated into three parts. The first one is to fill in the
VIP members to the empty parking grids. Then the method selects proper vehicles
when the number of incoming vehicles larger than the number of available parking
grids. The third one is to allocate the selected vehicles to the best-matched grids.

3 Simulation and Results

This section presents the performance evaluation of the proposed SPA method in terms
of parking rates and the number of rejected vehicles. The proposed SPA is compared
with traditional parking(TP) method [6]. The traditional parking method mainly
adopted the strategy of FIFS (First comes First Serve). The proposed SPA adopts three
policies, which are noted by BB-SPA, BW-SPA and PBF-SPA, respectively. The
designing policies of the Basic-Best-Fit and the Basic-Worst-Fit have been presented in
the previous section.

As shown in Fig. 1, 17 to 18 o’clock has peak traffics from Monday to Friday.
Figure 2 shows that the weekends have peak traffic from 9 to 11 o’clock. However, the
parking traffic of any given time points does not exceed 300.
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Figures 3 and 4 studies the accumulated parking rate of the parking lot with 300
grids. The parking traffic is created by scaling the real parking traffic, ranging from
75% to 95%. That is, the traffic is reduced ranging from 5% to 25%. The proposed SPA
and the existing TP have a similar trend that the accumulated parking rate of them
increase with time but decrease with the proportion of traffic reduction. This outcome is
because of low parking traffic, which causes low parking rate. The proposed PBF-SPA
has the best performance, as compared with the other three algorithms in all cases,
because that PBF-SPA further predicts the vehicle arrival time and the parking length,
and allows VIPs booking parking grids. The BB-SPA has a better performance than
BW-SPA on both weekdays and weekends. This is because that BB-SPA predicts the
duration of parking time and it always guides the vehicle to the grid with appreciate
available time length. Consequently, the grid which is available for a long time can be
reserved for the vehicle with the need for parking for a long time. The BW-SPA always
guides the vehicle to the grid with maximal available duration and partitions the
available duration into several small time segments. When a vehicle needs to be parked
for a long time, the BW-SPA cannot support this requirement.

Fig. 1. Daily traffic from Monday to Friday Fig. 2. Daily traffic from Saturday to Sunday.

Fig. 3. Parking rate for different proportion of
traffic reduction on weekdays.

Fig. 4. Parking rate for different propor-
tion of traffic reduction on weekdays.
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4 Conclusion

This work proposes an intelligent parking algorithm with three scheduling policies,
aiming to improve the parking rate and obtain the maximal profits. The proposed BW-
SPA and BB-SPA adopt the worst fit and best-fit policies, respectively. The proposed
BB-SPA adopts predictions of parking traffic and parking length. Compared with the
traditional parking mechanism, the proposed BW-SPA, BB-SPA and PBF-SPA sig-
nificantly increase the utilization of parking space and hence improves the benefit of
parking lots while guaranteeing the quality of parking services. Simulation results also
verify the performance improvement in terms of accumulated parking rate and service
quality.

References

1. Roman, C., Liao, R., Ball, P., Ou, S., de Heaver, M.: Detecting on-street parking spaces in
smart cities: performance evaluation of fixed and mobile sensing systems. IEEE Trans. Intell.
Transp. Syst. 19(7), 2234–2245 (2018)

2. Shin, J.-H., Kim, N., Jun, H.-B., Kim, D.Y.: A dynamic information-based parking guidance
for megacities considering both public and private parking. J. Adv. Transp. 2017, 1–19 (2017)

3. Shahzad, A., Choi, J.-Y., Xiong, N., Kim, Y.-G., Lee, M.: Centralized connectivity for
multiwireless edge computing and cellular platform: a smart vehicle parking system. Wirel.
Commun. Mob. Comput. 2018, 1–23 (2018)

4. Tilahun, S.L., Di Marzo Serugendo, G.: Cooperative multiagent system for parking
availability prediction based on time varying dynamic markov chains. J. Adv. Transp. 2017,
1–14 (2017)

5. Banti, K., Louta, M., Karetsos, G.: ParkCar: a smart roadside parking application exploiting
the mobile crowdsensing paradigm. In: 2017 8th International Conference on Information,
Intelligence, Systems and Applications (IISA), Larnaca, pp. 1–6 (2017)

6. Fang, J., Ma, A., Fan, H., Cai, M., Song, S.: Research on smart parking guidance and parking
recommendation algorithm. In: 2017 8th IEEE International Conference on Software
Engineering and Service Science (ICSESS), Beijing, pp. 209–212 (2017)

An Intelligent Parking Scheduling Algorithm 189



Author Index

Bao, Xiaozhen 27

Chai, Yunpeng 13
Chang, Chih-Yung 185
Chang, Yisong 39
Chen, Guilin 185
Chen, Mingyu 132
Chen, Shi-Yong 185
Chen, Yong 77
Chen, Zhiguang 164
Cui, Huimin 39
Cui, Yuhua 148

Dai, Dong 77
Deng, Yu 153
Ding, Dong 153
Dou, Qiang 153
Du, Yunfei 164
Du, Zidong 169

Feng, Xiaobing 39

Gao, Yanzhen 27

He, Ligang 114, 148
He, Shuibing 64
Hu, Nan 164
Huang, Hong 77

Jiang, Peng 148
Jin, Hai 1, 77
Jin, Rong 126
JinJing, Zhao 126

Kong, Lanxin 142
Kuang, Xiaohui 126

Lan, Huiying 169, 179
Li, Denghui 39
Li, He 1
Li, Huichuwu 1
Li, Junyu 114, 148
Li, Shiming 153

Li, Wei 159
Li, Wenke 77
Li, Yunchun 159
Li, Zhanhuai 142
Lin, Jiazao 185
Liu, Chengchun 52
Liu, Ke 132
Liu, Yi 103, 159
Lu, Yutong 164

Ma, Jie 27
Mao, Rui 114

Pang, Ling 126
Poon, Leonard K. M. 90

Qian, Depei 103

Ren, Shenyuan 114, 148

Shen, Li 174
Shi, Xuanhua 77
Song, Hui 132

Tian, Hongyun 52

Wang, Haobo 64
Wang, Lei 153
Wang, Weiping 64
Wang, Xin 13
Wang, Yang 137
Wang, Yangyang 13
Wang, Yanqi 103
Wang, Zhihao 52
Wang, Zhiying 174
Wei, Zheng 27

Xia, Chunwei 39
Xiao, Jiang 1
Xiao, Limin 52
Xing, Jing 27
Xu, Cheng-Zhong 137



Yan, Baicheng 52
Yang, Hailong 159
Yang, Yaohua 174
Yang, Zhang 52
Yang, Zhijie 153
Ye, Kejiang 137
Yu, Lan 132
Yue, Yinliang 64

Zhang, Jingyi 159
Zhang, Ke 39
Zhang, Peiheng 27

Zhang, Qi 103
Zhang, Shiqing 174
Zhang, Wenli 132
Zhang, Xiangyu 153
Zhang, Xiao 142, 179
Zhao, Jiacheng 39
Zhao, Peng 77
Zhao, Xiaonan 142
Zhi, Tian 179
Zhou, Honggang 159
Zhu, Mingyi 137
Zhu, Shunyi 142

192 Author Index


	Preface
	Organization
	Contents
	CNLoc: Channel State Information Assisted Indoor WLAN Localization Using Nomadic Access Points
	1 Introduction
	2 Related Work
	2.1 Deployment of Indoor Localization Infrastructure
	2.2 CSI-Assisted Localization

	3 CNLoc Framework
	4 Methodology
	4.1 Proximity Determination
	4.2 CSI-Based Location Distinction
	4.3 Sensor-Based Coordinate Acquisition

	5 Performance Evaluation
	5.1 Performance of CSI-based Location Distinction
	5.2 Impact of Nomadic APs' Location Uncertainty

	6 Discussion
	6.1 Influence of AP Mobility on CSI Measurement
	6.2 Impact of Diverse APs
	6.3 Improvement with Nomadic APs' Moving Pattern

	7 Conclusion
	References

	ALOR: Adaptive Layout Optimization of Raft Groups for Heterogeneous Distributed Key-Value Stores
	1 Introduction
	2 Background and Related Work
	2.1 The Raft Protocol
	2.2 Related Work

	3 The Design of ALOR
	3.1 Leader Migration in Raft Groups
	3.2 Skewed Data Layout Based on Cold Data Migration

	4 Implementation and Evaluation
	4.1 Experimental Setup
	4.2 Overall Results
	4.3 KV Performance Estimation
	4.4 Impacts of Different Heterogeneous Configurations
	4.5 Impacts of System Scale
	4.6 Analysis of ALOR Components
	4.7 ALOR vs. Homogeneous Hybrid Device Solution

	5 Conclusion
	References

	STrieGD: A Sampling Trie Indexed Compression Algorithm for Large-Scale Gene Data
	1 Introduction
	2 Related Research
	3 A Trie Index Structure Based Compression Algorithm
	3.1 Trie Index Structure
	3.2 Optimization of Trie Tree

	4 Implementation of Distributed Compression System
	4.1 Compression of Quality Portion and Identification Portion
	4.2 Compression of Quality Portion
	4.3 Implementation of Distributed Compression System

	5 Evaluation
	5.1 Performance of Compressing Single FASTQ File
	5.2 Performance of System

	6 Conclusions
	References

	On Retargeting the AI Programming Framework to New Hardwares
	1 Introduction
	2 Retargeting TensorFlow to FPGA
	2.1 FPGA Execution Model
	2.2 FPGA APIs and Implementation
	2.3 TensorFlow Architecture for Supporting Retargetability
	2.4 Supporting FPGA in TensorFlow

	3 Retargeting TensorFlow to Sunway
	3.1 Sunway Architecture
	3.2 Compiling TensorFlow for Sunway MPEs
	3.3 Using CPEs for Acceleration

	4 Evaluation
	4.1 Hardware Platforms
	4.2 Results on FPGA Platform
	4.3 Results on Sunway TaihuLight Platform

	5 Discussion and Future Work
	6 Related Work
	7 Conclusion
	References

	An Efficient Method for Determining Full Point-to-Point Latency of Arbitrary Indirect HPC Networks
	1 Introduction
	2 Related Works
	3 The PMM Method
	3.1 Definitions
	3.2 Method

	4 Validation and Analysis
	4.1 Exprimental Settings
	4.2 Accuracy of the Measurement
	4.3 Measurement Reduction
	4.4 Complexity Analysis of the PMM Method

	5 Applications
	5.1 Communication Performance Modeling and Prediction
	5.2 Transitional Link Failure Detection
	5.3 Parallel Communication Optimization

	6 Conclusion
	References

	KT-Store: A Key-Order and Write-Order Hybrid Key-Value Store with High Write and Range-Query Performance
	1 Introduction
	2 Related Work
	3 Design and Implementation
	3.1 The Basic Idea of KT-Store
	3.2 The Three Parts of KT-Store
	3.3 The Main Procedures in KT-Store
	3.4 Implementation
	3.5 Discussion

	4 Evaluation
	4.1 Experiment Setup
	4.2 Write Performance
	4.3 Range-Query Performance
	4.4 Read Performance
	4.5 YCSB Standard Workload Evaluation

	5 Conclusion
	References

	GRAM: A GPU-Based Property Graph Traversal and Query for HPC Rich Metadata Management
	1 Introduction
	2 Design and Implementation
	2.1 Overall Architecture
	2.2 Metadata Graph Representation on GPU
	2.3 Metadata Graph Operations Model on GPU
	2.4 Metadata Operations Translating
	2.5 GRAM's Optimization

	3 Evaluation
	3.1 Experiment Environment and Datasets
	3.2 Evaluating on Graph Traversal with Filters
	3.3 Metadata Management Performance

	4 Related Work
	5 Conclusions
	References

	GPU-Accelerated Clique Tree Propagation for Pouch Latent Tree Models
	1 Introduction
	2 Pouch Latent Tree Models
	3 Clique Tree Propagation
	4 Implementation for GPUs
	5 Experiments
	6 Related Work
	7 Conclusion
	References

	HPC-SFI: System-Level Fault Injection for High Performance Computing Systems
	Abstract
	1 Introduction
	2 Approaches
	2.1 Types of Failures
	2.2 Injection Methods
	2.3 Deterministic vs. Pseudo-random Fault Injection

	3 System Architecture and Implementation
	4 Experiment Results
	4.1 Methodology
	4.2 Experiment Results

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

	Data Fine-Pruning: A Simple Way to Accelerate Neural Network Training
	1 Introduction
	2 Background and Motivation
	2.1 Mini-batch Stochastic Gradient Descent
	2.2 Problem Setting

	3 Related Work
	3.1 Hardware Accelerating
	3.2 Algorithm Accelerating
	3.3 Data Accelerating

	4 The Data Fine-Pruning Approach
	4.1 Loss Trends of Individual Data
	4.2 Loss Monitoring and Pruning Selection
	4.3 Data Fine-Pruning
	4.4 Analysis of Performance Improvement

	5 Experiments
	6 Conclusions and Future Works
	References

	Balancing the QOS and Security in Dijkstra Algorithm by SDN Technology
	Abstract
	1 Introduction
	2 System Model
	3 Implementation
	4 Simulation and Results
	5 Conclusion
	References

	Labeled Network Stack: A Co-designed Stack for Low Tail-Latency and High Concurrency in Datacenter Services
	1 Introduction
	2 Labeled Network Stack
	2.1 Why LNS?
	2.2 LNS Idea

	3 Implementation
	4 Evaluation
	4.1 Experiment Setup
	4.2 High Concurrency and Low Tail Latency

	5 Conclusion
	References

	A Deep Learning Approach for Network Anomaly Detection Based on AMF-LSTM
	1 Introduction
	2 AMF-LSTM Model
	3 Experiment
	4 Related Work
	5 Conclusion
	References

	FSObserver: A Performance Measurement and Monitoring Tool for Distributed Storage Systems
	1 Introduction
	2 Related Work
	3 Design and Implement
	3.1 Architecture of FSObserver
	3.2 Implement of FSObserver for Ceph

	4 Evaluation
	4.1 Block Storage Interface
	4.2 Capture Real Workloads

	5 Conclusion
	References

	vGrouper: Optimizing the Performance of Parallel Jobs in Xen by Increasing Synchronous Execution of Virtual Machines
	1 Introduction
	2 Background and Related Work
	2.1 Credit Scheduler
	2.2 Related Work

	3 Problem Analysis
	4 Co-scheduling Solution
	5 Experiments and Evaluation
	6 Conclusion
	References

	Systolic Array Based Accelerator and Algorithm Mapping for Deep Learning Algorithms
	1 Introduction
	2 Related Work
	3 Systolic Array Design
	3.1 Processing Element Design
	3.2 Array Structure and Data Flow
	3.3 Controller Design

	4 Data Mapping Method
	4.1 Mapping of CNN Algorithm
	4.2 Mapping of RNN Algorithm

	5 Experimental Result
	5.1 Implementation
	5.2 Performance Evaluation

	6 Conclusion and Future Work
	References

	A Fine-Grained Performance Bottleneck Analysis Method for HDFS
	1 Introduction
	2 Methodology
	2.1 Fine-Grained Instrumentation
	2.2 Trace Compression

	3 Evaluation
	3.1 Experiment Setup
	3.2 Performance Bottleneck Analysis

	4 Conclusion
	References

	Mimir+: An Optimized Framework of MapReduce on Heterogeneous High-Performance Computing System
	1 Introduction
	2 Design of Mimir+
	2.1 Heterogeneous Workflow
	2.2 Design of GPU Acceleration Modules

	3 Evaluation
	3.1 Performance Comparison

	4 Related Work
	5 Conclusion
	References

	DLIR: An Intermediate Representation for Deep Learning Processors
	1 Introduction
	2 Intermediate Representation Language
	2.1 Data Structure
	2.2 Operators

	3 Compilation
	4 Evaluation
	4.1 Developing Efficiency
	4.2 Performance

	5 Conclusion
	References

	GPU Memory Management Solution Supporting Incomplete Pages
	1 Introduction
	2 Related Work
	3 Paged Memory Management Solution Supporting Incomplete Pages
	3.1 Overall Design
	3.2 Address Translation
	3.3 Migration Process
	3.4 Data Access

	4 Evaluation
	4.1 Simulator and Benchmarks
	4.2 Performance Comparison

	5 Conclusion and Future Work
	References

	Leveraging Subgraph Extraction for Performance Portable Programming Frameworks on DL Accelerators
	1 Introduction
	2 Motivation
	2.1 DLA and Graph Fusion
	2.2 Heterogeneous Computation

	3 Subgraph Extraction
	4 Evaluation
	5 Conclusion
	References

	An Intelligent Parking Scheduling Algorithm Based on Traffic and Driver Behavior Predictions
	Abstract
	1 Introduction
	2 The Proposed Parking Algorithm
	2.1 Assumptions, Goal and Constraints
	2.2 The Proposed Algorithm

	3 Simulation and Results
	4 Conclusion
	References

	Author Index



