
Comparison of Genetic and Incremental
Learning Methods for Neural
Network-Based Electrical Machine Fault
Detection

Daniel Leite

1 Introduction

There is an increasing demand on reliability and safety of industrial systems subject
to potential process abnormalities and component faults [1]. Electrical motors
are one of the most used machines in the industry. Generally, they are critical
components in automation processes. Therefore, questions related to their protection
against failures have received great attention [2–6]. Condition monitoring and
predictive maintenance of induction motors may lead to significant improvements
of availability, quality, and productivity of production lines. Detecting faults in
incipient stage is of utmost importance since functional failures may quickly occur
after the initial development of a fault.

A major part of induction motor faults occurs in the stator windings [2, 7]. The
inter-turns short-circuit is a primary fault that happens after insulation breakdown.
Among the main reasons for insulation fail are high stator core or winding
temperatures; slack core lamination, slot wedges, and joints; loose bracing for
end winding; contamination due to chemical reactions, moisture, or dirt; electrical
discharges due to aging of the insulating material; and leakage in cooling systems.
After primary faults, the motor degradation process increases, and more serious
failures, such as phase-to-phase and phase-to-ground short-circuits, appear. Usually,
these types of faults result in irreversible motor damage. However, if inter-
turns faults are detected at incipient stage, the faulty phase winding may, for
example, be replaced, which significantly reduces financial losses and increases
operational safety. Among the benefits detection systems can bring to industry are
motor life extension, idling periods reduction, unnecessary disconnections avoiding,

D. Leite (�)
Department of Engineering, Federal University of Lavras, Lavras, Minas Gerais, Brazil
e-mail: daniel.leite@deg.ufla.br

© Springer Nature Switzerland AG 2019
E. Lughofer, M. Sayed-Mouchaweh (eds.), Predictive Maintenance
in Dynamic Systems, https://doi.org/10.1007/978-3-030-05645-2_8

231

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05645-2_8&domain=pdf
mailto:daniel.leite@deg.ufla.br
https://doi.org/10.1007/978-3-030-05645-2_8

232 D. Leite

manpower scheduling at the fault moment, repair cost minimization, human security
improvement, components storage reduction, and minimization of losses.

During the last three decades, computational intelligence methods have been a
promising direction for solutions of pattern recognition issues. Neural Networks
and Hybrid Systems have been successfully applied to detecting different kinds
of faults in electrical machines [8–12]. A difficulty of applying neural networks
to condition monitoring systems, as well as to the vast majority of real-world
engineering applications, concerns the selection of a suitable network structure and
connection parameters. A proper selection of these is essential to lead the network
to achieve a reasonable fault detection performance. Some of these parameters, viz.,
the number of hidden layers and the number of neurons per layer, are frequently
set from a trial-and-error approach performed by a human designer. This may be an
exhaustive task that can take a considerable amount of time [12]. Efforts for making
neural network design more sophisticated and less human dependent is underway,
especially considering information from particular application domains.

A drawback of using neural networks for fault detection, including feedforward,
recurrent, convolutional, and deep networks and deep models in general [13], is
the use of first- or second-order deterministic optimization algorithms for training.
Since the backpropagation (BP) algorithm was discussed by Rumelhart et al. [14],
researchers quite often resort to first-order learning methods and variations. Since
the nature of first-order methods is to converge locally, it can be demonstrated that
its solution is highly dependent on random initial weights and rarely is the global
solution. Several variations of first-order optimization methods were compared to
Quasi-Newton, Non-Derivative Quasi-Newton, Gauss–Newton, and Secant methods
by Chen and Sheu [15]; Evolutionary Strategies and Genetic Algorithm by [16, 17];
Bayesian Regularization, Modified Levenberg–Marquardt, and Simulated Anneal-
ing in [18]; Bee and Ant Colony by [19, 20]; Adaptive Differential Evolution in
[21]; and Particle Swarm by [22, 23]. All these training methods could lead a neural
model to achieve better performance in terms of learning efficiency, training time,
easiness-of-use, and accuracy in a class of problems.

The present study focuses on the development of architectures and weights of
feedforward neural networks using different learning algorithms, viz., a properly
designed genetic algorithm and an online incremental algorithm. The former
produces an evolutionary neural network (EANN), while the latter generates an
evolving fuzzy granular neural network (EGNN). The purpose of the neural net-
works is to detect and determine the number of shorted-turns in the stator windings
of induction machines. The problem is formulated as a multiclass classification
problem. Real dynamic environment subject to mechanical asymmetries, voltage
unbalance, and measurement noise is taken into consideration.

Evolving the EANN architecture includes finding a suitable number of hidden
layers and neurons per layer—being these the parameters that largely affect its
generalization ability. An overly complex neural model may overfit the data and thus
exhibit poor generalization, whereas a simple model may be insufficient to represent
nonlinear correlations among features. GA takes into account the development of
both, parameters and structure of the neural network. The main reasons for the

Neural Network-Based Electrical Machines Fault Detection 233

choice of GA as learning method are: (1) GA operates on codified parameters.
It results in a search for local minima independently of the continuity of error
functions or the existence of derivative; (2) the search toward the best solution
starts from a set of points deployed in the search space (global search–populational
strategy). Thus, the probability that the solution gets stuck on local minima is
minimized; (3) the search toward the best solution utilizes genetic operators, which
are stochastic in nature, instead of deterministic; and (4) GA automatizes the trial-
and-error approach to set up structural parameters.

EGNN encodes a set of fuzzy rules in its structure. Therefore, neural processing
conforms with that of a fuzzy inference system [24]. The network is equipped
with fuzzy neurons, which perform aggregation functions, and with an incremental
algorithm for learning from a data stream. Fuzzy granules and rules are created
gradually according to new information discovered from the data. Evolving systems
from data streams is an active and promising research topic [25–35]. In particular,
EGNN provides: (1) computational tractability and scalability with the number of
samples and attributes; (2) improved interpretability and transparency by means of
granular local models and linguistic rules; and (3) reduced cost of data processing
in relation to non-evolving methods. EGNN has shown to be extremely general and
able to outperform state-of-the-art evolving methods and models, including evolving
classifiers [24, 36, 37].

Section 2 outlines a general framework for electrical machine fault detection
assisted by the genetic neural classifier, EANN, and the incremental neurofuzzy
classifier, EGNN. Section 3 addresses GA learning and describes the genetic
operators for recombining, mutating, and selecting architectures and connection
weights of a feedforward network. Incremental learning from data streams and
development of a neurofuzzy granular network are given in Sect. 4. EANN and
EGNN performance on detecting incipient faults in induction machines and discus-
sions about genetic and incremental learning are reported in Sect. 5. True conditions
of actual industrial practice, namely, different load and speed conditions, voltage
unbalance, and noisy environment, are analyzed. Section 6 concludes the chapter
and presents some ideas for further investigation.

2 Electrical Machine Fault Detection

A general view of the electrical machine fault detection system is shown in Fig. 1.
Voltage, current, and rotor speed measurements are obtained from induction motors
and properly placed sensors. The data are preprocessed and attribute vectors whose
values are related to the healthy state of the machines are obtained. The Acquisition
and Data Treatment module also disposes the machines’ state variables to the
Parameters Estimation, Optimization, and Faults Simulator modules. The latter
includes faulty samples in the Database. Therefore, the database is composed of
healthy and faulty data vectors. Faulty samples are related to different incipient fault
severities, i.e., from 1 to 3 shorted-turns in the stator windings; different locations,

234 D. Leite

Fig. 1 General view of the electrical machine fault detection and classification system

i.e., stator phases a, b, and c; and different operating points and levels of noise. For
EANN, a percentage of randomly selected samples are admitted for training, while
the rest is used for testing. The Genetic Algorithm module develops the EANN
architecture and its weights. It elects the best architecture and its respective best
vector of weights according to a fitness function. On the other hand, a neurofuzzy
EGNN structure is evolved from scratch by means of an incremental learning
algorithm. In this case, training and testing are not separated procedures. In other
words, EGNN provides an output—a classification for the input data sample—
and then, the input–output pair is used for training. Online learning proceeds in
a per-sample incremental basis. A diagnosis report is generated by both EANN and
EGNN.

A description of the system modules is given below:

• Acquisition and data treatment → This module measures voltage, current, and
rotor speed signals from induction machines. The number of motors connected
to the system is limited by the number of I/O channels. The acquired data are
preprocessed. Offsets are removed, and magnitude correction factors are applied.
Low pass filters minimize noise and slot effect. Other calculations such as active
and reactive power, power factor, rotor slip, and sequential components are
carried out. The data are displayed on the interface prior to being saved in a
file repository.

Neural Network-Based Electrical Machines Fault Detection 235

• Parameters estimation module → No load and blocked rotor tests are required
to be performed to obtain fundamental machine parameters if the corresponding
datasheet is not available. Additionally, online parameter estimation algorithms,
namely, Recursive Least Squares and Extended Kalman Filter, operate in parallel
to adapt key parameters required by the inter-turns fault simulator model.
Updated parameters are important to reflect the actual condition of the motor and
avoid false positives. The most significant parameters considered for adaptation
over time are the mutual inductance, rotor resistance, and equivalent resistance
and inductance. Refer to [7, 38] for further descriptions.

• Optimization module → This module provides further refinement of the parame-
ters used by the fault simulator model. The Conditional Gradient method, also
known as the Frank–Wolfe algorithm [39], is employed to optimize certain
parameters, viz., the magnetizing and leakage inductances of the stator windings
and the stator resistance. The objective is to allow the fault simulator to better
reproduce the actual state variables. The objective function (OF) is the sum
of the square error between the estimated and actual stator currents, voltage–
current displacement angles, and rotor speed. Taken the derivative of the OF
with respect to the states, we obtain a linearized OF for the application of
the method. At each iteration, steps on the motor model parameters are given
as an attempt to minimize the OF. If the OF value increases, the step on the
parameters is rejected. The smaller the OF value, the more accurate the estimated
states.

• Fault simulator module → The state-space model of induction motors is changed
mainly to allow simulations of turn-to-turn short-circuit in the stator windings.
Moreover, changeable loads, voltage unbalance, noise, and winding asymmetries
can be simulated. For completeness of this study, the key formulas are succinctly
presented below. Refer to [7, 38, 40] for detailed information.

The dynamic equations of an induction motor in state variables are

[İabcsr] = [L]−1 [[Vabcsr] − [[R] + [L̇]] [Iabcsr]
]

(1)

where [L] and [R] are 6 × 6 inductance and resistance matrices; [Vabcsr] and
[Iabcsr] are 6×1 stator and rotor voltage and current matrices in the abc frame of
reference. [İabcsr] can be calculated by the fourth-order Runge–Kutta algorithm.
The model is complemented by mechanical equations:

Te = P

2
(iabcs)

T ∂

∂θr

[L′
sr]i′abcr (2)

ωr = P

2

∫
Te − Tl

J
(3)

where Te is the electromagnetic torque; P the number of poles; θr the electrical
angular displacement; [L′

sr] and i′abcr the inductances and currents referred to the
stator; ωr is the rotor speed; Tl the load torque; and J the inertia.

236 D. Leite

In a condition of stator shorted-turns, inductances are calculated from:

L(1−k) = (1 − k)2L (4)

Lk = k2L (5)

Lk(1−k) = (1 − k)L (6)

where k is the percentage of turns in short-circuit; L(1−k) refers to the inductance
of the winding fraction without fault; and Lk is the inductance of the faulty part
of the winding. The latter equation refers to the mutual inductance between the
part of the winding without fault and the other phases, including rotor phases.
Refer to [7, 38] to comprehend how exactly the elements of the matrix L are
changed due to shorted-turn faults.

A fault requires the inductance matrix to be rewritten in seven dimensions,
with three lines and columns representing the fraction of the stator phases without
fault, a line and column representing the fraction of the faulty stator phase, and
three lines and columns representing the rotor phases. Similarly, the resistance
matrix is rewritten as a seven-dimension matrix considering:

R(1−k) = (1 − k)R (7)

Rk = kR (8)

where R(1−k) and Rk are the resistances of the winding fraction without and with
fault. Naturally, the resistance matrix is diagonal.

• Database → The database consists of input–output samples that are useful
to train and test neural network classification models. The abc stator currents,
voltage–current displacement angles per phase, and rotor speed are used in this
study as input attributes to the neural classifiers. Several other attributes are
available such as the dq0 and sequential components of voltages, currents, and
magnetic fluxes [40]. The output variable is a class, which is associated to the
number of stator shorted-turns per phase. Therefore, the neural classification
models consist of a map f : X → Y so that X ∈ R

7 and Y ∈ N. As new data
samples are available, the neural classification models can be updated if needed.

• EANN-GA → A feedforward neural network for each induction machine being
monitored is considered. The network structure and connection weights are
evolved via a specially designed genetic algorithm. EANN may have one
or two hidden layers. While an inner loop deals with optimization over the
parameter space, an outer loop concerns with searching for a potentially optimal
solution over the structure space. After the learning process, the best network
architecture and its best vector of parameters are chosen. Section 3 addresses
phenotype representation; initialization of populations; recombination, mutation,
and selection operators; fitness evaluation; and the stopping criteria adopted.

• EGNN-IL → A neurofuzzy network able to learn gradually from a data stream is
developed for each induction machine. EGNN self-adapts its granular structure

Neural Network-Based Electrical Machines Fault Detection 237

and connection weights by means of a recursive procedure. Different fuzzy
neurons to perform aggregation of values through the network can be chosen.
Additionally, attribute weighting is an inherent characteristic of the network
due to its modular structure. In general, EGNN can handle fuzzy, interval,
and numerical data as well as prediction, control, and classification problems.
This study focuses on numerical data processing and fault classification only.
Section 4 describes how granules, rules, and weights are adapted on the fly.

• Diagnosis report → A diagnosis report may be displayed at any time. The report
includes statistical summaries of electrical machines, graphics of specific state
variables and parameters, evolution of error indices and fault patterns, and neural
network classification performance.

The condition monitoring system can manage several induction machines in
field applications simultaneously. As the development of inter-turn faults takes
some time, constant (uninterrupted) supervision of machines is not mandatory and,
therefore, a single microcomputer and a switching scheme among machines and
corresponding neural classifiers is, in general, acceptable. Otherwise, distributed
computing may be taken into consideration. The monitoring response time is
usually short, and microcomputer availability is high since offline training of EANN
classification models can be performed apart from online data processing whereas
EGNN online adaptation is carried out in a matter of milliseconds, as discussed in
the next sections. As a numerical example, if 10 induction motors are monitored,
then switching the corresponding neural classifiers in 10-s intervals is enough.

3 Genetic Algorithm for Neural Network Learning

This section describes a genetic method for developing the architecture and
setting the parameters of a feedforward neural network. Fundamentally, the genetic
algorithm performs the following steps:

• Genetic representation or codification of potential solutions;
• Definition of initial parameters. These include population size, relative elitism,

penalty factors, mutation rate, and training stop criteria;
• Initialization of the population with a priori knowledge about the expected

behavior of the neural network;
• Application of genetic operators, i.e., mutation, recombination, and selection

operators, over individuals of the population;
• Evaluation of the fitness of the individuals of a population;
• Post-processing of the fittest individual.

The GA learning procedure is shown in the flowchart of Fig. 2. In the figure,
the inner loop evolves � generations of weights individuals, whereas the outer
loop evolves α generations of architectures individuals (global search). The fittest
architecture individual and its respective fittest weights are found. Post-processing

238 D. Leite

Fig. 2 General view of the genetic algorithm for developing the architecture and adapting the
parameters of a feedforward neural network for fault detection

concerns searching for better solutions on the parameter space, close to the fittest
vector of weights for a specific architecture (local search). In the figure, W and A

are related to the weights and architectures populations, respectively. Learning is
guided by an error-and-model-compactness-based fitness function.

3.1 Initialization and Parameterization

A schematic representation of the basic processing units of the evolutionary neural
network is illustrated in Fig. 3. In the figure, xj and wj refer to the j -th input and
connection weight, respectively; b is the bias; net is the weighted sum of the inputs,
and ϕ(.) is a sigmoidal logistic function, which gives the output y.

From prior knowledge about the neural network learning problem, we want
the nonlinear functions ϕ(.) of all neurons to be initially triggered within their

Neural Network-Based Electrical Machines Fault Detection 239

Fig. 3 Schematic
representation of a neuron of
the evolutionary neural
network x

xj

w1

net

1+

b

yϕ(×)Σ

xm

wj

wm

unsaturated regions, i.e., net ∼= 0 for sigmoid functions. Otherwise, the net-
work would barely differentiate input data at the very beginning of the learning
process, which could lead a rougher and slower adaptation. For example, if
the error backpropagation algorithm is considered, a mechanism to accelerate
learning convergence is to set small random initial weights. Similarly, in real
genetic programming, the allele (range of possible values) of genes (elements)
of chromosomes (candidate solutions) representing weight vectors can be initially
adjusted to small random values around 0, e.g., [−0.01, 0.01], yielding the same
result.

Some remarks about the EANN learning algorithm include: (1) initial archi-
tectures and weights populations consist of 20 individuals each. We consider the
Pittsburgh approach, i.e., all architecture and weight vectors compete with each
other to be the fittest solution; (2) the algorithm is elitist. The fittest solution in
previous generations is preserved for the next generations. The elitist approach
ensures that the overall best individual remains in the population independently of
the application of genetic operators; and (3) the number of individuals that compose
the populations of architectures and weights is constant over generations. Although
recombination operators make the populations double in size, a selection operator
reduces the populations to the half.

Notice that GA global heuristic search tends to find a “good” solution by
exploiting a highly dimensional parameter space whose error surface contains
several hills, valleys, and plateaus. However, such solution may not be locally
optimal. There are some hybrid techniques proposed in the literature for post-
processing the solution through local search methods, e.g., [41, 42]. In this study,
local search using a gene mutation operator is employed. Details are addressed in
the subsequent sections.

3.2 Phenotype Representation

Mapping phenotypes into genotypes is crucial in the development of GA-based
models, especially in constrained optimization problems. For instance, mutation and
recombination operators may produce infeasible solutions. Care must be taken in
both representation of individuals and definition of genetic operators. Undesirable

240 D. Leite

effects such as requirement of extra manipulations of chromosomes, more complex
objective functions, and premature convergence of the population may be immediate
outcomes of an inadequate representation.

Encoding in GA is the form in which chromosomes and genes are expressed.
There are basically two types of encoding, binary and real. The former was widely
discussed, while the latter fits continuous optimization problems better and therefore
is adopted in the present study. Several successful applications of real codification
may be found in the literature, e.g., [17, 43].

Let P and G be phenotypic (behavioral) and genotypic (informational) spaces,
respectively [44]. Phenotypes representing feedforward neural network architec-
tures and weight vectors are encoded into genotypes by a direct mapping MP→G.
Genotypes are assumed to be haploid chromosomes as shown in Fig. 4. Chromo-
somes associated to architectures are composed of a pair of genes, A and B, which
refer to the number of neurons in the first and second hidden layers of EANN. In
case gene A or B is zero, then the underlying EANN has a single hidden layer. The
range of values, i.e., the allele, that each gene of the architecture chromosomes may
assume is [0, 99], while the allele of weight chromosomes is [−1, 1].

The length of a weight chromosome:

L = IA + AB + BO, (9)

Fig. 4 Phenotype–genotype codification of architectures and weights

Neural Network-Based Electrical Machines Fault Detection 241

is variable. It depends on the values of the genes of the corresponding architecture
chromosome, A and B, and on the number of inputs, I , and outputs, O, of the
underlying neural network.

3.3 Recombination Operator

Defining the most appropriate recombination operator for different sorts of appli-
cations is a hard problem and an open issue. We examine common recombination
operators in anomaly detection scenarios, viz., Arithmetic, Multipoint, and Local
Intermediate Crossover. These operators can be either sexual or global. In the sexual
form, only parents are involved on the generation of offspring. Conversely, in the
global form, the whole population may contribute to generate offspring. In this
study, we opt for the sexual form of recombination. In other words, 20 parents
generate 20 children in each iteration of the algorithm.

3.3.1 Arithmetic Crossover

This operator is particularly suited for constrained numerical optimization problems
with convex feasible region �C . Let cn, n = 1, . . . , N , represent the n-th individual
of a population. As a consequence of two individuals, cn1 and cn2, belong to �C ,
convex combinations of cn1 and cn2 also belong to �C . This ensures that Arithmetic
Crossover produces only valid offspring.

Formally, two parent chromosomes are linearly combined to produce two
offspring according to:

Son1 = a Parent1 + (1 − a) Parent2 (10)

Son2 = (1 − a) Parent1 + a Parent2 (11)

where a is a random value chosen before each crossover operation. As an example,
consider a random list of parents, see Fig. 5. Each operation produces two children
whose genes inherit a combination of the parent genes.

3.3.2 Multipoint Crossover

In multipoint crossover, children inherit sets of successive genes from two randomly
selected parents. p randomly selected points along the chromosomes of the parents
divide them into p + 1 parts. Then, genes of each father are exchanged to
generate offspring. An intuitive example of a p-point crossover operator is shown
in Fig. 6. Similar to other crossover operators, the population doubles in size after
multipoint recombination. The recombination potential, exploratory power, and
learning progress of a GA using p-point crossover are discussed in [45].

242 D. Leite

Fig. 5 Arithmetic crossover operator

Fig. 6 Multipoint crossover operator

3.3.3 Local Intermediate Crossover

Local intermediate crossover is particularly useful when convergence to a unique
solution is expected. In this operator, the average values of the genes of randomly
selected parents are inherited by the single offspring, that is:

c′
n1 = cn1 + cn2

2
. (12)

Local intermediate crossover implies that sons receive inheritance of both
parents equally. Clearly, if intermediate recombination is applied often, then the
chromosomes become similar. This may lead to premature convergence of the

Neural Network-Based Electrical Machines Fault Detection 243

population, especially when no other operator, such as mutation, is used to keep
population diversity. Two crossover lists with 10 matches each are considered in
this study to generate 20 children for the next generation.

3.4 Mutation Operator

Mutation operations involve single individuals, in contrast to recombination. This
type of operator assures that there is always a probability of reaching any point
within the search space. Usually, when the current solution of the problem is far
from being the best according to a fitness function, a higher mutation rate can be
employed as an attempt to find better solutions farther from the current ones. On the
other hand, when the current solution is close from being the best, a low mutation
rate can be adopted. This approach leads to search for solutions in promising
regions.

Mutation commonly does not produce offspring. The mutated individuals remain
in the population for later breeding. An individual cn has its corresponding mutated
value c′

n from c′
n = m(cn), where m(.) is a mutation function. Gaussian and random

mutation operators are considered for analysis.

3.4.1 Gaussian Mutation

Gaussian mutation is frequently applied in real-coded GA. This is mainly because
it supports fine-tuning of solutions. Chromosomes cn of an individual have their
corresponding mutated values c′

n from:

c′
n = cn ± M , (13)

where M is a normal density function N (mean,) with mean = 0 and standard
deviation, 	.

Gaussian mutation is applied gene-to-gene, with a gene mutation probability rate
between 1% and 10%, directly proportional to the fitness of the chromosome.

3.4.2 Random Mutation

Random mutation is a member of the class of random search optimization methods.
Features that make this operator useful are the enhancement of processing speed
and nonsusceptibility to local minima. Randomness is generally controlled to ensure
convergence while allowing enough freedom for a complete coverage of the search
space.

Random mutation creates a random solution c′
n at the vicinity of the current

solution cn using a uniform probability distribution such that all genes of the

244 D. Leite

newest individual c′
n are within [−1, 1] and [0, 99] for weight and architecture

chromosomes, respectively. The mutated genes should remain feasible with respect
to these bounds. The free change of mutated genes may give rise to better solutions.
Better solutions are maintained, while worse ones are rejected. Similar to the
Gaussian mutation, random mutation is applied gene-to-gene with a changing
probability rate from 1% to 10%. Mutated values are given as:

c′
n = cn + r , (14)

where r is a random value in [−0.1, 0.1] for weight individuals; and a random value
in [−5, 5] rounded to an integer for the case of architecture individuals.

3.4.3 Post-Processing Based on Local Random Mutation

Post-processing neural network parameters can be done from different local search
methods. Local mutation is a simple and fast approach to try to improve the solution
found so far. With the EANN architecture defined, the basic idea is to change some
genes of the current weight solution using random mutation in a specific way.

Mutation probability rate is restricted to 10% per gene, and r ∈ [−0.1, 0.1], as
in (14). Whenever a gene is changed, the fitness of the new solution is immediately
calculated, and the new value of the gene is either accepted or ignored. New weight
solutions are evaluated twice, considering cn+r and cn−r . This approach promotes
a local search for a better solution around the current best solution and parallel to
the axes of the search space.

3.5 Fitness Function

GA mimics the principle of natural selection. A fitness measure is used to choose
relatively fitter individuals in a population to evolve. The higher the fitness of an
individual, the higher its survival probability [44].

To determine the fitness of weight chromosomes, we use

F(cn) = γ (τ
ξ
train + τ

ζ
test) , (15)

where F(cn) is the fitness of the chromosome cn; ξ and ζ are parameters defined
according to the emphasis on training and testing performance; τtrain and τtest refer
to the neural network learning and generalization ability:

τtrain = Ctrain

Ctrain + Wtrain

, (16)

τtest = Ctest

Ctest + Wtest

, (17)

Neural Network-Based Electrical Machines Fault Detection 245

where C and W are the amount of correct and wrong classifications. In addition:

γ = e−kL (18)

is a penalty factor for large network architectures; L, calculated as in Eq. (9), is the
length of a weight chromosome; and 0 < k < 1 is a constant.

The fitness of an architecture chromosome is the greatest fitness of weight
chromosomes of the current generation. Naturally, F should be maximized.

3.6 Selection Operator

Selection is the operation in which individuals are chosen for later breeding.
First, individuals are chosen to enter a mating pool. Operators should ensure that
individuals with higher fitness have greater probability of being selected for mating,
but those individuals with lower fitness still have a probability of being chosen.
Having some probability of choosing worse individuals is important to assure that
the search process is global and it does not simply converge to the nearest local
minimum.

The original GA uses selection proportional to the fitness usually implemented
with Roulette Wheel [44]. To better control the selective pressure of individuals and
to avoid premature convergence, Tournament selection is considered [46].

3.6.1 Tournament Selection

Tournament selection is an alternative to fitness-proportional selection. Empirical
results suggest that the tournament method can perform better and be faster than
roulette selection [44, 46]. Moreover, it attenuates the selection pressure.

The operator considers the number of wins of an individual in H matches against
H random opponents of the population—a one-against-one approach. The winner
of a match is the individual with the best fitness compared to the direct opponent.

We use H = 5 in such a way that individuals winning at least three matches
remain for the next generation. The procedure continues until the mating pool
is full, i.e., 20 out of 40 individuals are selected. The selective pressure pro-
vided by the tournament operator is weak since a good diversity of individu-
als may remain in the population. Parents and children may compose the next
generation.

3.6.2 Elitism

Elitism consists in maintaining the fittest individual of the population. This strategy
ensures that the best solution found so far is retained. While this strategy could be

246 D. Leite

applied more broadly, e.g., selecting the 2 or 3 best solutions, overuse can lead to
premature convergence to a suboptimal solution. Tournament selection, as described
in the previous section, is inherently an elitist approach.

3.7 Stopping Criteria

Training stopping criteria is an important issue in evolutionary modeling. Early
termination may generate poor solutions, whereas late termination might cause
overfitting. The proposed GA is terminated if one of the following is reached:

• Maximum number of architecture generations, α;
• Maximum number of weight generations, �;
• Acceptable fitness reached, F(c∗

n) > �;
• Maximum number of weight generations without replacing the fittest cn, δ.

In the latter case, the solution has attained a plateau such that iterations have no
longer produced better results.

4 Incremental Algorithm for Neurofuzzy Network Learning

EGNN is a neurofuzzy granular network constructed incrementally from an online
data stream [24, 36]. Although its learning algorithm can process mixtures of
fuzzy, interval, and numerical data, this study focuses on numerical data only.
Additionally, the network can play the role of a regressor, predictor, controller,
or classifier [47, 48]. We emphasize EGNN for fault detection and classification.
Particularly, evolving classification is a research topic under broad discussion.
A number of methods have been developed with focus on typicality and eccen-
tricity data analytics [49], robustness of Takagi–Sugeno fuzzy models [50], local
strategies to smooth parameter changes [51], self-organization of fuzzy models
[52], ensembles of models [53], scaffolding fuzzy type-2 models [54], semi-
supervision [55], interval granular computing models [56], and on applications such
as fault detection in wind turbines [57] and monitoring of waste-water treatment
processes [58].

The basic processing elements of EGNN are fuzzy neurons. Its architecture
encodes a set of fuzzy rules, and neural processing conforms with a fuzzy inference
system. The network architecture results from a gradual construction according
to new information. The consequent part of an EGNN rule may be composed of
a linguistic and a functional term. Independently of the choice of fuzzy neuron,
network parameters, and properties of input–output data, the linguistic term of
the rule consequent produces a granular output, while the functional term gives a
pointwise output. In the present study, we are interested in the pointwise output only,
which is a class. Learning in EGNN means to fit new data into local granular models

Neural Network-Based Electrical Machines Fault Detection 247

recursively. Granules, neurons, and connections can be added, adapted, removed,
and combined. Therefore, the network captures new information from data streams
and adapts itself to a new scenario.

4.1 Numerical and Fuzzy Data

Fuzzy data arise from expert knowledge, inaccurate measurements, variables that
are hard to be precisely quantified, perceptions, and when preprocessing steps
introduce uncertainty in numerical data. A fuzzy datum xj has the following
form:

xj (z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φj , z ∈ [x
j
, xj [

1, z ∈ [xj , xj]
ιj , z ∈]xj , xj]
0, otherwise

(19)

where z is a real number in Xj . If the fuzzy datum xj is normal (xj (z) = 1 for at
least one z ∈ �) and convex (xj (κz1+(1−κ)z2) ≥ min(xj (z

1), xj (z
2)), z1, z2 ∈ �,

κ ∈ [0, 1]), then it is a fuzzy interval [59]. In particular, if:

φj =
z − x

j

xj − x
j

and (20)

ιj = xj − z

xj − xj

, (21)

then the fuzzy datum (19) has trapezoidal membership function and can be
represented by the quadruple (x

j
, xj , xj , xj). If xj = xj , the fuzzy datum is a

fuzzy number. Numerical data arise if x
j

= xj = xj = xj .

4.2 Network Architecture

Let x = (x1, . . . , xn) be an input vector and y the output. Consider that the
data stream (x, y)[h], h = 1, . . ., is measured from an unknown function f .
Inputs xj and output y can be fuzzy data in general and numerical data in
particular.

Figure 7 shows a four-layer EGNN model. The input layer receives x[h]. The
granular layer consists of a set of granules Gi

j , j = 1, . . . , n; i = 1, . . . , c, stratified

from the input data. Fuzzy sets Gi
j , i = 1, . . . , c, form a fuzzy partition of the

248 D. Leite

Fig. 7 Evolving neurofuzzy network architecture

j -th input domain, Xj . A granule Gi = Gi
1 × · · · × Gi

n is a fuzzy relation, i.e., a
multidimensional fuzzy set in X1 × · · · × Xn. Thus, Gi has membership function
Gi(x) = min{Gi

1(x1), · · · ,Gi
n(xn)} in X1 × · · · × Xn. Granule Gi may have a

companion local function pi . For classification, we use a 0-th-order function:

pi(x̂1, . . . , x̂n) = Ĉi , (22)

where Ĉi is the estimated class.
Define x̂j as the midpoint of xj = (x

j
, xj , xj , xj). Thus:

mp(xj) = x̂j = xj + xj

2
. (23)

Naturally, if the input data are numerical, then x̂j = xj .

Neural Network-Based Electrical Machines Fault Detection 249

Similarity degrees x̃i = (̃xi
1, . . . , x̃

i
n) are the result of matching between input

x = (x1, . . . , xn) and fuzzy sets Gi = (Gi
1, . . . ,G

i
n). In general, data and granules

are trapezoidal objects. A convenient similarity measure to quantify the match
between a sample and the current knowledge is

x̃i
j = 1 −

|gi

j
−x

j
|+|gi

j
−xj |+|gi

j −xj |+|gi

j −xj |
4(max(g

i

j , xj) − min(gi

j
, x

j
))

. (24)

This measure returns x̃i
j = 1 for identical trapezoids and reduces linearly as any

numerator term increases. Naturally, measure (24) can be applied to numerical data.
In this case, x

j
= xj = xj = xj [24, 48].

The aggregation layer is composed of fuzzy neurons Ai , i = 1, . . . , c. A fuzzy
neuron Ai combines weighted similarity degrees (̃xi

1w
i
1, . . . , x̃

i
nw

i
n) into a single

value oi , which refers to the level of activation of rule Ri . The output layer processes
(o1, . . . , oc) using a fuzzy neuron Af . Af performs the maximum S-norm in this
study. The class Ci∗ associated to the most active rule Ri∗ is the network output.

Under assumption on specific weights and types of neurons, fuzzy rules extracted
from the EGNN classifier, as described in this study, are of the type:

Ri : IF(x1isGi
1)AND . . . AND(xnisGi

n)THEN(ŷisĈi).

As: (1) fuzzy sets Gi
j ∀i, j, are time varying; (2) a diversity of aggregation functions

can be used in the neural body Ai ; and (3) fuzzy granules overlap in the input space,
thus the class separation surface provided by an EGNN model is nonstationary and
can be highly nonlinear.

4.3 Fuzzy Neuron

Fuzzy neurons are neuron models based on aggregation operators. EGNN may use
different types of aggregation neurons to perform information fusion. Generally,
there is no guideline to choose a particular aggregation operator to construct a fuzzy
neuron [60].

Aggregation operators A : [0, 1]n → [0, 1], n > 1, combine input values in the
unit hypercube [0, 1]n into a single value in [0, 1]. They must satisfy the following
properties: (1) monotonicity in all arguments, i.e., given x1 = (x1

1 , . . . , x1
n) and

x2 = (x2
1 , . . . , x2

n), if x1
j ≤ x2

j ∀j then A(x1) ≤ A(x2); and (2) boundary
conditions: A(0, 0, . . . , 0) = 0 and A(1, 1, . . . , 1) = 1. The classes of aggregation
operators considered in this study are summarized below. See [59, 60] for a detailed
coverage.

250 D. Leite

4.3.1 Triangular Norm and Conorm

T-norms (T) are commutative, associative, and monotone operators on the
unit hypercube whose boundary conditions are T (α, α, . . . , 0) = 0 and
T (α, 1, . . . , 1) = α, α ∈ [0, 1]. An example of T-norm is the minimum operator:

Tmin(x) = min
j=1,...,n

xj , (25)

which is the strongest T-norm because:

T (x) ≤ Tmin(x) forany x ∈ [0, 1]n. (26)

The minimum is idempotent, symmetric, and Lipschitz-continuous. Further exam-
ples of T-norms include the product:

Tprod(x) =
n∏

j=1

xj , (27)

and the Lukasiewicz T-norm:

TL(x) = max(0,

n∑

j=1

xj − (n − 1)), (28)

which are non-idempotent, but Lipschitz-continuous aggregation operators.
S-norms (S) are operators on the unit hypercube which are commutative,

associative, and monotone. S(α, α, . . . , 1) = 1 and S(α, 0, . . . , 0) = α are the
boundary conditions of S-norms.

S-norms are stronger than T-norms. The maximum operator:

Smax(x) = max
j=1,...,n

xj , (29)

is the weakest S-norm, that is:

S(x) ≥ Smax(x) ≥ T (x), forany x ∈ [0, 1]n. (30)

The maximum is idempotent, symmetric, and Lipschitz-continuous.

4.3.2 Neuron Model

Let x̃ = (̃x1, . . . , x̃n) be a vector of membership degrees of a sample x =
(x1, . . . , xn) in the fuzzy sets G = (G1, . . . ,Gn). Let w = (w1, . . . , wn) be a
weight vector such that:

wj ∈ [0, 1], j = 1, . . . , n. (31)

Neural Network-Based Electrical Machines Fault Detection 251

Fig. 8 Fuzzy neuron model

Product T-norm is used to perform synaptic processing, while an aggregation
operator A is used to fuse the individual results of synaptic processing. The output
of a fuzzy aggregation neuron is

o = A(̃x1w1, . . . , x̃nwn). (32)

A fuzzy neuron produces a diversity of nonlinear mappings between neuron
inputs and output depending on the choice of weights w and aggregation operator
A. The fuzzy neuron model is shown in Fig. 8.

4.4 Granular Region

The support and the core of trapezoidal membership function Gi
j are

supp(Gi
j) = [gi

j
, g

i

j], (33)

core(Gi
j) = [gi

j
, gi

j]. (34)

The midpoint and width of Gi
j are given by:

mp(Gi
j) =

gi
j

+ gi
j

2
, (35)

wdt(Gi
j) = g

i

j − gi

j
. (36)

The maximal allowed expandable width of fuzzy sets Gi
j is denoted by ρ, i.e.,

wdt(Gi
j) ≤ ρ, j = 1, . . . , n; i = 1, . . . , c. Let the expansion region of a fuzzy set

Gi
j be

Ei
j =

[
mp(Gi

j) − ρ

2
, mp(Gi

j) + ρ

2

]
. (37)

It follows that wdt(Gi
j) ≤ wdt(Ei

j) ∀j, i. Values of ρ allow different representations
of the same problem at different levels of detail.

252 D. Leite

4.5 Granularity Adaptation

A balance between parametric and structural adaptation is a key to capture changes
of time-varying systems. The procedure described below reconciles parametric and
structural changes in EGNN.

The value of ρ affects the granularity and accuracy of models. In practice, ρ ∈
[0, 1] settles the size of expansion regions (37) and the need to either create or adapt
rules to fit a new sample. EGNN starts learning with an empty rule base and with
no a priori knowledge of data properties. In this case, it is worth to initialize ρ at an
intermediate value, e.g., ρ[0] = 0.5.

Let r be the number of rules created in hr steps. If the number of rules grows
faster than a rate η, i.e., r > η, then ρ is increased:

ρ(new) =
(

1 + r

hr

)
ρ(old). (38)

Equation (38) acts against outbursts of growth since large rule bases increase
model complexity and worsen generalization. If the number of rules grows at a rate
smaller than η, i.e., r ≤ η, then ρ is decreased:

ρ(new) =
(

1 − (η − r)

hr

)
ρ(old). (39)

If ρ = 1, then EGNN is structurally stable, but unable to capture abrupt changes.
Conversely, if ρ = 0, then EGNN overfits the data causing excessive model
complexity. Adaptability is reached from intermediate values.

Reducing ρ may require a reduction of larger granules to fit them to the new
requirement. In this case, the support of Gi

j is narrowed as follows:

If mp(Gi
j)− ρ(new)

2 > gi

j
then gi

j
(new) = mp(Gi

j)− ρ(new)
2

If mp(Gi
j)+ ρ(new)

2 < g
i

j then g
i

j (new) = mp(Gi
j)+ ρ(new)

2

Cores [gi
j
, gi

j] are handled similarly. Time-varying granularity is useful to avoid

guesses on how fast and how often the data stream properties change.

4.6 Developing Granules

Granules are created if the support of at least one entry of (x1, . . . , xn) is not
enclosed by expansion regions (Ei

1, . . . , E
i
n), i = 1, . . . , c. This is the case that

granules Gi cannot expand beyond the limit ρ to fit the sample. Otherwise, if x[h]
is placed inside an Ei , but the class C[h] �= Ĉi , then a new granule Gc+1 should be
created.

Neural Network-Based Electrical Machines Fault Detection 253

A new granule Gc+1 is formed by fuzzy sets Gc+1
j whose parameters match the

sample:

Gc+1
j = (gc+1

j
, gc+1

j
, gc+1

j , g
c+1
j) = (x

j
, xj , xj , xj). (40)

The consequent pc+1 is associated to a class, Ĉc+1 = C[h].
Adaptation of granules consists in expanding or contracting the support and

the core of fuzzy sets Gi
j . Granule Gi is adapted if a sample falls within its

expansion region, i.e., if supp(xj) ⊂ Ei
j , j = 1, . . . , n, and C[h] is the same as

Ĉi . In situations in which more than one granule encloses the sample, adapting
only one of them is enough to guarantee data inclusion. In particular, we may
choose Gi such that i = arg max(o1, . . . , oc), i.e., Gi has the highest activation
level.

Adaptation proceeds depending on where the input datum xj is placed in relation
to the fuzzy set Gi

j :

If x
j

∈ [mp(Gi
j) − ρ

2 , gi

j
] then gi

j
(new) = x

j

If xj ∈ [mp(Gi
j) − ρ

2 , gi
j
] then gi

j
(new) = xj

If xj ∈ [gi
j
, mp(Gi

j)] then gi
j
(new) = xj

If xj ∈ [mp(Gi
j), mp(Gi

j) + ρ
2] then gi

j
(new) = mp(Gi

j)

If xj ∈ [mp(Gi
j) − ρ

2 , mp(Gi
j)] then gi

j (new) = mp(Gi
j)

If xj ∈ [mp(Gi
j), g

i
j] then gi

j (new) = xj

If xj ∈ [gi
j , mp(Gi

j) + ρ
2] then gi

j (new) = xj

If xj ∈ [gi

j , mp(Gi
j) + ρ

2] then g
i

j (new) = xj

The first and last rules perform support expansion, and the second and seventh rules
execute core expansion. The remaining cases concern core contraction.

Operations on core parameters, gi
j

and gi
j , require adjustment of the midpoint of

the respective fuzzy sets:

mp(Gi
j)(new) =

gi
j
(new) + gi

j (new)

2
. (41)

As a result, support contraction may happen in two occasions:

If mp(Gi
j)(new)− ρ

2 > gi

j
then gi

j
(new) = mp(Gi

j)(new)− ρ
2

If mp(Gi
j)(new)+ ρ

2 < g
i

j then g
i

j (new) = mp(Gi
j)(new)+ ρ

2 .

254 D. Leite

4.7 Adapting Connection Weights

Weights wi
j ∈ [0, 1] represent the importance of the j -th attribute of Gi

j to the

neural network output. If wi
j = 1, then the output is not affected. A relatively lower

value of wi
j discounts the impact of the respective attribute. The procedure described

below assigns lower weight values to less helpful attributes.
If a granule Gc+1 is created, weights are set as wc+1

j = 1, ∀j . If it is known a

priori that different attributes have different importance, then values for wc+1
j can

be chosen in a way to reflect that.
Weights wi

j , j = 1, . . . , n, corresponding to the most active granule Gi , i =
arg max(o1, . . . , oc), are updated from:

wi
j (new) = wi

j (old) − βix̃i
j |ε|. (42)

where x̃i
j is the similarity between xi

j and Gi
j ; βi depends on the number of right

(Ri) and wrong (Wi) classifications so far provided by Gi according to:

βi = Wi

Ri + Wi
; (43)

and

ε[h] = C[h] − Ĉ[h] (44)

is the current estimation error. Equation (42) penalizes the j -th attribute of Gi in the
next iterations if the estimated class is wrong.

4.8 Learning Algorithm

The learning algorithm to evolve EGNN is given below:

————————————————————————————

BEGIN
Select a type of neuron for the aggregation layer;
Set parameters ρ[0], hr , η, c = 0;
Read input sample x[h], h = 1;
Create granule Gc+1, neurons Ac+1, Af , and respective connections;
For h = 2, . . . do

Read and feedforward x[h] through the network;
Compute rule activation levels (o1, . . . , oc);
Aggregate activation values using Af to get an estimation Ĉ[h];

Neural Network-Based Electrical Machines Fault Detection 255

// The class C[h] becomes available;
Compute output error ε[h] = C[h] − Ĉ[h];
If x[h] is not within expansion regions Ei∀i or ε[h] �= 0

Create granule Gc+1, neuron Ac+1, and connections;
Else

Adapt the most active granule Gi∗, i∗ = arg max(o1, . . . , oc);
Adapt weights wi∗

j ∀j ;
If h = αhr , α = 1, 2, . . .

Adapt model granularity ρ;
END

————————————————————————————

5 Results and Discussion

Experimental results on electrical machine fault detection and classification
using neural networks trained via genetic (EANN) and incremental (EGNN)
algorithms are shown in this section. First, individual results for each neural
classifier and discussions considering different initial parameters and operators
are presented. Then, general comparisons and statistical analyses are performed.
We look forward to concise models and high accuracy and processing
speed.

5.1 Preliminaries

The dataset was generated from the validated mathematical model described in
Sect. 2. An induction motor properly designed for insertion of stator shorted-turns
and the experimental setup for model validation are shown in Fig. 9. Stator phase
windings were fractionated such that short-circuits on a number of turns could be
imposed externally (see white wires on the top of the motor).

The characteristics of the underlying induction motor are: power, 5 Hp; voltage
(Y), 127 V; poles, 4; stator turns per phase, 84; inertia, 0.00995 J m2; rated torque,
2.1 kgf m; rated speed, 1715 RPM; stator resistance, 0.730 �; rotor resistance,
0.360 �; stator and rotor leakage inductance, 0.006 H; and mutual inductance
0.027 H. Table 1 shows the conditions of shorted-turns in the stator windings and
a summary of the 10-class balanced classification problem. The dataset contains
350 7-attribute samples. The attributes are the abc stator currents, voltage–current
displacement angles, and the rotor speed. Voltage unbalance in the 3-phase system
(127 ± 10 V), current measurement noise (±0.1 A), and variable load ([0, 6]
Nm) were considered to generate 35 samples that represent each of the 10
classes.

256 D. Leite

Fig. 9 Instrumental setup and motor external connections

Table 1 Classes of the
10-class balanced
classification problem

Class ka (turns) kb (turns) kc (turns) No. of samples

1 0 0 0 35

2 1 0 0 35

3 0 1 0 35

4 0 0 1 35

5 2 0 0 35

6 0 2 0 35

7 0 0 2 35

8 3 0 0 35

9 0 3 0 35

10 0 0 3 35

Offline learning methods, such as EANN, use 200 random samples for training
and 150 samples for testing. Data stream learning methods, such as EGNN, employ
a sample-per-sample testing-before-training approach.

5.2 Genetic EANN for Fault Detection

Genetic mutation and recombination operators are compared in this section within
the framework of electrical machine fault detection. Additionally, the overall
performance of the detection system using the GA-based neural network is given.

Neural Network-Based Electrical Machines Fault Detection 257

25

20

15

10

5

0
0 100 200 300

Generations

Multi-Point crossover
Arithmetic crossover
Local Intermediate crossover

Avg. fitness

Best fitness

F
it

ne
ss

400 500 600

Fig. 10 Comparison between crossover operators

First, the effect of applying arithmetic, multipoint, and local intermediate recom-
bination operators is evaluated assuming the other GA operators fixed. Figure 10
illustrates the evolution of the average and best fitness of the population over the
generations using the different recombination operators. For 500 generations of
weight individuals, arithmetic crossover provided the overall fittest individual and
the highest average fitness.

A second experiment concerns the evaluation of Gaussian and random mutation
operators with all other GA operators fixed. Figure 11a shows the detection system
performance under different Gaussian mutation rates. The fittest individual was
reached under an 8% mutation rate, while the best average fitness was obtained
under a 5% rate. Figure 11b shows the result for random mutation under distinct
mutation rates. Random mutation under a 5% rate generated the fittest individual
and the highest average fitness.

Genetic operators that generated the fittest individual, i.e., arithmetic crossover
and random mutation under a 5% rate, were chosen for subsequent experiments.
In addition, k = 0.9 in Eq. (18). We evaluated neural network architectures
considering recombination, mutation, tournament selection with elitism, and post-
processing based on local random mutation. Figure 12a presents the development of
various EANN architectures over the generations. In a small amount of architecture
generations—30 generations, an 88.77% accuracy on fault detections was reached
by the architecture [7; 21; 5; 1]. This notation indicates the number of neurons in
the input, first and second hidden, and output layers, respectively.

In a further experiment, the fault detection system using the trained EANN with
21 and 5 neurons in the hidden layers was subject to different sets of test data.

258 D. Leite

18

16

14

12

10

8

6

4

2

0
0 50

25

20

15

10

5

0
0 50 100 150 200 250 300 350 400 450

100 150 200

Gaussian mutation - mu = 0.02
Gaussian mutation - mu = 0.05
Gaussian mutation - mu = 0.08

Random mutation - mu = 0.02
Random mutation - mu = 0.05
Random mutation - mu = 0.08

Generations

Generations

(a)

(b)

F
it

ne
ss

F
it

ne
ss

250 300 350 400 450

Fig. 11 Comparison between mutation operators under different probability rates. (a) Gaussian
mutation. (b) Random mutation

Datasets were built considering different maximum levels of voltage unbalance and
measurement noise (zero-mean white noise) on current waveforms. Each dataset
contains 150 samples, which are used to test the EANN—being 15 samples of
each class. Figure 12b shows the performance of EANN and that of a Multilayer

Neural Network-Based Electrical Machines Fault Detection 259

90

80

80

85

90

95

100

65
10 8 6 4 2 0 1

0.08 0.06 0.04
0.02 0

70

75

70

60

50

40

30

20

10

0
0 5 10 15

Architecture generations

EANN - Genetic algorithm

MLP -
Error backpropagation

Noise-free data

Current noise (%)Voltage unbalance (%)

(b)

C
la

ss
if

ic
at

io
n

ac
cu

ra
cy

 (
%

)

(a)

Fittest individual
Average fitness [7; 21; 5; 1]

C
la

ss
if

ic
at

io
n

ac
cu

ra
cy

 (
%

)

20 25 30

Fig. 12 General results for inter-turns fault detection using EANN. (a) Evolution of the
fitness/accuracy of EANN architectures over time. (b) Performance comparison between a
deterministic error-backpropagation-based MLP neural network and EANN, which carries out a
global search for parameters prior to local search using genetic operators

260 D. Leite

Perceptron MLP neural network for detecting stator inter-turns short-circuit. The
MLP neural network has similar architecture as that of EANN, but was trained
via backward propagation of errors—a gradient descent optimization method.
Conversely, GA carried out a global search for parameters prior to the typical
local search, which supports deterministic methods such as the backpropagation
algorithm.

Notice from Fig. 12b that EANN outperformed MLP in all situations. For
example, in a less noisy environment with balanced voltages, close to the right
upper corner of the graph, the detection system using EANN achieved 94.67% of
correct classifications against 91.33% of the MLP neural network. The total training
time for ten thousand epochs of the MLP backpropagation algorithm was about
19 min, while the time to evolve 30 architecture generations with 20 individuals
each, 50 weight generations with 20 individuals each, and post-processing the fittest
solution was about 55 min. In general, EANN provided greater robustness to voltage
unbalance, variable loads, and measurement noise as shown by the 16% gap between
the accuracy surfaces in the left lower corner of Fig. 12b.

5.3 Incremental EGNN for Fault Detection

A neurofuzzy EGNN classifier was evolved based on a data stream from the
induction machine. The network uses seven input attributes, viz., abc stator currents,
voltage–current displacement angles, and rotor speed. 350 samples, one at a time,
became available for testing and training. No data is available before EGNN learning
starts, and no data is stored during the learning process.

The initial parameters for the learning algorithm are ρ[0] = 0.7, hr = 30, and
η = 1. First, different types of aggregation neurons Ai ∀i, viz., minimum, product,
and Lukasiewicz were evaluated. The output neuron Af performs Smax aggregation.
A summary of the results from 10 runs obtained using the different aggregation
neurons Ai is shown in Table 2. The average number of rules during the iterations
and the total processing time are also shown.

Notice that the EGNN construction that uses product Tprod and maximum Smax

fuzzy neurons in the aggregation and output layers, respectively, performed better
than the other configurations using approximately from 12 to 13 granules. EGNN
learning algorithm alone, disregarding any other acquisition and data processing
procedure, can handle 2906 samples per second in the worst case.

Table 2 Evaluation of different types of EGNN fuzzy aggregation neurons

Aggregation Avg no. of rules Avg Acc(%) Best Acc(%) Avg time (ms)

Tmin 12.8 ± 2.4 91.51 ± 1.76 94.57 109.2

Tprod 12.3 ± 2.4 93.62 ± 1.36 96.28 97.1

TL 12.2 ± 2.1 91.22 ± 0.92 92.57 104.4

Neural Network-Based Electrical Machines Fault Detection 261

The need to calculate effective values of the voltage and current, and phase angle
based on a 60-Hz power system imposes a limit on the provision of input samples
to the network. If the effective values are calculated using half-wave cycle, then a
maximum of 120 input data samples per second are available for EGNN processing.
Therefore, the bottleneck of the fault detection system in terms of processing
capacity is certainly not imposed by the classifier so that parallel programming
environments are needless.

For gradual and small changes of attribute values, the learning algorithm adapts
the parameters of granules and connections. EGNN is able to handle new classes
and abrupt changes on the data stream, e.g., due to the development of a fault,
load change, or voltage unbalance. In these cases, the algorithm creates additional
granules, connections, and neurons to maintain its accuracy.

Figure 13 depicts a typical behavior of the Tprod − Smax EGNN model using
ρ[0] = 0.7, hr = 30, and η = 3. The figure shows that the accuracy of the classifier
increases quickly along with an increase in the number of rules during the first
iterations. EGNN makes use of approximately 12.7 rules with a maximum of 16

100

60

40

20

0

0
0 50 100 150 200 250 300 350

2

4

6

8

10

12

14

16

18

0 50 100 150 200

Data

 Time index

 Time index

N
um

be
r

of
 r

ul
es

A
cc

ur
ac

y
(%

)

(a)

(b)

Mean
Std

Data
Mean
Std

250 300 350

80

Fig. 13 EGNN classification accuracy and number of rules during the learning steps

262 D. Leite

Fig. 14 EGNN classification boundaries during the development of a fault in stator phase A: (a)
healthy induction machine. Boundaries after (b) 1, (c) 2, and (d) 3 shorted-turns

rules to support a 94.5% classification accuracy on this simulation. After about 70
time steps, the performance of the EGNN classifier achieved a quasi-steady state in
spite of recurrent structural and parametric updates.

Nonstationary decision boundaries drawn by EGNN granules during the progress
of inter-turns short-circuit in the stator phases A, B, and C are illustrated in
Figs. 14, 15, and 16, respectively. Granular regions representing a healthy and faulty
induction machine are visible in the first quadrant of the figures since in previous
iterations the neural network was exposed to samples of all classes provided by the
Fault Simulator model. After the occurrence of a shorted-turn in one of the stator
windings, the neural network changed structurally and parametrically to fit the new
samples, which reflect the fault occurrence. Therefore, as the number of shorted-
turns evolves from 1 to 3 turns, the granular regions related to the underlying faulty
winding expand toward the other regions. Samples bringing information about the
faulty class predominate in the data stream.

Neural Network-Based Electrical Machines Fault Detection 263

Fig. 15 EGNN classification boundaries during the development of a fault in stator phase B: (a)
healthy induction machine. Boundaries after (b) 1, (c) 2, and (d) 3 shorted-turns

5.4 Comparative Analyses and Discussion

The evolutionary EANN and evolving fuzzy granular EGNN neural networks were
able to detect shorted-turns in the stator windings of an induction machine with a
reasonable degree of success. While EGNN achieved a 96.28% best accuracy using
product Tprod and maximum Smax fuzzy neurons in the aggregation and output
layers, EANN reached a 94.67% best correct classification rate in a similar scenario
using arithmetic crossover, random mutation, tournament selection, and subsequent
local search based on local random mutation.

Both learning methods, genetic and incremental, addressed issues such as
convergence to a local optimum, dependence on initial parameters and trial-and-
error approach on choosing an architecture for the neural classifier. To shed light

264 D. Leite

Fig. 16 EGNN classification boundaries during the development of a fault in stator phase C: (a)
healthy induction machine. Boundaries after (b) 1, (c) 2, and (d) 3 shorted-turns

on these issues, a Multilayer Perceptron MLP neural network with the same
structure as that of the fittest EANN, but trained with a gradient algorithm, was
used for comparison. The MLP classifier achieved a 91.33% success rate on fault
classification.

While from one side the accuracy of the evolutionary EANN, evolving EGNN,
and non-evolving MLP classifiers are relatively close to each other (within a
5% range) for the underlying problem, from the other side the time spent by
the learning algorithms to provide such performance was about 55 min, 19 min,
and 0.1 s, respectively, for the offline genetic, error backpropagation, and online
incremental algorithm. Notice that MLP and EANN would certainly benefit from
parallel processing, whereas EGNN supports the volume of data in question.

The main point on time and space complexity is that the parameter space of
neural networks is usually very large and in principle of undefined dimension.

Neural Network-Based Electrical Machines Fault Detection 265

Online incremental learning is based on a bottom-up approach that starts from
scratch and considers new neurons and connections (dimensions in the parameter
space) only if necessary. The size of the neural network model is controlled by
the granularity adaptation mechanism. Moreover, recursive formulas do not require
accumulation of samples and multiple passes over the same data, but a data
stream and a single scan of the samples. This explains the enormous difference
on computational complexity of the algorithms and supports incremental learning
from sequential data as a mainstream of research to deal with complex and big data
applications.

The effectiveness of the mathematical model to simulate shorted-turns in the
stator windings of electrical machines, real genetic programming, and of the
evolving fuzzy granular approach for condition monitoring and pattern classifi-
cation was verified in this study. The fault simulation model, together with the
identification and optimization algorithms, is an important alternative tool for
destructive tests. Moreover, fault simulation allowed a variety of practical situations
to be incorporated and considered as entries of the dataset. Therefore, the neural
classifiers could be trained to be immune to voltage unbalance and load change
situations.

6 Conclusion

Early detection of incipient fault conditions in induction machines, such as the turn-
to-turn short-circuit fault, is of utmost importance because functional failures may
occur minutes or hours after the initial development. The faulty winding should
be restored or replaced to prevent complete loss of the motor. Operational hazards
as well as significant financial losses can be avoided if the machine is stopped for
maintenance.

In this study, learning methods are proposed to evolve architectures and weights
of a feedforward neural network aiming at fault detection and classification. In
particular, genetic and incremental learning methods are addressed producing,
respectively, evolutionary EANN and evolving EGNN models. Both neural models
were able to detect shorted-turns successfully. EGNN achieved a 96.28% accuracy
using product Tprod and maximum Smax fuzzy neurons, whereas EANN reached
a 94.67% accuracy on correct classification using arithmetic crossover, global and
local random mutation, and tournament selection. Issues such as convergence to
local optima, dependence on initial parameters, and choice of a neural architecture
by trial and error were overcome. Moreover, a Multilayer Perceptron MLP model
trained with a gradient algorithm was considered to highlight the advantages of
performing global search for parameters prior to local search. The MLP classifier
achieved a 91.33% accuracy. The striking difference concerns the time spent to
produce such results, which was about 55 min, 19 min, and 0.1 s, respectively, for
the genetic, gradient, and online incremental algorithms. Bottom-up incremental
learning from scratch takes into account new neurons and connections (dimensions
in the parameter space) only if necessary for a better classification accuracy.

266 D. Leite

The effectiveness of a mathematical model to simulate shorted-turns in the
stator windings was verified (validated) in this and related studies. The fault
simulation model, together with the identification and optimization algorithms
briefly presented, is an important alternative tool for destructive tests. Moreover,
fault simulation granted a diversity of practical situations to be incorporated into
datasets. Therefore, the neural classifiers could be trained to be immune to voltage
unbalance and load change situations.

Further work will address methods to control the specificity of information
granules in evolving granular neurofuzzy networks; linguistic data approximation,
and missing data imputation due to sensor malfunction or saturation. In addition to
sensor faults, airgap eccentricity and multi-fault models based on dq0 and sequential
components will be approached.

References

1. Gao, Z., Cecati, C., Ding, S.: A survey of fault diagnosis and fault-tolerant techniques - part
I: fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron.
62(6), 3757–3767 (2015)

2. Nandi, S., Toliyat, A.: Condition monitoring and fault diagnosis of electrical motors - a review.
IEEE Trans. Energy Convers. 20(4), 719–729 (2005)

3. Bessa, I., Palhares, R., D’Angelo, M.F., Filho, J.E.: Data-driven fault detection and isolation
scheme for a wind turbine benchmark. Renew Energy 87(1), 634–645 (2016)

4. D’Angelo, M.F., Palhares, R. Cosme, L., Aguiar, L., Fonseca, F., Caminhas, W.: Fault detection
in dynamic systems by a Fuzzy/Bayesian network formulation. Appl. Soft Comput. 21, 647–
653 (2014)

5. Frosini, L., Harlişca, C., Szabó, L.: Induction machine bearing fault detection by means of
statistical processing of the stray flux measurement. IEEE Trans. Ind. Electron. 62(3), 1846–
1854 (2015)

6. Chang, H.-C., Lin, S.-C., Kuo, C.-C., Hsieh, C.-F.: Induction motor diagnostic system based
on electrical detection method and fuzzy algorithm. Int. J. Fuzzy Syst. 18(5), 732–740 (2016)

7. Leite, D., Hell, M., Costa Jr., P., Gomide, F.: Real-time fault diagnosis of nonlinear systems.
Nonlinear Anal. Theory Methods Appl. 71(12), 2665–2673 (2009)

8. Ghate, V., Dudul, S.: Cascade neural-network-based fault classifier for three-phase induction
motor. IEEE Trans. Ind. Electron. 58(5), 1555–1563 (2011)

9. Fuente, M., Moya, E., Alvarez, C., Sainz, G.: Fault detection and isolation based on hybrid
modelling in an AC motor. IEEE Int. Conf. Neural Netw. 3, 1869–1874 (2004)

10. Gandhi, A., Corrigan, T., Parsa, L.: Recent advances in modeling and online detection of stator
interturn faults in electrical motors. IEEE Trans. Ind. Electron. 58(5), 1564–1575 (2011)

11. Sun, W., Shao, S., Zhao, R., Yan, R., Zhang, X., Chen, X.: A sparse auto-encoder-based deep
neural network approach for induction motor faults classification. Measurement 89, 171–178
(2016)

12. Chow, M.-Y.: Methodologies of Using Neural Network and Fuzzy Logic Technologies for
Motor Incipient Fault Detection. World Scientific Publishing Co. Pte. Ltd., Singapore (1998)

13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. Adaptive Computation and Machine
Learning. MIT Press, Cambridge (2017)

14. Rumelhart, D., Hinton, G., Willians, R.: Learning internal representations by error propagation.
In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp.
318–362. MIT Press, Cambridge (1986)

Neural Network-Based Electrical Machines Fault Detection 267

15. Chen, O., Sheu, B.: Optimization schemes for neural network training. IEEE Int. Conf. Neural
Netw. 2, 817–822 (1994)

16. Yao, X., Liu, Y.: Towards designing artificial neural networks by evolution. Appl. Math.
Comput. 91(1), 83–90 (1998)

17. Sexton, R., Gupta, J.: Comparative evaluation of genetic algorithm and backpropagation for
training neural networks. Inf. Sci. 129(1–4), 45–59 (2000)

18. Huang, H.-X., Li, J.-C., Xiao, C.-L.: A proposed iteration optimization approach integrating
backpropagation neural network with genetic algorithm. Expert Syst. Appl. 42, 146–155
(2015)

19. Chen, X., Chau, K., Busari, A.: A comparative study of population-based optimization
algorithms for downstream river flow forecasting by a hybrid neural network model. Eng. Appl.
Artif. Intell. 46(A), 258–268 (2015)

20. Blum, C., Socha, K.: Training feed-forward neural networks with ant colony optimization:
an application to pattern classification. In: International Conference on Hybrid Intelligent
Systems, 6p (2005)

21. Wang, L., Zeng, Y., Chen, T.: Back propagation neural network with adaptive differential
evolution algorithm for time series forecasting. Expert Syst. Appl. 42(2), 855–863 (2015)

22. Taormina, R., Chau, K.-W.: Neural network river forecasting with multi-objective fully
informed particle swarm optimization. J. Hydroinformatics 17(1), 99–113 (2015)

23. Ren, C., An, N., Wang, J., Li, L., Hu, B., Shang, D.: Optimal parameters selection for BP
neural network based on particle swarm optimization: a case study of wind speed forecasting.
Knowl.-Based Syst. 56, 226–239 (2014)

24. Leite, D., Costa, P., Gomide, F.: Evolving granular neural networks from fuzzy data streams.
Neural Netw. 38, 1–16 (2013)

25. Lughofer, E., Pratama, M.: Online active learning in data stream regression using uncertainty
sampling based on evolving generalized fuzzy models. IEEE Trans. Fuzzy Syst. 26(1), 292–
309 (2018)

26. Rubio, J.J.: USNFIS: uniform stable neuro fuzzy inference system. Neurocomputing 262(1),
57–66 (2017)

27. Silva, A., Caminhas, W., Lemos, A., Gomide, F.: A fast learning algorithm for evolving neo-
fuzzy neuron. Appl. Soft Comput. 14(B), 194–209 (2014)

28. Mohamad, S., Moamar, S.-M., Bouchachia, A.: Active learning for classifying data streams
with unknown number of classes. Neural Netw. 98, 1–15 (2018)

29. Leite, D., Ballini, R., Costa, P., Gomide, F.: Evolving fuzzy granular modeling from nonsta-
tionary fuzzy data streams. Evol. Syst. 3(2), 65–79 (2012)

30. Mirzamomen, Z., Kangavari, M.: Evolving fuzzy min-max neural network based decision trees
for data stream classification. Neural Process. Lett. 45(1), 341–363 (2017)

31. Soares, E., Costa, P., Costa, B., Leite, D.: Ensemble of evolving data clouds and fuzzy models
for weather time series prediction. Appl. Soft Comput. 64, 445–453 (2018)

32. Andonovski, G., Music, G., Blazic, S., Skrjanc, I.: Evolving model identification for process
monitoring and prediction of non-linear systems. Eng. Appl. Artif. Intell. 68, 214–221 (2018)

33. Lopes, P.A., Camargo, H.A.: FuzzStream: fuzzy data stream clustering based on the online-
offline framework. In: IEEE International Conference on Fuzzy Systems (2017)

34. Sayed-Mouchaweh, M., Lughofer, E.: Learning in Non-Stationary Environments: Methods and
Applications. Springer, New York (2012)

35. Bezerra, C., Costa, B., Guedes, L., Angelov, P.: An evolving approach to unsupervised and
real-time fault detection in industrial processes. Expert Syst. Appl. 63(30), 134–144 (2016)

36. Leite, D., Costa, P., Gomide, F.: Evolving granular neural network for semi-supervised data
stream classification. In: International Joint Conference on Neural Networks, 8p (2010)

37. Silva, S., Costa, P., Gouvea, M., Lacerda, A., Alves, F., Leite, D.: High impedance fault
detection in power distribution systems using wavelet transform and evolving neural network.
Electr. Power Syst. Res. 154, 474–483 (2018)

38. Leite, D., Hell, M., Diez, P., Gariglio, B., Nascimento L., Costa P.: Real-time model-based fault
detection and diagnosis for alternators and induction motors. In: IEEE International Electric
Machines & Drives Conference, 6p. (2007)

268 D. Leite

39. Bertsekas, D.: Nonlinear Programming. Athena Scientific, Belmont (1999)
40. Krause, P., Wasynczuk, O., Sudhoff, S.: Analysis of Electric Machinery. IEEE Press, New York

(1995)
41. Chen, S., Wu, Y., Luk, L.: Combined genetic algorithm optimization and regularized orthogo-

nal least squares learning for radial basis function networks. IEEE Trans. Neural Netw. 10(5),
1239–1243 (1999)

42. Brown, A., Card, H.: Cooperative coevolution of neural representations. Int. J. Neural Syst.
10(4), 311–320 (2000)

43. Ahmadizar, F., Soltanian, K., Tab, F., Tsoulos, I.: Artificial neural network development by
means of a novel combination of grammatical evolution and genetic algorithm. Eng. Appl.
Artif. Intell. 39, 1–13 (2015)

44. Fogel, D.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 3rd
edn. Wiley-Blackwell, Hoboken (2006)

45. Kaya, M.: The effects of two new crossover operators on genetic algorithm performance. Appl.
Soft Comput. 11(1), 881–890 (2011)

46. Miller, B., Goldberg, D.: Genetic algorithms, tournament selection, and the effects of noise.
Complex Syst. 9, 193–212 (1995)

47. Leite, D., Santana, M., Borges, A., Gomide, F.: Fuzzy granular neural network for incremental
modeling of nonlinear chaotic systems. In: IEEE International Conference on Fuzzy Systems,
pp. 64–71 (2016)

48. Leite, D., Palhares, R., Campos, V., Gomide, F.: Evolving granular fuzzy model-based control
of nonlinear dynamic systems. IEEE Trans. Fuzzy Syst. 23(4), 923–938 (2015)

49. Kangin, D., Angelov, P., Iglesias, J.A.: Autonomously evolving classifier TEDAClass. Inf. Sci.
366, 1–11 (2016)

50. Lughofer, E.: FLEXFIS: a robust incremental learning approach for evolving Takagi-Sugeno
fuzzy models. IEEE Trans. Fuzzy Syst. 16(6), 1393–1410 (2008)

51. Shaker, A., Lughofer, E.: Self-adaptive and local strategies for a smooth treatment of drifts in
data streams. Evol. Syst. 5(4), 239–257 (2014)

52. Gu, X., Angelov, P.: Self-organising fuzzy logic classifier. Inf. Sci. 446, 36–51 (2018)
53. Mirza, B., Lin, Z., Liu, N.: Ensemble of subset online sequential extreme learning machine for

class imbalance and concept drift. Neurocomputing 149, 315–329 (2015)
54. Pratama, M., Lu, J., Lughofer, E., Zhang, G., Anavatti, S.: Scaffolding type-2 classifier for

incremental learning under concept drifts. Neurocomputing 191, 304–329 (2016)
55. Kim, Y., Park, C.H.: An efficient concept drift detection method for streaming data under

limited labeling. IEEE Trans. Inf. Syst. E100(10), 2537–2546 (2017)
56. Leite, D., Costa, P., Gomide, F.: Granular approach for evolving system modeling. In:

International Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems, pp. 340–349. Springer, Berlin (2010)

57. Toubakh, H., Sayed-Mouchaweh, M.: Hybrid dynamic data-driven approach for drift-like fault
detection in wind turbines. Evol. Syst. 6(2), 115–129 (2015)

58. Dovzan, D., Logar, V., Skrjanc, I.: Implementation of an evolving fuzzy model (eFuMo) in a
monitoring system for a waste-water treatment process. IEEE Trans. Fuzzy Syst. 23(5), 1761–
1776 (2015)

59. Pedrycz, W., Gomide, F.: Fuzzy Systems Engineering: Toward Human-Centric Computing.
Wiley/IEEE Press, Hoboken (2007)

60. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners.
Springer - Studies in Fuzziness and Soft Computing Series, vol. 221 (2007)

	Comparison of Genetic and Incremental Learning Methods for Neural Network-Based Electrical Machine Fault Detection
	1 Introduction
	2 Electrical Machine Fault Detection
	3 Genetic Algorithm for Neural Network Learning
	3.1 Initialization and Parameterization
	3.2 Phenotype Representation
	3.3 Recombination Operator
	3.3.1 Arithmetic Crossover
	3.3.2 Multipoint Crossover
	3.3.3 Local Intermediate Crossover

	3.4 Mutation Operator
	3.4.1 Gaussian Mutation
	3.4.2 Random Mutation
	3.4.3 Post-Processing Based on Local Random Mutation

	3.5 Fitness Function
	3.6 Selection Operator
	3.6.1 Tournament Selection
	3.6.2 Elitism

	3.7 Stopping Criteria

	4 Incremental Algorithm for Neurofuzzy Network Learning
	4.1 Numerical and Fuzzy Data
	4.2 Network Architecture
	4.3 Fuzzy Neuron
	4.3.1 Triangular Norm and Conorm
	4.3.2 Neuron Model

	4.4 Granular Region
	4.5 Granularity Adaptation
	4.6 Developing Granules
	4.7 Adapting Connection Weights
	4.8 Learning Algorithm

	5 Results and Discussion
	5.1 Preliminaries
	5.2 Genetic EANN for Fault Detection
	5.3 Incremental EGNN for Fault Detection
	5.4 Comparative Analyses and Discussion

	6 Conclusion
	References

