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1 Introduction

Nowadays the volume of data is exploding, and the costs of collecting, storing, and
treating them are affordable for many, making big data solutions more science and
less fiction. In this world submerged by a data tsunami, predictive maintenance is
not an exception. In fact the advances in cheaper, smaller, and much more accurate
sensors development, together with highly sophisticated communication protocols,
have widely contributed to a continuous rise of data-driven approaches in predictive
maintenance.

In any data-driven application in general, thus for predictive maintenance in
particular, preprocessing [132] is of uppermost importance in order to make the
data meaningful and usable, driving the path from potential to real information.
Depending on the author, preprocessing can take different meanings. Some sep-
arate, for instance, data compression approaches, such as feature selection, from
preprocessing. We will consider any treatment performed to the data before training
a model as preprocessing. Then, data cleaning, noise filtering, normalizing, and
feature selection are part of it, among others.

Therefore, we can think of preprocessing as a step formed by several steps, each
of them with a particular purpose, whose order could be sometimes interchanged
but in which the commutative property is in general not fulfilled. Considering
the amount of possible steps, the variety of possible approaches per step, and
the non-commutativity between them, the amount of options explodes existing no
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guaranty that a combination of preprocessing actions would behave better than no
preprocessing the raw data at all [39].

Data involved in each problem related to predictive maintenance have specific
properties. For instance, data related to fault detection tend to be highly imbalanced
because the information regarding faulty situations is much less frequent than the
one regarding fault-free situations. In general, the properties of the data should
be taken into account when choosing a preprocessing strategy. Unfortunately the
task does not provide enough information, meaning that not all datasets used for
a task have the same properties. For example, not all datasets for remain useful
life (RUL) prediction problems are the same. The properties of each dataset have
to be determined. Moreover, sometimes, with the same properties, a preprocessing
scheme works for one problem and not for another. Some general hints are provided
in the definitions of the different strategies.

In predictive maintenance accurate models are necessary, but accurate today
could become inaccurate tomorrow, making robust long-lasting models also a
requirement, especially in highly dynamic systems. Proper preprocessing strategies
are the foundation of the construction of a robust accurate model.

The rest of the work is as follows. Section 2 establishes a taxonomy, provides
brief but beyond a mere citation descriptions of several techniques for each of the
preprocessing steps following the previously provided taxonomy, and presents sev-
eral modeling techniques meant for system monitoring in predictive maintenance.
Section 3 fully describes the datasets that define the different scenarios, the complete
experimental setup, as well as the evaluation schemata that would allow for a fair
comparison of the proposed pretreatment configurations, and comments about the
results achieved. Finally, Sect. 4 concludes the study.

2 Preprocessing

We define preprocessing as the set of actions performed to raw data prior to a subse-
quent modeling performance, with the aim of improving the modeling capabilities.
The improvement could be understood in several ways, such as increasing accuracy,
increasing robustness, shortening computational time, decreasing memory and/or
computational power requirements, or reducing monetary costs.

The perfect result would be a combination of several of those (usually con-
flicting) objectives, leading to multi- and many-objective solutions (in which an
algorithm is trained in order to find the best preprocessing strategy) that are
far beyond the scope of this work. Generally, the objectives are dependent on
the problem and the final user requirements. Therefore, we will focus separately
on accuracy and robustness, assuming that the methods are fast enough for our
requirements as well as affordable in time, technical resources, and money.
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2.1 Taxonomy

The taxonomy we are presenting here is an ordered taxonomy, meaning that the
steps, if included in our strategy, should be performed in the given order. Since some
of those procedures deal with some calculations using the data (e.g., averages), then
any transformation made would affect those calculations in the subsequent steps,
which could lead to different resulting actions. We first present the six preprocessing
steps, and then we develop in detail the most relevant approaches in each one
of them.

1. Data cleansing. Most data-driven techniques rely on the supposition of com-
plete, reliable noise-free data. But real-world data are not such ideal clean data,
being necessary to define strategies to deal with outliers and noise. Moreover,
due to the nature of the data or due to a lack of an adequate data acquisition
strategy, redundant or irrelevant features could be considered in the dataset,
which could be treated both in the data cleansing step or later in the feature
engineering step.1 Despite expert knowledge could be extremely helpful for data
cleansing, we assume a lack of it so that we focus on data-based strategies.
Besides, some of the parts of the taxonomy are interconnected. For instance,
noise treatment is usually attempted through filtering (data transformation) or
compression (data engineering), as well as redundancy and irrelevancy, which
are usually overcome through data engineering. Therefore, those cases will be
treated in their corresponding steps, being the link mentioned.

2. Data normalization. Data coming from diverse heterogeneous origins is col-
lected with ease, which makes actual datasets a compendium of datasets obtained
in different parts of the system in different manners. This datasets fusion,
known as data integration, is not considered by many authors (including us)
as part of preprocessing, but as part of data collection. Some algorithms are
highly sensitive to the variety of scales and ranges of the variables, which
could lead to a performance degradation if no homogenization is performed in
the data.

3. Data transformation. Despite the previous steps and some of the posterior ones
imply indeed transformations of the data, we reserve this name for transforma-
tions in the data by means of certain functions, motivated by knowledge about
the system. For instance, if we are performing predictive maintenance of certain
industrial machinery by using information about the chemical composition of
residual wastes by spectroscopic data (named chemometric multivariate cali-
bration), we can use Beer–Lambert law to realize that the relationship between
the chemical composition and the absorbance spectroscopic data (obtained by a

1It is not irrelevant when the treatment happens, because there are several steps between data
cleansing and feature engineering that could be very sensitive to redundancies or heavily affected
by features that in the end are irrelevant.
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logarithmic transformation) is linear. Therefore, the transformation is beneficial
for the posterior use of a linear monitoring technique.

4. Missing values treatment. Due to several possible causes some values of certain
variables could be missing. A naïve approach is to ignore any sample containing
a missing value, but sometimes the amount of samples is small or, in case of
imbalanced data, the minority class could become more minor even if we adopt
such a destructive approach. The obvious alternative is filling the holes, but how?
Depending on the size and intrinsic characteristics of the data, the filling strategy
could be tricky.

5. Feature engineering. There is not a standard definition of feature engineering.
By it, we mean the employment of one or more of: feature selection (determina-
tion of the most important features according to certain quality criteria), feature
extraction (creation of new features from some or all of the original ones), and
discretization (transforming continuous features into discrete ones by using bins).

6. Imbalanced data treatment. If our predictive maintenance problem is super-
vised so that certain type of samples are extremely rare compare to the others
(minority class), then we are facing an imbalanced learning problem. There are
two logical ways to proceed: (1) balancing somehow the data, and (2) compensate
giving somehow more importance to the samples from the minority class. The
former is related to sampling techniques, and the latter to weighting techniques.

2.2 Data Cleansing

Data cleansing is a complicated task in which we frequently have to make strong
assumptions. Some of those assumptions might hold theoretically but not in real-
world data. Therefore, sometime we walk on quicksand. An example we will show
right afterwards is the implicit assumption of Gaussian behavior when applying
outlier detection based on Mahalanobis distance. As aforementioned, data cleansing
deals with several data artifacts, such as outliers, noise, redundancy, or irrelevancy.

The detection of outliers understood as feature values that are too far from the
general acceptable trend, and the posterior action on those identified outliers is a
tricky task. First, how do we identify the general acceptable trend? Second, how do
we quantify what too far means? Most of the approaches are based on thresholds
from distances in certain representation of the feature space.

We will consider two important approaches, which relevance comes not only
because they are widely used but also because they can be updated incrementally
for data streams. They are based on Mahalanobis distance [77], and on chi-square
approximations of the orthogonal (Q) and score (T 2) distances from principal
components analysis (PCA) [61]. As it is indeed an orthogonal transformation, PCA
will be briefly described in Sect. 2.4.
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2.2.1 Outlier Detection Based on Mahalanobis Distance

Mahalanobis distance [77] is defined for two vectors xi and xj as

dM(xi , xj ) =
√

(xi − xj )T �−1(xi − xj ) (1)

It takes into account the covariance matrix �, where �ij is the covariance between
xi and xj and �ii is the variance of xi . Thus we are considering elliptic regions,
instead of circular ones, of equidistant points. Figure 1 shows a 2-D example where
the point marked with the red square would not be considered as an outlier according
to Euclidean distance, but it would be in terms of Mahalanobis distance, which
seems to be more reasonable.

The outlier identification procedure consists in calculating the Mahalanobis
distance from each sample to a central point and checks whether it exceeds
certain threshold. The mean is the classical central measure, but it is not robust
against outliers. Also the covariance matrix is not a robust dispersion measure. The
robustness can be assumed if the number of samples is quite big, that is usually the
case in predictive maintenance. Robust alternatives to the mean and the covariance
matrix are, respectively, the robust location estimator and the minimum covariance
determinant, which are the mean and covariance matrix of a subset of the original
dataset. For further information, see [116].

If we denote by xc the chosen center and by �c the chosen dispersion matrix,
then Mahalanobis distance from a sample xi to the center is given by

dM(xi ) =
√

(xi − xc)T �−1
c (xi − xc) (2)

Fig. 1 Example of outlier
according to Mahalanobis
distance that would not be so
according to Euclidean.
Considering Euclidean
distance, the lines of points
with a constant distance to a
central point form a
circumference. But
considering Mahalanobis
distance, the shape of those
line is elliptical, and adapted
to the overall shape of the
cloud of points
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Assuming that the multivariate data follows a multivariate normal distribution, then
the squared Mahalanobis distance follows a χ2

N distribution, with N the number of
variables. Then a sample would be considered as an outlier if its distance to the
mean is higher than the threshold given by a α quantile, χ2

N,α .
For the incremental case, we just need to be able to incrementally update the

inverse of the covariance matrix, which is defined as

�N = 1

N

N∑
i=1

(xi − XN) · (xi − XN)T (3)

Then, for the extended data stream considering an extension with one single sample,

�N+1 = 1

N + 1

N+1∑
i=1

(xi − XN+1) · (xi − XN+1)
T

If we split the sum in two parts, from 1 to N and N + 1, we get

�N+1 = 1

N + M

N∑
i=1

(xi−XN+1)·(xi−XN+1)
T + 1

N + 1
(xi−XN+1)·(xi−XN+1)

T

We denote both addends as A1 and A2, respectively, and expand them separately.
Firstly,

A1 = 1

N + 1

N∑
i=1

(xi − XN+1) · (xi − XN+1)
T

Taking into account that the incremental update of the mean is given by

XN+1 = NXN + xN+1

N + 1
(4)

Then,

−XN+1 = −XN − 1

N + 1
(xN+1 − XN)

Denoting C := xN+1 − XN , and substituting,

A1 = 1

N + 1

N∑
i=1

(
xi − XN − 1

N + 1
C

)
·
(

xi − XN − 1

N + 1
C

)T
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As (A − B) · (A − B)T = A · AT − A · BT − B · AT + B · BT , and C is constant,
then

A1 = 1

N + 1

N∑
i=1

(
xi − XN

) · (
xi − XN

)T

− 1

(N + 1)2

N∑
i=1

(
xi − XN

) · C
T

− 1

(N + 1)2

N∑
i=1

C · (
xi − XN

)T

+ 1

(N + 1)3

N∑
i=1

C · C
T

= N

N + 1
�N + N

(N + 1)3
C · C

T

Secondly,

A2 = 1

N + 1
(xN+1 − XN+1) · (xN+1 − XN+1)

T

From Eq. (4), we know that

−XN+1 = −xN+1 + N

N + 1
(xN+1 − XN)

Therefore,

A2 = N2

(N + 1)3 C · C
T

Then, since C := xN+1 − XN ,

�N+1 = N

N + 1
�N + N

(N + 1)2
(xN+1 − XN) · (xN+1 − XN)T (5)

In order to obtain the inverse of the covariance matrix, one option is to update
the covariance matrix and calculate its inverse. This requires a huge computational
effort unless the number of variables is very low, which is not usually the case.
Therefore, a direct update of the inverse covariance matrix is preferable.

The properties of the matrices involved in Eq. (5) allow us to compute the new
inverse as a perturbation of the old one by using the following Lemma [1].
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Lemma 1 (General Sherman–Morrison Formula) Suppose A ∈ Mn is an
invertible matrix, and v and w are vectors of length n so that 1 + wT A−1v �= 0.
Then,

(
A + v · wT

)−1 = A−1 − A−1v · wT A−1

1 + wT A−1v
(6)

where v · wT is the outer product of v and w.

If we identify A := N
N+1�N , v := N

(N+1)2 (xN+1 − XN), and w := xN+1 − XN ,
then we have

1 + wT A−1v = 1 + 1

N + 1
(xN+1 − XN)T �−1

N (xN+1 − XN)

that is never null because �N is positive semi-definite, then so its inverse.
In Eq. (5), inverting both sides

�−1
N+M =

(
N

N + 1
�N + N

(N + 1)2 (xN+1 − XN) · (xN+1 − XN)T
)−1

(7)

that corresponds to the left part of (6) in the Lemma, with the previous identifications
of A, v, and w.

By Sherman–Morrison formula,

�−1
N+1 = N + 1

N
�−1

N

−
N+1
N

�−1
N · N

(N+1)2 (xN+1 − XN) · (xN+1 − XN)T · N+1
N

�−1
N

1 + (xN+1 − XN)T · N+1
N

�−1
N · N

(N+1)2 (xN+1 − XN)
(8)

Therefore, taking common factor N+1
N

, we get

�−1
N+1 = N + 1

N
·
(

�−1
N − �−1

N (xN+1 − XN) · (xN+1 − XN)T �−1
N

(N + 1) + (xN+1 − XN)T �−1
N (xN+1 − XN)

)
(9)

Now, taking the square in Eq. (2), the square Mahalanobis distance from a sample
xi to the center xc is

d2
M(xi) = (xi − xc)

T S−1
c (xi − xc)

Suppose we have prefixed a confidence level α, the threshold for the outlier
detection is χ2

m,α , where m is the number of variables. Thus it is independent of
the number of samples and, then, fixed during the whole online process.
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Let us suppose that we have the updated center and inverse dispersion matrix
at a time t . Once the next sample, xt+1, from the data stream arrives, its d2

M(xt+1)

value is calculated in order to decide whether it is an outlier or not, according to
the current center and inverse dispersion matrix. If it is not an outlier, the previous
center (obtained by averaging) and inverse dispersion matrix can be incrementally
updated as shown.

2.2.2 Outlier Detection Based on χ2 Approximations of Q and T 2

Statistics

Suppose that we have a centered data matrix X ∈ MM,N where the columns
correspond to the predictor variables. Therefore we can consider that we are working
in an N-dimensional space E. Once selected a number a of principal components,
principal components analysis algorithm projects the data onto an a-dimensional
subspace V , defined by the a first principal components. Then we can consider the
orthogonal supplementary subspace of V , U = V ⊥, that is a (N − a)-dimensional,
meaning that V ⊕U = E. Consequently, any element x in E has unique projections
in both V and U so that their sum equals x. The selection of a is crucial for the final
result. Nevertheless, the way to determine it is out of the scope of this section, and
has been widely treated in the literature.

We are interested in two distance measures: (1) the Mahalanobis distance from
the projection of x onto V to the center of the cloud of projections of all the
data onto V , called score distance, and (2) the Euclidean distance from x to V ,
called orthogonal distance, which is related with the Euclidean distance to U .
Figure 2 provides the geometric interpretation of both statistics for an original three-
dimensional data example projected onto a two-dimensional subspace.

The former distance indicates the variation of each sample within the model. It
is also known as Hotelling’s T 2 statistic, and can be calculated as [76]

T 2
i = xiPa�

−1P T
a xT

i =
a∑

j=1

t2
ij

λj

(10)

where � = {λj }aj=1 is a diagonal matrix containing the biggest a eigenvalues and
Pa is the loadings matrix.

For a fixed number a of principal components, on the basis of the fact that the
data are centered, we can model the score distance, since all random variables tia
have null expectation and variance λa/M , as [8]

DoF · T 2

T 2
∼ χ2(DoF) (11)

where DoF and T 2 are the degrees of freedom and the average Hotelling’s statistic,
respectively. DoF could be estimated by
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Original
3D point

Projected
2D point

OD

SD

V

U=V ⊥

Fig. 2 Geometric interpretation of the score distance SD and orthogonal distance OD for a three-
dimensional example projected onto a two-dimensional subspace V . For visual purposes, we have
shown an original 3D point with a huge OD. Due to the way the principal components (PCs) are
selected, this is not usually the case, and, unless the point is an outlier, the OD is commonly small

D̂oF = 2T 2
2

ST 2
(12)

where ST 2 is an estimation of the standard deviation of T 2. A robust option, based
on the interquartile range (IQR), is obtained by solving wrt D̂oF the equation

1

D̂oF

[
χ−2(D̂oF, 0.75) − χ−2(D̂oF, 0.25)

]
= 1

T 2
IQR(T 2

1 , . . . , T 2
M) (13)

The latter distance, also known as Q statistic, indicates how well each sample
conforms to the model, and it can be defined for a given sample xi as

Qi =
k∑

j=a+1

t2
ij (14)

where (ti1, . . . , tiN ) is the ith row of T , and k is the rank of X.
A similar formula to Eq. (11) can be proposed

C · Q

Q
∼ χ2(C) (15)

It depends only in one parameter C that can be estimated in an analogous way as in
Eq. (12).

Now that we have totally determined the distributions of both distances in terms
of χ2 distributions, p-values can be calculated, for a certain chosen critical level α,
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which are the probability of occurrence of each T 2 and Q. Considering ci as any of
T 2

i or Qi , the corresponding p-value is

P(ci) = 1 − [1 − CDF(ci)]
M (16)

where CDF is the cumulative distribution function of the corresponding distribution.
If any of the p-values is below the fixed critical level, then the corresponding input
is considered as an outlier.

Assuming we keep the principal components fixed, at a time t we can suppose
that we have the updated estimated distributions for Q and T 2. Once the next
sample, xt+1, from the data stream arrives, its Qt+1 and T 2

t+1 values are calculated
in order to decide whether it is an outlier or not, according to the current estimations
of the distributions of Q and T 2. If it is not an outlier, the mean values for Q and
T 2 can be incrementally updated.

Besides, the new estimations of C and DoF can be done just by incrementally
estimate the updated IQR. The calculation of the real IQR requires to store all
data in memory. Nevertheless, the estimation could be done based on a window
[38, 82, 89] (requiring memory for the samples in the window only), or based on
quantile approximations [114]. All this allows us to incrementally extend the outlier
detection based on Q and T 2 to data streams.

2.3 Data Normalization

Assuming that preprocessing is a preliminary task prior to a subsequent modeling
phase using certain method, it is important to understand the characteristics of that
method in order to perform a proper data preprocessing.

The most used technique is mean centering, consisting on subtract the mean
value of every feature (thus column-wise). Some methods, like principal compo-
nents regression (PCR) or partial least squares (PLS) have connections to distances
to a central location of the distribution of the data. Therefore, if the data is not
centered, they suffer from certain bias due to the distance to the origin of the raw
data points.

Another fundamental normalization technique is standardization. Standardiza-
tion comes from the transformation of a general Gaussian distribution into a
standard Gaussian distribution (with null expectation and unitary variance), obtained
by mean centering plus dividing column-wise by the standard deviation of every
feature. By standardizing we make our data centered and unitary spread, thus
correcting differences in the scales and ranges of the features. When employing
any monitoring algorithm in which distance calculations are somehow involved,
standardization is recommended unless the nature of the features is similar. In such
cases, the differences in the ranges of the features are relevant for the process we
are monitoring. An example of an algorithm involving distances is support vector
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machines, in which the widths (distances) between the data groups determined by
the support vectors are maximized.

The third normalization approach we will consider is scaling. The motivation
behind is gaining robustness against tiny feature variances, as well as to avoid zero
entries in case of sparse data. In scaling we choose an interval and our data will
be scaled so that it fits into that interval. The usual intervals are [0, 1], obtained by
subtracting the minimum value and dividing by the range, and [−1, 1], obtained by
dividing mean centered data by the value with largest absolute value in each of the
features. The latter is the preferred one for sparse data. Both approaches are highly
sensitive in the presence of outliers, thus either a proper outlier detection strategy or
the use of robust alternatives to the range and standard deviation are recommended.

2.4 Data Transformation

The versatility of the data employed in predictive maintenance opens plenty of
possibilities when it comes to transformations. There are two main branches in
data transformation for predictive maintenance, which we identify as statistical
transformations and signal processing.

2.4.1 Statistical Transformations

The statistical transformations are inspired in those transformations historically
used in statistical inference [60]. The use of one or another type depends on the
application and the type of data.

In Statistics, data transformations are applied when some prior information
motivating them is available. Some of the most famous ones are logit transforma-
tion, from logistic regression, being related to neural networks and deep learning
methods; square root transformation, from quadratic regression; and reciprocal
transformation, obtaining similar scaling transformations as logit but also applicable
to negative values.

In general, all those transformations can be generalized by means of the power
transformation [49] that depends on a parameter λ, being all the aforementioned
particular cases for certain λs. As the identity is also a particular case, it is possible
to infer the most adequate transformation for some given data (by optimizing λ)
including not transforming at all (identity). This technique is known as Box-Cox
[5, 95]. Box-Cox has been successfully employed in fault detection [100].

Another family of transformations with statistical background are the projection
on latent subspaces, like PCA and partial least squares (PLS). PCA is easily
understandable if we approach it as an iterative procedure. Assuming we have
centered data, the first PC will be the single direction on which the variance of the
projection of the data is maximum. This direction is always obtainable as a linear
combination of all the original features. Once fixed the first principal component
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PC1, we consider the orthogonal supplementary subspace of the subspace defined
by PC1, that is a line. As an example, in 3D the orthogonal supplementary subspace
of a line is the plane that is orthogonal to it. In Fig. 2 the plane V is the orthogonal
supplementary subspace of the line U . In this supplementary subspace we can also
look for the single direction on which the variance of the projection of the data
is maximum, getting PC2. Notice that, as any direction in the subspace, PC2 is
orthogonal to PC1. As each supplementary subspace we obtain has one dimension
less than the previous one, we can continue with the same process until we end
up with one last single line, that is the last principal component (PCN if we had
originally N features). Also in Fig. 2, V would be the plane defined by PC1 and PC2
(where PC1 and PC2 have respectively the direction of the large and small axes of
the ellipse formed by the green points), and U would be the line defined by the last
component PC3 = PCN .

PLS could be seen as a supervised equivalent to PCA. It becomes clear when
we point out that the procedure for the calculation of the components in PLS
(called latent variables) is similar to the case of PCA, but the objective is to
maximize variance of the projection plus correlation with the target simultaneously.
There is also a relevant difference from the algebraic point of view. In PCA,
the supplementary space considered is the orthogonal one. Nevertheless, aiming
for some flexibility required by the double objective of maximizing not only the
variance of the projection but also the correlation with the target, PLS considers a
supplementary subspace not necessarily orthogonal. The need of the target makes
PLS unfeasible for online outlier detection. The application of a PCA variant is
usually referred as performing an orthogonal transformation [101].

Both PCA and PLS are linear transformations, unless we opt for one of their
multiple nonlinear extensions. There are several recent nonlinear transformations
that are meant for exploiting the relations among the features. By relevance and
usage, the most important ones are locally linear embedding (LLE) [91], isomap
[110], and derivatives. They rely on the transformation of the original set of features
into a smaller amount of projections taking into consideration the geometrical
properties of clusters formed by instances, or patches of the underlying manifolds.
Therefore, these methods could also fit into Sect. 2.6, because they could be
understood as dimensionality reduction approaches.

2.4.2 Signal Processing

The heterogeneity in the properties of the data samples, also called signals, leaves
margin for transformations coming from many sources. We have seen statistical
transformations, but they also could arise from Mathematics, Physics, or Computer
Science. It is a matter of semantics, but usually the word signal is reserved for certain
type of data that can be ordered in time. Concretely we will focus on waveform data,
because most of the predictive maintenance data are based upon this type. Waveform
data can be observed from two related domains: time domain and frequency domain,
being possible to move from one to the other and back. Depending on the domain
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we will distinguish three types of techniques in signal processing [109], which are
(1) time domain, (2) frequency domain, and (3) time–frequency domain techniques.

The analysis of the time domain is the analysis of the original waveform data,
which is, from a mathematical point of view, a chronological sequence of the value
of certain random variable, having certain expectation, variance, skewness, and
kurtosis which calculation could be part of the analysis, helping to characterize
the signals. An example of time domain analysis is time series analysis [23],
being autoregressive models one of the most employed ones. By autoregressive we
understand that the feature values depend linearly on the previous ones [94, 99],
so we would be assuming independence between features. If we think that it is
not the case, then fractal time series take into account dependencies between two
waveforms in different ways, such as local or global self-similarity, or short-range
or long-range dependency [69].

The consideration of the frequency domain has several motivations. One of
them is the fact that noise is usually affecting our signals, being recommended
to use denoiser filters. These filters, when applied in the time domain, have
huge computational costs, as they imply the application of convolution operations.
Meanwhile, in the frequency domain they are just multiplications, as they transform
differential equations into algebraic ones. Therefore, it is computationally cheaper
to transform the data into the frequency domain, apply a filter there, and transform
the filtered data back to the time domain in order to perform any posterior analysis
there. There are many possible filters to be applied, even designed, depending on
the components of the data we need to filter out [109]. Just as an example, a famous
digital filter for smoothing the data is Savitzky–Golay filter [81, 84, 96], which is
based on a local low-order polynomial interpolation using for each point a window
containing some of its neighbor points. Some filters are also suitable for incremental
online application on a streaming context [102].

The use of signals for modeling the state of real dynamic systems needs indeed
information available in both the time and the frequency domain. For this reason, it
is common to use both domains at the same time, moving from one to the other on
demand. This use is called time–frequency domain analysis.

There are several ways to transform the time domain signals into frequency
domain signals [6]. We highlight (1) the Fourier transform [120], (2) the Laplace
transform, and (3) the Z transform [109] (known as the discrete version of the
Laplace transform), since they are the most relevant ones. There are efficient
algorithms to calculate them as well as their inverses. For instance, the fast Fourier
transform (FFT) [29, 35, 122] is an efficient algorithm for calculating the Fourier
transform. It suffers from a problem because it considers the whole signal. If we are
facing, for instance, a fault detection problem trying to identify faults by changes in
the signal, we could miss true faults (camouflaged as noise) unless the changes are
significantly big wrt the whole signal. A way to overcome this effect is considering
the short-time Fourier transform (STFT) that considers a fixed-width time window
[25, 109].

Nevertheless there is another issue with STFT, coming from the fact that a
good resolution in one domain implies a bad resolution in the other. This forces
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us to choose the width of the window so that there is a fine trade-off between the
resolution in both domains. Another solution consists in employing a wavelet trans-
formation, which provides us with the same effect as having dynamic resolutions
in time and frequency. There are continuous and discrete wavelet transformations
[26, 78], being the latter more computationally efficient.

Some more sophisticated newer approaches were developed afterwards. The
Hilbert Huang transformation [56], a two-step method consisting on (1) empirical
mode decomposition, i.e., the decomposition of the signal into a finite number
of intrinsic mode functions, and (2) Hilbert transform of the intrinsic mode
functions. The fact that those functions are orthogonal [104] implies that they
can be understood as having physical meaning, thus being applicable in predictive
maintenance [125].

Finally, the Wigner Ville distribution [24] was adapted by Ville [118] from
Wigner’s work in the field of quantum mechanics. It is a quadratic integral
transformation in the form of a two-dimensional Fourier transform of a time–
frequency autocorrelation function related to both time and frequency. It is not a
window-based method, and it provides with the best resolution. Nevertheless, when
a signal is a composition of two signals, there appear cross terms that could interfere
(by distortion) the result of the analysis [63]. Otherwise, the study of the differences
in the cross terms could be used in predictive maintenance problems [119].

2.5 Missing Values Treatment

The appearance of missing values is common in real-world data collected remotely
and sent synchronously to a central database. In the same way as in the case of
outliers, an obvious approach is to ignore samples in which one or more features
presents a hole. As discussed in the case of outliers, sometimes we cannot afford
ignoring data. Then there is an obvious alternative, missing value imputation. The
what is obvious, but the how is really hard.

Naïve logical options, such as imputing the mean, or median as robust alternative,
in numerical features, or the mode, in categorical ones, could be very risky. For
instance, in imbalanced data situations the minority class gets great importance
in the modeling, thus erroneous imputation could significantly influence model
behavior.

In case we have a methodology to compare different samples and check whether
they are similar or not just by looking at a subset of the features that defines them,
then we could compare a sample with a hole with the samples without holes, and
choose for the imputation the value of the hole-free sample. There are alternatives in
which the sample to be used as imputer, such as systematically use one sample (cold
deck) or randomly select from a pool of candidates (hot deck). As an example, if the
methodology is based on distances using all features and the most similar one (i.e.,
the closest), then the approach is the same as K-nearest neighbors with K = 1. The
main drawback of this approach is the difficulty of finding a proper way to compare
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samples. For instance, if we employ distances and the amount of features is big, we
would suffer from the curse of dimensionality effect [85], being all distances huge
and comparable in terms of magnitude.

As an alternative, an option could be a double-model strategy, in which a model
is created using the fully available hole-free data in order to be used for imputation
only. The estimated value could be directly used (regression imputation), or it could
be slightly modified by adding a random residual (stochastic regression imputation).
Once the missing values have been imputed, the main model is trained. There
are several options depending on how to consider the imputed samples. Some
approaches consider them as regular legitimate data samples, and some others
underweight them, making them less influential in the main model. In case of
computational and/or time expensive models, the imputing model employed is
different from the main one, such that it is cheaper and/or faster. For instance,
common algorithms used for this purpose are K-nearest neighbors [113], fuzzy K-
means [70], Bayesian PCA [83], and multiple imputations by chained equations
(MICE) [92].

In special cases in which the features are related, we could use extrapolation
or interpolation methods for imputation. For instance, in data coming from a
spectrometer, the different features consist of measurements made at different but
close sequence of wavelengths, thus features in close wavelengths should present
similar values.

2.6 Data Engineering

In data engineering we include three approaches (feature selection, feature extrac-
tion, and discretization) that could be performed alone or combined. Nevertheless it
is not usual to combine them because they actually result in severely modified data
as they are deeply invasive procedures.

2.6.1 Feature Selection

By feature selection we mean feature subset selection. Some authors consider both
concepts as different because there are approaches in which the output is a ranking
of all features instead of a subset of them. Nevertheless, we will say just feature
selection since the common action is to use rankings to get a subset by truncation.

Feature selection can be understood as an optimization process in which the aim
is to find a collection of features that makes certain quality criteria optimum. The
simplest approaches, in which one single criterion is optimized, e.g., minimizing
the root mean squared error (RMSE) of prediction in a regression problem, can
be considered as single-objective optimization problems in which the objective
function to be optimized is the quality criterion.
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There are two types of feature selection (FS) approaches [44]:

• Filters [93]. They ignore the posterior task and focus only on the characteristics
of the data to perform the selection, i.e., the criteria to be optimized are intrinsic
to the data (e.g., mutual information between the features and the target). They
could be understood as some kind of preprocessing selection. They are fast, but
they usually ignore the possible redundancy in the data because most of the
approaches evaluate the features independently from each other.

• Wrappers [65]. The modeling task (e.g., classification or regression) is under-
stood as a black-box, whose performance using the subset of selected features
is the goodness of the selection (performance optimization). They can deal with
the redundancy, but they are usually computationally expensive, and they tend to
overfit if the amount of available data is not big enough.

Some taxonomies include a third type, embedded methods, that are those methods
in which the selection is internal to the model. As then the feature selection cannot
be decoupled from the training, we cannot consider them as preprocessing, thus we
keep the two-type taxonomy.

As filter methods rely on the characteristics of the data, the most renowned
methods are based on statistical measures suitable for establishing dependencies
and/or relationships between inputs and outputs, e.g., sensors information and
machinery condition. Perhaps the most important filter method is correlation-based
feature selection [46], in which the correlation between the features and the target
is used.

There are plenty of ways, some employing problem-specific information, for
defining what we understand by correlation, leading to different versions of the
algorithm. Any way, specific to the predictive maintenance task, to establish a
quantifiable relation between a feature (or a subset of them) and the output of the
task that is capable of comparing/ordering different features (resp. subsets) could be
used as a measure of correlation.

Recently, Brown [11] has found a generalization framework of some of the most
extended families of filter methods that facilitates their understanding, given by

JBrown = I (Xn;Y ) − β

n−1∑
k=1

I (Xn;Xk) + γ

n−1∑
k=1

I (Xn;Xk|Y ) (17)

where n is the number of features, Xi the ith feature, Y the output, and I (X;Y ) is
the mutual information shared by X and Y [103].

The approaches subsumed in the framework, just by playing with β and γ ,
are mutual information-based feature selection [3], maximum-relevance minimum-
redundancy criterion [86], joint mutual information [127], mutual information
uniformly distributed [67], conditional info-max [71], conditional mutual informa-
tion maximization [32], and informative fragments [117]. Moreover, it becomes
easier to compare the sensitivity of such families of methods with respect to
redundancy and noise.
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2.6.2 Feature Extraction

We define feature extraction [45] as the generation of new features by combining all
or some of the existing ones. A common way to extract features is based on expert
knowledge, but we will not consider it as it is subjective to the problem and is not
fully data-driven.

The most relevant feature extraction approaches are based on the already
mentioned projections on latent subspaces. The core methods are PCA and its many
variants [57, 61]. In the original PCA the number of extracted features is the same
as in the original data, since each principal component is just a linear combination
of all the original features and there are as many linear combinations as the original
number of features, thus PCA is a linear method. Assuming mean centered data,
from a linear algebra viewpoint it consists just on a rotation of the coordinate axes.

The gain when applying PCA is that the new features (principal components) are
ordered from higher to lower amount of captured variance in the set of features in
the original data (ignoring the target, i.e., unsupervised). The cumulative variance
captured by nested subsets of PCs can be easily computed, allowing to set a cut
threshold in the number of PCs, leading to a reduction in the number of features
(data compression) in such a way that the variance that is left out is small and
controlled, possible colinearities between features are overcome, and, theoretically,
noise is filtered.

Even when it contradicts intuition, compression is not always a goal in pre-
processing when applying PCA. A situation in which it is not worthy, even
counterproductive, to compress is noise-filtered data to be used afterwards by an
algorithm that internally includes an embedded feature selection, such as random
forests [10]. It is not a rare situation in predictive maintenance applications because
noise filtering through transformations is well-established.

Many variants are motivated by nonlinear nature of some data. For instance,
if there are certain known/intuited nonlinear relations between samples somehow
having similar consequences as colinearity, we could model them by means of a
specific kernel function and apply KernelPCA [97]. In this way, by using the kernel
trick, we transform our feature space into a space where those relations look linear,
applying there PCA.

As an alternative to the philosophy behind PCA-based approaches, we can con-
sider neighborhood embedding approaches that try to preserve local neighborhood
structures in the data on lower dimensionality spaces. A well-known algorithm
for neighborhood embedding is stochastic neighborhood embedding [53] (SNE)
in which a Gaussian probability distribution describes the potential neighborhood
of each original sample in the high-dimensional space. A variation of SNE, with
a simpler optimization process and comparable performance, is t-distributed SNE
[75] (t-SNE). Despite it was originally developed for visualization purposes, it is
perfectly applicable for data compression.
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Both SNE and tSNE are nonlinear algorithms. A linear method also meant for
neighborhood preservation is locality preserving projections [52] (LPP). In the
same paper, the authors propose a nonlinear extension, named Kernel LPP, just by
applying the kernel trick before LPP.

In highly dynamical systems, as is the case here, it is an adequate strategy to
perform several local linear models covering the zones of influence of the data as
a way to obtain the behavior of a nonlinear global model by aggregation/ensemble
[130] of the local linear ones. A use of this technique, in which the aggregation
of the local linear models is achieved by means of a fuzzy inference system [74],
can be found in [13]. The authors applied the strategy for regression purposes,
but it could be adapted for feature extraction using local information. In case of
favorable properties in the aggregation algorithm, this strategy is also suitable for
online monitoring [14, 16].

2.6.3 Feature Discretization

Some of the most famous algorithms employed in machine learning in general,
thus also in monitoring in predictive maintenance, are meant for categorical values
(e.g., decision trees). Moreover, sometimes they can only handle such type of
data. Besides, the type of data in predictive maintenance applications consists
of numerical continuous features with an order relationship, e.g., sensor data.
Therefore, it makes sense to think of ways to transform such features into categorical
ones, so that those algorithms could be used. This procedure is called discretization,
and it is performed feature by feature independently.

Assuming we have a feature Xi whose values are numerical values with an order
relationship. If we denote the minimum value by m, and the maximum value by M ,
then a discretization process consists in the definition of K intervals

I1 = [a0, a1), I2 = [a1, a2), . . . , IK−1 = [aK−2, aK−1), IK = [aK−1, aK ]

where a0 = m and aK = M . Notice that the cutpoints for the intervals define the
partition of the range unambiguously.

A naïve approach would be to prefix K and split the range [m,M] into K equal-
length intervals. There are several drawbacks with this method. First of all, which is
the right value for K? If the data is sparse or some extreme values (outliers or not)
are present, then the range is huge. In such situation it could happen that certain
intervals are empty and some crowded. Therefore, unless our data is uniformly
spread and we have a proper way to choose K , it is not a good option. Nevertheless,
there are plenty of estimators for the width (W ) of the bins, thus for K . One robust
option is the Freedman–Diaconis rule [33], given by

W = 2 · IQR(X)
3
√

N
(18)

where X is the feature under consideration and N the number of samples.
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Hence, it is preferable to have a clever way to proceed that, if possible, does not
force us to prefix K . The widest used method is a supervised top-down algorithm
called minimum description length principle (MDLP) [30]. By top-down we mean
that it begins with an empty partition and the cutpoints are added on the fly, thus
no need to prefix K . It decides whether a new cutpoint is needed and where to
locate it by means of information theory, concretely the mutual information with
the target [103].

There are many other ways to define discretizations. An exhaustive survey
including several taxonomies according to the properties of the methods and the
data is available in [36]. The authors present 87 methods, tested on many datasets
with different properties, so by comparison of types of data we could try to guess
which methods would fit better to our data.

2.7 Imbalanced Data Treatment

In such cases when the data show a lack of balance between the classes of the
samples, it is usually the case that the class we are more interested in is the minority
class, e.g., faulty and fault-free samples. Despite we have commented in Sect. 2.1
on two ways to deal with imbalanced data, named as sampling- and weighting-
based, the latter is more related to the modeling phase instead of the preprocessing
phase because the weights are actually introduced in the model creation or the
model validation steps, depending on the characteristics of the algorithm that is
being employed.

It is also of uppermost importance the metrics employed in the validation. For
instance, accuracy is not a valid choice because if the imbalance is 99%–1%, then
predicting always the majority class leads to a 99% accuracy. Thinking on the
example of faulty and fault-free samples, we would predict that faults never happen,
being almost always right. But it is obvious that not all errors in our prediction
have the same cost. In order to mitigate this without a need to assign a cost per
error it is common to use ROC curves [31]. Nevertheless, this is out of the scope
of this chapter, as it does not correspond to preprocessing. Therefore, we focus on
imbalance treatment approaches based on sampling techniques.

There are two obvious ways of compensating the imbalance, which are adding
samples from the minority class (oversampling), and removing samples from the
majority class (undersampling) [59, 87, 108, 121]. Because both have pros and cons
[18, 27, 79], it is also common to opt for a hybrid approach (mixed sampling) [2, 66]
combining them.

Recently, the importance of ensemble methods has been shown in many appli-
cations including imbalance treatment [19]. Both ensembles of repetitions of
stochastic techniques or ensembles of diverse deterministic techniques usually
overcome the application of single techniques, ensuring robustness by reducing the
variance while fixing the bias.
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2.7.1 Oversampling

If we think on how to perform oversampling, the first intuitive approach is random
oversampling (with or without replacement). In [58] the authors consider two ran-
dom oversampling possibilities: a pure random one and a focused one in which only
samples close to the boundary between classes are considered as selectable; both
used until parity in the classes is reached. As not all the samples from one class influ-
ence the monitoring algorithm in the same way, the samples we replicate could be so
influential that we suffer from an overfitting effect. More sophisticated approaches
opt for creating new samples by interpolation of some of the existing ones.

There are two main methods, existing several variants for each of them. Those
relevant methods are synthetic minority oversampling technique (SMOTE) [20] and
adaptive synthetic sampling method (ADASYN) [51]. In both methods the algorithm
to generate new samples is the same. A sample xi from the minority class is
considered. Then the K-nearest neighbors from the minority class are located.
One of them xj is randomly chosen, and the new synthetic sample is a convex
combination of them

xnew = λxi + (1 − λ)xj

where λ ∈ [0, 1] is randomly selected. Graphically, the convex combination of
two points is a point located in the segment that joins them. Figure 3(a) shows
the generation of a new minority class sample xnew (marked as a green cross).
The difference between SMOTE and ADASYN is only in the way the neighbor
points are taken. The latter uses a prefixed K , and the former chooses it depending
on the density of the minority class inside a neighborhood obtained by K ′-nearest
neighbors.

Fig. 3 Examples of (a) the generation of a new minority class sample xnew from an existing sample
xi and one of its 3-NN xj (the 3-NN neighborhood of xi appears as a pale blue circle), and (b)
the determination of noisy (purple), borderline (orange), and safe (green) minority class samples
in borderline extensions of SMOTE (the 3-NN is inside colored rounded squares). Plus and minus
symbols represent majority and minority class samples, respectively
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The influence of extreme values (or outliers, if not detected) is really high in
both SMOTE and ADASYN, being higher in ADASYN. Then SMOTE is usually
employed in some of its variants. The most famous ones are borderline-1 SMOTE,
borderline-2 SMOTE, and SVM SMOTE. In borderline versions also an auxiliary
K ′ neighborhood is used, where the samples xi from the minority class are labeled
as noisy (all nearest neighbors are not from the minority class), in danger (at least
half of the neighbors are from minority class), or safe (all are from the same class
as xi). Then the only samples chosen as initial samples are in danger samples. See
Figure 3(b) for an example.

The difference between borderline-1 and borderline-2 happens when selecting
xj . Borderline-2 allows to select a sample from any class, not necessary majority
class (as borderline-1 does). In SVM SMOTE the support vectors are used to
generate the new sample xnew.

2.7.2 Undersampling

The major risk when ignoring majority class samples is to potentially ignore really
relevant informative samples, leading to a degradation of the general quality of
the model. As in oversampling, there are methods that select (sample selection)
prototypes in the majority class (most of the approaches) and methods that generate
(sample extraction) a smaller set of prototypes from the original bigger set of
samples. The only relevant approach in prototype generation methods is called
cluster centroids undersampling, which is based on clustering using representatives
(CURE) [42], a famous clustering algorithm in which relevant points of the identi-
fied clusters (e.g., the centers) substitute the points inside those clusters, reducing
the amount of points but keeping the underlying cluster structure. When it comes to
prototype selection methods, we can identify two subgroup of methods depending on
the possibility by the user of controlling the number of samples after undersampling
(controlled undersampling techniques) or not (cleaning undersampling techniques).

The simplest controlled undersampling technique is random undersampling,
which is the riskiest one as all samples are equiprobably deleted ignoring their
potential informativeness/relevance. The most representative approach is called
NearMiss [131], which includes some heuristic rules in order to select the samples.
The authors presented three NearMiss versions, differing in the way the heuristics
are defined. NearMiss-1 selects the majority class samples with minimum average
distance to the N closest minority class samples. NearMiss-2 selects the majority
class samples with minimum average distance to the N farthest minority class
samples. Finally, NearMiss-3 has two steps: first, the M nearest neighbors for each
minority class sample are kept, then the majority class samples with maximum
average distance to the N closest minority class samples are selected.

Also in [131], the authors define another approach, named MostDistant, in which
the selected majority class samples are those presenting largest average distances to
the N closest minority class samples. In the original paper the authors select N = 3.
Figure 4 shows examples of the three versions of NearMiss in a two-dimensional
space with N = 3 and M = 5.



On the Relevance of Preprocessing in Predictive Maintenance for Dynamic Systems 75

Fig. 4 Examples of the selections performed respectively by all three NearMiss versions. Plus and
minus symbols represent majority and minority class samples, respectively. Distances to the 3-NN
of some majority class samples are depicted using colored dashed lines. In green we can see the
distances corresponding to the selected majority class sample, as well as the sample itself in each
version. In (c), the samples out of the 5-NN neighborhood are represented

The family of cleaning undersampling techniques is bigger. The name comes
from the fact that the part of the dataset corresponding to the majority class is
cleaned by deleting certain samples considered as dispensable according to certain
heuristic algorithm. We describe them in no particular order.

A popular method is based on the so-called Tomek’s links [112]. We say that two
samples from different classes form a Tomek’s link if they are nearest neighbors to
each other. Mathematically,

d(x, z) ≥ d(x, y) and d(y, z) ≥ d(x, y),∀z (19)

The undersampling procedure associated with them has two variants. We can
remove (1) only the sample in the Tomek’s link corresponding to the majority
class, or (2) both samples. It is clear that such pairs of samples are some sort
of contradiction. The safest choice would be to remove both, but this could be
sometime not an option as it would decrease the size of the minority class. An
example of a Tomek’s link can be seen in Fig. 3(b), formed by the purple minority
class sample and its nearest neighbor.

Inspired by Wilson’s studies on the nearest neighbors rules [123], edited nearest
neighbors edits the dataset by removing those samples which do not agree enough
with their neighborhood. Different agreement criteria provide different versions.
Given one sample, the most restrictive version demands all the samples in the
neighborhood to be from the same class of the sample under study. A more relaxed
version demands only a majority of samples from the same class. There is also the
possibility to run the edition procedure several times iteratively (with the same or
different K), so that more samples are removed.

We can define instance hardness [106] as the level of difficulty to predict the
class of a sample due to the sample characteristics. The usual way to calculate it
is by means of an algorithm that assigns to each sample, using cross-validation, a
probability of being well classified, thus the lower the probability the harder the
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instance. The instance hardness undersampling technique consists in establishing a
threshold for the probability of the majority class samples, removing those that are
below the threshold.

Last but not least, we have the family of condensed nearest neighbors, based
on the homonymous rule [47]. The undersampling methods that are inspired on it
condense the space by removing samples that are far from the decision boundaries.
The original method is based on an iterative process with the following steps:

1. Construct a condensed set C containing the minority class samples.
2. Add one majority class sample to C, and create a potential set P with the rest.
3. Classify each sample in P using 1-NN. If misclassified, move it to C. Otherwise,

do nothing.
4. Reiterate until no samples can be added to C.

As this original approach is very sensitive to noisy samples, keeping them in C,
some variants were proposed. The variant named one-sided selection [66] removes
noise by applying Tomek’s links first, and then the steps 1–3 of the original
approach, thus no iteration over P .

In [68], the authors propose neighborhood cleaning rule that proceeds as
follows:

1. Get one sample xi and classify it using 3-NN.
2. If xi is misclassified, go to next step. If classified go to the first step.
3. If xi is a majority class sample, then remove xi . If xi is a minority class sample,

then remove the 3-NN corresponding to the majority class. Go to the first step.

This approach is computationally expensive, and could suffer in case of very large
heavily imbalanced datasets. Even when its philosophy is based on cleaning, the
result is usually a condensed subset of the original one.

All these condensed family techniques depend on some randomness, when taking
samples to begin. Moreover, the order of the samples is relevant for the final
undersampled set. Therefore, we cannot expect the same result when repeating them
over the same dataset. It is recommended to perform the methods several times and
ensemble the results by certain aggregation procedure.

2.7.3 Mixed Sampling

The naïve approach, consisting on combining both random oversampling and
random undersampling, was proposed in [72]. The authors used lift analysis instead
of accuracy as performance score measurement in their experiments, without
obtaining relevant improvements.

A deep study on the mixture of oversampling and undersampling techniques can
be found in [2]. The authors point out the good results of mixing SMOTE with both
Tomek’s links and edited nearest neighbors.
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2.8 Models

Our aim is not checking which modeling technique behaves better, but comparing
different preprocessing schemata by means of the posterior performance in a
regression or classification task. Therefore, we present only a few techniques just
to check whether using different algorithms is also relevant in the selection of the
right preprocessing scheme apart from the data.

Here we briefly describe some state-of-the-art algorithms suitable for confronting
predictive maintenance problems. We distinguish two types of algorithms for
two classical problems: classification algorithms for fault detection problems and
regression algorithms for remaining useful life prediction problems.

2.8.1 Classification

A regular fault detection problem is a binary classification problem in which the
aim is to predict whether a concrete system state (sample) corresponds to a faulty
or to a fault-free situation. The simplest but still widely used classification methods
are naïve Bayes and K-nearest neighbors. Naïve Bayes (NB) algorithm [34] is a
probabilistic method based on the application of Bayes theorem under strong feature
independence assumptions. K-nearest neighbors algorithm [105], as all methods
based on distance calculations, can suffer from huge distances of some of the
neighbors due to the sparseness enforced by a habitual high dimensionality. The
attempts to mitigate such problem are the motivation behind distance-weighted K-
nearest neighbor algorithm [28], that is the variation of K-NN we will consider,
consisting in regulating the importance of the votes of the neighbors by means of
weights that depend on the distance, so that the closer the more important. Since it
is the only variant we will consider, we denote it by K-NN.

Support vector machines (SVM) [98, 115] is a well-known nonlinear classifi-
cation method, based on separating the classes employing hyper-planes is such
way that the separation is maximized. This separation is not performed in the
original input space but in a kernel-transformed space, i.e., the kernel trick [55].
The samples that are closest to the decision boundary, thus defining the hyper-
planes, are called support vectors. In [62] the authors compare several classifiers
for fault detection, including distance-weighted K-nearest neighbors and support
vector machines, among others.

The random forests (RF) algorithm [10] is a stochastic ensemble method that
performs a bagging strategy (a combination of bootstrapping and aggregation [9]) of
weak learners, concretely decision trees. The procedure is simple. Given a prefixed
number of trees, for each tree a subset of the original features is randomly selected
(weakness). Then the tree is trained using those features and a set of samples
obtained by random selection with replacement (bootstrapping). The decision is
obtained by combining all individual tree decisions (aggregation). The magic
behind RF is that the bias of the full ensemble is equivalent to the bias of each single
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tree, whereas the variance is much smaller. This robustness, together with its low
computational cost and high parallelization and distribution capabilities, makes RF
an algorithm to be taken into consideration in predictive maintenance [12, 43, 128].

2.8.2 Regression

Despite the original purpose of RF and SVM is classification, there are versions
of both of them for regression purposes. In the case of random forests, it is quite
straightforward to substitute decision trees by regression trees, and the voting
aggregation by an average prediction [10]. The insights in the case of support vector
regression (SVR) are a bit more complex and too long to be commented here [107].
Some applications to RUL prediction can be seen in [4, 73, 90, 126].

Basic linear regression approaches, such as multiple linear regression, suffer
from the arising of singularities because of the effect of colinearities between
features when calculating the inverse of XT X, required by the least squares solution,
being X the input data matrix. In such situations, shrinkage (regularization) methods
avoid singularity by perturbing the matrix before it is inverted. The two main
approaches in the family of shrinkage methods are Lasso [111] and ridge regression
[49], obtained by introducing 	1 and 	2 penalties, respectively. The elastic net [133]
includes a penalty based on a combination of both 	1 and 	2 penalties, looking for
some elasticity in the regularization, being Lasso and ridge regression particular
cases of the elastic net.

Generalized linear models [49] is a generalization of ordinary linear regression
that provides flexibility in the sense that the distribution of the errors is not
necessarily supposed to be normal, as happens in ordinary linear regression. The
combination of the elastic net with generalized linear models (GLMnet) is a
regression algorithm based on generalized least squares that uses cyclical coordinate
descent [50] in a path-wise fashion [48] in order to select the optimum elasticity in
the regularization via the elastic net. The elasticity provided by the possibility of
controlling how close we are to Lasso or ridge regression by means of a single
parameter allows an efficient exploitation of the regularization benefits.

Up to our knowledge, this approach has not been used in predictive maintenance
yet. Nevertheless it has been considered here because of its outstanding results in
monitoring dynamic chemical systems in process analytic technology (PAT) [15,
17], that behave quite similarly to regression problems in predictive maintenance
with dynamic systems.

Deep learning (DL) is the way to call the use of a complex artificial neural
networks. A neuron is a single computation unit that receives an input value (from a
data source or another neuron), performs a simple operation consisting on applying
certain simple function (activation function) over the product of the input by a
numerical parameter (weight), and outputs the result (towards an output interface
or another neuron).
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Different types of neurons connected in different ways lead to different network
architectures. These neural networks are designed by means of layers of neurons
conceived for specific subtasks.

For stream-like data, such as the data usually involved in monitoring tasks in
predictive maintenance, the most used networks are recurrent networks (RNN), in
which the neurons are also connected to themselves. This provides the network with
some memory in the form of persistence of the information. In general, they suffer
when the ideal persistence time grows.

There is a family of RNNs meant for handling long-term information dependen-
cies called long short term memory networks (LSTM) [54] that contain an internal
mechanism (cell state) to filter/retain part of the information as long as necessary.
There are several ways of handling the remembering/forgetting part of the learning
process, leading to different variants of LSTMs. The most relevant ones are, among
others, vanilla LSTM [40], gated recurrent unit (GRU) [21], depth gated LSTM
(DG) [129], or grid LSTM [64]. In principle, LSTM networks are the most adequate
network architectures in predictive maintenance.

Even when the natural output of the network is a number, they could be adapted
for classification purposes by linking the classes to certain numerical output ranges.

3 Experimentation

The philosophy derived from non-free-lunch theorem [124], which states that the
average performance of all algorithms over all possible problems is asymptoti-
cally the same, is that there is not a single universal algorithm that is the best.
Therefore, there is always margin for improvement and every particular problem
(correspondingly dataset) is better suit for a different method. This applies also to
the preprocessing schemata, in the sense that there is not a universal preprocessing
schema that is always the best, being the goodness problem/data dependent.

Consequently, providing successful stories for concrete scenarios is perhaps
not the best option. It would be more relevant to provide the reader with direct
or literature referenced details of the available choices in the market, as well as
hints about possible decisions depending on the characteristics of the problems or
the data. For such reason we will just employ the already presented classification
and regression techniques on some of public available real-world datasets from
competitions in the Annual Conference of the Prognostics and Health Management
(PHM) Society. We will use them (both the original data and some modified
subsets, e.g., for missing values treatment or outlier detection) to compare several
preprocessing schemata on different algorithms. Furthermore, we will provide some
clues about which preprocessing methods might be more reasonable depending on
the particularities of data and problems based on successful applications.

It is obvious that the combination of all possible methods in all steps in different
orders would end up in thousands of preprocessing schemata. Moreover, if a schema
consisting on seven steps works very well, we would not be able to decide which



80 C. Cernuda

of them contributed more to that behavior. Therefore, just some schemata involving
only a few steps will be tested, and compared also with, we should not forget that it
is always a possibility, not preprocessing at all.

3.1 Datasets

In order to have a classification and a regression problem, we have considered the
data corresponding to the PHM Data Challenge 2014 and the PHM Data Challenge
2016. The former is transformed into a fault detection problem (classification), and
the latter is a RUL estimation problem (regression) in which the average removal
rate of material in a polishing process. The lack of exact environmental information
about the origin of the datasets impedes us to infer cause–effect reasons for the
results. Hence, we focus on the goodness of the application of the preprocessing
schemata instead of the underlying reasons.

3.1.1 PHM Challenge 2014

The information about the domain and the data of the PHM challenge 2014 is not
provided due to proprietary concerns. We know that it consists of six datasets, half
for training and half for testing with information about (1) part consumption (i.e.,
the replacement of some parts), (2) usage (similar to the lines of an odometer), and
(3) failures (time of failure). The target information for the test files is unknown, so
we focus only on training data. By crossing the failure information with the rest we
could build by merging a dataset in which the target is binary: faulty or non-faulty,
thus it consists on a binary classification problem. For further information on the
data, check the call for participation in [37].

In this dataset there is almost no information about the nature of the features. The
original aim in the challenge was to predict the health level of the components in a
certain time by classifying them into low risk and high risk of failure, equivalent to
fault save and faulty in a short future. The variables are numerical and discrete.
Nevertheless, the amount of different values is so big that we can employ any
method suitable for continuous variables.

The data is heavily imbalanced, belonging to the high risk class (faulty) only
4% of the samples. The modeling algorithms do not take into account the level
of imbalance during training. Only some of them, based on iterative optimization
processes, are capable of weighting the errors according to the class densities so
that they favor avoiding mistakes in the minority class. The main problem of such
approaches is the price to pay in the prediction of the majority class. Therefore it is
recommended to treat imbalanced in advance as part of the preprocessing.
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3.1.2 PHM Challenge 2016

The system under investigation is a wafer chemical-mechanical planarization
(CMP) tool that removes material from the surface of the wafer through a polishing
process. Figure 5 depicts the CMP process components and operation. The CMP
tool is composed of the following components: (1) a rotating table used to hold a
polishing pad, (2) a replaceable polishing pad which is attached to the table, (3) a
translating and rotating wafer carrier used to hold the wafer, (4) a slurry dispenser,
and (5) a translating and rotating dresser used to condition a polishing pad.

During the polishing process, the polishing pad’s ability to remove material
is diminished. Over time, the polishing pad has to be replaced with a new pad.
Similarly, the dresser’s capability to roughen the polishing pads is also reduced after
successive conditioning operations and after a while the dresser must be replaced.
The objective is to predict polishing removal rate of material from a wafer, thus it is
a regression problem. For further details, check the call for participation in [88].

A deeper look at the data allows us to infer some characteristics of the data. All
variables are numeric (float), with different ranges and dynamics. Some fluctuate
up and down approximately in a cyclic way while some others show a continuous
increase or decrease that is apparently linear. These differences force us to be careful
when selecting the way to apply the preprocessing techniques.

For instance, if we apply a technique that involves mixing the features, such as
PCA, then standardization is recommended. On the contrary, in approaches acting
on the features individually, such as discretization, it could be counterproductive.
Due to the size of the data we are limited to visualization techniques based on
certain information summary/compression such as tSNE plots, and scores and
loadings plots in PCA. Nevertheless there is not an obvious relationship between
the visualizations and the adequate preprocessing techniques.

Fig. 5 Chemical-mechanical
planarization (polishing) of
wafer. This process removes
material from wafer surface.
This image is the property of
the Prognostics and Health
Management Society and was
taken from the online
information about the
challenge
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3.2 Experimental Schema

The algorithms we consider, whether take advantage of centered data or are
translation invariant, thus we have mean centered all the data in advance. All the
experiments were made using ten-fold cross-validation because it is known to be a
good approximation of the expected prediction error on separate future unseen test
samples. We evaluate the performance in classification by means of the area under
the ROC curve [7], and in regression with the root mean square error.

Since our intention is not to beat the winners of the competitions, but check
whether preprocessing is beneficial or not (and how much), then our comparisons
are against not preprocessing. The reason for including several modeling algorithms
is not to determine which one is better, but to try to check if that diversity of models
is relevant or not for the benefit of preprocessing.

In case we suspect that the best preprocessing strategy is independent of the
posterior modeling technique, then we could try the simplest ones in order to guess
the right preprocessing scheme. For statistical significance of the differences, we
have employed the Mann–Whitney–Wilcoxon test [80].

In this study both the outliers and missing values have been artificially intro-
duced, thus we have the chance to check the performance of the methods, as we
know the truth. This is not the case in real-world applications. With respect to the
rest of preprocessing steps, we have performed the test with the full dataset. The
realist approach in an application would be to extract a representative subset of the
data in order to perform some preliminary tests and determine a full preprocessing
strategy.

When it comes to the study of the approaches for missing values, we have
modified the PHM2016 dataset by randomly erasing 1% of the values in 10%
variables. Taking into account that there are 21 variables and 346,015 samples, we
have introduced in 2 variables 3460 holes per variable. The approaches employed
were imputation with the mean value, imputation by averaging using 5-NN, as well
as removing the samples (deletion strategy).

For outlier detection, also using PHM2016, we have modified 1% of the total
amount of single numerical values by distancing them from the mean of the feature
they correspond to. The amount of variation is proportional to their distance to
the mean, with factors corresponding to 20%, 50%, 100%, and 200%, meaning
865 variations per level. Each of them has been applied to the one fourth of the
modified values, i.e., 0.25% of the total amount of values. In this way we can
evaluate the sensitivity to the amount of variation. The approaches employed were
the Mahalanobis distance and the Q and T 2 approximations in their offline versions.

As some potential detected outliers could be out of the list of the artificial mod-
ifications (false positives), it makes sense also to check the posterior performance,
after cleaning, in modeling. For this comparison, we have also included the original
modified data, i.e., without looking for outliers.
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When it comes to feature engineering, we have designed experiments separately
for feature selection (on PHM2016), feature extraction (on both datasets), and
discretization (on PHM2016). The algorithms we have employed are:

• Feature selection. We have chosen two filter methods (correlation-based feature
selection and conditional info-max), and a wrapper approach (using K-NN).

• Feature extraction. We have selected PCA, PLS, Kernel-PCA, t-SNE, and
Kernel-LPP, so we have two linear and three nonlinear methods. Notice that most
of the features in PHM2014 are numerical discrete variables containing natural
numbers. Nevertheless, the amount of different values is so big that we can
consider them as continuous numerical variables, suitable for feature extraction
by PCA or PLS. The adequate number of PCs and LVs has been selected by grid
search.

• Discretization. We have opted for two approaches, in order to consider one that
prefix the number of bins (equal-width intervals using Freedman–Diaconis rule),
and another one that does not prefix it (MDLP).

For imbalanced data treatment we need a classification problem, thus we use our
PHM2014 version, which has a minority class (faulty) represented approximately
by a 4% of the data samples. We have not applied all the methods in Sect. 2.7, but
some of the most popular ones. Classified according to the provided taxonomy, they
are

• Oversampling. Random oversampling, SMOTE borderline-2, and ADASYN.
• Undersampling. Random undersampling, cluster centroids, NearMiss-2, and

Tomek’s links.
• Mixed sampling. Random oversampling and undersampling combination, and

SMOTE with Tomek’s links.

3.3 Results

The results are presented by means of tables, whose formats depend on the
experiments. As general facts,

• we consider not preprocessing as baseline, and we present the percentage of
improvement (positive number) or deterioration (negative number). An exception
occurs in the case of missing values, because the usual baseline does not exist. In
that case we consider the deletion strategy as the baseline approach. If the shown
variation from the baseline is significant, according to the Mann–Whitney–
Wilcoxon test, it will be indicated with a ‡ mark. The best results are highlighted
in bold font. There is also another exception when studying the detection of
outliers. In that situation there is not any baseline because there is not any
modeling step, but just checking the performance in the detection of the outliers
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for different perturbation levels. In this case we just show the detection rates per
method and per level, and the † mark means significantly better than the other
method;

• in all nearest neighbor related approaches in which we have the chance of
choosing K , our choice will be K = 5;

• the kernel function used in both SVM and Kernel-PCA is radial basis function
(RBF);

• the network architecture used for DL is GRU because it has a simple effective
joined input/forgetting mechanism by using the so-called update gates, proved
to behave similarly to much more complex architectures [41];

• unless explicitly indicated otherwise, the learning parameters of the algorithms
are set by default as in the literature. For GRU, the default arguments in Keras
[22] have been used.

Table 1 shows the results for missing values. Notice that in this situation all columns
are independent because we are comparing, for each modeling technique, the
performance of imputation versus deletion for that concrete technique. For instance,
the values +1.35 and +2.57 corresponding to RF algorithm mean that imputation is
preferred (both are positive values) and the performance when using K-NN method
is almost doubly beneficial than mean.

We can see that it is slightly beneficial to use imputation, being a bit better
the imputation by means of K-NN. Nevertheless, none of the imputations are
statistically significantly better than deletion, for any algorithm except for RF and
GRU. This, together with the fact that K-NN requires huge computational and
memory resources, shows doubts about its suitability.

The reason for using several models is to check whether the model to be applied
after preprocessing has an impact in the right preprocessing scheme. Luckily we
can see that the results are similar for all modeling algorithms, thus it seems that
the data is more relevant than the algorithm. Nevertheless, we should notice that
there are big differences in performance between deletion, mean, and K-NN for the
various modeling techniques even when the general trend remains stable.

Table 2 shows the results for the detection of outliers for different deviations. The
percentage of outliers is constantly 1%, but the amount of deviation from the original
values, artificially introduced, varies from low intensity (20%) to high intensity
(200%). The higher the intensity the simpler the detection because the values are
much more different from the real ones. In the case of the Q and T 2 approximations
method, the number of principal components has been determined by establishing a
threshold of the total amount of variance captured, set in 90%.

Table 1 Missing values Methoda RF SVR GLMnet GRU

Mean +1.35 +0.15 +1.20 +1.57 ‡

K-NN +2.57 ‡ +0.33 +1.28 +2.04 ‡
aDeletion strategy is considered as the baseline
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Table 2 Outlier detection
accuracy

Method 20% 50% 100% 200%

Mahalanobis 1.04 13.87 53.29 92.37
Q and T 2 a 1.62 26.82 † 69.71 91.91

aThe number of PCs is 4

Table 3 Outlier detection
effect on modeling

Method RF SVR GLMnet GRU

Mahalanobis +0.66 +2.09 +4.10 ‡ +3.96

Q and T 2a +0.92 +2.33 +5.01 ‡ +5.14 ‡
aThe number of PCs is 4

Table 4 Feature selection Method RF SVR GLMnet GRU

CFS −0.77 +0.03 +0.38 +0.20

Conditional info-max −0.07 +0.05 +0.25 +0.16

K-NNa +0.02 +0.03 +0.41 +0.22
aOnly wrapper method. The rest are filters

In general, the approximation approach behaves better than Mahalanobis, being
that difference higher in the intermediate levels. For the biggest distortions (easier
to detect) both methods perform very well.

Table 3 shows the results for outlier detection effect in modeling. Looking at
RF column we can see that the advantage is much lower than for the other two
algorithms. A possible reason is the fact that RF uses for each tree a reduced dataset,
both in the features and in the samples part. Theoretically the expected percentage of
the samples from the original set considered for training each tree is indeed 63.2%,
thus errors in the detection could be somehow partially neglected.

Besides, we could suspect the difference between SVM (nonlinear) and GLMnet
(linear) to be due to the fact that the transformation used for generating the outliers
is a linear mapping. Nevertheless, the suspicion is not right because GRU is also
nonlinear and behaves almost the same as GLMnet. In the end, GLMnet and GRU
have suffered less than SVM from the not detected outliers or the false positives.
The latter are very few, almost zero compared to the true outliers.

Table 4 shows the results for feature selection. The most plausible reason for
the total lack of advantage in this feature selection process is that the variables
are quite independent, containing a similar amount of complementary information.
Therefore, selecting features in any way enforces certain information loss. The
effect is magnified in RF, as it has an internal tree-wise feature selection step.

Tables 5 and 6 show the results for feature extraction in the classification
and regression tasks, respectively. We can say that (1) the data seem to be quite
nonlinear, as the nonlinear methods are the best in all algorithms except SVM
in classification (probably due to the fact that in that case we are applying
twice an equivalent kernel trick), (2) PLS (supervised) behaves better than PCA
(unsupervised) because of the possibility of using the target information, and (3) it
makes sense to use these feature extraction methods, even when the improvement
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Table 5 Feature extraction
in fault detection
(classification)

Method NB K-NN SVM RF

PCAa +1.03 −1.11 +1.48 +1.27

PLSb +1.24 −0.22 +2.17 ‡ +1.33

Kernel-PCAa +1.36 +1.04 +2.04 ‡ +2.16 ‡

t-SNE +1.25 +1.53 ‡ +2.11 ‡ +2.35 ‡

Kernel-LPP +1.21 +1.15 +2.16 ‡ +2.08 ‡
aThe number of PCs is 3
bThe number of LVs is 2

Table 6 Feature extraction
in RUL estimation
(regression)

Method RF SVR GLMnet GRU

PCAa +2.20 ‡ +1.26 +1.52 +2.15 ‡

PLSa +2.31 ‡ +1.53 +1.59 +3.02 ‡

Kernel-PCAa +3.33 ‡ +1.54 +2.60 ‡ +3.48 ‡

t-SNE +4.22 ‡ +1.78 ‡ +2.85 ‡ +4.39 ‡

Kernel-LPP +3.97 ‡ +1.60 +2.71 ‡ +4.81 ‡
aThe number of PCs and LVs is 4

Table 7 Discretization Method RF SVR GLMnet GRU

Equal-widtha −1.61 ‡ −0.32 −0.95 −2.33 ‡

MDLP +2.66 ‡ +0.98 +2.76 ‡ +4.19 ‡
aUsing Freedman–Diaconis rule

is not statistically significantly better (with one single exception), because they are
not much computationally expensive.

Table 7 shows the results for discretization. In this case the comparison between
equal-width and MDLP is not totally fair, as the former is unsupervised and the
latter supervised. Also, in general, methods that do not need to prefix the number of
bins achieve results at least as good as the restrictive ones. In this case, according to
the significance tests, it is clearly not an exception, especially in RF, GLMnet, and
GRU. Equal-width only makes sense if the density of the features is homogeneous
in their ranges, which is rare and not happening here.

In general, RF use to behave better when discretizing. Besides, some algorithms
involving complex/computationally expensive optimization processes (like SVR
and GRU) could suffer from numerical instabilities that are less likely with
discrete features. Nevertheless, discretization is not necessary beneficial always.
Also notice that the process affects the features independently, which makes possible
to discretize only a subset of the continuous features.

Table 8 shows the results for imbalance data treatment. First, we can compare
these results with the ones in Table 5, and point out that imbalanced data treatment
schema seems to be a better choice than feature extraction schema, hence, as we
have mentioned before that it was worthy to use feature extraction, it is even worthier
to use imbalanced data treatment.



On the Relevance of Preprocessing in Predictive Maintenance for Dynamic Systems 87

Table 8 Imbalanced data
treatment

Method NB K-NN SVM RF

RandOver −1.83 ‡ −2.01 ‡ −0.92 −1.24

SMOTEa +1.39 +1.06 +2.43 ‡ +1.40

ADASYN +0.23 −0.82 +1.49 +0.48

RandUnder −1.71 −1.69 −1.03 −1.43

ClustCentr −0.02 −0.85 +1.04 +0.62

NearMissb +1.22 +1.03 +1.15 +1.55

Tomek +1.42 +0.99 +1.24 +2.51 ‡

RandOverUnder −1.75 −2.25 ‡ −1.20 −1.37

SMOTE+Tomek +1.81 +1.13 +4.61 ‡ +3.49 ‡
aThe version is SMOTE borderline-2
bThe version is NearMiss-2

Looking only at these imbalanced methods, it is clear that all three random
approaches are a bad choice, independently of the algorithm employed. Maybe the
flexibility provided by its nonlinear nature makes SVM be the least bad. It seems
logical that SMOTE+Tomek is the best when SMOTE was the best among the
oversampling methods and Tomek’s links among the undersampling methods. In
this case it has occurred, but it is not always necessary the case.

4 Conclusions

We have presented in detail methods covering all steps involved in preprocessing
in predictive maintenance, both for offline and online learning scenarios when the
latter was feasible, as well as provided the reader with exhaustive bibliographic
references.

We have performed several experiments on public available real-world data from
the PHM Data Challenges 2014 and 2016, so that we could empirically test some of
the presented approaches.

We have seen that the data seem to have higher relevance than the posterior
modeling technique in order to determine the preprocessing schema, both for
regression and classification problems.

As possible extensions, some online tests could be performed, in order to
check the online versions of the methods. Besides, more preprocessing strategies,
modeling algorithms, and datasets could be considered in order to extend the study
and check with higher certainty whether the modeling algorithm is much less
relevant than the data for the adequate preprocessing scheme.
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